xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 131cddcba2c4c953a8a49d7adbf656cab9e9f1c7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     // We're checking for profile read errors in CompilerInvocation, so if
186     // there was an error it should've already been caught. If it hasn't been
187     // somehow, trip an assertion.
188     assert(ReaderOrErr);
189     PGOReader = std::move(ReaderOrErr.get());
190   }
191 
192   // If coverage mapping generation is enabled, create the
193   // CoverageMappingModuleGen object.
194   if (CodeGenOpts.CoverageMapping)
195     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
196 
197   // Generate the module name hash here if needed.
198   if (CodeGenOpts.UniqueInternalLinkageNames &&
199       !getModule().getSourceFileName().empty()) {
200     std::string Path = getModule().getSourceFileName();
201     // Check if a path substitution is needed from the MacroPrefixMap.
202     for (const auto &Entry : LangOpts.MacroPrefixMap)
203       if (Path.rfind(Entry.first, 0) != std::string::npos) {
204         Path = Entry.second + Path.substr(Entry.first.size());
205         break;
206       }
207     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
208   }
209 }
210 
211 CodeGenModule::~CodeGenModule() {}
212 
213 void CodeGenModule::createObjCRuntime() {
214   // This is just isGNUFamily(), but we want to force implementors of
215   // new ABIs to decide how best to do this.
216   switch (LangOpts.ObjCRuntime.getKind()) {
217   case ObjCRuntime::GNUstep:
218   case ObjCRuntime::GCC:
219   case ObjCRuntime::ObjFW:
220     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
221     return;
222 
223   case ObjCRuntime::FragileMacOSX:
224   case ObjCRuntime::MacOSX:
225   case ObjCRuntime::iOS:
226   case ObjCRuntime::WatchOS:
227     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
228     return;
229   }
230   llvm_unreachable("bad runtime kind");
231 }
232 
233 void CodeGenModule::createOpenCLRuntime() {
234   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
235 }
236 
237 void CodeGenModule::createOpenMPRuntime() {
238   // Select a specialized code generation class based on the target, if any.
239   // If it does not exist use the default implementation.
240   switch (getTriple().getArch()) {
241   case llvm::Triple::nvptx:
242   case llvm::Triple::nvptx64:
243   case llvm::Triple::amdgcn:
244     assert(getLangOpts().OpenMPIsDevice &&
245            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
246     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
247     break;
248   default:
249     if (LangOpts.OpenMPSimd)
250       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
251     else
252       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
253     break;
254   }
255 }
256 
257 void CodeGenModule::createCUDARuntime() {
258   CUDARuntime.reset(CreateNVCUDARuntime(*this));
259 }
260 
261 void CodeGenModule::createHLSLRuntime() {
262   HLSLRuntime.reset(new CGHLSLRuntime(*this));
263 }
264 
265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
266   Replacements[Name] = C;
267 }
268 
269 void CodeGenModule::applyReplacements() {
270   for (auto &I : Replacements) {
271     StringRef MangledName = I.first();
272     llvm::Constant *Replacement = I.second;
273     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
274     if (!Entry)
275       continue;
276     auto *OldF = cast<llvm::Function>(Entry);
277     auto *NewF = dyn_cast<llvm::Function>(Replacement);
278     if (!NewF) {
279       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
280         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
281       } else {
282         auto *CE = cast<llvm::ConstantExpr>(Replacement);
283         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
284                CE->getOpcode() == llvm::Instruction::GetElementPtr);
285         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
286       }
287     }
288 
289     // Replace old with new, but keep the old order.
290     OldF->replaceAllUsesWith(Replacement);
291     if (NewF) {
292       NewF->removeFromParent();
293       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
294                                                        NewF);
295     }
296     OldF->eraseFromParent();
297   }
298 }
299 
300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
301   GlobalValReplacements.push_back(std::make_pair(GV, C));
302 }
303 
304 void CodeGenModule::applyGlobalValReplacements() {
305   for (auto &I : GlobalValReplacements) {
306     llvm::GlobalValue *GV = I.first;
307     llvm::Constant *C = I.second;
308 
309     GV->replaceAllUsesWith(C);
310     GV->eraseFromParent();
311   }
312 }
313 
314 // This is only used in aliases that we created and we know they have a
315 // linear structure.
316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
317   const llvm::Constant *C;
318   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
319     C = GA->getAliasee();
320   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
321     C = GI->getResolver();
322   else
323     return GV;
324 
325   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
326   if (!AliaseeGV)
327     return nullptr;
328 
329   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
330   if (FinalGV == GV)
331     return nullptr;
332 
333   return FinalGV;
334 }
335 
336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
337                                SourceLocation Location, bool IsIFunc,
338                                const llvm::GlobalValue *Alias,
339                                const llvm::GlobalValue *&GV) {
340   GV = getAliasedGlobal(Alias);
341   if (!GV) {
342     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
343     return false;
344   }
345 
346   if (GV->isDeclaration()) {
347     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
348     return false;
349   }
350 
351   if (IsIFunc) {
352     // Check resolver function type.
353     const auto *F = dyn_cast<llvm::Function>(GV);
354     if (!F) {
355       Diags.Report(Location, diag::err_alias_to_undefined)
356           << IsIFunc << IsIFunc;
357       return false;
358     }
359 
360     llvm::FunctionType *FTy = F->getFunctionType();
361     if (!FTy->getReturnType()->isPointerTy()) {
362       Diags.Report(Location, diag::err_ifunc_resolver_return);
363       return false;
364     }
365   }
366 
367   return true;
368 }
369 
370 void CodeGenModule::checkAliases() {
371   // Check if the constructed aliases are well formed. It is really unfortunate
372   // that we have to do this in CodeGen, but we only construct mangled names
373   // and aliases during codegen.
374   bool Error = false;
375   DiagnosticsEngine &Diags = getDiags();
376   for (const GlobalDecl &GD : Aliases) {
377     const auto *D = cast<ValueDecl>(GD.getDecl());
378     SourceLocation Location;
379     bool IsIFunc = D->hasAttr<IFuncAttr>();
380     if (const Attr *A = D->getDefiningAttr())
381       Location = A->getLocation();
382     else
383       llvm_unreachable("Not an alias or ifunc?");
384 
385     StringRef MangledName = getMangledName(GD);
386     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
387     const llvm::GlobalValue *GV = nullptr;
388     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
389       Error = true;
390       continue;
391     }
392 
393     llvm::Constant *Aliasee =
394         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
395                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
396 
397     llvm::GlobalValue *AliaseeGV;
398     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
399       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
400     else
401       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
402 
403     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
404       StringRef AliasSection = SA->getName();
405       if (AliasSection != AliaseeGV->getSection())
406         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
407             << AliasSection << IsIFunc << IsIFunc;
408     }
409 
410     // We have to handle alias to weak aliases in here. LLVM itself disallows
411     // this since the object semantics would not match the IL one. For
412     // compatibility with gcc we implement it by just pointing the alias
413     // to its aliasee's aliasee. We also warn, since the user is probably
414     // expecting the link to be weak.
415     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
416       if (GA->isInterposable()) {
417         Diags.Report(Location, diag::warn_alias_to_weak_alias)
418             << GV->getName() << GA->getName() << IsIFunc;
419         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
420             GA->getAliasee(), Alias->getType());
421 
422         if (IsIFunc)
423           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
424         else
425           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
426       }
427     }
428   }
429   if (!Error)
430     return;
431 
432   for (const GlobalDecl &GD : Aliases) {
433     StringRef MangledName = getMangledName(GD);
434     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
435     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
436     Alias->eraseFromParent();
437   }
438 }
439 
440 void CodeGenModule::clear() {
441   DeferredDeclsToEmit.clear();
442   EmittedDeferredDecls.clear();
443   if (OpenMPRuntime)
444     OpenMPRuntime->clear();
445 }
446 
447 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
448                                        StringRef MainFile) {
449   if (!hasDiagnostics())
450     return;
451   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
452     if (MainFile.empty())
453       MainFile = "<stdin>";
454     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
455   } else {
456     if (Mismatched > 0)
457       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
458 
459     if (Missing > 0)
460       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
461   }
462 }
463 
464 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
465                                              llvm::Module &M) {
466   if (!LO.VisibilityFromDLLStorageClass)
467     return;
468 
469   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
471   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
474       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
475   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
476       CodeGenModule::GetLLVMVisibility(
477           LO.getExternDeclNoDLLStorageClassVisibility());
478 
479   for (llvm::GlobalValue &GV : M.global_values()) {
480     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
481       continue;
482 
483     // Reset DSO locality before setting the visibility. This removes
484     // any effects that visibility options and annotations may have
485     // had on the DSO locality. Setting the visibility will implicitly set
486     // appropriate globals to DSO Local; however, this will be pessimistic
487     // w.r.t. to the normal compiler IRGen.
488     GV.setDSOLocal(false);
489 
490     if (GV.isDeclarationForLinker()) {
491       GV.setVisibility(GV.getDLLStorageClass() ==
492                                llvm::GlobalValue::DLLImportStorageClass
493                            ? ExternDeclDLLImportVisibility
494                            : ExternDeclNoDLLStorageClassVisibility);
495     } else {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLExportStorageClass
498                            ? DLLExportVisibility
499                            : NoDLLStorageClassVisibility);
500     }
501 
502     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
503   }
504 }
505 
506 void CodeGenModule::Release() {
507   Module *Primary = getContext().getModuleForCodeGen();
508   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
509     EmitModuleInitializers(Primary);
510   EmitDeferred();
511   DeferredDecls.insert(EmittedDeferredDecls.begin(),
512                        EmittedDeferredDecls.end());
513   EmittedDeferredDecls.clear();
514   EmitVTablesOpportunistically();
515   applyGlobalValReplacements();
516   applyReplacements();
517   emitMultiVersionFunctions();
518   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
519     EmitCXXModuleInitFunc(Primary);
520   else
521     EmitCXXGlobalInitFunc();
522   EmitCXXGlobalCleanUpFunc();
523   registerGlobalDtorsWithAtExit();
524   EmitCXXThreadLocalInitFunc();
525   if (ObjCRuntime)
526     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
527       AddGlobalCtor(ObjCInitFunction);
528   if (Context.getLangOpts().CUDA && CUDARuntime) {
529     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
530       AddGlobalCtor(CudaCtorFunction);
531   }
532   if (OpenMPRuntime) {
533     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
534             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
535       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
536     }
537     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
538     OpenMPRuntime->clear();
539   }
540   if (PGOReader) {
541     getModule().setProfileSummary(
542         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
543         llvm::ProfileSummary::PSK_Instr);
544     if (PGOStats.hasDiagnostics())
545       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
546   }
547   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
548     return L.LexOrder < R.LexOrder;
549   });
550   EmitCtorList(GlobalCtors, "llvm.global_ctors");
551   EmitCtorList(GlobalDtors, "llvm.global_dtors");
552   EmitGlobalAnnotations();
553   EmitStaticExternCAliases();
554   checkAliases();
555   EmitDeferredUnusedCoverageMappings();
556   CodeGenPGO(*this).setValueProfilingFlag(getModule());
557   if (CoverageMapping)
558     CoverageMapping->emit();
559   if (CodeGenOpts.SanitizeCfiCrossDso) {
560     CodeGenFunction(*this).EmitCfiCheckFail();
561     CodeGenFunction(*this).EmitCfiCheckStub();
562   }
563   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
564     finalizeKCFITypes();
565   emitAtAvailableLinkGuard();
566   if (Context.getTargetInfo().getTriple().isWasm())
567     EmitMainVoidAlias();
568 
569   if (getTriple().isAMDGPU()) {
570     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
571     // preserve ASAN functions in bitcode libraries.
572     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
573       auto *FT = llvm::FunctionType::get(VoidTy, {});
574       auto *F = llvm::Function::Create(
575           FT, llvm::GlobalValue::ExternalLinkage,
576           "__amdgpu_device_library_preserve_asan_functions", &getModule());
577       auto *Var = new llvm::GlobalVariable(
578           getModule(), FT->getPointerTo(),
579           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
580           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
581           llvm::GlobalVariable::NotThreadLocal);
582       addCompilerUsedGlobal(Var);
583     }
584     // Emit amdgpu_code_object_version module flag, which is code object version
585     // times 100.
586     if (getTarget().getTargetOpts().CodeObjectVersion !=
587         TargetOptions::COV_None) {
588       getModule().addModuleFlag(llvm::Module::Error,
589                                 "amdgpu_code_object_version",
590                                 getTarget().getTargetOpts().CodeObjectVersion);
591     }
592   }
593 
594   // Emit a global array containing all external kernels or device variables
595   // used by host functions and mark it as used for CUDA/HIP. This is necessary
596   // to get kernels or device variables in archives linked in even if these
597   // kernels or device variables are only used in host functions.
598   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
599     SmallVector<llvm::Constant *, 8> UsedArray;
600     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
601       GlobalDecl GD;
602       if (auto *FD = dyn_cast<FunctionDecl>(D))
603         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
604       else
605         GD = GlobalDecl(D);
606       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
607           GetAddrOfGlobal(GD), Int8PtrTy));
608     }
609 
610     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
611 
612     auto *GV = new llvm::GlobalVariable(
613         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
614         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
615     addCompilerUsedGlobal(GV);
616   }
617 
618   emitLLVMUsed();
619   if (SanStats)
620     SanStats->finish();
621 
622   if (CodeGenOpts.Autolink &&
623       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
624     EmitModuleLinkOptions();
625   }
626 
627   // On ELF we pass the dependent library specifiers directly to the linker
628   // without manipulating them. This is in contrast to other platforms where
629   // they are mapped to a specific linker option by the compiler. This
630   // difference is a result of the greater variety of ELF linkers and the fact
631   // that ELF linkers tend to handle libraries in a more complicated fashion
632   // than on other platforms. This forces us to defer handling the dependent
633   // libs to the linker.
634   //
635   // CUDA/HIP device and host libraries are different. Currently there is no
636   // way to differentiate dependent libraries for host or device. Existing
637   // usage of #pragma comment(lib, *) is intended for host libraries on
638   // Windows. Therefore emit llvm.dependent-libraries only for host.
639   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
640     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
641     for (auto *MD : ELFDependentLibraries)
642       NMD->addOperand(MD);
643   }
644 
645   // Record mregparm value now so it is visible through rest of codegen.
646   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
647     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
648                               CodeGenOpts.NumRegisterParameters);
649 
650   if (CodeGenOpts.DwarfVersion) {
651     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
652                               CodeGenOpts.DwarfVersion);
653   }
654 
655   if (CodeGenOpts.Dwarf64)
656     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
657 
658   if (Context.getLangOpts().SemanticInterposition)
659     // Require various optimization to respect semantic interposition.
660     getModule().setSemanticInterposition(true);
661 
662   if (CodeGenOpts.EmitCodeView) {
663     // Indicate that we want CodeView in the metadata.
664     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
665   }
666   if (CodeGenOpts.CodeViewGHash) {
667     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
668   }
669   if (CodeGenOpts.ControlFlowGuard) {
670     // Function ID tables and checks for Control Flow Guard (cfguard=2).
671     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
672   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
673     // Function ID tables for Control Flow Guard (cfguard=1).
674     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
675   }
676   if (CodeGenOpts.EHContGuard) {
677     // Function ID tables for EH Continuation Guard.
678     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
679   }
680   if (Context.getLangOpts().Kernel) {
681     // Note if we are compiling with /kernel.
682     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
683   }
684   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
685     // We don't support LTO with 2 with different StrictVTablePointers
686     // FIXME: we could support it by stripping all the information introduced
687     // by StrictVTablePointers.
688 
689     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
690 
691     llvm::Metadata *Ops[2] = {
692               llvm::MDString::get(VMContext, "StrictVTablePointers"),
693               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
694                   llvm::Type::getInt32Ty(VMContext), 1))};
695 
696     getModule().addModuleFlag(llvm::Module::Require,
697                               "StrictVTablePointersRequirement",
698                               llvm::MDNode::get(VMContext, Ops));
699   }
700   if (getModuleDebugInfo())
701     // We support a single version in the linked module. The LLVM
702     // parser will drop debug info with a different version number
703     // (and warn about it, too).
704     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
705                               llvm::DEBUG_METADATA_VERSION);
706 
707   // We need to record the widths of enums and wchar_t, so that we can generate
708   // the correct build attributes in the ARM backend. wchar_size is also used by
709   // TargetLibraryInfo.
710   uint64_t WCharWidth =
711       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
712   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
713 
714   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
715   if (   Arch == llvm::Triple::arm
716       || Arch == llvm::Triple::armeb
717       || Arch == llvm::Triple::thumb
718       || Arch == llvm::Triple::thumbeb) {
719     // The minimum width of an enum in bytes
720     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
721     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
722   }
723 
724   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
725     StringRef ABIStr = Target.getABI();
726     llvm::LLVMContext &Ctx = TheModule.getContext();
727     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
728                               llvm::MDString::get(Ctx, ABIStr));
729   }
730 
731   if (CodeGenOpts.SanitizeCfiCrossDso) {
732     // Indicate that we want cross-DSO control flow integrity checks.
733     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
734   }
735 
736   if (CodeGenOpts.WholeProgramVTables) {
737     // Indicate whether VFE was enabled for this module, so that the
738     // vcall_visibility metadata added under whole program vtables is handled
739     // appropriately in the optimizer.
740     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
741                               CodeGenOpts.VirtualFunctionElimination);
742   }
743 
744   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
745     getModule().addModuleFlag(llvm::Module::Override,
746                               "CFI Canonical Jump Tables",
747                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
748   }
749 
750   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
751     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
752 
753   if (CodeGenOpts.CFProtectionReturn &&
754       Target.checkCFProtectionReturnSupported(getDiags())) {
755     // Indicate that we want to instrument return control flow protection.
756     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
757                               1);
758   }
759 
760   if (CodeGenOpts.CFProtectionBranch &&
761       Target.checkCFProtectionBranchSupported(getDiags())) {
762     // Indicate that we want to instrument branch control flow protection.
763     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
764                               1);
765   }
766 
767   if (CodeGenOpts.IBTSeal)
768     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
769 
770   if (CodeGenOpts.FunctionReturnThunks)
771     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
772 
773   if (CodeGenOpts.IndirectBranchCSPrefix)
774     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
775 
776   // Add module metadata for return address signing (ignoring
777   // non-leaf/all) and stack tagging. These are actually turned on by function
778   // attributes, but we use module metadata to emit build attributes. This is
779   // needed for LTO, where the function attributes are inside bitcode
780   // serialised into a global variable by the time build attributes are
781   // emitted, so we can't access them. LTO objects could be compiled with
782   // different flags therefore module flags are set to "Min" behavior to achieve
783   // the same end result of the normal build where e.g BTI is off if any object
784   // doesn't support it.
785   if (Context.getTargetInfo().hasFeature("ptrauth") &&
786       LangOpts.getSignReturnAddressScope() !=
787           LangOptions::SignReturnAddressScopeKind::None)
788     getModule().addModuleFlag(llvm::Module::Override,
789                               "sign-return-address-buildattr", 1);
790   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
791     getModule().addModuleFlag(llvm::Module::Override,
792                               "tag-stack-memory-buildattr", 1);
793 
794   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
795       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
796       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
797       Arch == llvm::Triple::aarch64_be) {
798     if (LangOpts.BranchTargetEnforcement)
799       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
800                                 1);
801     if (LangOpts.hasSignReturnAddress())
802       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
803     if (LangOpts.isSignReturnAddressScopeAll())
804       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
805                                 1);
806     if (!LangOpts.isSignReturnAddressWithAKey())
807       getModule().addModuleFlag(llvm::Module::Min,
808                                 "sign-return-address-with-bkey", 1);
809   }
810 
811   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
812     llvm::LLVMContext &Ctx = TheModule.getContext();
813     getModule().addModuleFlag(
814         llvm::Module::Error, "MemProfProfileFilename",
815         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
816   }
817 
818   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
819     // Indicate whether __nvvm_reflect should be configured to flush denormal
820     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
821     // property.)
822     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
823                               CodeGenOpts.FP32DenormalMode.Output !=
824                                   llvm::DenormalMode::IEEE);
825   }
826 
827   if (LangOpts.EHAsynch)
828     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
829 
830   // Indicate whether this Module was compiled with -fopenmp
831   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
832     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
833   if (getLangOpts().OpenMPIsDevice)
834     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
835                               LangOpts.OpenMP);
836 
837   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
838   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
839     EmitOpenCLMetadata();
840     // Emit SPIR version.
841     if (getTriple().isSPIR()) {
842       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
843       // opencl.spir.version named metadata.
844       // C++ for OpenCL has a distinct mapping for version compatibility with
845       // OpenCL.
846       auto Version = LangOpts.getOpenCLCompatibleVersion();
847       llvm::Metadata *SPIRVerElts[] = {
848           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
849               Int32Ty, Version / 100)),
850           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
851               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
852       llvm::NamedMDNode *SPIRVerMD =
853           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
854       llvm::LLVMContext &Ctx = TheModule.getContext();
855       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
856     }
857   }
858 
859   // HLSL related end of code gen work items.
860   if (LangOpts.HLSL)
861     getHLSLRuntime().finishCodeGen();
862 
863   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
864     assert(PLevel < 3 && "Invalid PIC Level");
865     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
866     if (Context.getLangOpts().PIE)
867       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
868   }
869 
870   if (getCodeGenOpts().CodeModel.size() > 0) {
871     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
872                   .Case("tiny", llvm::CodeModel::Tiny)
873                   .Case("small", llvm::CodeModel::Small)
874                   .Case("kernel", llvm::CodeModel::Kernel)
875                   .Case("medium", llvm::CodeModel::Medium)
876                   .Case("large", llvm::CodeModel::Large)
877                   .Default(~0u);
878     if (CM != ~0u) {
879       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
880       getModule().setCodeModel(codeModel);
881     }
882   }
883 
884   if (CodeGenOpts.NoPLT)
885     getModule().setRtLibUseGOT();
886   if (CodeGenOpts.UnwindTables)
887     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
888 
889   switch (CodeGenOpts.getFramePointer()) {
890   case CodeGenOptions::FramePointerKind::None:
891     // 0 ("none") is the default.
892     break;
893   case CodeGenOptions::FramePointerKind::NonLeaf:
894     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
895     break;
896   case CodeGenOptions::FramePointerKind::All:
897     getModule().setFramePointer(llvm::FramePointerKind::All);
898     break;
899   }
900 
901   SimplifyPersonality();
902 
903   if (getCodeGenOpts().EmitDeclMetadata)
904     EmitDeclMetadata();
905 
906   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
907     EmitCoverageFile();
908 
909   if (CGDebugInfo *DI = getModuleDebugInfo())
910     DI->finalize();
911 
912   if (getCodeGenOpts().EmitVersionIdentMetadata)
913     EmitVersionIdentMetadata();
914 
915   if (!getCodeGenOpts().RecordCommandLine.empty())
916     EmitCommandLineMetadata();
917 
918   if (!getCodeGenOpts().StackProtectorGuard.empty())
919     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
920   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
921     getModule().setStackProtectorGuardReg(
922         getCodeGenOpts().StackProtectorGuardReg);
923   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
924     getModule().setStackProtectorGuardSymbol(
925         getCodeGenOpts().StackProtectorGuardSymbol);
926   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
927     getModule().setStackProtectorGuardOffset(
928         getCodeGenOpts().StackProtectorGuardOffset);
929   if (getCodeGenOpts().StackAlignment)
930     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
931   if (getCodeGenOpts().SkipRaxSetup)
932     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
933 
934   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
935 
936   EmitBackendOptionsMetadata(getCodeGenOpts());
937 
938   // If there is device offloading code embed it in the host now.
939   EmbedObject(&getModule(), CodeGenOpts, getDiags());
940 
941   // Set visibility from DLL storage class
942   // We do this at the end of LLVM IR generation; after any operation
943   // that might affect the DLL storage class or the visibility, and
944   // before anything that might act on these.
945   setVisibilityFromDLLStorageClass(LangOpts, getModule());
946 }
947 
948 void CodeGenModule::EmitOpenCLMetadata() {
949   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
950   // opencl.ocl.version named metadata node.
951   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
952   auto Version = LangOpts.getOpenCLCompatibleVersion();
953   llvm::Metadata *OCLVerElts[] = {
954       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
955           Int32Ty, Version / 100)),
956       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
957           Int32Ty, (Version % 100) / 10))};
958   llvm::NamedMDNode *OCLVerMD =
959       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
960   llvm::LLVMContext &Ctx = TheModule.getContext();
961   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
962 }
963 
964 void CodeGenModule::EmitBackendOptionsMetadata(
965     const CodeGenOptions CodeGenOpts) {
966   if (getTriple().isRISCV()) {
967     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
968                               CodeGenOpts.SmallDataLimit);
969   }
970 }
971 
972 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
973   // Make sure that this type is translated.
974   Types.UpdateCompletedType(TD);
975 }
976 
977 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
978   // Make sure that this type is translated.
979   Types.RefreshTypeCacheForClass(RD);
980 }
981 
982 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
983   if (!TBAA)
984     return nullptr;
985   return TBAA->getTypeInfo(QTy);
986 }
987 
988 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
989   if (!TBAA)
990     return TBAAAccessInfo();
991   if (getLangOpts().CUDAIsDevice) {
992     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
993     // access info.
994     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
995       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
996           nullptr)
997         return TBAAAccessInfo();
998     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
999       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1000           nullptr)
1001         return TBAAAccessInfo();
1002     }
1003   }
1004   return TBAA->getAccessInfo(AccessType);
1005 }
1006 
1007 TBAAAccessInfo
1008 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1009   if (!TBAA)
1010     return TBAAAccessInfo();
1011   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1012 }
1013 
1014 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1015   if (!TBAA)
1016     return nullptr;
1017   return TBAA->getTBAAStructInfo(QTy);
1018 }
1019 
1020 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1021   if (!TBAA)
1022     return nullptr;
1023   return TBAA->getBaseTypeInfo(QTy);
1024 }
1025 
1026 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1027   if (!TBAA)
1028     return nullptr;
1029   return TBAA->getAccessTagInfo(Info);
1030 }
1031 
1032 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1033                                                    TBAAAccessInfo TargetInfo) {
1034   if (!TBAA)
1035     return TBAAAccessInfo();
1036   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1037 }
1038 
1039 TBAAAccessInfo
1040 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1041                                                    TBAAAccessInfo InfoB) {
1042   if (!TBAA)
1043     return TBAAAccessInfo();
1044   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1045 }
1046 
1047 TBAAAccessInfo
1048 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1049                                               TBAAAccessInfo SrcInfo) {
1050   if (!TBAA)
1051     return TBAAAccessInfo();
1052   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1053 }
1054 
1055 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1056                                                 TBAAAccessInfo TBAAInfo) {
1057   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1058     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1059 }
1060 
1061 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1062     llvm::Instruction *I, const CXXRecordDecl *RD) {
1063   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1064                  llvm::MDNode::get(getLLVMContext(), {}));
1065 }
1066 
1067 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1068   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1069   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1070 }
1071 
1072 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1073 /// specified stmt yet.
1074 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1075   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1076                                                "cannot compile this %0 yet");
1077   std::string Msg = Type;
1078   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1079       << Msg << S->getSourceRange();
1080 }
1081 
1082 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1083 /// specified decl yet.
1084 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1085   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1086                                                "cannot compile this %0 yet");
1087   std::string Msg = Type;
1088   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1089 }
1090 
1091 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1092   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1093 }
1094 
1095 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1096                                         const NamedDecl *D) const {
1097   // Internal definitions always have default visibility.
1098   if (GV->hasLocalLinkage()) {
1099     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1100     return;
1101   }
1102   if (!D)
1103     return;
1104   // Set visibility for definitions, and for declarations if requested globally
1105   // or set explicitly.
1106   LinkageInfo LV = D->getLinkageAndVisibility();
1107   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1108     // Reject incompatible dlllstorage and visibility annotations.
1109     if (!LV.isVisibilityExplicit())
1110       return;
1111     if (GV->hasDLLExportStorageClass()) {
1112       if (LV.getVisibility() == HiddenVisibility)
1113         getDiags().Report(D->getLocation(),
1114                           diag::err_hidden_visibility_dllexport);
1115     } else if (LV.getVisibility() != DefaultVisibility) {
1116       getDiags().Report(D->getLocation(),
1117                         diag::err_non_default_visibility_dllimport);
1118     }
1119     return;
1120   }
1121 
1122   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1123       !GV->isDeclarationForLinker())
1124     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1125 }
1126 
1127 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1128                                  llvm::GlobalValue *GV) {
1129   if (GV->hasLocalLinkage())
1130     return true;
1131 
1132   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1133     return true;
1134 
1135   // DLLImport explicitly marks the GV as external.
1136   if (GV->hasDLLImportStorageClass())
1137     return false;
1138 
1139   const llvm::Triple &TT = CGM.getTriple();
1140   if (TT.isWindowsGNUEnvironment()) {
1141     // In MinGW, variables without DLLImport can still be automatically
1142     // imported from a DLL by the linker; don't mark variables that
1143     // potentially could come from another DLL as DSO local.
1144 
1145     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1146     // (and this actually happens in the public interface of libstdc++), so
1147     // such variables can't be marked as DSO local. (Native TLS variables
1148     // can't be dllimported at all, though.)
1149     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1150         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1151       return false;
1152   }
1153 
1154   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1155   // remain unresolved in the link, they can be resolved to zero, which is
1156   // outside the current DSO.
1157   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1158     return false;
1159 
1160   // Every other GV is local on COFF.
1161   // Make an exception for windows OS in the triple: Some firmware builds use
1162   // *-win32-macho triples. This (accidentally?) produced windows relocations
1163   // without GOT tables in older clang versions; Keep this behaviour.
1164   // FIXME: even thread local variables?
1165   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1166     return true;
1167 
1168   // Only handle COFF and ELF for now.
1169   if (!TT.isOSBinFormatELF())
1170     return false;
1171 
1172   // If this is not an executable, don't assume anything is local.
1173   const auto &CGOpts = CGM.getCodeGenOpts();
1174   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1175   const auto &LOpts = CGM.getLangOpts();
1176   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1177     // On ELF, if -fno-semantic-interposition is specified and the target
1178     // supports local aliases, there will be neither CC1
1179     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1180     // dso_local on the function if using a local alias is preferable (can avoid
1181     // PLT indirection).
1182     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1183       return false;
1184     return !(CGM.getLangOpts().SemanticInterposition ||
1185              CGM.getLangOpts().HalfNoSemanticInterposition);
1186   }
1187 
1188   // A definition cannot be preempted from an executable.
1189   if (!GV->isDeclarationForLinker())
1190     return true;
1191 
1192   // Most PIC code sequences that assume that a symbol is local cannot produce a
1193   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1194   // depended, it seems worth it to handle it here.
1195   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1196     return false;
1197 
1198   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1199   if (TT.isPPC64())
1200     return false;
1201 
1202   if (CGOpts.DirectAccessExternalData) {
1203     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1204     // for non-thread-local variables. If the symbol is not defined in the
1205     // executable, a copy relocation will be needed at link time. dso_local is
1206     // excluded for thread-local variables because they generally don't support
1207     // copy relocations.
1208     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1209       if (!Var->isThreadLocal())
1210         return true;
1211 
1212     // -fno-pic sets dso_local on a function declaration to allow direct
1213     // accesses when taking its address (similar to a data symbol). If the
1214     // function is not defined in the executable, a canonical PLT entry will be
1215     // needed at link time. -fno-direct-access-external-data can avoid the
1216     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1217     // it could just cause trouble without providing perceptible benefits.
1218     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1219       return true;
1220   }
1221 
1222   // If we can use copy relocations we can assume it is local.
1223 
1224   // Otherwise don't assume it is local.
1225   return false;
1226 }
1227 
1228 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1229   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1230 }
1231 
1232 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1233                                           GlobalDecl GD) const {
1234   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1235   // C++ destructors have a few C++ ABI specific special cases.
1236   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1237     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1238     return;
1239   }
1240   setDLLImportDLLExport(GV, D);
1241 }
1242 
1243 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1244                                           const NamedDecl *D) const {
1245   if (D && D->isExternallyVisible()) {
1246     if (D->hasAttr<DLLImportAttr>())
1247       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1248     else if ((D->hasAttr<DLLExportAttr>() ||
1249               shouldMapVisibilityToDLLExport(D)) &&
1250              !GV->isDeclarationForLinker())
1251       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1252   }
1253 }
1254 
1255 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1256                                     GlobalDecl GD) const {
1257   setDLLImportDLLExport(GV, GD);
1258   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1259 }
1260 
1261 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1262                                     const NamedDecl *D) const {
1263   setDLLImportDLLExport(GV, D);
1264   setGVPropertiesAux(GV, D);
1265 }
1266 
1267 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1268                                        const NamedDecl *D) const {
1269   setGlobalVisibility(GV, D);
1270   setDSOLocal(GV);
1271   GV->setPartition(CodeGenOpts.SymbolPartition);
1272 }
1273 
1274 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1275   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1276       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1277       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1278       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1279       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1280 }
1281 
1282 llvm::GlobalVariable::ThreadLocalMode
1283 CodeGenModule::GetDefaultLLVMTLSModel() const {
1284   switch (CodeGenOpts.getDefaultTLSModel()) {
1285   case CodeGenOptions::GeneralDynamicTLSModel:
1286     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1287   case CodeGenOptions::LocalDynamicTLSModel:
1288     return llvm::GlobalVariable::LocalDynamicTLSModel;
1289   case CodeGenOptions::InitialExecTLSModel:
1290     return llvm::GlobalVariable::InitialExecTLSModel;
1291   case CodeGenOptions::LocalExecTLSModel:
1292     return llvm::GlobalVariable::LocalExecTLSModel;
1293   }
1294   llvm_unreachable("Invalid TLS model!");
1295 }
1296 
1297 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1298   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1299 
1300   llvm::GlobalValue::ThreadLocalMode TLM;
1301   TLM = GetDefaultLLVMTLSModel();
1302 
1303   // Override the TLS model if it is explicitly specified.
1304   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1305     TLM = GetLLVMTLSModel(Attr->getModel());
1306   }
1307 
1308   GV->setThreadLocalMode(TLM);
1309 }
1310 
1311 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1312                                           StringRef Name) {
1313   const TargetInfo &Target = CGM.getTarget();
1314   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1315 }
1316 
1317 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1318                                                  const CPUSpecificAttr *Attr,
1319                                                  unsigned CPUIndex,
1320                                                  raw_ostream &Out) {
1321   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1322   // supported.
1323   if (Attr)
1324     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1325   else if (CGM.getTarget().supportsIFunc())
1326     Out << ".resolver";
1327 }
1328 
1329 static void AppendTargetMangling(const CodeGenModule &CGM,
1330                                  const TargetAttr *Attr, raw_ostream &Out) {
1331   if (Attr->isDefaultVersion())
1332     return;
1333 
1334   Out << '.';
1335   const TargetInfo &Target = CGM.getTarget();
1336   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1337   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1338     // Multiversioning doesn't allow "no-${feature}", so we can
1339     // only have "+" prefixes here.
1340     assert(LHS.startswith("+") && RHS.startswith("+") &&
1341            "Features should always have a prefix.");
1342     return Target.multiVersionSortPriority(LHS.substr(1)) >
1343            Target.multiVersionSortPriority(RHS.substr(1));
1344   });
1345 
1346   bool IsFirst = true;
1347 
1348   if (!Info.CPU.empty()) {
1349     IsFirst = false;
1350     Out << "arch_" << Info.CPU;
1351   }
1352 
1353   for (StringRef Feat : Info.Features) {
1354     if (!IsFirst)
1355       Out << '_';
1356     IsFirst = false;
1357     Out << Feat.substr(1);
1358   }
1359 }
1360 
1361 // Returns true if GD is a function decl with internal linkage and
1362 // needs a unique suffix after the mangled name.
1363 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1364                                         CodeGenModule &CGM) {
1365   const Decl *D = GD.getDecl();
1366   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1367          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1368 }
1369 
1370 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1371                                        const TargetClonesAttr *Attr,
1372                                        unsigned VersionIndex,
1373                                        raw_ostream &Out) {
1374   Out << '.';
1375   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1376   if (FeatureStr.startswith("arch="))
1377     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1378   else
1379     Out << FeatureStr;
1380 
1381   Out << '.' << Attr->getMangledIndex(VersionIndex);
1382 }
1383 
1384 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1385                                       const NamedDecl *ND,
1386                                       bool OmitMultiVersionMangling = false) {
1387   SmallString<256> Buffer;
1388   llvm::raw_svector_ostream Out(Buffer);
1389   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1390   if (!CGM.getModuleNameHash().empty())
1391     MC.needsUniqueInternalLinkageNames();
1392   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1393   if (ShouldMangle)
1394     MC.mangleName(GD.getWithDecl(ND), Out);
1395   else {
1396     IdentifierInfo *II = ND->getIdentifier();
1397     assert(II && "Attempt to mangle unnamed decl.");
1398     const auto *FD = dyn_cast<FunctionDecl>(ND);
1399 
1400     if (FD &&
1401         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1402       Out << "__regcall3__" << II->getName();
1403     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1404                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1405       Out << "__device_stub__" << II->getName();
1406     } else {
1407       Out << II->getName();
1408     }
1409   }
1410 
1411   // Check if the module name hash should be appended for internal linkage
1412   // symbols.   This should come before multi-version target suffixes are
1413   // appended. This is to keep the name and module hash suffix of the
1414   // internal linkage function together.  The unique suffix should only be
1415   // added when name mangling is done to make sure that the final name can
1416   // be properly demangled.  For example, for C functions without prototypes,
1417   // name mangling is not done and the unique suffix should not be appeneded
1418   // then.
1419   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1420     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1421            "Hash computed when not explicitly requested");
1422     Out << CGM.getModuleNameHash();
1423   }
1424 
1425   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1426     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1427       switch (FD->getMultiVersionKind()) {
1428       case MultiVersionKind::CPUDispatch:
1429       case MultiVersionKind::CPUSpecific:
1430         AppendCPUSpecificCPUDispatchMangling(CGM,
1431                                              FD->getAttr<CPUSpecificAttr>(),
1432                                              GD.getMultiVersionIndex(), Out);
1433         break;
1434       case MultiVersionKind::Target:
1435         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1436         break;
1437       case MultiVersionKind::TargetClones:
1438         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1439                                    GD.getMultiVersionIndex(), Out);
1440         break;
1441       case MultiVersionKind::None:
1442         llvm_unreachable("None multiversion type isn't valid here");
1443       }
1444     }
1445 
1446   // Make unique name for device side static file-scope variable for HIP.
1447   if (CGM.getContext().shouldExternalize(ND) &&
1448       CGM.getLangOpts().GPURelocatableDeviceCode &&
1449       CGM.getLangOpts().CUDAIsDevice)
1450     CGM.printPostfixForExternalizedDecl(Out, ND);
1451 
1452   return std::string(Out.str());
1453 }
1454 
1455 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1456                                             const FunctionDecl *FD,
1457                                             StringRef &CurName) {
1458   if (!FD->isMultiVersion())
1459     return;
1460 
1461   // Get the name of what this would be without the 'target' attribute.  This
1462   // allows us to lookup the version that was emitted when this wasn't a
1463   // multiversion function.
1464   std::string NonTargetName =
1465       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1466   GlobalDecl OtherGD;
1467   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1468     assert(OtherGD.getCanonicalDecl()
1469                .getDecl()
1470                ->getAsFunction()
1471                ->isMultiVersion() &&
1472            "Other GD should now be a multiversioned function");
1473     // OtherFD is the version of this function that was mangled BEFORE
1474     // becoming a MultiVersion function.  It potentially needs to be updated.
1475     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1476                                       .getDecl()
1477                                       ->getAsFunction()
1478                                       ->getMostRecentDecl();
1479     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1480     // This is so that if the initial version was already the 'default'
1481     // version, we don't try to update it.
1482     if (OtherName != NonTargetName) {
1483       // Remove instead of erase, since others may have stored the StringRef
1484       // to this.
1485       const auto ExistingRecord = Manglings.find(NonTargetName);
1486       if (ExistingRecord != std::end(Manglings))
1487         Manglings.remove(&(*ExistingRecord));
1488       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1489       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1490           Result.first->first();
1491       // If this is the current decl is being created, make sure we update the name.
1492       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1493         CurName = OtherNameRef;
1494       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1495         Entry->setName(OtherName);
1496     }
1497   }
1498 }
1499 
1500 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1501   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1502 
1503   // Some ABIs don't have constructor variants.  Make sure that base and
1504   // complete constructors get mangled the same.
1505   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1506     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1507       CXXCtorType OrigCtorType = GD.getCtorType();
1508       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1509       if (OrigCtorType == Ctor_Base)
1510         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1511     }
1512   }
1513 
1514   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1515   // static device variable depends on whether the variable is referenced by
1516   // a host or device host function. Therefore the mangled name cannot be
1517   // cached.
1518   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1519     auto FoundName = MangledDeclNames.find(CanonicalGD);
1520     if (FoundName != MangledDeclNames.end())
1521       return FoundName->second;
1522   }
1523 
1524   // Keep the first result in the case of a mangling collision.
1525   const auto *ND = cast<NamedDecl>(GD.getDecl());
1526   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1527 
1528   // Ensure either we have different ABIs between host and device compilations,
1529   // says host compilation following MSVC ABI but device compilation follows
1530   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1531   // mangling should be the same after name stubbing. The later checking is
1532   // very important as the device kernel name being mangled in host-compilation
1533   // is used to resolve the device binaries to be executed. Inconsistent naming
1534   // result in undefined behavior. Even though we cannot check that naming
1535   // directly between host- and device-compilations, the host- and
1536   // device-mangling in host compilation could help catching certain ones.
1537   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1538          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1539          (getContext().getAuxTargetInfo() &&
1540           (getContext().getAuxTargetInfo()->getCXXABI() !=
1541            getContext().getTargetInfo().getCXXABI())) ||
1542          getCUDARuntime().getDeviceSideName(ND) ==
1543              getMangledNameImpl(
1544                  *this,
1545                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1546                  ND));
1547 
1548   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1549   return MangledDeclNames[CanonicalGD] = Result.first->first();
1550 }
1551 
1552 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1553                                              const BlockDecl *BD) {
1554   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1555   const Decl *D = GD.getDecl();
1556 
1557   SmallString<256> Buffer;
1558   llvm::raw_svector_ostream Out(Buffer);
1559   if (!D)
1560     MangleCtx.mangleGlobalBlock(BD,
1561       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1562   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1563     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1564   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1565     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1566   else
1567     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1568 
1569   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1570   return Result.first->first();
1571 }
1572 
1573 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1574   auto it = MangledDeclNames.begin();
1575   while (it != MangledDeclNames.end()) {
1576     if (it->second == Name)
1577       return it->first;
1578     it++;
1579   }
1580   return GlobalDecl();
1581 }
1582 
1583 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1584   return getModule().getNamedValue(Name);
1585 }
1586 
1587 /// AddGlobalCtor - Add a function to the list that will be called before
1588 /// main() runs.
1589 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1590                                   unsigned LexOrder,
1591                                   llvm::Constant *AssociatedData) {
1592   // FIXME: Type coercion of void()* types.
1593   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1594 }
1595 
1596 /// AddGlobalDtor - Add a function to the list that will be called
1597 /// when the module is unloaded.
1598 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1599                                   bool IsDtorAttrFunc) {
1600   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1601       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1602     DtorsUsingAtExit[Priority].push_back(Dtor);
1603     return;
1604   }
1605 
1606   // FIXME: Type coercion of void()* types.
1607   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1608 }
1609 
1610 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1611   if (Fns.empty()) return;
1612 
1613   // Ctor function type is void()*.
1614   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1615   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1616       TheModule.getDataLayout().getProgramAddressSpace());
1617 
1618   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1619   llvm::StructType *CtorStructTy = llvm::StructType::get(
1620       Int32Ty, CtorPFTy, VoidPtrTy);
1621 
1622   // Construct the constructor and destructor arrays.
1623   ConstantInitBuilder builder(*this);
1624   auto ctors = builder.beginArray(CtorStructTy);
1625   for (const auto &I : Fns) {
1626     auto ctor = ctors.beginStruct(CtorStructTy);
1627     ctor.addInt(Int32Ty, I.Priority);
1628     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1629     if (I.AssociatedData)
1630       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1631     else
1632       ctor.addNullPointer(VoidPtrTy);
1633     ctor.finishAndAddTo(ctors);
1634   }
1635 
1636   auto list =
1637     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1638                                 /*constant*/ false,
1639                                 llvm::GlobalValue::AppendingLinkage);
1640 
1641   // The LTO linker doesn't seem to like it when we set an alignment
1642   // on appending variables.  Take it off as a workaround.
1643   list->setAlignment(llvm::None);
1644 
1645   Fns.clear();
1646 }
1647 
1648 llvm::GlobalValue::LinkageTypes
1649 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1650   const auto *D = cast<FunctionDecl>(GD.getDecl());
1651 
1652   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1653 
1654   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1655     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1656 
1657   if (isa<CXXConstructorDecl>(D) &&
1658       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1659       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1660     // Our approach to inheriting constructors is fundamentally different from
1661     // that used by the MS ABI, so keep our inheriting constructor thunks
1662     // internal rather than trying to pick an unambiguous mangling for them.
1663     return llvm::GlobalValue::InternalLinkage;
1664   }
1665 
1666   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1667 }
1668 
1669 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1670   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1671   if (!MDS) return nullptr;
1672 
1673   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1674 }
1675 
1676 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1677   if (auto *FnType = T->getAs<FunctionProtoType>())
1678     T = getContext().getFunctionType(
1679         FnType->getReturnType(), FnType->getParamTypes(),
1680         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1681 
1682   std::string OutName;
1683   llvm::raw_string_ostream Out(OutName);
1684   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1685 
1686   return llvm::ConstantInt::get(Int32Ty,
1687                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1688 }
1689 
1690 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1691                                               const CGFunctionInfo &Info,
1692                                               llvm::Function *F, bool IsThunk) {
1693   unsigned CallingConv;
1694   llvm::AttributeList PAL;
1695   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1696                          /*AttrOnCallSite=*/false, IsThunk);
1697   F->setAttributes(PAL);
1698   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1699 }
1700 
1701 static void removeImageAccessQualifier(std::string& TyName) {
1702   std::string ReadOnlyQual("__read_only");
1703   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1704   if (ReadOnlyPos != std::string::npos)
1705     // "+ 1" for the space after access qualifier.
1706     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1707   else {
1708     std::string WriteOnlyQual("__write_only");
1709     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1710     if (WriteOnlyPos != std::string::npos)
1711       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1712     else {
1713       std::string ReadWriteQual("__read_write");
1714       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1715       if (ReadWritePos != std::string::npos)
1716         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1717     }
1718   }
1719 }
1720 
1721 // Returns the address space id that should be produced to the
1722 // kernel_arg_addr_space metadata. This is always fixed to the ids
1723 // as specified in the SPIR 2.0 specification in order to differentiate
1724 // for example in clGetKernelArgInfo() implementation between the address
1725 // spaces with targets without unique mapping to the OpenCL address spaces
1726 // (basically all single AS CPUs).
1727 static unsigned ArgInfoAddressSpace(LangAS AS) {
1728   switch (AS) {
1729   case LangAS::opencl_global:
1730     return 1;
1731   case LangAS::opencl_constant:
1732     return 2;
1733   case LangAS::opencl_local:
1734     return 3;
1735   case LangAS::opencl_generic:
1736     return 4; // Not in SPIR 2.0 specs.
1737   case LangAS::opencl_global_device:
1738     return 5;
1739   case LangAS::opencl_global_host:
1740     return 6;
1741   default:
1742     return 0; // Assume private.
1743   }
1744 }
1745 
1746 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1747                                          const FunctionDecl *FD,
1748                                          CodeGenFunction *CGF) {
1749   assert(((FD && CGF) || (!FD && !CGF)) &&
1750          "Incorrect use - FD and CGF should either be both null or not!");
1751   // Create MDNodes that represent the kernel arg metadata.
1752   // Each MDNode is a list in the form of "key", N number of values which is
1753   // the same number of values as their are kernel arguments.
1754 
1755   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1756 
1757   // MDNode for the kernel argument address space qualifiers.
1758   SmallVector<llvm::Metadata *, 8> addressQuals;
1759 
1760   // MDNode for the kernel argument access qualifiers (images only).
1761   SmallVector<llvm::Metadata *, 8> accessQuals;
1762 
1763   // MDNode for the kernel argument type names.
1764   SmallVector<llvm::Metadata *, 8> argTypeNames;
1765 
1766   // MDNode for the kernel argument base type names.
1767   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1768 
1769   // MDNode for the kernel argument type qualifiers.
1770   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1771 
1772   // MDNode for the kernel argument names.
1773   SmallVector<llvm::Metadata *, 8> argNames;
1774 
1775   if (FD && CGF)
1776     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1777       const ParmVarDecl *parm = FD->getParamDecl(i);
1778       // Get argument name.
1779       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1780 
1781       if (!getLangOpts().OpenCL)
1782         continue;
1783       QualType ty = parm->getType();
1784       std::string typeQuals;
1785 
1786       // Get image and pipe access qualifier:
1787       if (ty->isImageType() || ty->isPipeType()) {
1788         const Decl *PDecl = parm;
1789         if (const auto *TD = ty->getAs<TypedefType>())
1790           PDecl = TD->getDecl();
1791         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1792         if (A && A->isWriteOnly())
1793           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1794         else if (A && A->isReadWrite())
1795           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1796         else
1797           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1798       } else
1799         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1800 
1801       auto getTypeSpelling = [&](QualType Ty) {
1802         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1803 
1804         if (Ty.isCanonical()) {
1805           StringRef typeNameRef = typeName;
1806           // Turn "unsigned type" to "utype"
1807           if (typeNameRef.consume_front("unsigned "))
1808             return std::string("u") + typeNameRef.str();
1809           if (typeNameRef.consume_front("signed "))
1810             return typeNameRef.str();
1811         }
1812 
1813         return typeName;
1814       };
1815 
1816       if (ty->isPointerType()) {
1817         QualType pointeeTy = ty->getPointeeType();
1818 
1819         // Get address qualifier.
1820         addressQuals.push_back(
1821             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1822                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1823 
1824         // Get argument type name.
1825         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1826         std::string baseTypeName =
1827             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1828         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1829         argBaseTypeNames.push_back(
1830             llvm::MDString::get(VMContext, baseTypeName));
1831 
1832         // Get argument type qualifiers:
1833         if (ty.isRestrictQualified())
1834           typeQuals = "restrict";
1835         if (pointeeTy.isConstQualified() ||
1836             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1837           typeQuals += typeQuals.empty() ? "const" : " const";
1838         if (pointeeTy.isVolatileQualified())
1839           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1840       } else {
1841         uint32_t AddrSpc = 0;
1842         bool isPipe = ty->isPipeType();
1843         if (ty->isImageType() || isPipe)
1844           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1845 
1846         addressQuals.push_back(
1847             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1848 
1849         // Get argument type name.
1850         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1851         std::string typeName = getTypeSpelling(ty);
1852         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1853 
1854         // Remove access qualifiers on images
1855         // (as they are inseparable from type in clang implementation,
1856         // but OpenCL spec provides a special query to get access qualifier
1857         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1858         if (ty->isImageType()) {
1859           removeImageAccessQualifier(typeName);
1860           removeImageAccessQualifier(baseTypeName);
1861         }
1862 
1863         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1864         argBaseTypeNames.push_back(
1865             llvm::MDString::get(VMContext, baseTypeName));
1866 
1867         if (isPipe)
1868           typeQuals = "pipe";
1869       }
1870       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1871     }
1872 
1873   if (getLangOpts().OpenCL) {
1874     Fn->setMetadata("kernel_arg_addr_space",
1875                     llvm::MDNode::get(VMContext, addressQuals));
1876     Fn->setMetadata("kernel_arg_access_qual",
1877                     llvm::MDNode::get(VMContext, accessQuals));
1878     Fn->setMetadata("kernel_arg_type",
1879                     llvm::MDNode::get(VMContext, argTypeNames));
1880     Fn->setMetadata("kernel_arg_base_type",
1881                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1882     Fn->setMetadata("kernel_arg_type_qual",
1883                     llvm::MDNode::get(VMContext, argTypeQuals));
1884   }
1885   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1886       getCodeGenOpts().HIPSaveKernelArgName)
1887     Fn->setMetadata("kernel_arg_name",
1888                     llvm::MDNode::get(VMContext, argNames));
1889 }
1890 
1891 /// Determines whether the language options require us to model
1892 /// unwind exceptions.  We treat -fexceptions as mandating this
1893 /// except under the fragile ObjC ABI with only ObjC exceptions
1894 /// enabled.  This means, for example, that C with -fexceptions
1895 /// enables this.
1896 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1897   // If exceptions are completely disabled, obviously this is false.
1898   if (!LangOpts.Exceptions) return false;
1899 
1900   // If C++ exceptions are enabled, this is true.
1901   if (LangOpts.CXXExceptions) return true;
1902 
1903   // If ObjC exceptions are enabled, this depends on the ABI.
1904   if (LangOpts.ObjCExceptions) {
1905     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1906   }
1907 
1908   return true;
1909 }
1910 
1911 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1912                                                       const CXXMethodDecl *MD) {
1913   // Check that the type metadata can ever actually be used by a call.
1914   if (!CGM.getCodeGenOpts().LTOUnit ||
1915       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1916     return false;
1917 
1918   // Only functions whose address can be taken with a member function pointer
1919   // need this sort of type metadata.
1920   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1921          !isa<CXXDestructorDecl>(MD);
1922 }
1923 
1924 std::vector<const CXXRecordDecl *>
1925 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1926   llvm::SetVector<const CXXRecordDecl *> MostBases;
1927 
1928   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1929   CollectMostBases = [&](const CXXRecordDecl *RD) {
1930     if (RD->getNumBases() == 0)
1931       MostBases.insert(RD);
1932     for (const CXXBaseSpecifier &B : RD->bases())
1933       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1934   };
1935   CollectMostBases(RD);
1936   return MostBases.takeVector();
1937 }
1938 
1939 llvm::GlobalVariable *
1940 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1941   auto It = RTTIProxyMap.find(Addr);
1942   if (It != RTTIProxyMap.end())
1943     return It->second;
1944 
1945   auto *FTRTTIProxy = new llvm::GlobalVariable(
1946       TheModule, Addr->getType(),
1947       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1948       "__llvm_rtti_proxy");
1949   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1950 
1951   RTTIProxyMap[Addr] = FTRTTIProxy;
1952   return FTRTTIProxy;
1953 }
1954 
1955 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1956                                                            llvm::Function *F) {
1957   llvm::AttrBuilder B(F->getContext());
1958 
1959   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1960     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1961 
1962   if (CodeGenOpts.StackClashProtector)
1963     B.addAttribute("probe-stack", "inline-asm");
1964 
1965   if (!hasUnwindExceptions(LangOpts))
1966     B.addAttribute(llvm::Attribute::NoUnwind);
1967 
1968   if (D && D->hasAttr<NoStackProtectorAttr>())
1969     ; // Do nothing.
1970   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
1971            LangOpts.getStackProtector() == LangOptions::SSPOn)
1972     B.addAttribute(llvm::Attribute::StackProtectStrong);
1973   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1974     B.addAttribute(llvm::Attribute::StackProtect);
1975   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1976     B.addAttribute(llvm::Attribute::StackProtectStrong);
1977   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1978     B.addAttribute(llvm::Attribute::StackProtectReq);
1979 
1980   if (!D) {
1981     // If we don't have a declaration to control inlining, the function isn't
1982     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1983     // disabled, mark the function as noinline.
1984     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1985         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1986       B.addAttribute(llvm::Attribute::NoInline);
1987 
1988     F->addFnAttrs(B);
1989     return;
1990   }
1991 
1992   // Track whether we need to add the optnone LLVM attribute,
1993   // starting with the default for this optimization level.
1994   bool ShouldAddOptNone =
1995       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1996   // We can't add optnone in the following cases, it won't pass the verifier.
1997   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1998   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1999 
2000   // Add optnone, but do so only if the function isn't always_inline.
2001   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2002       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2003     B.addAttribute(llvm::Attribute::OptimizeNone);
2004 
2005     // OptimizeNone implies noinline; we should not be inlining such functions.
2006     B.addAttribute(llvm::Attribute::NoInline);
2007 
2008     // We still need to handle naked functions even though optnone subsumes
2009     // much of their semantics.
2010     if (D->hasAttr<NakedAttr>())
2011       B.addAttribute(llvm::Attribute::Naked);
2012 
2013     // OptimizeNone wins over OptimizeForSize and MinSize.
2014     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2015     F->removeFnAttr(llvm::Attribute::MinSize);
2016   } else if (D->hasAttr<NakedAttr>()) {
2017     // Naked implies noinline: we should not be inlining such functions.
2018     B.addAttribute(llvm::Attribute::Naked);
2019     B.addAttribute(llvm::Attribute::NoInline);
2020   } else if (D->hasAttr<NoDuplicateAttr>()) {
2021     B.addAttribute(llvm::Attribute::NoDuplicate);
2022   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2023     // Add noinline if the function isn't always_inline.
2024     B.addAttribute(llvm::Attribute::NoInline);
2025   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2026              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2027     // (noinline wins over always_inline, and we can't specify both in IR)
2028     B.addAttribute(llvm::Attribute::AlwaysInline);
2029   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2030     // If we're not inlining, then force everything that isn't always_inline to
2031     // carry an explicit noinline attribute.
2032     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2033       B.addAttribute(llvm::Attribute::NoInline);
2034   } else {
2035     // Otherwise, propagate the inline hint attribute and potentially use its
2036     // absence to mark things as noinline.
2037     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2038       // Search function and template pattern redeclarations for inline.
2039       auto CheckForInline = [](const FunctionDecl *FD) {
2040         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2041           return Redecl->isInlineSpecified();
2042         };
2043         if (any_of(FD->redecls(), CheckRedeclForInline))
2044           return true;
2045         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2046         if (!Pattern)
2047           return false;
2048         return any_of(Pattern->redecls(), CheckRedeclForInline);
2049       };
2050       if (CheckForInline(FD)) {
2051         B.addAttribute(llvm::Attribute::InlineHint);
2052       } else if (CodeGenOpts.getInlining() ==
2053                      CodeGenOptions::OnlyHintInlining &&
2054                  !FD->isInlined() &&
2055                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2056         B.addAttribute(llvm::Attribute::NoInline);
2057       }
2058     }
2059   }
2060 
2061   // Add other optimization related attributes if we are optimizing this
2062   // function.
2063   if (!D->hasAttr<OptimizeNoneAttr>()) {
2064     if (D->hasAttr<ColdAttr>()) {
2065       if (!ShouldAddOptNone)
2066         B.addAttribute(llvm::Attribute::OptimizeForSize);
2067       B.addAttribute(llvm::Attribute::Cold);
2068     }
2069     if (D->hasAttr<HotAttr>())
2070       B.addAttribute(llvm::Attribute::Hot);
2071     if (D->hasAttr<MinSizeAttr>())
2072       B.addAttribute(llvm::Attribute::MinSize);
2073   }
2074 
2075   F->addFnAttrs(B);
2076 
2077   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2078   if (alignment)
2079     F->setAlignment(llvm::Align(alignment));
2080 
2081   if (!D->hasAttr<AlignedAttr>())
2082     if (LangOpts.FunctionAlignment)
2083       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2084 
2085   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2086   // reserve a bit for differentiating between virtual and non-virtual member
2087   // functions. If the current target's C++ ABI requires this and this is a
2088   // member function, set its alignment accordingly.
2089   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2090     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2091       F->setAlignment(llvm::Align(2));
2092   }
2093 
2094   // In the cross-dso CFI mode with canonical jump tables, we want !type
2095   // attributes on definitions only.
2096   if (CodeGenOpts.SanitizeCfiCrossDso &&
2097       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2098     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2099       // Skip available_externally functions. They won't be codegen'ed in the
2100       // current module anyway.
2101       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2102         CreateFunctionTypeMetadataForIcall(FD, F);
2103     }
2104   }
2105 
2106   // Emit type metadata on member functions for member function pointer checks.
2107   // These are only ever necessary on definitions; we're guaranteed that the
2108   // definition will be present in the LTO unit as a result of LTO visibility.
2109   auto *MD = dyn_cast<CXXMethodDecl>(D);
2110   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2111     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2112       llvm::Metadata *Id =
2113           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2114               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2115       F->addTypeMetadata(0, Id);
2116     }
2117   }
2118 }
2119 
2120 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2121                                                   llvm::Function *F) {
2122   if (D->hasAttr<StrictFPAttr>()) {
2123     llvm::AttrBuilder FuncAttrs(F->getContext());
2124     FuncAttrs.addAttribute("strictfp");
2125     F->addFnAttrs(FuncAttrs);
2126   }
2127 }
2128 
2129 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2130   const Decl *D = GD.getDecl();
2131   if (isa_and_nonnull<NamedDecl>(D))
2132     setGVProperties(GV, GD);
2133   else
2134     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2135 
2136   if (D && D->hasAttr<UsedAttr>())
2137     addUsedOrCompilerUsedGlobal(GV);
2138 
2139   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2140     const auto *VD = cast<VarDecl>(D);
2141     if (VD->getType().isConstQualified() &&
2142         VD->getStorageDuration() == SD_Static)
2143       addUsedOrCompilerUsedGlobal(GV);
2144   }
2145 }
2146 
2147 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2148                                                 llvm::AttrBuilder &Attrs) {
2149   // Add target-cpu and target-features attributes to functions. If
2150   // we have a decl for the function and it has a target attribute then
2151   // parse that and add it to the feature set.
2152   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2153   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2154   std::vector<std::string> Features;
2155   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2156   FD = FD ? FD->getMostRecentDecl() : FD;
2157   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2158   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2159   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2160   bool AddedAttr = false;
2161   if (TD || SD || TC) {
2162     llvm::StringMap<bool> FeatureMap;
2163     getContext().getFunctionFeatureMap(FeatureMap, GD);
2164 
2165     // Produce the canonical string for this set of features.
2166     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2167       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2168 
2169     // Now add the target-cpu and target-features to the function.
2170     // While we populated the feature map above, we still need to
2171     // get and parse the target attribute so we can get the cpu for
2172     // the function.
2173     if (TD) {
2174       ParsedTargetAttr ParsedAttr =
2175           Target.parseTargetAttr(TD->getFeaturesStr());
2176       if (!ParsedAttr.CPU.empty() &&
2177           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2178         TargetCPU = ParsedAttr.CPU;
2179         TuneCPU = ""; // Clear the tune CPU.
2180       }
2181       if (!ParsedAttr.Tune.empty() &&
2182           getTarget().isValidCPUName(ParsedAttr.Tune))
2183         TuneCPU = ParsedAttr.Tune;
2184     }
2185 
2186     if (SD) {
2187       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2188       // favor this processor.
2189       TuneCPU = getTarget().getCPUSpecificTuneName(
2190           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2191     }
2192   } else {
2193     // Otherwise just add the existing target cpu and target features to the
2194     // function.
2195     Features = getTarget().getTargetOpts().Features;
2196   }
2197 
2198   if (!TargetCPU.empty()) {
2199     Attrs.addAttribute("target-cpu", TargetCPU);
2200     AddedAttr = true;
2201   }
2202   if (!TuneCPU.empty()) {
2203     Attrs.addAttribute("tune-cpu", TuneCPU);
2204     AddedAttr = true;
2205   }
2206   if (!Features.empty()) {
2207     llvm::sort(Features);
2208     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2209     AddedAttr = true;
2210   }
2211 
2212   return AddedAttr;
2213 }
2214 
2215 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2216                                           llvm::GlobalObject *GO) {
2217   const Decl *D = GD.getDecl();
2218   SetCommonAttributes(GD, GO);
2219 
2220   if (D) {
2221     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2222       if (D->hasAttr<RetainAttr>())
2223         addUsedGlobal(GV);
2224       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2225         GV->addAttribute("bss-section", SA->getName());
2226       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2227         GV->addAttribute("data-section", SA->getName());
2228       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2229         GV->addAttribute("rodata-section", SA->getName());
2230       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2231         GV->addAttribute("relro-section", SA->getName());
2232     }
2233 
2234     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2235       if (D->hasAttr<RetainAttr>())
2236         addUsedGlobal(F);
2237       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2238         if (!D->getAttr<SectionAttr>())
2239           F->addFnAttr("implicit-section-name", SA->getName());
2240 
2241       llvm::AttrBuilder Attrs(F->getContext());
2242       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2243         // We know that GetCPUAndFeaturesAttributes will always have the
2244         // newest set, since it has the newest possible FunctionDecl, so the
2245         // new ones should replace the old.
2246         llvm::AttributeMask RemoveAttrs;
2247         RemoveAttrs.addAttribute("target-cpu");
2248         RemoveAttrs.addAttribute("target-features");
2249         RemoveAttrs.addAttribute("tune-cpu");
2250         F->removeFnAttrs(RemoveAttrs);
2251         F->addFnAttrs(Attrs);
2252       }
2253     }
2254 
2255     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2256       GO->setSection(CSA->getName());
2257     else if (const auto *SA = D->getAttr<SectionAttr>())
2258       GO->setSection(SA->getName());
2259   }
2260 
2261   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2262 }
2263 
2264 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2265                                                   llvm::Function *F,
2266                                                   const CGFunctionInfo &FI) {
2267   const Decl *D = GD.getDecl();
2268   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2269   SetLLVMFunctionAttributesForDefinition(D, F);
2270 
2271   F->setLinkage(llvm::Function::InternalLinkage);
2272 
2273   setNonAliasAttributes(GD, F);
2274 }
2275 
2276 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2277   // Set linkage and visibility in case we never see a definition.
2278   LinkageInfo LV = ND->getLinkageAndVisibility();
2279   // Don't set internal linkage on declarations.
2280   // "extern_weak" is overloaded in LLVM; we probably should have
2281   // separate linkage types for this.
2282   if (isExternallyVisible(LV.getLinkage()) &&
2283       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2284     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2285 }
2286 
2287 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2288                                                        llvm::Function *F) {
2289   // Only if we are checking indirect calls.
2290   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2291     return;
2292 
2293   // Non-static class methods are handled via vtable or member function pointer
2294   // checks elsewhere.
2295   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2296     return;
2297 
2298   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2299   F->addTypeMetadata(0, MD);
2300   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2301 
2302   // Emit a hash-based bit set entry for cross-DSO calls.
2303   if (CodeGenOpts.SanitizeCfiCrossDso)
2304     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2305       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2306 }
2307 
2308 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2309   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2310     return;
2311 
2312   llvm::LLVMContext &Ctx = F->getContext();
2313   llvm::MDBuilder MDB(Ctx);
2314   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2315                  llvm::MDNode::get(
2316                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2317 }
2318 
2319 static bool allowKCFIIdentifier(StringRef Name) {
2320   // KCFI type identifier constants are only necessary for external assembly
2321   // functions, which means it's safe to skip unusual names. Subset of
2322   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2323   return llvm::all_of(Name, [](const char &C) {
2324     return llvm::isAlnum(C) || C == '_' || C == '.';
2325   });
2326 }
2327 
2328 void CodeGenModule::finalizeKCFITypes() {
2329   llvm::Module &M = getModule();
2330   for (auto &F : M.functions()) {
2331     // Remove KCFI type metadata from non-address-taken local functions.
2332     bool AddressTaken = F.hasAddressTaken();
2333     if (!AddressTaken && F.hasLocalLinkage())
2334       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2335 
2336     // Generate a constant with the expected KCFI type identifier for all
2337     // address-taken function declarations to support annotating indirectly
2338     // called assembly functions.
2339     if (!AddressTaken || !F.isDeclaration())
2340       continue;
2341 
2342     const llvm::ConstantInt *Type;
2343     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2344       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2345     else
2346       continue;
2347 
2348     StringRef Name = F.getName();
2349     if (!allowKCFIIdentifier(Name))
2350       continue;
2351 
2352     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2353                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2354                           .str();
2355     M.appendModuleInlineAsm(Asm);
2356   }
2357 }
2358 
2359 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2360                                           bool IsIncompleteFunction,
2361                                           bool IsThunk) {
2362 
2363   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2364     // If this is an intrinsic function, set the function's attributes
2365     // to the intrinsic's attributes.
2366     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2367     return;
2368   }
2369 
2370   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2371 
2372   if (!IsIncompleteFunction)
2373     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2374                               IsThunk);
2375 
2376   // Add the Returned attribute for "this", except for iOS 5 and earlier
2377   // where substantial code, including the libstdc++ dylib, was compiled with
2378   // GCC and does not actually return "this".
2379   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2380       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2381     assert(!F->arg_empty() &&
2382            F->arg_begin()->getType()
2383              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2384            "unexpected this return");
2385     F->addParamAttr(0, llvm::Attribute::Returned);
2386   }
2387 
2388   // Only a few attributes are set on declarations; these may later be
2389   // overridden by a definition.
2390 
2391   setLinkageForGV(F, FD);
2392   setGVProperties(F, FD);
2393 
2394   // Setup target-specific attributes.
2395   if (!IsIncompleteFunction && F->isDeclaration())
2396     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2397 
2398   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2399     F->setSection(CSA->getName());
2400   else if (const auto *SA = FD->getAttr<SectionAttr>())
2401      F->setSection(SA->getName());
2402 
2403   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2404     if (EA->isError())
2405       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2406     else if (EA->isWarning())
2407       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2408   }
2409 
2410   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2411   if (FD->isInlineBuiltinDeclaration()) {
2412     const FunctionDecl *FDBody;
2413     bool HasBody = FD->hasBody(FDBody);
2414     (void)HasBody;
2415     assert(HasBody && "Inline builtin declarations should always have an "
2416                       "available body!");
2417     if (shouldEmitFunction(FDBody))
2418       F->addFnAttr(llvm::Attribute::NoBuiltin);
2419   }
2420 
2421   if (FD->isReplaceableGlobalAllocationFunction()) {
2422     // A replaceable global allocation function does not act like a builtin by
2423     // default, only if it is invoked by a new-expression or delete-expression.
2424     F->addFnAttr(llvm::Attribute::NoBuiltin);
2425   }
2426 
2427   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2428     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2429   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2430     if (MD->isVirtual())
2431       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2432 
2433   // Don't emit entries for function declarations in the cross-DSO mode. This
2434   // is handled with better precision by the receiving DSO. But if jump tables
2435   // are non-canonical then we need type metadata in order to produce the local
2436   // jump table.
2437   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2438       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2439     CreateFunctionTypeMetadataForIcall(FD, F);
2440 
2441   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2442     setKCFIType(FD, F);
2443 
2444   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2445     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2446 
2447   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2448     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2449 
2450   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2451     // Annotate the callback behavior as metadata:
2452     //  - The callback callee (as argument number).
2453     //  - The callback payloads (as argument numbers).
2454     llvm::LLVMContext &Ctx = F->getContext();
2455     llvm::MDBuilder MDB(Ctx);
2456 
2457     // The payload indices are all but the first one in the encoding. The first
2458     // identifies the callback callee.
2459     int CalleeIdx = *CB->encoding_begin();
2460     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2461     F->addMetadata(llvm::LLVMContext::MD_callback,
2462                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2463                                                CalleeIdx, PayloadIndices,
2464                                                /* VarArgsArePassed */ false)}));
2465   }
2466 }
2467 
2468 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2469   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2470          "Only globals with definition can force usage.");
2471   LLVMUsed.emplace_back(GV);
2472 }
2473 
2474 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2475   assert(!GV->isDeclaration() &&
2476          "Only globals with definition can force usage.");
2477   LLVMCompilerUsed.emplace_back(GV);
2478 }
2479 
2480 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2481   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2482          "Only globals with definition can force usage.");
2483   if (getTriple().isOSBinFormatELF())
2484     LLVMCompilerUsed.emplace_back(GV);
2485   else
2486     LLVMUsed.emplace_back(GV);
2487 }
2488 
2489 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2490                      std::vector<llvm::WeakTrackingVH> &List) {
2491   // Don't create llvm.used if there is no need.
2492   if (List.empty())
2493     return;
2494 
2495   // Convert List to what ConstantArray needs.
2496   SmallVector<llvm::Constant*, 8> UsedArray;
2497   UsedArray.resize(List.size());
2498   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2499     UsedArray[i] =
2500         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2501             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2502   }
2503 
2504   if (UsedArray.empty())
2505     return;
2506   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2507 
2508   auto *GV = new llvm::GlobalVariable(
2509       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2510       llvm::ConstantArray::get(ATy, UsedArray), Name);
2511 
2512   GV->setSection("llvm.metadata");
2513 }
2514 
2515 void CodeGenModule::emitLLVMUsed() {
2516   emitUsed(*this, "llvm.used", LLVMUsed);
2517   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2518 }
2519 
2520 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2521   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2522   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2523 }
2524 
2525 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2526   llvm::SmallString<32> Opt;
2527   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2528   if (Opt.empty())
2529     return;
2530   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2531   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2532 }
2533 
2534 void CodeGenModule::AddDependentLib(StringRef Lib) {
2535   auto &C = getLLVMContext();
2536   if (getTarget().getTriple().isOSBinFormatELF()) {
2537       ELFDependentLibraries.push_back(
2538         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2539     return;
2540   }
2541 
2542   llvm::SmallString<24> Opt;
2543   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2544   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2545   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2546 }
2547 
2548 /// Add link options implied by the given module, including modules
2549 /// it depends on, using a postorder walk.
2550 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2551                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2552                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2553   // Import this module's parent.
2554   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2555     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2556   }
2557 
2558   // Import this module's dependencies.
2559   for (Module *Import : llvm::reverse(Mod->Imports)) {
2560     if (Visited.insert(Import).second)
2561       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2562   }
2563 
2564   // Add linker options to link against the libraries/frameworks
2565   // described by this module.
2566   llvm::LLVMContext &Context = CGM.getLLVMContext();
2567   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2568 
2569   // For modules that use export_as for linking, use that module
2570   // name instead.
2571   if (Mod->UseExportAsModuleLinkName)
2572     return;
2573 
2574   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2575     // Link against a framework.  Frameworks are currently Darwin only, so we
2576     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2577     if (LL.IsFramework) {
2578       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2579                                  llvm::MDString::get(Context, LL.Library)};
2580 
2581       Metadata.push_back(llvm::MDNode::get(Context, Args));
2582       continue;
2583     }
2584 
2585     // Link against a library.
2586     if (IsELF) {
2587       llvm::Metadata *Args[2] = {
2588           llvm::MDString::get(Context, "lib"),
2589           llvm::MDString::get(Context, LL.Library),
2590       };
2591       Metadata.push_back(llvm::MDNode::get(Context, Args));
2592     } else {
2593       llvm::SmallString<24> Opt;
2594       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2595       auto *OptString = llvm::MDString::get(Context, Opt);
2596       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2597     }
2598   }
2599 }
2600 
2601 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2602   // Emit the initializers in the order that sub-modules appear in the
2603   // source, first Global Module Fragments, if present.
2604   if (auto GMF = Primary->getGlobalModuleFragment()) {
2605     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2606       if (isa<ImportDecl>(D))
2607         continue;
2608       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2609       EmitTopLevelDecl(D);
2610     }
2611   }
2612   // Second any associated with the module, itself.
2613   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2614     // Skip import decls, the inits for those are called explicitly.
2615     if (isa<ImportDecl>(D))
2616       continue;
2617     EmitTopLevelDecl(D);
2618   }
2619   // Third any associated with the Privat eMOdule Fragment, if present.
2620   if (auto PMF = Primary->getPrivateModuleFragment()) {
2621     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2622       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2623       EmitTopLevelDecl(D);
2624     }
2625   }
2626 }
2627 
2628 void CodeGenModule::EmitModuleLinkOptions() {
2629   // Collect the set of all of the modules we want to visit to emit link
2630   // options, which is essentially the imported modules and all of their
2631   // non-explicit child modules.
2632   llvm::SetVector<clang::Module *> LinkModules;
2633   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2634   SmallVector<clang::Module *, 16> Stack;
2635 
2636   // Seed the stack with imported modules.
2637   for (Module *M : ImportedModules) {
2638     // Do not add any link flags when an implementation TU of a module imports
2639     // a header of that same module.
2640     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2641         !getLangOpts().isCompilingModule())
2642       continue;
2643     if (Visited.insert(M).second)
2644       Stack.push_back(M);
2645   }
2646 
2647   // Find all of the modules to import, making a little effort to prune
2648   // non-leaf modules.
2649   while (!Stack.empty()) {
2650     clang::Module *Mod = Stack.pop_back_val();
2651 
2652     bool AnyChildren = false;
2653 
2654     // Visit the submodules of this module.
2655     for (const auto &SM : Mod->submodules()) {
2656       // Skip explicit children; they need to be explicitly imported to be
2657       // linked against.
2658       if (SM->IsExplicit)
2659         continue;
2660 
2661       if (Visited.insert(SM).second) {
2662         Stack.push_back(SM);
2663         AnyChildren = true;
2664       }
2665     }
2666 
2667     // We didn't find any children, so add this module to the list of
2668     // modules to link against.
2669     if (!AnyChildren) {
2670       LinkModules.insert(Mod);
2671     }
2672   }
2673 
2674   // Add link options for all of the imported modules in reverse topological
2675   // order.  We don't do anything to try to order import link flags with respect
2676   // to linker options inserted by things like #pragma comment().
2677   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2678   Visited.clear();
2679   for (Module *M : LinkModules)
2680     if (Visited.insert(M).second)
2681       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2682   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2683   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2684 
2685   // Add the linker options metadata flag.
2686   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2687   for (auto *MD : LinkerOptionsMetadata)
2688     NMD->addOperand(MD);
2689 }
2690 
2691 void CodeGenModule::EmitDeferred() {
2692   // Emit deferred declare target declarations.
2693   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2694     getOpenMPRuntime().emitDeferredTargetDecls();
2695 
2696   // Emit code for any potentially referenced deferred decls.  Since a
2697   // previously unused static decl may become used during the generation of code
2698   // for a static function, iterate until no changes are made.
2699 
2700   if (!DeferredVTables.empty()) {
2701     EmitDeferredVTables();
2702 
2703     // Emitting a vtable doesn't directly cause more vtables to
2704     // become deferred, although it can cause functions to be
2705     // emitted that then need those vtables.
2706     assert(DeferredVTables.empty());
2707   }
2708 
2709   // Emit CUDA/HIP static device variables referenced by host code only.
2710   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2711   // needed for further handling.
2712   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2713     llvm::append_range(DeferredDeclsToEmit,
2714                        getContext().CUDADeviceVarODRUsedByHost);
2715 
2716   // Stop if we're out of both deferred vtables and deferred declarations.
2717   if (DeferredDeclsToEmit.empty())
2718     return;
2719 
2720   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2721   // work, it will not interfere with this.
2722   std::vector<GlobalDecl> CurDeclsToEmit;
2723   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2724 
2725   for (GlobalDecl &D : CurDeclsToEmit) {
2726     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2727     // to get GlobalValue with exactly the type we need, not something that
2728     // might had been created for another decl with the same mangled name but
2729     // different type.
2730     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2731         GetAddrOfGlobal(D, ForDefinition));
2732 
2733     // In case of different address spaces, we may still get a cast, even with
2734     // IsForDefinition equal to true. Query mangled names table to get
2735     // GlobalValue.
2736     if (!GV)
2737       GV = GetGlobalValue(getMangledName(D));
2738 
2739     // Make sure GetGlobalValue returned non-null.
2740     assert(GV);
2741 
2742     // Check to see if we've already emitted this.  This is necessary
2743     // for a couple of reasons: first, decls can end up in the
2744     // deferred-decls queue multiple times, and second, decls can end
2745     // up with definitions in unusual ways (e.g. by an extern inline
2746     // function acquiring a strong function redefinition).  Just
2747     // ignore these cases.
2748     if (!GV->isDeclaration())
2749       continue;
2750 
2751     // If this is OpenMP, check if it is legal to emit this global normally.
2752     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2753       continue;
2754 
2755     // Otherwise, emit the definition and move on to the next one.
2756     EmitGlobalDefinition(D, GV);
2757 
2758     // If we found out that we need to emit more decls, do that recursively.
2759     // This has the advantage that the decls are emitted in a DFS and related
2760     // ones are close together, which is convenient for testing.
2761     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2762       EmitDeferred();
2763       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2764     }
2765   }
2766 }
2767 
2768 void CodeGenModule::EmitVTablesOpportunistically() {
2769   // Try to emit external vtables as available_externally if they have emitted
2770   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2771   // is not allowed to create new references to things that need to be emitted
2772   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2773 
2774   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2775          && "Only emit opportunistic vtables with optimizations");
2776 
2777   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2778     assert(getVTables().isVTableExternal(RD) &&
2779            "This queue should only contain external vtables");
2780     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2781       VTables.GenerateClassData(RD);
2782   }
2783   OpportunisticVTables.clear();
2784 }
2785 
2786 void CodeGenModule::EmitGlobalAnnotations() {
2787   if (Annotations.empty())
2788     return;
2789 
2790   // Create a new global variable for the ConstantStruct in the Module.
2791   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2792     Annotations[0]->getType(), Annotations.size()), Annotations);
2793   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2794                                       llvm::GlobalValue::AppendingLinkage,
2795                                       Array, "llvm.global.annotations");
2796   gv->setSection(AnnotationSection);
2797 }
2798 
2799 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2800   llvm::Constant *&AStr = AnnotationStrings[Str];
2801   if (AStr)
2802     return AStr;
2803 
2804   // Not found yet, create a new global.
2805   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2806   auto *gv =
2807       new llvm::GlobalVariable(getModule(), s->getType(), true,
2808                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2809   gv->setSection(AnnotationSection);
2810   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2811   AStr = gv;
2812   return gv;
2813 }
2814 
2815 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2816   SourceManager &SM = getContext().getSourceManager();
2817   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2818   if (PLoc.isValid())
2819     return EmitAnnotationString(PLoc.getFilename());
2820   return EmitAnnotationString(SM.getBufferName(Loc));
2821 }
2822 
2823 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2824   SourceManager &SM = getContext().getSourceManager();
2825   PresumedLoc PLoc = SM.getPresumedLoc(L);
2826   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2827     SM.getExpansionLineNumber(L);
2828   return llvm::ConstantInt::get(Int32Ty, LineNo);
2829 }
2830 
2831 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2832   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2833   if (Exprs.empty())
2834     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2835 
2836   llvm::FoldingSetNodeID ID;
2837   for (Expr *E : Exprs) {
2838     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2839   }
2840   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2841   if (Lookup)
2842     return Lookup;
2843 
2844   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2845   LLVMArgs.reserve(Exprs.size());
2846   ConstantEmitter ConstEmiter(*this);
2847   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2848     const auto *CE = cast<clang::ConstantExpr>(E);
2849     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2850                                     CE->getType());
2851   });
2852   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2853   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2854                                       llvm::GlobalValue::PrivateLinkage, Struct,
2855                                       ".args");
2856   GV->setSection(AnnotationSection);
2857   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2858   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2859 
2860   Lookup = Bitcasted;
2861   return Bitcasted;
2862 }
2863 
2864 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2865                                                 const AnnotateAttr *AA,
2866                                                 SourceLocation L) {
2867   // Get the globals for file name, annotation, and the line number.
2868   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2869                  *UnitGV = EmitAnnotationUnit(L),
2870                  *LineNoCst = EmitAnnotationLineNo(L),
2871                  *Args = EmitAnnotationArgs(AA);
2872 
2873   llvm::Constant *GVInGlobalsAS = GV;
2874   if (GV->getAddressSpace() !=
2875       getDataLayout().getDefaultGlobalsAddressSpace()) {
2876     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2877         GV, GV->getValueType()->getPointerTo(
2878                 getDataLayout().getDefaultGlobalsAddressSpace()));
2879   }
2880 
2881   // Create the ConstantStruct for the global annotation.
2882   llvm::Constant *Fields[] = {
2883       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2884       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2885       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2886       LineNoCst,
2887       Args,
2888   };
2889   return llvm::ConstantStruct::getAnon(Fields);
2890 }
2891 
2892 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2893                                          llvm::GlobalValue *GV) {
2894   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2895   // Get the struct elements for these annotations.
2896   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2897     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2898 }
2899 
2900 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2901                                        SourceLocation Loc) const {
2902   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2903   // NoSanitize by function name.
2904   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2905     return true;
2906   // NoSanitize by location. Check "mainfile" prefix.
2907   auto &SM = Context.getSourceManager();
2908   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2909   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2910     return true;
2911 
2912   // Check "src" prefix.
2913   if (Loc.isValid())
2914     return NoSanitizeL.containsLocation(Kind, Loc);
2915   // If location is unknown, this may be a compiler-generated function. Assume
2916   // it's located in the main file.
2917   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2918 }
2919 
2920 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2921                                        llvm::GlobalVariable *GV,
2922                                        SourceLocation Loc, QualType Ty,
2923                                        StringRef Category) const {
2924   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2925   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2926     return true;
2927   auto &SM = Context.getSourceManager();
2928   if (NoSanitizeL.containsMainFile(
2929           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2930     return true;
2931   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2932     return true;
2933 
2934   // Check global type.
2935   if (!Ty.isNull()) {
2936     // Drill down the array types: if global variable of a fixed type is
2937     // not sanitized, we also don't instrument arrays of them.
2938     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2939       Ty = AT->getElementType();
2940     Ty = Ty.getCanonicalType().getUnqualifiedType();
2941     // Only record types (classes, structs etc.) are ignored.
2942     if (Ty->isRecordType()) {
2943       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2944       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2945         return true;
2946     }
2947   }
2948   return false;
2949 }
2950 
2951 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2952                                    StringRef Category) const {
2953   const auto &XRayFilter = getContext().getXRayFilter();
2954   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2955   auto Attr = ImbueAttr::NONE;
2956   if (Loc.isValid())
2957     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2958   if (Attr == ImbueAttr::NONE)
2959     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2960   switch (Attr) {
2961   case ImbueAttr::NONE:
2962     return false;
2963   case ImbueAttr::ALWAYS:
2964     Fn->addFnAttr("function-instrument", "xray-always");
2965     break;
2966   case ImbueAttr::ALWAYS_ARG1:
2967     Fn->addFnAttr("function-instrument", "xray-always");
2968     Fn->addFnAttr("xray-log-args", "1");
2969     break;
2970   case ImbueAttr::NEVER:
2971     Fn->addFnAttr("function-instrument", "xray-never");
2972     break;
2973   }
2974   return true;
2975 }
2976 
2977 ProfileList::ExclusionType
2978 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2979                                               SourceLocation Loc) const {
2980   const auto &ProfileList = getContext().getProfileList();
2981   // If the profile list is empty, then instrument everything.
2982   if (ProfileList.isEmpty())
2983     return ProfileList::Allow;
2984   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2985   // First, check the function name.
2986   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2987     return *V;
2988   // Next, check the source location.
2989   if (Loc.isValid())
2990     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2991       return *V;
2992   // If location is unknown, this may be a compiler-generated function. Assume
2993   // it's located in the main file.
2994   auto &SM = Context.getSourceManager();
2995   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2996     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2997       return *V;
2998   return ProfileList.getDefault(Kind);
2999 }
3000 
3001 ProfileList::ExclusionType
3002 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3003                                                  SourceLocation Loc) const {
3004   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3005   if (V != ProfileList::Allow)
3006     return V;
3007 
3008   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3009   if (NumGroups > 1) {
3010     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3011     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3012       return ProfileList::Skip;
3013   }
3014   return ProfileList::Allow;
3015 }
3016 
3017 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3018   // Never defer when EmitAllDecls is specified.
3019   if (LangOpts.EmitAllDecls)
3020     return true;
3021 
3022   if (CodeGenOpts.KeepStaticConsts) {
3023     const auto *VD = dyn_cast<VarDecl>(Global);
3024     if (VD && VD->getType().isConstQualified() &&
3025         VD->getStorageDuration() == SD_Static)
3026       return true;
3027   }
3028 
3029   return getContext().DeclMustBeEmitted(Global);
3030 }
3031 
3032 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3033   // In OpenMP 5.0 variables and function may be marked as
3034   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3035   // that they must be emitted on the host/device. To be sure we need to have
3036   // seen a declare target with an explicit mentioning of the function, we know
3037   // we have if the level of the declare target attribute is -1. Note that we
3038   // check somewhere else if we should emit this at all.
3039   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3040     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3041         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3042     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3043       return false;
3044   }
3045 
3046   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3047     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3048       // Implicit template instantiations may change linkage if they are later
3049       // explicitly instantiated, so they should not be emitted eagerly.
3050       return false;
3051   }
3052   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3053     if (Context.getInlineVariableDefinitionKind(VD) ==
3054         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3055       // A definition of an inline constexpr static data member may change
3056       // linkage later if it's redeclared outside the class.
3057       return false;
3058     if (CXX20ModuleInits && VD->getOwningModule() &&
3059         !VD->getOwningModule()->isModuleMapModule()) {
3060       // For CXX20, module-owned initializers need to be deferred, since it is
3061       // not known at this point if they will be run for the current module or
3062       // as part of the initializer for an imported one.
3063       return false;
3064     }
3065   }
3066   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3067   // codegen for global variables, because they may be marked as threadprivate.
3068   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3069       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3070       !isTypeConstant(Global->getType(), false) &&
3071       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3072     return false;
3073 
3074   return true;
3075 }
3076 
3077 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3078   StringRef Name = getMangledName(GD);
3079 
3080   // The UUID descriptor should be pointer aligned.
3081   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3082 
3083   // Look for an existing global.
3084   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3085     return ConstantAddress(GV, GV->getValueType(), Alignment);
3086 
3087   ConstantEmitter Emitter(*this);
3088   llvm::Constant *Init;
3089 
3090   APValue &V = GD->getAsAPValue();
3091   if (!V.isAbsent()) {
3092     // If possible, emit the APValue version of the initializer. In particular,
3093     // this gets the type of the constant right.
3094     Init = Emitter.emitForInitializer(
3095         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3096   } else {
3097     // As a fallback, directly construct the constant.
3098     // FIXME: This may get padding wrong under esoteric struct layout rules.
3099     // MSVC appears to create a complete type 'struct __s_GUID' that it
3100     // presumably uses to represent these constants.
3101     MSGuidDecl::Parts Parts = GD->getParts();
3102     llvm::Constant *Fields[4] = {
3103         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3104         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3105         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3106         llvm::ConstantDataArray::getRaw(
3107             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3108             Int8Ty)};
3109     Init = llvm::ConstantStruct::getAnon(Fields);
3110   }
3111 
3112   auto *GV = new llvm::GlobalVariable(
3113       getModule(), Init->getType(),
3114       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3115   if (supportsCOMDAT())
3116     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3117   setDSOLocal(GV);
3118 
3119   if (!V.isAbsent()) {
3120     Emitter.finalize(GV);
3121     return ConstantAddress(GV, GV->getValueType(), Alignment);
3122   }
3123 
3124   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3125   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3126       GV, Ty->getPointerTo(GV->getAddressSpace()));
3127   return ConstantAddress(Addr, Ty, Alignment);
3128 }
3129 
3130 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3131     const UnnamedGlobalConstantDecl *GCD) {
3132   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3133 
3134   llvm::GlobalVariable **Entry = nullptr;
3135   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3136   if (*Entry)
3137     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3138 
3139   ConstantEmitter Emitter(*this);
3140   llvm::Constant *Init;
3141 
3142   const APValue &V = GCD->getValue();
3143 
3144   assert(!V.isAbsent());
3145   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3146                                     GCD->getType());
3147 
3148   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3149                                       /*isConstant=*/true,
3150                                       llvm::GlobalValue::PrivateLinkage, Init,
3151                                       ".constant");
3152   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3153   GV->setAlignment(Alignment.getAsAlign());
3154 
3155   Emitter.finalize(GV);
3156 
3157   *Entry = GV;
3158   return ConstantAddress(GV, GV->getValueType(), Alignment);
3159 }
3160 
3161 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3162     const TemplateParamObjectDecl *TPO) {
3163   StringRef Name = getMangledName(TPO);
3164   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3165 
3166   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3167     return ConstantAddress(GV, GV->getValueType(), Alignment);
3168 
3169   ConstantEmitter Emitter(*this);
3170   llvm::Constant *Init = Emitter.emitForInitializer(
3171         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3172 
3173   if (!Init) {
3174     ErrorUnsupported(TPO, "template parameter object");
3175     return ConstantAddress::invalid();
3176   }
3177 
3178   auto *GV = new llvm::GlobalVariable(
3179       getModule(), Init->getType(),
3180       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3181   if (supportsCOMDAT())
3182     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3183   Emitter.finalize(GV);
3184 
3185   return ConstantAddress(GV, GV->getValueType(), Alignment);
3186 }
3187 
3188 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3189   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3190   assert(AA && "No alias?");
3191 
3192   CharUnits Alignment = getContext().getDeclAlign(VD);
3193   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3194 
3195   // See if there is already something with the target's name in the module.
3196   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3197   if (Entry) {
3198     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3199     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3200     return ConstantAddress(Ptr, DeclTy, Alignment);
3201   }
3202 
3203   llvm::Constant *Aliasee;
3204   if (isa<llvm::FunctionType>(DeclTy))
3205     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3206                                       GlobalDecl(cast<FunctionDecl>(VD)),
3207                                       /*ForVTable=*/false);
3208   else
3209     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3210                                     nullptr);
3211 
3212   auto *F = cast<llvm::GlobalValue>(Aliasee);
3213   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3214   WeakRefReferences.insert(F);
3215 
3216   return ConstantAddress(Aliasee, DeclTy, Alignment);
3217 }
3218 
3219 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3220   const auto *Global = cast<ValueDecl>(GD.getDecl());
3221 
3222   // Weak references don't produce any output by themselves.
3223   if (Global->hasAttr<WeakRefAttr>())
3224     return;
3225 
3226   // If this is an alias definition (which otherwise looks like a declaration)
3227   // emit it now.
3228   if (Global->hasAttr<AliasAttr>())
3229     return EmitAliasDefinition(GD);
3230 
3231   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3232   if (Global->hasAttr<IFuncAttr>())
3233     return emitIFuncDefinition(GD);
3234 
3235   // If this is a cpu_dispatch multiversion function, emit the resolver.
3236   if (Global->hasAttr<CPUDispatchAttr>())
3237     return emitCPUDispatchDefinition(GD);
3238 
3239   // If this is CUDA, be selective about which declarations we emit.
3240   if (LangOpts.CUDA) {
3241     if (LangOpts.CUDAIsDevice) {
3242       if (!Global->hasAttr<CUDADeviceAttr>() &&
3243           !Global->hasAttr<CUDAGlobalAttr>() &&
3244           !Global->hasAttr<CUDAConstantAttr>() &&
3245           !Global->hasAttr<CUDASharedAttr>() &&
3246           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3247           !Global->getType()->isCUDADeviceBuiltinTextureType())
3248         return;
3249     } else {
3250       // We need to emit host-side 'shadows' for all global
3251       // device-side variables because the CUDA runtime needs their
3252       // size and host-side address in order to provide access to
3253       // their device-side incarnations.
3254 
3255       // So device-only functions are the only things we skip.
3256       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3257           Global->hasAttr<CUDADeviceAttr>())
3258         return;
3259 
3260       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3261              "Expected Variable or Function");
3262     }
3263   }
3264 
3265   if (LangOpts.OpenMP) {
3266     // If this is OpenMP, check if it is legal to emit this global normally.
3267     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3268       return;
3269     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3270       if (MustBeEmitted(Global))
3271         EmitOMPDeclareReduction(DRD);
3272       return;
3273     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3274       if (MustBeEmitted(Global))
3275         EmitOMPDeclareMapper(DMD);
3276       return;
3277     }
3278   }
3279 
3280   // Ignore declarations, they will be emitted on their first use.
3281   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3282     // Forward declarations are emitted lazily on first use.
3283     if (!FD->doesThisDeclarationHaveABody()) {
3284       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3285         return;
3286 
3287       StringRef MangledName = getMangledName(GD);
3288 
3289       // Compute the function info and LLVM type.
3290       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3291       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3292 
3293       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3294                               /*DontDefer=*/false);
3295       return;
3296     }
3297   } else {
3298     const auto *VD = cast<VarDecl>(Global);
3299     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3300     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3301         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3302       if (LangOpts.OpenMP) {
3303         // Emit declaration of the must-be-emitted declare target variable.
3304         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3305                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3306           bool UnifiedMemoryEnabled =
3307               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3308           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3309                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3310               !UnifiedMemoryEnabled) {
3311             (void)GetAddrOfGlobalVar(VD);
3312           } else {
3313             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3314                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3315                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3316                      UnifiedMemoryEnabled)) &&
3317                    "Link clause or to clause with unified memory expected.");
3318             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3319           }
3320 
3321           return;
3322         }
3323       }
3324       // If this declaration may have caused an inline variable definition to
3325       // change linkage, make sure that it's emitted.
3326       if (Context.getInlineVariableDefinitionKind(VD) ==
3327           ASTContext::InlineVariableDefinitionKind::Strong)
3328         GetAddrOfGlobalVar(VD);
3329       return;
3330     }
3331   }
3332 
3333   // Defer code generation to first use when possible, e.g. if this is an inline
3334   // function. If the global must always be emitted, do it eagerly if possible
3335   // to benefit from cache locality.
3336   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3337     // Emit the definition if it can't be deferred.
3338     EmitGlobalDefinition(GD);
3339     return;
3340   }
3341 
3342   // If we're deferring emission of a C++ variable with an
3343   // initializer, remember the order in which it appeared in the file.
3344   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3345       cast<VarDecl>(Global)->hasInit()) {
3346     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3347     CXXGlobalInits.push_back(nullptr);
3348   }
3349 
3350   StringRef MangledName = getMangledName(GD);
3351   if (GetGlobalValue(MangledName) != nullptr) {
3352     // The value has already been used and should therefore be emitted.
3353     addDeferredDeclToEmit(GD);
3354   } else if (MustBeEmitted(Global)) {
3355     // The value must be emitted, but cannot be emitted eagerly.
3356     assert(!MayBeEmittedEagerly(Global));
3357     addDeferredDeclToEmit(GD);
3358     EmittedDeferredDecls[MangledName] = GD;
3359   } else {
3360     // Otherwise, remember that we saw a deferred decl with this name.  The
3361     // first use of the mangled name will cause it to move into
3362     // DeferredDeclsToEmit.
3363     DeferredDecls[MangledName] = GD;
3364   }
3365 }
3366 
3367 // Check if T is a class type with a destructor that's not dllimport.
3368 static bool HasNonDllImportDtor(QualType T) {
3369   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3370     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3371       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3372         return true;
3373 
3374   return false;
3375 }
3376 
3377 namespace {
3378   struct FunctionIsDirectlyRecursive
3379       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3380     const StringRef Name;
3381     const Builtin::Context &BI;
3382     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3383         : Name(N), BI(C) {}
3384 
3385     bool VisitCallExpr(const CallExpr *E) {
3386       const FunctionDecl *FD = E->getDirectCallee();
3387       if (!FD)
3388         return false;
3389       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3390       if (Attr && Name == Attr->getLabel())
3391         return true;
3392       unsigned BuiltinID = FD->getBuiltinID();
3393       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3394         return false;
3395       StringRef BuiltinName = BI.getName(BuiltinID);
3396       if (BuiltinName.startswith("__builtin_") &&
3397           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3398         return true;
3399       }
3400       return false;
3401     }
3402 
3403     bool VisitStmt(const Stmt *S) {
3404       for (const Stmt *Child : S->children())
3405         if (Child && this->Visit(Child))
3406           return true;
3407       return false;
3408     }
3409   };
3410 
3411   // Make sure we're not referencing non-imported vars or functions.
3412   struct DLLImportFunctionVisitor
3413       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3414     bool SafeToInline = true;
3415 
3416     bool shouldVisitImplicitCode() const { return true; }
3417 
3418     bool VisitVarDecl(VarDecl *VD) {
3419       if (VD->getTLSKind()) {
3420         // A thread-local variable cannot be imported.
3421         SafeToInline = false;
3422         return SafeToInline;
3423       }
3424 
3425       // A variable definition might imply a destructor call.
3426       if (VD->isThisDeclarationADefinition())
3427         SafeToInline = !HasNonDllImportDtor(VD->getType());
3428 
3429       return SafeToInline;
3430     }
3431 
3432     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3433       if (const auto *D = E->getTemporary()->getDestructor())
3434         SafeToInline = D->hasAttr<DLLImportAttr>();
3435       return SafeToInline;
3436     }
3437 
3438     bool VisitDeclRefExpr(DeclRefExpr *E) {
3439       ValueDecl *VD = E->getDecl();
3440       if (isa<FunctionDecl>(VD))
3441         SafeToInline = VD->hasAttr<DLLImportAttr>();
3442       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3443         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3444       return SafeToInline;
3445     }
3446 
3447     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3448       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3449       return SafeToInline;
3450     }
3451 
3452     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3453       CXXMethodDecl *M = E->getMethodDecl();
3454       if (!M) {
3455         // Call through a pointer to member function. This is safe to inline.
3456         SafeToInline = true;
3457       } else {
3458         SafeToInline = M->hasAttr<DLLImportAttr>();
3459       }
3460       return SafeToInline;
3461     }
3462 
3463     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3464       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3465       return SafeToInline;
3466     }
3467 
3468     bool VisitCXXNewExpr(CXXNewExpr *E) {
3469       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3470       return SafeToInline;
3471     }
3472   };
3473 }
3474 
3475 // isTriviallyRecursive - Check if this function calls another
3476 // decl that, because of the asm attribute or the other decl being a builtin,
3477 // ends up pointing to itself.
3478 bool
3479 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3480   StringRef Name;
3481   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3482     // asm labels are a special kind of mangling we have to support.
3483     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3484     if (!Attr)
3485       return false;
3486     Name = Attr->getLabel();
3487   } else {
3488     Name = FD->getName();
3489   }
3490 
3491   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3492   const Stmt *Body = FD->getBody();
3493   return Body ? Walker.Visit(Body) : false;
3494 }
3495 
3496 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3497   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3498     return true;
3499   const auto *F = cast<FunctionDecl>(GD.getDecl());
3500   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3501     return false;
3502 
3503   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3504     // Check whether it would be safe to inline this dllimport function.
3505     DLLImportFunctionVisitor Visitor;
3506     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3507     if (!Visitor.SafeToInline)
3508       return false;
3509 
3510     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3511       // Implicit destructor invocations aren't captured in the AST, so the
3512       // check above can't see them. Check for them manually here.
3513       for (const Decl *Member : Dtor->getParent()->decls())
3514         if (isa<FieldDecl>(Member))
3515           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3516             return false;
3517       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3518         if (HasNonDllImportDtor(B.getType()))
3519           return false;
3520     }
3521   }
3522 
3523   // Inline builtins declaration must be emitted. They often are fortified
3524   // functions.
3525   if (F->isInlineBuiltinDeclaration())
3526     return true;
3527 
3528   // PR9614. Avoid cases where the source code is lying to us. An available
3529   // externally function should have an equivalent function somewhere else,
3530   // but a function that calls itself through asm label/`__builtin_` trickery is
3531   // clearly not equivalent to the real implementation.
3532   // This happens in glibc's btowc and in some configure checks.
3533   return !isTriviallyRecursive(F);
3534 }
3535 
3536 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3537   return CodeGenOpts.OptimizationLevel > 0;
3538 }
3539 
3540 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3541                                                        llvm::GlobalValue *GV) {
3542   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3543 
3544   if (FD->isCPUSpecificMultiVersion()) {
3545     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3546     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3547       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3548   } else if (FD->isTargetClonesMultiVersion()) {
3549     auto *Clone = FD->getAttr<TargetClonesAttr>();
3550     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3551       if (Clone->isFirstOfVersion(I))
3552         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3553     // Ensure that the resolver function is also emitted.
3554     GetOrCreateMultiVersionResolver(GD);
3555   } else
3556     EmitGlobalFunctionDefinition(GD, GV);
3557 }
3558 
3559 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3560   const auto *D = cast<ValueDecl>(GD.getDecl());
3561 
3562   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3563                                  Context.getSourceManager(),
3564                                  "Generating code for declaration");
3565 
3566   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3567     // At -O0, don't generate IR for functions with available_externally
3568     // linkage.
3569     if (!shouldEmitFunction(GD))
3570       return;
3571 
3572     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3573       std::string Name;
3574       llvm::raw_string_ostream OS(Name);
3575       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3576                                /*Qualified=*/true);
3577       return Name;
3578     });
3579 
3580     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3581       // Make sure to emit the definition(s) before we emit the thunks.
3582       // This is necessary for the generation of certain thunks.
3583       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3584         ABI->emitCXXStructor(GD);
3585       else if (FD->isMultiVersion())
3586         EmitMultiVersionFunctionDefinition(GD, GV);
3587       else
3588         EmitGlobalFunctionDefinition(GD, GV);
3589 
3590       if (Method->isVirtual())
3591         getVTables().EmitThunks(GD);
3592 
3593       return;
3594     }
3595 
3596     if (FD->isMultiVersion())
3597       return EmitMultiVersionFunctionDefinition(GD, GV);
3598     return EmitGlobalFunctionDefinition(GD, GV);
3599   }
3600 
3601   if (const auto *VD = dyn_cast<VarDecl>(D))
3602     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3603 
3604   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3605 }
3606 
3607 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3608                                                       llvm::Function *NewFn);
3609 
3610 static unsigned
3611 TargetMVPriority(const TargetInfo &TI,
3612                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3613   unsigned Priority = 0;
3614   for (StringRef Feat : RO.Conditions.Features)
3615     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3616 
3617   if (!RO.Conditions.Architecture.empty())
3618     Priority = std::max(
3619         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3620   return Priority;
3621 }
3622 
3623 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3624 // TU can forward declare the function without causing problems.  Particularly
3625 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3626 // work with internal linkage functions, so that the same function name can be
3627 // used with internal linkage in multiple TUs.
3628 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3629                                                        GlobalDecl GD) {
3630   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3631   if (FD->getFormalLinkage() == InternalLinkage)
3632     return llvm::GlobalValue::InternalLinkage;
3633   return llvm::GlobalValue::WeakODRLinkage;
3634 }
3635 
3636 void CodeGenModule::emitMultiVersionFunctions() {
3637   std::vector<GlobalDecl> MVFuncsToEmit;
3638   MultiVersionFuncs.swap(MVFuncsToEmit);
3639   for (GlobalDecl GD : MVFuncsToEmit) {
3640     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3641     assert(FD && "Expected a FunctionDecl");
3642 
3643     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3644     if (FD->isTargetMultiVersion()) {
3645       getContext().forEachMultiversionedFunctionVersion(
3646           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3647             GlobalDecl CurGD{
3648                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3649             StringRef MangledName = getMangledName(CurGD);
3650             llvm::Constant *Func = GetGlobalValue(MangledName);
3651             if (!Func) {
3652               if (CurFD->isDefined()) {
3653                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3654                 Func = GetGlobalValue(MangledName);
3655               } else {
3656                 const CGFunctionInfo &FI =
3657                     getTypes().arrangeGlobalDeclaration(GD);
3658                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3659                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3660                                          /*DontDefer=*/false, ForDefinition);
3661               }
3662               assert(Func && "This should have just been created");
3663             }
3664 
3665             const auto *TA = CurFD->getAttr<TargetAttr>();
3666             llvm::SmallVector<StringRef, 8> Feats;
3667             TA->getAddedFeatures(Feats);
3668 
3669             Options.emplace_back(cast<llvm::Function>(Func),
3670                                  TA->getArchitecture(), Feats);
3671           });
3672     } else if (FD->isTargetClonesMultiVersion()) {
3673       const auto *TC = FD->getAttr<TargetClonesAttr>();
3674       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3675            ++VersionIndex) {
3676         if (!TC->isFirstOfVersion(VersionIndex))
3677           continue;
3678         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3679                          VersionIndex};
3680         StringRef Version = TC->getFeatureStr(VersionIndex);
3681         StringRef MangledName = getMangledName(CurGD);
3682         llvm::Constant *Func = GetGlobalValue(MangledName);
3683         if (!Func) {
3684           if (FD->isDefined()) {
3685             EmitGlobalFunctionDefinition(CurGD, nullptr);
3686             Func = GetGlobalValue(MangledName);
3687           } else {
3688             const CGFunctionInfo &FI =
3689                 getTypes().arrangeGlobalDeclaration(CurGD);
3690             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3691             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3692                                      /*DontDefer=*/false, ForDefinition);
3693           }
3694           assert(Func && "This should have just been created");
3695         }
3696 
3697         StringRef Architecture;
3698         llvm::SmallVector<StringRef, 1> Feature;
3699 
3700         if (Version.startswith("arch="))
3701           Architecture = Version.drop_front(sizeof("arch=") - 1);
3702         else if (Version != "default")
3703           Feature.push_back(Version);
3704 
3705         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3706       }
3707     } else {
3708       assert(0 && "Expected a target or target_clones multiversion function");
3709       continue;
3710     }
3711 
3712     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3713     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3714       ResolverConstant = IFunc->getResolver();
3715     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3716 
3717     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3718 
3719     if (supportsCOMDAT())
3720       ResolverFunc->setComdat(
3721           getModule().getOrInsertComdat(ResolverFunc->getName()));
3722 
3723     const TargetInfo &TI = getTarget();
3724     llvm::stable_sort(
3725         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3726                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3727           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3728         });
3729     CodeGenFunction CGF(*this);
3730     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3731   }
3732 
3733   // Ensure that any additions to the deferred decls list caused by emitting a
3734   // variant are emitted.  This can happen when the variant itself is inline and
3735   // calls a function without linkage.
3736   if (!MVFuncsToEmit.empty())
3737     EmitDeferred();
3738 
3739   // Ensure that any additions to the multiversion funcs list from either the
3740   // deferred decls or the multiversion functions themselves are emitted.
3741   if (!MultiVersionFuncs.empty())
3742     emitMultiVersionFunctions();
3743 }
3744 
3745 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3746   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3747   assert(FD && "Not a FunctionDecl?");
3748   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3749   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3750   assert(DD && "Not a cpu_dispatch Function?");
3751 
3752   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3753   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3754 
3755   StringRef ResolverName = getMangledName(GD);
3756   UpdateMultiVersionNames(GD, FD, ResolverName);
3757 
3758   llvm::Type *ResolverType;
3759   GlobalDecl ResolverGD;
3760   if (getTarget().supportsIFunc()) {
3761     ResolverType = llvm::FunctionType::get(
3762         llvm::PointerType::get(DeclTy,
3763                                Context.getTargetAddressSpace(FD->getType())),
3764         false);
3765   }
3766   else {
3767     ResolverType = DeclTy;
3768     ResolverGD = GD;
3769   }
3770 
3771   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3772       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3773   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3774   if (supportsCOMDAT())
3775     ResolverFunc->setComdat(
3776         getModule().getOrInsertComdat(ResolverFunc->getName()));
3777 
3778   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3779   const TargetInfo &Target = getTarget();
3780   unsigned Index = 0;
3781   for (const IdentifierInfo *II : DD->cpus()) {
3782     // Get the name of the target function so we can look it up/create it.
3783     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3784                               getCPUSpecificMangling(*this, II->getName());
3785 
3786     llvm::Constant *Func = GetGlobalValue(MangledName);
3787 
3788     if (!Func) {
3789       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3790       if (ExistingDecl.getDecl() &&
3791           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3792         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3793         Func = GetGlobalValue(MangledName);
3794       } else {
3795         if (!ExistingDecl.getDecl())
3796           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3797 
3798       Func = GetOrCreateLLVMFunction(
3799           MangledName, DeclTy, ExistingDecl,
3800           /*ForVTable=*/false, /*DontDefer=*/true,
3801           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3802       }
3803     }
3804 
3805     llvm::SmallVector<StringRef, 32> Features;
3806     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3807     llvm::transform(Features, Features.begin(),
3808                     [](StringRef Str) { return Str.substr(1); });
3809     llvm::erase_if(Features, [&Target](StringRef Feat) {
3810       return !Target.validateCpuSupports(Feat);
3811     });
3812     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3813     ++Index;
3814   }
3815 
3816   llvm::stable_sort(
3817       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3818                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3819         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3820                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3821       });
3822 
3823   // If the list contains multiple 'default' versions, such as when it contains
3824   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3825   // always run on at least a 'pentium'). We do this by deleting the 'least
3826   // advanced' (read, lowest mangling letter).
3827   while (Options.size() > 1 &&
3828          llvm::X86::getCpuSupportsMask(
3829              (Options.end() - 2)->Conditions.Features) == 0) {
3830     StringRef LHSName = (Options.end() - 2)->Function->getName();
3831     StringRef RHSName = (Options.end() - 1)->Function->getName();
3832     if (LHSName.compare(RHSName) < 0)
3833       Options.erase(Options.end() - 2);
3834     else
3835       Options.erase(Options.end() - 1);
3836   }
3837 
3838   CodeGenFunction CGF(*this);
3839   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3840 
3841   if (getTarget().supportsIFunc()) {
3842     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3843     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3844 
3845     // Fix up function declarations that were created for cpu_specific before
3846     // cpu_dispatch was known
3847     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3848       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3849       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3850                                            &getModule());
3851       GI->takeName(IFunc);
3852       IFunc->replaceAllUsesWith(GI);
3853       IFunc->eraseFromParent();
3854       IFunc = GI;
3855     }
3856 
3857     std::string AliasName = getMangledNameImpl(
3858         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3859     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3860     if (!AliasFunc) {
3861       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3862                                            &getModule());
3863       SetCommonAttributes(GD, GA);
3864     }
3865   }
3866 }
3867 
3868 /// If a dispatcher for the specified mangled name is not in the module, create
3869 /// and return an llvm Function with the specified type.
3870 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3871   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3872   assert(FD && "Not a FunctionDecl?");
3873 
3874   std::string MangledName =
3875       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3876 
3877   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3878   // a separate resolver).
3879   std::string ResolverName = MangledName;
3880   if (getTarget().supportsIFunc())
3881     ResolverName += ".ifunc";
3882   else if (FD->isTargetMultiVersion())
3883     ResolverName += ".resolver";
3884 
3885   // If the resolver has already been created, just return it.
3886   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3887     return ResolverGV;
3888 
3889   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3890   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3891 
3892   // The resolver needs to be created. For target and target_clones, defer
3893   // creation until the end of the TU.
3894   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3895     MultiVersionFuncs.push_back(GD);
3896 
3897   // For cpu_specific, don't create an ifunc yet because we don't know if the
3898   // cpu_dispatch will be emitted in this translation unit.
3899   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3900     llvm::Type *ResolverType = llvm::FunctionType::get(
3901         llvm::PointerType::get(
3902             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3903         false);
3904     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3905         MangledName + ".resolver", ResolverType, GlobalDecl{},
3906         /*ForVTable=*/false);
3907     llvm::GlobalIFunc *GIF =
3908         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3909                                   "", Resolver, &getModule());
3910     GIF->setName(ResolverName);
3911     SetCommonAttributes(FD, GIF);
3912 
3913     return GIF;
3914   }
3915 
3916   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3917       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3918   assert(isa<llvm::GlobalValue>(Resolver) &&
3919          "Resolver should be created for the first time");
3920   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3921   return Resolver;
3922 }
3923 
3924 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3925 /// module, create and return an llvm Function with the specified type. If there
3926 /// is something in the module with the specified name, return it potentially
3927 /// bitcasted to the right type.
3928 ///
3929 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3930 /// to set the attributes on the function when it is first created.
3931 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3932     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3933     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3934     ForDefinition_t IsForDefinition) {
3935   const Decl *D = GD.getDecl();
3936 
3937   // Any attempts to use a MultiVersion function should result in retrieving
3938   // the iFunc instead. Name Mangling will handle the rest of the changes.
3939   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3940     // For the device mark the function as one that should be emitted.
3941     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3942         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3943         !DontDefer && !IsForDefinition) {
3944       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3945         GlobalDecl GDDef;
3946         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3947           GDDef = GlobalDecl(CD, GD.getCtorType());
3948         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3949           GDDef = GlobalDecl(DD, GD.getDtorType());
3950         else
3951           GDDef = GlobalDecl(FDDef);
3952         EmitGlobal(GDDef);
3953       }
3954     }
3955 
3956     if (FD->isMultiVersion()) {
3957       UpdateMultiVersionNames(GD, FD, MangledName);
3958       if (!IsForDefinition)
3959         return GetOrCreateMultiVersionResolver(GD);
3960     }
3961   }
3962 
3963   // Lookup the entry, lazily creating it if necessary.
3964   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3965   if (Entry) {
3966     if (WeakRefReferences.erase(Entry)) {
3967       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3968       if (FD && !FD->hasAttr<WeakAttr>())
3969         Entry->setLinkage(llvm::Function::ExternalLinkage);
3970     }
3971 
3972     // Handle dropped DLL attributes.
3973     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3974         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3975       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3976       setDSOLocal(Entry);
3977     }
3978 
3979     // If there are two attempts to define the same mangled name, issue an
3980     // error.
3981     if (IsForDefinition && !Entry->isDeclaration()) {
3982       GlobalDecl OtherGD;
3983       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3984       // to make sure that we issue an error only once.
3985       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3986           (GD.getCanonicalDecl().getDecl() !=
3987            OtherGD.getCanonicalDecl().getDecl()) &&
3988           DiagnosedConflictingDefinitions.insert(GD).second) {
3989         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3990             << MangledName;
3991         getDiags().Report(OtherGD.getDecl()->getLocation(),
3992                           diag::note_previous_definition);
3993       }
3994     }
3995 
3996     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3997         (Entry->getValueType() == Ty)) {
3998       return Entry;
3999     }
4000 
4001     // Make sure the result is of the correct type.
4002     // (If function is requested for a definition, we always need to create a new
4003     // function, not just return a bitcast.)
4004     if (!IsForDefinition)
4005       return llvm::ConstantExpr::getBitCast(
4006           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4007   }
4008 
4009   // This function doesn't have a complete type (for example, the return
4010   // type is an incomplete struct). Use a fake type instead, and make
4011   // sure not to try to set attributes.
4012   bool IsIncompleteFunction = false;
4013 
4014   llvm::FunctionType *FTy;
4015   if (isa<llvm::FunctionType>(Ty)) {
4016     FTy = cast<llvm::FunctionType>(Ty);
4017   } else {
4018     FTy = llvm::FunctionType::get(VoidTy, false);
4019     IsIncompleteFunction = true;
4020   }
4021 
4022   llvm::Function *F =
4023       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4024                              Entry ? StringRef() : MangledName, &getModule());
4025 
4026   // If we already created a function with the same mangled name (but different
4027   // type) before, take its name and add it to the list of functions to be
4028   // replaced with F at the end of CodeGen.
4029   //
4030   // This happens if there is a prototype for a function (e.g. "int f()") and
4031   // then a definition of a different type (e.g. "int f(int x)").
4032   if (Entry) {
4033     F->takeName(Entry);
4034 
4035     // This might be an implementation of a function without a prototype, in
4036     // which case, try to do special replacement of calls which match the new
4037     // prototype.  The really key thing here is that we also potentially drop
4038     // arguments from the call site so as to make a direct call, which makes the
4039     // inliner happier and suppresses a number of optimizer warnings (!) about
4040     // dropping arguments.
4041     if (!Entry->use_empty()) {
4042       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4043       Entry->removeDeadConstantUsers();
4044     }
4045 
4046     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4047         F, Entry->getValueType()->getPointerTo());
4048     addGlobalValReplacement(Entry, BC);
4049   }
4050 
4051   assert(F->getName() == MangledName && "name was uniqued!");
4052   if (D)
4053     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4054   if (ExtraAttrs.hasFnAttrs()) {
4055     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4056     F->addFnAttrs(B);
4057   }
4058 
4059   if (!DontDefer) {
4060     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4061     // each other bottoming out with the base dtor.  Therefore we emit non-base
4062     // dtors on usage, even if there is no dtor definition in the TU.
4063     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4064         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4065                                            GD.getDtorType()))
4066       addDeferredDeclToEmit(GD);
4067 
4068     // This is the first use or definition of a mangled name.  If there is a
4069     // deferred decl with this name, remember that we need to emit it at the end
4070     // of the file.
4071     auto DDI = DeferredDecls.find(MangledName);
4072     if (DDI != DeferredDecls.end()) {
4073       // Move the potentially referenced deferred decl to the
4074       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4075       // don't need it anymore).
4076       addDeferredDeclToEmit(DDI->second);
4077       EmittedDeferredDecls[DDI->first] = DDI->second;
4078       DeferredDecls.erase(DDI);
4079 
4080       // Otherwise, there are cases we have to worry about where we're
4081       // using a declaration for which we must emit a definition but where
4082       // we might not find a top-level definition:
4083       //   - member functions defined inline in their classes
4084       //   - friend functions defined inline in some class
4085       //   - special member functions with implicit definitions
4086       // If we ever change our AST traversal to walk into class methods,
4087       // this will be unnecessary.
4088       //
4089       // We also don't emit a definition for a function if it's going to be an
4090       // entry in a vtable, unless it's already marked as used.
4091     } else if (getLangOpts().CPlusPlus && D) {
4092       // Look for a declaration that's lexically in a record.
4093       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4094            FD = FD->getPreviousDecl()) {
4095         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4096           if (FD->doesThisDeclarationHaveABody()) {
4097             addDeferredDeclToEmit(GD.getWithDecl(FD));
4098             break;
4099           }
4100         }
4101       }
4102     }
4103   }
4104 
4105   // Make sure the result is of the requested type.
4106   if (!IsIncompleteFunction) {
4107     assert(F->getFunctionType() == Ty);
4108     return F;
4109   }
4110 
4111   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4112   return llvm::ConstantExpr::getBitCast(F, PTy);
4113 }
4114 
4115 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4116 /// non-null, then this function will use the specified type if it has to
4117 /// create it (this occurs when we see a definition of the function).
4118 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4119                                                  llvm::Type *Ty,
4120                                                  bool ForVTable,
4121                                                  bool DontDefer,
4122                                               ForDefinition_t IsForDefinition) {
4123   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4124          "consteval function should never be emitted");
4125   // If there was no specific requested type, just convert it now.
4126   if (!Ty) {
4127     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4128     Ty = getTypes().ConvertType(FD->getType());
4129   }
4130 
4131   // Devirtualized destructor calls may come through here instead of via
4132   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4133   // of the complete destructor when necessary.
4134   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4135     if (getTarget().getCXXABI().isMicrosoft() &&
4136         GD.getDtorType() == Dtor_Complete &&
4137         DD->getParent()->getNumVBases() == 0)
4138       GD = GlobalDecl(DD, Dtor_Base);
4139   }
4140 
4141   StringRef MangledName = getMangledName(GD);
4142   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4143                                     /*IsThunk=*/false, llvm::AttributeList(),
4144                                     IsForDefinition);
4145   // Returns kernel handle for HIP kernel stub function.
4146   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4147       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4148     auto *Handle = getCUDARuntime().getKernelHandle(
4149         cast<llvm::Function>(F->stripPointerCasts()), GD);
4150     if (IsForDefinition)
4151       return F;
4152     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4153   }
4154   return F;
4155 }
4156 
4157 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4158   llvm::GlobalValue *F =
4159       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4160 
4161   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4162                                         llvm::Type::getInt8PtrTy(VMContext));
4163 }
4164 
4165 static const FunctionDecl *
4166 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4167   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4168   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4169 
4170   IdentifierInfo &CII = C.Idents.get(Name);
4171   for (const auto *Result : DC->lookup(&CII))
4172     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4173       return FD;
4174 
4175   if (!C.getLangOpts().CPlusPlus)
4176     return nullptr;
4177 
4178   // Demangle the premangled name from getTerminateFn()
4179   IdentifierInfo &CXXII =
4180       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4181           ? C.Idents.get("terminate")
4182           : C.Idents.get(Name);
4183 
4184   for (const auto &N : {"__cxxabiv1", "std"}) {
4185     IdentifierInfo &NS = C.Idents.get(N);
4186     for (const auto *Result : DC->lookup(&NS)) {
4187       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4188       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4189         for (const auto *Result : LSD->lookup(&NS))
4190           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4191             break;
4192 
4193       if (ND)
4194         for (const auto *Result : ND->lookup(&CXXII))
4195           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4196             return FD;
4197     }
4198   }
4199 
4200   return nullptr;
4201 }
4202 
4203 /// CreateRuntimeFunction - Create a new runtime function with the specified
4204 /// type and name.
4205 llvm::FunctionCallee
4206 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4207                                      llvm::AttributeList ExtraAttrs, bool Local,
4208                                      bool AssumeConvergent) {
4209   if (AssumeConvergent) {
4210     ExtraAttrs =
4211         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4212   }
4213 
4214   llvm::Constant *C =
4215       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4216                               /*DontDefer=*/false, /*IsThunk=*/false,
4217                               ExtraAttrs);
4218 
4219   if (auto *F = dyn_cast<llvm::Function>(C)) {
4220     if (F->empty()) {
4221       F->setCallingConv(getRuntimeCC());
4222 
4223       // In Windows Itanium environments, try to mark runtime functions
4224       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4225       // will link their standard library statically or dynamically. Marking
4226       // functions imported when they are not imported can cause linker errors
4227       // and warnings.
4228       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4229           !getCodeGenOpts().LTOVisibilityPublicStd) {
4230         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4231         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4232           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4233           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4234         }
4235       }
4236       setDSOLocal(F);
4237     }
4238   }
4239 
4240   return {FTy, C};
4241 }
4242 
4243 /// isTypeConstant - Determine whether an object of this type can be emitted
4244 /// as a constant.
4245 ///
4246 /// If ExcludeCtor is true, the duration when the object's constructor runs
4247 /// will not be considered. The caller will need to verify that the object is
4248 /// not written to during its construction.
4249 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4250   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4251     return false;
4252 
4253   if (Context.getLangOpts().CPlusPlus) {
4254     if (const CXXRecordDecl *Record
4255           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4256       return ExcludeCtor && !Record->hasMutableFields() &&
4257              Record->hasTrivialDestructor();
4258   }
4259 
4260   return true;
4261 }
4262 
4263 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4264 /// create and return an llvm GlobalVariable with the specified type and address
4265 /// space. If there is something in the module with the specified name, return
4266 /// it potentially bitcasted to the right type.
4267 ///
4268 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4269 /// to set the attributes on the global when it is first created.
4270 ///
4271 /// If IsForDefinition is true, it is guaranteed that an actual global with
4272 /// type Ty will be returned, not conversion of a variable with the same
4273 /// mangled name but some other type.
4274 llvm::Constant *
4275 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4276                                      LangAS AddrSpace, const VarDecl *D,
4277                                      ForDefinition_t IsForDefinition) {
4278   // Lookup the entry, lazily creating it if necessary.
4279   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4280   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4281   if (Entry) {
4282     if (WeakRefReferences.erase(Entry)) {
4283       if (D && !D->hasAttr<WeakAttr>())
4284         Entry->setLinkage(llvm::Function::ExternalLinkage);
4285     }
4286 
4287     // Handle dropped DLL attributes.
4288     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4289         !shouldMapVisibilityToDLLExport(D))
4290       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4291 
4292     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4293       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4294 
4295     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4296       return Entry;
4297 
4298     // If there are two attempts to define the same mangled name, issue an
4299     // error.
4300     if (IsForDefinition && !Entry->isDeclaration()) {
4301       GlobalDecl OtherGD;
4302       const VarDecl *OtherD;
4303 
4304       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4305       // to make sure that we issue an error only once.
4306       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4307           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4308           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4309           OtherD->hasInit() &&
4310           DiagnosedConflictingDefinitions.insert(D).second) {
4311         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4312             << MangledName;
4313         getDiags().Report(OtherGD.getDecl()->getLocation(),
4314                           diag::note_previous_definition);
4315       }
4316     }
4317 
4318     // Make sure the result is of the correct type.
4319     if (Entry->getType()->getAddressSpace() != TargetAS) {
4320       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4321                                                   Ty->getPointerTo(TargetAS));
4322     }
4323 
4324     // (If global is requested for a definition, we always need to create a new
4325     // global, not just return a bitcast.)
4326     if (!IsForDefinition)
4327       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4328   }
4329 
4330   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4331 
4332   auto *GV = new llvm::GlobalVariable(
4333       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4334       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4335       getContext().getTargetAddressSpace(DAddrSpace));
4336 
4337   // If we already created a global with the same mangled name (but different
4338   // type) before, take its name and remove it from its parent.
4339   if (Entry) {
4340     GV->takeName(Entry);
4341 
4342     if (!Entry->use_empty()) {
4343       llvm::Constant *NewPtrForOldDecl =
4344           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4345       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4346     }
4347 
4348     Entry->eraseFromParent();
4349   }
4350 
4351   // This is the first use or definition of a mangled name.  If there is a
4352   // deferred decl with this name, remember that we need to emit it at the end
4353   // of the file.
4354   auto DDI = DeferredDecls.find(MangledName);
4355   if (DDI != DeferredDecls.end()) {
4356     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4357     // list, and remove it from DeferredDecls (since we don't need it anymore).
4358     addDeferredDeclToEmit(DDI->second);
4359     EmittedDeferredDecls[DDI->first] = DDI->second;
4360     DeferredDecls.erase(DDI);
4361   }
4362 
4363   // Handle things which are present even on external declarations.
4364   if (D) {
4365     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4366       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4367 
4368     // FIXME: This code is overly simple and should be merged with other global
4369     // handling.
4370     GV->setConstant(isTypeConstant(D->getType(), false));
4371 
4372     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4373 
4374     setLinkageForGV(GV, D);
4375 
4376     if (D->getTLSKind()) {
4377       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4378         CXXThreadLocals.push_back(D);
4379       setTLSMode(GV, *D);
4380     }
4381 
4382     setGVProperties(GV, D);
4383 
4384     // If required by the ABI, treat declarations of static data members with
4385     // inline initializers as definitions.
4386     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4387       EmitGlobalVarDefinition(D);
4388     }
4389 
4390     // Emit section information for extern variables.
4391     if (D->hasExternalStorage()) {
4392       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4393         GV->setSection(SA->getName());
4394     }
4395 
4396     // Handle XCore specific ABI requirements.
4397     if (getTriple().getArch() == llvm::Triple::xcore &&
4398         D->getLanguageLinkage() == CLanguageLinkage &&
4399         D->getType().isConstant(Context) &&
4400         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4401       GV->setSection(".cp.rodata");
4402 
4403     // Check if we a have a const declaration with an initializer, we may be
4404     // able to emit it as available_externally to expose it's value to the
4405     // optimizer.
4406     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4407         D->getType().isConstQualified() && !GV->hasInitializer() &&
4408         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4409       const auto *Record =
4410           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4411       bool HasMutableFields = Record && Record->hasMutableFields();
4412       if (!HasMutableFields) {
4413         const VarDecl *InitDecl;
4414         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4415         if (InitExpr) {
4416           ConstantEmitter emitter(*this);
4417           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4418           if (Init) {
4419             auto *InitType = Init->getType();
4420             if (GV->getValueType() != InitType) {
4421               // The type of the initializer does not match the definition.
4422               // This happens when an initializer has a different type from
4423               // the type of the global (because of padding at the end of a
4424               // structure for instance).
4425               GV->setName(StringRef());
4426               // Make a new global with the correct type, this is now guaranteed
4427               // to work.
4428               auto *NewGV = cast<llvm::GlobalVariable>(
4429                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4430                       ->stripPointerCasts());
4431 
4432               // Erase the old global, since it is no longer used.
4433               GV->eraseFromParent();
4434               GV = NewGV;
4435             } else {
4436               GV->setInitializer(Init);
4437               GV->setConstant(true);
4438               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4439             }
4440             emitter.finalize(GV);
4441           }
4442         }
4443       }
4444     }
4445   }
4446 
4447   if (GV->isDeclaration()) {
4448     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4449     // External HIP managed variables needed to be recorded for transformation
4450     // in both device and host compilations.
4451     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4452         D->hasExternalStorage())
4453       getCUDARuntime().handleVarRegistration(D, *GV);
4454   }
4455 
4456   if (D)
4457     SanitizerMD->reportGlobal(GV, *D);
4458 
4459   LangAS ExpectedAS =
4460       D ? D->getType().getAddressSpace()
4461         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4462   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4463   if (DAddrSpace != ExpectedAS) {
4464     return getTargetCodeGenInfo().performAddrSpaceCast(
4465         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4466   }
4467 
4468   return GV;
4469 }
4470 
4471 llvm::Constant *
4472 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4473   const Decl *D = GD.getDecl();
4474 
4475   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4476     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4477                                 /*DontDefer=*/false, IsForDefinition);
4478 
4479   if (isa<CXXMethodDecl>(D)) {
4480     auto FInfo =
4481         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4482     auto Ty = getTypes().GetFunctionType(*FInfo);
4483     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4484                              IsForDefinition);
4485   }
4486 
4487   if (isa<FunctionDecl>(D)) {
4488     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4489     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4490     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4491                              IsForDefinition);
4492   }
4493 
4494   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4495 }
4496 
4497 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4498     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4499     unsigned Alignment) {
4500   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4501   llvm::GlobalVariable *OldGV = nullptr;
4502 
4503   if (GV) {
4504     // Check if the variable has the right type.
4505     if (GV->getValueType() == Ty)
4506       return GV;
4507 
4508     // Because C++ name mangling, the only way we can end up with an already
4509     // existing global with the same name is if it has been declared extern "C".
4510     assert(GV->isDeclaration() && "Declaration has wrong type!");
4511     OldGV = GV;
4512   }
4513 
4514   // Create a new variable.
4515   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4516                                 Linkage, nullptr, Name);
4517 
4518   if (OldGV) {
4519     // Replace occurrences of the old variable if needed.
4520     GV->takeName(OldGV);
4521 
4522     if (!OldGV->use_empty()) {
4523       llvm::Constant *NewPtrForOldDecl =
4524       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4525       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4526     }
4527 
4528     OldGV->eraseFromParent();
4529   }
4530 
4531   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4532       !GV->hasAvailableExternallyLinkage())
4533     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4534 
4535   GV->setAlignment(llvm::MaybeAlign(Alignment));
4536 
4537   return GV;
4538 }
4539 
4540 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4541 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4542 /// then it will be created with the specified type instead of whatever the
4543 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4544 /// that an actual global with type Ty will be returned, not conversion of a
4545 /// variable with the same mangled name but some other type.
4546 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4547                                                   llvm::Type *Ty,
4548                                            ForDefinition_t IsForDefinition) {
4549   assert(D->hasGlobalStorage() && "Not a global variable");
4550   QualType ASTTy = D->getType();
4551   if (!Ty)
4552     Ty = getTypes().ConvertTypeForMem(ASTTy);
4553 
4554   StringRef MangledName = getMangledName(D);
4555   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4556                                IsForDefinition);
4557 }
4558 
4559 /// CreateRuntimeVariable - Create a new runtime global variable with the
4560 /// specified type and name.
4561 llvm::Constant *
4562 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4563                                      StringRef Name) {
4564   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4565                                                        : LangAS::Default;
4566   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4567   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4568   return Ret;
4569 }
4570 
4571 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4572   assert(!D->getInit() && "Cannot emit definite definitions here!");
4573 
4574   StringRef MangledName = getMangledName(D);
4575   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4576 
4577   // We already have a definition, not declaration, with the same mangled name.
4578   // Emitting of declaration is not required (and actually overwrites emitted
4579   // definition).
4580   if (GV && !GV->isDeclaration())
4581     return;
4582 
4583   // If we have not seen a reference to this variable yet, place it into the
4584   // deferred declarations table to be emitted if needed later.
4585   if (!MustBeEmitted(D) && !GV) {
4586       DeferredDecls[MangledName] = D;
4587       return;
4588   }
4589 
4590   // The tentative definition is the only definition.
4591   EmitGlobalVarDefinition(D);
4592 }
4593 
4594 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4595   EmitExternalVarDeclaration(D);
4596 }
4597 
4598 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4599   return Context.toCharUnitsFromBits(
4600       getDataLayout().getTypeStoreSizeInBits(Ty));
4601 }
4602 
4603 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4604   if (LangOpts.OpenCL) {
4605     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4606     assert(AS == LangAS::opencl_global ||
4607            AS == LangAS::opencl_global_device ||
4608            AS == LangAS::opencl_global_host ||
4609            AS == LangAS::opencl_constant ||
4610            AS == LangAS::opencl_local ||
4611            AS >= LangAS::FirstTargetAddressSpace);
4612     return AS;
4613   }
4614 
4615   if (LangOpts.SYCLIsDevice &&
4616       (!D || D->getType().getAddressSpace() == LangAS::Default))
4617     return LangAS::sycl_global;
4618 
4619   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4620     if (D && D->hasAttr<CUDAConstantAttr>())
4621       return LangAS::cuda_constant;
4622     else if (D && D->hasAttr<CUDASharedAttr>())
4623       return LangAS::cuda_shared;
4624     else if (D && D->hasAttr<CUDADeviceAttr>())
4625       return LangAS::cuda_device;
4626     else if (D && D->getType().isConstQualified())
4627       return LangAS::cuda_constant;
4628     else
4629       return LangAS::cuda_device;
4630   }
4631 
4632   if (LangOpts.OpenMP) {
4633     LangAS AS;
4634     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4635       return AS;
4636   }
4637   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4638 }
4639 
4640 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4641   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4642   if (LangOpts.OpenCL)
4643     return LangAS::opencl_constant;
4644   if (LangOpts.SYCLIsDevice)
4645     return LangAS::sycl_global;
4646   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4647     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4648     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4649     // with OpVariable instructions with Generic storage class which is not
4650     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4651     // UniformConstant storage class is not viable as pointers to it may not be
4652     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4653     return LangAS::cuda_device;
4654   if (auto AS = getTarget().getConstantAddressSpace())
4655     return *AS;
4656   return LangAS::Default;
4657 }
4658 
4659 // In address space agnostic languages, string literals are in default address
4660 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4661 // emitted in constant address space in LLVM IR. To be consistent with other
4662 // parts of AST, string literal global variables in constant address space
4663 // need to be casted to default address space before being put into address
4664 // map and referenced by other part of CodeGen.
4665 // In OpenCL, string literals are in constant address space in AST, therefore
4666 // they should not be casted to default address space.
4667 static llvm::Constant *
4668 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4669                                        llvm::GlobalVariable *GV) {
4670   llvm::Constant *Cast = GV;
4671   if (!CGM.getLangOpts().OpenCL) {
4672     auto AS = CGM.GetGlobalConstantAddressSpace();
4673     if (AS != LangAS::Default)
4674       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4675           CGM, GV, AS, LangAS::Default,
4676           GV->getValueType()->getPointerTo(
4677               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4678   }
4679   return Cast;
4680 }
4681 
4682 template<typename SomeDecl>
4683 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4684                                                llvm::GlobalValue *GV) {
4685   if (!getLangOpts().CPlusPlus)
4686     return;
4687 
4688   // Must have 'used' attribute, or else inline assembly can't rely on
4689   // the name existing.
4690   if (!D->template hasAttr<UsedAttr>())
4691     return;
4692 
4693   // Must have internal linkage and an ordinary name.
4694   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4695     return;
4696 
4697   // Must be in an extern "C" context. Entities declared directly within
4698   // a record are not extern "C" even if the record is in such a context.
4699   const SomeDecl *First = D->getFirstDecl();
4700   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4701     return;
4702 
4703   // OK, this is an internal linkage entity inside an extern "C" linkage
4704   // specification. Make a note of that so we can give it the "expected"
4705   // mangled name if nothing else is using that name.
4706   std::pair<StaticExternCMap::iterator, bool> R =
4707       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4708 
4709   // If we have multiple internal linkage entities with the same name
4710   // in extern "C" regions, none of them gets that name.
4711   if (!R.second)
4712     R.first->second = nullptr;
4713 }
4714 
4715 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4716   if (!CGM.supportsCOMDAT())
4717     return false;
4718 
4719   if (D.hasAttr<SelectAnyAttr>())
4720     return true;
4721 
4722   GVALinkage Linkage;
4723   if (auto *VD = dyn_cast<VarDecl>(&D))
4724     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4725   else
4726     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4727 
4728   switch (Linkage) {
4729   case GVA_Internal:
4730   case GVA_AvailableExternally:
4731   case GVA_StrongExternal:
4732     return false;
4733   case GVA_DiscardableODR:
4734   case GVA_StrongODR:
4735     return true;
4736   }
4737   llvm_unreachable("No such linkage");
4738 }
4739 
4740 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4741                                           llvm::GlobalObject &GO) {
4742   if (!shouldBeInCOMDAT(*this, D))
4743     return;
4744   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4745 }
4746 
4747 /// Pass IsTentative as true if you want to create a tentative definition.
4748 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4749                                             bool IsTentative) {
4750   // OpenCL global variables of sampler type are translated to function calls,
4751   // therefore no need to be translated.
4752   QualType ASTTy = D->getType();
4753   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4754     return;
4755 
4756   // If this is OpenMP device, check if it is legal to emit this global
4757   // normally.
4758   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4759       OpenMPRuntime->emitTargetGlobalVariable(D))
4760     return;
4761 
4762   llvm::TrackingVH<llvm::Constant> Init;
4763   bool NeedsGlobalCtor = false;
4764   bool NeedsGlobalDtor =
4765       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4766 
4767   const VarDecl *InitDecl;
4768   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4769 
4770   Optional<ConstantEmitter> emitter;
4771 
4772   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4773   // as part of their declaration."  Sema has already checked for
4774   // error cases, so we just need to set Init to UndefValue.
4775   bool IsCUDASharedVar =
4776       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4777   // Shadows of initialized device-side global variables are also left
4778   // undefined.
4779   // Managed Variables should be initialized on both host side and device side.
4780   bool IsCUDAShadowVar =
4781       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4782       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4783        D->hasAttr<CUDASharedAttr>());
4784   bool IsCUDADeviceShadowVar =
4785       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4786       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4787        D->getType()->isCUDADeviceBuiltinTextureType());
4788   if (getLangOpts().CUDA &&
4789       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4790     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4791   else if (D->hasAttr<LoaderUninitializedAttr>())
4792     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4793   else if (!InitExpr) {
4794     // This is a tentative definition; tentative definitions are
4795     // implicitly initialized with { 0 }.
4796     //
4797     // Note that tentative definitions are only emitted at the end of
4798     // a translation unit, so they should never have incomplete
4799     // type. In addition, EmitTentativeDefinition makes sure that we
4800     // never attempt to emit a tentative definition if a real one
4801     // exists. A use may still exists, however, so we still may need
4802     // to do a RAUW.
4803     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4804     Init = EmitNullConstant(D->getType());
4805   } else {
4806     initializedGlobalDecl = GlobalDecl(D);
4807     emitter.emplace(*this);
4808     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4809     if (!Initializer) {
4810       QualType T = InitExpr->getType();
4811       if (D->getType()->isReferenceType())
4812         T = D->getType();
4813 
4814       if (getLangOpts().CPlusPlus) {
4815         if (InitDecl->hasFlexibleArrayInit(getContext()))
4816           ErrorUnsupported(D, "flexible array initializer");
4817         Init = EmitNullConstant(T);
4818         NeedsGlobalCtor = true;
4819       } else {
4820         ErrorUnsupported(D, "static initializer");
4821         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4822       }
4823     } else {
4824       Init = Initializer;
4825       // We don't need an initializer, so remove the entry for the delayed
4826       // initializer position (just in case this entry was delayed) if we
4827       // also don't need to register a destructor.
4828       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4829         DelayedCXXInitPosition.erase(D);
4830 
4831 #ifndef NDEBUG
4832       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4833                           InitDecl->getFlexibleArrayInitChars(getContext());
4834       CharUnits CstSize = CharUnits::fromQuantity(
4835           getDataLayout().getTypeAllocSize(Init->getType()));
4836       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4837 #endif
4838     }
4839   }
4840 
4841   llvm::Type* InitType = Init->getType();
4842   llvm::Constant *Entry =
4843       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4844 
4845   // Strip off pointer casts if we got them.
4846   Entry = Entry->stripPointerCasts();
4847 
4848   // Entry is now either a Function or GlobalVariable.
4849   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4850 
4851   // We have a definition after a declaration with the wrong type.
4852   // We must make a new GlobalVariable* and update everything that used OldGV
4853   // (a declaration or tentative definition) with the new GlobalVariable*
4854   // (which will be a definition).
4855   //
4856   // This happens if there is a prototype for a global (e.g.
4857   // "extern int x[];") and then a definition of a different type (e.g.
4858   // "int x[10];"). This also happens when an initializer has a different type
4859   // from the type of the global (this happens with unions).
4860   if (!GV || GV->getValueType() != InitType ||
4861       GV->getType()->getAddressSpace() !=
4862           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4863 
4864     // Move the old entry aside so that we'll create a new one.
4865     Entry->setName(StringRef());
4866 
4867     // Make a new global with the correct type, this is now guaranteed to work.
4868     GV = cast<llvm::GlobalVariable>(
4869         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4870             ->stripPointerCasts());
4871 
4872     // Replace all uses of the old global with the new global
4873     llvm::Constant *NewPtrForOldDecl =
4874         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4875                                                              Entry->getType());
4876     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4877 
4878     // Erase the old global, since it is no longer used.
4879     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4880   }
4881 
4882   MaybeHandleStaticInExternC(D, GV);
4883 
4884   if (D->hasAttr<AnnotateAttr>())
4885     AddGlobalAnnotations(D, GV);
4886 
4887   // Set the llvm linkage type as appropriate.
4888   llvm::GlobalValue::LinkageTypes Linkage =
4889       getLLVMLinkageVarDefinition(D, GV->isConstant());
4890 
4891   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4892   // the device. [...]"
4893   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4894   // __device__, declares a variable that: [...]
4895   // Is accessible from all the threads within the grid and from the host
4896   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4897   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4898   if (GV && LangOpts.CUDA) {
4899     if (LangOpts.CUDAIsDevice) {
4900       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4901           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4902            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4903            D->getType()->isCUDADeviceBuiltinTextureType()))
4904         GV->setExternallyInitialized(true);
4905     } else {
4906       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4907     }
4908     getCUDARuntime().handleVarRegistration(D, *GV);
4909   }
4910 
4911   GV->setInitializer(Init);
4912   if (emitter)
4913     emitter->finalize(GV);
4914 
4915   // If it is safe to mark the global 'constant', do so now.
4916   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4917                   isTypeConstant(D->getType(), true));
4918 
4919   // If it is in a read-only section, mark it 'constant'.
4920   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4921     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4922     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4923       GV->setConstant(true);
4924   }
4925 
4926   CharUnits AlignVal = getContext().getDeclAlign(D);
4927   // Check for alignment specifed in an 'omp allocate' directive.
4928   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4929           getOMPAllocateAlignment(D))
4930     AlignVal = *AlignValFromAllocate;
4931   GV->setAlignment(AlignVal.getAsAlign());
4932 
4933   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4934   // function is only defined alongside the variable, not also alongside
4935   // callers. Normally, all accesses to a thread_local go through the
4936   // thread-wrapper in order to ensure initialization has occurred, underlying
4937   // variable will never be used other than the thread-wrapper, so it can be
4938   // converted to internal linkage.
4939   //
4940   // However, if the variable has the 'constinit' attribute, it _can_ be
4941   // referenced directly, without calling the thread-wrapper, so the linkage
4942   // must not be changed.
4943   //
4944   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4945   // weak or linkonce, the de-duplication semantics are important to preserve,
4946   // so we don't change the linkage.
4947   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4948       Linkage == llvm::GlobalValue::ExternalLinkage &&
4949       Context.getTargetInfo().getTriple().isOSDarwin() &&
4950       !D->hasAttr<ConstInitAttr>())
4951     Linkage = llvm::GlobalValue::InternalLinkage;
4952 
4953   GV->setLinkage(Linkage);
4954   if (D->hasAttr<DLLImportAttr>())
4955     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4956   else if (D->hasAttr<DLLExportAttr>())
4957     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4958   else
4959     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4960 
4961   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4962     // common vars aren't constant even if declared const.
4963     GV->setConstant(false);
4964     // Tentative definition of global variables may be initialized with
4965     // non-zero null pointers. In this case they should have weak linkage
4966     // since common linkage must have zero initializer and must not have
4967     // explicit section therefore cannot have non-zero initial value.
4968     if (!GV->getInitializer()->isNullValue())
4969       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4970   }
4971 
4972   setNonAliasAttributes(D, GV);
4973 
4974   if (D->getTLSKind() && !GV->isThreadLocal()) {
4975     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4976       CXXThreadLocals.push_back(D);
4977     setTLSMode(GV, *D);
4978   }
4979 
4980   maybeSetTrivialComdat(*D, *GV);
4981 
4982   // Emit the initializer function if necessary.
4983   if (NeedsGlobalCtor || NeedsGlobalDtor)
4984     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4985 
4986   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4987 
4988   // Emit global variable debug information.
4989   if (CGDebugInfo *DI = getModuleDebugInfo())
4990     if (getCodeGenOpts().hasReducedDebugInfo())
4991       DI->EmitGlobalVariable(GV, D);
4992 }
4993 
4994 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4995   if (CGDebugInfo *DI = getModuleDebugInfo())
4996     if (getCodeGenOpts().hasReducedDebugInfo()) {
4997       QualType ASTTy = D->getType();
4998       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4999       llvm::Constant *GV =
5000           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5001       DI->EmitExternalVariable(
5002           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5003     }
5004 }
5005 
5006 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5007                                       CodeGenModule &CGM, const VarDecl *D,
5008                                       bool NoCommon) {
5009   // Don't give variables common linkage if -fno-common was specified unless it
5010   // was overridden by a NoCommon attribute.
5011   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5012     return true;
5013 
5014   // C11 6.9.2/2:
5015   //   A declaration of an identifier for an object that has file scope without
5016   //   an initializer, and without a storage-class specifier or with the
5017   //   storage-class specifier static, constitutes a tentative definition.
5018   if (D->getInit() || D->hasExternalStorage())
5019     return true;
5020 
5021   // A variable cannot be both common and exist in a section.
5022   if (D->hasAttr<SectionAttr>())
5023     return true;
5024 
5025   // A variable cannot be both common and exist in a section.
5026   // We don't try to determine which is the right section in the front-end.
5027   // If no specialized section name is applicable, it will resort to default.
5028   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5029       D->hasAttr<PragmaClangDataSectionAttr>() ||
5030       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5031       D->hasAttr<PragmaClangRodataSectionAttr>())
5032     return true;
5033 
5034   // Thread local vars aren't considered common linkage.
5035   if (D->getTLSKind())
5036     return true;
5037 
5038   // Tentative definitions marked with WeakImportAttr are true definitions.
5039   if (D->hasAttr<WeakImportAttr>())
5040     return true;
5041 
5042   // A variable cannot be both common and exist in a comdat.
5043   if (shouldBeInCOMDAT(CGM, *D))
5044     return true;
5045 
5046   // Declarations with a required alignment do not have common linkage in MSVC
5047   // mode.
5048   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5049     if (D->hasAttr<AlignedAttr>())
5050       return true;
5051     QualType VarType = D->getType();
5052     if (Context.isAlignmentRequired(VarType))
5053       return true;
5054 
5055     if (const auto *RT = VarType->getAs<RecordType>()) {
5056       const RecordDecl *RD = RT->getDecl();
5057       for (const FieldDecl *FD : RD->fields()) {
5058         if (FD->isBitField())
5059           continue;
5060         if (FD->hasAttr<AlignedAttr>())
5061           return true;
5062         if (Context.isAlignmentRequired(FD->getType()))
5063           return true;
5064       }
5065     }
5066   }
5067 
5068   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5069   // common symbols, so symbols with greater alignment requirements cannot be
5070   // common.
5071   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5072   // alignments for common symbols via the aligncomm directive, so this
5073   // restriction only applies to MSVC environments.
5074   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5075       Context.getTypeAlignIfKnown(D->getType()) >
5076           Context.toBits(CharUnits::fromQuantity(32)))
5077     return true;
5078 
5079   return false;
5080 }
5081 
5082 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5083     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5084   if (Linkage == GVA_Internal)
5085     return llvm::Function::InternalLinkage;
5086 
5087   if (D->hasAttr<WeakAttr>())
5088     return llvm::GlobalVariable::WeakAnyLinkage;
5089 
5090   if (const auto *FD = D->getAsFunction())
5091     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5092       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5093 
5094   // We are guaranteed to have a strong definition somewhere else,
5095   // so we can use available_externally linkage.
5096   if (Linkage == GVA_AvailableExternally)
5097     return llvm::GlobalValue::AvailableExternallyLinkage;
5098 
5099   // Note that Apple's kernel linker doesn't support symbol
5100   // coalescing, so we need to avoid linkonce and weak linkages there.
5101   // Normally, this means we just map to internal, but for explicit
5102   // instantiations we'll map to external.
5103 
5104   // In C++, the compiler has to emit a definition in every translation unit
5105   // that references the function.  We should use linkonce_odr because
5106   // a) if all references in this translation unit are optimized away, we
5107   // don't need to codegen it.  b) if the function persists, it needs to be
5108   // merged with other definitions. c) C++ has the ODR, so we know the
5109   // definition is dependable.
5110   if (Linkage == GVA_DiscardableODR)
5111     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5112                                             : llvm::Function::InternalLinkage;
5113 
5114   // An explicit instantiation of a template has weak linkage, since
5115   // explicit instantiations can occur in multiple translation units
5116   // and must all be equivalent. However, we are not allowed to
5117   // throw away these explicit instantiations.
5118   //
5119   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5120   // so say that CUDA templates are either external (for kernels) or internal.
5121   // This lets llvm perform aggressive inter-procedural optimizations. For
5122   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5123   // therefore we need to follow the normal linkage paradigm.
5124   if (Linkage == GVA_StrongODR) {
5125     if (getLangOpts().AppleKext)
5126       return llvm::Function::ExternalLinkage;
5127     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5128         !getLangOpts().GPURelocatableDeviceCode)
5129       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5130                                           : llvm::Function::InternalLinkage;
5131     return llvm::Function::WeakODRLinkage;
5132   }
5133 
5134   // C++ doesn't have tentative definitions and thus cannot have common
5135   // linkage.
5136   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5137       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5138                                  CodeGenOpts.NoCommon))
5139     return llvm::GlobalVariable::CommonLinkage;
5140 
5141   // selectany symbols are externally visible, so use weak instead of
5142   // linkonce.  MSVC optimizes away references to const selectany globals, so
5143   // all definitions should be the same and ODR linkage should be used.
5144   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5145   if (D->hasAttr<SelectAnyAttr>())
5146     return llvm::GlobalVariable::WeakODRLinkage;
5147 
5148   // Otherwise, we have strong external linkage.
5149   assert(Linkage == GVA_StrongExternal);
5150   return llvm::GlobalVariable::ExternalLinkage;
5151 }
5152 
5153 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5154     const VarDecl *VD, bool IsConstant) {
5155   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5156   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5157 }
5158 
5159 /// Replace the uses of a function that was declared with a non-proto type.
5160 /// We want to silently drop extra arguments from call sites
5161 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5162                                           llvm::Function *newFn) {
5163   // Fast path.
5164   if (old->use_empty()) return;
5165 
5166   llvm::Type *newRetTy = newFn->getReturnType();
5167   SmallVector<llvm::Value*, 4> newArgs;
5168 
5169   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5170          ui != ue; ) {
5171     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5172     llvm::User *user = use->getUser();
5173 
5174     // Recognize and replace uses of bitcasts.  Most calls to
5175     // unprototyped functions will use bitcasts.
5176     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5177       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5178         replaceUsesOfNonProtoConstant(bitcast, newFn);
5179       continue;
5180     }
5181 
5182     // Recognize calls to the function.
5183     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5184     if (!callSite) continue;
5185     if (!callSite->isCallee(&*use))
5186       continue;
5187 
5188     // If the return types don't match exactly, then we can't
5189     // transform this call unless it's dead.
5190     if (callSite->getType() != newRetTy && !callSite->use_empty())
5191       continue;
5192 
5193     // Get the call site's attribute list.
5194     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5195     llvm::AttributeList oldAttrs = callSite->getAttributes();
5196 
5197     // If the function was passed too few arguments, don't transform.
5198     unsigned newNumArgs = newFn->arg_size();
5199     if (callSite->arg_size() < newNumArgs)
5200       continue;
5201 
5202     // If extra arguments were passed, we silently drop them.
5203     // If any of the types mismatch, we don't transform.
5204     unsigned argNo = 0;
5205     bool dontTransform = false;
5206     for (llvm::Argument &A : newFn->args()) {
5207       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5208         dontTransform = true;
5209         break;
5210       }
5211 
5212       // Add any parameter attributes.
5213       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5214       argNo++;
5215     }
5216     if (dontTransform)
5217       continue;
5218 
5219     // Okay, we can transform this.  Create the new call instruction and copy
5220     // over the required information.
5221     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5222 
5223     // Copy over any operand bundles.
5224     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5225     callSite->getOperandBundlesAsDefs(newBundles);
5226 
5227     llvm::CallBase *newCall;
5228     if (isa<llvm::CallInst>(callSite)) {
5229       newCall =
5230           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5231     } else {
5232       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5233       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5234                                          oldInvoke->getUnwindDest(), newArgs,
5235                                          newBundles, "", callSite);
5236     }
5237     newArgs.clear(); // for the next iteration
5238 
5239     if (!newCall->getType()->isVoidTy())
5240       newCall->takeName(callSite);
5241     newCall->setAttributes(
5242         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5243                                  oldAttrs.getRetAttrs(), newArgAttrs));
5244     newCall->setCallingConv(callSite->getCallingConv());
5245 
5246     // Finally, remove the old call, replacing any uses with the new one.
5247     if (!callSite->use_empty())
5248       callSite->replaceAllUsesWith(newCall);
5249 
5250     // Copy debug location attached to CI.
5251     if (callSite->getDebugLoc())
5252       newCall->setDebugLoc(callSite->getDebugLoc());
5253 
5254     callSite->eraseFromParent();
5255   }
5256 }
5257 
5258 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5259 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5260 /// existing call uses of the old function in the module, this adjusts them to
5261 /// call the new function directly.
5262 ///
5263 /// This is not just a cleanup: the always_inline pass requires direct calls to
5264 /// functions to be able to inline them.  If there is a bitcast in the way, it
5265 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5266 /// run at -O0.
5267 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5268                                                       llvm::Function *NewFn) {
5269   // If we're redefining a global as a function, don't transform it.
5270   if (!isa<llvm::Function>(Old)) return;
5271 
5272   replaceUsesOfNonProtoConstant(Old, NewFn);
5273 }
5274 
5275 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5276   auto DK = VD->isThisDeclarationADefinition();
5277   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5278     return;
5279 
5280   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5281   // If we have a definition, this might be a deferred decl. If the
5282   // instantiation is explicit, make sure we emit it at the end.
5283   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5284     GetAddrOfGlobalVar(VD);
5285 
5286   EmitTopLevelDecl(VD);
5287 }
5288 
5289 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5290                                                  llvm::GlobalValue *GV) {
5291   const auto *D = cast<FunctionDecl>(GD.getDecl());
5292 
5293   // Compute the function info and LLVM type.
5294   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5295   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5296 
5297   // Get or create the prototype for the function.
5298   if (!GV || (GV->getValueType() != Ty))
5299     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5300                                                    /*DontDefer=*/true,
5301                                                    ForDefinition));
5302 
5303   // Already emitted.
5304   if (!GV->isDeclaration())
5305     return;
5306 
5307   // We need to set linkage and visibility on the function before
5308   // generating code for it because various parts of IR generation
5309   // want to propagate this information down (e.g. to local static
5310   // declarations).
5311   auto *Fn = cast<llvm::Function>(GV);
5312   setFunctionLinkage(GD, Fn);
5313 
5314   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5315   setGVProperties(Fn, GD);
5316 
5317   MaybeHandleStaticInExternC(D, Fn);
5318 
5319   maybeSetTrivialComdat(*D, *Fn);
5320 
5321   // Set CodeGen attributes that represent floating point environment.
5322   setLLVMFunctionFEnvAttributes(D, Fn);
5323 
5324   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5325 
5326   setNonAliasAttributes(GD, Fn);
5327   SetLLVMFunctionAttributesForDefinition(D, Fn);
5328 
5329   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5330     AddGlobalCtor(Fn, CA->getPriority());
5331   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5332     AddGlobalDtor(Fn, DA->getPriority(), true);
5333   if (D->hasAttr<AnnotateAttr>())
5334     AddGlobalAnnotations(D, Fn);
5335 }
5336 
5337 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5338   const auto *D = cast<ValueDecl>(GD.getDecl());
5339   const AliasAttr *AA = D->getAttr<AliasAttr>();
5340   assert(AA && "Not an alias?");
5341 
5342   StringRef MangledName = getMangledName(GD);
5343 
5344   if (AA->getAliasee() == MangledName) {
5345     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5346     return;
5347   }
5348 
5349   // If there is a definition in the module, then it wins over the alias.
5350   // This is dubious, but allow it to be safe.  Just ignore the alias.
5351   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5352   if (Entry && !Entry->isDeclaration())
5353     return;
5354 
5355   Aliases.push_back(GD);
5356 
5357   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5358 
5359   // Create a reference to the named value.  This ensures that it is emitted
5360   // if a deferred decl.
5361   llvm::Constant *Aliasee;
5362   llvm::GlobalValue::LinkageTypes LT;
5363   if (isa<llvm::FunctionType>(DeclTy)) {
5364     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5365                                       /*ForVTable=*/false);
5366     LT = getFunctionLinkage(GD);
5367   } else {
5368     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5369                                     /*D=*/nullptr);
5370     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5371       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5372     else
5373       LT = getFunctionLinkage(GD);
5374   }
5375 
5376   // Create the new alias itself, but don't set a name yet.
5377   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5378   auto *GA =
5379       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5380 
5381   if (Entry) {
5382     if (GA->getAliasee() == Entry) {
5383       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5384       return;
5385     }
5386 
5387     assert(Entry->isDeclaration());
5388 
5389     // If there is a declaration in the module, then we had an extern followed
5390     // by the alias, as in:
5391     //   extern int test6();
5392     //   ...
5393     //   int test6() __attribute__((alias("test7")));
5394     //
5395     // Remove it and replace uses of it with the alias.
5396     GA->takeName(Entry);
5397 
5398     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5399                                                           Entry->getType()));
5400     Entry->eraseFromParent();
5401   } else {
5402     GA->setName(MangledName);
5403   }
5404 
5405   // Set attributes which are particular to an alias; this is a
5406   // specialization of the attributes which may be set on a global
5407   // variable/function.
5408   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5409       D->isWeakImported()) {
5410     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5411   }
5412 
5413   if (const auto *VD = dyn_cast<VarDecl>(D))
5414     if (VD->getTLSKind())
5415       setTLSMode(GA, *VD);
5416 
5417   SetCommonAttributes(GD, GA);
5418 
5419   // Emit global alias debug information.
5420   if (isa<VarDecl>(D))
5421     if (CGDebugInfo *DI = getModuleDebugInfo())
5422       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5423 }
5424 
5425 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5426   const auto *D = cast<ValueDecl>(GD.getDecl());
5427   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5428   assert(IFA && "Not an ifunc?");
5429 
5430   StringRef MangledName = getMangledName(GD);
5431 
5432   if (IFA->getResolver() == MangledName) {
5433     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5434     return;
5435   }
5436 
5437   // Report an error if some definition overrides ifunc.
5438   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5439   if (Entry && !Entry->isDeclaration()) {
5440     GlobalDecl OtherGD;
5441     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5442         DiagnosedConflictingDefinitions.insert(GD).second) {
5443       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5444           << MangledName;
5445       Diags.Report(OtherGD.getDecl()->getLocation(),
5446                    diag::note_previous_definition);
5447     }
5448     return;
5449   }
5450 
5451   Aliases.push_back(GD);
5452 
5453   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5454   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5455   llvm::Constant *Resolver =
5456       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5457                               /*ForVTable=*/false);
5458   llvm::GlobalIFunc *GIF =
5459       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5460                                 "", Resolver, &getModule());
5461   if (Entry) {
5462     if (GIF->getResolver() == Entry) {
5463       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5464       return;
5465     }
5466     assert(Entry->isDeclaration());
5467 
5468     // If there is a declaration in the module, then we had an extern followed
5469     // by the ifunc, as in:
5470     //   extern int test();
5471     //   ...
5472     //   int test() __attribute__((ifunc("resolver")));
5473     //
5474     // Remove it and replace uses of it with the ifunc.
5475     GIF->takeName(Entry);
5476 
5477     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5478                                                           Entry->getType()));
5479     Entry->eraseFromParent();
5480   } else
5481     GIF->setName(MangledName);
5482 
5483   SetCommonAttributes(GD, GIF);
5484 }
5485 
5486 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5487                                             ArrayRef<llvm::Type*> Tys) {
5488   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5489                                          Tys);
5490 }
5491 
5492 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5493 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5494                          const StringLiteral *Literal, bool TargetIsLSB,
5495                          bool &IsUTF16, unsigned &StringLength) {
5496   StringRef String = Literal->getString();
5497   unsigned NumBytes = String.size();
5498 
5499   // Check for simple case.
5500   if (!Literal->containsNonAsciiOrNull()) {
5501     StringLength = NumBytes;
5502     return *Map.insert(std::make_pair(String, nullptr)).first;
5503   }
5504 
5505   // Otherwise, convert the UTF8 literals into a string of shorts.
5506   IsUTF16 = true;
5507 
5508   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5509   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5510   llvm::UTF16 *ToPtr = &ToBuf[0];
5511 
5512   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5513                                  ToPtr + NumBytes, llvm::strictConversion);
5514 
5515   // ConvertUTF8toUTF16 returns the length in ToPtr.
5516   StringLength = ToPtr - &ToBuf[0];
5517 
5518   // Add an explicit null.
5519   *ToPtr = 0;
5520   return *Map.insert(std::make_pair(
5521                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5522                                    (StringLength + 1) * 2),
5523                          nullptr)).first;
5524 }
5525 
5526 ConstantAddress
5527 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5528   unsigned StringLength = 0;
5529   bool isUTF16 = false;
5530   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5531       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5532                                getDataLayout().isLittleEndian(), isUTF16,
5533                                StringLength);
5534 
5535   if (auto *C = Entry.second)
5536     return ConstantAddress(
5537         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5538 
5539   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5540   llvm::Constant *Zeros[] = { Zero, Zero };
5541 
5542   const ASTContext &Context = getContext();
5543   const llvm::Triple &Triple = getTriple();
5544 
5545   const auto CFRuntime = getLangOpts().CFRuntime;
5546   const bool IsSwiftABI =
5547       static_cast<unsigned>(CFRuntime) >=
5548       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5549   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5550 
5551   // If we don't already have it, get __CFConstantStringClassReference.
5552   if (!CFConstantStringClassRef) {
5553     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5554     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5555     Ty = llvm::ArrayType::get(Ty, 0);
5556 
5557     switch (CFRuntime) {
5558     default: break;
5559     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5560     case LangOptions::CoreFoundationABI::Swift5_0:
5561       CFConstantStringClassName =
5562           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5563                               : "$s10Foundation19_NSCFConstantStringCN";
5564       Ty = IntPtrTy;
5565       break;
5566     case LangOptions::CoreFoundationABI::Swift4_2:
5567       CFConstantStringClassName =
5568           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5569                               : "$S10Foundation19_NSCFConstantStringCN";
5570       Ty = IntPtrTy;
5571       break;
5572     case LangOptions::CoreFoundationABI::Swift4_1:
5573       CFConstantStringClassName =
5574           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5575                               : "__T010Foundation19_NSCFConstantStringCN";
5576       Ty = IntPtrTy;
5577       break;
5578     }
5579 
5580     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5581 
5582     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5583       llvm::GlobalValue *GV = nullptr;
5584 
5585       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5586         IdentifierInfo &II = Context.Idents.get(GV->getName());
5587         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5588         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5589 
5590         const VarDecl *VD = nullptr;
5591         for (const auto *Result : DC->lookup(&II))
5592           if ((VD = dyn_cast<VarDecl>(Result)))
5593             break;
5594 
5595         if (Triple.isOSBinFormatELF()) {
5596           if (!VD)
5597             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5598         } else {
5599           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5600           if (!VD || !VD->hasAttr<DLLExportAttr>())
5601             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5602           else
5603             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5604         }
5605 
5606         setDSOLocal(GV);
5607       }
5608     }
5609 
5610     // Decay array -> ptr
5611     CFConstantStringClassRef =
5612         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5613                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5614   }
5615 
5616   QualType CFTy = Context.getCFConstantStringType();
5617 
5618   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5619 
5620   ConstantInitBuilder Builder(*this);
5621   auto Fields = Builder.beginStruct(STy);
5622 
5623   // Class pointer.
5624   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5625 
5626   // Flags.
5627   if (IsSwiftABI) {
5628     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5629     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5630   } else {
5631     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5632   }
5633 
5634   // String pointer.
5635   llvm::Constant *C = nullptr;
5636   if (isUTF16) {
5637     auto Arr = llvm::makeArrayRef(
5638         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5639         Entry.first().size() / 2);
5640     C = llvm::ConstantDataArray::get(VMContext, Arr);
5641   } else {
5642     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5643   }
5644 
5645   // Note: -fwritable-strings doesn't make the backing store strings of
5646   // CFStrings writable. (See <rdar://problem/10657500>)
5647   auto *GV =
5648       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5649                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5650   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5651   // Don't enforce the target's minimum global alignment, since the only use
5652   // of the string is via this class initializer.
5653   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5654                             : Context.getTypeAlignInChars(Context.CharTy);
5655   GV->setAlignment(Align.getAsAlign());
5656 
5657   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5658   // Without it LLVM can merge the string with a non unnamed_addr one during
5659   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5660   if (Triple.isOSBinFormatMachO())
5661     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5662                            : "__TEXT,__cstring,cstring_literals");
5663   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5664   // the static linker to adjust permissions to read-only later on.
5665   else if (Triple.isOSBinFormatELF())
5666     GV->setSection(".rodata");
5667 
5668   // String.
5669   llvm::Constant *Str =
5670       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5671 
5672   if (isUTF16)
5673     // Cast the UTF16 string to the correct type.
5674     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5675   Fields.add(Str);
5676 
5677   // String length.
5678   llvm::IntegerType *LengthTy =
5679       llvm::IntegerType::get(getModule().getContext(),
5680                              Context.getTargetInfo().getLongWidth());
5681   if (IsSwiftABI) {
5682     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5683         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5684       LengthTy = Int32Ty;
5685     else
5686       LengthTy = IntPtrTy;
5687   }
5688   Fields.addInt(LengthTy, StringLength);
5689 
5690   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5691   // properly aligned on 32-bit platforms.
5692   CharUnits Alignment =
5693       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5694 
5695   // The struct.
5696   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5697                                     /*isConstant=*/false,
5698                                     llvm::GlobalVariable::PrivateLinkage);
5699   GV->addAttribute("objc_arc_inert");
5700   switch (Triple.getObjectFormat()) {
5701   case llvm::Triple::UnknownObjectFormat:
5702     llvm_unreachable("unknown file format");
5703   case llvm::Triple::DXContainer:
5704   case llvm::Triple::GOFF:
5705   case llvm::Triple::SPIRV:
5706   case llvm::Triple::XCOFF:
5707     llvm_unreachable("unimplemented");
5708   case llvm::Triple::COFF:
5709   case llvm::Triple::ELF:
5710   case llvm::Triple::Wasm:
5711     GV->setSection("cfstring");
5712     break;
5713   case llvm::Triple::MachO:
5714     GV->setSection("__DATA,__cfstring");
5715     break;
5716   }
5717   Entry.second = GV;
5718 
5719   return ConstantAddress(GV, GV->getValueType(), Alignment);
5720 }
5721 
5722 bool CodeGenModule::getExpressionLocationsEnabled() const {
5723   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5724 }
5725 
5726 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5727   if (ObjCFastEnumerationStateType.isNull()) {
5728     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5729     D->startDefinition();
5730 
5731     QualType FieldTypes[] = {
5732       Context.UnsignedLongTy,
5733       Context.getPointerType(Context.getObjCIdType()),
5734       Context.getPointerType(Context.UnsignedLongTy),
5735       Context.getConstantArrayType(Context.UnsignedLongTy,
5736                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5737     };
5738 
5739     for (size_t i = 0; i < 4; ++i) {
5740       FieldDecl *Field = FieldDecl::Create(Context,
5741                                            D,
5742                                            SourceLocation(),
5743                                            SourceLocation(), nullptr,
5744                                            FieldTypes[i], /*TInfo=*/nullptr,
5745                                            /*BitWidth=*/nullptr,
5746                                            /*Mutable=*/false,
5747                                            ICIS_NoInit);
5748       Field->setAccess(AS_public);
5749       D->addDecl(Field);
5750     }
5751 
5752     D->completeDefinition();
5753     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5754   }
5755 
5756   return ObjCFastEnumerationStateType;
5757 }
5758 
5759 llvm::Constant *
5760 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5761   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5762 
5763   // Don't emit it as the address of the string, emit the string data itself
5764   // as an inline array.
5765   if (E->getCharByteWidth() == 1) {
5766     SmallString<64> Str(E->getString());
5767 
5768     // Resize the string to the right size, which is indicated by its type.
5769     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5770     Str.resize(CAT->getSize().getZExtValue());
5771     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5772   }
5773 
5774   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5775   llvm::Type *ElemTy = AType->getElementType();
5776   unsigned NumElements = AType->getNumElements();
5777 
5778   // Wide strings have either 2-byte or 4-byte elements.
5779   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5780     SmallVector<uint16_t, 32> Elements;
5781     Elements.reserve(NumElements);
5782 
5783     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5784       Elements.push_back(E->getCodeUnit(i));
5785     Elements.resize(NumElements);
5786     return llvm::ConstantDataArray::get(VMContext, Elements);
5787   }
5788 
5789   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5790   SmallVector<uint32_t, 32> Elements;
5791   Elements.reserve(NumElements);
5792 
5793   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5794     Elements.push_back(E->getCodeUnit(i));
5795   Elements.resize(NumElements);
5796   return llvm::ConstantDataArray::get(VMContext, Elements);
5797 }
5798 
5799 static llvm::GlobalVariable *
5800 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5801                       CodeGenModule &CGM, StringRef GlobalName,
5802                       CharUnits Alignment) {
5803   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5804       CGM.GetGlobalConstantAddressSpace());
5805 
5806   llvm::Module &M = CGM.getModule();
5807   // Create a global variable for this string
5808   auto *GV = new llvm::GlobalVariable(
5809       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5810       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5811   GV->setAlignment(Alignment.getAsAlign());
5812   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5813   if (GV->isWeakForLinker()) {
5814     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5815     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5816   }
5817   CGM.setDSOLocal(GV);
5818 
5819   return GV;
5820 }
5821 
5822 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5823 /// constant array for the given string literal.
5824 ConstantAddress
5825 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5826                                                   StringRef Name) {
5827   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5828 
5829   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5830   llvm::GlobalVariable **Entry = nullptr;
5831   if (!LangOpts.WritableStrings) {
5832     Entry = &ConstantStringMap[C];
5833     if (auto GV = *Entry) {
5834       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5835         GV->setAlignment(Alignment.getAsAlign());
5836       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5837                              GV->getValueType(), Alignment);
5838     }
5839   }
5840 
5841   SmallString<256> MangledNameBuffer;
5842   StringRef GlobalVariableName;
5843   llvm::GlobalValue::LinkageTypes LT;
5844 
5845   // Mangle the string literal if that's how the ABI merges duplicate strings.
5846   // Don't do it if they are writable, since we don't want writes in one TU to
5847   // affect strings in another.
5848   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5849       !LangOpts.WritableStrings) {
5850     llvm::raw_svector_ostream Out(MangledNameBuffer);
5851     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5852     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5853     GlobalVariableName = MangledNameBuffer;
5854   } else {
5855     LT = llvm::GlobalValue::PrivateLinkage;
5856     GlobalVariableName = Name;
5857   }
5858 
5859   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5860 
5861   CGDebugInfo *DI = getModuleDebugInfo();
5862   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5863     DI->AddStringLiteralDebugInfo(GV, S);
5864 
5865   if (Entry)
5866     *Entry = GV;
5867 
5868   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5869 
5870   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5871                          GV->getValueType(), Alignment);
5872 }
5873 
5874 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5875 /// array for the given ObjCEncodeExpr node.
5876 ConstantAddress
5877 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5878   std::string Str;
5879   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5880 
5881   return GetAddrOfConstantCString(Str);
5882 }
5883 
5884 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5885 /// the literal and a terminating '\0' character.
5886 /// The result has pointer to array type.
5887 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5888     const std::string &Str, const char *GlobalName) {
5889   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5890   CharUnits Alignment =
5891     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5892 
5893   llvm::Constant *C =
5894       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5895 
5896   // Don't share any string literals if strings aren't constant.
5897   llvm::GlobalVariable **Entry = nullptr;
5898   if (!LangOpts.WritableStrings) {
5899     Entry = &ConstantStringMap[C];
5900     if (auto GV = *Entry) {
5901       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5902         GV->setAlignment(Alignment.getAsAlign());
5903       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5904                              GV->getValueType(), Alignment);
5905     }
5906   }
5907 
5908   // Get the default prefix if a name wasn't specified.
5909   if (!GlobalName)
5910     GlobalName = ".str";
5911   // Create a global variable for this.
5912   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5913                                   GlobalName, Alignment);
5914   if (Entry)
5915     *Entry = GV;
5916 
5917   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5918                          GV->getValueType(), Alignment);
5919 }
5920 
5921 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5922     const MaterializeTemporaryExpr *E, const Expr *Init) {
5923   assert((E->getStorageDuration() == SD_Static ||
5924           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5925   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5926 
5927   // If we're not materializing a subobject of the temporary, keep the
5928   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5929   QualType MaterializedType = Init->getType();
5930   if (Init == E->getSubExpr())
5931     MaterializedType = E->getType();
5932 
5933   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5934 
5935   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5936   if (!InsertResult.second) {
5937     // We've seen this before: either we already created it or we're in the
5938     // process of doing so.
5939     if (!InsertResult.first->second) {
5940       // We recursively re-entered this function, probably during emission of
5941       // the initializer. Create a placeholder. We'll clean this up in the
5942       // outer call, at the end of this function.
5943       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5944       InsertResult.first->second = new llvm::GlobalVariable(
5945           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5946           nullptr);
5947     }
5948     return ConstantAddress(InsertResult.first->second,
5949                            llvm::cast<llvm::GlobalVariable>(
5950                                InsertResult.first->second->stripPointerCasts())
5951                                ->getValueType(),
5952                            Align);
5953   }
5954 
5955   // FIXME: If an externally-visible declaration extends multiple temporaries,
5956   // we need to give each temporary the same name in every translation unit (and
5957   // we also need to make the temporaries externally-visible).
5958   SmallString<256> Name;
5959   llvm::raw_svector_ostream Out(Name);
5960   getCXXABI().getMangleContext().mangleReferenceTemporary(
5961       VD, E->getManglingNumber(), Out);
5962 
5963   APValue *Value = nullptr;
5964   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5965     // If the initializer of the extending declaration is a constant
5966     // initializer, we should have a cached constant initializer for this
5967     // temporary. Note that this might have a different value from the value
5968     // computed by evaluating the initializer if the surrounding constant
5969     // expression modifies the temporary.
5970     Value = E->getOrCreateValue(false);
5971   }
5972 
5973   // Try evaluating it now, it might have a constant initializer.
5974   Expr::EvalResult EvalResult;
5975   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5976       !EvalResult.hasSideEffects())
5977     Value = &EvalResult.Val;
5978 
5979   LangAS AddrSpace =
5980       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5981 
5982   Optional<ConstantEmitter> emitter;
5983   llvm::Constant *InitialValue = nullptr;
5984   bool Constant = false;
5985   llvm::Type *Type;
5986   if (Value) {
5987     // The temporary has a constant initializer, use it.
5988     emitter.emplace(*this);
5989     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5990                                                MaterializedType);
5991     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5992     Type = InitialValue->getType();
5993   } else {
5994     // No initializer, the initialization will be provided when we
5995     // initialize the declaration which performed lifetime extension.
5996     Type = getTypes().ConvertTypeForMem(MaterializedType);
5997   }
5998 
5999   // Create a global variable for this lifetime-extended temporary.
6000   llvm::GlobalValue::LinkageTypes Linkage =
6001       getLLVMLinkageVarDefinition(VD, Constant);
6002   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6003     const VarDecl *InitVD;
6004     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6005         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6006       // Temporaries defined inside a class get linkonce_odr linkage because the
6007       // class can be defined in multiple translation units.
6008       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6009     } else {
6010       // There is no need for this temporary to have external linkage if the
6011       // VarDecl has external linkage.
6012       Linkage = llvm::GlobalVariable::InternalLinkage;
6013     }
6014   }
6015   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6016   auto *GV = new llvm::GlobalVariable(
6017       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6018       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6019   if (emitter) emitter->finalize(GV);
6020   // Don't assign dllimport or dllexport to local linkage globals.
6021   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6022     setGVProperties(GV, VD);
6023     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6024       // The reference temporary should never be dllexport.
6025       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6026   }
6027   GV->setAlignment(Align.getAsAlign());
6028   if (supportsCOMDAT() && GV->isWeakForLinker())
6029     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6030   if (VD->getTLSKind())
6031     setTLSMode(GV, *VD);
6032   llvm::Constant *CV = GV;
6033   if (AddrSpace != LangAS::Default)
6034     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6035         *this, GV, AddrSpace, LangAS::Default,
6036         Type->getPointerTo(
6037             getContext().getTargetAddressSpace(LangAS::Default)));
6038 
6039   // Update the map with the new temporary. If we created a placeholder above,
6040   // replace it with the new global now.
6041   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6042   if (Entry) {
6043     Entry->replaceAllUsesWith(
6044         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6045     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6046   }
6047   Entry = CV;
6048 
6049   return ConstantAddress(CV, Type, Align);
6050 }
6051 
6052 /// EmitObjCPropertyImplementations - Emit information for synthesized
6053 /// properties for an implementation.
6054 void CodeGenModule::EmitObjCPropertyImplementations(const
6055                                                     ObjCImplementationDecl *D) {
6056   for (const auto *PID : D->property_impls()) {
6057     // Dynamic is just for type-checking.
6058     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6059       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6060 
6061       // Determine which methods need to be implemented, some may have
6062       // been overridden. Note that ::isPropertyAccessor is not the method
6063       // we want, that just indicates if the decl came from a
6064       // property. What we want to know is if the method is defined in
6065       // this implementation.
6066       auto *Getter = PID->getGetterMethodDecl();
6067       if (!Getter || Getter->isSynthesizedAccessorStub())
6068         CodeGenFunction(*this).GenerateObjCGetter(
6069             const_cast<ObjCImplementationDecl *>(D), PID);
6070       auto *Setter = PID->getSetterMethodDecl();
6071       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6072         CodeGenFunction(*this).GenerateObjCSetter(
6073                                  const_cast<ObjCImplementationDecl *>(D), PID);
6074     }
6075   }
6076 }
6077 
6078 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6079   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6080   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6081        ivar; ivar = ivar->getNextIvar())
6082     if (ivar->getType().isDestructedType())
6083       return true;
6084 
6085   return false;
6086 }
6087 
6088 static bool AllTrivialInitializers(CodeGenModule &CGM,
6089                                    ObjCImplementationDecl *D) {
6090   CodeGenFunction CGF(CGM);
6091   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6092        E = D->init_end(); B != E; ++B) {
6093     CXXCtorInitializer *CtorInitExp = *B;
6094     Expr *Init = CtorInitExp->getInit();
6095     if (!CGF.isTrivialInitializer(Init))
6096       return false;
6097   }
6098   return true;
6099 }
6100 
6101 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6102 /// for an implementation.
6103 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6104   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6105   if (needsDestructMethod(D)) {
6106     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6107     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6108     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6109         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6110         getContext().VoidTy, nullptr, D,
6111         /*isInstance=*/true, /*isVariadic=*/false,
6112         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6113         /*isImplicitlyDeclared=*/true,
6114         /*isDefined=*/false, ObjCMethodDecl::Required);
6115     D->addInstanceMethod(DTORMethod);
6116     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6117     D->setHasDestructors(true);
6118   }
6119 
6120   // If the implementation doesn't have any ivar initializers, we don't need
6121   // a .cxx_construct.
6122   if (D->getNumIvarInitializers() == 0 ||
6123       AllTrivialInitializers(*this, D))
6124     return;
6125 
6126   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6127   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6128   // The constructor returns 'self'.
6129   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6130       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6131       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6132       /*isVariadic=*/false,
6133       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6134       /*isImplicitlyDeclared=*/true,
6135       /*isDefined=*/false, ObjCMethodDecl::Required);
6136   D->addInstanceMethod(CTORMethod);
6137   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6138   D->setHasNonZeroConstructors(true);
6139 }
6140 
6141 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6142 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6143   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6144       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6145     ErrorUnsupported(LSD, "linkage spec");
6146     return;
6147   }
6148 
6149   EmitDeclContext(LSD);
6150 }
6151 
6152 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6153   for (auto *I : DC->decls()) {
6154     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6155     // are themselves considered "top-level", so EmitTopLevelDecl on an
6156     // ObjCImplDecl does not recursively visit them. We need to do that in
6157     // case they're nested inside another construct (LinkageSpecDecl /
6158     // ExportDecl) that does stop them from being considered "top-level".
6159     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6160       for (auto *M : OID->methods())
6161         EmitTopLevelDecl(M);
6162     }
6163 
6164     EmitTopLevelDecl(I);
6165   }
6166 }
6167 
6168 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6169 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6170   // Ignore dependent declarations.
6171   if (D->isTemplated())
6172     return;
6173 
6174   // Consteval function shouldn't be emitted.
6175   if (auto *FD = dyn_cast<FunctionDecl>(D))
6176     if (FD->isConsteval())
6177       return;
6178 
6179   switch (D->getKind()) {
6180   case Decl::CXXConversion:
6181   case Decl::CXXMethod:
6182   case Decl::Function:
6183     EmitGlobal(cast<FunctionDecl>(D));
6184     // Always provide some coverage mapping
6185     // even for the functions that aren't emitted.
6186     AddDeferredUnusedCoverageMapping(D);
6187     break;
6188 
6189   case Decl::CXXDeductionGuide:
6190     // Function-like, but does not result in code emission.
6191     break;
6192 
6193   case Decl::Var:
6194   case Decl::Decomposition:
6195   case Decl::VarTemplateSpecialization:
6196     EmitGlobal(cast<VarDecl>(D));
6197     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6198       for (auto *B : DD->bindings())
6199         if (auto *HD = B->getHoldingVar())
6200           EmitGlobal(HD);
6201     break;
6202 
6203   // Indirect fields from global anonymous structs and unions can be
6204   // ignored; only the actual variable requires IR gen support.
6205   case Decl::IndirectField:
6206     break;
6207 
6208   // C++ Decls
6209   case Decl::Namespace:
6210     EmitDeclContext(cast<NamespaceDecl>(D));
6211     break;
6212   case Decl::ClassTemplateSpecialization: {
6213     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6214     if (CGDebugInfo *DI = getModuleDebugInfo())
6215       if (Spec->getSpecializationKind() ==
6216               TSK_ExplicitInstantiationDefinition &&
6217           Spec->hasDefinition())
6218         DI->completeTemplateDefinition(*Spec);
6219   } [[fallthrough]];
6220   case Decl::CXXRecord: {
6221     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6222     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6223       if (CRD->hasDefinition())
6224         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6225       if (auto *ES = D->getASTContext().getExternalSource())
6226         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6227           DI->completeUnusedClass(*CRD);
6228     }
6229     // Emit any static data members, they may be definitions.
6230     for (auto *I : CRD->decls())
6231       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6232         EmitTopLevelDecl(I);
6233     break;
6234   }
6235     // No code generation needed.
6236   case Decl::UsingShadow:
6237   case Decl::ClassTemplate:
6238   case Decl::VarTemplate:
6239   case Decl::Concept:
6240   case Decl::VarTemplatePartialSpecialization:
6241   case Decl::FunctionTemplate:
6242   case Decl::TypeAliasTemplate:
6243   case Decl::Block:
6244   case Decl::Empty:
6245   case Decl::Binding:
6246     break;
6247   case Decl::Using:          // using X; [C++]
6248     if (CGDebugInfo *DI = getModuleDebugInfo())
6249         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6250     break;
6251   case Decl::UsingEnum: // using enum X; [C++]
6252     if (CGDebugInfo *DI = getModuleDebugInfo())
6253       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6254     break;
6255   case Decl::NamespaceAlias:
6256     if (CGDebugInfo *DI = getModuleDebugInfo())
6257         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6258     break;
6259   case Decl::UsingDirective: // using namespace X; [C++]
6260     if (CGDebugInfo *DI = getModuleDebugInfo())
6261       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6262     break;
6263   case Decl::CXXConstructor:
6264     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6265     break;
6266   case Decl::CXXDestructor:
6267     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6268     break;
6269 
6270   case Decl::StaticAssert:
6271     // Nothing to do.
6272     break;
6273 
6274   // Objective-C Decls
6275 
6276   // Forward declarations, no (immediate) code generation.
6277   case Decl::ObjCInterface:
6278   case Decl::ObjCCategory:
6279     break;
6280 
6281   case Decl::ObjCProtocol: {
6282     auto *Proto = cast<ObjCProtocolDecl>(D);
6283     if (Proto->isThisDeclarationADefinition())
6284       ObjCRuntime->GenerateProtocol(Proto);
6285     break;
6286   }
6287 
6288   case Decl::ObjCCategoryImpl:
6289     // Categories have properties but don't support synthesize so we
6290     // can ignore them here.
6291     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6292     break;
6293 
6294   case Decl::ObjCImplementation: {
6295     auto *OMD = cast<ObjCImplementationDecl>(D);
6296     EmitObjCPropertyImplementations(OMD);
6297     EmitObjCIvarInitializations(OMD);
6298     ObjCRuntime->GenerateClass(OMD);
6299     // Emit global variable debug information.
6300     if (CGDebugInfo *DI = getModuleDebugInfo())
6301       if (getCodeGenOpts().hasReducedDebugInfo())
6302         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6303             OMD->getClassInterface()), OMD->getLocation());
6304     break;
6305   }
6306   case Decl::ObjCMethod: {
6307     auto *OMD = cast<ObjCMethodDecl>(D);
6308     // If this is not a prototype, emit the body.
6309     if (OMD->getBody())
6310       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6311     break;
6312   }
6313   case Decl::ObjCCompatibleAlias:
6314     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6315     break;
6316 
6317   case Decl::PragmaComment: {
6318     const auto *PCD = cast<PragmaCommentDecl>(D);
6319     switch (PCD->getCommentKind()) {
6320     case PCK_Unknown:
6321       llvm_unreachable("unexpected pragma comment kind");
6322     case PCK_Linker:
6323       AppendLinkerOptions(PCD->getArg());
6324       break;
6325     case PCK_Lib:
6326         AddDependentLib(PCD->getArg());
6327       break;
6328     case PCK_Compiler:
6329     case PCK_ExeStr:
6330     case PCK_User:
6331       break; // We ignore all of these.
6332     }
6333     break;
6334   }
6335 
6336   case Decl::PragmaDetectMismatch: {
6337     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6338     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6339     break;
6340   }
6341 
6342   case Decl::LinkageSpec:
6343     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6344     break;
6345 
6346   case Decl::FileScopeAsm: {
6347     // File-scope asm is ignored during device-side CUDA compilation.
6348     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6349       break;
6350     // File-scope asm is ignored during device-side OpenMP compilation.
6351     if (LangOpts.OpenMPIsDevice)
6352       break;
6353     // File-scope asm is ignored during device-side SYCL compilation.
6354     if (LangOpts.SYCLIsDevice)
6355       break;
6356     auto *AD = cast<FileScopeAsmDecl>(D);
6357     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6358     break;
6359   }
6360 
6361   case Decl::Import: {
6362     auto *Import = cast<ImportDecl>(D);
6363 
6364     // If we've already imported this module, we're done.
6365     if (!ImportedModules.insert(Import->getImportedModule()))
6366       break;
6367 
6368     // Emit debug information for direct imports.
6369     if (!Import->getImportedOwningModule()) {
6370       if (CGDebugInfo *DI = getModuleDebugInfo())
6371         DI->EmitImportDecl(*Import);
6372     }
6373 
6374     // For C++ standard modules we are done - we will call the module
6375     // initializer for imported modules, and that will likewise call those for
6376     // any imports it has.
6377     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6378         !Import->getImportedOwningModule()->isModuleMapModule())
6379       break;
6380 
6381     // For clang C++ module map modules the initializers for sub-modules are
6382     // emitted here.
6383 
6384     // Find all of the submodules and emit the module initializers.
6385     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6386     SmallVector<clang::Module *, 16> Stack;
6387     Visited.insert(Import->getImportedModule());
6388     Stack.push_back(Import->getImportedModule());
6389 
6390     while (!Stack.empty()) {
6391       clang::Module *Mod = Stack.pop_back_val();
6392       if (!EmittedModuleInitializers.insert(Mod).second)
6393         continue;
6394 
6395       for (auto *D : Context.getModuleInitializers(Mod))
6396         EmitTopLevelDecl(D);
6397 
6398       // Visit the submodules of this module.
6399       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6400                                              SubEnd = Mod->submodule_end();
6401            Sub != SubEnd; ++Sub) {
6402         // Skip explicit children; they need to be explicitly imported to emit
6403         // the initializers.
6404         if ((*Sub)->IsExplicit)
6405           continue;
6406 
6407         if (Visited.insert(*Sub).second)
6408           Stack.push_back(*Sub);
6409       }
6410     }
6411     break;
6412   }
6413 
6414   case Decl::Export:
6415     EmitDeclContext(cast<ExportDecl>(D));
6416     break;
6417 
6418   case Decl::OMPThreadPrivate:
6419     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6420     break;
6421 
6422   case Decl::OMPAllocate:
6423     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6424     break;
6425 
6426   case Decl::OMPDeclareReduction:
6427     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6428     break;
6429 
6430   case Decl::OMPDeclareMapper:
6431     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6432     break;
6433 
6434   case Decl::OMPRequires:
6435     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6436     break;
6437 
6438   case Decl::Typedef:
6439   case Decl::TypeAlias: // using foo = bar; [C++11]
6440     if (CGDebugInfo *DI = getModuleDebugInfo())
6441       DI->EmitAndRetainType(
6442           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6443     break;
6444 
6445   case Decl::Record:
6446     if (CGDebugInfo *DI = getModuleDebugInfo())
6447       if (cast<RecordDecl>(D)->getDefinition())
6448         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6449     break;
6450 
6451   case Decl::Enum:
6452     if (CGDebugInfo *DI = getModuleDebugInfo())
6453       if (cast<EnumDecl>(D)->getDefinition())
6454         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6455     break;
6456 
6457   case Decl::HLSLBuffer:
6458     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6459     break;
6460 
6461   default:
6462     // Make sure we handled everything we should, every other kind is a
6463     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6464     // function. Need to recode Decl::Kind to do that easily.
6465     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6466     break;
6467   }
6468 }
6469 
6470 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6471   // Do we need to generate coverage mapping?
6472   if (!CodeGenOpts.CoverageMapping)
6473     return;
6474   switch (D->getKind()) {
6475   case Decl::CXXConversion:
6476   case Decl::CXXMethod:
6477   case Decl::Function:
6478   case Decl::ObjCMethod:
6479   case Decl::CXXConstructor:
6480   case Decl::CXXDestructor: {
6481     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6482       break;
6483     SourceManager &SM = getContext().getSourceManager();
6484     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6485       break;
6486     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6487     if (I == DeferredEmptyCoverageMappingDecls.end())
6488       DeferredEmptyCoverageMappingDecls[D] = true;
6489     break;
6490   }
6491   default:
6492     break;
6493   };
6494 }
6495 
6496 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6497   // Do we need to generate coverage mapping?
6498   if (!CodeGenOpts.CoverageMapping)
6499     return;
6500   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6501     if (Fn->isTemplateInstantiation())
6502       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6503   }
6504   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6505   if (I == DeferredEmptyCoverageMappingDecls.end())
6506     DeferredEmptyCoverageMappingDecls[D] = false;
6507   else
6508     I->second = false;
6509 }
6510 
6511 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6512   // We call takeVector() here to avoid use-after-free.
6513   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6514   // we deserialize function bodies to emit coverage info for them, and that
6515   // deserializes more declarations. How should we handle that case?
6516   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6517     if (!Entry.second)
6518       continue;
6519     const Decl *D = Entry.first;
6520     switch (D->getKind()) {
6521     case Decl::CXXConversion:
6522     case Decl::CXXMethod:
6523     case Decl::Function:
6524     case Decl::ObjCMethod: {
6525       CodeGenPGO PGO(*this);
6526       GlobalDecl GD(cast<FunctionDecl>(D));
6527       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6528                                   getFunctionLinkage(GD));
6529       break;
6530     }
6531     case Decl::CXXConstructor: {
6532       CodeGenPGO PGO(*this);
6533       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6534       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6535                                   getFunctionLinkage(GD));
6536       break;
6537     }
6538     case Decl::CXXDestructor: {
6539       CodeGenPGO PGO(*this);
6540       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6541       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6542                                   getFunctionLinkage(GD));
6543       break;
6544     }
6545     default:
6546       break;
6547     };
6548   }
6549 }
6550 
6551 void CodeGenModule::EmitMainVoidAlias() {
6552   // In order to transition away from "__original_main" gracefully, emit an
6553   // alias for "main" in the no-argument case so that libc can detect when
6554   // new-style no-argument main is in used.
6555   if (llvm::Function *F = getModule().getFunction("main")) {
6556     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6557         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6558       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6559       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6560     }
6561   }
6562 }
6563 
6564 /// Turns the given pointer into a constant.
6565 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6566                                           const void *Ptr) {
6567   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6568   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6569   return llvm::ConstantInt::get(i64, PtrInt);
6570 }
6571 
6572 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6573                                    llvm::NamedMDNode *&GlobalMetadata,
6574                                    GlobalDecl D,
6575                                    llvm::GlobalValue *Addr) {
6576   if (!GlobalMetadata)
6577     GlobalMetadata =
6578       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6579 
6580   // TODO: should we report variant information for ctors/dtors?
6581   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6582                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6583                                CGM.getLLVMContext(), D.getDecl()))};
6584   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6585 }
6586 
6587 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6588                                                  llvm::GlobalValue *CppFunc) {
6589   // Store the list of ifuncs we need to replace uses in.
6590   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6591   // List of ConstantExprs that we should be able to delete when we're done
6592   // here.
6593   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6594 
6595   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6596   if (Elem == CppFunc)
6597     return false;
6598 
6599   // First make sure that all users of this are ifuncs (or ifuncs via a
6600   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6601   // later.
6602   for (llvm::User *User : Elem->users()) {
6603     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6604     // ifunc directly. In any other case, just give up, as we don't know what we
6605     // could break by changing those.
6606     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6607       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6608         return false;
6609 
6610       for (llvm::User *CEUser : ConstExpr->users()) {
6611         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6612           IFuncs.push_back(IFunc);
6613         } else {
6614           return false;
6615         }
6616       }
6617       CEs.push_back(ConstExpr);
6618     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6619       IFuncs.push_back(IFunc);
6620     } else {
6621       // This user is one we don't know how to handle, so fail redirection. This
6622       // will result in an ifunc retaining a resolver name that will ultimately
6623       // fail to be resolved to a defined function.
6624       return false;
6625     }
6626   }
6627 
6628   // Now we know this is a valid case where we can do this alias replacement, we
6629   // need to remove all of the references to Elem (and the bitcasts!) so we can
6630   // delete it.
6631   for (llvm::GlobalIFunc *IFunc : IFuncs)
6632     IFunc->setResolver(nullptr);
6633   for (llvm::ConstantExpr *ConstExpr : CEs)
6634     ConstExpr->destroyConstant();
6635 
6636   // We should now be out of uses for the 'old' version of this function, so we
6637   // can erase it as well.
6638   Elem->eraseFromParent();
6639 
6640   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6641     // The type of the resolver is always just a function-type that returns the
6642     // type of the IFunc, so create that here. If the type of the actual
6643     // resolver doesn't match, it just gets bitcast to the right thing.
6644     auto *ResolverTy =
6645         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6646     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6647         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6648     IFunc->setResolver(Resolver);
6649   }
6650   return true;
6651 }
6652 
6653 /// For each function which is declared within an extern "C" region and marked
6654 /// as 'used', but has internal linkage, create an alias from the unmangled
6655 /// name to the mangled name if possible. People expect to be able to refer
6656 /// to such functions with an unmangled name from inline assembly within the
6657 /// same translation unit.
6658 void CodeGenModule::EmitStaticExternCAliases() {
6659   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6660     return;
6661   for (auto &I : StaticExternCValues) {
6662     IdentifierInfo *Name = I.first;
6663     llvm::GlobalValue *Val = I.second;
6664 
6665     // If Val is null, that implies there were multiple declarations that each
6666     // had a claim to the unmangled name. In this case, generation of the alias
6667     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6668     if (!Val)
6669       break;
6670 
6671     llvm::GlobalValue *ExistingElem =
6672         getModule().getNamedValue(Name->getName());
6673 
6674     // If there is either not something already by this name, or we were able to
6675     // replace all uses from IFuncs, create the alias.
6676     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6677       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6678   }
6679 }
6680 
6681 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6682                                              GlobalDecl &Result) const {
6683   auto Res = Manglings.find(MangledName);
6684   if (Res == Manglings.end())
6685     return false;
6686   Result = Res->getValue();
6687   return true;
6688 }
6689 
6690 /// Emits metadata nodes associating all the global values in the
6691 /// current module with the Decls they came from.  This is useful for
6692 /// projects using IR gen as a subroutine.
6693 ///
6694 /// Since there's currently no way to associate an MDNode directly
6695 /// with an llvm::GlobalValue, we create a global named metadata
6696 /// with the name 'clang.global.decl.ptrs'.
6697 void CodeGenModule::EmitDeclMetadata() {
6698   llvm::NamedMDNode *GlobalMetadata = nullptr;
6699 
6700   for (auto &I : MangledDeclNames) {
6701     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6702     // Some mangled names don't necessarily have an associated GlobalValue
6703     // in this module, e.g. if we mangled it for DebugInfo.
6704     if (Addr)
6705       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6706   }
6707 }
6708 
6709 /// Emits metadata nodes for all the local variables in the current
6710 /// function.
6711 void CodeGenFunction::EmitDeclMetadata() {
6712   if (LocalDeclMap.empty()) return;
6713 
6714   llvm::LLVMContext &Context = getLLVMContext();
6715 
6716   // Find the unique metadata ID for this name.
6717   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6718 
6719   llvm::NamedMDNode *GlobalMetadata = nullptr;
6720 
6721   for (auto &I : LocalDeclMap) {
6722     const Decl *D = I.first;
6723     llvm::Value *Addr = I.second.getPointer();
6724     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6725       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6726       Alloca->setMetadata(
6727           DeclPtrKind, llvm::MDNode::get(
6728                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6729     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6730       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6731       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6732     }
6733   }
6734 }
6735 
6736 void CodeGenModule::EmitVersionIdentMetadata() {
6737   llvm::NamedMDNode *IdentMetadata =
6738     TheModule.getOrInsertNamedMetadata("llvm.ident");
6739   std::string Version = getClangFullVersion();
6740   llvm::LLVMContext &Ctx = TheModule.getContext();
6741 
6742   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6743   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6744 }
6745 
6746 void CodeGenModule::EmitCommandLineMetadata() {
6747   llvm::NamedMDNode *CommandLineMetadata =
6748     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6749   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6750   llvm::LLVMContext &Ctx = TheModule.getContext();
6751 
6752   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6753   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6754 }
6755 
6756 void CodeGenModule::EmitCoverageFile() {
6757   if (getCodeGenOpts().CoverageDataFile.empty() &&
6758       getCodeGenOpts().CoverageNotesFile.empty())
6759     return;
6760 
6761   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6762   if (!CUNode)
6763     return;
6764 
6765   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6766   llvm::LLVMContext &Ctx = TheModule.getContext();
6767   auto *CoverageDataFile =
6768       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6769   auto *CoverageNotesFile =
6770       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6771   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6772     llvm::MDNode *CU = CUNode->getOperand(i);
6773     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6774     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6775   }
6776 }
6777 
6778 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6779                                                        bool ForEH) {
6780   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6781   // FIXME: should we even be calling this method if RTTI is disabled
6782   // and it's not for EH?
6783   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6784       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6785        getTriple().isNVPTX()))
6786     return llvm::Constant::getNullValue(Int8PtrTy);
6787 
6788   if (ForEH && Ty->isObjCObjectPointerType() &&
6789       LangOpts.ObjCRuntime.isGNUFamily())
6790     return ObjCRuntime->GetEHType(Ty);
6791 
6792   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6793 }
6794 
6795 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6796   // Do not emit threadprivates in simd-only mode.
6797   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6798     return;
6799   for (auto RefExpr : D->varlists()) {
6800     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6801     bool PerformInit =
6802         VD->getAnyInitializer() &&
6803         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6804                                                         /*ForRef=*/false);
6805 
6806     Address Addr(GetAddrOfGlobalVar(VD),
6807                  getTypes().ConvertTypeForMem(VD->getType()),
6808                  getContext().getDeclAlign(VD));
6809     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6810             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6811       CXXGlobalInits.push_back(InitFunction);
6812   }
6813 }
6814 
6815 llvm::Metadata *
6816 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6817                                             StringRef Suffix) {
6818   if (auto *FnType = T->getAs<FunctionProtoType>())
6819     T = getContext().getFunctionType(
6820         FnType->getReturnType(), FnType->getParamTypes(),
6821         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6822 
6823   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6824   if (InternalId)
6825     return InternalId;
6826 
6827   if (isExternallyVisible(T->getLinkage())) {
6828     std::string OutName;
6829     llvm::raw_string_ostream Out(OutName);
6830     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6831     Out << Suffix;
6832 
6833     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6834   } else {
6835     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6836                                            llvm::ArrayRef<llvm::Metadata *>());
6837   }
6838 
6839   return InternalId;
6840 }
6841 
6842 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6843   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6844 }
6845 
6846 llvm::Metadata *
6847 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6848   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6849 }
6850 
6851 // Generalize pointer types to a void pointer with the qualifiers of the
6852 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6853 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6854 // 'void *'.
6855 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6856   if (!Ty->isPointerType())
6857     return Ty;
6858 
6859   return Ctx.getPointerType(
6860       QualType(Ctx.VoidTy).withCVRQualifiers(
6861           Ty->getPointeeType().getCVRQualifiers()));
6862 }
6863 
6864 // Apply type generalization to a FunctionType's return and argument types
6865 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6866   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6867     SmallVector<QualType, 8> GeneralizedParams;
6868     for (auto &Param : FnType->param_types())
6869       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6870 
6871     return Ctx.getFunctionType(
6872         GeneralizeType(Ctx, FnType->getReturnType()),
6873         GeneralizedParams, FnType->getExtProtoInfo());
6874   }
6875 
6876   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6877     return Ctx.getFunctionNoProtoType(
6878         GeneralizeType(Ctx, FnType->getReturnType()));
6879 
6880   llvm_unreachable("Encountered unknown FunctionType");
6881 }
6882 
6883 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6884   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6885                                       GeneralizedMetadataIdMap, ".generalized");
6886 }
6887 
6888 /// Returns whether this module needs the "all-vtables" type identifier.
6889 bool CodeGenModule::NeedAllVtablesTypeId() const {
6890   // Returns true if at least one of vtable-based CFI checkers is enabled and
6891   // is not in the trapping mode.
6892   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6893            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6894           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6895            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6896           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6897            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6898           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6899            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6900 }
6901 
6902 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6903                                           CharUnits Offset,
6904                                           const CXXRecordDecl *RD) {
6905   llvm::Metadata *MD =
6906       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6907   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6908 
6909   if (CodeGenOpts.SanitizeCfiCrossDso)
6910     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6911       VTable->addTypeMetadata(Offset.getQuantity(),
6912                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6913 
6914   if (NeedAllVtablesTypeId()) {
6915     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6916     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6917   }
6918 }
6919 
6920 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6921   if (!SanStats)
6922     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6923 
6924   return *SanStats;
6925 }
6926 
6927 llvm::Value *
6928 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6929                                                   CodeGenFunction &CGF) {
6930   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6931   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6932   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6933   auto *Call = CGF.EmitRuntimeCall(
6934       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6935   return Call;
6936 }
6937 
6938 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6939     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6940   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6941                                  /* forPointeeType= */ true);
6942 }
6943 
6944 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6945                                                  LValueBaseInfo *BaseInfo,
6946                                                  TBAAAccessInfo *TBAAInfo,
6947                                                  bool forPointeeType) {
6948   if (TBAAInfo)
6949     *TBAAInfo = getTBAAAccessInfo(T);
6950 
6951   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6952   // that doesn't return the information we need to compute BaseInfo.
6953 
6954   // Honor alignment typedef attributes even on incomplete types.
6955   // We also honor them straight for C++ class types, even as pointees;
6956   // there's an expressivity gap here.
6957   if (auto TT = T->getAs<TypedefType>()) {
6958     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6959       if (BaseInfo)
6960         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6961       return getContext().toCharUnitsFromBits(Align);
6962     }
6963   }
6964 
6965   bool AlignForArray = T->isArrayType();
6966 
6967   // Analyze the base element type, so we don't get confused by incomplete
6968   // array types.
6969   T = getContext().getBaseElementType(T);
6970 
6971   if (T->isIncompleteType()) {
6972     // We could try to replicate the logic from
6973     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6974     // type is incomplete, so it's impossible to test. We could try to reuse
6975     // getTypeAlignIfKnown, but that doesn't return the information we need
6976     // to set BaseInfo.  So just ignore the possibility that the alignment is
6977     // greater than one.
6978     if (BaseInfo)
6979       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6980     return CharUnits::One();
6981   }
6982 
6983   if (BaseInfo)
6984     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6985 
6986   CharUnits Alignment;
6987   const CXXRecordDecl *RD;
6988   if (T.getQualifiers().hasUnaligned()) {
6989     Alignment = CharUnits::One();
6990   } else if (forPointeeType && !AlignForArray &&
6991              (RD = T->getAsCXXRecordDecl())) {
6992     // For C++ class pointees, we don't know whether we're pointing at a
6993     // base or a complete object, so we generally need to use the
6994     // non-virtual alignment.
6995     Alignment = getClassPointerAlignment(RD);
6996   } else {
6997     Alignment = getContext().getTypeAlignInChars(T);
6998   }
6999 
7000   // Cap to the global maximum type alignment unless the alignment
7001   // was somehow explicit on the type.
7002   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7003     if (Alignment.getQuantity() > MaxAlign &&
7004         !getContext().isAlignmentRequired(T))
7005       Alignment = CharUnits::fromQuantity(MaxAlign);
7006   }
7007   return Alignment;
7008 }
7009 
7010 bool CodeGenModule::stopAutoInit() {
7011   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7012   if (StopAfter) {
7013     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7014     // used
7015     if (NumAutoVarInit >= StopAfter) {
7016       return true;
7017     }
7018     if (!NumAutoVarInit) {
7019       unsigned DiagID = getDiags().getCustomDiagID(
7020           DiagnosticsEngine::Warning,
7021           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7022           "number of times ftrivial-auto-var-init=%1 gets applied.");
7023       getDiags().Report(DiagID)
7024           << StopAfter
7025           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7026                       LangOptions::TrivialAutoVarInitKind::Zero
7027                   ? "zero"
7028                   : "pattern");
7029     }
7030     ++NumAutoVarInit;
7031   }
7032   return false;
7033 }
7034 
7035 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7036                                                     const Decl *D) const {
7037   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7038   // postfix beginning with '.' since the symbol name can be demangled.
7039   if (LangOpts.HIP)
7040     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7041   else
7042     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7043 
7044   // If the CUID is not specified we try to generate a unique postfix.
7045   if (getLangOpts().CUID.empty()) {
7046     SourceManager &SM = getContext().getSourceManager();
7047     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7048     assert(PLoc.isValid() && "Source location is expected to be valid.");
7049 
7050     // Get the hash of the user defined macros.
7051     llvm::MD5 Hash;
7052     llvm::MD5::MD5Result Result;
7053     for (const auto &Arg : PreprocessorOpts.Macros)
7054       Hash.update(Arg.first);
7055     Hash.final(Result);
7056 
7057     // Get the UniqueID for the file containing the decl.
7058     llvm::sys::fs::UniqueID ID;
7059     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7060       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7061       assert(PLoc.isValid() && "Source location is expected to be valid.");
7062       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7063         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7064             << PLoc.getFilename() << EC.message();
7065     }
7066     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7067        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7068   } else {
7069     OS << getContext().getCUIDHash();
7070   }
7071 }
7072 
7073 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7074   assert(DeferredDeclsToEmit.empty() &&
7075          "Should have emitted all decls deferred to emit.");
7076   assert(NewBuilder->DeferredDecls.empty() &&
7077          "Newly created module should not have deferred decls");
7078   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7079 
7080   assert(NewBuilder->DeferredVTables.empty() &&
7081          "Newly created module should not have deferred vtables");
7082   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7083 
7084   assert(NewBuilder->MangledDeclNames.empty() &&
7085          "Newly created module should not have mangled decl names");
7086   assert(NewBuilder->Manglings.empty() &&
7087          "Newly created module should not have manglings");
7088   NewBuilder->Manglings = std::move(Manglings);
7089 
7090   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7091   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7092 
7093   NewBuilder->TBAA = std::move(TBAA);
7094 
7095   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7096          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7097 
7098   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7099 
7100   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7101 }
7102