1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static const char AnnotationSection[] = "llvm.metadata"; 64 65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 66 switch (CGM.getTarget().getCXXABI().getKind()) { 67 case TargetCXXABI::GenericAArch64: 68 case TargetCXXABI::GenericARM: 69 case TargetCXXABI::iOS: 70 case TargetCXXABI::iOS64: 71 case TargetCXXABI::WatchOS: 72 case TargetCXXABI::GenericMIPS: 73 case TargetCXXABI::GenericItanium: 74 case TargetCXXABI::WebAssembly: 75 return CreateItaniumCXXABI(CGM); 76 case TargetCXXABI::Microsoft: 77 return CreateMicrosoftCXXABI(CGM); 78 } 79 80 llvm_unreachable("invalid C++ ABI kind"); 81 } 82 83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 84 const PreprocessorOptions &PPO, 85 const CodeGenOptions &CGO, llvm::Module &M, 86 DiagnosticsEngine &diags, 87 CoverageSourceInfo *CoverageInfo) 88 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 89 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 90 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 91 VMContext(M.getContext()), Types(*this), VTables(*this), 92 SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 SizeSizeInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 108 IntAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, 112 C.getTargetInfo().getMaxPointerWidth()); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 AllocaInt8PtrTy = Int8Ty->getPointerTo( 116 M.getDataLayout().getAllocaAddrSpace()); 117 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext())); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 141 DebugInfo.reset(new CGDebugInfo(*this)); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData.reset(new ObjCEntrypoints()); 147 148 if (CodeGenOpts.hasProfileClangUse()) { 149 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 150 CodeGenOpts.ProfileInstrumentUsePath); 151 if (auto E = ReaderOrErr.takeError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 155 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 156 << EI.message(); 157 }); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() {} 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 case ObjCRuntime::WatchOS: 184 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 185 return; 186 } 187 llvm_unreachable("bad runtime kind"); 188 } 189 190 void CodeGenModule::createOpenCLRuntime() { 191 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 192 } 193 194 void CodeGenModule::createOpenMPRuntime() { 195 // Select a specialized code generation class based on the target, if any. 196 // If it does not exist use the default implementation. 197 switch (getTriple().getArch()) { 198 case llvm::Triple::nvptx: 199 case llvm::Triple::nvptx64: 200 assert(getLangOpts().OpenMPIsDevice && 201 "OpenMP NVPTX is only prepared to deal with device code."); 202 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 203 break; 204 default: 205 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 206 break; 207 } 208 } 209 210 void CodeGenModule::createCUDARuntime() { 211 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 212 } 213 214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 215 Replacements[Name] = C; 216 } 217 218 void CodeGenModule::applyReplacements() { 219 for (auto &I : Replacements) { 220 StringRef MangledName = I.first(); 221 llvm::Constant *Replacement = I.second; 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 if (!Entry) 224 continue; 225 auto *OldF = cast<llvm::Function>(Entry); 226 auto *NewF = dyn_cast<llvm::Function>(Replacement); 227 if (!NewF) { 228 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 229 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 230 } else { 231 auto *CE = cast<llvm::ConstantExpr>(Replacement); 232 assert(CE->getOpcode() == llvm::Instruction::BitCast || 233 CE->getOpcode() == llvm::Instruction::GetElementPtr); 234 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 235 } 236 } 237 238 // Replace old with new, but keep the old order. 239 OldF->replaceAllUsesWith(Replacement); 240 if (NewF) { 241 NewF->removeFromParent(); 242 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 243 NewF); 244 } 245 OldF->eraseFromParent(); 246 } 247 } 248 249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 250 GlobalValReplacements.push_back(std::make_pair(GV, C)); 251 } 252 253 void CodeGenModule::applyGlobalValReplacements() { 254 for (auto &I : GlobalValReplacements) { 255 llvm::GlobalValue *GV = I.first; 256 llvm::Constant *C = I.second; 257 258 GV->replaceAllUsesWith(C); 259 GV->eraseFromParent(); 260 } 261 } 262 263 // This is only used in aliases that we created and we know they have a 264 // linear structure. 265 static const llvm::GlobalObject *getAliasedGlobal( 266 const llvm::GlobalIndirectSymbol &GIS) { 267 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 268 const llvm::Constant *C = &GIS; 269 for (;;) { 270 C = C->stripPointerCasts(); 271 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 272 return GO; 273 // stripPointerCasts will not walk over weak aliases. 274 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 275 if (!GIS2) 276 return nullptr; 277 if (!Visited.insert(GIS2).second) 278 return nullptr; 279 C = GIS2->getIndirectSymbol(); 280 } 281 } 282 283 void CodeGenModule::checkAliases() { 284 // Check if the constructed aliases are well formed. It is really unfortunate 285 // that we have to do this in CodeGen, but we only construct mangled names 286 // and aliases during codegen. 287 bool Error = false; 288 DiagnosticsEngine &Diags = getDiags(); 289 for (const GlobalDecl &GD : Aliases) { 290 const auto *D = cast<ValueDecl>(GD.getDecl()); 291 SourceLocation Location; 292 bool IsIFunc = D->hasAttr<IFuncAttr>(); 293 if (const Attr *A = D->getDefiningAttr()) 294 Location = A->getLocation(); 295 else 296 llvm_unreachable("Not an alias or ifunc?"); 297 StringRef MangledName = getMangledName(GD); 298 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 299 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 300 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 301 if (!GV) { 302 Error = true; 303 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 304 } else if (GV->isDeclaration()) { 305 Error = true; 306 Diags.Report(Location, diag::err_alias_to_undefined) 307 << IsIFunc << IsIFunc; 308 } else if (IsIFunc) { 309 // Check resolver function type. 310 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 311 GV->getType()->getPointerElementType()); 312 assert(FTy); 313 if (!FTy->getReturnType()->isPointerTy()) 314 Diags.Report(Location, diag::err_ifunc_resolver_return); 315 if (FTy->getNumParams()) 316 Diags.Report(Location, diag::err_ifunc_resolver_params); 317 } 318 319 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 320 llvm::GlobalValue *AliaseeGV; 321 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 322 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 323 else 324 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 325 326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 327 StringRef AliasSection = SA->getName(); 328 if (AliasSection != AliaseeGV->getSection()) 329 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 330 << AliasSection << IsIFunc << IsIFunc; 331 } 332 333 // We have to handle alias to weak aliases in here. LLVM itself disallows 334 // this since the object semantics would not match the IL one. For 335 // compatibility with gcc we implement it by just pointing the alias 336 // to its aliasee's aliasee. We also warn, since the user is probably 337 // expecting the link to be weak. 338 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 339 if (GA->isInterposable()) { 340 Diags.Report(Location, diag::warn_alias_to_weak_alias) 341 << GV->getName() << GA->getName() << IsIFunc; 342 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 343 GA->getIndirectSymbol(), Alias->getType()); 344 Alias->setIndirectSymbol(Aliasee); 345 } 346 } 347 } 348 if (!Error) 349 return; 350 351 for (const GlobalDecl &GD : Aliases) { 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 354 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 355 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 356 Alias->eraseFromParent(); 357 } 358 } 359 360 void CodeGenModule::clear() { 361 DeferredDeclsToEmit.clear(); 362 if (OpenMPRuntime) 363 OpenMPRuntime->clear(); 364 } 365 366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 367 StringRef MainFile) { 368 if (!hasDiagnostics()) 369 return; 370 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 371 if (MainFile.empty()) 372 MainFile = "<stdin>"; 373 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 374 } else { 375 if (Mismatched > 0) 376 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 377 378 if (Missing > 0) 379 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 380 } 381 } 382 383 void CodeGenModule::Release() { 384 EmitDeferred(); 385 EmitVTablesOpportunistically(); 386 applyGlobalValReplacements(); 387 applyReplacements(); 388 checkAliases(); 389 EmitCXXGlobalInitFunc(); 390 EmitCXXGlobalDtorFunc(); 391 EmitCXXThreadLocalInitFunc(); 392 if (ObjCRuntime) 393 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 394 AddGlobalCtor(ObjCInitFunction); 395 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 396 CUDARuntime) { 397 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 398 AddGlobalCtor(CudaCtorFunction); 399 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 400 AddGlobalDtor(CudaDtorFunction); 401 } 402 if (OpenMPRuntime) 403 if (llvm::Function *OpenMPRegistrationFunction = 404 OpenMPRuntime->emitRegistrationFunction()) { 405 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 406 OpenMPRegistrationFunction : nullptr; 407 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 408 } 409 if (PGOReader) { 410 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 411 if (PGOStats.hasDiagnostics()) 412 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 413 } 414 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 415 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 416 EmitGlobalAnnotations(); 417 EmitStaticExternCAliases(); 418 EmitDeferredUnusedCoverageMappings(); 419 if (CoverageMapping) 420 CoverageMapping->emit(); 421 if (CodeGenOpts.SanitizeCfiCrossDso) { 422 CodeGenFunction(*this).EmitCfiCheckFail(); 423 CodeGenFunction(*this).EmitCfiCheckStub(); 424 } 425 emitAtAvailableLinkGuard(); 426 emitLLVMUsed(); 427 if (SanStats) 428 SanStats->finish(); 429 430 if (CodeGenOpts.Autolink && 431 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 432 EmitModuleLinkOptions(); 433 } 434 435 // Record mregparm value now so it is visible through rest of codegen. 436 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 437 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 438 CodeGenOpts.NumRegisterParameters); 439 440 if (CodeGenOpts.DwarfVersion) { 441 // We actually want the latest version when there are conflicts. 442 // We can change from Warning to Latest if such mode is supported. 443 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 444 CodeGenOpts.DwarfVersion); 445 } 446 if (CodeGenOpts.EmitCodeView) { 447 // Indicate that we want CodeView in the metadata. 448 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 449 } 450 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 451 // We don't support LTO with 2 with different StrictVTablePointers 452 // FIXME: we could support it by stripping all the information introduced 453 // by StrictVTablePointers. 454 455 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 456 457 llvm::Metadata *Ops[2] = { 458 llvm::MDString::get(VMContext, "StrictVTablePointers"), 459 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 460 llvm::Type::getInt32Ty(VMContext), 1))}; 461 462 getModule().addModuleFlag(llvm::Module::Require, 463 "StrictVTablePointersRequirement", 464 llvm::MDNode::get(VMContext, Ops)); 465 } 466 if (DebugInfo) 467 // We support a single version in the linked module. The LLVM 468 // parser will drop debug info with a different version number 469 // (and warn about it, too). 470 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 471 llvm::DEBUG_METADATA_VERSION); 472 473 // Width of wchar_t in bytes 474 uint64_t WCharWidth = 475 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 476 assert((LangOpts.ShortWChar || 477 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 478 Target.getWCharWidth() / 8) && 479 "LLVM wchar_t size out of sync"); 480 481 // We need to record the widths of enums and wchar_t, so that we can generate 482 // the correct build attributes in the ARM backend. wchar_size is also used by 483 // TargetLibraryInfo. 484 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 485 486 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 487 if ( Arch == llvm::Triple::arm 488 || Arch == llvm::Triple::armeb 489 || Arch == llvm::Triple::thumb 490 || Arch == llvm::Triple::thumbeb) { 491 // The minimum width of an enum in bytes 492 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 493 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 494 } 495 496 if (CodeGenOpts.SanitizeCfiCrossDso) { 497 // Indicate that we want cross-DSO control flow integrity checks. 498 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 499 } 500 501 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 502 // Indicate whether __nvvm_reflect should be configured to flush denormal 503 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 504 // property.) 505 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 506 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 507 } 508 509 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 510 if (LangOpts.OpenCL) { 511 EmitOpenCLMetadata(); 512 // Emit SPIR version. 513 if (getTriple().getArch() == llvm::Triple::spir || 514 getTriple().getArch() == llvm::Triple::spir64) { 515 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 516 // opencl.spir.version named metadata. 517 llvm::Metadata *SPIRVerElts[] = { 518 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 519 Int32Ty, LangOpts.OpenCLVersion / 100)), 520 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 521 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 522 llvm::NamedMDNode *SPIRVerMD = 523 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 524 llvm::LLVMContext &Ctx = TheModule.getContext(); 525 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 526 } 527 } 528 529 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 530 assert(PLevel < 3 && "Invalid PIC Level"); 531 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 532 if (Context.getLangOpts().PIE) 533 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 534 } 535 536 SimplifyPersonality(); 537 538 if (getCodeGenOpts().EmitDeclMetadata) 539 EmitDeclMetadata(); 540 541 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 542 EmitCoverageFile(); 543 544 if (DebugInfo) 545 DebugInfo->finalize(); 546 547 EmitVersionIdentMetadata(); 548 549 EmitTargetMetadata(); 550 } 551 552 void CodeGenModule::EmitOpenCLMetadata() { 553 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 554 // opencl.ocl.version named metadata node. 555 llvm::Metadata *OCLVerElts[] = { 556 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 557 Int32Ty, LangOpts.OpenCLVersion / 100)), 558 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 559 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 560 llvm::NamedMDNode *OCLVerMD = 561 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 562 llvm::LLVMContext &Ctx = TheModule.getContext(); 563 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 564 } 565 566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 567 // Make sure that this type is translated. 568 Types.UpdateCompletedType(TD); 569 } 570 571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 572 // Make sure that this type is translated. 573 Types.RefreshTypeCacheForClass(RD); 574 } 575 576 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 577 if (!TBAA) 578 return nullptr; 579 return TBAA->getTBAAInfo(QTy); 580 } 581 582 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 583 if (!TBAA) 584 return nullptr; 585 return TBAA->getTBAAInfoForVTablePtr(); 586 } 587 588 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 589 if (!TBAA) 590 return nullptr; 591 return TBAA->getTBAAStructInfo(QTy); 592 } 593 594 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 595 llvm::MDNode *AccessN, 596 uint64_t O) { 597 if (!TBAA) 598 return nullptr; 599 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 600 } 601 602 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 603 /// and struct-path aware TBAA, the tag has the same format: 604 /// base type, access type and offset. 605 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 606 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 607 llvm::MDNode *TBAAInfo, 608 bool ConvertTypeToTag) { 609 if (ConvertTypeToTag && TBAA) 610 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 611 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 612 else 613 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 614 } 615 616 void CodeGenModule::DecorateInstructionWithInvariantGroup( 617 llvm::Instruction *I, const CXXRecordDecl *RD) { 618 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 619 llvm::MDNode::get(getLLVMContext(), {})); 620 } 621 622 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 623 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 624 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 625 } 626 627 /// ErrorUnsupported - Print out an error that codegen doesn't support the 628 /// specified stmt yet. 629 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 630 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 631 "cannot compile this %0 yet"); 632 std::string Msg = Type; 633 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 634 << Msg << S->getSourceRange(); 635 } 636 637 /// ErrorUnsupported - Print out an error that codegen doesn't support the 638 /// specified decl yet. 639 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 640 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 641 "cannot compile this %0 yet"); 642 std::string Msg = Type; 643 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 644 } 645 646 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 647 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 648 } 649 650 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 651 const NamedDecl *D) const { 652 // Internal definitions always have default visibility. 653 if (GV->hasLocalLinkage()) { 654 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 655 return; 656 } 657 658 // Set visibility for definitions. 659 LinkageInfo LV = D->getLinkageAndVisibility(); 660 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 661 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 662 } 663 664 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 665 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 666 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 667 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 668 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 669 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 670 } 671 672 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 673 CodeGenOptions::TLSModel M) { 674 switch (M) { 675 case CodeGenOptions::GeneralDynamicTLSModel: 676 return llvm::GlobalVariable::GeneralDynamicTLSModel; 677 case CodeGenOptions::LocalDynamicTLSModel: 678 return llvm::GlobalVariable::LocalDynamicTLSModel; 679 case CodeGenOptions::InitialExecTLSModel: 680 return llvm::GlobalVariable::InitialExecTLSModel; 681 case CodeGenOptions::LocalExecTLSModel: 682 return llvm::GlobalVariable::LocalExecTLSModel; 683 } 684 llvm_unreachable("Invalid TLS model!"); 685 } 686 687 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 688 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 689 690 llvm::GlobalValue::ThreadLocalMode TLM; 691 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 692 693 // Override the TLS model if it is explicitly specified. 694 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 695 TLM = GetLLVMTLSModel(Attr->getModel()); 696 } 697 698 GV->setThreadLocalMode(TLM); 699 } 700 701 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 702 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 703 704 // Some ABIs don't have constructor variants. Make sure that base and 705 // complete constructors get mangled the same. 706 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 707 if (!getTarget().getCXXABI().hasConstructorVariants()) { 708 CXXCtorType OrigCtorType = GD.getCtorType(); 709 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 710 if (OrigCtorType == Ctor_Base) 711 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 712 } 713 } 714 715 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 716 if (!FoundStr.empty()) 717 return FoundStr; 718 719 const auto *ND = cast<NamedDecl>(GD.getDecl()); 720 SmallString<256> Buffer; 721 StringRef Str; 722 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 723 llvm::raw_svector_ostream Out(Buffer); 724 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 725 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 726 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 727 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 728 else 729 getCXXABI().getMangleContext().mangleName(ND, Out); 730 Str = Out.str(); 731 } else { 732 IdentifierInfo *II = ND->getIdentifier(); 733 assert(II && "Attempt to mangle unnamed decl."); 734 const auto *FD = dyn_cast<FunctionDecl>(ND); 735 736 if (FD && 737 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 738 llvm::raw_svector_ostream Out(Buffer); 739 Out << "__regcall3__" << II->getName(); 740 Str = Out.str(); 741 } else { 742 Str = II->getName(); 743 } 744 } 745 746 // Keep the first result in the case of a mangling collision. 747 auto Result = Manglings.insert(std::make_pair(Str, GD)); 748 return FoundStr = Result.first->first(); 749 } 750 751 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 752 const BlockDecl *BD) { 753 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 754 const Decl *D = GD.getDecl(); 755 756 SmallString<256> Buffer; 757 llvm::raw_svector_ostream Out(Buffer); 758 if (!D) 759 MangleCtx.mangleGlobalBlock(BD, 760 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 761 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 762 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 763 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 764 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 765 else 766 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 767 768 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 769 return Result.first->first(); 770 } 771 772 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 773 return getModule().getNamedValue(Name); 774 } 775 776 /// AddGlobalCtor - Add a function to the list that will be called before 777 /// main() runs. 778 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 779 llvm::Constant *AssociatedData) { 780 // FIXME: Type coercion of void()* types. 781 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 782 } 783 784 /// AddGlobalDtor - Add a function to the list that will be called 785 /// when the module is unloaded. 786 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 787 // FIXME: Type coercion of void()* types. 788 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 789 } 790 791 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 792 if (Fns.empty()) return; 793 794 // Ctor function type is void()*. 795 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 796 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 797 798 // Get the type of a ctor entry, { i32, void ()*, i8* }. 799 llvm::StructType *CtorStructTy = llvm::StructType::get( 800 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 801 802 // Construct the constructor and destructor arrays. 803 ConstantInitBuilder builder(*this); 804 auto ctors = builder.beginArray(CtorStructTy); 805 for (const auto &I : Fns) { 806 auto ctor = ctors.beginStruct(CtorStructTy); 807 ctor.addInt(Int32Ty, I.Priority); 808 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 809 if (I.AssociatedData) 810 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 811 else 812 ctor.addNullPointer(VoidPtrTy); 813 ctor.finishAndAddTo(ctors); 814 } 815 816 auto list = 817 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 818 /*constant*/ false, 819 llvm::GlobalValue::AppendingLinkage); 820 821 // The LTO linker doesn't seem to like it when we set an alignment 822 // on appending variables. Take it off as a workaround. 823 list->setAlignment(0); 824 825 Fns.clear(); 826 } 827 828 llvm::GlobalValue::LinkageTypes 829 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 830 const auto *D = cast<FunctionDecl>(GD.getDecl()); 831 832 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 833 834 if (isa<CXXDestructorDecl>(D) && 835 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 836 GD.getDtorType())) { 837 // Destructor variants in the Microsoft C++ ABI are always internal or 838 // linkonce_odr thunks emitted on an as-needed basis. 839 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 840 : llvm::GlobalValue::LinkOnceODRLinkage; 841 } 842 843 if (isa<CXXConstructorDecl>(D) && 844 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 845 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 846 // Our approach to inheriting constructors is fundamentally different from 847 // that used by the MS ABI, so keep our inheriting constructor thunks 848 // internal rather than trying to pick an unambiguous mangling for them. 849 return llvm::GlobalValue::InternalLinkage; 850 } 851 852 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 853 } 854 855 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 856 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 857 858 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 859 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 860 // Don't dllexport/import destructor thunks. 861 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 862 return; 863 } 864 } 865 866 if (FD->hasAttr<DLLImportAttr>()) 867 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 868 else if (FD->hasAttr<DLLExportAttr>()) 869 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 870 else 871 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 872 } 873 874 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 875 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 876 if (!MDS) return nullptr; 877 878 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 879 } 880 881 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 882 llvm::Function *F) { 883 setNonAliasAttributes(D, F); 884 } 885 886 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 887 const CGFunctionInfo &Info, 888 llvm::Function *F) { 889 unsigned CallingConv; 890 llvm::AttributeList PAL; 891 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 892 F->setAttributes(PAL); 893 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 894 } 895 896 /// Determines whether the language options require us to model 897 /// unwind exceptions. We treat -fexceptions as mandating this 898 /// except under the fragile ObjC ABI with only ObjC exceptions 899 /// enabled. This means, for example, that C with -fexceptions 900 /// enables this. 901 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 902 // If exceptions are completely disabled, obviously this is false. 903 if (!LangOpts.Exceptions) return false; 904 905 // If C++ exceptions are enabled, this is true. 906 if (LangOpts.CXXExceptions) return true; 907 908 // If ObjC exceptions are enabled, this depends on the ABI. 909 if (LangOpts.ObjCExceptions) { 910 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 911 } 912 913 return true; 914 } 915 916 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 917 llvm::Function *F) { 918 llvm::AttrBuilder B; 919 920 if (CodeGenOpts.UnwindTables) 921 B.addAttribute(llvm::Attribute::UWTable); 922 923 if (!hasUnwindExceptions(LangOpts)) 924 B.addAttribute(llvm::Attribute::NoUnwind); 925 926 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 927 B.addAttribute(llvm::Attribute::StackProtect); 928 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 929 B.addAttribute(llvm::Attribute::StackProtectStrong); 930 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 931 B.addAttribute(llvm::Attribute::StackProtectReq); 932 933 if (!D) { 934 // If we don't have a declaration to control inlining, the function isn't 935 // explicitly marked as alwaysinline for semantic reasons, and inlining is 936 // disabled, mark the function as noinline. 937 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 938 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 939 B.addAttribute(llvm::Attribute::NoInline); 940 941 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 942 return; 943 } 944 945 // Track whether we need to add the optnone LLVM attribute, 946 // starting with the default for this optimization level. 947 bool ShouldAddOptNone = 948 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 949 // We can't add optnone in the following cases, it won't pass the verifier. 950 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 951 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 952 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 953 954 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 955 B.addAttribute(llvm::Attribute::OptimizeNone); 956 957 // OptimizeNone implies noinline; we should not be inlining such functions. 958 B.addAttribute(llvm::Attribute::NoInline); 959 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 960 "OptimizeNone and AlwaysInline on same function!"); 961 962 // We still need to handle naked functions even though optnone subsumes 963 // much of their semantics. 964 if (D->hasAttr<NakedAttr>()) 965 B.addAttribute(llvm::Attribute::Naked); 966 967 // OptimizeNone wins over OptimizeForSize and MinSize. 968 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 969 F->removeFnAttr(llvm::Attribute::MinSize); 970 } else if (D->hasAttr<NakedAttr>()) { 971 // Naked implies noinline: we should not be inlining such functions. 972 B.addAttribute(llvm::Attribute::Naked); 973 B.addAttribute(llvm::Attribute::NoInline); 974 } else if (D->hasAttr<NoDuplicateAttr>()) { 975 B.addAttribute(llvm::Attribute::NoDuplicate); 976 } else if (D->hasAttr<NoInlineAttr>()) { 977 B.addAttribute(llvm::Attribute::NoInline); 978 } else if (D->hasAttr<AlwaysInlineAttr>() && 979 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 980 // (noinline wins over always_inline, and we can't specify both in IR) 981 B.addAttribute(llvm::Attribute::AlwaysInline); 982 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 983 // If we're not inlining, then force everything that isn't always_inline to 984 // carry an explicit noinline attribute. 985 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 986 B.addAttribute(llvm::Attribute::NoInline); 987 } else { 988 // Otherwise, propagate the inline hint attribute and potentially use its 989 // absence to mark things as noinline. 990 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 991 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 992 return Redecl->isInlineSpecified(); 993 })) { 994 B.addAttribute(llvm::Attribute::InlineHint); 995 } else if (CodeGenOpts.getInlining() == 996 CodeGenOptions::OnlyHintInlining && 997 !FD->isInlined() && 998 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 999 B.addAttribute(llvm::Attribute::NoInline); 1000 } 1001 } 1002 } 1003 1004 // Add other optimization related attributes if we are optimizing this 1005 // function. 1006 if (!D->hasAttr<OptimizeNoneAttr>()) { 1007 if (D->hasAttr<ColdAttr>()) { 1008 if (!ShouldAddOptNone) 1009 B.addAttribute(llvm::Attribute::OptimizeForSize); 1010 B.addAttribute(llvm::Attribute::Cold); 1011 } 1012 1013 if (D->hasAttr<MinSizeAttr>()) 1014 B.addAttribute(llvm::Attribute::MinSize); 1015 } 1016 1017 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1018 1019 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1020 if (alignment) 1021 F->setAlignment(alignment); 1022 1023 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1024 // reserve a bit for differentiating between virtual and non-virtual member 1025 // functions. If the current target's C++ ABI requires this and this is a 1026 // member function, set its alignment accordingly. 1027 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1028 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1029 F->setAlignment(2); 1030 } 1031 1032 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1033 if (CodeGenOpts.SanitizeCfiCrossDso) 1034 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1035 CreateFunctionTypeMetadata(FD, F); 1036 } 1037 1038 void CodeGenModule::SetCommonAttributes(const Decl *D, 1039 llvm::GlobalValue *GV) { 1040 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1041 setGlobalVisibility(GV, ND); 1042 else 1043 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1044 1045 if (D && D->hasAttr<UsedAttr>()) 1046 addUsedGlobal(GV); 1047 } 1048 1049 void CodeGenModule::setAliasAttributes(const Decl *D, 1050 llvm::GlobalValue *GV) { 1051 SetCommonAttributes(D, GV); 1052 1053 // Process the dllexport attribute based on whether the original definition 1054 // (not necessarily the aliasee) was exported. 1055 if (D->hasAttr<DLLExportAttr>()) 1056 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1057 } 1058 1059 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1060 llvm::GlobalObject *GO) { 1061 SetCommonAttributes(D, GO); 1062 1063 if (D) { 1064 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1065 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1066 GV->addAttribute("bss-section", SA->getName()); 1067 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1068 GV->addAttribute("data-section", SA->getName()); 1069 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1070 GV->addAttribute("rodata-section", SA->getName()); 1071 } 1072 1073 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1074 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1075 if (!D->getAttr<SectionAttr>()) 1076 F->addFnAttr("implicit-section-name", SA->getName()); 1077 } 1078 1079 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1080 GO->setSection(SA->getName()); 1081 } 1082 1083 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1084 } 1085 1086 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1087 llvm::Function *F, 1088 const CGFunctionInfo &FI) { 1089 SetLLVMFunctionAttributes(D, FI, F); 1090 SetLLVMFunctionAttributesForDefinition(D, F); 1091 1092 F->setLinkage(llvm::Function::InternalLinkage); 1093 1094 setNonAliasAttributes(D, F); 1095 } 1096 1097 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1098 const NamedDecl *ND) { 1099 // Set linkage and visibility in case we never see a definition. 1100 LinkageInfo LV = ND->getLinkageAndVisibility(); 1101 if (!isExternallyVisible(LV.getLinkage())) { 1102 // Don't set internal linkage on declarations. 1103 } else { 1104 if (ND->hasAttr<DLLImportAttr>()) { 1105 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1106 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1107 } else if (ND->hasAttr<DLLExportAttr>()) { 1108 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1109 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1110 // "extern_weak" is overloaded in LLVM; we probably should have 1111 // separate linkage types for this. 1112 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1113 } 1114 1115 // Set visibility on a declaration only if it's explicit. 1116 if (LV.isVisibilityExplicit()) 1117 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1118 } 1119 } 1120 1121 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1122 llvm::Function *F) { 1123 // Only if we are checking indirect calls. 1124 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1125 return; 1126 1127 // Non-static class methods are handled via vtable pointer checks elsewhere. 1128 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1129 return; 1130 1131 // Additionally, if building with cross-DSO support... 1132 if (CodeGenOpts.SanitizeCfiCrossDso) { 1133 // Skip available_externally functions. They won't be codegen'ed in the 1134 // current module anyway. 1135 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1136 return; 1137 } 1138 1139 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1140 F->addTypeMetadata(0, MD); 1141 1142 // Emit a hash-based bit set entry for cross-DSO calls. 1143 if (CodeGenOpts.SanitizeCfiCrossDso) 1144 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1145 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1146 } 1147 1148 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1149 bool IsIncompleteFunction, 1150 bool IsThunk) { 1151 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1152 // If this is an intrinsic function, set the function's attributes 1153 // to the intrinsic's attributes. 1154 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1155 return; 1156 } 1157 1158 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1159 1160 if (!IsIncompleteFunction) 1161 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1162 1163 // Add the Returned attribute for "this", except for iOS 5 and earlier 1164 // where substantial code, including the libstdc++ dylib, was compiled with 1165 // GCC and does not actually return "this". 1166 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1167 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1168 assert(!F->arg_empty() && 1169 F->arg_begin()->getType() 1170 ->canLosslesslyBitCastTo(F->getReturnType()) && 1171 "unexpected this return"); 1172 F->addAttribute(1, llvm::Attribute::Returned); 1173 } 1174 1175 // Only a few attributes are set on declarations; these may later be 1176 // overridden by a definition. 1177 1178 setLinkageAndVisibilityForGV(F, FD); 1179 1180 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1181 F->addFnAttr("implicit-section-name"); 1182 } 1183 1184 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1185 F->setSection(SA->getName()); 1186 1187 if (FD->isReplaceableGlobalAllocationFunction()) { 1188 // A replaceable global allocation function does not act like a builtin by 1189 // default, only if it is invoked by a new-expression or delete-expression. 1190 F->addAttribute(llvm::AttributeList::FunctionIndex, 1191 llvm::Attribute::NoBuiltin); 1192 1193 // A sane operator new returns a non-aliasing pointer. 1194 // FIXME: Also add NonNull attribute to the return value 1195 // for the non-nothrow forms? 1196 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1197 if (getCodeGenOpts().AssumeSaneOperatorNew && 1198 (Kind == OO_New || Kind == OO_Array_New)) 1199 F->addAttribute(llvm::AttributeList::ReturnIndex, 1200 llvm::Attribute::NoAlias); 1201 } 1202 1203 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1204 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1205 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1206 if (MD->isVirtual()) 1207 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1208 1209 // Don't emit entries for function declarations in the cross-DSO mode. This 1210 // is handled with better precision by the receiving DSO. 1211 if (!CodeGenOpts.SanitizeCfiCrossDso) 1212 CreateFunctionTypeMetadata(FD, F); 1213 } 1214 1215 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1216 assert(!GV->isDeclaration() && 1217 "Only globals with definition can force usage."); 1218 LLVMUsed.emplace_back(GV); 1219 } 1220 1221 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1222 assert(!GV->isDeclaration() && 1223 "Only globals with definition can force usage."); 1224 LLVMCompilerUsed.emplace_back(GV); 1225 } 1226 1227 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1228 std::vector<llvm::WeakTrackingVH> &List) { 1229 // Don't create llvm.used if there is no need. 1230 if (List.empty()) 1231 return; 1232 1233 // Convert List to what ConstantArray needs. 1234 SmallVector<llvm::Constant*, 8> UsedArray; 1235 UsedArray.resize(List.size()); 1236 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1237 UsedArray[i] = 1238 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1239 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1240 } 1241 1242 if (UsedArray.empty()) 1243 return; 1244 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1245 1246 auto *GV = new llvm::GlobalVariable( 1247 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1248 llvm::ConstantArray::get(ATy, UsedArray), Name); 1249 1250 GV->setSection("llvm.metadata"); 1251 } 1252 1253 void CodeGenModule::emitLLVMUsed() { 1254 emitUsed(*this, "llvm.used", LLVMUsed); 1255 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1256 } 1257 1258 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1259 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1260 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1261 } 1262 1263 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1264 llvm::SmallString<32> Opt; 1265 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1266 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1267 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1268 } 1269 1270 void CodeGenModule::AddDependentLib(StringRef Lib) { 1271 llvm::SmallString<24> Opt; 1272 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1273 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1274 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1275 } 1276 1277 /// \brief Add link options implied by the given module, including modules 1278 /// it depends on, using a postorder walk. 1279 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1280 SmallVectorImpl<llvm::MDNode *> &Metadata, 1281 llvm::SmallPtrSet<Module *, 16> &Visited) { 1282 // Import this module's parent. 1283 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1284 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1285 } 1286 1287 // Import this module's dependencies. 1288 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1289 if (Visited.insert(Mod->Imports[I - 1]).second) 1290 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1291 } 1292 1293 // Add linker options to link against the libraries/frameworks 1294 // described by this module. 1295 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1296 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1297 // Link against a framework. Frameworks are currently Darwin only, so we 1298 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1299 if (Mod->LinkLibraries[I-1].IsFramework) { 1300 llvm::Metadata *Args[2] = { 1301 llvm::MDString::get(Context, "-framework"), 1302 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1303 1304 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1305 continue; 1306 } 1307 1308 // Link against a library. 1309 llvm::SmallString<24> Opt; 1310 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1311 Mod->LinkLibraries[I-1].Library, Opt); 1312 auto *OptString = llvm::MDString::get(Context, Opt); 1313 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1314 } 1315 } 1316 1317 void CodeGenModule::EmitModuleLinkOptions() { 1318 // Collect the set of all of the modules we want to visit to emit link 1319 // options, which is essentially the imported modules and all of their 1320 // non-explicit child modules. 1321 llvm::SetVector<clang::Module *> LinkModules; 1322 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1323 SmallVector<clang::Module *, 16> Stack; 1324 1325 // Seed the stack with imported modules. 1326 for (Module *M : ImportedModules) { 1327 // Do not add any link flags when an implementation TU of a module imports 1328 // a header of that same module. 1329 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1330 !getLangOpts().isCompilingModule()) 1331 continue; 1332 if (Visited.insert(M).second) 1333 Stack.push_back(M); 1334 } 1335 1336 // Find all of the modules to import, making a little effort to prune 1337 // non-leaf modules. 1338 while (!Stack.empty()) { 1339 clang::Module *Mod = Stack.pop_back_val(); 1340 1341 bool AnyChildren = false; 1342 1343 // Visit the submodules of this module. 1344 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1345 SubEnd = Mod->submodule_end(); 1346 Sub != SubEnd; ++Sub) { 1347 // Skip explicit children; they need to be explicitly imported to be 1348 // linked against. 1349 if ((*Sub)->IsExplicit) 1350 continue; 1351 1352 if (Visited.insert(*Sub).second) { 1353 Stack.push_back(*Sub); 1354 AnyChildren = true; 1355 } 1356 } 1357 1358 // We didn't find any children, so add this module to the list of 1359 // modules to link against. 1360 if (!AnyChildren) { 1361 LinkModules.insert(Mod); 1362 } 1363 } 1364 1365 // Add link options for all of the imported modules in reverse topological 1366 // order. We don't do anything to try to order import link flags with respect 1367 // to linker options inserted by things like #pragma comment(). 1368 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1369 Visited.clear(); 1370 for (Module *M : LinkModules) 1371 if (Visited.insert(M).second) 1372 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1373 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1374 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1375 1376 // Add the linker options metadata flag. 1377 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1378 for (auto *MD : LinkerOptionsMetadata) 1379 NMD->addOperand(MD); 1380 } 1381 1382 void CodeGenModule::EmitDeferred() { 1383 // Emit code for any potentially referenced deferred decls. Since a 1384 // previously unused static decl may become used during the generation of code 1385 // for a static function, iterate until no changes are made. 1386 1387 if (!DeferredVTables.empty()) { 1388 EmitDeferredVTables(); 1389 1390 // Emitting a vtable doesn't directly cause more vtables to 1391 // become deferred, although it can cause functions to be 1392 // emitted that then need those vtables. 1393 assert(DeferredVTables.empty()); 1394 } 1395 1396 // Stop if we're out of both deferred vtables and deferred declarations. 1397 if (DeferredDeclsToEmit.empty()) 1398 return; 1399 1400 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1401 // work, it will not interfere with this. 1402 std::vector<GlobalDecl> CurDeclsToEmit; 1403 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1404 1405 for (GlobalDecl &D : CurDeclsToEmit) { 1406 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1407 // to get GlobalValue with exactly the type we need, not something that 1408 // might had been created for another decl with the same mangled name but 1409 // different type. 1410 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1411 GetAddrOfGlobal(D, ForDefinition)); 1412 1413 // In case of different address spaces, we may still get a cast, even with 1414 // IsForDefinition equal to true. Query mangled names table to get 1415 // GlobalValue. 1416 if (!GV) 1417 GV = GetGlobalValue(getMangledName(D)); 1418 1419 // Make sure GetGlobalValue returned non-null. 1420 assert(GV); 1421 1422 // Check to see if we've already emitted this. This is necessary 1423 // for a couple of reasons: first, decls can end up in the 1424 // deferred-decls queue multiple times, and second, decls can end 1425 // up with definitions in unusual ways (e.g. by an extern inline 1426 // function acquiring a strong function redefinition). Just 1427 // ignore these cases. 1428 if (!GV->isDeclaration()) 1429 continue; 1430 1431 // Otherwise, emit the definition and move on to the next one. 1432 EmitGlobalDefinition(D, GV); 1433 1434 // If we found out that we need to emit more decls, do that recursively. 1435 // This has the advantage that the decls are emitted in a DFS and related 1436 // ones are close together, which is convenient for testing. 1437 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1438 EmitDeferred(); 1439 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1440 } 1441 } 1442 } 1443 1444 void CodeGenModule::EmitVTablesOpportunistically() { 1445 // Try to emit external vtables as available_externally if they have emitted 1446 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1447 // is not allowed to create new references to things that need to be emitted 1448 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1449 1450 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1451 && "Only emit opportunistic vtables with optimizations"); 1452 1453 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1454 assert(getVTables().isVTableExternal(RD) && 1455 "This queue should only contain external vtables"); 1456 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1457 VTables.GenerateClassData(RD); 1458 } 1459 OpportunisticVTables.clear(); 1460 } 1461 1462 void CodeGenModule::EmitGlobalAnnotations() { 1463 if (Annotations.empty()) 1464 return; 1465 1466 // Create a new global variable for the ConstantStruct in the Module. 1467 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1468 Annotations[0]->getType(), Annotations.size()), Annotations); 1469 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1470 llvm::GlobalValue::AppendingLinkage, 1471 Array, "llvm.global.annotations"); 1472 gv->setSection(AnnotationSection); 1473 } 1474 1475 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1476 llvm::Constant *&AStr = AnnotationStrings[Str]; 1477 if (AStr) 1478 return AStr; 1479 1480 // Not found yet, create a new global. 1481 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1482 auto *gv = 1483 new llvm::GlobalVariable(getModule(), s->getType(), true, 1484 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1485 gv->setSection(AnnotationSection); 1486 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1487 AStr = gv; 1488 return gv; 1489 } 1490 1491 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1492 SourceManager &SM = getContext().getSourceManager(); 1493 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1494 if (PLoc.isValid()) 1495 return EmitAnnotationString(PLoc.getFilename()); 1496 return EmitAnnotationString(SM.getBufferName(Loc)); 1497 } 1498 1499 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1500 SourceManager &SM = getContext().getSourceManager(); 1501 PresumedLoc PLoc = SM.getPresumedLoc(L); 1502 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1503 SM.getExpansionLineNumber(L); 1504 return llvm::ConstantInt::get(Int32Ty, LineNo); 1505 } 1506 1507 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1508 const AnnotateAttr *AA, 1509 SourceLocation L) { 1510 // Get the globals for file name, annotation, and the line number. 1511 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1512 *UnitGV = EmitAnnotationUnit(L), 1513 *LineNoCst = EmitAnnotationLineNo(L); 1514 1515 // Create the ConstantStruct for the global annotation. 1516 llvm::Constant *Fields[4] = { 1517 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1518 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1519 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1520 LineNoCst 1521 }; 1522 return llvm::ConstantStruct::getAnon(Fields); 1523 } 1524 1525 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1526 llvm::GlobalValue *GV) { 1527 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1528 // Get the struct elements for these annotations. 1529 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1530 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1531 } 1532 1533 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1534 SourceLocation Loc) const { 1535 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1536 // Blacklist by function name. 1537 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1538 return true; 1539 // Blacklist by location. 1540 if (Loc.isValid()) 1541 return SanitizerBL.isBlacklistedLocation(Loc); 1542 // If location is unknown, this may be a compiler-generated function. Assume 1543 // it's located in the main file. 1544 auto &SM = Context.getSourceManager(); 1545 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1546 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1547 } 1548 return false; 1549 } 1550 1551 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1552 SourceLocation Loc, QualType Ty, 1553 StringRef Category) const { 1554 // For now globals can be blacklisted only in ASan and KASan. 1555 if (!LangOpts.Sanitize.hasOneOf( 1556 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1557 return false; 1558 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1559 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1560 return true; 1561 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1562 return true; 1563 // Check global type. 1564 if (!Ty.isNull()) { 1565 // Drill down the array types: if global variable of a fixed type is 1566 // blacklisted, we also don't instrument arrays of them. 1567 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1568 Ty = AT->getElementType(); 1569 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1570 // We allow to blacklist only record types (classes, structs etc.) 1571 if (Ty->isRecordType()) { 1572 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1573 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1574 return true; 1575 } 1576 } 1577 return false; 1578 } 1579 1580 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1581 StringRef Category) const { 1582 if (!LangOpts.XRayInstrument) 1583 return false; 1584 const auto &XRayFilter = getContext().getXRayFilter(); 1585 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1586 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1587 if (Loc.isValid()) 1588 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1589 if (Attr == ImbueAttr::NONE) 1590 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1591 switch (Attr) { 1592 case ImbueAttr::NONE: 1593 return false; 1594 case ImbueAttr::ALWAYS: 1595 Fn->addFnAttr("function-instrument", "xray-always"); 1596 break; 1597 case ImbueAttr::ALWAYS_ARG1: 1598 Fn->addFnAttr("function-instrument", "xray-always"); 1599 Fn->addFnAttr("xray-log-args", "1"); 1600 break; 1601 case ImbueAttr::NEVER: 1602 Fn->addFnAttr("function-instrument", "xray-never"); 1603 break; 1604 } 1605 return true; 1606 } 1607 1608 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1609 // Never defer when EmitAllDecls is specified. 1610 if (LangOpts.EmitAllDecls) 1611 return true; 1612 1613 return getContext().DeclMustBeEmitted(Global); 1614 } 1615 1616 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1617 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1618 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1619 // Implicit template instantiations may change linkage if they are later 1620 // explicitly instantiated, so they should not be emitted eagerly. 1621 return false; 1622 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1623 if (Context.getInlineVariableDefinitionKind(VD) == 1624 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1625 // A definition of an inline constexpr static data member may change 1626 // linkage later if it's redeclared outside the class. 1627 return false; 1628 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1629 // codegen for global variables, because they may be marked as threadprivate. 1630 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1631 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1632 return false; 1633 1634 return true; 1635 } 1636 1637 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1638 const CXXUuidofExpr* E) { 1639 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1640 // well-formed. 1641 StringRef Uuid = E->getUuidStr(); 1642 std::string Name = "_GUID_" + Uuid.lower(); 1643 std::replace(Name.begin(), Name.end(), '-', '_'); 1644 1645 // The UUID descriptor should be pointer aligned. 1646 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1647 1648 // Look for an existing global. 1649 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1650 return ConstantAddress(GV, Alignment); 1651 1652 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1653 assert(Init && "failed to initialize as constant"); 1654 1655 auto *GV = new llvm::GlobalVariable( 1656 getModule(), Init->getType(), 1657 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1658 if (supportsCOMDAT()) 1659 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1660 return ConstantAddress(GV, Alignment); 1661 } 1662 1663 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1664 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1665 assert(AA && "No alias?"); 1666 1667 CharUnits Alignment = getContext().getDeclAlign(VD); 1668 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1669 1670 // See if there is already something with the target's name in the module. 1671 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1672 if (Entry) { 1673 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1674 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1675 return ConstantAddress(Ptr, Alignment); 1676 } 1677 1678 llvm::Constant *Aliasee; 1679 if (isa<llvm::FunctionType>(DeclTy)) 1680 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1681 GlobalDecl(cast<FunctionDecl>(VD)), 1682 /*ForVTable=*/false); 1683 else 1684 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1685 llvm::PointerType::getUnqual(DeclTy), 1686 nullptr); 1687 1688 auto *F = cast<llvm::GlobalValue>(Aliasee); 1689 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1690 WeakRefReferences.insert(F); 1691 1692 return ConstantAddress(Aliasee, Alignment); 1693 } 1694 1695 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1696 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1697 1698 // Weak references don't produce any output by themselves. 1699 if (Global->hasAttr<WeakRefAttr>()) 1700 return; 1701 1702 // If this is an alias definition (which otherwise looks like a declaration) 1703 // emit it now. 1704 if (Global->hasAttr<AliasAttr>()) 1705 return EmitAliasDefinition(GD); 1706 1707 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1708 if (Global->hasAttr<IFuncAttr>()) 1709 return emitIFuncDefinition(GD); 1710 1711 // If this is CUDA, be selective about which declarations we emit. 1712 if (LangOpts.CUDA) { 1713 if (LangOpts.CUDAIsDevice) { 1714 if (!Global->hasAttr<CUDADeviceAttr>() && 1715 !Global->hasAttr<CUDAGlobalAttr>() && 1716 !Global->hasAttr<CUDAConstantAttr>() && 1717 !Global->hasAttr<CUDASharedAttr>()) 1718 return; 1719 } else { 1720 // We need to emit host-side 'shadows' for all global 1721 // device-side variables because the CUDA runtime needs their 1722 // size and host-side address in order to provide access to 1723 // their device-side incarnations. 1724 1725 // So device-only functions are the only things we skip. 1726 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1727 Global->hasAttr<CUDADeviceAttr>()) 1728 return; 1729 1730 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1731 "Expected Variable or Function"); 1732 } 1733 } 1734 1735 if (LangOpts.OpenMP) { 1736 // If this is OpenMP device, check if it is legal to emit this global 1737 // normally. 1738 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1739 return; 1740 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1741 if (MustBeEmitted(Global)) 1742 EmitOMPDeclareReduction(DRD); 1743 return; 1744 } 1745 } 1746 1747 // Ignore declarations, they will be emitted on their first use. 1748 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1749 // Forward declarations are emitted lazily on first use. 1750 if (!FD->doesThisDeclarationHaveABody()) { 1751 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1752 return; 1753 1754 StringRef MangledName = getMangledName(GD); 1755 1756 // Compute the function info and LLVM type. 1757 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1758 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1759 1760 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1761 /*DontDefer=*/false); 1762 return; 1763 } 1764 } else { 1765 const auto *VD = cast<VarDecl>(Global); 1766 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1767 // We need to emit device-side global CUDA variables even if a 1768 // variable does not have a definition -- we still need to define 1769 // host-side shadow for it. 1770 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1771 !VD->hasDefinition() && 1772 (VD->hasAttr<CUDAConstantAttr>() || 1773 VD->hasAttr<CUDADeviceAttr>()); 1774 if (!MustEmitForCuda && 1775 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1776 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1777 // If this declaration may have caused an inline variable definition to 1778 // change linkage, make sure that it's emitted. 1779 if (Context.getInlineVariableDefinitionKind(VD) == 1780 ASTContext::InlineVariableDefinitionKind::Strong) 1781 GetAddrOfGlobalVar(VD); 1782 return; 1783 } 1784 } 1785 1786 // Defer code generation to first use when possible, e.g. if this is an inline 1787 // function. If the global must always be emitted, do it eagerly if possible 1788 // to benefit from cache locality. 1789 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1790 // Emit the definition if it can't be deferred. 1791 EmitGlobalDefinition(GD); 1792 return; 1793 } 1794 1795 // If we're deferring emission of a C++ variable with an 1796 // initializer, remember the order in which it appeared in the file. 1797 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1798 cast<VarDecl>(Global)->hasInit()) { 1799 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1800 CXXGlobalInits.push_back(nullptr); 1801 } 1802 1803 StringRef MangledName = getMangledName(GD); 1804 if (GetGlobalValue(MangledName) != nullptr) { 1805 // The value has already been used and should therefore be emitted. 1806 addDeferredDeclToEmit(GD); 1807 } else if (MustBeEmitted(Global)) { 1808 // The value must be emitted, but cannot be emitted eagerly. 1809 assert(!MayBeEmittedEagerly(Global)); 1810 addDeferredDeclToEmit(GD); 1811 } else { 1812 // Otherwise, remember that we saw a deferred decl with this name. The 1813 // first use of the mangled name will cause it to move into 1814 // DeferredDeclsToEmit. 1815 DeferredDecls[MangledName] = GD; 1816 } 1817 } 1818 1819 // Check if T is a class type with a destructor that's not dllimport. 1820 static bool HasNonDllImportDtor(QualType T) { 1821 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1822 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1823 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1824 return true; 1825 1826 return false; 1827 } 1828 1829 namespace { 1830 struct FunctionIsDirectlyRecursive : 1831 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1832 const StringRef Name; 1833 const Builtin::Context &BI; 1834 bool Result; 1835 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1836 Name(N), BI(C), Result(false) { 1837 } 1838 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1839 1840 bool TraverseCallExpr(CallExpr *E) { 1841 const FunctionDecl *FD = E->getDirectCallee(); 1842 if (!FD) 1843 return true; 1844 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1845 if (Attr && Name == Attr->getLabel()) { 1846 Result = true; 1847 return false; 1848 } 1849 unsigned BuiltinID = FD->getBuiltinID(); 1850 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1851 return true; 1852 StringRef BuiltinName = BI.getName(BuiltinID); 1853 if (BuiltinName.startswith("__builtin_") && 1854 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1855 Result = true; 1856 return false; 1857 } 1858 return true; 1859 } 1860 }; 1861 1862 // Make sure we're not referencing non-imported vars or functions. 1863 struct DLLImportFunctionVisitor 1864 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1865 bool SafeToInline = true; 1866 1867 bool shouldVisitImplicitCode() const { return true; } 1868 1869 bool VisitVarDecl(VarDecl *VD) { 1870 if (VD->getTLSKind()) { 1871 // A thread-local variable cannot be imported. 1872 SafeToInline = false; 1873 return SafeToInline; 1874 } 1875 1876 // A variable definition might imply a destructor call. 1877 if (VD->isThisDeclarationADefinition()) 1878 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1879 1880 return SafeToInline; 1881 } 1882 1883 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1884 if (const auto *D = E->getTemporary()->getDestructor()) 1885 SafeToInline = D->hasAttr<DLLImportAttr>(); 1886 return SafeToInline; 1887 } 1888 1889 bool VisitDeclRefExpr(DeclRefExpr *E) { 1890 ValueDecl *VD = E->getDecl(); 1891 if (isa<FunctionDecl>(VD)) 1892 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1893 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1894 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1895 return SafeToInline; 1896 } 1897 1898 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1899 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1900 return SafeToInline; 1901 } 1902 1903 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1904 CXXMethodDecl *M = E->getMethodDecl(); 1905 if (!M) { 1906 // Call through a pointer to member function. This is safe to inline. 1907 SafeToInline = true; 1908 } else { 1909 SafeToInline = M->hasAttr<DLLImportAttr>(); 1910 } 1911 return SafeToInline; 1912 } 1913 1914 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1915 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1916 return SafeToInline; 1917 } 1918 1919 bool VisitCXXNewExpr(CXXNewExpr *E) { 1920 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1921 return SafeToInline; 1922 } 1923 }; 1924 } 1925 1926 // isTriviallyRecursive - Check if this function calls another 1927 // decl that, because of the asm attribute or the other decl being a builtin, 1928 // ends up pointing to itself. 1929 bool 1930 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1931 StringRef Name; 1932 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1933 // asm labels are a special kind of mangling we have to support. 1934 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1935 if (!Attr) 1936 return false; 1937 Name = Attr->getLabel(); 1938 } else { 1939 Name = FD->getName(); 1940 } 1941 1942 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1943 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1944 return Walker.Result; 1945 } 1946 1947 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1948 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1949 return true; 1950 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1951 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1952 return false; 1953 1954 if (F->hasAttr<DLLImportAttr>()) { 1955 // Check whether it would be safe to inline this dllimport function. 1956 DLLImportFunctionVisitor Visitor; 1957 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1958 if (!Visitor.SafeToInline) 1959 return false; 1960 1961 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1962 // Implicit destructor invocations aren't captured in the AST, so the 1963 // check above can't see them. Check for them manually here. 1964 for (const Decl *Member : Dtor->getParent()->decls()) 1965 if (isa<FieldDecl>(Member)) 1966 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1967 return false; 1968 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1969 if (HasNonDllImportDtor(B.getType())) 1970 return false; 1971 } 1972 } 1973 1974 // PR9614. Avoid cases where the source code is lying to us. An available 1975 // externally function should have an equivalent function somewhere else, 1976 // but a function that calls itself is clearly not equivalent to the real 1977 // implementation. 1978 // This happens in glibc's btowc and in some configure checks. 1979 return !isTriviallyRecursive(F); 1980 } 1981 1982 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1983 return CodeGenOpts.OptimizationLevel > 0; 1984 } 1985 1986 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1987 const auto *D = cast<ValueDecl>(GD.getDecl()); 1988 1989 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1990 Context.getSourceManager(), 1991 "Generating code for declaration"); 1992 1993 if (isa<FunctionDecl>(D)) { 1994 // At -O0, don't generate IR for functions with available_externally 1995 // linkage. 1996 if (!shouldEmitFunction(GD)) 1997 return; 1998 1999 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2000 // Make sure to emit the definition(s) before we emit the thunks. 2001 // This is necessary for the generation of certain thunks. 2002 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2003 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2004 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2005 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2006 else 2007 EmitGlobalFunctionDefinition(GD, GV); 2008 2009 if (Method->isVirtual()) 2010 getVTables().EmitThunks(GD); 2011 2012 return; 2013 } 2014 2015 return EmitGlobalFunctionDefinition(GD, GV); 2016 } 2017 2018 if (const auto *VD = dyn_cast<VarDecl>(D)) 2019 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2020 2021 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2022 } 2023 2024 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2025 llvm::Function *NewFn); 2026 2027 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2028 /// module, create and return an llvm Function with the specified type. If there 2029 /// is something in the module with the specified name, return it potentially 2030 /// bitcasted to the right type. 2031 /// 2032 /// If D is non-null, it specifies a decl that correspond to this. This is used 2033 /// to set the attributes on the function when it is first created. 2034 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2035 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2036 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2037 ForDefinition_t IsForDefinition) { 2038 const Decl *D = GD.getDecl(); 2039 2040 // Lookup the entry, lazily creating it if necessary. 2041 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2042 if (Entry) { 2043 if (WeakRefReferences.erase(Entry)) { 2044 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2045 if (FD && !FD->hasAttr<WeakAttr>()) 2046 Entry->setLinkage(llvm::Function::ExternalLinkage); 2047 } 2048 2049 // Handle dropped DLL attributes. 2050 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2051 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2052 2053 // If there are two attempts to define the same mangled name, issue an 2054 // error. 2055 if (IsForDefinition && !Entry->isDeclaration()) { 2056 GlobalDecl OtherGD; 2057 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2058 // to make sure that we issue an error only once. 2059 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2060 (GD.getCanonicalDecl().getDecl() != 2061 OtherGD.getCanonicalDecl().getDecl()) && 2062 DiagnosedConflictingDefinitions.insert(GD).second) { 2063 getDiags().Report(D->getLocation(), 2064 diag::err_duplicate_mangled_name); 2065 getDiags().Report(OtherGD.getDecl()->getLocation(), 2066 diag::note_previous_definition); 2067 } 2068 } 2069 2070 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2071 (Entry->getType()->getElementType() == Ty)) { 2072 return Entry; 2073 } 2074 2075 // Make sure the result is of the correct type. 2076 // (If function is requested for a definition, we always need to create a new 2077 // function, not just return a bitcast.) 2078 if (!IsForDefinition) 2079 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2080 } 2081 2082 // This function doesn't have a complete type (for example, the return 2083 // type is an incomplete struct). Use a fake type instead, and make 2084 // sure not to try to set attributes. 2085 bool IsIncompleteFunction = false; 2086 2087 llvm::FunctionType *FTy; 2088 if (isa<llvm::FunctionType>(Ty)) { 2089 FTy = cast<llvm::FunctionType>(Ty); 2090 } else { 2091 FTy = llvm::FunctionType::get(VoidTy, false); 2092 IsIncompleteFunction = true; 2093 } 2094 2095 llvm::Function *F = 2096 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2097 Entry ? StringRef() : MangledName, &getModule()); 2098 2099 // If we already created a function with the same mangled name (but different 2100 // type) before, take its name and add it to the list of functions to be 2101 // replaced with F at the end of CodeGen. 2102 // 2103 // This happens if there is a prototype for a function (e.g. "int f()") and 2104 // then a definition of a different type (e.g. "int f(int x)"). 2105 if (Entry) { 2106 F->takeName(Entry); 2107 2108 // This might be an implementation of a function without a prototype, in 2109 // which case, try to do special replacement of calls which match the new 2110 // prototype. The really key thing here is that we also potentially drop 2111 // arguments from the call site so as to make a direct call, which makes the 2112 // inliner happier and suppresses a number of optimizer warnings (!) about 2113 // dropping arguments. 2114 if (!Entry->use_empty()) { 2115 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2116 Entry->removeDeadConstantUsers(); 2117 } 2118 2119 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2120 F, Entry->getType()->getElementType()->getPointerTo()); 2121 addGlobalValReplacement(Entry, BC); 2122 } 2123 2124 assert(F->getName() == MangledName && "name was uniqued!"); 2125 if (D) 2126 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2127 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2128 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2129 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2130 } 2131 2132 if (!DontDefer) { 2133 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2134 // each other bottoming out with the base dtor. Therefore we emit non-base 2135 // dtors on usage, even if there is no dtor definition in the TU. 2136 if (D && isa<CXXDestructorDecl>(D) && 2137 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2138 GD.getDtorType())) 2139 addDeferredDeclToEmit(GD); 2140 2141 // This is the first use or definition of a mangled name. If there is a 2142 // deferred decl with this name, remember that we need to emit it at the end 2143 // of the file. 2144 auto DDI = DeferredDecls.find(MangledName); 2145 if (DDI != DeferredDecls.end()) { 2146 // Move the potentially referenced deferred decl to the 2147 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2148 // don't need it anymore). 2149 addDeferredDeclToEmit(DDI->second); 2150 DeferredDecls.erase(DDI); 2151 2152 // Otherwise, there are cases we have to worry about where we're 2153 // using a declaration for which we must emit a definition but where 2154 // we might not find a top-level definition: 2155 // - member functions defined inline in their classes 2156 // - friend functions defined inline in some class 2157 // - special member functions with implicit definitions 2158 // If we ever change our AST traversal to walk into class methods, 2159 // this will be unnecessary. 2160 // 2161 // We also don't emit a definition for a function if it's going to be an 2162 // entry in a vtable, unless it's already marked as used. 2163 } else if (getLangOpts().CPlusPlus && D) { 2164 // Look for a declaration that's lexically in a record. 2165 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2166 FD = FD->getPreviousDecl()) { 2167 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2168 if (FD->doesThisDeclarationHaveABody()) { 2169 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2170 break; 2171 } 2172 } 2173 } 2174 } 2175 } 2176 2177 // Make sure the result is of the requested type. 2178 if (!IsIncompleteFunction) { 2179 assert(F->getType()->getElementType() == Ty); 2180 return F; 2181 } 2182 2183 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2184 return llvm::ConstantExpr::getBitCast(F, PTy); 2185 } 2186 2187 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2188 /// non-null, then this function will use the specified type if it has to 2189 /// create it (this occurs when we see a definition of the function). 2190 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2191 llvm::Type *Ty, 2192 bool ForVTable, 2193 bool DontDefer, 2194 ForDefinition_t IsForDefinition) { 2195 // If there was no specific requested type, just convert it now. 2196 if (!Ty) { 2197 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2198 auto CanonTy = Context.getCanonicalType(FD->getType()); 2199 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2200 } 2201 2202 StringRef MangledName = getMangledName(GD); 2203 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2204 /*IsThunk=*/false, llvm::AttributeList(), 2205 IsForDefinition); 2206 } 2207 2208 static const FunctionDecl * 2209 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2210 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2211 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2212 2213 IdentifierInfo &CII = C.Idents.get(Name); 2214 for (const auto &Result : DC->lookup(&CII)) 2215 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2216 return FD; 2217 2218 if (!C.getLangOpts().CPlusPlus) 2219 return nullptr; 2220 2221 // Demangle the premangled name from getTerminateFn() 2222 IdentifierInfo &CXXII = 2223 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2224 ? C.Idents.get("terminate") 2225 : C.Idents.get(Name); 2226 2227 for (const auto &N : {"__cxxabiv1", "std"}) { 2228 IdentifierInfo &NS = C.Idents.get(N); 2229 for (const auto &Result : DC->lookup(&NS)) { 2230 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2231 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2232 for (const auto &Result : LSD->lookup(&NS)) 2233 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2234 break; 2235 2236 if (ND) 2237 for (const auto &Result : ND->lookup(&CXXII)) 2238 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2239 return FD; 2240 } 2241 } 2242 2243 return nullptr; 2244 } 2245 2246 /// CreateRuntimeFunction - Create a new runtime function with the specified 2247 /// type and name. 2248 llvm::Constant * 2249 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2250 llvm::AttributeList ExtraAttrs, 2251 bool Local) { 2252 llvm::Constant *C = 2253 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2254 /*DontDefer=*/false, /*IsThunk=*/false, 2255 ExtraAttrs); 2256 2257 if (auto *F = dyn_cast<llvm::Function>(C)) { 2258 if (F->empty()) { 2259 F->setCallingConv(getRuntimeCC()); 2260 2261 if (!Local && getTriple().isOSBinFormatCOFF() && 2262 !getCodeGenOpts().LTOVisibilityPublicStd) { 2263 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2264 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2265 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2266 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2267 } 2268 } 2269 } 2270 } 2271 2272 return C; 2273 } 2274 2275 /// CreateBuiltinFunction - Create a new builtin function with the specified 2276 /// type and name. 2277 llvm::Constant * 2278 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2279 llvm::AttributeList ExtraAttrs) { 2280 llvm::Constant *C = 2281 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2282 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2283 if (auto *F = dyn_cast<llvm::Function>(C)) 2284 if (F->empty()) 2285 F->setCallingConv(getBuiltinCC()); 2286 return C; 2287 } 2288 2289 /// isTypeConstant - Determine whether an object of this type can be emitted 2290 /// as a constant. 2291 /// 2292 /// If ExcludeCtor is true, the duration when the object's constructor runs 2293 /// will not be considered. The caller will need to verify that the object is 2294 /// not written to during its construction. 2295 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2296 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2297 return false; 2298 2299 if (Context.getLangOpts().CPlusPlus) { 2300 if (const CXXRecordDecl *Record 2301 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2302 return ExcludeCtor && !Record->hasMutableFields() && 2303 Record->hasTrivialDestructor(); 2304 } 2305 2306 return true; 2307 } 2308 2309 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2310 /// create and return an llvm GlobalVariable with the specified type. If there 2311 /// is something in the module with the specified name, return it potentially 2312 /// bitcasted to the right type. 2313 /// 2314 /// If D is non-null, it specifies a decl that correspond to this. This is used 2315 /// to set the attributes on the global when it is first created. 2316 /// 2317 /// If IsForDefinition is true, it is guranteed that an actual global with 2318 /// type Ty will be returned, not conversion of a variable with the same 2319 /// mangled name but some other type. 2320 llvm::Constant * 2321 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2322 llvm::PointerType *Ty, 2323 const VarDecl *D, 2324 ForDefinition_t IsForDefinition) { 2325 // Lookup the entry, lazily creating it if necessary. 2326 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2327 if (Entry) { 2328 if (WeakRefReferences.erase(Entry)) { 2329 if (D && !D->hasAttr<WeakAttr>()) 2330 Entry->setLinkage(llvm::Function::ExternalLinkage); 2331 } 2332 2333 // Handle dropped DLL attributes. 2334 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2335 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2336 2337 if (Entry->getType() == Ty) 2338 return Entry; 2339 2340 // If there are two attempts to define the same mangled name, issue an 2341 // error. 2342 if (IsForDefinition && !Entry->isDeclaration()) { 2343 GlobalDecl OtherGD; 2344 const VarDecl *OtherD; 2345 2346 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2347 // to make sure that we issue an error only once. 2348 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2349 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2350 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2351 OtherD->hasInit() && 2352 DiagnosedConflictingDefinitions.insert(D).second) { 2353 getDiags().Report(D->getLocation(), 2354 diag::err_duplicate_mangled_name); 2355 getDiags().Report(OtherGD.getDecl()->getLocation(), 2356 diag::note_previous_definition); 2357 } 2358 } 2359 2360 // Make sure the result is of the correct type. 2361 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2362 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2363 2364 // (If global is requested for a definition, we always need to create a new 2365 // global, not just return a bitcast.) 2366 if (!IsForDefinition) 2367 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2368 } 2369 2370 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2371 auto *GV = new llvm::GlobalVariable( 2372 getModule(), Ty->getElementType(), false, 2373 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2374 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2375 2376 // If we already created a global with the same mangled name (but different 2377 // type) before, take its name and remove it from its parent. 2378 if (Entry) { 2379 GV->takeName(Entry); 2380 2381 if (!Entry->use_empty()) { 2382 llvm::Constant *NewPtrForOldDecl = 2383 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2384 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2385 } 2386 2387 Entry->eraseFromParent(); 2388 } 2389 2390 // This is the first use or definition of a mangled name. If there is a 2391 // deferred decl with this name, remember that we need to emit it at the end 2392 // of the file. 2393 auto DDI = DeferredDecls.find(MangledName); 2394 if (DDI != DeferredDecls.end()) { 2395 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2396 // list, and remove it from DeferredDecls (since we don't need it anymore). 2397 addDeferredDeclToEmit(DDI->second); 2398 DeferredDecls.erase(DDI); 2399 } 2400 2401 // Handle things which are present even on external declarations. 2402 if (D) { 2403 // FIXME: This code is overly simple and should be merged with other global 2404 // handling. 2405 GV->setConstant(isTypeConstant(D->getType(), false)); 2406 2407 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2408 2409 setLinkageAndVisibilityForGV(GV, D); 2410 2411 if (D->getTLSKind()) { 2412 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2413 CXXThreadLocals.push_back(D); 2414 setTLSMode(GV, *D); 2415 } 2416 2417 // If required by the ABI, treat declarations of static data members with 2418 // inline initializers as definitions. 2419 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2420 EmitGlobalVarDefinition(D); 2421 } 2422 2423 // Handle XCore specific ABI requirements. 2424 if (getTriple().getArch() == llvm::Triple::xcore && 2425 D->getLanguageLinkage() == CLanguageLinkage && 2426 D->getType().isConstant(Context) && 2427 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2428 GV->setSection(".cp.rodata"); 2429 } 2430 2431 if (AddrSpace != Ty->getAddressSpace()) 2432 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2433 2434 return GV; 2435 } 2436 2437 llvm::Constant * 2438 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2439 ForDefinition_t IsForDefinition) { 2440 const Decl *D = GD.getDecl(); 2441 if (isa<CXXConstructorDecl>(D)) 2442 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2443 getFromCtorType(GD.getCtorType()), 2444 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2445 /*DontDefer=*/false, IsForDefinition); 2446 else if (isa<CXXDestructorDecl>(D)) 2447 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2448 getFromDtorType(GD.getDtorType()), 2449 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2450 /*DontDefer=*/false, IsForDefinition); 2451 else if (isa<CXXMethodDecl>(D)) { 2452 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2453 cast<CXXMethodDecl>(D)); 2454 auto Ty = getTypes().GetFunctionType(*FInfo); 2455 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2456 IsForDefinition); 2457 } else if (isa<FunctionDecl>(D)) { 2458 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2459 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2460 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2461 IsForDefinition); 2462 } else 2463 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2464 IsForDefinition); 2465 } 2466 2467 llvm::GlobalVariable * 2468 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2469 llvm::Type *Ty, 2470 llvm::GlobalValue::LinkageTypes Linkage) { 2471 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2472 llvm::GlobalVariable *OldGV = nullptr; 2473 2474 if (GV) { 2475 // Check if the variable has the right type. 2476 if (GV->getType()->getElementType() == Ty) 2477 return GV; 2478 2479 // Because C++ name mangling, the only way we can end up with an already 2480 // existing global with the same name is if it has been declared extern "C". 2481 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2482 OldGV = GV; 2483 } 2484 2485 // Create a new variable. 2486 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2487 Linkage, nullptr, Name); 2488 2489 if (OldGV) { 2490 // Replace occurrences of the old variable if needed. 2491 GV->takeName(OldGV); 2492 2493 if (!OldGV->use_empty()) { 2494 llvm::Constant *NewPtrForOldDecl = 2495 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2496 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2497 } 2498 2499 OldGV->eraseFromParent(); 2500 } 2501 2502 if (supportsCOMDAT() && GV->isWeakForLinker() && 2503 !GV->hasAvailableExternallyLinkage()) 2504 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2505 2506 return GV; 2507 } 2508 2509 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2510 /// given global variable. If Ty is non-null and if the global doesn't exist, 2511 /// then it will be created with the specified type instead of whatever the 2512 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2513 /// that an actual global with type Ty will be returned, not conversion of a 2514 /// variable with the same mangled name but some other type. 2515 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2516 llvm::Type *Ty, 2517 ForDefinition_t IsForDefinition) { 2518 assert(D->hasGlobalStorage() && "Not a global variable"); 2519 QualType ASTTy = D->getType(); 2520 if (!Ty) 2521 Ty = getTypes().ConvertTypeForMem(ASTTy); 2522 2523 llvm::PointerType *PTy = 2524 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2525 2526 StringRef MangledName = getMangledName(D); 2527 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2528 } 2529 2530 /// CreateRuntimeVariable - Create a new runtime global variable with the 2531 /// specified type and name. 2532 llvm::Constant * 2533 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2534 StringRef Name) { 2535 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2536 } 2537 2538 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2539 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2540 2541 StringRef MangledName = getMangledName(D); 2542 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2543 2544 // We already have a definition, not declaration, with the same mangled name. 2545 // Emitting of declaration is not required (and actually overwrites emitted 2546 // definition). 2547 if (GV && !GV->isDeclaration()) 2548 return; 2549 2550 // If we have not seen a reference to this variable yet, place it into the 2551 // deferred declarations table to be emitted if needed later. 2552 if (!MustBeEmitted(D) && !GV) { 2553 DeferredDecls[MangledName] = D; 2554 return; 2555 } 2556 2557 // The tentative definition is the only definition. 2558 EmitGlobalVarDefinition(D); 2559 } 2560 2561 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2562 return Context.toCharUnitsFromBits( 2563 getDataLayout().getTypeStoreSizeInBits(Ty)); 2564 } 2565 2566 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2567 unsigned AddrSpace) { 2568 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2569 if (D->hasAttr<CUDAConstantAttr>()) 2570 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2571 else if (D->hasAttr<CUDASharedAttr>()) 2572 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2573 else 2574 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2575 } 2576 2577 return AddrSpace; 2578 } 2579 2580 template<typename SomeDecl> 2581 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2582 llvm::GlobalValue *GV) { 2583 if (!getLangOpts().CPlusPlus) 2584 return; 2585 2586 // Must have 'used' attribute, or else inline assembly can't rely on 2587 // the name existing. 2588 if (!D->template hasAttr<UsedAttr>()) 2589 return; 2590 2591 // Must have internal linkage and an ordinary name. 2592 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2593 return; 2594 2595 // Must be in an extern "C" context. Entities declared directly within 2596 // a record are not extern "C" even if the record is in such a context. 2597 const SomeDecl *First = D->getFirstDecl(); 2598 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2599 return; 2600 2601 // OK, this is an internal linkage entity inside an extern "C" linkage 2602 // specification. Make a note of that so we can give it the "expected" 2603 // mangled name if nothing else is using that name. 2604 std::pair<StaticExternCMap::iterator, bool> R = 2605 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2606 2607 // If we have multiple internal linkage entities with the same name 2608 // in extern "C" regions, none of them gets that name. 2609 if (!R.second) 2610 R.first->second = nullptr; 2611 } 2612 2613 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2614 if (!CGM.supportsCOMDAT()) 2615 return false; 2616 2617 if (D.hasAttr<SelectAnyAttr>()) 2618 return true; 2619 2620 GVALinkage Linkage; 2621 if (auto *VD = dyn_cast<VarDecl>(&D)) 2622 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2623 else 2624 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2625 2626 switch (Linkage) { 2627 case GVA_Internal: 2628 case GVA_AvailableExternally: 2629 case GVA_StrongExternal: 2630 return false; 2631 case GVA_DiscardableODR: 2632 case GVA_StrongODR: 2633 return true; 2634 } 2635 llvm_unreachable("No such linkage"); 2636 } 2637 2638 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2639 llvm::GlobalObject &GO) { 2640 if (!shouldBeInCOMDAT(*this, D)) 2641 return; 2642 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2643 } 2644 2645 /// Pass IsTentative as true if you want to create a tentative definition. 2646 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2647 bool IsTentative) { 2648 // OpenCL global variables of sampler type are translated to function calls, 2649 // therefore no need to be translated. 2650 QualType ASTTy = D->getType(); 2651 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2652 return; 2653 2654 llvm::Constant *Init = nullptr; 2655 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2656 bool NeedsGlobalCtor = false; 2657 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2658 2659 const VarDecl *InitDecl; 2660 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2661 2662 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2663 // as part of their declaration." Sema has already checked for 2664 // error cases, so we just need to set Init to UndefValue. 2665 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2666 D->hasAttr<CUDASharedAttr>()) 2667 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2668 else if (!InitExpr) { 2669 // This is a tentative definition; tentative definitions are 2670 // implicitly initialized with { 0 }. 2671 // 2672 // Note that tentative definitions are only emitted at the end of 2673 // a translation unit, so they should never have incomplete 2674 // type. In addition, EmitTentativeDefinition makes sure that we 2675 // never attempt to emit a tentative definition if a real one 2676 // exists. A use may still exists, however, so we still may need 2677 // to do a RAUW. 2678 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2679 Init = EmitNullConstant(D->getType()); 2680 } else { 2681 initializedGlobalDecl = GlobalDecl(D); 2682 Init = EmitConstantInit(*InitDecl); 2683 2684 if (!Init) { 2685 QualType T = InitExpr->getType(); 2686 if (D->getType()->isReferenceType()) 2687 T = D->getType(); 2688 2689 if (getLangOpts().CPlusPlus) { 2690 Init = EmitNullConstant(T); 2691 NeedsGlobalCtor = true; 2692 } else { 2693 ErrorUnsupported(D, "static initializer"); 2694 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2695 } 2696 } else { 2697 // We don't need an initializer, so remove the entry for the delayed 2698 // initializer position (just in case this entry was delayed) if we 2699 // also don't need to register a destructor. 2700 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2701 DelayedCXXInitPosition.erase(D); 2702 } 2703 } 2704 2705 llvm::Type* InitType = Init->getType(); 2706 llvm::Constant *Entry = 2707 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2708 2709 // Strip off a bitcast if we got one back. 2710 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2711 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2712 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2713 // All zero index gep. 2714 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2715 Entry = CE->getOperand(0); 2716 } 2717 2718 // Entry is now either a Function or GlobalVariable. 2719 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2720 2721 // We have a definition after a declaration with the wrong type. 2722 // We must make a new GlobalVariable* and update everything that used OldGV 2723 // (a declaration or tentative definition) with the new GlobalVariable* 2724 // (which will be a definition). 2725 // 2726 // This happens if there is a prototype for a global (e.g. 2727 // "extern int x[];") and then a definition of a different type (e.g. 2728 // "int x[10];"). This also happens when an initializer has a different type 2729 // from the type of the global (this happens with unions). 2730 if (!GV || 2731 GV->getType()->getElementType() != InitType || 2732 GV->getType()->getAddressSpace() != 2733 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2734 2735 // Move the old entry aside so that we'll create a new one. 2736 Entry->setName(StringRef()); 2737 2738 // Make a new global with the correct type, this is now guaranteed to work. 2739 GV = cast<llvm::GlobalVariable>( 2740 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2741 2742 // Replace all uses of the old global with the new global 2743 llvm::Constant *NewPtrForOldDecl = 2744 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2745 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2746 2747 // Erase the old global, since it is no longer used. 2748 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2749 } 2750 2751 MaybeHandleStaticInExternC(D, GV); 2752 2753 if (D->hasAttr<AnnotateAttr>()) 2754 AddGlobalAnnotations(D, GV); 2755 2756 // Set the llvm linkage type as appropriate. 2757 llvm::GlobalValue::LinkageTypes Linkage = 2758 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2759 2760 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2761 // the device. [...]" 2762 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2763 // __device__, declares a variable that: [...] 2764 // Is accessible from all the threads within the grid and from the host 2765 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2766 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2767 if (GV && LangOpts.CUDA) { 2768 if (LangOpts.CUDAIsDevice) { 2769 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2770 GV->setExternallyInitialized(true); 2771 } else { 2772 // Host-side shadows of external declarations of device-side 2773 // global variables become internal definitions. These have to 2774 // be internal in order to prevent name conflicts with global 2775 // host variables with the same name in a different TUs. 2776 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2777 Linkage = llvm::GlobalValue::InternalLinkage; 2778 2779 // Shadow variables and their properties must be registered 2780 // with CUDA runtime. 2781 unsigned Flags = 0; 2782 if (!D->hasDefinition()) 2783 Flags |= CGCUDARuntime::ExternDeviceVar; 2784 if (D->hasAttr<CUDAConstantAttr>()) 2785 Flags |= CGCUDARuntime::ConstantDeviceVar; 2786 getCUDARuntime().registerDeviceVar(*GV, Flags); 2787 } else if (D->hasAttr<CUDASharedAttr>()) 2788 // __shared__ variables are odd. Shadows do get created, but 2789 // they are not registered with the CUDA runtime, so they 2790 // can't really be used to access their device-side 2791 // counterparts. It's not clear yet whether it's nvcc's bug or 2792 // a feature, but we've got to do the same for compatibility. 2793 Linkage = llvm::GlobalValue::InternalLinkage; 2794 } 2795 } 2796 GV->setInitializer(Init); 2797 2798 // If it is safe to mark the global 'constant', do so now. 2799 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2800 isTypeConstant(D->getType(), true)); 2801 2802 // If it is in a read-only section, mark it 'constant'. 2803 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2804 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2805 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2806 GV->setConstant(true); 2807 } 2808 2809 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2810 2811 2812 // On Darwin, if the normal linkage of a C++ thread_local variable is 2813 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2814 // copies within a linkage unit; otherwise, the backing variable has 2815 // internal linkage and all accesses should just be calls to the 2816 // Itanium-specified entry point, which has the normal linkage of the 2817 // variable. This is to preserve the ability to change the implementation 2818 // behind the scenes. 2819 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2820 Context.getTargetInfo().getTriple().isOSDarwin() && 2821 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2822 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2823 Linkage = llvm::GlobalValue::InternalLinkage; 2824 2825 GV->setLinkage(Linkage); 2826 if (D->hasAttr<DLLImportAttr>()) 2827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2828 else if (D->hasAttr<DLLExportAttr>()) 2829 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2830 else 2831 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2832 2833 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2834 // common vars aren't constant even if declared const. 2835 GV->setConstant(false); 2836 // Tentative definition of global variables may be initialized with 2837 // non-zero null pointers. In this case they should have weak linkage 2838 // since common linkage must have zero initializer and must not have 2839 // explicit section therefore cannot have non-zero initial value. 2840 if (!GV->getInitializer()->isNullValue()) 2841 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2842 } 2843 2844 setNonAliasAttributes(D, GV); 2845 2846 if (D->getTLSKind() && !GV->isThreadLocal()) { 2847 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2848 CXXThreadLocals.push_back(D); 2849 setTLSMode(GV, *D); 2850 } 2851 2852 maybeSetTrivialComdat(*D, *GV); 2853 2854 // Emit the initializer function if necessary. 2855 if (NeedsGlobalCtor || NeedsGlobalDtor) 2856 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2857 2858 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2859 2860 // Emit global variable debug information. 2861 if (CGDebugInfo *DI = getModuleDebugInfo()) 2862 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2863 DI->EmitGlobalVariable(GV, D); 2864 } 2865 2866 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2867 CodeGenModule &CGM, const VarDecl *D, 2868 bool NoCommon) { 2869 // Don't give variables common linkage if -fno-common was specified unless it 2870 // was overridden by a NoCommon attribute. 2871 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2872 return true; 2873 2874 // C11 6.9.2/2: 2875 // A declaration of an identifier for an object that has file scope without 2876 // an initializer, and without a storage-class specifier or with the 2877 // storage-class specifier static, constitutes a tentative definition. 2878 if (D->getInit() || D->hasExternalStorage()) 2879 return true; 2880 2881 // A variable cannot be both common and exist in a section. 2882 if (D->hasAttr<SectionAttr>()) 2883 return true; 2884 2885 // A variable cannot be both common and exist in a section. 2886 // We dont try to determine which is the right section in the front-end. 2887 // If no specialized section name is applicable, it will resort to default. 2888 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2889 D->hasAttr<PragmaClangDataSectionAttr>() || 2890 D->hasAttr<PragmaClangRodataSectionAttr>()) 2891 return true; 2892 2893 // Thread local vars aren't considered common linkage. 2894 if (D->getTLSKind()) 2895 return true; 2896 2897 // Tentative definitions marked with WeakImportAttr are true definitions. 2898 if (D->hasAttr<WeakImportAttr>()) 2899 return true; 2900 2901 // A variable cannot be both common and exist in a comdat. 2902 if (shouldBeInCOMDAT(CGM, *D)) 2903 return true; 2904 2905 // Declarations with a required alignment do not have common linkage in MSVC 2906 // mode. 2907 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2908 if (D->hasAttr<AlignedAttr>()) 2909 return true; 2910 QualType VarType = D->getType(); 2911 if (Context.isAlignmentRequired(VarType)) 2912 return true; 2913 2914 if (const auto *RT = VarType->getAs<RecordType>()) { 2915 const RecordDecl *RD = RT->getDecl(); 2916 for (const FieldDecl *FD : RD->fields()) { 2917 if (FD->isBitField()) 2918 continue; 2919 if (FD->hasAttr<AlignedAttr>()) 2920 return true; 2921 if (Context.isAlignmentRequired(FD->getType())) 2922 return true; 2923 } 2924 } 2925 } 2926 2927 return false; 2928 } 2929 2930 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2931 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2932 if (Linkage == GVA_Internal) 2933 return llvm::Function::InternalLinkage; 2934 2935 if (D->hasAttr<WeakAttr>()) { 2936 if (IsConstantVariable) 2937 return llvm::GlobalVariable::WeakODRLinkage; 2938 else 2939 return llvm::GlobalVariable::WeakAnyLinkage; 2940 } 2941 2942 // We are guaranteed to have a strong definition somewhere else, 2943 // so we can use available_externally linkage. 2944 if (Linkage == GVA_AvailableExternally) 2945 return llvm::GlobalValue::AvailableExternallyLinkage; 2946 2947 // Note that Apple's kernel linker doesn't support symbol 2948 // coalescing, so we need to avoid linkonce and weak linkages there. 2949 // Normally, this means we just map to internal, but for explicit 2950 // instantiations we'll map to external. 2951 2952 // In C++, the compiler has to emit a definition in every translation unit 2953 // that references the function. We should use linkonce_odr because 2954 // a) if all references in this translation unit are optimized away, we 2955 // don't need to codegen it. b) if the function persists, it needs to be 2956 // merged with other definitions. c) C++ has the ODR, so we know the 2957 // definition is dependable. 2958 if (Linkage == GVA_DiscardableODR) 2959 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2960 : llvm::Function::InternalLinkage; 2961 2962 // An explicit instantiation of a template has weak linkage, since 2963 // explicit instantiations can occur in multiple translation units 2964 // and must all be equivalent. However, we are not allowed to 2965 // throw away these explicit instantiations. 2966 // 2967 // We don't currently support CUDA device code spread out across multiple TUs, 2968 // so say that CUDA templates are either external (for kernels) or internal. 2969 // This lets llvm perform aggressive inter-procedural optimizations. 2970 if (Linkage == GVA_StrongODR) { 2971 if (Context.getLangOpts().AppleKext) 2972 return llvm::Function::ExternalLinkage; 2973 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2974 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2975 : llvm::Function::InternalLinkage; 2976 return llvm::Function::WeakODRLinkage; 2977 } 2978 2979 // C++ doesn't have tentative definitions and thus cannot have common 2980 // linkage. 2981 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2982 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2983 CodeGenOpts.NoCommon)) 2984 return llvm::GlobalVariable::CommonLinkage; 2985 2986 // selectany symbols are externally visible, so use weak instead of 2987 // linkonce. MSVC optimizes away references to const selectany globals, so 2988 // all definitions should be the same and ODR linkage should be used. 2989 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2990 if (D->hasAttr<SelectAnyAttr>()) 2991 return llvm::GlobalVariable::WeakODRLinkage; 2992 2993 // Otherwise, we have strong external linkage. 2994 assert(Linkage == GVA_StrongExternal); 2995 return llvm::GlobalVariable::ExternalLinkage; 2996 } 2997 2998 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2999 const VarDecl *VD, bool IsConstant) { 3000 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3001 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3002 } 3003 3004 /// Replace the uses of a function that was declared with a non-proto type. 3005 /// We want to silently drop extra arguments from call sites 3006 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3007 llvm::Function *newFn) { 3008 // Fast path. 3009 if (old->use_empty()) return; 3010 3011 llvm::Type *newRetTy = newFn->getReturnType(); 3012 SmallVector<llvm::Value*, 4> newArgs; 3013 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3014 3015 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3016 ui != ue; ) { 3017 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3018 llvm::User *user = use->getUser(); 3019 3020 // Recognize and replace uses of bitcasts. Most calls to 3021 // unprototyped functions will use bitcasts. 3022 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3023 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3024 replaceUsesOfNonProtoConstant(bitcast, newFn); 3025 continue; 3026 } 3027 3028 // Recognize calls to the function. 3029 llvm::CallSite callSite(user); 3030 if (!callSite) continue; 3031 if (!callSite.isCallee(&*use)) continue; 3032 3033 // If the return types don't match exactly, then we can't 3034 // transform this call unless it's dead. 3035 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3036 continue; 3037 3038 // Get the call site's attribute list. 3039 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3040 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3041 3042 // If the function was passed too few arguments, don't transform. 3043 unsigned newNumArgs = newFn->arg_size(); 3044 if (callSite.arg_size() < newNumArgs) continue; 3045 3046 // If extra arguments were passed, we silently drop them. 3047 // If any of the types mismatch, we don't transform. 3048 unsigned argNo = 0; 3049 bool dontTransform = false; 3050 for (llvm::Argument &A : newFn->args()) { 3051 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3052 dontTransform = true; 3053 break; 3054 } 3055 3056 // Add any parameter attributes. 3057 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3058 argNo++; 3059 } 3060 if (dontTransform) 3061 continue; 3062 3063 // Okay, we can transform this. Create the new call instruction and copy 3064 // over the required information. 3065 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3066 3067 // Copy over any operand bundles. 3068 callSite.getOperandBundlesAsDefs(newBundles); 3069 3070 llvm::CallSite newCall; 3071 if (callSite.isCall()) { 3072 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3073 callSite.getInstruction()); 3074 } else { 3075 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3076 newCall = llvm::InvokeInst::Create(newFn, 3077 oldInvoke->getNormalDest(), 3078 oldInvoke->getUnwindDest(), 3079 newArgs, newBundles, "", 3080 callSite.getInstruction()); 3081 } 3082 newArgs.clear(); // for the next iteration 3083 3084 if (!newCall->getType()->isVoidTy()) 3085 newCall->takeName(callSite.getInstruction()); 3086 newCall.setAttributes(llvm::AttributeList::get( 3087 newFn->getContext(), oldAttrs.getFnAttributes(), 3088 oldAttrs.getRetAttributes(), newArgAttrs)); 3089 newCall.setCallingConv(callSite.getCallingConv()); 3090 3091 // Finally, remove the old call, replacing any uses with the new one. 3092 if (!callSite->use_empty()) 3093 callSite->replaceAllUsesWith(newCall.getInstruction()); 3094 3095 // Copy debug location attached to CI. 3096 if (callSite->getDebugLoc()) 3097 newCall->setDebugLoc(callSite->getDebugLoc()); 3098 3099 callSite->eraseFromParent(); 3100 } 3101 } 3102 3103 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3104 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3105 /// existing call uses of the old function in the module, this adjusts them to 3106 /// call the new function directly. 3107 /// 3108 /// This is not just a cleanup: the always_inline pass requires direct calls to 3109 /// functions to be able to inline them. If there is a bitcast in the way, it 3110 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3111 /// run at -O0. 3112 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3113 llvm::Function *NewFn) { 3114 // If we're redefining a global as a function, don't transform it. 3115 if (!isa<llvm::Function>(Old)) return; 3116 3117 replaceUsesOfNonProtoConstant(Old, NewFn); 3118 } 3119 3120 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3121 auto DK = VD->isThisDeclarationADefinition(); 3122 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3123 return; 3124 3125 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3126 // If we have a definition, this might be a deferred decl. If the 3127 // instantiation is explicit, make sure we emit it at the end. 3128 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3129 GetAddrOfGlobalVar(VD); 3130 3131 EmitTopLevelDecl(VD); 3132 } 3133 3134 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3135 llvm::GlobalValue *GV) { 3136 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3137 3138 // Compute the function info and LLVM type. 3139 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3140 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3141 3142 // Get or create the prototype for the function. 3143 if (!GV || (GV->getType()->getElementType() != Ty)) 3144 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3145 /*DontDefer=*/true, 3146 ForDefinition)); 3147 3148 // Already emitted. 3149 if (!GV->isDeclaration()) 3150 return; 3151 3152 // We need to set linkage and visibility on the function before 3153 // generating code for it because various parts of IR generation 3154 // want to propagate this information down (e.g. to local static 3155 // declarations). 3156 auto *Fn = cast<llvm::Function>(GV); 3157 setFunctionLinkage(GD, Fn); 3158 setFunctionDLLStorageClass(GD, Fn); 3159 3160 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3161 setGlobalVisibility(Fn, D); 3162 3163 MaybeHandleStaticInExternC(D, Fn); 3164 3165 maybeSetTrivialComdat(*D, *Fn); 3166 3167 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3168 3169 setFunctionDefinitionAttributes(D, Fn); 3170 SetLLVMFunctionAttributesForDefinition(D, Fn); 3171 3172 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3173 AddGlobalCtor(Fn, CA->getPriority()); 3174 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3175 AddGlobalDtor(Fn, DA->getPriority()); 3176 if (D->hasAttr<AnnotateAttr>()) 3177 AddGlobalAnnotations(D, Fn); 3178 } 3179 3180 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3181 const auto *D = cast<ValueDecl>(GD.getDecl()); 3182 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3183 assert(AA && "Not an alias?"); 3184 3185 StringRef MangledName = getMangledName(GD); 3186 3187 if (AA->getAliasee() == MangledName) { 3188 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3189 return; 3190 } 3191 3192 // If there is a definition in the module, then it wins over the alias. 3193 // This is dubious, but allow it to be safe. Just ignore the alias. 3194 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3195 if (Entry && !Entry->isDeclaration()) 3196 return; 3197 3198 Aliases.push_back(GD); 3199 3200 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3201 3202 // Create a reference to the named value. This ensures that it is emitted 3203 // if a deferred decl. 3204 llvm::Constant *Aliasee; 3205 if (isa<llvm::FunctionType>(DeclTy)) 3206 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3207 /*ForVTable=*/false); 3208 else 3209 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3210 llvm::PointerType::getUnqual(DeclTy), 3211 /*D=*/nullptr); 3212 3213 // Create the new alias itself, but don't set a name yet. 3214 auto *GA = llvm::GlobalAlias::create( 3215 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3216 3217 if (Entry) { 3218 if (GA->getAliasee() == Entry) { 3219 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3220 return; 3221 } 3222 3223 assert(Entry->isDeclaration()); 3224 3225 // If there is a declaration in the module, then we had an extern followed 3226 // by the alias, as in: 3227 // extern int test6(); 3228 // ... 3229 // int test6() __attribute__((alias("test7"))); 3230 // 3231 // Remove it and replace uses of it with the alias. 3232 GA->takeName(Entry); 3233 3234 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3235 Entry->getType())); 3236 Entry->eraseFromParent(); 3237 } else { 3238 GA->setName(MangledName); 3239 } 3240 3241 // Set attributes which are particular to an alias; this is a 3242 // specialization of the attributes which may be set on a global 3243 // variable/function. 3244 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3245 D->isWeakImported()) { 3246 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3247 } 3248 3249 if (const auto *VD = dyn_cast<VarDecl>(D)) 3250 if (VD->getTLSKind()) 3251 setTLSMode(GA, *VD); 3252 3253 setAliasAttributes(D, GA); 3254 } 3255 3256 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3257 const auto *D = cast<ValueDecl>(GD.getDecl()); 3258 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3259 assert(IFA && "Not an ifunc?"); 3260 3261 StringRef MangledName = getMangledName(GD); 3262 3263 if (IFA->getResolver() == MangledName) { 3264 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3265 return; 3266 } 3267 3268 // Report an error if some definition overrides ifunc. 3269 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3270 if (Entry && !Entry->isDeclaration()) { 3271 GlobalDecl OtherGD; 3272 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3273 DiagnosedConflictingDefinitions.insert(GD).second) { 3274 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3275 Diags.Report(OtherGD.getDecl()->getLocation(), 3276 diag::note_previous_definition); 3277 } 3278 return; 3279 } 3280 3281 Aliases.push_back(GD); 3282 3283 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3284 llvm::Constant *Resolver = 3285 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3286 /*ForVTable=*/false); 3287 llvm::GlobalIFunc *GIF = 3288 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3289 "", Resolver, &getModule()); 3290 if (Entry) { 3291 if (GIF->getResolver() == Entry) { 3292 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3293 return; 3294 } 3295 assert(Entry->isDeclaration()); 3296 3297 // If there is a declaration in the module, then we had an extern followed 3298 // by the ifunc, as in: 3299 // extern int test(); 3300 // ... 3301 // int test() __attribute__((ifunc("resolver"))); 3302 // 3303 // Remove it and replace uses of it with the ifunc. 3304 GIF->takeName(Entry); 3305 3306 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3307 Entry->getType())); 3308 Entry->eraseFromParent(); 3309 } else 3310 GIF->setName(MangledName); 3311 3312 SetCommonAttributes(D, GIF); 3313 } 3314 3315 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3316 ArrayRef<llvm::Type*> Tys) { 3317 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3318 Tys); 3319 } 3320 3321 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3322 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3323 const StringLiteral *Literal, bool TargetIsLSB, 3324 bool &IsUTF16, unsigned &StringLength) { 3325 StringRef String = Literal->getString(); 3326 unsigned NumBytes = String.size(); 3327 3328 // Check for simple case. 3329 if (!Literal->containsNonAsciiOrNull()) { 3330 StringLength = NumBytes; 3331 return *Map.insert(std::make_pair(String, nullptr)).first; 3332 } 3333 3334 // Otherwise, convert the UTF8 literals into a string of shorts. 3335 IsUTF16 = true; 3336 3337 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3338 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3339 llvm::UTF16 *ToPtr = &ToBuf[0]; 3340 3341 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3342 ToPtr + NumBytes, llvm::strictConversion); 3343 3344 // ConvertUTF8toUTF16 returns the length in ToPtr. 3345 StringLength = ToPtr - &ToBuf[0]; 3346 3347 // Add an explicit null. 3348 *ToPtr = 0; 3349 return *Map.insert(std::make_pair( 3350 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3351 (StringLength + 1) * 2), 3352 nullptr)).first; 3353 } 3354 3355 ConstantAddress 3356 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3357 unsigned StringLength = 0; 3358 bool isUTF16 = false; 3359 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3360 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3361 getDataLayout().isLittleEndian(), isUTF16, 3362 StringLength); 3363 3364 if (auto *C = Entry.second) 3365 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3366 3367 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3368 llvm::Constant *Zeros[] = { Zero, Zero }; 3369 3370 // If we don't already have it, get __CFConstantStringClassReference. 3371 if (!CFConstantStringClassRef) { 3372 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3373 Ty = llvm::ArrayType::get(Ty, 0); 3374 llvm::Constant *GV = 3375 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3376 3377 if (getTriple().isOSBinFormatCOFF()) { 3378 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3379 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3380 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3381 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3382 3383 const VarDecl *VD = nullptr; 3384 for (const auto &Result : DC->lookup(&II)) 3385 if ((VD = dyn_cast<VarDecl>(Result))) 3386 break; 3387 3388 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3389 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3390 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3391 } else { 3392 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3393 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3394 } 3395 } 3396 3397 // Decay array -> ptr 3398 CFConstantStringClassRef = 3399 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3400 } 3401 3402 QualType CFTy = getContext().getCFConstantStringType(); 3403 3404 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3405 3406 ConstantInitBuilder Builder(*this); 3407 auto Fields = Builder.beginStruct(STy); 3408 3409 // Class pointer. 3410 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3411 3412 // Flags. 3413 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3414 3415 // String pointer. 3416 llvm::Constant *C = nullptr; 3417 if (isUTF16) { 3418 auto Arr = llvm::makeArrayRef( 3419 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3420 Entry.first().size() / 2); 3421 C = llvm::ConstantDataArray::get(VMContext, Arr); 3422 } else { 3423 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3424 } 3425 3426 // Note: -fwritable-strings doesn't make the backing store strings of 3427 // CFStrings writable. (See <rdar://problem/10657500>) 3428 auto *GV = 3429 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3430 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3431 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3432 // Don't enforce the target's minimum global alignment, since the only use 3433 // of the string is via this class initializer. 3434 CharUnits Align = isUTF16 3435 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3436 : getContext().getTypeAlignInChars(getContext().CharTy); 3437 GV->setAlignment(Align.getQuantity()); 3438 3439 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3440 // Without it LLVM can merge the string with a non unnamed_addr one during 3441 // LTO. Doing that changes the section it ends in, which surprises ld64. 3442 if (getTriple().isOSBinFormatMachO()) 3443 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3444 : "__TEXT,__cstring,cstring_literals"); 3445 3446 // String. 3447 llvm::Constant *Str = 3448 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3449 3450 if (isUTF16) 3451 // Cast the UTF16 string to the correct type. 3452 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3453 Fields.add(Str); 3454 3455 // String length. 3456 auto Ty = getTypes().ConvertType(getContext().LongTy); 3457 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3458 3459 CharUnits Alignment = getPointerAlign(); 3460 3461 // The struct. 3462 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3463 /*isConstant=*/false, 3464 llvm::GlobalVariable::PrivateLinkage); 3465 switch (getTriple().getObjectFormat()) { 3466 case llvm::Triple::UnknownObjectFormat: 3467 llvm_unreachable("unknown file format"); 3468 case llvm::Triple::COFF: 3469 case llvm::Triple::ELF: 3470 case llvm::Triple::Wasm: 3471 GV->setSection("cfstring"); 3472 break; 3473 case llvm::Triple::MachO: 3474 GV->setSection("__DATA,__cfstring"); 3475 break; 3476 } 3477 Entry.second = GV; 3478 3479 return ConstantAddress(GV, Alignment); 3480 } 3481 3482 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3483 if (ObjCFastEnumerationStateType.isNull()) { 3484 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3485 D->startDefinition(); 3486 3487 QualType FieldTypes[] = { 3488 Context.UnsignedLongTy, 3489 Context.getPointerType(Context.getObjCIdType()), 3490 Context.getPointerType(Context.UnsignedLongTy), 3491 Context.getConstantArrayType(Context.UnsignedLongTy, 3492 llvm::APInt(32, 5), ArrayType::Normal, 0) 3493 }; 3494 3495 for (size_t i = 0; i < 4; ++i) { 3496 FieldDecl *Field = FieldDecl::Create(Context, 3497 D, 3498 SourceLocation(), 3499 SourceLocation(), nullptr, 3500 FieldTypes[i], /*TInfo=*/nullptr, 3501 /*BitWidth=*/nullptr, 3502 /*Mutable=*/false, 3503 ICIS_NoInit); 3504 Field->setAccess(AS_public); 3505 D->addDecl(Field); 3506 } 3507 3508 D->completeDefinition(); 3509 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3510 } 3511 3512 return ObjCFastEnumerationStateType; 3513 } 3514 3515 llvm::Constant * 3516 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3517 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3518 3519 // Don't emit it as the address of the string, emit the string data itself 3520 // as an inline array. 3521 if (E->getCharByteWidth() == 1) { 3522 SmallString<64> Str(E->getString()); 3523 3524 // Resize the string to the right size, which is indicated by its type. 3525 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3526 Str.resize(CAT->getSize().getZExtValue()); 3527 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3528 } 3529 3530 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3531 llvm::Type *ElemTy = AType->getElementType(); 3532 unsigned NumElements = AType->getNumElements(); 3533 3534 // Wide strings have either 2-byte or 4-byte elements. 3535 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3536 SmallVector<uint16_t, 32> Elements; 3537 Elements.reserve(NumElements); 3538 3539 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3540 Elements.push_back(E->getCodeUnit(i)); 3541 Elements.resize(NumElements); 3542 return llvm::ConstantDataArray::get(VMContext, Elements); 3543 } 3544 3545 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3546 SmallVector<uint32_t, 32> Elements; 3547 Elements.reserve(NumElements); 3548 3549 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3550 Elements.push_back(E->getCodeUnit(i)); 3551 Elements.resize(NumElements); 3552 return llvm::ConstantDataArray::get(VMContext, Elements); 3553 } 3554 3555 static llvm::GlobalVariable * 3556 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3557 CodeGenModule &CGM, StringRef GlobalName, 3558 CharUnits Alignment) { 3559 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3560 unsigned AddrSpace = 0; 3561 if (CGM.getLangOpts().OpenCL) 3562 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3563 3564 llvm::Module &M = CGM.getModule(); 3565 // Create a global variable for this string 3566 auto *GV = new llvm::GlobalVariable( 3567 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3568 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3569 GV->setAlignment(Alignment.getQuantity()); 3570 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3571 if (GV->isWeakForLinker()) { 3572 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3573 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3574 } 3575 3576 return GV; 3577 } 3578 3579 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3580 /// constant array for the given string literal. 3581 ConstantAddress 3582 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3583 StringRef Name) { 3584 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3585 3586 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3587 llvm::GlobalVariable **Entry = nullptr; 3588 if (!LangOpts.WritableStrings) { 3589 Entry = &ConstantStringMap[C]; 3590 if (auto GV = *Entry) { 3591 if (Alignment.getQuantity() > GV->getAlignment()) 3592 GV->setAlignment(Alignment.getQuantity()); 3593 return ConstantAddress(GV, Alignment); 3594 } 3595 } 3596 3597 SmallString<256> MangledNameBuffer; 3598 StringRef GlobalVariableName; 3599 llvm::GlobalValue::LinkageTypes LT; 3600 3601 // Mangle the string literal if the ABI allows for it. However, we cannot 3602 // do this if we are compiling with ASan or -fwritable-strings because they 3603 // rely on strings having normal linkage. 3604 if (!LangOpts.WritableStrings && 3605 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3606 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3607 llvm::raw_svector_ostream Out(MangledNameBuffer); 3608 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3609 3610 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3611 GlobalVariableName = MangledNameBuffer; 3612 } else { 3613 LT = llvm::GlobalValue::PrivateLinkage; 3614 GlobalVariableName = Name; 3615 } 3616 3617 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3618 if (Entry) 3619 *Entry = GV; 3620 3621 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3622 QualType()); 3623 return ConstantAddress(GV, Alignment); 3624 } 3625 3626 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3627 /// array for the given ObjCEncodeExpr node. 3628 ConstantAddress 3629 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3630 std::string Str; 3631 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3632 3633 return GetAddrOfConstantCString(Str); 3634 } 3635 3636 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3637 /// the literal and a terminating '\0' character. 3638 /// The result has pointer to array type. 3639 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3640 const std::string &Str, const char *GlobalName) { 3641 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3642 CharUnits Alignment = 3643 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3644 3645 llvm::Constant *C = 3646 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3647 3648 // Don't share any string literals if strings aren't constant. 3649 llvm::GlobalVariable **Entry = nullptr; 3650 if (!LangOpts.WritableStrings) { 3651 Entry = &ConstantStringMap[C]; 3652 if (auto GV = *Entry) { 3653 if (Alignment.getQuantity() > GV->getAlignment()) 3654 GV->setAlignment(Alignment.getQuantity()); 3655 return ConstantAddress(GV, Alignment); 3656 } 3657 } 3658 3659 // Get the default prefix if a name wasn't specified. 3660 if (!GlobalName) 3661 GlobalName = ".str"; 3662 // Create a global variable for this. 3663 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3664 GlobalName, Alignment); 3665 if (Entry) 3666 *Entry = GV; 3667 return ConstantAddress(GV, Alignment); 3668 } 3669 3670 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3671 const MaterializeTemporaryExpr *E, const Expr *Init) { 3672 assert((E->getStorageDuration() == SD_Static || 3673 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3674 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3675 3676 // If we're not materializing a subobject of the temporary, keep the 3677 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3678 QualType MaterializedType = Init->getType(); 3679 if (Init == E->GetTemporaryExpr()) 3680 MaterializedType = E->getType(); 3681 3682 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3683 3684 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3685 return ConstantAddress(Slot, Align); 3686 3687 // FIXME: If an externally-visible declaration extends multiple temporaries, 3688 // we need to give each temporary the same name in every translation unit (and 3689 // we also need to make the temporaries externally-visible). 3690 SmallString<256> Name; 3691 llvm::raw_svector_ostream Out(Name); 3692 getCXXABI().getMangleContext().mangleReferenceTemporary( 3693 VD, E->getManglingNumber(), Out); 3694 3695 APValue *Value = nullptr; 3696 if (E->getStorageDuration() == SD_Static) { 3697 // We might have a cached constant initializer for this temporary. Note 3698 // that this might have a different value from the value computed by 3699 // evaluating the initializer if the surrounding constant expression 3700 // modifies the temporary. 3701 Value = getContext().getMaterializedTemporaryValue(E, false); 3702 if (Value && Value->isUninit()) 3703 Value = nullptr; 3704 } 3705 3706 // Try evaluating it now, it might have a constant initializer. 3707 Expr::EvalResult EvalResult; 3708 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3709 !EvalResult.hasSideEffects()) 3710 Value = &EvalResult.Val; 3711 3712 llvm::Constant *InitialValue = nullptr; 3713 bool Constant = false; 3714 llvm::Type *Type; 3715 if (Value) { 3716 // The temporary has a constant initializer, use it. 3717 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3718 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3719 Type = InitialValue->getType(); 3720 } else { 3721 // No initializer, the initialization will be provided when we 3722 // initialize the declaration which performed lifetime extension. 3723 Type = getTypes().ConvertTypeForMem(MaterializedType); 3724 } 3725 3726 // Create a global variable for this lifetime-extended temporary. 3727 llvm::GlobalValue::LinkageTypes Linkage = 3728 getLLVMLinkageVarDefinition(VD, Constant); 3729 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3730 const VarDecl *InitVD; 3731 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3732 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3733 // Temporaries defined inside a class get linkonce_odr linkage because the 3734 // class can be defined in multipe translation units. 3735 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3736 } else { 3737 // There is no need for this temporary to have external linkage if the 3738 // VarDecl has external linkage. 3739 Linkage = llvm::GlobalVariable::InternalLinkage; 3740 } 3741 } 3742 unsigned AddrSpace = GetGlobalVarAddressSpace( 3743 VD, getContext().getTargetAddressSpace(MaterializedType)); 3744 auto *GV = new llvm::GlobalVariable( 3745 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3746 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3747 AddrSpace); 3748 setGlobalVisibility(GV, VD); 3749 GV->setAlignment(Align.getQuantity()); 3750 if (supportsCOMDAT() && GV->isWeakForLinker()) 3751 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3752 if (VD->getTLSKind()) 3753 setTLSMode(GV, *VD); 3754 MaterializedGlobalTemporaryMap[E] = GV; 3755 return ConstantAddress(GV, Align); 3756 } 3757 3758 /// EmitObjCPropertyImplementations - Emit information for synthesized 3759 /// properties for an implementation. 3760 void CodeGenModule::EmitObjCPropertyImplementations(const 3761 ObjCImplementationDecl *D) { 3762 for (const auto *PID : D->property_impls()) { 3763 // Dynamic is just for type-checking. 3764 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3765 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3766 3767 // Determine which methods need to be implemented, some may have 3768 // been overridden. Note that ::isPropertyAccessor is not the method 3769 // we want, that just indicates if the decl came from a 3770 // property. What we want to know is if the method is defined in 3771 // this implementation. 3772 if (!D->getInstanceMethod(PD->getGetterName())) 3773 CodeGenFunction(*this).GenerateObjCGetter( 3774 const_cast<ObjCImplementationDecl *>(D), PID); 3775 if (!PD->isReadOnly() && 3776 !D->getInstanceMethod(PD->getSetterName())) 3777 CodeGenFunction(*this).GenerateObjCSetter( 3778 const_cast<ObjCImplementationDecl *>(D), PID); 3779 } 3780 } 3781 } 3782 3783 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3784 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3785 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3786 ivar; ivar = ivar->getNextIvar()) 3787 if (ivar->getType().isDestructedType()) 3788 return true; 3789 3790 return false; 3791 } 3792 3793 static bool AllTrivialInitializers(CodeGenModule &CGM, 3794 ObjCImplementationDecl *D) { 3795 CodeGenFunction CGF(CGM); 3796 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3797 E = D->init_end(); B != E; ++B) { 3798 CXXCtorInitializer *CtorInitExp = *B; 3799 Expr *Init = CtorInitExp->getInit(); 3800 if (!CGF.isTrivialInitializer(Init)) 3801 return false; 3802 } 3803 return true; 3804 } 3805 3806 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3807 /// for an implementation. 3808 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3809 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3810 if (needsDestructMethod(D)) { 3811 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3812 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3813 ObjCMethodDecl *DTORMethod = 3814 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3815 cxxSelector, getContext().VoidTy, nullptr, D, 3816 /*isInstance=*/true, /*isVariadic=*/false, 3817 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3818 /*isDefined=*/false, ObjCMethodDecl::Required); 3819 D->addInstanceMethod(DTORMethod); 3820 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3821 D->setHasDestructors(true); 3822 } 3823 3824 // If the implementation doesn't have any ivar initializers, we don't need 3825 // a .cxx_construct. 3826 if (D->getNumIvarInitializers() == 0 || 3827 AllTrivialInitializers(*this, D)) 3828 return; 3829 3830 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3831 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3832 // The constructor returns 'self'. 3833 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3834 D->getLocation(), 3835 D->getLocation(), 3836 cxxSelector, 3837 getContext().getObjCIdType(), 3838 nullptr, D, /*isInstance=*/true, 3839 /*isVariadic=*/false, 3840 /*isPropertyAccessor=*/true, 3841 /*isImplicitlyDeclared=*/true, 3842 /*isDefined=*/false, 3843 ObjCMethodDecl::Required); 3844 D->addInstanceMethod(CTORMethod); 3845 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3846 D->setHasNonZeroConstructors(true); 3847 } 3848 3849 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3850 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3851 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3852 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3853 ErrorUnsupported(LSD, "linkage spec"); 3854 return; 3855 } 3856 3857 EmitDeclContext(LSD); 3858 } 3859 3860 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3861 for (auto *I : DC->decls()) { 3862 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3863 // are themselves considered "top-level", so EmitTopLevelDecl on an 3864 // ObjCImplDecl does not recursively visit them. We need to do that in 3865 // case they're nested inside another construct (LinkageSpecDecl / 3866 // ExportDecl) that does stop them from being considered "top-level". 3867 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3868 for (auto *M : OID->methods()) 3869 EmitTopLevelDecl(M); 3870 } 3871 3872 EmitTopLevelDecl(I); 3873 } 3874 } 3875 3876 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3877 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3878 // Ignore dependent declarations. 3879 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3880 return; 3881 3882 switch (D->getKind()) { 3883 case Decl::CXXConversion: 3884 case Decl::CXXMethod: 3885 case Decl::Function: 3886 // Skip function templates 3887 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3888 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3889 return; 3890 3891 EmitGlobal(cast<FunctionDecl>(D)); 3892 // Always provide some coverage mapping 3893 // even for the functions that aren't emitted. 3894 AddDeferredUnusedCoverageMapping(D); 3895 break; 3896 3897 case Decl::CXXDeductionGuide: 3898 // Function-like, but does not result in code emission. 3899 break; 3900 3901 case Decl::Var: 3902 case Decl::Decomposition: 3903 // Skip variable templates 3904 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3905 return; 3906 LLVM_FALLTHROUGH; 3907 case Decl::VarTemplateSpecialization: 3908 EmitGlobal(cast<VarDecl>(D)); 3909 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3910 for (auto *B : DD->bindings()) 3911 if (auto *HD = B->getHoldingVar()) 3912 EmitGlobal(HD); 3913 break; 3914 3915 // Indirect fields from global anonymous structs and unions can be 3916 // ignored; only the actual variable requires IR gen support. 3917 case Decl::IndirectField: 3918 break; 3919 3920 // C++ Decls 3921 case Decl::Namespace: 3922 EmitDeclContext(cast<NamespaceDecl>(D)); 3923 break; 3924 case Decl::CXXRecord: 3925 if (DebugInfo) { 3926 if (auto *ES = D->getASTContext().getExternalSource()) 3927 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3928 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3929 } 3930 // Emit any static data members, they may be definitions. 3931 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3932 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3933 EmitTopLevelDecl(I); 3934 break; 3935 // No code generation needed. 3936 case Decl::UsingShadow: 3937 case Decl::ClassTemplate: 3938 case Decl::VarTemplate: 3939 case Decl::VarTemplatePartialSpecialization: 3940 case Decl::FunctionTemplate: 3941 case Decl::TypeAliasTemplate: 3942 case Decl::Block: 3943 case Decl::Empty: 3944 break; 3945 case Decl::Using: // using X; [C++] 3946 if (CGDebugInfo *DI = getModuleDebugInfo()) 3947 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3948 return; 3949 case Decl::NamespaceAlias: 3950 if (CGDebugInfo *DI = getModuleDebugInfo()) 3951 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3952 return; 3953 case Decl::UsingDirective: // using namespace X; [C++] 3954 if (CGDebugInfo *DI = getModuleDebugInfo()) 3955 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3956 return; 3957 case Decl::CXXConstructor: 3958 // Skip function templates 3959 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3960 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3961 return; 3962 3963 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3964 break; 3965 case Decl::CXXDestructor: 3966 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3967 return; 3968 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3969 break; 3970 3971 case Decl::StaticAssert: 3972 // Nothing to do. 3973 break; 3974 3975 // Objective-C Decls 3976 3977 // Forward declarations, no (immediate) code generation. 3978 case Decl::ObjCInterface: 3979 case Decl::ObjCCategory: 3980 break; 3981 3982 case Decl::ObjCProtocol: { 3983 auto *Proto = cast<ObjCProtocolDecl>(D); 3984 if (Proto->isThisDeclarationADefinition()) 3985 ObjCRuntime->GenerateProtocol(Proto); 3986 break; 3987 } 3988 3989 case Decl::ObjCCategoryImpl: 3990 // Categories have properties but don't support synthesize so we 3991 // can ignore them here. 3992 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3993 break; 3994 3995 case Decl::ObjCImplementation: { 3996 auto *OMD = cast<ObjCImplementationDecl>(D); 3997 EmitObjCPropertyImplementations(OMD); 3998 EmitObjCIvarInitializations(OMD); 3999 ObjCRuntime->GenerateClass(OMD); 4000 // Emit global variable debug information. 4001 if (CGDebugInfo *DI = getModuleDebugInfo()) 4002 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4003 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4004 OMD->getClassInterface()), OMD->getLocation()); 4005 break; 4006 } 4007 case Decl::ObjCMethod: { 4008 auto *OMD = cast<ObjCMethodDecl>(D); 4009 // If this is not a prototype, emit the body. 4010 if (OMD->getBody()) 4011 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4012 break; 4013 } 4014 case Decl::ObjCCompatibleAlias: 4015 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4016 break; 4017 4018 case Decl::PragmaComment: { 4019 const auto *PCD = cast<PragmaCommentDecl>(D); 4020 switch (PCD->getCommentKind()) { 4021 case PCK_Unknown: 4022 llvm_unreachable("unexpected pragma comment kind"); 4023 case PCK_Linker: 4024 AppendLinkerOptions(PCD->getArg()); 4025 break; 4026 case PCK_Lib: 4027 AddDependentLib(PCD->getArg()); 4028 break; 4029 case PCK_Compiler: 4030 case PCK_ExeStr: 4031 case PCK_User: 4032 break; // We ignore all of these. 4033 } 4034 break; 4035 } 4036 4037 case Decl::PragmaDetectMismatch: { 4038 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4039 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4040 break; 4041 } 4042 4043 case Decl::LinkageSpec: 4044 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4045 break; 4046 4047 case Decl::FileScopeAsm: { 4048 // File-scope asm is ignored during device-side CUDA compilation. 4049 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4050 break; 4051 // File-scope asm is ignored during device-side OpenMP compilation. 4052 if (LangOpts.OpenMPIsDevice) 4053 break; 4054 auto *AD = cast<FileScopeAsmDecl>(D); 4055 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4056 break; 4057 } 4058 4059 case Decl::Import: { 4060 auto *Import = cast<ImportDecl>(D); 4061 4062 // If we've already imported this module, we're done. 4063 if (!ImportedModules.insert(Import->getImportedModule())) 4064 break; 4065 4066 // Emit debug information for direct imports. 4067 if (!Import->getImportedOwningModule()) { 4068 if (CGDebugInfo *DI = getModuleDebugInfo()) 4069 DI->EmitImportDecl(*Import); 4070 } 4071 4072 // Find all of the submodules and emit the module initializers. 4073 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4074 SmallVector<clang::Module *, 16> Stack; 4075 Visited.insert(Import->getImportedModule()); 4076 Stack.push_back(Import->getImportedModule()); 4077 4078 while (!Stack.empty()) { 4079 clang::Module *Mod = Stack.pop_back_val(); 4080 if (!EmittedModuleInitializers.insert(Mod).second) 4081 continue; 4082 4083 for (auto *D : Context.getModuleInitializers(Mod)) 4084 EmitTopLevelDecl(D); 4085 4086 // Visit the submodules of this module. 4087 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4088 SubEnd = Mod->submodule_end(); 4089 Sub != SubEnd; ++Sub) { 4090 // Skip explicit children; they need to be explicitly imported to emit 4091 // the initializers. 4092 if ((*Sub)->IsExplicit) 4093 continue; 4094 4095 if (Visited.insert(*Sub).second) 4096 Stack.push_back(*Sub); 4097 } 4098 } 4099 break; 4100 } 4101 4102 case Decl::Export: 4103 EmitDeclContext(cast<ExportDecl>(D)); 4104 break; 4105 4106 case Decl::OMPThreadPrivate: 4107 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4108 break; 4109 4110 case Decl::ClassTemplateSpecialization: { 4111 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4112 if (DebugInfo && 4113 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4114 Spec->hasDefinition()) 4115 DebugInfo->completeTemplateDefinition(*Spec); 4116 break; 4117 } 4118 4119 case Decl::OMPDeclareReduction: 4120 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4121 break; 4122 4123 default: 4124 // Make sure we handled everything we should, every other kind is a 4125 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4126 // function. Need to recode Decl::Kind to do that easily. 4127 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4128 break; 4129 } 4130 } 4131 4132 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4133 // Do we need to generate coverage mapping? 4134 if (!CodeGenOpts.CoverageMapping) 4135 return; 4136 switch (D->getKind()) { 4137 case Decl::CXXConversion: 4138 case Decl::CXXMethod: 4139 case Decl::Function: 4140 case Decl::ObjCMethod: 4141 case Decl::CXXConstructor: 4142 case Decl::CXXDestructor: { 4143 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4144 return; 4145 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4146 if (I == DeferredEmptyCoverageMappingDecls.end()) 4147 DeferredEmptyCoverageMappingDecls[D] = true; 4148 break; 4149 } 4150 default: 4151 break; 4152 }; 4153 } 4154 4155 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4156 // Do we need to generate coverage mapping? 4157 if (!CodeGenOpts.CoverageMapping) 4158 return; 4159 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4160 if (Fn->isTemplateInstantiation()) 4161 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4162 } 4163 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4164 if (I == DeferredEmptyCoverageMappingDecls.end()) 4165 DeferredEmptyCoverageMappingDecls[D] = false; 4166 else 4167 I->second = false; 4168 } 4169 4170 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4171 std::vector<const Decl *> DeferredDecls; 4172 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4173 if (!I.second) 4174 continue; 4175 DeferredDecls.push_back(I.first); 4176 } 4177 // Sort the declarations by their location to make sure that the tests get a 4178 // predictable order for the coverage mapping for the unused declarations. 4179 if (CodeGenOpts.DumpCoverageMapping) 4180 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4181 [] (const Decl *LHS, const Decl *RHS) { 4182 return LHS->getLocStart() < RHS->getLocStart(); 4183 }); 4184 for (const auto *D : DeferredDecls) { 4185 switch (D->getKind()) { 4186 case Decl::CXXConversion: 4187 case Decl::CXXMethod: 4188 case Decl::Function: 4189 case Decl::ObjCMethod: { 4190 CodeGenPGO PGO(*this); 4191 GlobalDecl GD(cast<FunctionDecl>(D)); 4192 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4193 getFunctionLinkage(GD)); 4194 break; 4195 } 4196 case Decl::CXXConstructor: { 4197 CodeGenPGO PGO(*this); 4198 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4199 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4200 getFunctionLinkage(GD)); 4201 break; 4202 } 4203 case Decl::CXXDestructor: { 4204 CodeGenPGO PGO(*this); 4205 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4206 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4207 getFunctionLinkage(GD)); 4208 break; 4209 } 4210 default: 4211 break; 4212 }; 4213 } 4214 } 4215 4216 /// Turns the given pointer into a constant. 4217 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4218 const void *Ptr) { 4219 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4220 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4221 return llvm::ConstantInt::get(i64, PtrInt); 4222 } 4223 4224 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4225 llvm::NamedMDNode *&GlobalMetadata, 4226 GlobalDecl D, 4227 llvm::GlobalValue *Addr) { 4228 if (!GlobalMetadata) 4229 GlobalMetadata = 4230 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4231 4232 // TODO: should we report variant information for ctors/dtors? 4233 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4234 llvm::ConstantAsMetadata::get(GetPointerConstant( 4235 CGM.getLLVMContext(), D.getDecl()))}; 4236 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4237 } 4238 4239 /// For each function which is declared within an extern "C" region and marked 4240 /// as 'used', but has internal linkage, create an alias from the unmangled 4241 /// name to the mangled name if possible. People expect to be able to refer 4242 /// to such functions with an unmangled name from inline assembly within the 4243 /// same translation unit. 4244 void CodeGenModule::EmitStaticExternCAliases() { 4245 // Don't do anything if we're generating CUDA device code -- the NVPTX 4246 // assembly target doesn't support aliases. 4247 if (Context.getTargetInfo().getTriple().isNVPTX()) 4248 return; 4249 for (auto &I : StaticExternCValues) { 4250 IdentifierInfo *Name = I.first; 4251 llvm::GlobalValue *Val = I.second; 4252 if (Val && !getModule().getNamedValue(Name->getName())) 4253 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4254 } 4255 } 4256 4257 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4258 GlobalDecl &Result) const { 4259 auto Res = Manglings.find(MangledName); 4260 if (Res == Manglings.end()) 4261 return false; 4262 Result = Res->getValue(); 4263 return true; 4264 } 4265 4266 /// Emits metadata nodes associating all the global values in the 4267 /// current module with the Decls they came from. This is useful for 4268 /// projects using IR gen as a subroutine. 4269 /// 4270 /// Since there's currently no way to associate an MDNode directly 4271 /// with an llvm::GlobalValue, we create a global named metadata 4272 /// with the name 'clang.global.decl.ptrs'. 4273 void CodeGenModule::EmitDeclMetadata() { 4274 llvm::NamedMDNode *GlobalMetadata = nullptr; 4275 4276 for (auto &I : MangledDeclNames) { 4277 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4278 // Some mangled names don't necessarily have an associated GlobalValue 4279 // in this module, e.g. if we mangled it for DebugInfo. 4280 if (Addr) 4281 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4282 } 4283 } 4284 4285 /// Emits metadata nodes for all the local variables in the current 4286 /// function. 4287 void CodeGenFunction::EmitDeclMetadata() { 4288 if (LocalDeclMap.empty()) return; 4289 4290 llvm::LLVMContext &Context = getLLVMContext(); 4291 4292 // Find the unique metadata ID for this name. 4293 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4294 4295 llvm::NamedMDNode *GlobalMetadata = nullptr; 4296 4297 for (auto &I : LocalDeclMap) { 4298 const Decl *D = I.first; 4299 llvm::Value *Addr = I.second.getPointer(); 4300 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4301 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4302 Alloca->setMetadata( 4303 DeclPtrKind, llvm::MDNode::get( 4304 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4305 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4306 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4307 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4308 } 4309 } 4310 } 4311 4312 void CodeGenModule::EmitVersionIdentMetadata() { 4313 llvm::NamedMDNode *IdentMetadata = 4314 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4315 std::string Version = getClangFullVersion(); 4316 llvm::LLVMContext &Ctx = TheModule.getContext(); 4317 4318 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4319 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4320 } 4321 4322 void CodeGenModule::EmitTargetMetadata() { 4323 // Warning, new MangledDeclNames may be appended within this loop. 4324 // We rely on MapVector insertions adding new elements to the end 4325 // of the container. 4326 // FIXME: Move this loop into the one target that needs it, and only 4327 // loop over those declarations for which we couldn't emit the target 4328 // metadata when we emitted the declaration. 4329 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4330 auto Val = *(MangledDeclNames.begin() + I); 4331 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4332 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4333 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4334 } 4335 } 4336 4337 void CodeGenModule::EmitCoverageFile() { 4338 if (getCodeGenOpts().CoverageDataFile.empty() && 4339 getCodeGenOpts().CoverageNotesFile.empty()) 4340 return; 4341 4342 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4343 if (!CUNode) 4344 return; 4345 4346 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4347 llvm::LLVMContext &Ctx = TheModule.getContext(); 4348 auto *CoverageDataFile = 4349 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4350 auto *CoverageNotesFile = 4351 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4352 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4353 llvm::MDNode *CU = CUNode->getOperand(i); 4354 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4355 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4356 } 4357 } 4358 4359 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4360 // Sema has checked that all uuid strings are of the form 4361 // "12345678-1234-1234-1234-1234567890ab". 4362 assert(Uuid.size() == 36); 4363 for (unsigned i = 0; i < 36; ++i) { 4364 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4365 else assert(isHexDigit(Uuid[i])); 4366 } 4367 4368 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4369 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4370 4371 llvm::Constant *Field3[8]; 4372 for (unsigned Idx = 0; Idx < 8; ++Idx) 4373 Field3[Idx] = llvm::ConstantInt::get( 4374 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4375 4376 llvm::Constant *Fields[4] = { 4377 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4378 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4379 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4380 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4381 }; 4382 4383 return llvm::ConstantStruct::getAnon(Fields); 4384 } 4385 4386 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4387 bool ForEH) { 4388 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4389 // FIXME: should we even be calling this method if RTTI is disabled 4390 // and it's not for EH? 4391 if (!ForEH && !getLangOpts().RTTI) 4392 return llvm::Constant::getNullValue(Int8PtrTy); 4393 4394 if (ForEH && Ty->isObjCObjectPointerType() && 4395 LangOpts.ObjCRuntime.isGNUFamily()) 4396 return ObjCRuntime->GetEHType(Ty); 4397 4398 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4399 } 4400 4401 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4402 for (auto RefExpr : D->varlists()) { 4403 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4404 bool PerformInit = 4405 VD->getAnyInitializer() && 4406 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4407 /*ForRef=*/false); 4408 4409 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4410 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4411 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4412 CXXGlobalInits.push_back(InitFunction); 4413 } 4414 } 4415 4416 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4417 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4418 if (InternalId) 4419 return InternalId; 4420 4421 if (isExternallyVisible(T->getLinkage())) { 4422 std::string OutName; 4423 llvm::raw_string_ostream Out(OutName); 4424 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4425 4426 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4427 } else { 4428 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4429 llvm::ArrayRef<llvm::Metadata *>()); 4430 } 4431 4432 return InternalId; 4433 } 4434 4435 /// Returns whether this module needs the "all-vtables" type identifier. 4436 bool CodeGenModule::NeedAllVtablesTypeId() const { 4437 // Returns true if at least one of vtable-based CFI checkers is enabled and 4438 // is not in the trapping mode. 4439 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4440 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4441 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4442 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4443 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4444 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4445 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4446 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4447 } 4448 4449 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4450 CharUnits Offset, 4451 const CXXRecordDecl *RD) { 4452 llvm::Metadata *MD = 4453 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4454 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4455 4456 if (CodeGenOpts.SanitizeCfiCrossDso) 4457 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4458 VTable->addTypeMetadata(Offset.getQuantity(), 4459 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4460 4461 if (NeedAllVtablesTypeId()) { 4462 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4463 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4464 } 4465 } 4466 4467 // Fills in the supplied string map with the set of target features for the 4468 // passed in function. 4469 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4470 const FunctionDecl *FD) { 4471 StringRef TargetCPU = Target.getTargetOpts().CPU; 4472 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4473 // If we have a TargetAttr build up the feature map based on that. 4474 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4475 4476 // Make a copy of the features as passed on the command line into the 4477 // beginning of the additional features from the function to override. 4478 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4479 Target.getTargetOpts().FeaturesAsWritten.begin(), 4480 Target.getTargetOpts().FeaturesAsWritten.end()); 4481 4482 if (ParsedAttr.second != "") 4483 TargetCPU = ParsedAttr.second; 4484 4485 // Now populate the feature map, first with the TargetCPU which is either 4486 // the default or a new one from the target attribute string. Then we'll use 4487 // the passed in features (FeaturesAsWritten) along with the new ones from 4488 // the attribute. 4489 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4490 } else { 4491 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4492 Target.getTargetOpts().Features); 4493 } 4494 } 4495 4496 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4497 if (!SanStats) 4498 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4499 4500 return *SanStats; 4501 } 4502 llvm::Value * 4503 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4504 CodeGenFunction &CGF) { 4505 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4506 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4507 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4508 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4509 "__translate_sampler_initializer"), 4510 {C}); 4511 } 4512