1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 SimplifyPersonality(); 559 560 if (getCodeGenOpts().EmitDeclMetadata) 561 EmitDeclMetadata(); 562 563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 564 EmitCoverageFile(); 565 566 if (DebugInfo) 567 DebugInfo->finalize(); 568 569 EmitVersionIdentMetadata(); 570 571 EmitTargetMetadata(); 572 } 573 574 void CodeGenModule::EmitOpenCLMetadata() { 575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 576 // opencl.ocl.version named metadata node. 577 llvm::Metadata *OCLVerElts[] = { 578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 579 Int32Ty, LangOpts.OpenCLVersion / 100)), 580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 582 llvm::NamedMDNode *OCLVerMD = 583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 584 llvm::LLVMContext &Ctx = TheModule.getContext(); 585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 586 } 587 588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 589 // Make sure that this type is translated. 590 Types.UpdateCompletedType(TD); 591 } 592 593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 594 // Make sure that this type is translated. 595 Types.RefreshTypeCacheForClass(RD); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTypeInfo(QTy); 602 } 603 604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 605 if (!TBAA) 606 return TBAAAccessInfo(); 607 return TBAA->getAccessInfo(AccessType); 608 } 609 610 TBAAAccessInfo 611 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 612 if (!TBAA) 613 return TBAAAccessInfo(); 614 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTBAAStructInfo(QTy); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getBaseTypeInfo(QTy); 627 } 628 629 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 630 if (!TBAA) 631 return nullptr; 632 return TBAA->getAccessTagInfo(Info); 633 } 634 635 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 636 TBAAAccessInfo TargetInfo) { 637 if (!TBAA) 638 return TBAAAccessInfo(); 639 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 640 } 641 642 TBAAAccessInfo 643 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 644 TBAAAccessInfo InfoB) { 645 if (!TBAA) 646 return TBAAAccessInfo(); 647 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 648 } 649 650 TBAAAccessInfo 651 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 652 TBAAAccessInfo SrcInfo) { 653 if (!TBAA) 654 return TBAAAccessInfo(); 655 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 656 } 657 658 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 659 TBAAAccessInfo TBAAInfo) { 660 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 661 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 662 } 663 664 void CodeGenModule::DecorateInstructionWithInvariantGroup( 665 llvm::Instruction *I, const CXXRecordDecl *RD) { 666 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 667 llvm::MDNode::get(getLLVMContext(), {})); 668 } 669 670 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 671 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 672 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 673 } 674 675 /// ErrorUnsupported - Print out an error that codegen doesn't support the 676 /// specified stmt yet. 677 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 678 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 679 "cannot compile this %0 yet"); 680 std::string Msg = Type; 681 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 682 << Msg << S->getSourceRange(); 683 } 684 685 /// ErrorUnsupported - Print out an error that codegen doesn't support the 686 /// specified decl yet. 687 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 688 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 689 "cannot compile this %0 yet"); 690 std::string Msg = Type; 691 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 692 } 693 694 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 695 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 696 } 697 698 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 699 const NamedDecl *D) const { 700 if (GV->hasDLLImportStorageClass()) 701 return; 702 // Internal definitions always have default visibility. 703 if (GV->hasLocalLinkage()) { 704 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 705 return; 706 } 707 708 // Set visibility for definitions. 709 LinkageInfo LV = D->getLinkageAndVisibility(); 710 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 711 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 712 } 713 714 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 715 llvm::GlobalValue *GV, const NamedDecl *D) { 716 const llvm::Triple &TT = CGM.getTriple(); 717 // Only handle ELF for now. 718 if (!TT.isOSBinFormatELF()) 719 return false; 720 721 // If this is not an executable, don't assume anything is local. 722 const auto &CGOpts = CGM.getCodeGenOpts(); 723 llvm::Reloc::Model RM = CGOpts.RelocationModel; 724 const auto &LOpts = CGM.getLangOpts(); 725 if (RM != llvm::Reloc::Static && !LOpts.PIE) 726 return false; 727 728 // A definition cannot be preempted from an executable. 729 if (!GV->isDeclarationForLinker()) 730 return true; 731 732 // Most PIC code sequences that assume that a symbol is local cannot produce a 733 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 734 // depended, it seems worth it to handle it here. 735 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 736 return false; 737 738 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 739 llvm::Triple::ArchType Arch = TT.getArch(); 740 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 741 Arch == llvm::Triple::ppc64le) 742 return false; 743 744 // If we can use copy relocations we can assume it is local. 745 if (auto *VD = dyn_cast<VarDecl>(D)) 746 if (VD->getTLSKind() == VarDecl::TLS_None && 747 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 748 return true; 749 750 // If we can use a plt entry as the symbol address we can assume it 751 // is local. 752 // FIXME: This should work for PIE, but the gold linker doesn't support it. 753 if (isa<FunctionDecl>(D) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 754 return true; 755 756 // Otherwise don't assue it is local. 757 return false; 758 } 759 760 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV, 761 const NamedDecl *D) const { 762 if (shouldAssumeDSOLocal(*this, GV, D)) 763 GV->setDSOLocal(true); 764 } 765 766 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 767 const NamedDecl *D) const { 768 setGlobalVisibility(GV, D); 769 setDSOLocal(GV, D); 770 } 771 772 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 773 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 774 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 775 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 776 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 777 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 778 } 779 780 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 781 CodeGenOptions::TLSModel M) { 782 switch (M) { 783 case CodeGenOptions::GeneralDynamicTLSModel: 784 return llvm::GlobalVariable::GeneralDynamicTLSModel; 785 case CodeGenOptions::LocalDynamicTLSModel: 786 return llvm::GlobalVariable::LocalDynamicTLSModel; 787 case CodeGenOptions::InitialExecTLSModel: 788 return llvm::GlobalVariable::InitialExecTLSModel; 789 case CodeGenOptions::LocalExecTLSModel: 790 return llvm::GlobalVariable::LocalExecTLSModel; 791 } 792 llvm_unreachable("Invalid TLS model!"); 793 } 794 795 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 796 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 797 798 llvm::GlobalValue::ThreadLocalMode TLM; 799 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 800 801 // Override the TLS model if it is explicitly specified. 802 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 803 TLM = GetLLVMTLSModel(Attr->getModel()); 804 } 805 806 GV->setThreadLocalMode(TLM); 807 } 808 809 static void AppendTargetMangling(const CodeGenModule &CGM, 810 const TargetAttr *Attr, raw_ostream &Out) { 811 if (Attr->isDefaultVersion()) 812 return; 813 814 Out << '.'; 815 const auto &Target = CGM.getTarget(); 816 TargetAttr::ParsedTargetAttr Info = 817 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 818 // Multiversioning doesn't allow "no-${feature}", so we can 819 // only have "+" prefixes here. 820 assert(LHS.startswith("+") && RHS.startswith("+") && 821 "Features should always have a prefix."); 822 return Target.multiVersionSortPriority(LHS.substr(1)) > 823 Target.multiVersionSortPriority(RHS.substr(1)); 824 }); 825 826 bool IsFirst = true; 827 828 if (!Info.Architecture.empty()) { 829 IsFirst = false; 830 Out << "arch_" << Info.Architecture; 831 } 832 833 for (StringRef Feat : Info.Features) { 834 if (!IsFirst) 835 Out << '_'; 836 IsFirst = false; 837 Out << Feat.substr(1); 838 } 839 } 840 841 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 842 const NamedDecl *ND, 843 bool OmitTargetMangling = false) { 844 SmallString<256> Buffer; 845 llvm::raw_svector_ostream Out(Buffer); 846 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 847 if (MC.shouldMangleDeclName(ND)) { 848 llvm::raw_svector_ostream Out(Buffer); 849 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 850 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 851 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 852 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 853 else 854 MC.mangleName(ND, Out); 855 } else { 856 IdentifierInfo *II = ND->getIdentifier(); 857 assert(II && "Attempt to mangle unnamed decl."); 858 const auto *FD = dyn_cast<FunctionDecl>(ND); 859 860 if (FD && 861 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 862 llvm::raw_svector_ostream Out(Buffer); 863 Out << "__regcall3__" << II->getName(); 864 } else { 865 Out << II->getName(); 866 } 867 } 868 869 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 870 if (FD->isMultiVersion() && !OmitTargetMangling) 871 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 872 return Out.str(); 873 } 874 875 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 876 const FunctionDecl *FD) { 877 if (!FD->isMultiVersion()) 878 return; 879 880 // Get the name of what this would be without the 'target' attribute. This 881 // allows us to lookup the version that was emitted when this wasn't a 882 // multiversion function. 883 std::string NonTargetName = 884 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 885 GlobalDecl OtherGD; 886 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 887 assert(OtherGD.getCanonicalDecl() 888 .getDecl() 889 ->getAsFunction() 890 ->isMultiVersion() && 891 "Other GD should now be a multiversioned function"); 892 // OtherFD is the version of this function that was mangled BEFORE 893 // becoming a MultiVersion function. It potentially needs to be updated. 894 const FunctionDecl *OtherFD = 895 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 896 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 897 // This is so that if the initial version was already the 'default' 898 // version, we don't try to update it. 899 if (OtherName != NonTargetName) { 900 // Remove instead of erase, since others may have stored the StringRef 901 // to this. 902 const auto ExistingRecord = Manglings.find(NonTargetName); 903 if (ExistingRecord != std::end(Manglings)) 904 Manglings.remove(&(*ExistingRecord)); 905 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 906 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 907 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 908 Entry->setName(OtherName); 909 } 910 } 911 } 912 913 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 914 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 915 916 // Some ABIs don't have constructor variants. Make sure that base and 917 // complete constructors get mangled the same. 918 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 919 if (!getTarget().getCXXABI().hasConstructorVariants()) { 920 CXXCtorType OrigCtorType = GD.getCtorType(); 921 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 922 if (OrigCtorType == Ctor_Base) 923 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 924 } 925 } 926 927 auto FoundName = MangledDeclNames.find(CanonicalGD); 928 if (FoundName != MangledDeclNames.end()) 929 return FoundName->second; 930 931 932 // Keep the first result in the case of a mangling collision. 933 const auto *ND = cast<NamedDecl>(GD.getDecl()); 934 auto Result = 935 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 936 return MangledDeclNames[CanonicalGD] = Result.first->first(); 937 } 938 939 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 940 const BlockDecl *BD) { 941 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 942 const Decl *D = GD.getDecl(); 943 944 SmallString<256> Buffer; 945 llvm::raw_svector_ostream Out(Buffer); 946 if (!D) 947 MangleCtx.mangleGlobalBlock(BD, 948 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 949 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 950 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 951 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 952 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 953 else 954 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 955 956 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 957 return Result.first->first(); 958 } 959 960 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 961 return getModule().getNamedValue(Name); 962 } 963 964 /// AddGlobalCtor - Add a function to the list that will be called before 965 /// main() runs. 966 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 967 llvm::Constant *AssociatedData) { 968 // FIXME: Type coercion of void()* types. 969 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 970 } 971 972 /// AddGlobalDtor - Add a function to the list that will be called 973 /// when the module is unloaded. 974 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 975 // FIXME: Type coercion of void()* types. 976 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 977 } 978 979 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 980 if (Fns.empty()) return; 981 982 // Ctor function type is void()*. 983 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 984 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 985 986 // Get the type of a ctor entry, { i32, void ()*, i8* }. 987 llvm::StructType *CtorStructTy = llvm::StructType::get( 988 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 989 990 // Construct the constructor and destructor arrays. 991 ConstantInitBuilder builder(*this); 992 auto ctors = builder.beginArray(CtorStructTy); 993 for (const auto &I : Fns) { 994 auto ctor = ctors.beginStruct(CtorStructTy); 995 ctor.addInt(Int32Ty, I.Priority); 996 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 997 if (I.AssociatedData) 998 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 999 else 1000 ctor.addNullPointer(VoidPtrTy); 1001 ctor.finishAndAddTo(ctors); 1002 } 1003 1004 auto list = 1005 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1006 /*constant*/ false, 1007 llvm::GlobalValue::AppendingLinkage); 1008 1009 // The LTO linker doesn't seem to like it when we set an alignment 1010 // on appending variables. Take it off as a workaround. 1011 list->setAlignment(0); 1012 1013 Fns.clear(); 1014 } 1015 1016 llvm::GlobalValue::LinkageTypes 1017 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1018 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1019 1020 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1021 1022 if (isa<CXXDestructorDecl>(D) && 1023 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1024 GD.getDtorType())) { 1025 // Destructor variants in the Microsoft C++ ABI are always internal or 1026 // linkonce_odr thunks emitted on an as-needed basis. 1027 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 1028 : llvm::GlobalValue::LinkOnceODRLinkage; 1029 } 1030 1031 if (isa<CXXConstructorDecl>(D) && 1032 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1033 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1034 // Our approach to inheriting constructors is fundamentally different from 1035 // that used by the MS ABI, so keep our inheriting constructor thunks 1036 // internal rather than trying to pick an unambiguous mangling for them. 1037 return llvm::GlobalValue::InternalLinkage; 1038 } 1039 1040 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1041 } 1042 1043 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 1044 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1045 1046 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 1047 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 1048 // Don't dllexport/import destructor thunks. 1049 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1050 return; 1051 } 1052 } 1053 1054 if (FD->hasAttr<DLLImportAttr>()) 1055 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1056 else if (FD->hasAttr<DLLExportAttr>()) 1057 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1058 else 1059 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 1060 } 1061 1062 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1063 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1064 if (!MDS) return nullptr; 1065 1066 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1067 } 1068 1069 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1070 llvm::Function *F) { 1071 setNonAliasAttributes(D, F); 1072 } 1073 1074 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1075 const CGFunctionInfo &Info, 1076 llvm::Function *F) { 1077 unsigned CallingConv; 1078 llvm::AttributeList PAL; 1079 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1080 F->setAttributes(PAL); 1081 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1082 } 1083 1084 /// Determines whether the language options require us to model 1085 /// unwind exceptions. We treat -fexceptions as mandating this 1086 /// except under the fragile ObjC ABI with only ObjC exceptions 1087 /// enabled. This means, for example, that C with -fexceptions 1088 /// enables this. 1089 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1090 // If exceptions are completely disabled, obviously this is false. 1091 if (!LangOpts.Exceptions) return false; 1092 1093 // If C++ exceptions are enabled, this is true. 1094 if (LangOpts.CXXExceptions) return true; 1095 1096 // If ObjC exceptions are enabled, this depends on the ABI. 1097 if (LangOpts.ObjCExceptions) { 1098 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1099 } 1100 1101 return true; 1102 } 1103 1104 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1105 llvm::Function *F) { 1106 llvm::AttrBuilder B; 1107 1108 if (CodeGenOpts.UnwindTables) 1109 B.addAttribute(llvm::Attribute::UWTable); 1110 1111 if (!hasUnwindExceptions(LangOpts)) 1112 B.addAttribute(llvm::Attribute::NoUnwind); 1113 1114 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1115 B.addAttribute(llvm::Attribute::StackProtect); 1116 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1117 B.addAttribute(llvm::Attribute::StackProtectStrong); 1118 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1119 B.addAttribute(llvm::Attribute::StackProtectReq); 1120 1121 if (!D) { 1122 // If we don't have a declaration to control inlining, the function isn't 1123 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1124 // disabled, mark the function as noinline. 1125 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1126 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1127 B.addAttribute(llvm::Attribute::NoInline); 1128 1129 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1130 return; 1131 } 1132 1133 // Track whether we need to add the optnone LLVM attribute, 1134 // starting with the default for this optimization level. 1135 bool ShouldAddOptNone = 1136 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1137 // We can't add optnone in the following cases, it won't pass the verifier. 1138 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1139 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1140 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1141 1142 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1143 B.addAttribute(llvm::Attribute::OptimizeNone); 1144 1145 // OptimizeNone implies noinline; we should not be inlining such functions. 1146 B.addAttribute(llvm::Attribute::NoInline); 1147 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1148 "OptimizeNone and AlwaysInline on same function!"); 1149 1150 // We still need to handle naked functions even though optnone subsumes 1151 // much of their semantics. 1152 if (D->hasAttr<NakedAttr>()) 1153 B.addAttribute(llvm::Attribute::Naked); 1154 1155 // OptimizeNone wins over OptimizeForSize and MinSize. 1156 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1157 F->removeFnAttr(llvm::Attribute::MinSize); 1158 } else if (D->hasAttr<NakedAttr>()) { 1159 // Naked implies noinline: we should not be inlining such functions. 1160 B.addAttribute(llvm::Attribute::Naked); 1161 B.addAttribute(llvm::Attribute::NoInline); 1162 } else if (D->hasAttr<NoDuplicateAttr>()) { 1163 B.addAttribute(llvm::Attribute::NoDuplicate); 1164 } else if (D->hasAttr<NoInlineAttr>()) { 1165 B.addAttribute(llvm::Attribute::NoInline); 1166 } else if (D->hasAttr<AlwaysInlineAttr>() && 1167 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1168 // (noinline wins over always_inline, and we can't specify both in IR) 1169 B.addAttribute(llvm::Attribute::AlwaysInline); 1170 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1171 // If we're not inlining, then force everything that isn't always_inline to 1172 // carry an explicit noinline attribute. 1173 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1174 B.addAttribute(llvm::Attribute::NoInline); 1175 } else { 1176 // Otherwise, propagate the inline hint attribute and potentially use its 1177 // absence to mark things as noinline. 1178 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1179 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1180 return Redecl->isInlineSpecified(); 1181 })) { 1182 B.addAttribute(llvm::Attribute::InlineHint); 1183 } else if (CodeGenOpts.getInlining() == 1184 CodeGenOptions::OnlyHintInlining && 1185 !FD->isInlined() && 1186 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1187 B.addAttribute(llvm::Attribute::NoInline); 1188 } 1189 } 1190 } 1191 1192 // Add other optimization related attributes if we are optimizing this 1193 // function. 1194 if (!D->hasAttr<OptimizeNoneAttr>()) { 1195 if (D->hasAttr<ColdAttr>()) { 1196 if (!ShouldAddOptNone) 1197 B.addAttribute(llvm::Attribute::OptimizeForSize); 1198 B.addAttribute(llvm::Attribute::Cold); 1199 } 1200 1201 if (D->hasAttr<MinSizeAttr>()) 1202 B.addAttribute(llvm::Attribute::MinSize); 1203 } 1204 1205 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1206 1207 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1208 if (alignment) 1209 F->setAlignment(alignment); 1210 1211 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1212 // reserve a bit for differentiating between virtual and non-virtual member 1213 // functions. If the current target's C++ ABI requires this and this is a 1214 // member function, set its alignment accordingly. 1215 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1216 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1217 F->setAlignment(2); 1218 } 1219 1220 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1221 if (CodeGenOpts.SanitizeCfiCrossDso) 1222 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1223 CreateFunctionTypeMetadata(FD, F); 1224 } 1225 1226 void CodeGenModule::SetCommonAttributes(const Decl *D, 1227 llvm::GlobalValue *GV) { 1228 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1229 setGVProperties(GV, ND); 1230 else 1231 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1232 1233 if (D && D->hasAttr<UsedAttr>()) 1234 addUsedGlobal(GV); 1235 } 1236 1237 void CodeGenModule::setAliasAttributes(const Decl *D, 1238 llvm::GlobalValue *GV) { 1239 SetCommonAttributes(D, GV); 1240 1241 // Process the dllexport attribute based on whether the original definition 1242 // (not necessarily the aliasee) was exported. 1243 if (D->hasAttr<DLLExportAttr>()) 1244 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1245 } 1246 1247 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1248 llvm::AttrBuilder &Attrs) { 1249 // Add target-cpu and target-features attributes to functions. If 1250 // we have a decl for the function and it has a target attribute then 1251 // parse that and add it to the feature set. 1252 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1253 std::vector<std::string> Features; 1254 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1255 FD = FD ? FD->getMostRecentDecl() : FD; 1256 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1257 bool AddedAttr = false; 1258 if (TD) { 1259 llvm::StringMap<bool> FeatureMap; 1260 getFunctionFeatureMap(FeatureMap, FD); 1261 1262 // Produce the canonical string for this set of features. 1263 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1264 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1265 1266 // Now add the target-cpu and target-features to the function. 1267 // While we populated the feature map above, we still need to 1268 // get and parse the target attribute so we can get the cpu for 1269 // the function. 1270 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1271 if (ParsedAttr.Architecture != "" && 1272 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1273 TargetCPU = ParsedAttr.Architecture; 1274 } else { 1275 // Otherwise just add the existing target cpu and target features to the 1276 // function. 1277 Features = getTarget().getTargetOpts().Features; 1278 } 1279 1280 if (TargetCPU != "") { 1281 Attrs.addAttribute("target-cpu", TargetCPU); 1282 AddedAttr = true; 1283 } 1284 if (!Features.empty()) { 1285 std::sort(Features.begin(), Features.end()); 1286 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1287 AddedAttr = true; 1288 } 1289 1290 return AddedAttr; 1291 } 1292 1293 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1294 llvm::GlobalObject *GO) { 1295 SetCommonAttributes(D, GO); 1296 1297 if (D) { 1298 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1299 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1300 GV->addAttribute("bss-section", SA->getName()); 1301 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1302 GV->addAttribute("data-section", SA->getName()); 1303 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1304 GV->addAttribute("rodata-section", SA->getName()); 1305 } 1306 1307 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1308 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1309 if (!D->getAttr<SectionAttr>()) 1310 F->addFnAttr("implicit-section-name", SA->getName()); 1311 1312 llvm::AttrBuilder Attrs; 1313 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1314 // We know that GetCPUAndFeaturesAttributes will always have the 1315 // newest set, since it has the newest possible FunctionDecl, so the 1316 // new ones should replace the old. 1317 F->removeFnAttr("target-cpu"); 1318 F->removeFnAttr("target-features"); 1319 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1320 } 1321 } 1322 1323 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1324 GO->setSection(SA->getName()); 1325 } 1326 1327 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1328 } 1329 1330 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1331 llvm::Function *F, 1332 const CGFunctionInfo &FI) { 1333 SetLLVMFunctionAttributes(D, FI, F); 1334 SetLLVMFunctionAttributesForDefinition(D, F); 1335 1336 F->setLinkage(llvm::Function::InternalLinkage); 1337 1338 setNonAliasAttributes(D, F); 1339 } 1340 1341 static void setLinkageForGV(llvm::GlobalValue *GV, 1342 const NamedDecl *ND) { 1343 // Set linkage and visibility in case we never see a definition. 1344 LinkageInfo LV = ND->getLinkageAndVisibility(); 1345 if (!isExternallyVisible(LV.getLinkage())) { 1346 // Don't set internal linkage on declarations. 1347 } else { 1348 if (ND->hasAttr<DLLImportAttr>()) { 1349 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1350 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1351 } else if (ND->hasAttr<DLLExportAttr>()) { 1352 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1353 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1354 // "extern_weak" is overloaded in LLVM; we probably should have 1355 // separate linkage types for this. 1356 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1357 } 1358 } 1359 } 1360 1361 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1362 llvm::Function *F) { 1363 // Only if we are checking indirect calls. 1364 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1365 return; 1366 1367 // Non-static class methods are handled via vtable pointer checks elsewhere. 1368 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1369 return; 1370 1371 // Additionally, if building with cross-DSO support... 1372 if (CodeGenOpts.SanitizeCfiCrossDso) { 1373 // Skip available_externally functions. They won't be codegen'ed in the 1374 // current module anyway. 1375 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1376 return; 1377 } 1378 1379 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1380 F->addTypeMetadata(0, MD); 1381 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1382 1383 // Emit a hash-based bit set entry for cross-DSO calls. 1384 if (CodeGenOpts.SanitizeCfiCrossDso) 1385 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1386 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1387 } 1388 1389 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1390 bool IsIncompleteFunction, 1391 bool IsThunk) { 1392 1393 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1394 // If this is an intrinsic function, set the function's attributes 1395 // to the intrinsic's attributes. 1396 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1397 return; 1398 } 1399 1400 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1401 1402 if (!IsIncompleteFunction) { 1403 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1404 // Setup target-specific attributes. 1405 if (F->isDeclaration()) 1406 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1407 } 1408 1409 // Add the Returned attribute for "this", except for iOS 5 and earlier 1410 // where substantial code, including the libstdc++ dylib, was compiled with 1411 // GCC and does not actually return "this". 1412 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1413 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1414 assert(!F->arg_empty() && 1415 F->arg_begin()->getType() 1416 ->canLosslesslyBitCastTo(F->getReturnType()) && 1417 "unexpected this return"); 1418 F->addAttribute(1, llvm::Attribute::Returned); 1419 } 1420 1421 // Only a few attributes are set on declarations; these may later be 1422 // overridden by a definition. 1423 1424 setLinkageForGV(F, FD); 1425 setGVProperties(F, FD); 1426 1427 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1428 F->addFnAttr("implicit-section-name"); 1429 } 1430 1431 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1432 F->setSection(SA->getName()); 1433 1434 if (FD->isReplaceableGlobalAllocationFunction()) { 1435 // A replaceable global allocation function does not act like a builtin by 1436 // default, only if it is invoked by a new-expression or delete-expression. 1437 F->addAttribute(llvm::AttributeList::FunctionIndex, 1438 llvm::Attribute::NoBuiltin); 1439 1440 // A sane operator new returns a non-aliasing pointer. 1441 // FIXME: Also add NonNull attribute to the return value 1442 // for the non-nothrow forms? 1443 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1444 if (getCodeGenOpts().AssumeSaneOperatorNew && 1445 (Kind == OO_New || Kind == OO_Array_New)) 1446 F->addAttribute(llvm::AttributeList::ReturnIndex, 1447 llvm::Attribute::NoAlias); 1448 } 1449 1450 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1451 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1452 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1453 if (MD->isVirtual()) 1454 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1455 1456 // Don't emit entries for function declarations in the cross-DSO mode. This 1457 // is handled with better precision by the receiving DSO. 1458 if (!CodeGenOpts.SanitizeCfiCrossDso) 1459 CreateFunctionTypeMetadata(FD, F); 1460 1461 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1462 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1463 } 1464 1465 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1466 assert(!GV->isDeclaration() && 1467 "Only globals with definition can force usage."); 1468 LLVMUsed.emplace_back(GV); 1469 } 1470 1471 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1472 assert(!GV->isDeclaration() && 1473 "Only globals with definition can force usage."); 1474 LLVMCompilerUsed.emplace_back(GV); 1475 } 1476 1477 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1478 std::vector<llvm::WeakTrackingVH> &List) { 1479 // Don't create llvm.used if there is no need. 1480 if (List.empty()) 1481 return; 1482 1483 // Convert List to what ConstantArray needs. 1484 SmallVector<llvm::Constant*, 8> UsedArray; 1485 UsedArray.resize(List.size()); 1486 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1487 UsedArray[i] = 1488 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1489 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1490 } 1491 1492 if (UsedArray.empty()) 1493 return; 1494 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1495 1496 auto *GV = new llvm::GlobalVariable( 1497 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1498 llvm::ConstantArray::get(ATy, UsedArray), Name); 1499 1500 GV->setSection("llvm.metadata"); 1501 } 1502 1503 void CodeGenModule::emitLLVMUsed() { 1504 emitUsed(*this, "llvm.used", LLVMUsed); 1505 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1506 } 1507 1508 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1509 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1510 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1511 } 1512 1513 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1514 llvm::SmallString<32> Opt; 1515 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1516 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1517 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1518 } 1519 1520 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1521 auto &C = getLLVMContext(); 1522 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1523 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1524 } 1525 1526 void CodeGenModule::AddDependentLib(StringRef Lib) { 1527 llvm::SmallString<24> Opt; 1528 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1531 } 1532 1533 /// \brief Add link options implied by the given module, including modules 1534 /// it depends on, using a postorder walk. 1535 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1536 SmallVectorImpl<llvm::MDNode *> &Metadata, 1537 llvm::SmallPtrSet<Module *, 16> &Visited) { 1538 // Import this module's parent. 1539 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1540 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1541 } 1542 1543 // Import this module's dependencies. 1544 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1545 if (Visited.insert(Mod->Imports[I - 1]).second) 1546 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1547 } 1548 1549 // Add linker options to link against the libraries/frameworks 1550 // described by this module. 1551 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1552 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1553 // Link against a framework. Frameworks are currently Darwin only, so we 1554 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1555 if (Mod->LinkLibraries[I-1].IsFramework) { 1556 llvm::Metadata *Args[2] = { 1557 llvm::MDString::get(Context, "-framework"), 1558 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1559 1560 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1561 continue; 1562 } 1563 1564 // Link against a library. 1565 llvm::SmallString<24> Opt; 1566 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1567 Mod->LinkLibraries[I-1].Library, Opt); 1568 auto *OptString = llvm::MDString::get(Context, Opt); 1569 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1570 } 1571 } 1572 1573 void CodeGenModule::EmitModuleLinkOptions() { 1574 // Collect the set of all of the modules we want to visit to emit link 1575 // options, which is essentially the imported modules and all of their 1576 // non-explicit child modules. 1577 llvm::SetVector<clang::Module *> LinkModules; 1578 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1579 SmallVector<clang::Module *, 16> Stack; 1580 1581 // Seed the stack with imported modules. 1582 for (Module *M : ImportedModules) { 1583 // Do not add any link flags when an implementation TU of a module imports 1584 // a header of that same module. 1585 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1586 !getLangOpts().isCompilingModule()) 1587 continue; 1588 if (Visited.insert(M).second) 1589 Stack.push_back(M); 1590 } 1591 1592 // Find all of the modules to import, making a little effort to prune 1593 // non-leaf modules. 1594 while (!Stack.empty()) { 1595 clang::Module *Mod = Stack.pop_back_val(); 1596 1597 bool AnyChildren = false; 1598 1599 // Visit the submodules of this module. 1600 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1601 SubEnd = Mod->submodule_end(); 1602 Sub != SubEnd; ++Sub) { 1603 // Skip explicit children; they need to be explicitly imported to be 1604 // linked against. 1605 if ((*Sub)->IsExplicit) 1606 continue; 1607 1608 if (Visited.insert(*Sub).second) { 1609 Stack.push_back(*Sub); 1610 AnyChildren = true; 1611 } 1612 } 1613 1614 // We didn't find any children, so add this module to the list of 1615 // modules to link against. 1616 if (!AnyChildren) { 1617 LinkModules.insert(Mod); 1618 } 1619 } 1620 1621 // Add link options for all of the imported modules in reverse topological 1622 // order. We don't do anything to try to order import link flags with respect 1623 // to linker options inserted by things like #pragma comment(). 1624 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1625 Visited.clear(); 1626 for (Module *M : LinkModules) 1627 if (Visited.insert(M).second) 1628 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1629 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1630 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1631 1632 // Add the linker options metadata flag. 1633 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1634 for (auto *MD : LinkerOptionsMetadata) 1635 NMD->addOperand(MD); 1636 } 1637 1638 void CodeGenModule::EmitDeferred() { 1639 // Emit code for any potentially referenced deferred decls. Since a 1640 // previously unused static decl may become used during the generation of code 1641 // for a static function, iterate until no changes are made. 1642 1643 if (!DeferredVTables.empty()) { 1644 EmitDeferredVTables(); 1645 1646 // Emitting a vtable doesn't directly cause more vtables to 1647 // become deferred, although it can cause functions to be 1648 // emitted that then need those vtables. 1649 assert(DeferredVTables.empty()); 1650 } 1651 1652 // Stop if we're out of both deferred vtables and deferred declarations. 1653 if (DeferredDeclsToEmit.empty()) 1654 return; 1655 1656 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1657 // work, it will not interfere with this. 1658 std::vector<GlobalDecl> CurDeclsToEmit; 1659 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1660 1661 for (GlobalDecl &D : CurDeclsToEmit) { 1662 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1663 // to get GlobalValue with exactly the type we need, not something that 1664 // might had been created for another decl with the same mangled name but 1665 // different type. 1666 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1667 GetAddrOfGlobal(D, ForDefinition)); 1668 1669 // In case of different address spaces, we may still get a cast, even with 1670 // IsForDefinition equal to true. Query mangled names table to get 1671 // GlobalValue. 1672 if (!GV) 1673 GV = GetGlobalValue(getMangledName(D)); 1674 1675 // Make sure GetGlobalValue returned non-null. 1676 assert(GV); 1677 1678 // Check to see if we've already emitted this. This is necessary 1679 // for a couple of reasons: first, decls can end up in the 1680 // deferred-decls queue multiple times, and second, decls can end 1681 // up with definitions in unusual ways (e.g. by an extern inline 1682 // function acquiring a strong function redefinition). Just 1683 // ignore these cases. 1684 if (!GV->isDeclaration()) 1685 continue; 1686 1687 // Otherwise, emit the definition and move on to the next one. 1688 EmitGlobalDefinition(D, GV); 1689 1690 // If we found out that we need to emit more decls, do that recursively. 1691 // This has the advantage that the decls are emitted in a DFS and related 1692 // ones are close together, which is convenient for testing. 1693 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1694 EmitDeferred(); 1695 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1696 } 1697 } 1698 } 1699 1700 void CodeGenModule::EmitVTablesOpportunistically() { 1701 // Try to emit external vtables as available_externally if they have emitted 1702 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1703 // is not allowed to create new references to things that need to be emitted 1704 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1705 1706 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1707 && "Only emit opportunistic vtables with optimizations"); 1708 1709 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1710 assert(getVTables().isVTableExternal(RD) && 1711 "This queue should only contain external vtables"); 1712 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1713 VTables.GenerateClassData(RD); 1714 } 1715 OpportunisticVTables.clear(); 1716 } 1717 1718 void CodeGenModule::EmitGlobalAnnotations() { 1719 if (Annotations.empty()) 1720 return; 1721 1722 // Create a new global variable for the ConstantStruct in the Module. 1723 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1724 Annotations[0]->getType(), Annotations.size()), Annotations); 1725 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1726 llvm::GlobalValue::AppendingLinkage, 1727 Array, "llvm.global.annotations"); 1728 gv->setSection(AnnotationSection); 1729 } 1730 1731 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1732 llvm::Constant *&AStr = AnnotationStrings[Str]; 1733 if (AStr) 1734 return AStr; 1735 1736 // Not found yet, create a new global. 1737 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1738 auto *gv = 1739 new llvm::GlobalVariable(getModule(), s->getType(), true, 1740 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1741 gv->setSection(AnnotationSection); 1742 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1743 AStr = gv; 1744 return gv; 1745 } 1746 1747 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1748 SourceManager &SM = getContext().getSourceManager(); 1749 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1750 if (PLoc.isValid()) 1751 return EmitAnnotationString(PLoc.getFilename()); 1752 return EmitAnnotationString(SM.getBufferName(Loc)); 1753 } 1754 1755 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1756 SourceManager &SM = getContext().getSourceManager(); 1757 PresumedLoc PLoc = SM.getPresumedLoc(L); 1758 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1759 SM.getExpansionLineNumber(L); 1760 return llvm::ConstantInt::get(Int32Ty, LineNo); 1761 } 1762 1763 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1764 const AnnotateAttr *AA, 1765 SourceLocation L) { 1766 // Get the globals for file name, annotation, and the line number. 1767 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1768 *UnitGV = EmitAnnotationUnit(L), 1769 *LineNoCst = EmitAnnotationLineNo(L); 1770 1771 // Create the ConstantStruct for the global annotation. 1772 llvm::Constant *Fields[4] = { 1773 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1774 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1775 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1776 LineNoCst 1777 }; 1778 return llvm::ConstantStruct::getAnon(Fields); 1779 } 1780 1781 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1782 llvm::GlobalValue *GV) { 1783 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1784 // Get the struct elements for these annotations. 1785 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1786 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1787 } 1788 1789 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1790 llvm::Function *Fn, 1791 SourceLocation Loc) const { 1792 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1793 // Blacklist by function name. 1794 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1795 return true; 1796 // Blacklist by location. 1797 if (Loc.isValid()) 1798 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1799 // If location is unknown, this may be a compiler-generated function. Assume 1800 // it's located in the main file. 1801 auto &SM = Context.getSourceManager(); 1802 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1803 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1804 } 1805 return false; 1806 } 1807 1808 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1809 SourceLocation Loc, QualType Ty, 1810 StringRef Category) const { 1811 // For now globals can be blacklisted only in ASan and KASan. 1812 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1813 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1814 if (!EnabledAsanMask) 1815 return false; 1816 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1817 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1818 return true; 1819 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1820 return true; 1821 // Check global type. 1822 if (!Ty.isNull()) { 1823 // Drill down the array types: if global variable of a fixed type is 1824 // blacklisted, we also don't instrument arrays of them. 1825 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1826 Ty = AT->getElementType(); 1827 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1828 // We allow to blacklist only record types (classes, structs etc.) 1829 if (Ty->isRecordType()) { 1830 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1831 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1832 return true; 1833 } 1834 } 1835 return false; 1836 } 1837 1838 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1839 StringRef Category) const { 1840 if (!LangOpts.XRayInstrument) 1841 return false; 1842 const auto &XRayFilter = getContext().getXRayFilter(); 1843 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1844 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1845 if (Loc.isValid()) 1846 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1847 if (Attr == ImbueAttr::NONE) 1848 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1849 switch (Attr) { 1850 case ImbueAttr::NONE: 1851 return false; 1852 case ImbueAttr::ALWAYS: 1853 Fn->addFnAttr("function-instrument", "xray-always"); 1854 break; 1855 case ImbueAttr::ALWAYS_ARG1: 1856 Fn->addFnAttr("function-instrument", "xray-always"); 1857 Fn->addFnAttr("xray-log-args", "1"); 1858 break; 1859 case ImbueAttr::NEVER: 1860 Fn->addFnAttr("function-instrument", "xray-never"); 1861 break; 1862 } 1863 return true; 1864 } 1865 1866 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1867 // Never defer when EmitAllDecls is specified. 1868 if (LangOpts.EmitAllDecls) 1869 return true; 1870 1871 return getContext().DeclMustBeEmitted(Global); 1872 } 1873 1874 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1875 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1876 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1877 // Implicit template instantiations may change linkage if they are later 1878 // explicitly instantiated, so they should not be emitted eagerly. 1879 return false; 1880 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1881 if (Context.getInlineVariableDefinitionKind(VD) == 1882 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1883 // A definition of an inline constexpr static data member may change 1884 // linkage later if it's redeclared outside the class. 1885 return false; 1886 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1887 // codegen for global variables, because they may be marked as threadprivate. 1888 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1889 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1890 return false; 1891 1892 return true; 1893 } 1894 1895 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1896 const CXXUuidofExpr* E) { 1897 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1898 // well-formed. 1899 StringRef Uuid = E->getUuidStr(); 1900 std::string Name = "_GUID_" + Uuid.lower(); 1901 std::replace(Name.begin(), Name.end(), '-', '_'); 1902 1903 // The UUID descriptor should be pointer aligned. 1904 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1905 1906 // Look for an existing global. 1907 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1908 return ConstantAddress(GV, Alignment); 1909 1910 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1911 assert(Init && "failed to initialize as constant"); 1912 1913 auto *GV = new llvm::GlobalVariable( 1914 getModule(), Init->getType(), 1915 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1916 if (supportsCOMDAT()) 1917 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1918 return ConstantAddress(GV, Alignment); 1919 } 1920 1921 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1922 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1923 assert(AA && "No alias?"); 1924 1925 CharUnits Alignment = getContext().getDeclAlign(VD); 1926 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1927 1928 // See if there is already something with the target's name in the module. 1929 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1930 if (Entry) { 1931 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1932 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1933 return ConstantAddress(Ptr, Alignment); 1934 } 1935 1936 llvm::Constant *Aliasee; 1937 if (isa<llvm::FunctionType>(DeclTy)) 1938 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1939 GlobalDecl(cast<FunctionDecl>(VD)), 1940 /*ForVTable=*/false); 1941 else 1942 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1943 llvm::PointerType::getUnqual(DeclTy), 1944 nullptr); 1945 1946 auto *F = cast<llvm::GlobalValue>(Aliasee); 1947 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1948 WeakRefReferences.insert(F); 1949 1950 return ConstantAddress(Aliasee, Alignment); 1951 } 1952 1953 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1954 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1955 1956 // Weak references don't produce any output by themselves. 1957 if (Global->hasAttr<WeakRefAttr>()) 1958 return; 1959 1960 // If this is an alias definition (which otherwise looks like a declaration) 1961 // emit it now. 1962 if (Global->hasAttr<AliasAttr>()) 1963 return EmitAliasDefinition(GD); 1964 1965 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1966 if (Global->hasAttr<IFuncAttr>()) 1967 return emitIFuncDefinition(GD); 1968 1969 // If this is CUDA, be selective about which declarations we emit. 1970 if (LangOpts.CUDA) { 1971 if (LangOpts.CUDAIsDevice) { 1972 if (!Global->hasAttr<CUDADeviceAttr>() && 1973 !Global->hasAttr<CUDAGlobalAttr>() && 1974 !Global->hasAttr<CUDAConstantAttr>() && 1975 !Global->hasAttr<CUDASharedAttr>()) 1976 return; 1977 } else { 1978 // We need to emit host-side 'shadows' for all global 1979 // device-side variables because the CUDA runtime needs their 1980 // size and host-side address in order to provide access to 1981 // their device-side incarnations. 1982 1983 // So device-only functions are the only things we skip. 1984 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1985 Global->hasAttr<CUDADeviceAttr>()) 1986 return; 1987 1988 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1989 "Expected Variable or Function"); 1990 } 1991 } 1992 1993 if (LangOpts.OpenMP) { 1994 // If this is OpenMP device, check if it is legal to emit this global 1995 // normally. 1996 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1997 return; 1998 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1999 if (MustBeEmitted(Global)) 2000 EmitOMPDeclareReduction(DRD); 2001 return; 2002 } 2003 } 2004 2005 // Ignore declarations, they will be emitted on their first use. 2006 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2007 // Forward declarations are emitted lazily on first use. 2008 if (!FD->doesThisDeclarationHaveABody()) { 2009 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2010 return; 2011 2012 StringRef MangledName = getMangledName(GD); 2013 2014 // Compute the function info and LLVM type. 2015 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2016 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2017 2018 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2019 /*DontDefer=*/false); 2020 return; 2021 } 2022 } else { 2023 const auto *VD = cast<VarDecl>(Global); 2024 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2025 // We need to emit device-side global CUDA variables even if a 2026 // variable does not have a definition -- we still need to define 2027 // host-side shadow for it. 2028 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2029 !VD->hasDefinition() && 2030 (VD->hasAttr<CUDAConstantAttr>() || 2031 VD->hasAttr<CUDADeviceAttr>()); 2032 if (!MustEmitForCuda && 2033 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2034 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2035 // If this declaration may have caused an inline variable definition to 2036 // change linkage, make sure that it's emitted. 2037 if (Context.getInlineVariableDefinitionKind(VD) == 2038 ASTContext::InlineVariableDefinitionKind::Strong) 2039 GetAddrOfGlobalVar(VD); 2040 return; 2041 } 2042 } 2043 2044 // Defer code generation to first use when possible, e.g. if this is an inline 2045 // function. If the global must always be emitted, do it eagerly if possible 2046 // to benefit from cache locality. 2047 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2048 // Emit the definition if it can't be deferred. 2049 EmitGlobalDefinition(GD); 2050 return; 2051 } 2052 2053 // If we're deferring emission of a C++ variable with an 2054 // initializer, remember the order in which it appeared in the file. 2055 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2056 cast<VarDecl>(Global)->hasInit()) { 2057 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2058 CXXGlobalInits.push_back(nullptr); 2059 } 2060 2061 StringRef MangledName = getMangledName(GD); 2062 if (GetGlobalValue(MangledName) != nullptr) { 2063 // The value has already been used and should therefore be emitted. 2064 addDeferredDeclToEmit(GD); 2065 } else if (MustBeEmitted(Global)) { 2066 // The value must be emitted, but cannot be emitted eagerly. 2067 assert(!MayBeEmittedEagerly(Global)); 2068 addDeferredDeclToEmit(GD); 2069 } else { 2070 // Otherwise, remember that we saw a deferred decl with this name. The 2071 // first use of the mangled name will cause it to move into 2072 // DeferredDeclsToEmit. 2073 DeferredDecls[MangledName] = GD; 2074 } 2075 } 2076 2077 // Check if T is a class type with a destructor that's not dllimport. 2078 static bool HasNonDllImportDtor(QualType T) { 2079 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2080 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2081 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2082 return true; 2083 2084 return false; 2085 } 2086 2087 namespace { 2088 struct FunctionIsDirectlyRecursive : 2089 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2090 const StringRef Name; 2091 const Builtin::Context &BI; 2092 bool Result; 2093 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2094 Name(N), BI(C), Result(false) { 2095 } 2096 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2097 2098 bool TraverseCallExpr(CallExpr *E) { 2099 const FunctionDecl *FD = E->getDirectCallee(); 2100 if (!FD) 2101 return true; 2102 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2103 if (Attr && Name == Attr->getLabel()) { 2104 Result = true; 2105 return false; 2106 } 2107 unsigned BuiltinID = FD->getBuiltinID(); 2108 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2109 return true; 2110 StringRef BuiltinName = BI.getName(BuiltinID); 2111 if (BuiltinName.startswith("__builtin_") && 2112 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2113 Result = true; 2114 return false; 2115 } 2116 return true; 2117 } 2118 }; 2119 2120 // Make sure we're not referencing non-imported vars or functions. 2121 struct DLLImportFunctionVisitor 2122 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2123 bool SafeToInline = true; 2124 2125 bool shouldVisitImplicitCode() const { return true; } 2126 2127 bool VisitVarDecl(VarDecl *VD) { 2128 if (VD->getTLSKind()) { 2129 // A thread-local variable cannot be imported. 2130 SafeToInline = false; 2131 return SafeToInline; 2132 } 2133 2134 // A variable definition might imply a destructor call. 2135 if (VD->isThisDeclarationADefinition()) 2136 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2137 2138 return SafeToInline; 2139 } 2140 2141 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2142 if (const auto *D = E->getTemporary()->getDestructor()) 2143 SafeToInline = D->hasAttr<DLLImportAttr>(); 2144 return SafeToInline; 2145 } 2146 2147 bool VisitDeclRefExpr(DeclRefExpr *E) { 2148 ValueDecl *VD = E->getDecl(); 2149 if (isa<FunctionDecl>(VD)) 2150 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2151 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2152 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2153 return SafeToInline; 2154 } 2155 2156 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2157 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2158 return SafeToInline; 2159 } 2160 2161 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2162 CXXMethodDecl *M = E->getMethodDecl(); 2163 if (!M) { 2164 // Call through a pointer to member function. This is safe to inline. 2165 SafeToInline = true; 2166 } else { 2167 SafeToInline = M->hasAttr<DLLImportAttr>(); 2168 } 2169 return SafeToInline; 2170 } 2171 2172 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2173 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2174 return SafeToInline; 2175 } 2176 2177 bool VisitCXXNewExpr(CXXNewExpr *E) { 2178 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2179 return SafeToInline; 2180 } 2181 }; 2182 } 2183 2184 // isTriviallyRecursive - Check if this function calls another 2185 // decl that, because of the asm attribute or the other decl being a builtin, 2186 // ends up pointing to itself. 2187 bool 2188 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2189 StringRef Name; 2190 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2191 // asm labels are a special kind of mangling we have to support. 2192 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2193 if (!Attr) 2194 return false; 2195 Name = Attr->getLabel(); 2196 } else { 2197 Name = FD->getName(); 2198 } 2199 2200 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2201 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2202 return Walker.Result; 2203 } 2204 2205 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2206 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2207 return true; 2208 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2209 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2210 return false; 2211 2212 if (F->hasAttr<DLLImportAttr>()) { 2213 // Check whether it would be safe to inline this dllimport function. 2214 DLLImportFunctionVisitor Visitor; 2215 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2216 if (!Visitor.SafeToInline) 2217 return false; 2218 2219 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2220 // Implicit destructor invocations aren't captured in the AST, so the 2221 // check above can't see them. Check for them manually here. 2222 for (const Decl *Member : Dtor->getParent()->decls()) 2223 if (isa<FieldDecl>(Member)) 2224 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2225 return false; 2226 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2227 if (HasNonDllImportDtor(B.getType())) 2228 return false; 2229 } 2230 } 2231 2232 // PR9614. Avoid cases where the source code is lying to us. An available 2233 // externally function should have an equivalent function somewhere else, 2234 // but a function that calls itself is clearly not equivalent to the real 2235 // implementation. 2236 // This happens in glibc's btowc and in some configure checks. 2237 return !isTriviallyRecursive(F); 2238 } 2239 2240 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2241 return CodeGenOpts.OptimizationLevel > 0; 2242 } 2243 2244 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2245 const auto *D = cast<ValueDecl>(GD.getDecl()); 2246 2247 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2248 Context.getSourceManager(), 2249 "Generating code for declaration"); 2250 2251 if (isa<FunctionDecl>(D)) { 2252 // At -O0, don't generate IR for functions with available_externally 2253 // linkage. 2254 if (!shouldEmitFunction(GD)) 2255 return; 2256 2257 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2258 // Make sure to emit the definition(s) before we emit the thunks. 2259 // This is necessary for the generation of certain thunks. 2260 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2261 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2262 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2263 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2264 else 2265 EmitGlobalFunctionDefinition(GD, GV); 2266 2267 if (Method->isVirtual()) 2268 getVTables().EmitThunks(GD); 2269 2270 return; 2271 } 2272 2273 return EmitGlobalFunctionDefinition(GD, GV); 2274 } 2275 2276 if (const auto *VD = dyn_cast<VarDecl>(D)) 2277 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2278 2279 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2280 } 2281 2282 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2283 llvm::Function *NewFn); 2284 2285 void CodeGenModule::emitMultiVersionFunctions() { 2286 for (GlobalDecl GD : MultiVersionFuncs) { 2287 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2288 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2289 getContext().forEachMultiversionedFunctionVersion( 2290 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2291 GlobalDecl CurGD{ 2292 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2293 StringRef MangledName = getMangledName(CurGD); 2294 llvm::Constant *Func = GetGlobalValue(MangledName); 2295 if (!Func) { 2296 if (CurFD->isDefined()) { 2297 EmitGlobalFunctionDefinition(CurGD, nullptr); 2298 Func = GetGlobalValue(MangledName); 2299 } else { 2300 const CGFunctionInfo &FI = 2301 getTypes().arrangeGlobalDeclaration(GD); 2302 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2303 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2304 /*DontDefer=*/false, ForDefinition); 2305 } 2306 assert(Func && "This should have just been created"); 2307 } 2308 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2309 CurFD->getAttr<TargetAttr>()->parse()); 2310 }); 2311 2312 llvm::Function *ResolverFunc = cast<llvm::Function>( 2313 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2314 if (supportsCOMDAT()) 2315 ResolverFunc->setComdat( 2316 getModule().getOrInsertComdat(ResolverFunc->getName())); 2317 std::stable_sort( 2318 Options.begin(), Options.end(), 2319 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2320 CodeGenFunction CGF(*this); 2321 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2322 } 2323 } 2324 2325 /// If an ifunc for the specified mangled name is not in the module, create and 2326 /// return an llvm IFunc Function with the specified type. 2327 llvm::Constant * 2328 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2329 StringRef MangledName, 2330 const FunctionDecl *FD) { 2331 std::string IFuncName = (MangledName + ".ifunc").str(); 2332 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2333 return IFuncGV; 2334 2335 // Since this is the first time we've created this IFunc, make sure 2336 // that we put this multiversioned function into the list to be 2337 // replaced later. 2338 MultiVersionFuncs.push_back(GD); 2339 2340 std::string ResolverName = (MangledName + ".resolver").str(); 2341 llvm::Type *ResolverType = llvm::FunctionType::get( 2342 llvm::PointerType::get(DeclTy, 2343 Context.getTargetAddressSpace(FD->getType())), 2344 false); 2345 llvm::Constant *Resolver = 2346 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2347 /*ForVTable=*/false); 2348 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2349 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2350 GIF->setName(IFuncName); 2351 SetCommonAttributes(FD, GIF); 2352 2353 return GIF; 2354 } 2355 2356 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2357 /// module, create and return an llvm Function with the specified type. If there 2358 /// is something in the module with the specified name, return it potentially 2359 /// bitcasted to the right type. 2360 /// 2361 /// If D is non-null, it specifies a decl that correspond to this. This is used 2362 /// to set the attributes on the function when it is first created. 2363 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2364 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2365 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2366 ForDefinition_t IsForDefinition) { 2367 const Decl *D = GD.getDecl(); 2368 2369 // Any attempts to use a MultiVersion function should result in retrieving 2370 // the iFunc instead. Name Mangling will handle the rest of the changes. 2371 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2372 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2373 UpdateMultiVersionNames(GD, FD); 2374 if (!IsForDefinition) 2375 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2376 } 2377 } 2378 2379 // Lookup the entry, lazily creating it if necessary. 2380 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2381 if (Entry) { 2382 if (WeakRefReferences.erase(Entry)) { 2383 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2384 if (FD && !FD->hasAttr<WeakAttr>()) 2385 Entry->setLinkage(llvm::Function::ExternalLinkage); 2386 } 2387 2388 // Handle dropped DLL attributes. 2389 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2390 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2391 2392 // If there are two attempts to define the same mangled name, issue an 2393 // error. 2394 if (IsForDefinition && !Entry->isDeclaration()) { 2395 GlobalDecl OtherGD; 2396 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2397 // to make sure that we issue an error only once. 2398 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2399 (GD.getCanonicalDecl().getDecl() != 2400 OtherGD.getCanonicalDecl().getDecl()) && 2401 DiagnosedConflictingDefinitions.insert(GD).second) { 2402 getDiags().Report(D->getLocation(), 2403 diag::err_duplicate_mangled_name); 2404 getDiags().Report(OtherGD.getDecl()->getLocation(), 2405 diag::note_previous_definition); 2406 } 2407 } 2408 2409 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2410 (Entry->getType()->getElementType() == Ty)) { 2411 return Entry; 2412 } 2413 2414 // Make sure the result is of the correct type. 2415 // (If function is requested for a definition, we always need to create a new 2416 // function, not just return a bitcast.) 2417 if (!IsForDefinition) 2418 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2419 } 2420 2421 // This function doesn't have a complete type (for example, the return 2422 // type is an incomplete struct). Use a fake type instead, and make 2423 // sure not to try to set attributes. 2424 bool IsIncompleteFunction = false; 2425 2426 llvm::FunctionType *FTy; 2427 if (isa<llvm::FunctionType>(Ty)) { 2428 FTy = cast<llvm::FunctionType>(Ty); 2429 } else { 2430 FTy = llvm::FunctionType::get(VoidTy, false); 2431 IsIncompleteFunction = true; 2432 } 2433 2434 llvm::Function *F = 2435 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2436 Entry ? StringRef() : MangledName, &getModule()); 2437 2438 // If we already created a function with the same mangled name (but different 2439 // type) before, take its name and add it to the list of functions to be 2440 // replaced with F at the end of CodeGen. 2441 // 2442 // This happens if there is a prototype for a function (e.g. "int f()") and 2443 // then a definition of a different type (e.g. "int f(int x)"). 2444 if (Entry) { 2445 F->takeName(Entry); 2446 2447 // This might be an implementation of a function without a prototype, in 2448 // which case, try to do special replacement of calls which match the new 2449 // prototype. The really key thing here is that we also potentially drop 2450 // arguments from the call site so as to make a direct call, which makes the 2451 // inliner happier and suppresses a number of optimizer warnings (!) about 2452 // dropping arguments. 2453 if (!Entry->use_empty()) { 2454 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2455 Entry->removeDeadConstantUsers(); 2456 } 2457 2458 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2459 F, Entry->getType()->getElementType()->getPointerTo()); 2460 addGlobalValReplacement(Entry, BC); 2461 } 2462 2463 assert(F->getName() == MangledName && "name was uniqued!"); 2464 if (D) 2465 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2466 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2467 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2468 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2469 } 2470 2471 if (!DontDefer) { 2472 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2473 // each other bottoming out with the base dtor. Therefore we emit non-base 2474 // dtors on usage, even if there is no dtor definition in the TU. 2475 if (D && isa<CXXDestructorDecl>(D) && 2476 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2477 GD.getDtorType())) 2478 addDeferredDeclToEmit(GD); 2479 2480 // This is the first use or definition of a mangled name. If there is a 2481 // deferred decl with this name, remember that we need to emit it at the end 2482 // of the file. 2483 auto DDI = DeferredDecls.find(MangledName); 2484 if (DDI != DeferredDecls.end()) { 2485 // Move the potentially referenced deferred decl to the 2486 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2487 // don't need it anymore). 2488 addDeferredDeclToEmit(DDI->second); 2489 DeferredDecls.erase(DDI); 2490 2491 // Otherwise, there are cases we have to worry about where we're 2492 // using a declaration for which we must emit a definition but where 2493 // we might not find a top-level definition: 2494 // - member functions defined inline in their classes 2495 // - friend functions defined inline in some class 2496 // - special member functions with implicit definitions 2497 // If we ever change our AST traversal to walk into class methods, 2498 // this will be unnecessary. 2499 // 2500 // We also don't emit a definition for a function if it's going to be an 2501 // entry in a vtable, unless it's already marked as used. 2502 } else if (getLangOpts().CPlusPlus && D) { 2503 // Look for a declaration that's lexically in a record. 2504 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2505 FD = FD->getPreviousDecl()) { 2506 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2507 if (FD->doesThisDeclarationHaveABody()) { 2508 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2509 break; 2510 } 2511 } 2512 } 2513 } 2514 } 2515 2516 // Make sure the result is of the requested type. 2517 if (!IsIncompleteFunction) { 2518 assert(F->getType()->getElementType() == Ty); 2519 return F; 2520 } 2521 2522 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2523 return llvm::ConstantExpr::getBitCast(F, PTy); 2524 } 2525 2526 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2527 /// non-null, then this function will use the specified type if it has to 2528 /// create it (this occurs when we see a definition of the function). 2529 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2530 llvm::Type *Ty, 2531 bool ForVTable, 2532 bool DontDefer, 2533 ForDefinition_t IsForDefinition) { 2534 // If there was no specific requested type, just convert it now. 2535 if (!Ty) { 2536 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2537 auto CanonTy = Context.getCanonicalType(FD->getType()); 2538 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2539 } 2540 2541 StringRef MangledName = getMangledName(GD); 2542 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2543 /*IsThunk=*/false, llvm::AttributeList(), 2544 IsForDefinition); 2545 } 2546 2547 static const FunctionDecl * 2548 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2549 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2550 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2551 2552 IdentifierInfo &CII = C.Idents.get(Name); 2553 for (const auto &Result : DC->lookup(&CII)) 2554 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2555 return FD; 2556 2557 if (!C.getLangOpts().CPlusPlus) 2558 return nullptr; 2559 2560 // Demangle the premangled name from getTerminateFn() 2561 IdentifierInfo &CXXII = 2562 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2563 ? C.Idents.get("terminate") 2564 : C.Idents.get(Name); 2565 2566 for (const auto &N : {"__cxxabiv1", "std"}) { 2567 IdentifierInfo &NS = C.Idents.get(N); 2568 for (const auto &Result : DC->lookup(&NS)) { 2569 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2570 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2571 for (const auto &Result : LSD->lookup(&NS)) 2572 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2573 break; 2574 2575 if (ND) 2576 for (const auto &Result : ND->lookup(&CXXII)) 2577 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2578 return FD; 2579 } 2580 } 2581 2582 return nullptr; 2583 } 2584 2585 /// CreateRuntimeFunction - Create a new runtime function with the specified 2586 /// type and name. 2587 llvm::Constant * 2588 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2589 llvm::AttributeList ExtraAttrs, 2590 bool Local) { 2591 llvm::Constant *C = 2592 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2593 /*DontDefer=*/false, /*IsThunk=*/false, 2594 ExtraAttrs); 2595 2596 if (auto *F = dyn_cast<llvm::Function>(C)) { 2597 if (F->empty()) { 2598 F->setCallingConv(getRuntimeCC()); 2599 2600 if (!Local && getTriple().isOSBinFormatCOFF() && 2601 !getCodeGenOpts().LTOVisibilityPublicStd && 2602 !getTriple().isWindowsGNUEnvironment()) { 2603 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2604 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2605 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2606 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2607 } 2608 } 2609 } 2610 } 2611 2612 return C; 2613 } 2614 2615 /// CreateBuiltinFunction - Create a new builtin function with the specified 2616 /// type and name. 2617 llvm::Constant * 2618 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2619 llvm::AttributeList ExtraAttrs) { 2620 llvm::Constant *C = 2621 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2622 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2623 if (auto *F = dyn_cast<llvm::Function>(C)) 2624 if (F->empty()) 2625 F->setCallingConv(getBuiltinCC()); 2626 return C; 2627 } 2628 2629 /// isTypeConstant - Determine whether an object of this type can be emitted 2630 /// as a constant. 2631 /// 2632 /// If ExcludeCtor is true, the duration when the object's constructor runs 2633 /// will not be considered. The caller will need to verify that the object is 2634 /// not written to during its construction. 2635 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2636 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2637 return false; 2638 2639 if (Context.getLangOpts().CPlusPlus) { 2640 if (const CXXRecordDecl *Record 2641 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2642 return ExcludeCtor && !Record->hasMutableFields() && 2643 Record->hasTrivialDestructor(); 2644 } 2645 2646 return true; 2647 } 2648 2649 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2650 /// create and return an llvm GlobalVariable with the specified type. If there 2651 /// is something in the module with the specified name, return it potentially 2652 /// bitcasted to the right type. 2653 /// 2654 /// If D is non-null, it specifies a decl that correspond to this. This is used 2655 /// to set the attributes on the global when it is first created. 2656 /// 2657 /// If IsForDefinition is true, it is guranteed that an actual global with 2658 /// type Ty will be returned, not conversion of a variable with the same 2659 /// mangled name but some other type. 2660 llvm::Constant * 2661 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2662 llvm::PointerType *Ty, 2663 const VarDecl *D, 2664 ForDefinition_t IsForDefinition) { 2665 // Lookup the entry, lazily creating it if necessary. 2666 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2667 if (Entry) { 2668 if (WeakRefReferences.erase(Entry)) { 2669 if (D && !D->hasAttr<WeakAttr>()) 2670 Entry->setLinkage(llvm::Function::ExternalLinkage); 2671 } 2672 2673 // Handle dropped DLL attributes. 2674 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2675 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2676 2677 if (Entry->getType() == Ty) 2678 return Entry; 2679 2680 // If there are two attempts to define the same mangled name, issue an 2681 // error. 2682 if (IsForDefinition && !Entry->isDeclaration()) { 2683 GlobalDecl OtherGD; 2684 const VarDecl *OtherD; 2685 2686 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2687 // to make sure that we issue an error only once. 2688 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2689 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2690 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2691 OtherD->hasInit() && 2692 DiagnosedConflictingDefinitions.insert(D).second) { 2693 getDiags().Report(D->getLocation(), 2694 diag::err_duplicate_mangled_name); 2695 getDiags().Report(OtherGD.getDecl()->getLocation(), 2696 diag::note_previous_definition); 2697 } 2698 } 2699 2700 // Make sure the result is of the correct type. 2701 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2702 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2703 2704 // (If global is requested for a definition, we always need to create a new 2705 // global, not just return a bitcast.) 2706 if (!IsForDefinition) 2707 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2708 } 2709 2710 auto AddrSpace = GetGlobalVarAddressSpace(D); 2711 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2712 2713 auto *GV = new llvm::GlobalVariable( 2714 getModule(), Ty->getElementType(), false, 2715 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2716 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2717 2718 // If we already created a global with the same mangled name (but different 2719 // type) before, take its name and remove it from its parent. 2720 if (Entry) { 2721 GV->takeName(Entry); 2722 2723 if (!Entry->use_empty()) { 2724 llvm::Constant *NewPtrForOldDecl = 2725 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2726 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2727 } 2728 2729 Entry->eraseFromParent(); 2730 } 2731 2732 // This is the first use or definition of a mangled name. If there is a 2733 // deferred decl with this name, remember that we need to emit it at the end 2734 // of the file. 2735 auto DDI = DeferredDecls.find(MangledName); 2736 if (DDI != DeferredDecls.end()) { 2737 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2738 // list, and remove it from DeferredDecls (since we don't need it anymore). 2739 addDeferredDeclToEmit(DDI->second); 2740 DeferredDecls.erase(DDI); 2741 } 2742 2743 // Handle things which are present even on external declarations. 2744 if (D) { 2745 // FIXME: This code is overly simple and should be merged with other global 2746 // handling. 2747 GV->setConstant(isTypeConstant(D->getType(), false)); 2748 2749 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2750 2751 setLinkageForGV(GV, D); 2752 setGVProperties(GV, D); 2753 2754 if (D->getTLSKind()) { 2755 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2756 CXXThreadLocals.push_back(D); 2757 setTLSMode(GV, *D); 2758 } 2759 2760 // If required by the ABI, treat declarations of static data members with 2761 // inline initializers as definitions. 2762 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2763 EmitGlobalVarDefinition(D); 2764 } 2765 2766 // Emit section information for extern variables. 2767 if (D->hasExternalStorage()) { 2768 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2769 GV->setSection(SA->getName()); 2770 } 2771 2772 // Handle XCore specific ABI requirements. 2773 if (getTriple().getArch() == llvm::Triple::xcore && 2774 D->getLanguageLinkage() == CLanguageLinkage && 2775 D->getType().isConstant(Context) && 2776 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2777 GV->setSection(".cp.rodata"); 2778 2779 // Check if we a have a const declaration with an initializer, we may be 2780 // able to emit it as available_externally to expose it's value to the 2781 // optimizer. 2782 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2783 D->getType().isConstQualified() && !GV->hasInitializer() && 2784 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2785 const auto *Record = 2786 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2787 bool HasMutableFields = Record && Record->hasMutableFields(); 2788 if (!HasMutableFields) { 2789 const VarDecl *InitDecl; 2790 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2791 if (InitExpr) { 2792 ConstantEmitter emitter(*this); 2793 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2794 if (Init) { 2795 auto *InitType = Init->getType(); 2796 if (GV->getType()->getElementType() != InitType) { 2797 // The type of the initializer does not match the definition. 2798 // This happens when an initializer has a different type from 2799 // the type of the global (because of padding at the end of a 2800 // structure for instance). 2801 GV->setName(StringRef()); 2802 // Make a new global with the correct type, this is now guaranteed 2803 // to work. 2804 auto *NewGV = cast<llvm::GlobalVariable>( 2805 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2806 2807 // Erase the old global, since it is no longer used. 2808 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2809 GV = NewGV; 2810 } else { 2811 GV->setInitializer(Init); 2812 GV->setConstant(true); 2813 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2814 } 2815 emitter.finalize(GV); 2816 } 2817 } 2818 } 2819 } 2820 } 2821 2822 LangAS ExpectedAS = 2823 D ? D->getType().getAddressSpace() 2824 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2825 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2826 Ty->getPointerAddressSpace()); 2827 if (AddrSpace != ExpectedAS) 2828 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2829 ExpectedAS, Ty); 2830 2831 return GV; 2832 } 2833 2834 llvm::Constant * 2835 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2836 ForDefinition_t IsForDefinition) { 2837 const Decl *D = GD.getDecl(); 2838 if (isa<CXXConstructorDecl>(D)) 2839 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2840 getFromCtorType(GD.getCtorType()), 2841 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2842 /*DontDefer=*/false, IsForDefinition); 2843 else if (isa<CXXDestructorDecl>(D)) 2844 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2845 getFromDtorType(GD.getDtorType()), 2846 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2847 /*DontDefer=*/false, IsForDefinition); 2848 else if (isa<CXXMethodDecl>(D)) { 2849 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2850 cast<CXXMethodDecl>(D)); 2851 auto Ty = getTypes().GetFunctionType(*FInfo); 2852 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2853 IsForDefinition); 2854 } else if (isa<FunctionDecl>(D)) { 2855 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2856 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2857 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2858 IsForDefinition); 2859 } else 2860 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2861 IsForDefinition); 2862 } 2863 2864 llvm::GlobalVariable * 2865 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2866 llvm::Type *Ty, 2867 llvm::GlobalValue::LinkageTypes Linkage) { 2868 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2869 llvm::GlobalVariable *OldGV = nullptr; 2870 2871 if (GV) { 2872 // Check if the variable has the right type. 2873 if (GV->getType()->getElementType() == Ty) 2874 return GV; 2875 2876 // Because C++ name mangling, the only way we can end up with an already 2877 // existing global with the same name is if it has been declared extern "C". 2878 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2879 OldGV = GV; 2880 } 2881 2882 // Create a new variable. 2883 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2884 Linkage, nullptr, Name); 2885 2886 if (OldGV) { 2887 // Replace occurrences of the old variable if needed. 2888 GV->takeName(OldGV); 2889 2890 if (!OldGV->use_empty()) { 2891 llvm::Constant *NewPtrForOldDecl = 2892 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2893 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2894 } 2895 2896 OldGV->eraseFromParent(); 2897 } 2898 2899 if (supportsCOMDAT() && GV->isWeakForLinker() && 2900 !GV->hasAvailableExternallyLinkage()) 2901 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2902 2903 return GV; 2904 } 2905 2906 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2907 /// given global variable. If Ty is non-null and if the global doesn't exist, 2908 /// then it will be created with the specified type instead of whatever the 2909 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2910 /// that an actual global with type Ty will be returned, not conversion of a 2911 /// variable with the same mangled name but some other type. 2912 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2913 llvm::Type *Ty, 2914 ForDefinition_t IsForDefinition) { 2915 assert(D->hasGlobalStorage() && "Not a global variable"); 2916 QualType ASTTy = D->getType(); 2917 if (!Ty) 2918 Ty = getTypes().ConvertTypeForMem(ASTTy); 2919 2920 llvm::PointerType *PTy = 2921 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2922 2923 StringRef MangledName = getMangledName(D); 2924 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2925 } 2926 2927 /// CreateRuntimeVariable - Create a new runtime global variable with the 2928 /// specified type and name. 2929 llvm::Constant * 2930 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2931 StringRef Name) { 2932 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2933 } 2934 2935 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2936 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2937 2938 StringRef MangledName = getMangledName(D); 2939 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2940 2941 // We already have a definition, not declaration, with the same mangled name. 2942 // Emitting of declaration is not required (and actually overwrites emitted 2943 // definition). 2944 if (GV && !GV->isDeclaration()) 2945 return; 2946 2947 // If we have not seen a reference to this variable yet, place it into the 2948 // deferred declarations table to be emitted if needed later. 2949 if (!MustBeEmitted(D) && !GV) { 2950 DeferredDecls[MangledName] = D; 2951 return; 2952 } 2953 2954 // The tentative definition is the only definition. 2955 EmitGlobalVarDefinition(D); 2956 } 2957 2958 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2959 return Context.toCharUnitsFromBits( 2960 getDataLayout().getTypeStoreSizeInBits(Ty)); 2961 } 2962 2963 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2964 LangAS AddrSpace = LangAS::Default; 2965 if (LangOpts.OpenCL) { 2966 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2967 assert(AddrSpace == LangAS::opencl_global || 2968 AddrSpace == LangAS::opencl_constant || 2969 AddrSpace == LangAS::opencl_local || 2970 AddrSpace >= LangAS::FirstTargetAddressSpace); 2971 return AddrSpace; 2972 } 2973 2974 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2975 if (D && D->hasAttr<CUDAConstantAttr>()) 2976 return LangAS::cuda_constant; 2977 else if (D && D->hasAttr<CUDASharedAttr>()) 2978 return LangAS::cuda_shared; 2979 else 2980 return LangAS::cuda_device; 2981 } 2982 2983 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2984 } 2985 2986 template<typename SomeDecl> 2987 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2988 llvm::GlobalValue *GV) { 2989 if (!getLangOpts().CPlusPlus) 2990 return; 2991 2992 // Must have 'used' attribute, or else inline assembly can't rely on 2993 // the name existing. 2994 if (!D->template hasAttr<UsedAttr>()) 2995 return; 2996 2997 // Must have internal linkage and an ordinary name. 2998 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2999 return; 3000 3001 // Must be in an extern "C" context. Entities declared directly within 3002 // a record are not extern "C" even if the record is in such a context. 3003 const SomeDecl *First = D->getFirstDecl(); 3004 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3005 return; 3006 3007 // OK, this is an internal linkage entity inside an extern "C" linkage 3008 // specification. Make a note of that so we can give it the "expected" 3009 // mangled name if nothing else is using that name. 3010 std::pair<StaticExternCMap::iterator, bool> R = 3011 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3012 3013 // If we have multiple internal linkage entities with the same name 3014 // in extern "C" regions, none of them gets that name. 3015 if (!R.second) 3016 R.first->second = nullptr; 3017 } 3018 3019 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3020 if (!CGM.supportsCOMDAT()) 3021 return false; 3022 3023 if (D.hasAttr<SelectAnyAttr>()) 3024 return true; 3025 3026 GVALinkage Linkage; 3027 if (auto *VD = dyn_cast<VarDecl>(&D)) 3028 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3029 else 3030 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3031 3032 switch (Linkage) { 3033 case GVA_Internal: 3034 case GVA_AvailableExternally: 3035 case GVA_StrongExternal: 3036 return false; 3037 case GVA_DiscardableODR: 3038 case GVA_StrongODR: 3039 return true; 3040 } 3041 llvm_unreachable("No such linkage"); 3042 } 3043 3044 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3045 llvm::GlobalObject &GO) { 3046 if (!shouldBeInCOMDAT(*this, D)) 3047 return; 3048 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3049 } 3050 3051 /// Pass IsTentative as true if you want to create a tentative definition. 3052 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3053 bool IsTentative) { 3054 // OpenCL global variables of sampler type are translated to function calls, 3055 // therefore no need to be translated. 3056 QualType ASTTy = D->getType(); 3057 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3058 return; 3059 3060 llvm::Constant *Init = nullptr; 3061 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3062 bool NeedsGlobalCtor = false; 3063 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3064 3065 const VarDecl *InitDecl; 3066 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3067 3068 Optional<ConstantEmitter> emitter; 3069 3070 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3071 // as part of their declaration." Sema has already checked for 3072 // error cases, so we just need to set Init to UndefValue. 3073 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3074 D->hasAttr<CUDASharedAttr>()) 3075 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3076 else if (!InitExpr) { 3077 // This is a tentative definition; tentative definitions are 3078 // implicitly initialized with { 0 }. 3079 // 3080 // Note that tentative definitions are only emitted at the end of 3081 // a translation unit, so they should never have incomplete 3082 // type. In addition, EmitTentativeDefinition makes sure that we 3083 // never attempt to emit a tentative definition if a real one 3084 // exists. A use may still exists, however, so we still may need 3085 // to do a RAUW. 3086 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3087 Init = EmitNullConstant(D->getType()); 3088 } else { 3089 initializedGlobalDecl = GlobalDecl(D); 3090 emitter.emplace(*this); 3091 Init = emitter->tryEmitForInitializer(*InitDecl); 3092 3093 if (!Init) { 3094 QualType T = InitExpr->getType(); 3095 if (D->getType()->isReferenceType()) 3096 T = D->getType(); 3097 3098 if (getLangOpts().CPlusPlus) { 3099 Init = EmitNullConstant(T); 3100 NeedsGlobalCtor = true; 3101 } else { 3102 ErrorUnsupported(D, "static initializer"); 3103 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3104 } 3105 } else { 3106 // We don't need an initializer, so remove the entry for the delayed 3107 // initializer position (just in case this entry was delayed) if we 3108 // also don't need to register a destructor. 3109 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3110 DelayedCXXInitPosition.erase(D); 3111 } 3112 } 3113 3114 llvm::Type* InitType = Init->getType(); 3115 llvm::Constant *Entry = 3116 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3117 3118 // Strip off a bitcast if we got one back. 3119 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3120 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3121 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3122 // All zero index gep. 3123 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3124 Entry = CE->getOperand(0); 3125 } 3126 3127 // Entry is now either a Function or GlobalVariable. 3128 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3129 3130 // We have a definition after a declaration with the wrong type. 3131 // We must make a new GlobalVariable* and update everything that used OldGV 3132 // (a declaration or tentative definition) with the new GlobalVariable* 3133 // (which will be a definition). 3134 // 3135 // This happens if there is a prototype for a global (e.g. 3136 // "extern int x[];") and then a definition of a different type (e.g. 3137 // "int x[10];"). This also happens when an initializer has a different type 3138 // from the type of the global (this happens with unions). 3139 if (!GV || GV->getType()->getElementType() != InitType || 3140 GV->getType()->getAddressSpace() != 3141 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3142 3143 // Move the old entry aside so that we'll create a new one. 3144 Entry->setName(StringRef()); 3145 3146 // Make a new global with the correct type, this is now guaranteed to work. 3147 GV = cast<llvm::GlobalVariable>( 3148 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3149 3150 // Replace all uses of the old global with the new global 3151 llvm::Constant *NewPtrForOldDecl = 3152 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3153 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3154 3155 // Erase the old global, since it is no longer used. 3156 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3157 } 3158 3159 MaybeHandleStaticInExternC(D, GV); 3160 3161 if (D->hasAttr<AnnotateAttr>()) 3162 AddGlobalAnnotations(D, GV); 3163 3164 // Set the llvm linkage type as appropriate. 3165 llvm::GlobalValue::LinkageTypes Linkage = 3166 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3167 3168 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3169 // the device. [...]" 3170 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3171 // __device__, declares a variable that: [...] 3172 // Is accessible from all the threads within the grid and from the host 3173 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3174 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3175 if (GV && LangOpts.CUDA) { 3176 if (LangOpts.CUDAIsDevice) { 3177 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3178 GV->setExternallyInitialized(true); 3179 } else { 3180 // Host-side shadows of external declarations of device-side 3181 // global variables become internal definitions. These have to 3182 // be internal in order to prevent name conflicts with global 3183 // host variables with the same name in a different TUs. 3184 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3185 Linkage = llvm::GlobalValue::InternalLinkage; 3186 3187 // Shadow variables and their properties must be registered 3188 // with CUDA runtime. 3189 unsigned Flags = 0; 3190 if (!D->hasDefinition()) 3191 Flags |= CGCUDARuntime::ExternDeviceVar; 3192 if (D->hasAttr<CUDAConstantAttr>()) 3193 Flags |= CGCUDARuntime::ConstantDeviceVar; 3194 getCUDARuntime().registerDeviceVar(*GV, Flags); 3195 } else if (D->hasAttr<CUDASharedAttr>()) 3196 // __shared__ variables are odd. Shadows do get created, but 3197 // they are not registered with the CUDA runtime, so they 3198 // can't really be used to access their device-side 3199 // counterparts. It's not clear yet whether it's nvcc's bug or 3200 // a feature, but we've got to do the same for compatibility. 3201 Linkage = llvm::GlobalValue::InternalLinkage; 3202 } 3203 } 3204 3205 GV->setInitializer(Init); 3206 if (emitter) emitter->finalize(GV); 3207 3208 // If it is safe to mark the global 'constant', do so now. 3209 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3210 isTypeConstant(D->getType(), true)); 3211 3212 // If it is in a read-only section, mark it 'constant'. 3213 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3214 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3215 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3216 GV->setConstant(true); 3217 } 3218 3219 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3220 3221 3222 // On Darwin, if the normal linkage of a C++ thread_local variable is 3223 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3224 // copies within a linkage unit; otherwise, the backing variable has 3225 // internal linkage and all accesses should just be calls to the 3226 // Itanium-specified entry point, which has the normal linkage of the 3227 // variable. This is to preserve the ability to change the implementation 3228 // behind the scenes. 3229 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3230 Context.getTargetInfo().getTriple().isOSDarwin() && 3231 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3232 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3233 Linkage = llvm::GlobalValue::InternalLinkage; 3234 3235 GV->setLinkage(Linkage); 3236 if (D->hasAttr<DLLImportAttr>()) 3237 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3238 else if (D->hasAttr<DLLExportAttr>()) 3239 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3240 else 3241 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3242 3243 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3244 // common vars aren't constant even if declared const. 3245 GV->setConstant(false); 3246 // Tentative definition of global variables may be initialized with 3247 // non-zero null pointers. In this case they should have weak linkage 3248 // since common linkage must have zero initializer and must not have 3249 // explicit section therefore cannot have non-zero initial value. 3250 if (!GV->getInitializer()->isNullValue()) 3251 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3252 } 3253 3254 setNonAliasAttributes(D, GV); 3255 3256 if (D->getTLSKind() && !GV->isThreadLocal()) { 3257 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3258 CXXThreadLocals.push_back(D); 3259 setTLSMode(GV, *D); 3260 } 3261 3262 maybeSetTrivialComdat(*D, *GV); 3263 3264 // Emit the initializer function if necessary. 3265 if (NeedsGlobalCtor || NeedsGlobalDtor) 3266 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3267 3268 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3269 3270 // Emit global variable debug information. 3271 if (CGDebugInfo *DI = getModuleDebugInfo()) 3272 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3273 DI->EmitGlobalVariable(GV, D); 3274 } 3275 3276 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3277 CodeGenModule &CGM, const VarDecl *D, 3278 bool NoCommon) { 3279 // Don't give variables common linkage if -fno-common was specified unless it 3280 // was overridden by a NoCommon attribute. 3281 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3282 return true; 3283 3284 // C11 6.9.2/2: 3285 // A declaration of an identifier for an object that has file scope without 3286 // an initializer, and without a storage-class specifier or with the 3287 // storage-class specifier static, constitutes a tentative definition. 3288 if (D->getInit() || D->hasExternalStorage()) 3289 return true; 3290 3291 // A variable cannot be both common and exist in a section. 3292 if (D->hasAttr<SectionAttr>()) 3293 return true; 3294 3295 // A variable cannot be both common and exist in a section. 3296 // We dont try to determine which is the right section in the front-end. 3297 // If no specialized section name is applicable, it will resort to default. 3298 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3299 D->hasAttr<PragmaClangDataSectionAttr>() || 3300 D->hasAttr<PragmaClangRodataSectionAttr>()) 3301 return true; 3302 3303 // Thread local vars aren't considered common linkage. 3304 if (D->getTLSKind()) 3305 return true; 3306 3307 // Tentative definitions marked with WeakImportAttr are true definitions. 3308 if (D->hasAttr<WeakImportAttr>()) 3309 return true; 3310 3311 // A variable cannot be both common and exist in a comdat. 3312 if (shouldBeInCOMDAT(CGM, *D)) 3313 return true; 3314 3315 // Declarations with a required alignment do not have common linkage in MSVC 3316 // mode. 3317 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3318 if (D->hasAttr<AlignedAttr>()) 3319 return true; 3320 QualType VarType = D->getType(); 3321 if (Context.isAlignmentRequired(VarType)) 3322 return true; 3323 3324 if (const auto *RT = VarType->getAs<RecordType>()) { 3325 const RecordDecl *RD = RT->getDecl(); 3326 for (const FieldDecl *FD : RD->fields()) { 3327 if (FD->isBitField()) 3328 continue; 3329 if (FD->hasAttr<AlignedAttr>()) 3330 return true; 3331 if (Context.isAlignmentRequired(FD->getType())) 3332 return true; 3333 } 3334 } 3335 } 3336 3337 return false; 3338 } 3339 3340 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3341 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3342 if (Linkage == GVA_Internal) 3343 return llvm::Function::InternalLinkage; 3344 3345 if (D->hasAttr<WeakAttr>()) { 3346 if (IsConstantVariable) 3347 return llvm::GlobalVariable::WeakODRLinkage; 3348 else 3349 return llvm::GlobalVariable::WeakAnyLinkage; 3350 } 3351 3352 // We are guaranteed to have a strong definition somewhere else, 3353 // so we can use available_externally linkage. 3354 if (Linkage == GVA_AvailableExternally) 3355 return llvm::GlobalValue::AvailableExternallyLinkage; 3356 3357 // Note that Apple's kernel linker doesn't support symbol 3358 // coalescing, so we need to avoid linkonce and weak linkages there. 3359 // Normally, this means we just map to internal, but for explicit 3360 // instantiations we'll map to external. 3361 3362 // In C++, the compiler has to emit a definition in every translation unit 3363 // that references the function. We should use linkonce_odr because 3364 // a) if all references in this translation unit are optimized away, we 3365 // don't need to codegen it. b) if the function persists, it needs to be 3366 // merged with other definitions. c) C++ has the ODR, so we know the 3367 // definition is dependable. 3368 if (Linkage == GVA_DiscardableODR) 3369 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3370 : llvm::Function::InternalLinkage; 3371 3372 // An explicit instantiation of a template has weak linkage, since 3373 // explicit instantiations can occur in multiple translation units 3374 // and must all be equivalent. However, we are not allowed to 3375 // throw away these explicit instantiations. 3376 // 3377 // We don't currently support CUDA device code spread out across multiple TUs, 3378 // so say that CUDA templates are either external (for kernels) or internal. 3379 // This lets llvm perform aggressive inter-procedural optimizations. 3380 if (Linkage == GVA_StrongODR) { 3381 if (Context.getLangOpts().AppleKext) 3382 return llvm::Function::ExternalLinkage; 3383 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3384 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3385 : llvm::Function::InternalLinkage; 3386 return llvm::Function::WeakODRLinkage; 3387 } 3388 3389 // C++ doesn't have tentative definitions and thus cannot have common 3390 // linkage. 3391 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3392 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3393 CodeGenOpts.NoCommon)) 3394 return llvm::GlobalVariable::CommonLinkage; 3395 3396 // selectany symbols are externally visible, so use weak instead of 3397 // linkonce. MSVC optimizes away references to const selectany globals, so 3398 // all definitions should be the same and ODR linkage should be used. 3399 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3400 if (D->hasAttr<SelectAnyAttr>()) 3401 return llvm::GlobalVariable::WeakODRLinkage; 3402 3403 // Otherwise, we have strong external linkage. 3404 assert(Linkage == GVA_StrongExternal); 3405 return llvm::GlobalVariable::ExternalLinkage; 3406 } 3407 3408 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3409 const VarDecl *VD, bool IsConstant) { 3410 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3411 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3412 } 3413 3414 /// Replace the uses of a function that was declared with a non-proto type. 3415 /// We want to silently drop extra arguments from call sites 3416 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3417 llvm::Function *newFn) { 3418 // Fast path. 3419 if (old->use_empty()) return; 3420 3421 llvm::Type *newRetTy = newFn->getReturnType(); 3422 SmallVector<llvm::Value*, 4> newArgs; 3423 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3424 3425 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3426 ui != ue; ) { 3427 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3428 llvm::User *user = use->getUser(); 3429 3430 // Recognize and replace uses of bitcasts. Most calls to 3431 // unprototyped functions will use bitcasts. 3432 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3433 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3434 replaceUsesOfNonProtoConstant(bitcast, newFn); 3435 continue; 3436 } 3437 3438 // Recognize calls to the function. 3439 llvm::CallSite callSite(user); 3440 if (!callSite) continue; 3441 if (!callSite.isCallee(&*use)) continue; 3442 3443 // If the return types don't match exactly, then we can't 3444 // transform this call unless it's dead. 3445 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3446 continue; 3447 3448 // Get the call site's attribute list. 3449 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3450 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3451 3452 // If the function was passed too few arguments, don't transform. 3453 unsigned newNumArgs = newFn->arg_size(); 3454 if (callSite.arg_size() < newNumArgs) continue; 3455 3456 // If extra arguments were passed, we silently drop them. 3457 // If any of the types mismatch, we don't transform. 3458 unsigned argNo = 0; 3459 bool dontTransform = false; 3460 for (llvm::Argument &A : newFn->args()) { 3461 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3462 dontTransform = true; 3463 break; 3464 } 3465 3466 // Add any parameter attributes. 3467 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3468 argNo++; 3469 } 3470 if (dontTransform) 3471 continue; 3472 3473 // Okay, we can transform this. Create the new call instruction and copy 3474 // over the required information. 3475 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3476 3477 // Copy over any operand bundles. 3478 callSite.getOperandBundlesAsDefs(newBundles); 3479 3480 llvm::CallSite newCall; 3481 if (callSite.isCall()) { 3482 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3483 callSite.getInstruction()); 3484 } else { 3485 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3486 newCall = llvm::InvokeInst::Create(newFn, 3487 oldInvoke->getNormalDest(), 3488 oldInvoke->getUnwindDest(), 3489 newArgs, newBundles, "", 3490 callSite.getInstruction()); 3491 } 3492 newArgs.clear(); // for the next iteration 3493 3494 if (!newCall->getType()->isVoidTy()) 3495 newCall->takeName(callSite.getInstruction()); 3496 newCall.setAttributes(llvm::AttributeList::get( 3497 newFn->getContext(), oldAttrs.getFnAttributes(), 3498 oldAttrs.getRetAttributes(), newArgAttrs)); 3499 newCall.setCallingConv(callSite.getCallingConv()); 3500 3501 // Finally, remove the old call, replacing any uses with the new one. 3502 if (!callSite->use_empty()) 3503 callSite->replaceAllUsesWith(newCall.getInstruction()); 3504 3505 // Copy debug location attached to CI. 3506 if (callSite->getDebugLoc()) 3507 newCall->setDebugLoc(callSite->getDebugLoc()); 3508 3509 callSite->eraseFromParent(); 3510 } 3511 } 3512 3513 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3514 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3515 /// existing call uses of the old function in the module, this adjusts them to 3516 /// call the new function directly. 3517 /// 3518 /// This is not just a cleanup: the always_inline pass requires direct calls to 3519 /// functions to be able to inline them. If there is a bitcast in the way, it 3520 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3521 /// run at -O0. 3522 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3523 llvm::Function *NewFn) { 3524 // If we're redefining a global as a function, don't transform it. 3525 if (!isa<llvm::Function>(Old)) return; 3526 3527 replaceUsesOfNonProtoConstant(Old, NewFn); 3528 } 3529 3530 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3531 auto DK = VD->isThisDeclarationADefinition(); 3532 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3533 return; 3534 3535 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3536 // If we have a definition, this might be a deferred decl. If the 3537 // instantiation is explicit, make sure we emit it at the end. 3538 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3539 GetAddrOfGlobalVar(VD); 3540 3541 EmitTopLevelDecl(VD); 3542 } 3543 3544 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3545 llvm::GlobalValue *GV) { 3546 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3547 3548 // Compute the function info and LLVM type. 3549 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3550 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3551 3552 // Get or create the prototype for the function. 3553 if (!GV || (GV->getType()->getElementType() != Ty)) 3554 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3555 /*DontDefer=*/true, 3556 ForDefinition)); 3557 3558 // Already emitted. 3559 if (!GV->isDeclaration()) 3560 return; 3561 3562 // We need to set linkage and visibility on the function before 3563 // generating code for it because various parts of IR generation 3564 // want to propagate this information down (e.g. to local static 3565 // declarations). 3566 auto *Fn = cast<llvm::Function>(GV); 3567 setFunctionLinkage(GD, Fn); 3568 setFunctionDLLStorageClass(GD, Fn); 3569 3570 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3571 setGVProperties(Fn, D); 3572 3573 MaybeHandleStaticInExternC(D, Fn); 3574 3575 maybeSetTrivialComdat(*D, *Fn); 3576 3577 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3578 3579 setFunctionDefinitionAttributes(D, Fn); 3580 SetLLVMFunctionAttributesForDefinition(D, Fn); 3581 3582 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3583 AddGlobalCtor(Fn, CA->getPriority()); 3584 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3585 AddGlobalDtor(Fn, DA->getPriority()); 3586 if (D->hasAttr<AnnotateAttr>()) 3587 AddGlobalAnnotations(D, Fn); 3588 } 3589 3590 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3591 const auto *D = cast<ValueDecl>(GD.getDecl()); 3592 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3593 assert(AA && "Not an alias?"); 3594 3595 StringRef MangledName = getMangledName(GD); 3596 3597 if (AA->getAliasee() == MangledName) { 3598 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3599 return; 3600 } 3601 3602 // If there is a definition in the module, then it wins over the alias. 3603 // This is dubious, but allow it to be safe. Just ignore the alias. 3604 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3605 if (Entry && !Entry->isDeclaration()) 3606 return; 3607 3608 Aliases.push_back(GD); 3609 3610 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3611 3612 // Create a reference to the named value. This ensures that it is emitted 3613 // if a deferred decl. 3614 llvm::Constant *Aliasee; 3615 if (isa<llvm::FunctionType>(DeclTy)) 3616 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3617 /*ForVTable=*/false); 3618 else 3619 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3620 llvm::PointerType::getUnqual(DeclTy), 3621 /*D=*/nullptr); 3622 3623 // Create the new alias itself, but don't set a name yet. 3624 auto *GA = llvm::GlobalAlias::create( 3625 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3626 3627 if (Entry) { 3628 if (GA->getAliasee() == Entry) { 3629 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3630 return; 3631 } 3632 3633 assert(Entry->isDeclaration()); 3634 3635 // If there is a declaration in the module, then we had an extern followed 3636 // by the alias, as in: 3637 // extern int test6(); 3638 // ... 3639 // int test6() __attribute__((alias("test7"))); 3640 // 3641 // Remove it and replace uses of it with the alias. 3642 GA->takeName(Entry); 3643 3644 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3645 Entry->getType())); 3646 Entry->eraseFromParent(); 3647 } else { 3648 GA->setName(MangledName); 3649 } 3650 3651 // Set attributes which are particular to an alias; this is a 3652 // specialization of the attributes which may be set on a global 3653 // variable/function. 3654 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3655 D->isWeakImported()) { 3656 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3657 } 3658 3659 if (const auto *VD = dyn_cast<VarDecl>(D)) 3660 if (VD->getTLSKind()) 3661 setTLSMode(GA, *VD); 3662 3663 setAliasAttributes(D, GA); 3664 } 3665 3666 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3667 const auto *D = cast<ValueDecl>(GD.getDecl()); 3668 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3669 assert(IFA && "Not an ifunc?"); 3670 3671 StringRef MangledName = getMangledName(GD); 3672 3673 if (IFA->getResolver() == MangledName) { 3674 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3675 return; 3676 } 3677 3678 // Report an error if some definition overrides ifunc. 3679 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3680 if (Entry && !Entry->isDeclaration()) { 3681 GlobalDecl OtherGD; 3682 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3683 DiagnosedConflictingDefinitions.insert(GD).second) { 3684 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3685 Diags.Report(OtherGD.getDecl()->getLocation(), 3686 diag::note_previous_definition); 3687 } 3688 return; 3689 } 3690 3691 Aliases.push_back(GD); 3692 3693 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3694 llvm::Constant *Resolver = 3695 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3696 /*ForVTable=*/false); 3697 llvm::GlobalIFunc *GIF = 3698 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3699 "", Resolver, &getModule()); 3700 if (Entry) { 3701 if (GIF->getResolver() == Entry) { 3702 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3703 return; 3704 } 3705 assert(Entry->isDeclaration()); 3706 3707 // If there is a declaration in the module, then we had an extern followed 3708 // by the ifunc, as in: 3709 // extern int test(); 3710 // ... 3711 // int test() __attribute__((ifunc("resolver"))); 3712 // 3713 // Remove it and replace uses of it with the ifunc. 3714 GIF->takeName(Entry); 3715 3716 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3717 Entry->getType())); 3718 Entry->eraseFromParent(); 3719 } else 3720 GIF->setName(MangledName); 3721 3722 SetCommonAttributes(D, GIF); 3723 } 3724 3725 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3726 ArrayRef<llvm::Type*> Tys) { 3727 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3728 Tys); 3729 } 3730 3731 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3732 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3733 const StringLiteral *Literal, bool TargetIsLSB, 3734 bool &IsUTF16, unsigned &StringLength) { 3735 StringRef String = Literal->getString(); 3736 unsigned NumBytes = String.size(); 3737 3738 // Check for simple case. 3739 if (!Literal->containsNonAsciiOrNull()) { 3740 StringLength = NumBytes; 3741 return *Map.insert(std::make_pair(String, nullptr)).first; 3742 } 3743 3744 // Otherwise, convert the UTF8 literals into a string of shorts. 3745 IsUTF16 = true; 3746 3747 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3748 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3749 llvm::UTF16 *ToPtr = &ToBuf[0]; 3750 3751 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3752 ToPtr + NumBytes, llvm::strictConversion); 3753 3754 // ConvertUTF8toUTF16 returns the length in ToPtr. 3755 StringLength = ToPtr - &ToBuf[0]; 3756 3757 // Add an explicit null. 3758 *ToPtr = 0; 3759 return *Map.insert(std::make_pair( 3760 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3761 (StringLength + 1) * 2), 3762 nullptr)).first; 3763 } 3764 3765 ConstantAddress 3766 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3767 unsigned StringLength = 0; 3768 bool isUTF16 = false; 3769 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3770 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3771 getDataLayout().isLittleEndian(), isUTF16, 3772 StringLength); 3773 3774 if (auto *C = Entry.second) 3775 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3776 3777 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3778 llvm::Constant *Zeros[] = { Zero, Zero }; 3779 3780 // If we don't already have it, get __CFConstantStringClassReference. 3781 if (!CFConstantStringClassRef) { 3782 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3783 Ty = llvm::ArrayType::get(Ty, 0); 3784 llvm::Constant *GV = 3785 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3786 3787 if (getTriple().isOSBinFormatCOFF()) { 3788 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3789 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3790 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3791 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3792 3793 const VarDecl *VD = nullptr; 3794 for (const auto &Result : DC->lookup(&II)) 3795 if ((VD = dyn_cast<VarDecl>(Result))) 3796 break; 3797 3798 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3799 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3800 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3801 } else { 3802 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3803 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3804 } 3805 } 3806 3807 // Decay array -> ptr 3808 CFConstantStringClassRef = 3809 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3810 } 3811 3812 QualType CFTy = getContext().getCFConstantStringType(); 3813 3814 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3815 3816 ConstantInitBuilder Builder(*this); 3817 auto Fields = Builder.beginStruct(STy); 3818 3819 // Class pointer. 3820 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3821 3822 // Flags. 3823 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3824 3825 // String pointer. 3826 llvm::Constant *C = nullptr; 3827 if (isUTF16) { 3828 auto Arr = llvm::makeArrayRef( 3829 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3830 Entry.first().size() / 2); 3831 C = llvm::ConstantDataArray::get(VMContext, Arr); 3832 } else { 3833 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3834 } 3835 3836 // Note: -fwritable-strings doesn't make the backing store strings of 3837 // CFStrings writable. (See <rdar://problem/10657500>) 3838 auto *GV = 3839 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3840 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3841 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3842 // Don't enforce the target's minimum global alignment, since the only use 3843 // of the string is via this class initializer. 3844 CharUnits Align = isUTF16 3845 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3846 : getContext().getTypeAlignInChars(getContext().CharTy); 3847 GV->setAlignment(Align.getQuantity()); 3848 3849 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3850 // Without it LLVM can merge the string with a non unnamed_addr one during 3851 // LTO. Doing that changes the section it ends in, which surprises ld64. 3852 if (getTriple().isOSBinFormatMachO()) 3853 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3854 : "__TEXT,__cstring,cstring_literals"); 3855 3856 // String. 3857 llvm::Constant *Str = 3858 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3859 3860 if (isUTF16) 3861 // Cast the UTF16 string to the correct type. 3862 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3863 Fields.add(Str); 3864 3865 // String length. 3866 auto Ty = getTypes().ConvertType(getContext().LongTy); 3867 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3868 3869 CharUnits Alignment = getPointerAlign(); 3870 3871 // The struct. 3872 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3873 /*isConstant=*/false, 3874 llvm::GlobalVariable::PrivateLinkage); 3875 switch (getTriple().getObjectFormat()) { 3876 case llvm::Triple::UnknownObjectFormat: 3877 llvm_unreachable("unknown file format"); 3878 case llvm::Triple::COFF: 3879 case llvm::Triple::ELF: 3880 case llvm::Triple::Wasm: 3881 GV->setSection("cfstring"); 3882 break; 3883 case llvm::Triple::MachO: 3884 GV->setSection("__DATA,__cfstring"); 3885 break; 3886 } 3887 Entry.second = GV; 3888 3889 return ConstantAddress(GV, Alignment); 3890 } 3891 3892 bool CodeGenModule::getExpressionLocationsEnabled() const { 3893 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3894 } 3895 3896 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3897 if (ObjCFastEnumerationStateType.isNull()) { 3898 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3899 D->startDefinition(); 3900 3901 QualType FieldTypes[] = { 3902 Context.UnsignedLongTy, 3903 Context.getPointerType(Context.getObjCIdType()), 3904 Context.getPointerType(Context.UnsignedLongTy), 3905 Context.getConstantArrayType(Context.UnsignedLongTy, 3906 llvm::APInt(32, 5), ArrayType::Normal, 0) 3907 }; 3908 3909 for (size_t i = 0; i < 4; ++i) { 3910 FieldDecl *Field = FieldDecl::Create(Context, 3911 D, 3912 SourceLocation(), 3913 SourceLocation(), nullptr, 3914 FieldTypes[i], /*TInfo=*/nullptr, 3915 /*BitWidth=*/nullptr, 3916 /*Mutable=*/false, 3917 ICIS_NoInit); 3918 Field->setAccess(AS_public); 3919 D->addDecl(Field); 3920 } 3921 3922 D->completeDefinition(); 3923 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3924 } 3925 3926 return ObjCFastEnumerationStateType; 3927 } 3928 3929 llvm::Constant * 3930 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3931 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3932 3933 // Don't emit it as the address of the string, emit the string data itself 3934 // as an inline array. 3935 if (E->getCharByteWidth() == 1) { 3936 SmallString<64> Str(E->getString()); 3937 3938 // Resize the string to the right size, which is indicated by its type. 3939 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3940 Str.resize(CAT->getSize().getZExtValue()); 3941 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3942 } 3943 3944 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3945 llvm::Type *ElemTy = AType->getElementType(); 3946 unsigned NumElements = AType->getNumElements(); 3947 3948 // Wide strings have either 2-byte or 4-byte elements. 3949 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3950 SmallVector<uint16_t, 32> Elements; 3951 Elements.reserve(NumElements); 3952 3953 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3954 Elements.push_back(E->getCodeUnit(i)); 3955 Elements.resize(NumElements); 3956 return llvm::ConstantDataArray::get(VMContext, Elements); 3957 } 3958 3959 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3960 SmallVector<uint32_t, 32> Elements; 3961 Elements.reserve(NumElements); 3962 3963 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3964 Elements.push_back(E->getCodeUnit(i)); 3965 Elements.resize(NumElements); 3966 return llvm::ConstantDataArray::get(VMContext, Elements); 3967 } 3968 3969 static llvm::GlobalVariable * 3970 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3971 CodeGenModule &CGM, StringRef GlobalName, 3972 CharUnits Alignment) { 3973 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3974 unsigned AddrSpace = 0; 3975 if (CGM.getLangOpts().OpenCL) 3976 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3977 3978 llvm::Module &M = CGM.getModule(); 3979 // Create a global variable for this string 3980 auto *GV = new llvm::GlobalVariable( 3981 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3982 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3983 GV->setAlignment(Alignment.getQuantity()); 3984 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3985 if (GV->isWeakForLinker()) { 3986 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3987 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3988 } 3989 3990 return GV; 3991 } 3992 3993 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3994 /// constant array for the given string literal. 3995 ConstantAddress 3996 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3997 StringRef Name) { 3998 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3999 4000 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4001 llvm::GlobalVariable **Entry = nullptr; 4002 if (!LangOpts.WritableStrings) { 4003 Entry = &ConstantStringMap[C]; 4004 if (auto GV = *Entry) { 4005 if (Alignment.getQuantity() > GV->getAlignment()) 4006 GV->setAlignment(Alignment.getQuantity()); 4007 return ConstantAddress(GV, Alignment); 4008 } 4009 } 4010 4011 SmallString<256> MangledNameBuffer; 4012 StringRef GlobalVariableName; 4013 llvm::GlobalValue::LinkageTypes LT; 4014 4015 // Mangle the string literal if the ABI allows for it. However, we cannot 4016 // do this if we are compiling with ASan or -fwritable-strings because they 4017 // rely on strings having normal linkage. 4018 if (!LangOpts.WritableStrings && 4019 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4020 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4021 llvm::raw_svector_ostream Out(MangledNameBuffer); 4022 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4023 4024 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4025 GlobalVariableName = MangledNameBuffer; 4026 } else { 4027 LT = llvm::GlobalValue::PrivateLinkage; 4028 GlobalVariableName = Name; 4029 } 4030 4031 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4032 if (Entry) 4033 *Entry = GV; 4034 4035 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4036 QualType()); 4037 return ConstantAddress(GV, Alignment); 4038 } 4039 4040 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4041 /// array for the given ObjCEncodeExpr node. 4042 ConstantAddress 4043 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4044 std::string Str; 4045 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4046 4047 return GetAddrOfConstantCString(Str); 4048 } 4049 4050 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4051 /// the literal and a terminating '\0' character. 4052 /// The result has pointer to array type. 4053 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4054 const std::string &Str, const char *GlobalName) { 4055 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4056 CharUnits Alignment = 4057 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4058 4059 llvm::Constant *C = 4060 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4061 4062 // Don't share any string literals if strings aren't constant. 4063 llvm::GlobalVariable **Entry = nullptr; 4064 if (!LangOpts.WritableStrings) { 4065 Entry = &ConstantStringMap[C]; 4066 if (auto GV = *Entry) { 4067 if (Alignment.getQuantity() > GV->getAlignment()) 4068 GV->setAlignment(Alignment.getQuantity()); 4069 return ConstantAddress(GV, Alignment); 4070 } 4071 } 4072 4073 // Get the default prefix if a name wasn't specified. 4074 if (!GlobalName) 4075 GlobalName = ".str"; 4076 // Create a global variable for this. 4077 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4078 GlobalName, Alignment); 4079 if (Entry) 4080 *Entry = GV; 4081 return ConstantAddress(GV, Alignment); 4082 } 4083 4084 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4085 const MaterializeTemporaryExpr *E, const Expr *Init) { 4086 assert((E->getStorageDuration() == SD_Static || 4087 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4088 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4089 4090 // If we're not materializing a subobject of the temporary, keep the 4091 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4092 QualType MaterializedType = Init->getType(); 4093 if (Init == E->GetTemporaryExpr()) 4094 MaterializedType = E->getType(); 4095 4096 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4097 4098 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4099 return ConstantAddress(Slot, Align); 4100 4101 // FIXME: If an externally-visible declaration extends multiple temporaries, 4102 // we need to give each temporary the same name in every translation unit (and 4103 // we also need to make the temporaries externally-visible). 4104 SmallString<256> Name; 4105 llvm::raw_svector_ostream Out(Name); 4106 getCXXABI().getMangleContext().mangleReferenceTemporary( 4107 VD, E->getManglingNumber(), Out); 4108 4109 APValue *Value = nullptr; 4110 if (E->getStorageDuration() == SD_Static) { 4111 // We might have a cached constant initializer for this temporary. Note 4112 // that this might have a different value from the value computed by 4113 // evaluating the initializer if the surrounding constant expression 4114 // modifies the temporary. 4115 Value = getContext().getMaterializedTemporaryValue(E, false); 4116 if (Value && Value->isUninit()) 4117 Value = nullptr; 4118 } 4119 4120 // Try evaluating it now, it might have a constant initializer. 4121 Expr::EvalResult EvalResult; 4122 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4123 !EvalResult.hasSideEffects()) 4124 Value = &EvalResult.Val; 4125 4126 LangAS AddrSpace = 4127 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4128 4129 Optional<ConstantEmitter> emitter; 4130 llvm::Constant *InitialValue = nullptr; 4131 bool Constant = false; 4132 llvm::Type *Type; 4133 if (Value) { 4134 // The temporary has a constant initializer, use it. 4135 emitter.emplace(*this); 4136 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4137 MaterializedType); 4138 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4139 Type = InitialValue->getType(); 4140 } else { 4141 // No initializer, the initialization will be provided when we 4142 // initialize the declaration which performed lifetime extension. 4143 Type = getTypes().ConvertTypeForMem(MaterializedType); 4144 } 4145 4146 // Create a global variable for this lifetime-extended temporary. 4147 llvm::GlobalValue::LinkageTypes Linkage = 4148 getLLVMLinkageVarDefinition(VD, Constant); 4149 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4150 const VarDecl *InitVD; 4151 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4152 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4153 // Temporaries defined inside a class get linkonce_odr linkage because the 4154 // class can be defined in multipe translation units. 4155 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4156 } else { 4157 // There is no need for this temporary to have external linkage if the 4158 // VarDecl has external linkage. 4159 Linkage = llvm::GlobalVariable::InternalLinkage; 4160 } 4161 } 4162 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4163 auto *GV = new llvm::GlobalVariable( 4164 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4165 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4166 if (emitter) emitter->finalize(GV); 4167 setGVProperties(GV, VD); 4168 GV->setAlignment(Align.getQuantity()); 4169 if (supportsCOMDAT() && GV->isWeakForLinker()) 4170 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4171 if (VD->getTLSKind()) 4172 setTLSMode(GV, *VD); 4173 llvm::Constant *CV = GV; 4174 if (AddrSpace != LangAS::Default) 4175 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4176 *this, GV, AddrSpace, LangAS::Default, 4177 Type->getPointerTo( 4178 getContext().getTargetAddressSpace(LangAS::Default))); 4179 MaterializedGlobalTemporaryMap[E] = CV; 4180 return ConstantAddress(CV, Align); 4181 } 4182 4183 /// EmitObjCPropertyImplementations - Emit information for synthesized 4184 /// properties for an implementation. 4185 void CodeGenModule::EmitObjCPropertyImplementations(const 4186 ObjCImplementationDecl *D) { 4187 for (const auto *PID : D->property_impls()) { 4188 // Dynamic is just for type-checking. 4189 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4190 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4191 4192 // Determine which methods need to be implemented, some may have 4193 // been overridden. Note that ::isPropertyAccessor is not the method 4194 // we want, that just indicates if the decl came from a 4195 // property. What we want to know is if the method is defined in 4196 // this implementation. 4197 if (!D->getInstanceMethod(PD->getGetterName())) 4198 CodeGenFunction(*this).GenerateObjCGetter( 4199 const_cast<ObjCImplementationDecl *>(D), PID); 4200 if (!PD->isReadOnly() && 4201 !D->getInstanceMethod(PD->getSetterName())) 4202 CodeGenFunction(*this).GenerateObjCSetter( 4203 const_cast<ObjCImplementationDecl *>(D), PID); 4204 } 4205 } 4206 } 4207 4208 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4209 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4210 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4211 ivar; ivar = ivar->getNextIvar()) 4212 if (ivar->getType().isDestructedType()) 4213 return true; 4214 4215 return false; 4216 } 4217 4218 static bool AllTrivialInitializers(CodeGenModule &CGM, 4219 ObjCImplementationDecl *D) { 4220 CodeGenFunction CGF(CGM); 4221 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4222 E = D->init_end(); B != E; ++B) { 4223 CXXCtorInitializer *CtorInitExp = *B; 4224 Expr *Init = CtorInitExp->getInit(); 4225 if (!CGF.isTrivialInitializer(Init)) 4226 return false; 4227 } 4228 return true; 4229 } 4230 4231 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4232 /// for an implementation. 4233 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4234 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4235 if (needsDestructMethod(D)) { 4236 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4237 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4238 ObjCMethodDecl *DTORMethod = 4239 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4240 cxxSelector, getContext().VoidTy, nullptr, D, 4241 /*isInstance=*/true, /*isVariadic=*/false, 4242 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4243 /*isDefined=*/false, ObjCMethodDecl::Required); 4244 D->addInstanceMethod(DTORMethod); 4245 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4246 D->setHasDestructors(true); 4247 } 4248 4249 // If the implementation doesn't have any ivar initializers, we don't need 4250 // a .cxx_construct. 4251 if (D->getNumIvarInitializers() == 0 || 4252 AllTrivialInitializers(*this, D)) 4253 return; 4254 4255 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4256 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4257 // The constructor returns 'self'. 4258 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4259 D->getLocation(), 4260 D->getLocation(), 4261 cxxSelector, 4262 getContext().getObjCIdType(), 4263 nullptr, D, /*isInstance=*/true, 4264 /*isVariadic=*/false, 4265 /*isPropertyAccessor=*/true, 4266 /*isImplicitlyDeclared=*/true, 4267 /*isDefined=*/false, 4268 ObjCMethodDecl::Required); 4269 D->addInstanceMethod(CTORMethod); 4270 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4271 D->setHasNonZeroConstructors(true); 4272 } 4273 4274 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4275 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4276 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4277 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4278 ErrorUnsupported(LSD, "linkage spec"); 4279 return; 4280 } 4281 4282 EmitDeclContext(LSD); 4283 } 4284 4285 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4286 for (auto *I : DC->decls()) { 4287 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4288 // are themselves considered "top-level", so EmitTopLevelDecl on an 4289 // ObjCImplDecl does not recursively visit them. We need to do that in 4290 // case they're nested inside another construct (LinkageSpecDecl / 4291 // ExportDecl) that does stop them from being considered "top-level". 4292 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4293 for (auto *M : OID->methods()) 4294 EmitTopLevelDecl(M); 4295 } 4296 4297 EmitTopLevelDecl(I); 4298 } 4299 } 4300 4301 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4302 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4303 // Ignore dependent declarations. 4304 if (D->isTemplated()) 4305 return; 4306 4307 switch (D->getKind()) { 4308 case Decl::CXXConversion: 4309 case Decl::CXXMethod: 4310 case Decl::Function: 4311 EmitGlobal(cast<FunctionDecl>(D)); 4312 // Always provide some coverage mapping 4313 // even for the functions that aren't emitted. 4314 AddDeferredUnusedCoverageMapping(D); 4315 break; 4316 4317 case Decl::CXXDeductionGuide: 4318 // Function-like, but does not result in code emission. 4319 break; 4320 4321 case Decl::Var: 4322 case Decl::Decomposition: 4323 case Decl::VarTemplateSpecialization: 4324 EmitGlobal(cast<VarDecl>(D)); 4325 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4326 for (auto *B : DD->bindings()) 4327 if (auto *HD = B->getHoldingVar()) 4328 EmitGlobal(HD); 4329 break; 4330 4331 // Indirect fields from global anonymous structs and unions can be 4332 // ignored; only the actual variable requires IR gen support. 4333 case Decl::IndirectField: 4334 break; 4335 4336 // C++ Decls 4337 case Decl::Namespace: 4338 EmitDeclContext(cast<NamespaceDecl>(D)); 4339 break; 4340 case Decl::ClassTemplateSpecialization: { 4341 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4342 if (DebugInfo && 4343 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4344 Spec->hasDefinition()) 4345 DebugInfo->completeTemplateDefinition(*Spec); 4346 } LLVM_FALLTHROUGH; 4347 case Decl::CXXRecord: 4348 if (DebugInfo) { 4349 if (auto *ES = D->getASTContext().getExternalSource()) 4350 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4351 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4352 } 4353 // Emit any static data members, they may be definitions. 4354 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4355 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4356 EmitTopLevelDecl(I); 4357 break; 4358 // No code generation needed. 4359 case Decl::UsingShadow: 4360 case Decl::ClassTemplate: 4361 case Decl::VarTemplate: 4362 case Decl::VarTemplatePartialSpecialization: 4363 case Decl::FunctionTemplate: 4364 case Decl::TypeAliasTemplate: 4365 case Decl::Block: 4366 case Decl::Empty: 4367 break; 4368 case Decl::Using: // using X; [C++] 4369 if (CGDebugInfo *DI = getModuleDebugInfo()) 4370 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4371 return; 4372 case Decl::NamespaceAlias: 4373 if (CGDebugInfo *DI = getModuleDebugInfo()) 4374 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4375 return; 4376 case Decl::UsingDirective: // using namespace X; [C++] 4377 if (CGDebugInfo *DI = getModuleDebugInfo()) 4378 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4379 return; 4380 case Decl::CXXConstructor: 4381 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4382 break; 4383 case Decl::CXXDestructor: 4384 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4385 break; 4386 4387 case Decl::StaticAssert: 4388 // Nothing to do. 4389 break; 4390 4391 // Objective-C Decls 4392 4393 // Forward declarations, no (immediate) code generation. 4394 case Decl::ObjCInterface: 4395 case Decl::ObjCCategory: 4396 break; 4397 4398 case Decl::ObjCProtocol: { 4399 auto *Proto = cast<ObjCProtocolDecl>(D); 4400 if (Proto->isThisDeclarationADefinition()) 4401 ObjCRuntime->GenerateProtocol(Proto); 4402 break; 4403 } 4404 4405 case Decl::ObjCCategoryImpl: 4406 // Categories have properties but don't support synthesize so we 4407 // can ignore them here. 4408 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4409 break; 4410 4411 case Decl::ObjCImplementation: { 4412 auto *OMD = cast<ObjCImplementationDecl>(D); 4413 EmitObjCPropertyImplementations(OMD); 4414 EmitObjCIvarInitializations(OMD); 4415 ObjCRuntime->GenerateClass(OMD); 4416 // Emit global variable debug information. 4417 if (CGDebugInfo *DI = getModuleDebugInfo()) 4418 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4419 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4420 OMD->getClassInterface()), OMD->getLocation()); 4421 break; 4422 } 4423 case Decl::ObjCMethod: { 4424 auto *OMD = cast<ObjCMethodDecl>(D); 4425 // If this is not a prototype, emit the body. 4426 if (OMD->getBody()) 4427 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4428 break; 4429 } 4430 case Decl::ObjCCompatibleAlias: 4431 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4432 break; 4433 4434 case Decl::PragmaComment: { 4435 const auto *PCD = cast<PragmaCommentDecl>(D); 4436 switch (PCD->getCommentKind()) { 4437 case PCK_Unknown: 4438 llvm_unreachable("unexpected pragma comment kind"); 4439 case PCK_Linker: 4440 AppendLinkerOptions(PCD->getArg()); 4441 break; 4442 case PCK_Lib: 4443 if (getTarget().getTriple().isOSBinFormatELF() && 4444 !getTarget().getTriple().isPS4()) 4445 AddELFLibDirective(PCD->getArg()); 4446 else 4447 AddDependentLib(PCD->getArg()); 4448 break; 4449 case PCK_Compiler: 4450 case PCK_ExeStr: 4451 case PCK_User: 4452 break; // We ignore all of these. 4453 } 4454 break; 4455 } 4456 4457 case Decl::PragmaDetectMismatch: { 4458 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4459 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4460 break; 4461 } 4462 4463 case Decl::LinkageSpec: 4464 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4465 break; 4466 4467 case Decl::FileScopeAsm: { 4468 // File-scope asm is ignored during device-side CUDA compilation. 4469 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4470 break; 4471 // File-scope asm is ignored during device-side OpenMP compilation. 4472 if (LangOpts.OpenMPIsDevice) 4473 break; 4474 auto *AD = cast<FileScopeAsmDecl>(D); 4475 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4476 break; 4477 } 4478 4479 case Decl::Import: { 4480 auto *Import = cast<ImportDecl>(D); 4481 4482 // If we've already imported this module, we're done. 4483 if (!ImportedModules.insert(Import->getImportedModule())) 4484 break; 4485 4486 // Emit debug information for direct imports. 4487 if (!Import->getImportedOwningModule()) { 4488 if (CGDebugInfo *DI = getModuleDebugInfo()) 4489 DI->EmitImportDecl(*Import); 4490 } 4491 4492 // Find all of the submodules and emit the module initializers. 4493 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4494 SmallVector<clang::Module *, 16> Stack; 4495 Visited.insert(Import->getImportedModule()); 4496 Stack.push_back(Import->getImportedModule()); 4497 4498 while (!Stack.empty()) { 4499 clang::Module *Mod = Stack.pop_back_val(); 4500 if (!EmittedModuleInitializers.insert(Mod).second) 4501 continue; 4502 4503 for (auto *D : Context.getModuleInitializers(Mod)) 4504 EmitTopLevelDecl(D); 4505 4506 // Visit the submodules of this module. 4507 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4508 SubEnd = Mod->submodule_end(); 4509 Sub != SubEnd; ++Sub) { 4510 // Skip explicit children; they need to be explicitly imported to emit 4511 // the initializers. 4512 if ((*Sub)->IsExplicit) 4513 continue; 4514 4515 if (Visited.insert(*Sub).second) 4516 Stack.push_back(*Sub); 4517 } 4518 } 4519 break; 4520 } 4521 4522 case Decl::Export: 4523 EmitDeclContext(cast<ExportDecl>(D)); 4524 break; 4525 4526 case Decl::OMPThreadPrivate: 4527 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4528 break; 4529 4530 case Decl::OMPDeclareReduction: 4531 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4532 break; 4533 4534 default: 4535 // Make sure we handled everything we should, every other kind is a 4536 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4537 // function. Need to recode Decl::Kind to do that easily. 4538 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4539 break; 4540 } 4541 } 4542 4543 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4544 // Do we need to generate coverage mapping? 4545 if (!CodeGenOpts.CoverageMapping) 4546 return; 4547 switch (D->getKind()) { 4548 case Decl::CXXConversion: 4549 case Decl::CXXMethod: 4550 case Decl::Function: 4551 case Decl::ObjCMethod: 4552 case Decl::CXXConstructor: 4553 case Decl::CXXDestructor: { 4554 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4555 return; 4556 SourceManager &SM = getContext().getSourceManager(); 4557 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4558 return; 4559 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4560 if (I == DeferredEmptyCoverageMappingDecls.end()) 4561 DeferredEmptyCoverageMappingDecls[D] = true; 4562 break; 4563 } 4564 default: 4565 break; 4566 }; 4567 } 4568 4569 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4570 // Do we need to generate coverage mapping? 4571 if (!CodeGenOpts.CoverageMapping) 4572 return; 4573 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4574 if (Fn->isTemplateInstantiation()) 4575 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4576 } 4577 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4578 if (I == DeferredEmptyCoverageMappingDecls.end()) 4579 DeferredEmptyCoverageMappingDecls[D] = false; 4580 else 4581 I->second = false; 4582 } 4583 4584 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4585 // We call takeVector() here to avoid use-after-free. 4586 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4587 // we deserialize function bodies to emit coverage info for them, and that 4588 // deserializes more declarations. How should we handle that case? 4589 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4590 if (!Entry.second) 4591 continue; 4592 const Decl *D = Entry.first; 4593 switch (D->getKind()) { 4594 case Decl::CXXConversion: 4595 case Decl::CXXMethod: 4596 case Decl::Function: 4597 case Decl::ObjCMethod: { 4598 CodeGenPGO PGO(*this); 4599 GlobalDecl GD(cast<FunctionDecl>(D)); 4600 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4601 getFunctionLinkage(GD)); 4602 break; 4603 } 4604 case Decl::CXXConstructor: { 4605 CodeGenPGO PGO(*this); 4606 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4607 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4608 getFunctionLinkage(GD)); 4609 break; 4610 } 4611 case Decl::CXXDestructor: { 4612 CodeGenPGO PGO(*this); 4613 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4614 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4615 getFunctionLinkage(GD)); 4616 break; 4617 } 4618 default: 4619 break; 4620 }; 4621 } 4622 } 4623 4624 /// Turns the given pointer into a constant. 4625 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4626 const void *Ptr) { 4627 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4628 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4629 return llvm::ConstantInt::get(i64, PtrInt); 4630 } 4631 4632 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4633 llvm::NamedMDNode *&GlobalMetadata, 4634 GlobalDecl D, 4635 llvm::GlobalValue *Addr) { 4636 if (!GlobalMetadata) 4637 GlobalMetadata = 4638 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4639 4640 // TODO: should we report variant information for ctors/dtors? 4641 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4642 llvm::ConstantAsMetadata::get(GetPointerConstant( 4643 CGM.getLLVMContext(), D.getDecl()))}; 4644 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4645 } 4646 4647 /// For each function which is declared within an extern "C" region and marked 4648 /// as 'used', but has internal linkage, create an alias from the unmangled 4649 /// name to the mangled name if possible. People expect to be able to refer 4650 /// to such functions with an unmangled name from inline assembly within the 4651 /// same translation unit. 4652 void CodeGenModule::EmitStaticExternCAliases() { 4653 // Don't do anything if we're generating CUDA device code -- the NVPTX 4654 // assembly target doesn't support aliases. 4655 if (Context.getTargetInfo().getTriple().isNVPTX()) 4656 return; 4657 for (auto &I : StaticExternCValues) { 4658 IdentifierInfo *Name = I.first; 4659 llvm::GlobalValue *Val = I.second; 4660 if (Val && !getModule().getNamedValue(Name->getName())) 4661 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4662 } 4663 } 4664 4665 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4666 GlobalDecl &Result) const { 4667 auto Res = Manglings.find(MangledName); 4668 if (Res == Manglings.end()) 4669 return false; 4670 Result = Res->getValue(); 4671 return true; 4672 } 4673 4674 /// Emits metadata nodes associating all the global values in the 4675 /// current module with the Decls they came from. This is useful for 4676 /// projects using IR gen as a subroutine. 4677 /// 4678 /// Since there's currently no way to associate an MDNode directly 4679 /// with an llvm::GlobalValue, we create a global named metadata 4680 /// with the name 'clang.global.decl.ptrs'. 4681 void CodeGenModule::EmitDeclMetadata() { 4682 llvm::NamedMDNode *GlobalMetadata = nullptr; 4683 4684 for (auto &I : MangledDeclNames) { 4685 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4686 // Some mangled names don't necessarily have an associated GlobalValue 4687 // in this module, e.g. if we mangled it for DebugInfo. 4688 if (Addr) 4689 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4690 } 4691 } 4692 4693 /// Emits metadata nodes for all the local variables in the current 4694 /// function. 4695 void CodeGenFunction::EmitDeclMetadata() { 4696 if (LocalDeclMap.empty()) return; 4697 4698 llvm::LLVMContext &Context = getLLVMContext(); 4699 4700 // Find the unique metadata ID for this name. 4701 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4702 4703 llvm::NamedMDNode *GlobalMetadata = nullptr; 4704 4705 for (auto &I : LocalDeclMap) { 4706 const Decl *D = I.first; 4707 llvm::Value *Addr = I.second.getPointer(); 4708 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4709 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4710 Alloca->setMetadata( 4711 DeclPtrKind, llvm::MDNode::get( 4712 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4713 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4714 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4715 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4716 } 4717 } 4718 } 4719 4720 void CodeGenModule::EmitVersionIdentMetadata() { 4721 llvm::NamedMDNode *IdentMetadata = 4722 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4723 std::string Version = getClangFullVersion(); 4724 llvm::LLVMContext &Ctx = TheModule.getContext(); 4725 4726 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4727 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4728 } 4729 4730 void CodeGenModule::EmitTargetMetadata() { 4731 // Warning, new MangledDeclNames may be appended within this loop. 4732 // We rely on MapVector insertions adding new elements to the end 4733 // of the container. 4734 // FIXME: Move this loop into the one target that needs it, and only 4735 // loop over those declarations for which we couldn't emit the target 4736 // metadata when we emitted the declaration. 4737 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4738 auto Val = *(MangledDeclNames.begin() + I); 4739 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4740 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4741 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4742 } 4743 } 4744 4745 void CodeGenModule::EmitCoverageFile() { 4746 if (getCodeGenOpts().CoverageDataFile.empty() && 4747 getCodeGenOpts().CoverageNotesFile.empty()) 4748 return; 4749 4750 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4751 if (!CUNode) 4752 return; 4753 4754 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4755 llvm::LLVMContext &Ctx = TheModule.getContext(); 4756 auto *CoverageDataFile = 4757 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4758 auto *CoverageNotesFile = 4759 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4760 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4761 llvm::MDNode *CU = CUNode->getOperand(i); 4762 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4763 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4764 } 4765 } 4766 4767 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4768 // Sema has checked that all uuid strings are of the form 4769 // "12345678-1234-1234-1234-1234567890ab". 4770 assert(Uuid.size() == 36); 4771 for (unsigned i = 0; i < 36; ++i) { 4772 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4773 else assert(isHexDigit(Uuid[i])); 4774 } 4775 4776 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4777 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4778 4779 llvm::Constant *Field3[8]; 4780 for (unsigned Idx = 0; Idx < 8; ++Idx) 4781 Field3[Idx] = llvm::ConstantInt::get( 4782 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4783 4784 llvm::Constant *Fields[4] = { 4785 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4786 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4787 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4788 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4789 }; 4790 4791 return llvm::ConstantStruct::getAnon(Fields); 4792 } 4793 4794 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4795 bool ForEH) { 4796 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4797 // FIXME: should we even be calling this method if RTTI is disabled 4798 // and it's not for EH? 4799 if (!ForEH && !getLangOpts().RTTI) 4800 return llvm::Constant::getNullValue(Int8PtrTy); 4801 4802 if (ForEH && Ty->isObjCObjectPointerType() && 4803 LangOpts.ObjCRuntime.isGNUFamily()) 4804 return ObjCRuntime->GetEHType(Ty); 4805 4806 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4807 } 4808 4809 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4810 // Do not emit threadprivates in simd-only mode. 4811 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4812 return; 4813 for (auto RefExpr : D->varlists()) { 4814 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4815 bool PerformInit = 4816 VD->getAnyInitializer() && 4817 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4818 /*ForRef=*/false); 4819 4820 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4821 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4822 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4823 CXXGlobalInits.push_back(InitFunction); 4824 } 4825 } 4826 4827 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4828 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4829 if (InternalId) 4830 return InternalId; 4831 4832 if (isExternallyVisible(T->getLinkage())) { 4833 std::string OutName; 4834 llvm::raw_string_ostream Out(OutName); 4835 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4836 4837 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4838 } else { 4839 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4840 llvm::ArrayRef<llvm::Metadata *>()); 4841 } 4842 4843 return InternalId; 4844 } 4845 4846 // Generalize pointer types to a void pointer with the qualifiers of the 4847 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4848 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4849 // 'void *'. 4850 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4851 if (!Ty->isPointerType()) 4852 return Ty; 4853 4854 return Ctx.getPointerType( 4855 QualType(Ctx.VoidTy).withCVRQualifiers( 4856 Ty->getPointeeType().getCVRQualifiers())); 4857 } 4858 4859 // Apply type generalization to a FunctionType's return and argument types 4860 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4861 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4862 SmallVector<QualType, 8> GeneralizedParams; 4863 for (auto &Param : FnType->param_types()) 4864 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4865 4866 return Ctx.getFunctionType( 4867 GeneralizeType(Ctx, FnType->getReturnType()), 4868 GeneralizedParams, FnType->getExtProtoInfo()); 4869 } 4870 4871 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4872 return Ctx.getFunctionNoProtoType( 4873 GeneralizeType(Ctx, FnType->getReturnType())); 4874 4875 llvm_unreachable("Encountered unknown FunctionType"); 4876 } 4877 4878 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4879 T = GeneralizeFunctionType(getContext(), T); 4880 4881 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4882 if (InternalId) 4883 return InternalId; 4884 4885 if (isExternallyVisible(T->getLinkage())) { 4886 std::string OutName; 4887 llvm::raw_string_ostream Out(OutName); 4888 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4889 Out << ".generalized"; 4890 4891 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4892 } else { 4893 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4894 llvm::ArrayRef<llvm::Metadata *>()); 4895 } 4896 4897 return InternalId; 4898 } 4899 4900 /// Returns whether this module needs the "all-vtables" type identifier. 4901 bool CodeGenModule::NeedAllVtablesTypeId() const { 4902 // Returns true if at least one of vtable-based CFI checkers is enabled and 4903 // is not in the trapping mode. 4904 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4905 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4906 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4907 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4908 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4909 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4910 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4911 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4912 } 4913 4914 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4915 CharUnits Offset, 4916 const CXXRecordDecl *RD) { 4917 llvm::Metadata *MD = 4918 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4919 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4920 4921 if (CodeGenOpts.SanitizeCfiCrossDso) 4922 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4923 VTable->addTypeMetadata(Offset.getQuantity(), 4924 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4925 4926 if (NeedAllVtablesTypeId()) { 4927 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4928 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4929 } 4930 } 4931 4932 // Fills in the supplied string map with the set of target features for the 4933 // passed in function. 4934 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4935 const FunctionDecl *FD) { 4936 StringRef TargetCPU = Target.getTargetOpts().CPU; 4937 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4938 // If we have a TargetAttr build up the feature map based on that. 4939 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4940 4941 ParsedAttr.Features.erase( 4942 llvm::remove_if(ParsedAttr.Features, 4943 [&](const std::string &Feat) { 4944 return !Target.isValidFeatureName( 4945 StringRef{Feat}.substr(1)); 4946 }), 4947 ParsedAttr.Features.end()); 4948 4949 // Make a copy of the features as passed on the command line into the 4950 // beginning of the additional features from the function to override. 4951 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4952 Target.getTargetOpts().FeaturesAsWritten.begin(), 4953 Target.getTargetOpts().FeaturesAsWritten.end()); 4954 4955 if (ParsedAttr.Architecture != "" && 4956 Target.isValidCPUName(ParsedAttr.Architecture)) 4957 TargetCPU = ParsedAttr.Architecture; 4958 4959 // Now populate the feature map, first with the TargetCPU which is either 4960 // the default or a new one from the target attribute string. Then we'll use 4961 // the passed in features (FeaturesAsWritten) along with the new ones from 4962 // the attribute. 4963 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4964 ParsedAttr.Features); 4965 } else { 4966 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4967 Target.getTargetOpts().Features); 4968 } 4969 } 4970 4971 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4972 if (!SanStats) 4973 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4974 4975 return *SanStats; 4976 } 4977 llvm::Value * 4978 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4979 CodeGenFunction &CGF) { 4980 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4981 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4982 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4983 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4984 "__translate_sampler_initializer"), 4985 {C}); 4986 } 4987