1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 // Pointee values may have incomplete types, but they shall never be 583 // dereferenced. 584 if (AccessType->isIncompleteType()) 585 return TBAAAccessInfo::getIncompleteInfo(); 586 587 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 588 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 589 } 590 591 TBAAAccessInfo 592 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 593 if (!TBAA) 594 return TBAAAccessInfo(); 595 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTBAAStructInfo(QTy); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getBaseTypeInfo(QTy); 608 } 609 610 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 611 if (!TBAA) 612 return nullptr; 613 return TBAA->getAccessTagInfo(Info); 614 } 615 616 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 617 TBAAAccessInfo TargetInfo) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 621 } 622 623 TBAAAccessInfo 624 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 625 TBAAAccessInfo InfoB) { 626 if (!TBAA) 627 return TBAAAccessInfo(); 628 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 629 } 630 631 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 632 TBAAAccessInfo TBAAInfo) { 633 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 634 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 635 } 636 637 void CodeGenModule::DecorateInstructionWithInvariantGroup( 638 llvm::Instruction *I, const CXXRecordDecl *RD) { 639 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 640 llvm::MDNode::get(getLLVMContext(), {})); 641 } 642 643 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 644 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 645 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 646 } 647 648 /// ErrorUnsupported - Print out an error that codegen doesn't support the 649 /// specified stmt yet. 650 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 651 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 652 "cannot compile this %0 yet"); 653 std::string Msg = Type; 654 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 655 << Msg << S->getSourceRange(); 656 } 657 658 /// ErrorUnsupported - Print out an error that codegen doesn't support the 659 /// specified decl yet. 660 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 661 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 662 "cannot compile this %0 yet"); 663 std::string Msg = Type; 664 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 665 } 666 667 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 668 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 669 } 670 671 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 672 const NamedDecl *D, 673 ForDefinition_t IsForDefinition) const { 674 // Internal definitions always have default visibility. 675 if (GV->hasLocalLinkage()) { 676 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 677 return; 678 } 679 680 // Set visibility for definitions. 681 LinkageInfo LV = D->getLinkageAndVisibility(); 682 if (LV.isVisibilityExplicit() || 683 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 684 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 685 } 686 687 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 688 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 689 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 690 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 691 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 692 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 693 } 694 695 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 696 CodeGenOptions::TLSModel M) { 697 switch (M) { 698 case CodeGenOptions::GeneralDynamicTLSModel: 699 return llvm::GlobalVariable::GeneralDynamicTLSModel; 700 case CodeGenOptions::LocalDynamicTLSModel: 701 return llvm::GlobalVariable::LocalDynamicTLSModel; 702 case CodeGenOptions::InitialExecTLSModel: 703 return llvm::GlobalVariable::InitialExecTLSModel; 704 case CodeGenOptions::LocalExecTLSModel: 705 return llvm::GlobalVariable::LocalExecTLSModel; 706 } 707 llvm_unreachable("Invalid TLS model!"); 708 } 709 710 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 711 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 712 713 llvm::GlobalValue::ThreadLocalMode TLM; 714 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 715 716 // Override the TLS model if it is explicitly specified. 717 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 718 TLM = GetLLVMTLSModel(Attr->getModel()); 719 } 720 721 GV->setThreadLocalMode(TLM); 722 } 723 724 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 725 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 726 727 // Some ABIs don't have constructor variants. Make sure that base and 728 // complete constructors get mangled the same. 729 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 730 if (!getTarget().getCXXABI().hasConstructorVariants()) { 731 CXXCtorType OrigCtorType = GD.getCtorType(); 732 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 733 if (OrigCtorType == Ctor_Base) 734 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 735 } 736 } 737 738 auto FoundName = MangledDeclNames.find(CanonicalGD); 739 if (FoundName != MangledDeclNames.end()) 740 return FoundName->second; 741 742 const auto *ND = cast<NamedDecl>(GD.getDecl()); 743 SmallString<256> Buffer; 744 StringRef Str; 745 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 746 llvm::raw_svector_ostream Out(Buffer); 747 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 748 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 749 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 750 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 751 else 752 getCXXABI().getMangleContext().mangleName(ND, Out); 753 Str = Out.str(); 754 } else { 755 IdentifierInfo *II = ND->getIdentifier(); 756 assert(II && "Attempt to mangle unnamed decl."); 757 const auto *FD = dyn_cast<FunctionDecl>(ND); 758 759 if (FD && 760 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 761 llvm::raw_svector_ostream Out(Buffer); 762 Out << "__regcall3__" << II->getName(); 763 Str = Out.str(); 764 } else { 765 Str = II->getName(); 766 } 767 } 768 769 // Keep the first result in the case of a mangling collision. 770 auto Result = Manglings.insert(std::make_pair(Str, GD)); 771 return MangledDeclNames[CanonicalGD] = Result.first->first(); 772 } 773 774 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 775 const BlockDecl *BD) { 776 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 777 const Decl *D = GD.getDecl(); 778 779 SmallString<256> Buffer; 780 llvm::raw_svector_ostream Out(Buffer); 781 if (!D) 782 MangleCtx.mangleGlobalBlock(BD, 783 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 784 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 785 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 786 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 787 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 788 else 789 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 790 791 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 792 return Result.first->first(); 793 } 794 795 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 796 return getModule().getNamedValue(Name); 797 } 798 799 /// AddGlobalCtor - Add a function to the list that will be called before 800 /// main() runs. 801 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 802 llvm::Constant *AssociatedData) { 803 // FIXME: Type coercion of void()* types. 804 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 805 } 806 807 /// AddGlobalDtor - Add a function to the list that will be called 808 /// when the module is unloaded. 809 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 810 // FIXME: Type coercion of void()* types. 811 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 812 } 813 814 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 815 if (Fns.empty()) return; 816 817 // Ctor function type is void()*. 818 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 819 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 820 821 // Get the type of a ctor entry, { i32, void ()*, i8* }. 822 llvm::StructType *CtorStructTy = llvm::StructType::get( 823 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 824 825 // Construct the constructor and destructor arrays. 826 ConstantInitBuilder builder(*this); 827 auto ctors = builder.beginArray(CtorStructTy); 828 for (const auto &I : Fns) { 829 auto ctor = ctors.beginStruct(CtorStructTy); 830 ctor.addInt(Int32Ty, I.Priority); 831 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 832 if (I.AssociatedData) 833 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 834 else 835 ctor.addNullPointer(VoidPtrTy); 836 ctor.finishAndAddTo(ctors); 837 } 838 839 auto list = 840 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 841 /*constant*/ false, 842 llvm::GlobalValue::AppendingLinkage); 843 844 // The LTO linker doesn't seem to like it when we set an alignment 845 // on appending variables. Take it off as a workaround. 846 list->setAlignment(0); 847 848 Fns.clear(); 849 } 850 851 llvm::GlobalValue::LinkageTypes 852 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 853 const auto *D = cast<FunctionDecl>(GD.getDecl()); 854 855 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 856 857 if (isa<CXXDestructorDecl>(D) && 858 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 859 GD.getDtorType())) { 860 // Destructor variants in the Microsoft C++ ABI are always internal or 861 // linkonce_odr thunks emitted on an as-needed basis. 862 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 863 : llvm::GlobalValue::LinkOnceODRLinkage; 864 } 865 866 if (isa<CXXConstructorDecl>(D) && 867 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 868 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 869 // Our approach to inheriting constructors is fundamentally different from 870 // that used by the MS ABI, so keep our inheriting constructor thunks 871 // internal rather than trying to pick an unambiguous mangling for them. 872 return llvm::GlobalValue::InternalLinkage; 873 } 874 875 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 876 } 877 878 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 879 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 880 881 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 882 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 883 // Don't dllexport/import destructor thunks. 884 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 885 return; 886 } 887 } 888 889 if (FD->hasAttr<DLLImportAttr>()) 890 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 891 else if (FD->hasAttr<DLLExportAttr>()) 892 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 893 else 894 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 895 } 896 897 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 898 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 899 if (!MDS) return nullptr; 900 901 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 902 } 903 904 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 905 llvm::Function *F) { 906 setNonAliasAttributes(D, F); 907 } 908 909 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 910 const CGFunctionInfo &Info, 911 llvm::Function *F) { 912 unsigned CallingConv; 913 llvm::AttributeList PAL; 914 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 915 F->setAttributes(PAL); 916 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 917 } 918 919 /// Determines whether the language options require us to model 920 /// unwind exceptions. We treat -fexceptions as mandating this 921 /// except under the fragile ObjC ABI with only ObjC exceptions 922 /// enabled. This means, for example, that C with -fexceptions 923 /// enables this. 924 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 925 // If exceptions are completely disabled, obviously this is false. 926 if (!LangOpts.Exceptions) return false; 927 928 // If C++ exceptions are enabled, this is true. 929 if (LangOpts.CXXExceptions) return true; 930 931 // If ObjC exceptions are enabled, this depends on the ABI. 932 if (LangOpts.ObjCExceptions) { 933 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 934 } 935 936 return true; 937 } 938 939 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 940 llvm::Function *F) { 941 llvm::AttrBuilder B; 942 943 if (CodeGenOpts.UnwindTables) 944 B.addAttribute(llvm::Attribute::UWTable); 945 946 if (!hasUnwindExceptions(LangOpts)) 947 B.addAttribute(llvm::Attribute::NoUnwind); 948 949 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 950 B.addAttribute(llvm::Attribute::StackProtect); 951 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 952 B.addAttribute(llvm::Attribute::StackProtectStrong); 953 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 954 B.addAttribute(llvm::Attribute::StackProtectReq); 955 956 if (!D) { 957 // If we don't have a declaration to control inlining, the function isn't 958 // explicitly marked as alwaysinline for semantic reasons, and inlining is 959 // disabled, mark the function as noinline. 960 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 961 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 962 B.addAttribute(llvm::Attribute::NoInline); 963 964 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 965 return; 966 } 967 968 // Track whether we need to add the optnone LLVM attribute, 969 // starting with the default for this optimization level. 970 bool ShouldAddOptNone = 971 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 972 // We can't add optnone in the following cases, it won't pass the verifier. 973 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 974 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 975 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 976 977 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 978 B.addAttribute(llvm::Attribute::OptimizeNone); 979 980 // OptimizeNone implies noinline; we should not be inlining such functions. 981 B.addAttribute(llvm::Attribute::NoInline); 982 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 983 "OptimizeNone and AlwaysInline on same function!"); 984 985 // We still need to handle naked functions even though optnone subsumes 986 // much of their semantics. 987 if (D->hasAttr<NakedAttr>()) 988 B.addAttribute(llvm::Attribute::Naked); 989 990 // OptimizeNone wins over OptimizeForSize and MinSize. 991 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 992 F->removeFnAttr(llvm::Attribute::MinSize); 993 } else if (D->hasAttr<NakedAttr>()) { 994 // Naked implies noinline: we should not be inlining such functions. 995 B.addAttribute(llvm::Attribute::Naked); 996 B.addAttribute(llvm::Attribute::NoInline); 997 } else if (D->hasAttr<NoDuplicateAttr>()) { 998 B.addAttribute(llvm::Attribute::NoDuplicate); 999 } else if (D->hasAttr<NoInlineAttr>()) { 1000 B.addAttribute(llvm::Attribute::NoInline); 1001 } else if (D->hasAttr<AlwaysInlineAttr>() && 1002 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1003 // (noinline wins over always_inline, and we can't specify both in IR) 1004 B.addAttribute(llvm::Attribute::AlwaysInline); 1005 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1006 // If we're not inlining, then force everything that isn't always_inline to 1007 // carry an explicit noinline attribute. 1008 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1009 B.addAttribute(llvm::Attribute::NoInline); 1010 } else { 1011 // Otherwise, propagate the inline hint attribute and potentially use its 1012 // absence to mark things as noinline. 1013 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1014 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1015 return Redecl->isInlineSpecified(); 1016 })) { 1017 B.addAttribute(llvm::Attribute::InlineHint); 1018 } else if (CodeGenOpts.getInlining() == 1019 CodeGenOptions::OnlyHintInlining && 1020 !FD->isInlined() && 1021 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1022 B.addAttribute(llvm::Attribute::NoInline); 1023 } 1024 } 1025 } 1026 1027 // Add other optimization related attributes if we are optimizing this 1028 // function. 1029 if (!D->hasAttr<OptimizeNoneAttr>()) { 1030 if (D->hasAttr<ColdAttr>()) { 1031 if (!ShouldAddOptNone) 1032 B.addAttribute(llvm::Attribute::OptimizeForSize); 1033 B.addAttribute(llvm::Attribute::Cold); 1034 } 1035 1036 if (D->hasAttr<MinSizeAttr>()) 1037 B.addAttribute(llvm::Attribute::MinSize); 1038 } 1039 1040 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1041 1042 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1043 if (alignment) 1044 F->setAlignment(alignment); 1045 1046 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1047 // reserve a bit for differentiating between virtual and non-virtual member 1048 // functions. If the current target's C++ ABI requires this and this is a 1049 // member function, set its alignment accordingly. 1050 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1051 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1052 F->setAlignment(2); 1053 } 1054 1055 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1056 if (CodeGenOpts.SanitizeCfiCrossDso) 1057 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1058 CreateFunctionTypeMetadata(FD, F); 1059 } 1060 1061 void CodeGenModule::SetCommonAttributes(const Decl *D, 1062 llvm::GlobalValue *GV) { 1063 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1064 setGlobalVisibility(GV, ND, ForDefinition); 1065 else 1066 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1067 1068 if (D && D->hasAttr<UsedAttr>()) 1069 addUsedGlobal(GV); 1070 } 1071 1072 void CodeGenModule::setAliasAttributes(const Decl *D, 1073 llvm::GlobalValue *GV) { 1074 SetCommonAttributes(D, GV); 1075 1076 // Process the dllexport attribute based on whether the original definition 1077 // (not necessarily the aliasee) was exported. 1078 if (D->hasAttr<DLLExportAttr>()) 1079 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1080 } 1081 1082 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1083 llvm::GlobalObject *GO) { 1084 SetCommonAttributes(D, GO); 1085 1086 if (D) { 1087 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1088 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1089 GV->addAttribute("bss-section", SA->getName()); 1090 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1091 GV->addAttribute("data-section", SA->getName()); 1092 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1093 GV->addAttribute("rodata-section", SA->getName()); 1094 } 1095 1096 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1097 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1098 if (!D->getAttr<SectionAttr>()) 1099 F->addFnAttr("implicit-section-name", SA->getName()); 1100 } 1101 1102 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1103 GO->setSection(SA->getName()); 1104 } 1105 1106 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1107 } 1108 1109 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1110 llvm::Function *F, 1111 const CGFunctionInfo &FI) { 1112 SetLLVMFunctionAttributes(D, FI, F); 1113 SetLLVMFunctionAttributesForDefinition(D, F); 1114 1115 F->setLinkage(llvm::Function::InternalLinkage); 1116 1117 setNonAliasAttributes(D, F); 1118 } 1119 1120 static void setLinkageForGV(llvm::GlobalValue *GV, 1121 const NamedDecl *ND) { 1122 // Set linkage and visibility in case we never see a definition. 1123 LinkageInfo LV = ND->getLinkageAndVisibility(); 1124 if (!isExternallyVisible(LV.getLinkage())) { 1125 // Don't set internal linkage on declarations. 1126 } else { 1127 if (ND->hasAttr<DLLImportAttr>()) { 1128 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1129 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1130 } else if (ND->hasAttr<DLLExportAttr>()) { 1131 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1132 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1133 // "extern_weak" is overloaded in LLVM; we probably should have 1134 // separate linkage types for this. 1135 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1136 } 1137 } 1138 } 1139 1140 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1141 llvm::Function *F) { 1142 // Only if we are checking indirect calls. 1143 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1144 return; 1145 1146 // Non-static class methods are handled via vtable pointer checks elsewhere. 1147 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1148 return; 1149 1150 // Additionally, if building with cross-DSO support... 1151 if (CodeGenOpts.SanitizeCfiCrossDso) { 1152 // Skip available_externally functions. They won't be codegen'ed in the 1153 // current module anyway. 1154 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1155 return; 1156 } 1157 1158 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1159 F->addTypeMetadata(0, MD); 1160 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1161 1162 // Emit a hash-based bit set entry for cross-DSO calls. 1163 if (CodeGenOpts.SanitizeCfiCrossDso) 1164 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1165 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1166 } 1167 1168 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1169 bool IsIncompleteFunction, 1170 bool IsThunk, 1171 ForDefinition_t IsForDefinition) { 1172 1173 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1174 // If this is an intrinsic function, set the function's attributes 1175 // to the intrinsic's attributes. 1176 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1177 return; 1178 } 1179 1180 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1181 1182 if (!IsIncompleteFunction) { 1183 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1184 // Setup target-specific attributes. 1185 if (!IsForDefinition) 1186 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1187 NotForDefinition); 1188 } 1189 1190 // Add the Returned attribute for "this", except for iOS 5 and earlier 1191 // where substantial code, including the libstdc++ dylib, was compiled with 1192 // GCC and does not actually return "this". 1193 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1194 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1195 assert(!F->arg_empty() && 1196 F->arg_begin()->getType() 1197 ->canLosslesslyBitCastTo(F->getReturnType()) && 1198 "unexpected this return"); 1199 F->addAttribute(1, llvm::Attribute::Returned); 1200 } 1201 1202 // Only a few attributes are set on declarations; these may later be 1203 // overridden by a definition. 1204 1205 setLinkageForGV(F, FD); 1206 setGlobalVisibility(F, FD, NotForDefinition); 1207 1208 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1209 F->addFnAttr("implicit-section-name"); 1210 } 1211 1212 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1213 F->setSection(SA->getName()); 1214 1215 if (FD->isReplaceableGlobalAllocationFunction()) { 1216 // A replaceable global allocation function does not act like a builtin by 1217 // default, only if it is invoked by a new-expression or delete-expression. 1218 F->addAttribute(llvm::AttributeList::FunctionIndex, 1219 llvm::Attribute::NoBuiltin); 1220 1221 // A sane operator new returns a non-aliasing pointer. 1222 // FIXME: Also add NonNull attribute to the return value 1223 // for the non-nothrow forms? 1224 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1225 if (getCodeGenOpts().AssumeSaneOperatorNew && 1226 (Kind == OO_New || Kind == OO_Array_New)) 1227 F->addAttribute(llvm::AttributeList::ReturnIndex, 1228 llvm::Attribute::NoAlias); 1229 } 1230 1231 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1232 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1233 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1234 if (MD->isVirtual()) 1235 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1236 1237 // Don't emit entries for function declarations in the cross-DSO mode. This 1238 // is handled with better precision by the receiving DSO. 1239 if (!CodeGenOpts.SanitizeCfiCrossDso) 1240 CreateFunctionTypeMetadata(FD, F); 1241 } 1242 1243 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1244 assert(!GV->isDeclaration() && 1245 "Only globals with definition can force usage."); 1246 LLVMUsed.emplace_back(GV); 1247 } 1248 1249 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1250 assert(!GV->isDeclaration() && 1251 "Only globals with definition can force usage."); 1252 LLVMCompilerUsed.emplace_back(GV); 1253 } 1254 1255 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1256 std::vector<llvm::WeakTrackingVH> &List) { 1257 // Don't create llvm.used if there is no need. 1258 if (List.empty()) 1259 return; 1260 1261 // Convert List to what ConstantArray needs. 1262 SmallVector<llvm::Constant*, 8> UsedArray; 1263 UsedArray.resize(List.size()); 1264 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1265 UsedArray[i] = 1266 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1267 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1268 } 1269 1270 if (UsedArray.empty()) 1271 return; 1272 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1273 1274 auto *GV = new llvm::GlobalVariable( 1275 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1276 llvm::ConstantArray::get(ATy, UsedArray), Name); 1277 1278 GV->setSection("llvm.metadata"); 1279 } 1280 1281 void CodeGenModule::emitLLVMUsed() { 1282 emitUsed(*this, "llvm.used", LLVMUsed); 1283 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1284 } 1285 1286 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1287 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1288 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1289 } 1290 1291 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1292 llvm::SmallString<32> Opt; 1293 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1294 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1295 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1296 } 1297 1298 void CodeGenModule::AddDependentLib(StringRef Lib) { 1299 llvm::SmallString<24> Opt; 1300 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1301 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1302 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1303 } 1304 1305 /// \brief Add link options implied by the given module, including modules 1306 /// it depends on, using a postorder walk. 1307 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1308 SmallVectorImpl<llvm::MDNode *> &Metadata, 1309 llvm::SmallPtrSet<Module *, 16> &Visited) { 1310 // Import this module's parent. 1311 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1312 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1313 } 1314 1315 // Import this module's dependencies. 1316 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1317 if (Visited.insert(Mod->Imports[I - 1]).second) 1318 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1319 } 1320 1321 // Add linker options to link against the libraries/frameworks 1322 // described by this module. 1323 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1324 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1325 // Link against a framework. Frameworks are currently Darwin only, so we 1326 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1327 if (Mod->LinkLibraries[I-1].IsFramework) { 1328 llvm::Metadata *Args[2] = { 1329 llvm::MDString::get(Context, "-framework"), 1330 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1331 1332 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1333 continue; 1334 } 1335 1336 // Link against a library. 1337 llvm::SmallString<24> Opt; 1338 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1339 Mod->LinkLibraries[I-1].Library, Opt); 1340 auto *OptString = llvm::MDString::get(Context, Opt); 1341 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1342 } 1343 } 1344 1345 void CodeGenModule::EmitModuleLinkOptions() { 1346 // Collect the set of all of the modules we want to visit to emit link 1347 // options, which is essentially the imported modules and all of their 1348 // non-explicit child modules. 1349 llvm::SetVector<clang::Module *> LinkModules; 1350 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1351 SmallVector<clang::Module *, 16> Stack; 1352 1353 // Seed the stack with imported modules. 1354 for (Module *M : ImportedModules) { 1355 // Do not add any link flags when an implementation TU of a module imports 1356 // a header of that same module. 1357 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1358 !getLangOpts().isCompilingModule()) 1359 continue; 1360 if (Visited.insert(M).second) 1361 Stack.push_back(M); 1362 } 1363 1364 // Find all of the modules to import, making a little effort to prune 1365 // non-leaf modules. 1366 while (!Stack.empty()) { 1367 clang::Module *Mod = Stack.pop_back_val(); 1368 1369 bool AnyChildren = false; 1370 1371 // Visit the submodules of this module. 1372 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1373 SubEnd = Mod->submodule_end(); 1374 Sub != SubEnd; ++Sub) { 1375 // Skip explicit children; they need to be explicitly imported to be 1376 // linked against. 1377 if ((*Sub)->IsExplicit) 1378 continue; 1379 1380 if (Visited.insert(*Sub).second) { 1381 Stack.push_back(*Sub); 1382 AnyChildren = true; 1383 } 1384 } 1385 1386 // We didn't find any children, so add this module to the list of 1387 // modules to link against. 1388 if (!AnyChildren) { 1389 LinkModules.insert(Mod); 1390 } 1391 } 1392 1393 // Add link options for all of the imported modules in reverse topological 1394 // order. We don't do anything to try to order import link flags with respect 1395 // to linker options inserted by things like #pragma comment(). 1396 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1397 Visited.clear(); 1398 for (Module *M : LinkModules) 1399 if (Visited.insert(M).second) 1400 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1401 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1402 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1403 1404 // Add the linker options metadata flag. 1405 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1406 for (auto *MD : LinkerOptionsMetadata) 1407 NMD->addOperand(MD); 1408 } 1409 1410 void CodeGenModule::EmitDeferred() { 1411 // Emit code for any potentially referenced deferred decls. Since a 1412 // previously unused static decl may become used during the generation of code 1413 // for a static function, iterate until no changes are made. 1414 1415 if (!DeferredVTables.empty()) { 1416 EmitDeferredVTables(); 1417 1418 // Emitting a vtable doesn't directly cause more vtables to 1419 // become deferred, although it can cause functions to be 1420 // emitted that then need those vtables. 1421 assert(DeferredVTables.empty()); 1422 } 1423 1424 // Stop if we're out of both deferred vtables and deferred declarations. 1425 if (DeferredDeclsToEmit.empty()) 1426 return; 1427 1428 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1429 // work, it will not interfere with this. 1430 std::vector<GlobalDecl> CurDeclsToEmit; 1431 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1432 1433 for (GlobalDecl &D : CurDeclsToEmit) { 1434 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1435 // to get GlobalValue with exactly the type we need, not something that 1436 // might had been created for another decl with the same mangled name but 1437 // different type. 1438 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1439 GetAddrOfGlobal(D, ForDefinition)); 1440 1441 // In case of different address spaces, we may still get a cast, even with 1442 // IsForDefinition equal to true. Query mangled names table to get 1443 // GlobalValue. 1444 if (!GV) 1445 GV = GetGlobalValue(getMangledName(D)); 1446 1447 // Make sure GetGlobalValue returned non-null. 1448 assert(GV); 1449 1450 // Check to see if we've already emitted this. This is necessary 1451 // for a couple of reasons: first, decls can end up in the 1452 // deferred-decls queue multiple times, and second, decls can end 1453 // up with definitions in unusual ways (e.g. by an extern inline 1454 // function acquiring a strong function redefinition). Just 1455 // ignore these cases. 1456 if (!GV->isDeclaration()) 1457 continue; 1458 1459 // Otherwise, emit the definition and move on to the next one. 1460 EmitGlobalDefinition(D, GV); 1461 1462 // If we found out that we need to emit more decls, do that recursively. 1463 // This has the advantage that the decls are emitted in a DFS and related 1464 // ones are close together, which is convenient for testing. 1465 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1466 EmitDeferred(); 1467 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1468 } 1469 } 1470 } 1471 1472 void CodeGenModule::EmitVTablesOpportunistically() { 1473 // Try to emit external vtables as available_externally if they have emitted 1474 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1475 // is not allowed to create new references to things that need to be emitted 1476 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1477 1478 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1479 && "Only emit opportunistic vtables with optimizations"); 1480 1481 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1482 assert(getVTables().isVTableExternal(RD) && 1483 "This queue should only contain external vtables"); 1484 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1485 VTables.GenerateClassData(RD); 1486 } 1487 OpportunisticVTables.clear(); 1488 } 1489 1490 void CodeGenModule::EmitGlobalAnnotations() { 1491 if (Annotations.empty()) 1492 return; 1493 1494 // Create a new global variable for the ConstantStruct in the Module. 1495 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1496 Annotations[0]->getType(), Annotations.size()), Annotations); 1497 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1498 llvm::GlobalValue::AppendingLinkage, 1499 Array, "llvm.global.annotations"); 1500 gv->setSection(AnnotationSection); 1501 } 1502 1503 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1504 llvm::Constant *&AStr = AnnotationStrings[Str]; 1505 if (AStr) 1506 return AStr; 1507 1508 // Not found yet, create a new global. 1509 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1510 auto *gv = 1511 new llvm::GlobalVariable(getModule(), s->getType(), true, 1512 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1513 gv->setSection(AnnotationSection); 1514 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1515 AStr = gv; 1516 return gv; 1517 } 1518 1519 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1520 SourceManager &SM = getContext().getSourceManager(); 1521 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1522 if (PLoc.isValid()) 1523 return EmitAnnotationString(PLoc.getFilename()); 1524 return EmitAnnotationString(SM.getBufferName(Loc)); 1525 } 1526 1527 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1528 SourceManager &SM = getContext().getSourceManager(); 1529 PresumedLoc PLoc = SM.getPresumedLoc(L); 1530 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1531 SM.getExpansionLineNumber(L); 1532 return llvm::ConstantInt::get(Int32Ty, LineNo); 1533 } 1534 1535 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1536 const AnnotateAttr *AA, 1537 SourceLocation L) { 1538 // Get the globals for file name, annotation, and the line number. 1539 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1540 *UnitGV = EmitAnnotationUnit(L), 1541 *LineNoCst = EmitAnnotationLineNo(L); 1542 1543 // Create the ConstantStruct for the global annotation. 1544 llvm::Constant *Fields[4] = { 1545 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1546 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1547 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1548 LineNoCst 1549 }; 1550 return llvm::ConstantStruct::getAnon(Fields); 1551 } 1552 1553 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1554 llvm::GlobalValue *GV) { 1555 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1556 // Get the struct elements for these annotations. 1557 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1558 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1559 } 1560 1561 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1562 llvm::Function *Fn, 1563 SourceLocation Loc) const { 1564 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1565 // Blacklist by function name. 1566 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1567 return true; 1568 // Blacklist by location. 1569 if (Loc.isValid()) 1570 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1571 // If location is unknown, this may be a compiler-generated function. Assume 1572 // it's located in the main file. 1573 auto &SM = Context.getSourceManager(); 1574 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1575 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1576 } 1577 return false; 1578 } 1579 1580 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1581 SourceLocation Loc, QualType Ty, 1582 StringRef Category) const { 1583 // For now globals can be blacklisted only in ASan and KASan. 1584 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1585 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1586 if (!EnabledAsanMask) 1587 return false; 1588 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1589 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1590 return true; 1591 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1592 return true; 1593 // Check global type. 1594 if (!Ty.isNull()) { 1595 // Drill down the array types: if global variable of a fixed type is 1596 // blacklisted, we also don't instrument arrays of them. 1597 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1598 Ty = AT->getElementType(); 1599 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1600 // We allow to blacklist only record types (classes, structs etc.) 1601 if (Ty->isRecordType()) { 1602 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1603 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1604 return true; 1605 } 1606 } 1607 return false; 1608 } 1609 1610 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1611 StringRef Category) const { 1612 if (!LangOpts.XRayInstrument) 1613 return false; 1614 const auto &XRayFilter = getContext().getXRayFilter(); 1615 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1616 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1617 if (Loc.isValid()) 1618 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1619 if (Attr == ImbueAttr::NONE) 1620 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1621 switch (Attr) { 1622 case ImbueAttr::NONE: 1623 return false; 1624 case ImbueAttr::ALWAYS: 1625 Fn->addFnAttr("function-instrument", "xray-always"); 1626 break; 1627 case ImbueAttr::ALWAYS_ARG1: 1628 Fn->addFnAttr("function-instrument", "xray-always"); 1629 Fn->addFnAttr("xray-log-args", "1"); 1630 break; 1631 case ImbueAttr::NEVER: 1632 Fn->addFnAttr("function-instrument", "xray-never"); 1633 break; 1634 } 1635 return true; 1636 } 1637 1638 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1639 // Never defer when EmitAllDecls is specified. 1640 if (LangOpts.EmitAllDecls) 1641 return true; 1642 1643 return getContext().DeclMustBeEmitted(Global); 1644 } 1645 1646 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1647 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1648 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1649 // Implicit template instantiations may change linkage if they are later 1650 // explicitly instantiated, so they should not be emitted eagerly. 1651 return false; 1652 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1653 if (Context.getInlineVariableDefinitionKind(VD) == 1654 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1655 // A definition of an inline constexpr static data member may change 1656 // linkage later if it's redeclared outside the class. 1657 return false; 1658 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1659 // codegen for global variables, because they may be marked as threadprivate. 1660 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1661 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1662 return false; 1663 1664 return true; 1665 } 1666 1667 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1668 const CXXUuidofExpr* E) { 1669 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1670 // well-formed. 1671 StringRef Uuid = E->getUuidStr(); 1672 std::string Name = "_GUID_" + Uuid.lower(); 1673 std::replace(Name.begin(), Name.end(), '-', '_'); 1674 1675 // The UUID descriptor should be pointer aligned. 1676 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1677 1678 // Look for an existing global. 1679 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1680 return ConstantAddress(GV, Alignment); 1681 1682 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1683 assert(Init && "failed to initialize as constant"); 1684 1685 auto *GV = new llvm::GlobalVariable( 1686 getModule(), Init->getType(), 1687 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1688 if (supportsCOMDAT()) 1689 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1690 return ConstantAddress(GV, Alignment); 1691 } 1692 1693 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1694 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1695 assert(AA && "No alias?"); 1696 1697 CharUnits Alignment = getContext().getDeclAlign(VD); 1698 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1699 1700 // See if there is already something with the target's name in the module. 1701 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1702 if (Entry) { 1703 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1704 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1705 return ConstantAddress(Ptr, Alignment); 1706 } 1707 1708 llvm::Constant *Aliasee; 1709 if (isa<llvm::FunctionType>(DeclTy)) 1710 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1711 GlobalDecl(cast<FunctionDecl>(VD)), 1712 /*ForVTable=*/false); 1713 else 1714 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1715 llvm::PointerType::getUnqual(DeclTy), 1716 nullptr); 1717 1718 auto *F = cast<llvm::GlobalValue>(Aliasee); 1719 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1720 WeakRefReferences.insert(F); 1721 1722 return ConstantAddress(Aliasee, Alignment); 1723 } 1724 1725 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1726 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1727 1728 // Weak references don't produce any output by themselves. 1729 if (Global->hasAttr<WeakRefAttr>()) 1730 return; 1731 1732 // If this is an alias definition (which otherwise looks like a declaration) 1733 // emit it now. 1734 if (Global->hasAttr<AliasAttr>()) 1735 return EmitAliasDefinition(GD); 1736 1737 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1738 if (Global->hasAttr<IFuncAttr>()) 1739 return emitIFuncDefinition(GD); 1740 1741 // If this is CUDA, be selective about which declarations we emit. 1742 if (LangOpts.CUDA) { 1743 if (LangOpts.CUDAIsDevice) { 1744 if (!Global->hasAttr<CUDADeviceAttr>() && 1745 !Global->hasAttr<CUDAGlobalAttr>() && 1746 !Global->hasAttr<CUDAConstantAttr>() && 1747 !Global->hasAttr<CUDASharedAttr>()) 1748 return; 1749 } else { 1750 // We need to emit host-side 'shadows' for all global 1751 // device-side variables because the CUDA runtime needs their 1752 // size and host-side address in order to provide access to 1753 // their device-side incarnations. 1754 1755 // So device-only functions are the only things we skip. 1756 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1757 Global->hasAttr<CUDADeviceAttr>()) 1758 return; 1759 1760 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1761 "Expected Variable or Function"); 1762 } 1763 } 1764 1765 if (LangOpts.OpenMP) { 1766 // If this is OpenMP device, check if it is legal to emit this global 1767 // normally. 1768 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1769 return; 1770 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1771 if (MustBeEmitted(Global)) 1772 EmitOMPDeclareReduction(DRD); 1773 return; 1774 } 1775 } 1776 1777 // Ignore declarations, they will be emitted on their first use. 1778 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1779 // Forward declarations are emitted lazily on first use. 1780 if (!FD->doesThisDeclarationHaveABody()) { 1781 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1782 return; 1783 1784 StringRef MangledName = getMangledName(GD); 1785 1786 // Compute the function info and LLVM type. 1787 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1788 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1789 1790 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1791 /*DontDefer=*/false); 1792 return; 1793 } 1794 } else { 1795 const auto *VD = cast<VarDecl>(Global); 1796 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1797 // We need to emit device-side global CUDA variables even if a 1798 // variable does not have a definition -- we still need to define 1799 // host-side shadow for it. 1800 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1801 !VD->hasDefinition() && 1802 (VD->hasAttr<CUDAConstantAttr>() || 1803 VD->hasAttr<CUDADeviceAttr>()); 1804 if (!MustEmitForCuda && 1805 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1806 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1807 // If this declaration may have caused an inline variable definition to 1808 // change linkage, make sure that it's emitted. 1809 if (Context.getInlineVariableDefinitionKind(VD) == 1810 ASTContext::InlineVariableDefinitionKind::Strong) 1811 GetAddrOfGlobalVar(VD); 1812 return; 1813 } 1814 } 1815 1816 // Defer code generation to first use when possible, e.g. if this is an inline 1817 // function. If the global must always be emitted, do it eagerly if possible 1818 // to benefit from cache locality. 1819 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1820 // Emit the definition if it can't be deferred. 1821 EmitGlobalDefinition(GD); 1822 return; 1823 } 1824 1825 // If we're deferring emission of a C++ variable with an 1826 // initializer, remember the order in which it appeared in the file. 1827 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1828 cast<VarDecl>(Global)->hasInit()) { 1829 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1830 CXXGlobalInits.push_back(nullptr); 1831 } 1832 1833 StringRef MangledName = getMangledName(GD); 1834 if (GetGlobalValue(MangledName) != nullptr) { 1835 // The value has already been used and should therefore be emitted. 1836 addDeferredDeclToEmit(GD); 1837 } else if (MustBeEmitted(Global)) { 1838 // The value must be emitted, but cannot be emitted eagerly. 1839 assert(!MayBeEmittedEagerly(Global)); 1840 addDeferredDeclToEmit(GD); 1841 } else { 1842 // Otherwise, remember that we saw a deferred decl with this name. The 1843 // first use of the mangled name will cause it to move into 1844 // DeferredDeclsToEmit. 1845 DeferredDecls[MangledName] = GD; 1846 } 1847 } 1848 1849 // Check if T is a class type with a destructor that's not dllimport. 1850 static bool HasNonDllImportDtor(QualType T) { 1851 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1852 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1853 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1854 return true; 1855 1856 return false; 1857 } 1858 1859 namespace { 1860 struct FunctionIsDirectlyRecursive : 1861 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1862 const StringRef Name; 1863 const Builtin::Context &BI; 1864 bool Result; 1865 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1866 Name(N), BI(C), Result(false) { 1867 } 1868 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1869 1870 bool TraverseCallExpr(CallExpr *E) { 1871 const FunctionDecl *FD = E->getDirectCallee(); 1872 if (!FD) 1873 return true; 1874 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1875 if (Attr && Name == Attr->getLabel()) { 1876 Result = true; 1877 return false; 1878 } 1879 unsigned BuiltinID = FD->getBuiltinID(); 1880 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1881 return true; 1882 StringRef BuiltinName = BI.getName(BuiltinID); 1883 if (BuiltinName.startswith("__builtin_") && 1884 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1885 Result = true; 1886 return false; 1887 } 1888 return true; 1889 } 1890 }; 1891 1892 // Make sure we're not referencing non-imported vars or functions. 1893 struct DLLImportFunctionVisitor 1894 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1895 bool SafeToInline = true; 1896 1897 bool shouldVisitImplicitCode() const { return true; } 1898 1899 bool VisitVarDecl(VarDecl *VD) { 1900 if (VD->getTLSKind()) { 1901 // A thread-local variable cannot be imported. 1902 SafeToInline = false; 1903 return SafeToInline; 1904 } 1905 1906 // A variable definition might imply a destructor call. 1907 if (VD->isThisDeclarationADefinition()) 1908 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1909 1910 return SafeToInline; 1911 } 1912 1913 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1914 if (const auto *D = E->getTemporary()->getDestructor()) 1915 SafeToInline = D->hasAttr<DLLImportAttr>(); 1916 return SafeToInline; 1917 } 1918 1919 bool VisitDeclRefExpr(DeclRefExpr *E) { 1920 ValueDecl *VD = E->getDecl(); 1921 if (isa<FunctionDecl>(VD)) 1922 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1923 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1924 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1925 return SafeToInline; 1926 } 1927 1928 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1929 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1930 return SafeToInline; 1931 } 1932 1933 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1934 CXXMethodDecl *M = E->getMethodDecl(); 1935 if (!M) { 1936 // Call through a pointer to member function. This is safe to inline. 1937 SafeToInline = true; 1938 } else { 1939 SafeToInline = M->hasAttr<DLLImportAttr>(); 1940 } 1941 return SafeToInline; 1942 } 1943 1944 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1945 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1946 return SafeToInline; 1947 } 1948 1949 bool VisitCXXNewExpr(CXXNewExpr *E) { 1950 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1951 return SafeToInline; 1952 } 1953 }; 1954 } 1955 1956 // isTriviallyRecursive - Check if this function calls another 1957 // decl that, because of the asm attribute or the other decl being a builtin, 1958 // ends up pointing to itself. 1959 bool 1960 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1961 StringRef Name; 1962 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1963 // asm labels are a special kind of mangling we have to support. 1964 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1965 if (!Attr) 1966 return false; 1967 Name = Attr->getLabel(); 1968 } else { 1969 Name = FD->getName(); 1970 } 1971 1972 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1973 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1974 return Walker.Result; 1975 } 1976 1977 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1978 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1979 return true; 1980 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1981 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1982 return false; 1983 1984 if (F->hasAttr<DLLImportAttr>()) { 1985 // Check whether it would be safe to inline this dllimport function. 1986 DLLImportFunctionVisitor Visitor; 1987 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1988 if (!Visitor.SafeToInline) 1989 return false; 1990 1991 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1992 // Implicit destructor invocations aren't captured in the AST, so the 1993 // check above can't see them. Check for them manually here. 1994 for (const Decl *Member : Dtor->getParent()->decls()) 1995 if (isa<FieldDecl>(Member)) 1996 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1997 return false; 1998 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1999 if (HasNonDllImportDtor(B.getType())) 2000 return false; 2001 } 2002 } 2003 2004 // PR9614. Avoid cases where the source code is lying to us. An available 2005 // externally function should have an equivalent function somewhere else, 2006 // but a function that calls itself is clearly not equivalent to the real 2007 // implementation. 2008 // This happens in glibc's btowc and in some configure checks. 2009 return !isTriviallyRecursive(F); 2010 } 2011 2012 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2013 return CodeGenOpts.OptimizationLevel > 0; 2014 } 2015 2016 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2017 const auto *D = cast<ValueDecl>(GD.getDecl()); 2018 2019 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2020 Context.getSourceManager(), 2021 "Generating code for declaration"); 2022 2023 if (isa<FunctionDecl>(D)) { 2024 // At -O0, don't generate IR for functions with available_externally 2025 // linkage. 2026 if (!shouldEmitFunction(GD)) 2027 return; 2028 2029 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2030 // Make sure to emit the definition(s) before we emit the thunks. 2031 // This is necessary for the generation of certain thunks. 2032 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2033 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2034 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2035 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2036 else 2037 EmitGlobalFunctionDefinition(GD, GV); 2038 2039 if (Method->isVirtual()) 2040 getVTables().EmitThunks(GD); 2041 2042 return; 2043 } 2044 2045 return EmitGlobalFunctionDefinition(GD, GV); 2046 } 2047 2048 if (const auto *VD = dyn_cast<VarDecl>(D)) 2049 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2050 2051 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2052 } 2053 2054 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2055 llvm::Function *NewFn); 2056 2057 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2058 /// module, create and return an llvm Function with the specified type. If there 2059 /// is something in the module with the specified name, return it potentially 2060 /// bitcasted to the right type. 2061 /// 2062 /// If D is non-null, it specifies a decl that correspond to this. This is used 2063 /// to set the attributes on the function when it is first created. 2064 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2065 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2066 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2067 ForDefinition_t IsForDefinition) { 2068 const Decl *D = GD.getDecl(); 2069 2070 // Lookup the entry, lazily creating it if necessary. 2071 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2072 if (Entry) { 2073 if (WeakRefReferences.erase(Entry)) { 2074 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2075 if (FD && !FD->hasAttr<WeakAttr>()) 2076 Entry->setLinkage(llvm::Function::ExternalLinkage); 2077 } 2078 2079 // Handle dropped DLL attributes. 2080 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2081 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2082 2083 // If there are two attempts to define the same mangled name, issue an 2084 // error. 2085 if (IsForDefinition && !Entry->isDeclaration()) { 2086 GlobalDecl OtherGD; 2087 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2088 // to make sure that we issue an error only once. 2089 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2090 (GD.getCanonicalDecl().getDecl() != 2091 OtherGD.getCanonicalDecl().getDecl()) && 2092 DiagnosedConflictingDefinitions.insert(GD).second) { 2093 getDiags().Report(D->getLocation(), 2094 diag::err_duplicate_mangled_name); 2095 getDiags().Report(OtherGD.getDecl()->getLocation(), 2096 diag::note_previous_definition); 2097 } 2098 } 2099 2100 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2101 (Entry->getType()->getElementType() == Ty)) { 2102 return Entry; 2103 } 2104 2105 // Make sure the result is of the correct type. 2106 // (If function is requested for a definition, we always need to create a new 2107 // function, not just return a bitcast.) 2108 if (!IsForDefinition) 2109 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2110 } 2111 2112 // This function doesn't have a complete type (for example, the return 2113 // type is an incomplete struct). Use a fake type instead, and make 2114 // sure not to try to set attributes. 2115 bool IsIncompleteFunction = false; 2116 2117 llvm::FunctionType *FTy; 2118 if (isa<llvm::FunctionType>(Ty)) { 2119 FTy = cast<llvm::FunctionType>(Ty); 2120 } else { 2121 FTy = llvm::FunctionType::get(VoidTy, false); 2122 IsIncompleteFunction = true; 2123 } 2124 2125 llvm::Function *F = 2126 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2127 Entry ? StringRef() : MangledName, &getModule()); 2128 2129 // If we already created a function with the same mangled name (but different 2130 // type) before, take its name and add it to the list of functions to be 2131 // replaced with F at the end of CodeGen. 2132 // 2133 // This happens if there is a prototype for a function (e.g. "int f()") and 2134 // then a definition of a different type (e.g. "int f(int x)"). 2135 if (Entry) { 2136 F->takeName(Entry); 2137 2138 // This might be an implementation of a function without a prototype, in 2139 // which case, try to do special replacement of calls which match the new 2140 // prototype. The really key thing here is that we also potentially drop 2141 // arguments from the call site so as to make a direct call, which makes the 2142 // inliner happier and suppresses a number of optimizer warnings (!) about 2143 // dropping arguments. 2144 if (!Entry->use_empty()) { 2145 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2146 Entry->removeDeadConstantUsers(); 2147 } 2148 2149 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2150 F, Entry->getType()->getElementType()->getPointerTo()); 2151 addGlobalValReplacement(Entry, BC); 2152 } 2153 2154 assert(F->getName() == MangledName && "name was uniqued!"); 2155 if (D) 2156 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2157 IsForDefinition); 2158 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2159 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2160 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2161 } 2162 2163 if (!DontDefer) { 2164 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2165 // each other bottoming out with the base dtor. Therefore we emit non-base 2166 // dtors on usage, even if there is no dtor definition in the TU. 2167 if (D && isa<CXXDestructorDecl>(D) && 2168 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2169 GD.getDtorType())) 2170 addDeferredDeclToEmit(GD); 2171 2172 // This is the first use or definition of a mangled name. If there is a 2173 // deferred decl with this name, remember that we need to emit it at the end 2174 // of the file. 2175 auto DDI = DeferredDecls.find(MangledName); 2176 if (DDI != DeferredDecls.end()) { 2177 // Move the potentially referenced deferred decl to the 2178 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2179 // don't need it anymore). 2180 addDeferredDeclToEmit(DDI->second); 2181 DeferredDecls.erase(DDI); 2182 2183 // Otherwise, there are cases we have to worry about where we're 2184 // using a declaration for which we must emit a definition but where 2185 // we might not find a top-level definition: 2186 // - member functions defined inline in their classes 2187 // - friend functions defined inline in some class 2188 // - special member functions with implicit definitions 2189 // If we ever change our AST traversal to walk into class methods, 2190 // this will be unnecessary. 2191 // 2192 // We also don't emit a definition for a function if it's going to be an 2193 // entry in a vtable, unless it's already marked as used. 2194 } else if (getLangOpts().CPlusPlus && D) { 2195 // Look for a declaration that's lexically in a record. 2196 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2197 FD = FD->getPreviousDecl()) { 2198 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2199 if (FD->doesThisDeclarationHaveABody()) { 2200 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2201 break; 2202 } 2203 } 2204 } 2205 } 2206 } 2207 2208 // Make sure the result is of the requested type. 2209 if (!IsIncompleteFunction) { 2210 assert(F->getType()->getElementType() == Ty); 2211 return F; 2212 } 2213 2214 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2215 return llvm::ConstantExpr::getBitCast(F, PTy); 2216 } 2217 2218 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2219 /// non-null, then this function will use the specified type if it has to 2220 /// create it (this occurs when we see a definition of the function). 2221 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2222 llvm::Type *Ty, 2223 bool ForVTable, 2224 bool DontDefer, 2225 ForDefinition_t IsForDefinition) { 2226 // If there was no specific requested type, just convert it now. 2227 if (!Ty) { 2228 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2229 auto CanonTy = Context.getCanonicalType(FD->getType()); 2230 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2231 } 2232 2233 StringRef MangledName = getMangledName(GD); 2234 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2235 /*IsThunk=*/false, llvm::AttributeList(), 2236 IsForDefinition); 2237 } 2238 2239 static const FunctionDecl * 2240 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2241 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2242 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2243 2244 IdentifierInfo &CII = C.Idents.get(Name); 2245 for (const auto &Result : DC->lookup(&CII)) 2246 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2247 return FD; 2248 2249 if (!C.getLangOpts().CPlusPlus) 2250 return nullptr; 2251 2252 // Demangle the premangled name from getTerminateFn() 2253 IdentifierInfo &CXXII = 2254 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2255 ? C.Idents.get("terminate") 2256 : C.Idents.get(Name); 2257 2258 for (const auto &N : {"__cxxabiv1", "std"}) { 2259 IdentifierInfo &NS = C.Idents.get(N); 2260 for (const auto &Result : DC->lookup(&NS)) { 2261 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2262 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2263 for (const auto &Result : LSD->lookup(&NS)) 2264 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2265 break; 2266 2267 if (ND) 2268 for (const auto &Result : ND->lookup(&CXXII)) 2269 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2270 return FD; 2271 } 2272 } 2273 2274 return nullptr; 2275 } 2276 2277 /// CreateRuntimeFunction - Create a new runtime function with the specified 2278 /// type and name. 2279 llvm::Constant * 2280 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2281 llvm::AttributeList ExtraAttrs, 2282 bool Local) { 2283 llvm::Constant *C = 2284 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2285 /*DontDefer=*/false, /*IsThunk=*/false, 2286 ExtraAttrs); 2287 2288 if (auto *F = dyn_cast<llvm::Function>(C)) { 2289 if (F->empty()) { 2290 F->setCallingConv(getRuntimeCC()); 2291 2292 if (!Local && getTriple().isOSBinFormatCOFF() && 2293 !getCodeGenOpts().LTOVisibilityPublicStd && 2294 !getTriple().isWindowsGNUEnvironment()) { 2295 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2296 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2297 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2298 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2299 } 2300 } 2301 } 2302 } 2303 2304 return C; 2305 } 2306 2307 /// CreateBuiltinFunction - Create a new builtin function with the specified 2308 /// type and name. 2309 llvm::Constant * 2310 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2311 llvm::AttributeList ExtraAttrs) { 2312 llvm::Constant *C = 2313 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2314 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2315 if (auto *F = dyn_cast<llvm::Function>(C)) 2316 if (F->empty()) 2317 F->setCallingConv(getBuiltinCC()); 2318 return C; 2319 } 2320 2321 /// isTypeConstant - Determine whether an object of this type can be emitted 2322 /// as a constant. 2323 /// 2324 /// If ExcludeCtor is true, the duration when the object's constructor runs 2325 /// will not be considered. The caller will need to verify that the object is 2326 /// not written to during its construction. 2327 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2328 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2329 return false; 2330 2331 if (Context.getLangOpts().CPlusPlus) { 2332 if (const CXXRecordDecl *Record 2333 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2334 return ExcludeCtor && !Record->hasMutableFields() && 2335 Record->hasTrivialDestructor(); 2336 } 2337 2338 return true; 2339 } 2340 2341 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2342 /// create and return an llvm GlobalVariable with the specified type. If there 2343 /// is something in the module with the specified name, return it potentially 2344 /// bitcasted to the right type. 2345 /// 2346 /// If D is non-null, it specifies a decl that correspond to this. This is used 2347 /// to set the attributes on the global when it is first created. 2348 /// 2349 /// If IsForDefinition is true, it is guranteed that an actual global with 2350 /// type Ty will be returned, not conversion of a variable with the same 2351 /// mangled name but some other type. 2352 llvm::Constant * 2353 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2354 llvm::PointerType *Ty, 2355 const VarDecl *D, 2356 ForDefinition_t IsForDefinition) { 2357 // Lookup the entry, lazily creating it if necessary. 2358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2359 if (Entry) { 2360 if (WeakRefReferences.erase(Entry)) { 2361 if (D && !D->hasAttr<WeakAttr>()) 2362 Entry->setLinkage(llvm::Function::ExternalLinkage); 2363 } 2364 2365 // Handle dropped DLL attributes. 2366 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2367 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2368 2369 if (Entry->getType() == Ty) 2370 return Entry; 2371 2372 // If there are two attempts to define the same mangled name, issue an 2373 // error. 2374 if (IsForDefinition && !Entry->isDeclaration()) { 2375 GlobalDecl OtherGD; 2376 const VarDecl *OtherD; 2377 2378 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2379 // to make sure that we issue an error only once. 2380 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2381 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2382 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2383 OtherD->hasInit() && 2384 DiagnosedConflictingDefinitions.insert(D).second) { 2385 getDiags().Report(D->getLocation(), 2386 diag::err_duplicate_mangled_name); 2387 getDiags().Report(OtherGD.getDecl()->getLocation(), 2388 diag::note_previous_definition); 2389 } 2390 } 2391 2392 // Make sure the result is of the correct type. 2393 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2394 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2395 2396 // (If global is requested for a definition, we always need to create a new 2397 // global, not just return a bitcast.) 2398 if (!IsForDefinition) 2399 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2400 } 2401 2402 auto AddrSpace = GetGlobalVarAddressSpace(D); 2403 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2404 2405 auto *GV = new llvm::GlobalVariable( 2406 getModule(), Ty->getElementType(), false, 2407 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2408 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2409 2410 // If we already created a global with the same mangled name (but different 2411 // type) before, take its name and remove it from its parent. 2412 if (Entry) { 2413 GV->takeName(Entry); 2414 2415 if (!Entry->use_empty()) { 2416 llvm::Constant *NewPtrForOldDecl = 2417 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2418 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2419 } 2420 2421 Entry->eraseFromParent(); 2422 } 2423 2424 // This is the first use or definition of a mangled name. If there is a 2425 // deferred decl with this name, remember that we need to emit it at the end 2426 // of the file. 2427 auto DDI = DeferredDecls.find(MangledName); 2428 if (DDI != DeferredDecls.end()) { 2429 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2430 // list, and remove it from DeferredDecls (since we don't need it anymore). 2431 addDeferredDeclToEmit(DDI->second); 2432 DeferredDecls.erase(DDI); 2433 } 2434 2435 // Handle things which are present even on external declarations. 2436 if (D) { 2437 // FIXME: This code is overly simple and should be merged with other global 2438 // handling. 2439 GV->setConstant(isTypeConstant(D->getType(), false)); 2440 2441 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2442 2443 setLinkageForGV(GV, D); 2444 setGlobalVisibility(GV, D, NotForDefinition); 2445 2446 if (D->getTLSKind()) { 2447 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2448 CXXThreadLocals.push_back(D); 2449 setTLSMode(GV, *D); 2450 } 2451 2452 // If required by the ABI, treat declarations of static data members with 2453 // inline initializers as definitions. 2454 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2455 EmitGlobalVarDefinition(D); 2456 } 2457 2458 // Emit section information for extern variables. 2459 if (D->hasExternalStorage()) { 2460 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2461 GV->setSection(SA->getName()); 2462 } 2463 2464 // Handle XCore specific ABI requirements. 2465 if (getTriple().getArch() == llvm::Triple::xcore && 2466 D->getLanguageLinkage() == CLanguageLinkage && 2467 D->getType().isConstant(Context) && 2468 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2469 GV->setSection(".cp.rodata"); 2470 2471 // Check if we a have a const declaration with an initializer, we may be 2472 // able to emit it as available_externally to expose it's value to the 2473 // optimizer. 2474 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2475 D->getType().isConstQualified() && !GV->hasInitializer() && 2476 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2477 const auto *Record = 2478 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2479 bool HasMutableFields = Record && Record->hasMutableFields(); 2480 if (!HasMutableFields) { 2481 const VarDecl *InitDecl; 2482 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2483 if (InitExpr) { 2484 ConstantEmitter emitter(*this); 2485 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2486 if (Init) { 2487 auto *InitType = Init->getType(); 2488 if (GV->getType()->getElementType() != InitType) { 2489 // The type of the initializer does not match the definition. 2490 // This happens when an initializer has a different type from 2491 // the type of the global (because of padding at the end of a 2492 // structure for instance). 2493 GV->setName(StringRef()); 2494 // Make a new global with the correct type, this is now guaranteed 2495 // to work. 2496 auto *NewGV = cast<llvm::GlobalVariable>( 2497 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2498 2499 // Erase the old global, since it is no longer used. 2500 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2501 GV = NewGV; 2502 } else { 2503 GV->setInitializer(Init); 2504 GV->setConstant(true); 2505 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2506 } 2507 emitter.finalize(GV); 2508 } 2509 } 2510 } 2511 } 2512 } 2513 2514 LangAS ExpectedAS = 2515 D ? D->getType().getAddressSpace() 2516 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2517 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2518 Ty->getPointerAddressSpace()); 2519 if (AddrSpace != ExpectedAS) 2520 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2521 ExpectedAS, Ty); 2522 2523 return GV; 2524 } 2525 2526 llvm::Constant * 2527 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2528 ForDefinition_t IsForDefinition) { 2529 const Decl *D = GD.getDecl(); 2530 if (isa<CXXConstructorDecl>(D)) 2531 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2532 getFromCtorType(GD.getCtorType()), 2533 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2534 /*DontDefer=*/false, IsForDefinition); 2535 else if (isa<CXXDestructorDecl>(D)) 2536 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2537 getFromDtorType(GD.getDtorType()), 2538 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2539 /*DontDefer=*/false, IsForDefinition); 2540 else if (isa<CXXMethodDecl>(D)) { 2541 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2542 cast<CXXMethodDecl>(D)); 2543 auto Ty = getTypes().GetFunctionType(*FInfo); 2544 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2545 IsForDefinition); 2546 } else if (isa<FunctionDecl>(D)) { 2547 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2548 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2549 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2550 IsForDefinition); 2551 } else 2552 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2553 IsForDefinition); 2554 } 2555 2556 llvm::GlobalVariable * 2557 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2558 llvm::Type *Ty, 2559 llvm::GlobalValue::LinkageTypes Linkage) { 2560 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2561 llvm::GlobalVariable *OldGV = nullptr; 2562 2563 if (GV) { 2564 // Check if the variable has the right type. 2565 if (GV->getType()->getElementType() == Ty) 2566 return GV; 2567 2568 // Because C++ name mangling, the only way we can end up with an already 2569 // existing global with the same name is if it has been declared extern "C". 2570 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2571 OldGV = GV; 2572 } 2573 2574 // Create a new variable. 2575 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2576 Linkage, nullptr, Name); 2577 2578 if (OldGV) { 2579 // Replace occurrences of the old variable if needed. 2580 GV->takeName(OldGV); 2581 2582 if (!OldGV->use_empty()) { 2583 llvm::Constant *NewPtrForOldDecl = 2584 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2585 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2586 } 2587 2588 OldGV->eraseFromParent(); 2589 } 2590 2591 if (supportsCOMDAT() && GV->isWeakForLinker() && 2592 !GV->hasAvailableExternallyLinkage()) 2593 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2594 2595 return GV; 2596 } 2597 2598 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2599 /// given global variable. If Ty is non-null and if the global doesn't exist, 2600 /// then it will be created with the specified type instead of whatever the 2601 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2602 /// that an actual global with type Ty will be returned, not conversion of a 2603 /// variable with the same mangled name but some other type. 2604 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2605 llvm::Type *Ty, 2606 ForDefinition_t IsForDefinition) { 2607 assert(D->hasGlobalStorage() && "Not a global variable"); 2608 QualType ASTTy = D->getType(); 2609 if (!Ty) 2610 Ty = getTypes().ConvertTypeForMem(ASTTy); 2611 2612 llvm::PointerType *PTy = 2613 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2614 2615 StringRef MangledName = getMangledName(D); 2616 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2617 } 2618 2619 /// CreateRuntimeVariable - Create a new runtime global variable with the 2620 /// specified type and name. 2621 llvm::Constant * 2622 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2623 StringRef Name) { 2624 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2625 } 2626 2627 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2628 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2629 2630 StringRef MangledName = getMangledName(D); 2631 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2632 2633 // We already have a definition, not declaration, with the same mangled name. 2634 // Emitting of declaration is not required (and actually overwrites emitted 2635 // definition). 2636 if (GV && !GV->isDeclaration()) 2637 return; 2638 2639 // If we have not seen a reference to this variable yet, place it into the 2640 // deferred declarations table to be emitted if needed later. 2641 if (!MustBeEmitted(D) && !GV) { 2642 DeferredDecls[MangledName] = D; 2643 return; 2644 } 2645 2646 // The tentative definition is the only definition. 2647 EmitGlobalVarDefinition(D); 2648 } 2649 2650 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2651 return Context.toCharUnitsFromBits( 2652 getDataLayout().getTypeStoreSizeInBits(Ty)); 2653 } 2654 2655 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2656 LangAS AddrSpace = LangAS::Default; 2657 if (LangOpts.OpenCL) { 2658 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2659 assert(AddrSpace == LangAS::opencl_global || 2660 AddrSpace == LangAS::opencl_constant || 2661 AddrSpace == LangAS::opencl_local || 2662 AddrSpace >= LangAS::FirstTargetAddressSpace); 2663 return AddrSpace; 2664 } 2665 2666 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2667 if (D && D->hasAttr<CUDAConstantAttr>()) 2668 return LangAS::cuda_constant; 2669 else if (D && D->hasAttr<CUDASharedAttr>()) 2670 return LangAS::cuda_shared; 2671 else 2672 return LangAS::cuda_device; 2673 } 2674 2675 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2676 } 2677 2678 template<typename SomeDecl> 2679 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2680 llvm::GlobalValue *GV) { 2681 if (!getLangOpts().CPlusPlus) 2682 return; 2683 2684 // Must have 'used' attribute, or else inline assembly can't rely on 2685 // the name existing. 2686 if (!D->template hasAttr<UsedAttr>()) 2687 return; 2688 2689 // Must have internal linkage and an ordinary name. 2690 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2691 return; 2692 2693 // Must be in an extern "C" context. Entities declared directly within 2694 // a record are not extern "C" even if the record is in such a context. 2695 const SomeDecl *First = D->getFirstDecl(); 2696 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2697 return; 2698 2699 // OK, this is an internal linkage entity inside an extern "C" linkage 2700 // specification. Make a note of that so we can give it the "expected" 2701 // mangled name if nothing else is using that name. 2702 std::pair<StaticExternCMap::iterator, bool> R = 2703 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2704 2705 // If we have multiple internal linkage entities with the same name 2706 // in extern "C" regions, none of them gets that name. 2707 if (!R.second) 2708 R.first->second = nullptr; 2709 } 2710 2711 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2712 if (!CGM.supportsCOMDAT()) 2713 return false; 2714 2715 if (D.hasAttr<SelectAnyAttr>()) 2716 return true; 2717 2718 GVALinkage Linkage; 2719 if (auto *VD = dyn_cast<VarDecl>(&D)) 2720 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2721 else 2722 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2723 2724 switch (Linkage) { 2725 case GVA_Internal: 2726 case GVA_AvailableExternally: 2727 case GVA_StrongExternal: 2728 return false; 2729 case GVA_DiscardableODR: 2730 case GVA_StrongODR: 2731 return true; 2732 } 2733 llvm_unreachable("No such linkage"); 2734 } 2735 2736 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2737 llvm::GlobalObject &GO) { 2738 if (!shouldBeInCOMDAT(*this, D)) 2739 return; 2740 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2741 } 2742 2743 /// Pass IsTentative as true if you want to create a tentative definition. 2744 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2745 bool IsTentative) { 2746 // OpenCL global variables of sampler type are translated to function calls, 2747 // therefore no need to be translated. 2748 QualType ASTTy = D->getType(); 2749 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2750 return; 2751 2752 llvm::Constant *Init = nullptr; 2753 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2754 bool NeedsGlobalCtor = false; 2755 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2756 2757 const VarDecl *InitDecl; 2758 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2759 2760 Optional<ConstantEmitter> emitter; 2761 2762 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2763 // as part of their declaration." Sema has already checked for 2764 // error cases, so we just need to set Init to UndefValue. 2765 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2766 D->hasAttr<CUDASharedAttr>()) 2767 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2768 else if (!InitExpr) { 2769 // This is a tentative definition; tentative definitions are 2770 // implicitly initialized with { 0 }. 2771 // 2772 // Note that tentative definitions are only emitted at the end of 2773 // a translation unit, so they should never have incomplete 2774 // type. In addition, EmitTentativeDefinition makes sure that we 2775 // never attempt to emit a tentative definition if a real one 2776 // exists. A use may still exists, however, so we still may need 2777 // to do a RAUW. 2778 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2779 Init = EmitNullConstant(D->getType()); 2780 } else { 2781 initializedGlobalDecl = GlobalDecl(D); 2782 emitter.emplace(*this); 2783 Init = emitter->tryEmitForInitializer(*InitDecl); 2784 2785 if (!Init) { 2786 QualType T = InitExpr->getType(); 2787 if (D->getType()->isReferenceType()) 2788 T = D->getType(); 2789 2790 if (getLangOpts().CPlusPlus) { 2791 Init = EmitNullConstant(T); 2792 NeedsGlobalCtor = true; 2793 } else { 2794 ErrorUnsupported(D, "static initializer"); 2795 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2796 } 2797 } else { 2798 // We don't need an initializer, so remove the entry for the delayed 2799 // initializer position (just in case this entry was delayed) if we 2800 // also don't need to register a destructor. 2801 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2802 DelayedCXXInitPosition.erase(D); 2803 } 2804 } 2805 2806 llvm::Type* InitType = Init->getType(); 2807 llvm::Constant *Entry = 2808 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2809 2810 // Strip off a bitcast if we got one back. 2811 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2812 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2813 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2814 // All zero index gep. 2815 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2816 Entry = CE->getOperand(0); 2817 } 2818 2819 // Entry is now either a Function or GlobalVariable. 2820 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2821 2822 // We have a definition after a declaration with the wrong type. 2823 // We must make a new GlobalVariable* and update everything that used OldGV 2824 // (a declaration or tentative definition) with the new GlobalVariable* 2825 // (which will be a definition). 2826 // 2827 // This happens if there is a prototype for a global (e.g. 2828 // "extern int x[];") and then a definition of a different type (e.g. 2829 // "int x[10];"). This also happens when an initializer has a different type 2830 // from the type of the global (this happens with unions). 2831 if (!GV || GV->getType()->getElementType() != InitType || 2832 GV->getType()->getAddressSpace() != 2833 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2834 2835 // Move the old entry aside so that we'll create a new one. 2836 Entry->setName(StringRef()); 2837 2838 // Make a new global with the correct type, this is now guaranteed to work. 2839 GV = cast<llvm::GlobalVariable>( 2840 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2841 2842 // Replace all uses of the old global with the new global 2843 llvm::Constant *NewPtrForOldDecl = 2844 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2845 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2846 2847 // Erase the old global, since it is no longer used. 2848 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2849 } 2850 2851 MaybeHandleStaticInExternC(D, GV); 2852 2853 if (D->hasAttr<AnnotateAttr>()) 2854 AddGlobalAnnotations(D, GV); 2855 2856 // Set the llvm linkage type as appropriate. 2857 llvm::GlobalValue::LinkageTypes Linkage = 2858 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2859 2860 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2861 // the device. [...]" 2862 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2863 // __device__, declares a variable that: [...] 2864 // Is accessible from all the threads within the grid and from the host 2865 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2866 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2867 if (GV && LangOpts.CUDA) { 2868 if (LangOpts.CUDAIsDevice) { 2869 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2870 GV->setExternallyInitialized(true); 2871 } else { 2872 // Host-side shadows of external declarations of device-side 2873 // global variables become internal definitions. These have to 2874 // be internal in order to prevent name conflicts with global 2875 // host variables with the same name in a different TUs. 2876 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2877 Linkage = llvm::GlobalValue::InternalLinkage; 2878 2879 // Shadow variables and their properties must be registered 2880 // with CUDA runtime. 2881 unsigned Flags = 0; 2882 if (!D->hasDefinition()) 2883 Flags |= CGCUDARuntime::ExternDeviceVar; 2884 if (D->hasAttr<CUDAConstantAttr>()) 2885 Flags |= CGCUDARuntime::ConstantDeviceVar; 2886 getCUDARuntime().registerDeviceVar(*GV, Flags); 2887 } else if (D->hasAttr<CUDASharedAttr>()) 2888 // __shared__ variables are odd. Shadows do get created, but 2889 // they are not registered with the CUDA runtime, so they 2890 // can't really be used to access their device-side 2891 // counterparts. It's not clear yet whether it's nvcc's bug or 2892 // a feature, but we've got to do the same for compatibility. 2893 Linkage = llvm::GlobalValue::InternalLinkage; 2894 } 2895 } 2896 2897 GV->setInitializer(Init); 2898 if (emitter) emitter->finalize(GV); 2899 2900 // If it is safe to mark the global 'constant', do so now. 2901 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2902 isTypeConstant(D->getType(), true)); 2903 2904 // If it is in a read-only section, mark it 'constant'. 2905 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2906 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2907 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2908 GV->setConstant(true); 2909 } 2910 2911 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2912 2913 2914 // On Darwin, if the normal linkage of a C++ thread_local variable is 2915 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2916 // copies within a linkage unit; otherwise, the backing variable has 2917 // internal linkage and all accesses should just be calls to the 2918 // Itanium-specified entry point, which has the normal linkage of the 2919 // variable. This is to preserve the ability to change the implementation 2920 // behind the scenes. 2921 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2922 Context.getTargetInfo().getTriple().isOSDarwin() && 2923 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2924 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2925 Linkage = llvm::GlobalValue::InternalLinkage; 2926 2927 GV->setLinkage(Linkage); 2928 if (D->hasAttr<DLLImportAttr>()) 2929 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2930 else if (D->hasAttr<DLLExportAttr>()) 2931 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2932 else 2933 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2934 2935 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2936 // common vars aren't constant even if declared const. 2937 GV->setConstant(false); 2938 // Tentative definition of global variables may be initialized with 2939 // non-zero null pointers. In this case they should have weak linkage 2940 // since common linkage must have zero initializer and must not have 2941 // explicit section therefore cannot have non-zero initial value. 2942 if (!GV->getInitializer()->isNullValue()) 2943 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2944 } 2945 2946 setNonAliasAttributes(D, GV); 2947 2948 if (D->getTLSKind() && !GV->isThreadLocal()) { 2949 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2950 CXXThreadLocals.push_back(D); 2951 setTLSMode(GV, *D); 2952 } 2953 2954 maybeSetTrivialComdat(*D, *GV); 2955 2956 // Emit the initializer function if necessary. 2957 if (NeedsGlobalCtor || NeedsGlobalDtor) 2958 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2959 2960 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2961 2962 // Emit global variable debug information. 2963 if (CGDebugInfo *DI = getModuleDebugInfo()) 2964 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2965 DI->EmitGlobalVariable(GV, D); 2966 } 2967 2968 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2969 CodeGenModule &CGM, const VarDecl *D, 2970 bool NoCommon) { 2971 // Don't give variables common linkage if -fno-common was specified unless it 2972 // was overridden by a NoCommon attribute. 2973 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2974 return true; 2975 2976 // C11 6.9.2/2: 2977 // A declaration of an identifier for an object that has file scope without 2978 // an initializer, and without a storage-class specifier or with the 2979 // storage-class specifier static, constitutes a tentative definition. 2980 if (D->getInit() || D->hasExternalStorage()) 2981 return true; 2982 2983 // A variable cannot be both common and exist in a section. 2984 if (D->hasAttr<SectionAttr>()) 2985 return true; 2986 2987 // A variable cannot be both common and exist in a section. 2988 // We dont try to determine which is the right section in the front-end. 2989 // If no specialized section name is applicable, it will resort to default. 2990 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2991 D->hasAttr<PragmaClangDataSectionAttr>() || 2992 D->hasAttr<PragmaClangRodataSectionAttr>()) 2993 return true; 2994 2995 // Thread local vars aren't considered common linkage. 2996 if (D->getTLSKind()) 2997 return true; 2998 2999 // Tentative definitions marked with WeakImportAttr are true definitions. 3000 if (D->hasAttr<WeakImportAttr>()) 3001 return true; 3002 3003 // A variable cannot be both common and exist in a comdat. 3004 if (shouldBeInCOMDAT(CGM, *D)) 3005 return true; 3006 3007 // Declarations with a required alignment do not have common linkage in MSVC 3008 // mode. 3009 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3010 if (D->hasAttr<AlignedAttr>()) 3011 return true; 3012 QualType VarType = D->getType(); 3013 if (Context.isAlignmentRequired(VarType)) 3014 return true; 3015 3016 if (const auto *RT = VarType->getAs<RecordType>()) { 3017 const RecordDecl *RD = RT->getDecl(); 3018 for (const FieldDecl *FD : RD->fields()) { 3019 if (FD->isBitField()) 3020 continue; 3021 if (FD->hasAttr<AlignedAttr>()) 3022 return true; 3023 if (Context.isAlignmentRequired(FD->getType())) 3024 return true; 3025 } 3026 } 3027 } 3028 3029 return false; 3030 } 3031 3032 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3033 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3034 if (Linkage == GVA_Internal) 3035 return llvm::Function::InternalLinkage; 3036 3037 if (D->hasAttr<WeakAttr>()) { 3038 if (IsConstantVariable) 3039 return llvm::GlobalVariable::WeakODRLinkage; 3040 else 3041 return llvm::GlobalVariable::WeakAnyLinkage; 3042 } 3043 3044 // We are guaranteed to have a strong definition somewhere else, 3045 // so we can use available_externally linkage. 3046 if (Linkage == GVA_AvailableExternally) 3047 return llvm::GlobalValue::AvailableExternallyLinkage; 3048 3049 // Note that Apple's kernel linker doesn't support symbol 3050 // coalescing, so we need to avoid linkonce and weak linkages there. 3051 // Normally, this means we just map to internal, but for explicit 3052 // instantiations we'll map to external. 3053 3054 // In C++, the compiler has to emit a definition in every translation unit 3055 // that references the function. We should use linkonce_odr because 3056 // a) if all references in this translation unit are optimized away, we 3057 // don't need to codegen it. b) if the function persists, it needs to be 3058 // merged with other definitions. c) C++ has the ODR, so we know the 3059 // definition is dependable. 3060 if (Linkage == GVA_DiscardableODR) 3061 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3062 : llvm::Function::InternalLinkage; 3063 3064 // An explicit instantiation of a template has weak linkage, since 3065 // explicit instantiations can occur in multiple translation units 3066 // and must all be equivalent. However, we are not allowed to 3067 // throw away these explicit instantiations. 3068 // 3069 // We don't currently support CUDA device code spread out across multiple TUs, 3070 // so say that CUDA templates are either external (for kernels) or internal. 3071 // This lets llvm perform aggressive inter-procedural optimizations. 3072 if (Linkage == GVA_StrongODR) { 3073 if (Context.getLangOpts().AppleKext) 3074 return llvm::Function::ExternalLinkage; 3075 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3076 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3077 : llvm::Function::InternalLinkage; 3078 return llvm::Function::WeakODRLinkage; 3079 } 3080 3081 // C++ doesn't have tentative definitions and thus cannot have common 3082 // linkage. 3083 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3084 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3085 CodeGenOpts.NoCommon)) 3086 return llvm::GlobalVariable::CommonLinkage; 3087 3088 // selectany symbols are externally visible, so use weak instead of 3089 // linkonce. MSVC optimizes away references to const selectany globals, so 3090 // all definitions should be the same and ODR linkage should be used. 3091 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3092 if (D->hasAttr<SelectAnyAttr>()) 3093 return llvm::GlobalVariable::WeakODRLinkage; 3094 3095 // Otherwise, we have strong external linkage. 3096 assert(Linkage == GVA_StrongExternal); 3097 return llvm::GlobalVariable::ExternalLinkage; 3098 } 3099 3100 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3101 const VarDecl *VD, bool IsConstant) { 3102 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3103 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3104 } 3105 3106 /// Replace the uses of a function that was declared with a non-proto type. 3107 /// We want to silently drop extra arguments from call sites 3108 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3109 llvm::Function *newFn) { 3110 // Fast path. 3111 if (old->use_empty()) return; 3112 3113 llvm::Type *newRetTy = newFn->getReturnType(); 3114 SmallVector<llvm::Value*, 4> newArgs; 3115 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3116 3117 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3118 ui != ue; ) { 3119 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3120 llvm::User *user = use->getUser(); 3121 3122 // Recognize and replace uses of bitcasts. Most calls to 3123 // unprototyped functions will use bitcasts. 3124 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3125 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3126 replaceUsesOfNonProtoConstant(bitcast, newFn); 3127 continue; 3128 } 3129 3130 // Recognize calls to the function. 3131 llvm::CallSite callSite(user); 3132 if (!callSite) continue; 3133 if (!callSite.isCallee(&*use)) continue; 3134 3135 // If the return types don't match exactly, then we can't 3136 // transform this call unless it's dead. 3137 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3138 continue; 3139 3140 // Get the call site's attribute list. 3141 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3142 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3143 3144 // If the function was passed too few arguments, don't transform. 3145 unsigned newNumArgs = newFn->arg_size(); 3146 if (callSite.arg_size() < newNumArgs) continue; 3147 3148 // If extra arguments were passed, we silently drop them. 3149 // If any of the types mismatch, we don't transform. 3150 unsigned argNo = 0; 3151 bool dontTransform = false; 3152 for (llvm::Argument &A : newFn->args()) { 3153 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3154 dontTransform = true; 3155 break; 3156 } 3157 3158 // Add any parameter attributes. 3159 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3160 argNo++; 3161 } 3162 if (dontTransform) 3163 continue; 3164 3165 // Okay, we can transform this. Create the new call instruction and copy 3166 // over the required information. 3167 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3168 3169 // Copy over any operand bundles. 3170 callSite.getOperandBundlesAsDefs(newBundles); 3171 3172 llvm::CallSite newCall; 3173 if (callSite.isCall()) { 3174 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3175 callSite.getInstruction()); 3176 } else { 3177 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3178 newCall = llvm::InvokeInst::Create(newFn, 3179 oldInvoke->getNormalDest(), 3180 oldInvoke->getUnwindDest(), 3181 newArgs, newBundles, "", 3182 callSite.getInstruction()); 3183 } 3184 newArgs.clear(); // for the next iteration 3185 3186 if (!newCall->getType()->isVoidTy()) 3187 newCall->takeName(callSite.getInstruction()); 3188 newCall.setAttributes(llvm::AttributeList::get( 3189 newFn->getContext(), oldAttrs.getFnAttributes(), 3190 oldAttrs.getRetAttributes(), newArgAttrs)); 3191 newCall.setCallingConv(callSite.getCallingConv()); 3192 3193 // Finally, remove the old call, replacing any uses with the new one. 3194 if (!callSite->use_empty()) 3195 callSite->replaceAllUsesWith(newCall.getInstruction()); 3196 3197 // Copy debug location attached to CI. 3198 if (callSite->getDebugLoc()) 3199 newCall->setDebugLoc(callSite->getDebugLoc()); 3200 3201 callSite->eraseFromParent(); 3202 } 3203 } 3204 3205 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3206 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3207 /// existing call uses of the old function in the module, this adjusts them to 3208 /// call the new function directly. 3209 /// 3210 /// This is not just a cleanup: the always_inline pass requires direct calls to 3211 /// functions to be able to inline them. If there is a bitcast in the way, it 3212 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3213 /// run at -O0. 3214 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3215 llvm::Function *NewFn) { 3216 // If we're redefining a global as a function, don't transform it. 3217 if (!isa<llvm::Function>(Old)) return; 3218 3219 replaceUsesOfNonProtoConstant(Old, NewFn); 3220 } 3221 3222 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3223 auto DK = VD->isThisDeclarationADefinition(); 3224 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3225 return; 3226 3227 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3228 // If we have a definition, this might be a deferred decl. If the 3229 // instantiation is explicit, make sure we emit it at the end. 3230 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3231 GetAddrOfGlobalVar(VD); 3232 3233 EmitTopLevelDecl(VD); 3234 } 3235 3236 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3237 llvm::GlobalValue *GV) { 3238 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3239 3240 // Compute the function info and LLVM type. 3241 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3242 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3243 3244 // Get or create the prototype for the function. 3245 if (!GV || (GV->getType()->getElementType() != Ty)) 3246 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3247 /*DontDefer=*/true, 3248 ForDefinition)); 3249 3250 // Already emitted. 3251 if (!GV->isDeclaration()) 3252 return; 3253 3254 // We need to set linkage and visibility on the function before 3255 // generating code for it because various parts of IR generation 3256 // want to propagate this information down (e.g. to local static 3257 // declarations). 3258 auto *Fn = cast<llvm::Function>(GV); 3259 setFunctionLinkage(GD, Fn); 3260 setFunctionDLLStorageClass(GD, Fn); 3261 3262 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3263 setGlobalVisibility(Fn, D, ForDefinition); 3264 3265 MaybeHandleStaticInExternC(D, Fn); 3266 3267 maybeSetTrivialComdat(*D, *Fn); 3268 3269 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3270 3271 setFunctionDefinitionAttributes(D, Fn); 3272 SetLLVMFunctionAttributesForDefinition(D, Fn); 3273 3274 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3275 AddGlobalCtor(Fn, CA->getPriority()); 3276 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3277 AddGlobalDtor(Fn, DA->getPriority()); 3278 if (D->hasAttr<AnnotateAttr>()) 3279 AddGlobalAnnotations(D, Fn); 3280 } 3281 3282 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3283 const auto *D = cast<ValueDecl>(GD.getDecl()); 3284 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3285 assert(AA && "Not an alias?"); 3286 3287 StringRef MangledName = getMangledName(GD); 3288 3289 if (AA->getAliasee() == MangledName) { 3290 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3291 return; 3292 } 3293 3294 // If there is a definition in the module, then it wins over the alias. 3295 // This is dubious, but allow it to be safe. Just ignore the alias. 3296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3297 if (Entry && !Entry->isDeclaration()) 3298 return; 3299 3300 Aliases.push_back(GD); 3301 3302 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3303 3304 // Create a reference to the named value. This ensures that it is emitted 3305 // if a deferred decl. 3306 llvm::Constant *Aliasee; 3307 if (isa<llvm::FunctionType>(DeclTy)) 3308 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3309 /*ForVTable=*/false); 3310 else 3311 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3312 llvm::PointerType::getUnqual(DeclTy), 3313 /*D=*/nullptr); 3314 3315 // Create the new alias itself, but don't set a name yet. 3316 auto *GA = llvm::GlobalAlias::create( 3317 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3318 3319 if (Entry) { 3320 if (GA->getAliasee() == Entry) { 3321 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3322 return; 3323 } 3324 3325 assert(Entry->isDeclaration()); 3326 3327 // If there is a declaration in the module, then we had an extern followed 3328 // by the alias, as in: 3329 // extern int test6(); 3330 // ... 3331 // int test6() __attribute__((alias("test7"))); 3332 // 3333 // Remove it and replace uses of it with the alias. 3334 GA->takeName(Entry); 3335 3336 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3337 Entry->getType())); 3338 Entry->eraseFromParent(); 3339 } else { 3340 GA->setName(MangledName); 3341 } 3342 3343 // Set attributes which are particular to an alias; this is a 3344 // specialization of the attributes which may be set on a global 3345 // variable/function. 3346 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3347 D->isWeakImported()) { 3348 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3349 } 3350 3351 if (const auto *VD = dyn_cast<VarDecl>(D)) 3352 if (VD->getTLSKind()) 3353 setTLSMode(GA, *VD); 3354 3355 setAliasAttributes(D, GA); 3356 } 3357 3358 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3359 const auto *D = cast<ValueDecl>(GD.getDecl()); 3360 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3361 assert(IFA && "Not an ifunc?"); 3362 3363 StringRef MangledName = getMangledName(GD); 3364 3365 if (IFA->getResolver() == MangledName) { 3366 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3367 return; 3368 } 3369 3370 // Report an error if some definition overrides ifunc. 3371 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3372 if (Entry && !Entry->isDeclaration()) { 3373 GlobalDecl OtherGD; 3374 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3375 DiagnosedConflictingDefinitions.insert(GD).second) { 3376 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3377 Diags.Report(OtherGD.getDecl()->getLocation(), 3378 diag::note_previous_definition); 3379 } 3380 return; 3381 } 3382 3383 Aliases.push_back(GD); 3384 3385 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3386 llvm::Constant *Resolver = 3387 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3388 /*ForVTable=*/false); 3389 llvm::GlobalIFunc *GIF = 3390 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3391 "", Resolver, &getModule()); 3392 if (Entry) { 3393 if (GIF->getResolver() == Entry) { 3394 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3395 return; 3396 } 3397 assert(Entry->isDeclaration()); 3398 3399 // If there is a declaration in the module, then we had an extern followed 3400 // by the ifunc, as in: 3401 // extern int test(); 3402 // ... 3403 // int test() __attribute__((ifunc("resolver"))); 3404 // 3405 // Remove it and replace uses of it with the ifunc. 3406 GIF->takeName(Entry); 3407 3408 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3409 Entry->getType())); 3410 Entry->eraseFromParent(); 3411 } else 3412 GIF->setName(MangledName); 3413 3414 SetCommonAttributes(D, GIF); 3415 } 3416 3417 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3418 ArrayRef<llvm::Type*> Tys) { 3419 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3420 Tys); 3421 } 3422 3423 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3424 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3425 const StringLiteral *Literal, bool TargetIsLSB, 3426 bool &IsUTF16, unsigned &StringLength) { 3427 StringRef String = Literal->getString(); 3428 unsigned NumBytes = String.size(); 3429 3430 // Check for simple case. 3431 if (!Literal->containsNonAsciiOrNull()) { 3432 StringLength = NumBytes; 3433 return *Map.insert(std::make_pair(String, nullptr)).first; 3434 } 3435 3436 // Otherwise, convert the UTF8 literals into a string of shorts. 3437 IsUTF16 = true; 3438 3439 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3440 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3441 llvm::UTF16 *ToPtr = &ToBuf[0]; 3442 3443 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3444 ToPtr + NumBytes, llvm::strictConversion); 3445 3446 // ConvertUTF8toUTF16 returns the length in ToPtr. 3447 StringLength = ToPtr - &ToBuf[0]; 3448 3449 // Add an explicit null. 3450 *ToPtr = 0; 3451 return *Map.insert(std::make_pair( 3452 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3453 (StringLength + 1) * 2), 3454 nullptr)).first; 3455 } 3456 3457 ConstantAddress 3458 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3459 unsigned StringLength = 0; 3460 bool isUTF16 = false; 3461 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3462 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3463 getDataLayout().isLittleEndian(), isUTF16, 3464 StringLength); 3465 3466 if (auto *C = Entry.second) 3467 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3468 3469 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3470 llvm::Constant *Zeros[] = { Zero, Zero }; 3471 3472 // If we don't already have it, get __CFConstantStringClassReference. 3473 if (!CFConstantStringClassRef) { 3474 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3475 Ty = llvm::ArrayType::get(Ty, 0); 3476 llvm::Constant *GV = 3477 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3478 3479 if (getTriple().isOSBinFormatCOFF()) { 3480 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3481 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3482 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3483 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3484 3485 const VarDecl *VD = nullptr; 3486 for (const auto &Result : DC->lookup(&II)) 3487 if ((VD = dyn_cast<VarDecl>(Result))) 3488 break; 3489 3490 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3491 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3492 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3493 } else { 3494 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3495 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3496 } 3497 } 3498 3499 // Decay array -> ptr 3500 CFConstantStringClassRef = 3501 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3502 } 3503 3504 QualType CFTy = getContext().getCFConstantStringType(); 3505 3506 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3507 3508 ConstantInitBuilder Builder(*this); 3509 auto Fields = Builder.beginStruct(STy); 3510 3511 // Class pointer. 3512 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3513 3514 // Flags. 3515 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3516 3517 // String pointer. 3518 llvm::Constant *C = nullptr; 3519 if (isUTF16) { 3520 auto Arr = llvm::makeArrayRef( 3521 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3522 Entry.first().size() / 2); 3523 C = llvm::ConstantDataArray::get(VMContext, Arr); 3524 } else { 3525 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3526 } 3527 3528 // Note: -fwritable-strings doesn't make the backing store strings of 3529 // CFStrings writable. (See <rdar://problem/10657500>) 3530 auto *GV = 3531 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3532 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3533 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3534 // Don't enforce the target's minimum global alignment, since the only use 3535 // of the string is via this class initializer. 3536 CharUnits Align = isUTF16 3537 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3538 : getContext().getTypeAlignInChars(getContext().CharTy); 3539 GV->setAlignment(Align.getQuantity()); 3540 3541 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3542 // Without it LLVM can merge the string with a non unnamed_addr one during 3543 // LTO. Doing that changes the section it ends in, which surprises ld64. 3544 if (getTriple().isOSBinFormatMachO()) 3545 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3546 : "__TEXT,__cstring,cstring_literals"); 3547 3548 // String. 3549 llvm::Constant *Str = 3550 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3551 3552 if (isUTF16) 3553 // Cast the UTF16 string to the correct type. 3554 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3555 Fields.add(Str); 3556 3557 // String length. 3558 auto Ty = getTypes().ConvertType(getContext().LongTy); 3559 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3560 3561 CharUnits Alignment = getPointerAlign(); 3562 3563 // The struct. 3564 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3565 /*isConstant=*/false, 3566 llvm::GlobalVariable::PrivateLinkage); 3567 switch (getTriple().getObjectFormat()) { 3568 case llvm::Triple::UnknownObjectFormat: 3569 llvm_unreachable("unknown file format"); 3570 case llvm::Triple::COFF: 3571 case llvm::Triple::ELF: 3572 case llvm::Triple::Wasm: 3573 GV->setSection("cfstring"); 3574 break; 3575 case llvm::Triple::MachO: 3576 GV->setSection("__DATA,__cfstring"); 3577 break; 3578 } 3579 Entry.second = GV; 3580 3581 return ConstantAddress(GV, Alignment); 3582 } 3583 3584 bool CodeGenModule::getExpressionLocationsEnabled() const { 3585 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3586 } 3587 3588 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3589 if (ObjCFastEnumerationStateType.isNull()) { 3590 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3591 D->startDefinition(); 3592 3593 QualType FieldTypes[] = { 3594 Context.UnsignedLongTy, 3595 Context.getPointerType(Context.getObjCIdType()), 3596 Context.getPointerType(Context.UnsignedLongTy), 3597 Context.getConstantArrayType(Context.UnsignedLongTy, 3598 llvm::APInt(32, 5), ArrayType::Normal, 0) 3599 }; 3600 3601 for (size_t i = 0; i < 4; ++i) { 3602 FieldDecl *Field = FieldDecl::Create(Context, 3603 D, 3604 SourceLocation(), 3605 SourceLocation(), nullptr, 3606 FieldTypes[i], /*TInfo=*/nullptr, 3607 /*BitWidth=*/nullptr, 3608 /*Mutable=*/false, 3609 ICIS_NoInit); 3610 Field->setAccess(AS_public); 3611 D->addDecl(Field); 3612 } 3613 3614 D->completeDefinition(); 3615 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3616 } 3617 3618 return ObjCFastEnumerationStateType; 3619 } 3620 3621 llvm::Constant * 3622 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3623 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3624 3625 // Don't emit it as the address of the string, emit the string data itself 3626 // as an inline array. 3627 if (E->getCharByteWidth() == 1) { 3628 SmallString<64> Str(E->getString()); 3629 3630 // Resize the string to the right size, which is indicated by its type. 3631 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3632 Str.resize(CAT->getSize().getZExtValue()); 3633 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3634 } 3635 3636 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3637 llvm::Type *ElemTy = AType->getElementType(); 3638 unsigned NumElements = AType->getNumElements(); 3639 3640 // Wide strings have either 2-byte or 4-byte elements. 3641 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3642 SmallVector<uint16_t, 32> Elements; 3643 Elements.reserve(NumElements); 3644 3645 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3646 Elements.push_back(E->getCodeUnit(i)); 3647 Elements.resize(NumElements); 3648 return llvm::ConstantDataArray::get(VMContext, Elements); 3649 } 3650 3651 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3652 SmallVector<uint32_t, 32> Elements; 3653 Elements.reserve(NumElements); 3654 3655 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3656 Elements.push_back(E->getCodeUnit(i)); 3657 Elements.resize(NumElements); 3658 return llvm::ConstantDataArray::get(VMContext, Elements); 3659 } 3660 3661 static llvm::GlobalVariable * 3662 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3663 CodeGenModule &CGM, StringRef GlobalName, 3664 CharUnits Alignment) { 3665 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3666 unsigned AddrSpace = 0; 3667 if (CGM.getLangOpts().OpenCL) 3668 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3669 3670 llvm::Module &M = CGM.getModule(); 3671 // Create a global variable for this string 3672 auto *GV = new llvm::GlobalVariable( 3673 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3674 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3675 GV->setAlignment(Alignment.getQuantity()); 3676 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3677 if (GV->isWeakForLinker()) { 3678 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3679 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3680 } 3681 3682 return GV; 3683 } 3684 3685 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3686 /// constant array for the given string literal. 3687 ConstantAddress 3688 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3689 StringRef Name) { 3690 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3691 3692 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3693 llvm::GlobalVariable **Entry = nullptr; 3694 if (!LangOpts.WritableStrings) { 3695 Entry = &ConstantStringMap[C]; 3696 if (auto GV = *Entry) { 3697 if (Alignment.getQuantity() > GV->getAlignment()) 3698 GV->setAlignment(Alignment.getQuantity()); 3699 return ConstantAddress(GV, Alignment); 3700 } 3701 } 3702 3703 SmallString<256> MangledNameBuffer; 3704 StringRef GlobalVariableName; 3705 llvm::GlobalValue::LinkageTypes LT; 3706 3707 // Mangle the string literal if the ABI allows for it. However, we cannot 3708 // do this if we are compiling with ASan or -fwritable-strings because they 3709 // rely on strings having normal linkage. 3710 if (!LangOpts.WritableStrings && 3711 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3712 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3713 llvm::raw_svector_ostream Out(MangledNameBuffer); 3714 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3715 3716 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3717 GlobalVariableName = MangledNameBuffer; 3718 } else { 3719 LT = llvm::GlobalValue::PrivateLinkage; 3720 GlobalVariableName = Name; 3721 } 3722 3723 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3724 if (Entry) 3725 *Entry = GV; 3726 3727 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3728 QualType()); 3729 return ConstantAddress(GV, Alignment); 3730 } 3731 3732 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3733 /// array for the given ObjCEncodeExpr node. 3734 ConstantAddress 3735 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3736 std::string Str; 3737 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3738 3739 return GetAddrOfConstantCString(Str); 3740 } 3741 3742 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3743 /// the literal and a terminating '\0' character. 3744 /// The result has pointer to array type. 3745 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3746 const std::string &Str, const char *GlobalName) { 3747 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3748 CharUnits Alignment = 3749 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3750 3751 llvm::Constant *C = 3752 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3753 3754 // Don't share any string literals if strings aren't constant. 3755 llvm::GlobalVariable **Entry = nullptr; 3756 if (!LangOpts.WritableStrings) { 3757 Entry = &ConstantStringMap[C]; 3758 if (auto GV = *Entry) { 3759 if (Alignment.getQuantity() > GV->getAlignment()) 3760 GV->setAlignment(Alignment.getQuantity()); 3761 return ConstantAddress(GV, Alignment); 3762 } 3763 } 3764 3765 // Get the default prefix if a name wasn't specified. 3766 if (!GlobalName) 3767 GlobalName = ".str"; 3768 // Create a global variable for this. 3769 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3770 GlobalName, Alignment); 3771 if (Entry) 3772 *Entry = GV; 3773 return ConstantAddress(GV, Alignment); 3774 } 3775 3776 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3777 const MaterializeTemporaryExpr *E, const Expr *Init) { 3778 assert((E->getStorageDuration() == SD_Static || 3779 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3780 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3781 3782 // If we're not materializing a subobject of the temporary, keep the 3783 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3784 QualType MaterializedType = Init->getType(); 3785 if (Init == E->GetTemporaryExpr()) 3786 MaterializedType = E->getType(); 3787 3788 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3789 3790 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3791 return ConstantAddress(Slot, Align); 3792 3793 // FIXME: If an externally-visible declaration extends multiple temporaries, 3794 // we need to give each temporary the same name in every translation unit (and 3795 // we also need to make the temporaries externally-visible). 3796 SmallString<256> Name; 3797 llvm::raw_svector_ostream Out(Name); 3798 getCXXABI().getMangleContext().mangleReferenceTemporary( 3799 VD, E->getManglingNumber(), Out); 3800 3801 APValue *Value = nullptr; 3802 if (E->getStorageDuration() == SD_Static) { 3803 // We might have a cached constant initializer for this temporary. Note 3804 // that this might have a different value from the value computed by 3805 // evaluating the initializer if the surrounding constant expression 3806 // modifies the temporary. 3807 Value = getContext().getMaterializedTemporaryValue(E, false); 3808 if (Value && Value->isUninit()) 3809 Value = nullptr; 3810 } 3811 3812 // Try evaluating it now, it might have a constant initializer. 3813 Expr::EvalResult EvalResult; 3814 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3815 !EvalResult.hasSideEffects()) 3816 Value = &EvalResult.Val; 3817 3818 LangAS AddrSpace = 3819 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3820 3821 Optional<ConstantEmitter> emitter; 3822 llvm::Constant *InitialValue = nullptr; 3823 bool Constant = false; 3824 llvm::Type *Type; 3825 if (Value) { 3826 // The temporary has a constant initializer, use it. 3827 emitter.emplace(*this); 3828 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3829 MaterializedType); 3830 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3831 Type = InitialValue->getType(); 3832 } else { 3833 // No initializer, the initialization will be provided when we 3834 // initialize the declaration which performed lifetime extension. 3835 Type = getTypes().ConvertTypeForMem(MaterializedType); 3836 } 3837 3838 // Create a global variable for this lifetime-extended temporary. 3839 llvm::GlobalValue::LinkageTypes Linkage = 3840 getLLVMLinkageVarDefinition(VD, Constant); 3841 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3842 const VarDecl *InitVD; 3843 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3844 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3845 // Temporaries defined inside a class get linkonce_odr linkage because the 3846 // class can be defined in multipe translation units. 3847 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3848 } else { 3849 // There is no need for this temporary to have external linkage if the 3850 // VarDecl has external linkage. 3851 Linkage = llvm::GlobalVariable::InternalLinkage; 3852 } 3853 } 3854 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3855 auto *GV = new llvm::GlobalVariable( 3856 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3857 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3858 if (emitter) emitter->finalize(GV); 3859 setGlobalVisibility(GV, VD, ForDefinition); 3860 GV->setAlignment(Align.getQuantity()); 3861 if (supportsCOMDAT() && GV->isWeakForLinker()) 3862 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3863 if (VD->getTLSKind()) 3864 setTLSMode(GV, *VD); 3865 llvm::Constant *CV = GV; 3866 if (AddrSpace != LangAS::Default) 3867 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3868 *this, GV, AddrSpace, LangAS::Default, 3869 Type->getPointerTo( 3870 getContext().getTargetAddressSpace(LangAS::Default))); 3871 MaterializedGlobalTemporaryMap[E] = CV; 3872 return ConstantAddress(CV, Align); 3873 } 3874 3875 /// EmitObjCPropertyImplementations - Emit information for synthesized 3876 /// properties for an implementation. 3877 void CodeGenModule::EmitObjCPropertyImplementations(const 3878 ObjCImplementationDecl *D) { 3879 for (const auto *PID : D->property_impls()) { 3880 // Dynamic is just for type-checking. 3881 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3882 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3883 3884 // Determine which methods need to be implemented, some may have 3885 // been overridden. Note that ::isPropertyAccessor is not the method 3886 // we want, that just indicates if the decl came from a 3887 // property. What we want to know is if the method is defined in 3888 // this implementation. 3889 if (!D->getInstanceMethod(PD->getGetterName())) 3890 CodeGenFunction(*this).GenerateObjCGetter( 3891 const_cast<ObjCImplementationDecl *>(D), PID); 3892 if (!PD->isReadOnly() && 3893 !D->getInstanceMethod(PD->getSetterName())) 3894 CodeGenFunction(*this).GenerateObjCSetter( 3895 const_cast<ObjCImplementationDecl *>(D), PID); 3896 } 3897 } 3898 } 3899 3900 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3901 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3902 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3903 ivar; ivar = ivar->getNextIvar()) 3904 if (ivar->getType().isDestructedType()) 3905 return true; 3906 3907 return false; 3908 } 3909 3910 static bool AllTrivialInitializers(CodeGenModule &CGM, 3911 ObjCImplementationDecl *D) { 3912 CodeGenFunction CGF(CGM); 3913 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3914 E = D->init_end(); B != E; ++B) { 3915 CXXCtorInitializer *CtorInitExp = *B; 3916 Expr *Init = CtorInitExp->getInit(); 3917 if (!CGF.isTrivialInitializer(Init)) 3918 return false; 3919 } 3920 return true; 3921 } 3922 3923 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3924 /// for an implementation. 3925 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3926 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3927 if (needsDestructMethod(D)) { 3928 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3929 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3930 ObjCMethodDecl *DTORMethod = 3931 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3932 cxxSelector, getContext().VoidTy, nullptr, D, 3933 /*isInstance=*/true, /*isVariadic=*/false, 3934 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3935 /*isDefined=*/false, ObjCMethodDecl::Required); 3936 D->addInstanceMethod(DTORMethod); 3937 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3938 D->setHasDestructors(true); 3939 } 3940 3941 // If the implementation doesn't have any ivar initializers, we don't need 3942 // a .cxx_construct. 3943 if (D->getNumIvarInitializers() == 0 || 3944 AllTrivialInitializers(*this, D)) 3945 return; 3946 3947 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3948 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3949 // The constructor returns 'self'. 3950 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3951 D->getLocation(), 3952 D->getLocation(), 3953 cxxSelector, 3954 getContext().getObjCIdType(), 3955 nullptr, D, /*isInstance=*/true, 3956 /*isVariadic=*/false, 3957 /*isPropertyAccessor=*/true, 3958 /*isImplicitlyDeclared=*/true, 3959 /*isDefined=*/false, 3960 ObjCMethodDecl::Required); 3961 D->addInstanceMethod(CTORMethod); 3962 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3963 D->setHasNonZeroConstructors(true); 3964 } 3965 3966 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3967 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3968 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3969 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3970 ErrorUnsupported(LSD, "linkage spec"); 3971 return; 3972 } 3973 3974 EmitDeclContext(LSD); 3975 } 3976 3977 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3978 for (auto *I : DC->decls()) { 3979 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3980 // are themselves considered "top-level", so EmitTopLevelDecl on an 3981 // ObjCImplDecl does not recursively visit them. We need to do that in 3982 // case they're nested inside another construct (LinkageSpecDecl / 3983 // ExportDecl) that does stop them from being considered "top-level". 3984 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3985 for (auto *M : OID->methods()) 3986 EmitTopLevelDecl(M); 3987 } 3988 3989 EmitTopLevelDecl(I); 3990 } 3991 } 3992 3993 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3994 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3995 // Ignore dependent declarations. 3996 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3997 return; 3998 3999 switch (D->getKind()) { 4000 case Decl::CXXConversion: 4001 case Decl::CXXMethod: 4002 case Decl::Function: 4003 // Skip function templates 4004 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4005 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4006 return; 4007 4008 EmitGlobal(cast<FunctionDecl>(D)); 4009 // Always provide some coverage mapping 4010 // even for the functions that aren't emitted. 4011 AddDeferredUnusedCoverageMapping(D); 4012 break; 4013 4014 case Decl::CXXDeductionGuide: 4015 // Function-like, but does not result in code emission. 4016 break; 4017 4018 case Decl::Var: 4019 case Decl::Decomposition: 4020 // Skip variable templates 4021 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4022 return; 4023 LLVM_FALLTHROUGH; 4024 case Decl::VarTemplateSpecialization: 4025 EmitGlobal(cast<VarDecl>(D)); 4026 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4027 for (auto *B : DD->bindings()) 4028 if (auto *HD = B->getHoldingVar()) 4029 EmitGlobal(HD); 4030 break; 4031 4032 // Indirect fields from global anonymous structs and unions can be 4033 // ignored; only the actual variable requires IR gen support. 4034 case Decl::IndirectField: 4035 break; 4036 4037 // C++ Decls 4038 case Decl::Namespace: 4039 EmitDeclContext(cast<NamespaceDecl>(D)); 4040 break; 4041 case Decl::ClassTemplateSpecialization: { 4042 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4043 if (DebugInfo && 4044 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4045 Spec->hasDefinition()) 4046 DebugInfo->completeTemplateDefinition(*Spec); 4047 } LLVM_FALLTHROUGH; 4048 case Decl::CXXRecord: 4049 if (DebugInfo) { 4050 if (auto *ES = D->getASTContext().getExternalSource()) 4051 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4052 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4053 } 4054 // Emit any static data members, they may be definitions. 4055 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4056 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4057 EmitTopLevelDecl(I); 4058 break; 4059 // No code generation needed. 4060 case Decl::UsingShadow: 4061 case Decl::ClassTemplate: 4062 case Decl::VarTemplate: 4063 case Decl::VarTemplatePartialSpecialization: 4064 case Decl::FunctionTemplate: 4065 case Decl::TypeAliasTemplate: 4066 case Decl::Block: 4067 case Decl::Empty: 4068 break; 4069 case Decl::Using: // using X; [C++] 4070 if (CGDebugInfo *DI = getModuleDebugInfo()) 4071 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4072 return; 4073 case Decl::NamespaceAlias: 4074 if (CGDebugInfo *DI = getModuleDebugInfo()) 4075 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4076 return; 4077 case Decl::UsingDirective: // using namespace X; [C++] 4078 if (CGDebugInfo *DI = getModuleDebugInfo()) 4079 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4080 return; 4081 case Decl::CXXConstructor: 4082 // Skip function templates 4083 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4084 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4085 return; 4086 4087 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4088 break; 4089 case Decl::CXXDestructor: 4090 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4091 return; 4092 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4093 break; 4094 4095 case Decl::StaticAssert: 4096 // Nothing to do. 4097 break; 4098 4099 // Objective-C Decls 4100 4101 // Forward declarations, no (immediate) code generation. 4102 case Decl::ObjCInterface: 4103 case Decl::ObjCCategory: 4104 break; 4105 4106 case Decl::ObjCProtocol: { 4107 auto *Proto = cast<ObjCProtocolDecl>(D); 4108 if (Proto->isThisDeclarationADefinition()) 4109 ObjCRuntime->GenerateProtocol(Proto); 4110 break; 4111 } 4112 4113 case Decl::ObjCCategoryImpl: 4114 // Categories have properties but don't support synthesize so we 4115 // can ignore them here. 4116 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4117 break; 4118 4119 case Decl::ObjCImplementation: { 4120 auto *OMD = cast<ObjCImplementationDecl>(D); 4121 EmitObjCPropertyImplementations(OMD); 4122 EmitObjCIvarInitializations(OMD); 4123 ObjCRuntime->GenerateClass(OMD); 4124 // Emit global variable debug information. 4125 if (CGDebugInfo *DI = getModuleDebugInfo()) 4126 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4127 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4128 OMD->getClassInterface()), OMD->getLocation()); 4129 break; 4130 } 4131 case Decl::ObjCMethod: { 4132 auto *OMD = cast<ObjCMethodDecl>(D); 4133 // If this is not a prototype, emit the body. 4134 if (OMD->getBody()) 4135 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4136 break; 4137 } 4138 case Decl::ObjCCompatibleAlias: 4139 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4140 break; 4141 4142 case Decl::PragmaComment: { 4143 const auto *PCD = cast<PragmaCommentDecl>(D); 4144 switch (PCD->getCommentKind()) { 4145 case PCK_Unknown: 4146 llvm_unreachable("unexpected pragma comment kind"); 4147 case PCK_Linker: 4148 AppendLinkerOptions(PCD->getArg()); 4149 break; 4150 case PCK_Lib: 4151 AddDependentLib(PCD->getArg()); 4152 break; 4153 case PCK_Compiler: 4154 case PCK_ExeStr: 4155 case PCK_User: 4156 break; // We ignore all of these. 4157 } 4158 break; 4159 } 4160 4161 case Decl::PragmaDetectMismatch: { 4162 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4163 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4164 break; 4165 } 4166 4167 case Decl::LinkageSpec: 4168 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4169 break; 4170 4171 case Decl::FileScopeAsm: { 4172 // File-scope asm is ignored during device-side CUDA compilation. 4173 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4174 break; 4175 // File-scope asm is ignored during device-side OpenMP compilation. 4176 if (LangOpts.OpenMPIsDevice) 4177 break; 4178 auto *AD = cast<FileScopeAsmDecl>(D); 4179 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4180 break; 4181 } 4182 4183 case Decl::Import: { 4184 auto *Import = cast<ImportDecl>(D); 4185 4186 // If we've already imported this module, we're done. 4187 if (!ImportedModules.insert(Import->getImportedModule())) 4188 break; 4189 4190 // Emit debug information for direct imports. 4191 if (!Import->getImportedOwningModule()) { 4192 if (CGDebugInfo *DI = getModuleDebugInfo()) 4193 DI->EmitImportDecl(*Import); 4194 } 4195 4196 // Find all of the submodules and emit the module initializers. 4197 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4198 SmallVector<clang::Module *, 16> Stack; 4199 Visited.insert(Import->getImportedModule()); 4200 Stack.push_back(Import->getImportedModule()); 4201 4202 while (!Stack.empty()) { 4203 clang::Module *Mod = Stack.pop_back_val(); 4204 if (!EmittedModuleInitializers.insert(Mod).second) 4205 continue; 4206 4207 for (auto *D : Context.getModuleInitializers(Mod)) 4208 EmitTopLevelDecl(D); 4209 4210 // Visit the submodules of this module. 4211 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4212 SubEnd = Mod->submodule_end(); 4213 Sub != SubEnd; ++Sub) { 4214 // Skip explicit children; they need to be explicitly imported to emit 4215 // the initializers. 4216 if ((*Sub)->IsExplicit) 4217 continue; 4218 4219 if (Visited.insert(*Sub).second) 4220 Stack.push_back(*Sub); 4221 } 4222 } 4223 break; 4224 } 4225 4226 case Decl::Export: 4227 EmitDeclContext(cast<ExportDecl>(D)); 4228 break; 4229 4230 case Decl::OMPThreadPrivate: 4231 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4232 break; 4233 4234 case Decl::OMPDeclareReduction: 4235 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4236 break; 4237 4238 default: 4239 // Make sure we handled everything we should, every other kind is a 4240 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4241 // function. Need to recode Decl::Kind to do that easily. 4242 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4243 break; 4244 } 4245 } 4246 4247 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4248 // Do we need to generate coverage mapping? 4249 if (!CodeGenOpts.CoverageMapping) 4250 return; 4251 switch (D->getKind()) { 4252 case Decl::CXXConversion: 4253 case Decl::CXXMethod: 4254 case Decl::Function: 4255 case Decl::ObjCMethod: 4256 case Decl::CXXConstructor: 4257 case Decl::CXXDestructor: { 4258 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4259 return; 4260 SourceManager &SM = getContext().getSourceManager(); 4261 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4262 return; 4263 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4264 if (I == DeferredEmptyCoverageMappingDecls.end()) 4265 DeferredEmptyCoverageMappingDecls[D] = true; 4266 break; 4267 } 4268 default: 4269 break; 4270 }; 4271 } 4272 4273 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4274 // Do we need to generate coverage mapping? 4275 if (!CodeGenOpts.CoverageMapping) 4276 return; 4277 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4278 if (Fn->isTemplateInstantiation()) 4279 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4280 } 4281 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4282 if (I == DeferredEmptyCoverageMappingDecls.end()) 4283 DeferredEmptyCoverageMappingDecls[D] = false; 4284 else 4285 I->second = false; 4286 } 4287 4288 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4289 std::vector<const Decl *> DeferredDecls; 4290 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4291 if (!I.second) 4292 continue; 4293 DeferredDecls.push_back(I.first); 4294 } 4295 // Sort the declarations by their location to make sure that the tests get a 4296 // predictable order for the coverage mapping for the unused declarations. 4297 if (CodeGenOpts.DumpCoverageMapping) 4298 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4299 [] (const Decl *LHS, const Decl *RHS) { 4300 return LHS->getLocStart() < RHS->getLocStart(); 4301 }); 4302 for (const auto *D : DeferredDecls) { 4303 switch (D->getKind()) { 4304 case Decl::CXXConversion: 4305 case Decl::CXXMethod: 4306 case Decl::Function: 4307 case Decl::ObjCMethod: { 4308 CodeGenPGO PGO(*this); 4309 GlobalDecl GD(cast<FunctionDecl>(D)); 4310 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4311 getFunctionLinkage(GD)); 4312 break; 4313 } 4314 case Decl::CXXConstructor: { 4315 CodeGenPGO PGO(*this); 4316 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4317 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4318 getFunctionLinkage(GD)); 4319 break; 4320 } 4321 case Decl::CXXDestructor: { 4322 CodeGenPGO PGO(*this); 4323 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4324 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4325 getFunctionLinkage(GD)); 4326 break; 4327 } 4328 default: 4329 break; 4330 }; 4331 } 4332 } 4333 4334 /// Turns the given pointer into a constant. 4335 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4336 const void *Ptr) { 4337 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4338 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4339 return llvm::ConstantInt::get(i64, PtrInt); 4340 } 4341 4342 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4343 llvm::NamedMDNode *&GlobalMetadata, 4344 GlobalDecl D, 4345 llvm::GlobalValue *Addr) { 4346 if (!GlobalMetadata) 4347 GlobalMetadata = 4348 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4349 4350 // TODO: should we report variant information for ctors/dtors? 4351 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4352 llvm::ConstantAsMetadata::get(GetPointerConstant( 4353 CGM.getLLVMContext(), D.getDecl()))}; 4354 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4355 } 4356 4357 /// For each function which is declared within an extern "C" region and marked 4358 /// as 'used', but has internal linkage, create an alias from the unmangled 4359 /// name to the mangled name if possible. People expect to be able to refer 4360 /// to such functions with an unmangled name from inline assembly within the 4361 /// same translation unit. 4362 void CodeGenModule::EmitStaticExternCAliases() { 4363 // Don't do anything if we're generating CUDA device code -- the NVPTX 4364 // assembly target doesn't support aliases. 4365 if (Context.getTargetInfo().getTriple().isNVPTX()) 4366 return; 4367 for (auto &I : StaticExternCValues) { 4368 IdentifierInfo *Name = I.first; 4369 llvm::GlobalValue *Val = I.second; 4370 if (Val && !getModule().getNamedValue(Name->getName())) 4371 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4372 } 4373 } 4374 4375 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4376 GlobalDecl &Result) const { 4377 auto Res = Manglings.find(MangledName); 4378 if (Res == Manglings.end()) 4379 return false; 4380 Result = Res->getValue(); 4381 return true; 4382 } 4383 4384 /// Emits metadata nodes associating all the global values in the 4385 /// current module with the Decls they came from. This is useful for 4386 /// projects using IR gen as a subroutine. 4387 /// 4388 /// Since there's currently no way to associate an MDNode directly 4389 /// with an llvm::GlobalValue, we create a global named metadata 4390 /// with the name 'clang.global.decl.ptrs'. 4391 void CodeGenModule::EmitDeclMetadata() { 4392 llvm::NamedMDNode *GlobalMetadata = nullptr; 4393 4394 for (auto &I : MangledDeclNames) { 4395 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4396 // Some mangled names don't necessarily have an associated GlobalValue 4397 // in this module, e.g. if we mangled it for DebugInfo. 4398 if (Addr) 4399 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4400 } 4401 } 4402 4403 /// Emits metadata nodes for all the local variables in the current 4404 /// function. 4405 void CodeGenFunction::EmitDeclMetadata() { 4406 if (LocalDeclMap.empty()) return; 4407 4408 llvm::LLVMContext &Context = getLLVMContext(); 4409 4410 // Find the unique metadata ID for this name. 4411 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4412 4413 llvm::NamedMDNode *GlobalMetadata = nullptr; 4414 4415 for (auto &I : LocalDeclMap) { 4416 const Decl *D = I.first; 4417 llvm::Value *Addr = I.second.getPointer(); 4418 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4419 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4420 Alloca->setMetadata( 4421 DeclPtrKind, llvm::MDNode::get( 4422 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4423 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4424 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4425 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4426 } 4427 } 4428 } 4429 4430 void CodeGenModule::EmitVersionIdentMetadata() { 4431 llvm::NamedMDNode *IdentMetadata = 4432 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4433 std::string Version = getClangFullVersion(); 4434 llvm::LLVMContext &Ctx = TheModule.getContext(); 4435 4436 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4437 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4438 } 4439 4440 void CodeGenModule::EmitTargetMetadata() { 4441 // Warning, new MangledDeclNames may be appended within this loop. 4442 // We rely on MapVector insertions adding new elements to the end 4443 // of the container. 4444 // FIXME: Move this loop into the one target that needs it, and only 4445 // loop over those declarations for which we couldn't emit the target 4446 // metadata when we emitted the declaration. 4447 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4448 auto Val = *(MangledDeclNames.begin() + I); 4449 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4450 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4451 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4452 } 4453 } 4454 4455 void CodeGenModule::EmitCoverageFile() { 4456 if (getCodeGenOpts().CoverageDataFile.empty() && 4457 getCodeGenOpts().CoverageNotesFile.empty()) 4458 return; 4459 4460 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4461 if (!CUNode) 4462 return; 4463 4464 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4465 llvm::LLVMContext &Ctx = TheModule.getContext(); 4466 auto *CoverageDataFile = 4467 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4468 auto *CoverageNotesFile = 4469 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4470 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4471 llvm::MDNode *CU = CUNode->getOperand(i); 4472 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4473 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4474 } 4475 } 4476 4477 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4478 // Sema has checked that all uuid strings are of the form 4479 // "12345678-1234-1234-1234-1234567890ab". 4480 assert(Uuid.size() == 36); 4481 for (unsigned i = 0; i < 36; ++i) { 4482 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4483 else assert(isHexDigit(Uuid[i])); 4484 } 4485 4486 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4487 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4488 4489 llvm::Constant *Field3[8]; 4490 for (unsigned Idx = 0; Idx < 8; ++Idx) 4491 Field3[Idx] = llvm::ConstantInt::get( 4492 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4493 4494 llvm::Constant *Fields[4] = { 4495 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4496 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4497 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4498 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4499 }; 4500 4501 return llvm::ConstantStruct::getAnon(Fields); 4502 } 4503 4504 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4505 bool ForEH) { 4506 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4507 // FIXME: should we even be calling this method if RTTI is disabled 4508 // and it's not for EH? 4509 if (!ForEH && !getLangOpts().RTTI) 4510 return llvm::Constant::getNullValue(Int8PtrTy); 4511 4512 if (ForEH && Ty->isObjCObjectPointerType() && 4513 LangOpts.ObjCRuntime.isGNUFamily()) 4514 return ObjCRuntime->GetEHType(Ty); 4515 4516 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4517 } 4518 4519 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4520 for (auto RefExpr : D->varlists()) { 4521 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4522 bool PerformInit = 4523 VD->getAnyInitializer() && 4524 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4525 /*ForRef=*/false); 4526 4527 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4528 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4529 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4530 CXXGlobalInits.push_back(InitFunction); 4531 } 4532 } 4533 4534 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4535 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4536 if (InternalId) 4537 return InternalId; 4538 4539 if (isExternallyVisible(T->getLinkage())) { 4540 std::string OutName; 4541 llvm::raw_string_ostream Out(OutName); 4542 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4543 4544 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4545 } else { 4546 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4547 llvm::ArrayRef<llvm::Metadata *>()); 4548 } 4549 4550 return InternalId; 4551 } 4552 4553 // Generalize pointer types to a void pointer with the qualifiers of the 4554 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4555 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4556 // 'void *'. 4557 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4558 if (!Ty->isPointerType()) 4559 return Ty; 4560 4561 return Ctx.getPointerType( 4562 QualType(Ctx.VoidTy).withCVRQualifiers( 4563 Ty->getPointeeType().getCVRQualifiers())); 4564 } 4565 4566 // Apply type generalization to a FunctionType's return and argument types 4567 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4568 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4569 SmallVector<QualType, 8> GeneralizedParams; 4570 for (auto &Param : FnType->param_types()) 4571 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4572 4573 return Ctx.getFunctionType( 4574 GeneralizeType(Ctx, FnType->getReturnType()), 4575 GeneralizedParams, FnType->getExtProtoInfo()); 4576 } 4577 4578 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4579 return Ctx.getFunctionNoProtoType( 4580 GeneralizeType(Ctx, FnType->getReturnType())); 4581 4582 llvm_unreachable("Encountered unknown FunctionType"); 4583 } 4584 4585 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4586 T = GeneralizeFunctionType(getContext(), T); 4587 4588 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4589 if (InternalId) 4590 return InternalId; 4591 4592 if (isExternallyVisible(T->getLinkage())) { 4593 std::string OutName; 4594 llvm::raw_string_ostream Out(OutName); 4595 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4596 Out << ".generalized"; 4597 4598 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4599 } else { 4600 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4601 llvm::ArrayRef<llvm::Metadata *>()); 4602 } 4603 4604 return InternalId; 4605 } 4606 4607 /// Returns whether this module needs the "all-vtables" type identifier. 4608 bool CodeGenModule::NeedAllVtablesTypeId() const { 4609 // Returns true if at least one of vtable-based CFI checkers is enabled and 4610 // is not in the trapping mode. 4611 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4612 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4613 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4614 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4615 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4616 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4617 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4618 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4619 } 4620 4621 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4622 CharUnits Offset, 4623 const CXXRecordDecl *RD) { 4624 llvm::Metadata *MD = 4625 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4626 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4627 4628 if (CodeGenOpts.SanitizeCfiCrossDso) 4629 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4630 VTable->addTypeMetadata(Offset.getQuantity(), 4631 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4632 4633 if (NeedAllVtablesTypeId()) { 4634 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4635 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4636 } 4637 } 4638 4639 // Fills in the supplied string map with the set of target features for the 4640 // passed in function. 4641 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4642 const FunctionDecl *FD) { 4643 StringRef TargetCPU = Target.getTargetOpts().CPU; 4644 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4645 // If we have a TargetAttr build up the feature map based on that. 4646 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4647 4648 ParsedAttr.Features.erase( 4649 llvm::remove_if(ParsedAttr.Features, 4650 [&](const std::string &Feat) { 4651 return !Target.isValidFeatureName( 4652 StringRef{Feat}.substr(1)); 4653 }), 4654 ParsedAttr.Features.end()); 4655 4656 // Make a copy of the features as passed on the command line into the 4657 // beginning of the additional features from the function to override. 4658 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4659 Target.getTargetOpts().FeaturesAsWritten.begin(), 4660 Target.getTargetOpts().FeaturesAsWritten.end()); 4661 4662 if (ParsedAttr.Architecture != "" && 4663 Target.isValidCPUName(ParsedAttr.Architecture)) 4664 TargetCPU = ParsedAttr.Architecture; 4665 4666 // Now populate the feature map, first with the TargetCPU which is either 4667 // the default or a new one from the target attribute string. Then we'll use 4668 // the passed in features (FeaturesAsWritten) along with the new ones from 4669 // the attribute. 4670 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4671 ParsedAttr.Features); 4672 } else { 4673 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4674 Target.getTargetOpts().Features); 4675 } 4676 } 4677 4678 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4679 if (!SanStats) 4680 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4681 4682 return *SanStats; 4683 } 4684 llvm::Value * 4685 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4686 CodeGenFunction &CGF) { 4687 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4688 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4689 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4690 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4691 "__translate_sampler_initializer"), 4692 {C}); 4693 } 4694