xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 123ce97fac78bc4519afd5d2aba17c59c5717aad)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
655                                                 TBAAAccessInfo TBAAInfo) {
656   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
657     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
658 }
659 
660 void CodeGenModule::DecorateInstructionWithInvariantGroup(
661     llvm::Instruction *I, const CXXRecordDecl *RD) {
662   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
663                  llvm::MDNode::get(getLLVMContext(), {}));
664 }
665 
666 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
667   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
668   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
669 }
670 
671 /// ErrorUnsupported - Print out an error that codegen doesn't support the
672 /// specified stmt yet.
673 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
674   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
675                                                "cannot compile this %0 yet");
676   std::string Msg = Type;
677   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
678     << Msg << S->getSourceRange();
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified decl yet.
683 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
688 }
689 
690 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
691   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
692 }
693 
694 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
695                                         const NamedDecl *D,
696                                         ForDefinition_t IsForDefinition) const {
697   if (GV->hasDLLImportStorageClass())
698     return;
699   // Internal definitions always have default visibility.
700   if (GV->hasLocalLinkage()) {
701     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
702     return;
703   }
704 
705   // Set visibility for definitions.
706   LinkageInfo LV = D->getLinkageAndVisibility();
707   if (LV.isVisibilityExplicit() ||
708       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
709     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
710 }
711 
712 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
713   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
714       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
715       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
716       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
717       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
718 }
719 
720 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
721     CodeGenOptions::TLSModel M) {
722   switch (M) {
723   case CodeGenOptions::GeneralDynamicTLSModel:
724     return llvm::GlobalVariable::GeneralDynamicTLSModel;
725   case CodeGenOptions::LocalDynamicTLSModel:
726     return llvm::GlobalVariable::LocalDynamicTLSModel;
727   case CodeGenOptions::InitialExecTLSModel:
728     return llvm::GlobalVariable::InitialExecTLSModel;
729   case CodeGenOptions::LocalExecTLSModel:
730     return llvm::GlobalVariable::LocalExecTLSModel;
731   }
732   llvm_unreachable("Invalid TLS model!");
733 }
734 
735 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
736   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
737 
738   llvm::GlobalValue::ThreadLocalMode TLM;
739   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
740 
741   // Override the TLS model if it is explicitly specified.
742   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
743     TLM = GetLLVMTLSModel(Attr->getModel());
744   }
745 
746   GV->setThreadLocalMode(TLM);
747 }
748 
749 static void AppendTargetMangling(const CodeGenModule &CGM,
750                                  const TargetAttr *Attr, raw_ostream &Out) {
751   if (Attr->isDefaultVersion())
752     return;
753 
754   Out << '.';
755   const auto &Target = CGM.getTarget();
756   TargetAttr::ParsedTargetAttr Info =
757       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
758                     // Multiversioning doesn't allow "no-${feature}", so we can
759                     // only have "+" prefixes here.
760                     assert(LHS.startswith("+") && RHS.startswith("+") &&
761                            "Features should always have a prefix.");
762                     return Target.multiVersionSortPriority(LHS.substr(1)) >
763                            Target.multiVersionSortPriority(RHS.substr(1));
764                   });
765 
766   bool IsFirst = true;
767 
768   if (!Info.Architecture.empty()) {
769     IsFirst = false;
770     Out << "arch_" << Info.Architecture;
771   }
772 
773   for (StringRef Feat : Info.Features) {
774     if (!IsFirst)
775       Out << '_';
776     IsFirst = false;
777     Out << Feat.substr(1);
778   }
779 }
780 
781 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
782                                       const NamedDecl *ND,
783                                       bool OmitTargetMangling = false) {
784   SmallString<256> Buffer;
785   llvm::raw_svector_ostream Out(Buffer);
786   MangleContext &MC = CGM.getCXXABI().getMangleContext();
787   if (MC.shouldMangleDeclName(ND)) {
788     llvm::raw_svector_ostream Out(Buffer);
789     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
790       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
791     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
792       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
793     else
794       MC.mangleName(ND, Out);
795   } else {
796     IdentifierInfo *II = ND->getIdentifier();
797     assert(II && "Attempt to mangle unnamed decl.");
798     const auto *FD = dyn_cast<FunctionDecl>(ND);
799 
800     if (FD &&
801         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
802       llvm::raw_svector_ostream Out(Buffer);
803       Out << "__regcall3__" << II->getName();
804     } else {
805       Out << II->getName();
806     }
807   }
808 
809   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
810     if (FD->isMultiVersion() && !OmitTargetMangling)
811       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
812   return Out.str();
813 }
814 
815 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
816                                             const FunctionDecl *FD) {
817   if (!FD->isMultiVersion())
818     return;
819 
820   // Get the name of what this would be without the 'target' attribute.  This
821   // allows us to lookup the version that was emitted when this wasn't a
822   // multiversion function.
823   std::string NonTargetName =
824       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
825   GlobalDecl OtherGD;
826   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
827     assert(OtherGD.getCanonicalDecl()
828                .getDecl()
829                ->getAsFunction()
830                ->isMultiVersion() &&
831            "Other GD should now be a multiversioned function");
832     // OtherFD is the version of this function that was mangled BEFORE
833     // becoming a MultiVersion function.  It potentially needs to be updated.
834     const FunctionDecl *OtherFD =
835         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
836     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
837     // This is so that if the initial version was already the 'default'
838     // version, we don't try to update it.
839     if (OtherName != NonTargetName) {
840       // Remove instead of erase, since others may have stored the StringRef
841       // to this.
842       const auto ExistingRecord = Manglings.find(NonTargetName);
843       if (ExistingRecord != std::end(Manglings))
844         Manglings.remove(&(*ExistingRecord));
845       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
846       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
847       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
848         Entry->setName(OtherName);
849     }
850   }
851 }
852 
853 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
854   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
855 
856   // Some ABIs don't have constructor variants.  Make sure that base and
857   // complete constructors get mangled the same.
858   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
859     if (!getTarget().getCXXABI().hasConstructorVariants()) {
860       CXXCtorType OrigCtorType = GD.getCtorType();
861       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
862       if (OrigCtorType == Ctor_Base)
863         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
864     }
865   }
866 
867   auto FoundName = MangledDeclNames.find(CanonicalGD);
868   if (FoundName != MangledDeclNames.end())
869     return FoundName->second;
870 
871 
872   // Keep the first result in the case of a mangling collision.
873   const auto *ND = cast<NamedDecl>(GD.getDecl());
874   auto Result =
875       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
876   return MangledDeclNames[CanonicalGD] = Result.first->first();
877 }
878 
879 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
880                                              const BlockDecl *BD) {
881   MangleContext &MangleCtx = getCXXABI().getMangleContext();
882   const Decl *D = GD.getDecl();
883 
884   SmallString<256> Buffer;
885   llvm::raw_svector_ostream Out(Buffer);
886   if (!D)
887     MangleCtx.mangleGlobalBlock(BD,
888       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
889   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
890     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
891   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
892     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
893   else
894     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
895 
896   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
897   return Result.first->first();
898 }
899 
900 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
901   return getModule().getNamedValue(Name);
902 }
903 
904 /// AddGlobalCtor - Add a function to the list that will be called before
905 /// main() runs.
906 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
907                                   llvm::Constant *AssociatedData) {
908   // FIXME: Type coercion of void()* types.
909   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
910 }
911 
912 /// AddGlobalDtor - Add a function to the list that will be called
913 /// when the module is unloaded.
914 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
915   // FIXME: Type coercion of void()* types.
916   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
917 }
918 
919 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
920   if (Fns.empty()) return;
921 
922   // Ctor function type is void()*.
923   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
924   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
925 
926   // Get the type of a ctor entry, { i32, void ()*, i8* }.
927   llvm::StructType *CtorStructTy = llvm::StructType::get(
928       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
929 
930   // Construct the constructor and destructor arrays.
931   ConstantInitBuilder builder(*this);
932   auto ctors = builder.beginArray(CtorStructTy);
933   for (const auto &I : Fns) {
934     auto ctor = ctors.beginStruct(CtorStructTy);
935     ctor.addInt(Int32Ty, I.Priority);
936     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
937     if (I.AssociatedData)
938       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
939     else
940       ctor.addNullPointer(VoidPtrTy);
941     ctor.finishAndAddTo(ctors);
942   }
943 
944   auto list =
945     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
946                                 /*constant*/ false,
947                                 llvm::GlobalValue::AppendingLinkage);
948 
949   // The LTO linker doesn't seem to like it when we set an alignment
950   // on appending variables.  Take it off as a workaround.
951   list->setAlignment(0);
952 
953   Fns.clear();
954 }
955 
956 llvm::GlobalValue::LinkageTypes
957 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
958   const auto *D = cast<FunctionDecl>(GD.getDecl());
959 
960   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
961 
962   if (isa<CXXDestructorDecl>(D) &&
963       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
964                                          GD.getDtorType())) {
965     // Destructor variants in the Microsoft C++ ABI are always internal or
966     // linkonce_odr thunks emitted on an as-needed basis.
967     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
968                                    : llvm::GlobalValue::LinkOnceODRLinkage;
969   }
970 
971   if (isa<CXXConstructorDecl>(D) &&
972       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
973       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
974     // Our approach to inheriting constructors is fundamentally different from
975     // that used by the MS ABI, so keep our inheriting constructor thunks
976     // internal rather than trying to pick an unambiguous mangling for them.
977     return llvm::GlobalValue::InternalLinkage;
978   }
979 
980   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
981 }
982 
983 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
984   const auto *FD = cast<FunctionDecl>(GD.getDecl());
985 
986   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
987     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
988       // Don't dllexport/import destructor thunks.
989       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
990       return;
991     }
992   }
993 
994   if (FD->hasAttr<DLLImportAttr>())
995     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
996   else if (FD->hasAttr<DLLExportAttr>())
997     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
998   else
999     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1000 }
1001 
1002 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1003   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1004   if (!MDS) return nullptr;
1005 
1006   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1007 }
1008 
1009 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1010                                                     llvm::Function *F) {
1011   setNonAliasAttributes(D, F);
1012 }
1013 
1014 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1015                                               const CGFunctionInfo &Info,
1016                                               llvm::Function *F) {
1017   unsigned CallingConv;
1018   llvm::AttributeList PAL;
1019   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1020   F->setAttributes(PAL);
1021   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1022 }
1023 
1024 /// Determines whether the language options require us to model
1025 /// unwind exceptions.  We treat -fexceptions as mandating this
1026 /// except under the fragile ObjC ABI with only ObjC exceptions
1027 /// enabled.  This means, for example, that C with -fexceptions
1028 /// enables this.
1029 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1030   // If exceptions are completely disabled, obviously this is false.
1031   if (!LangOpts.Exceptions) return false;
1032 
1033   // If C++ exceptions are enabled, this is true.
1034   if (LangOpts.CXXExceptions) return true;
1035 
1036   // If ObjC exceptions are enabled, this depends on the ABI.
1037   if (LangOpts.ObjCExceptions) {
1038     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1039   }
1040 
1041   return true;
1042 }
1043 
1044 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1045                                                            llvm::Function *F) {
1046   llvm::AttrBuilder B;
1047 
1048   if (CodeGenOpts.UnwindTables)
1049     B.addAttribute(llvm::Attribute::UWTable);
1050 
1051   if (!hasUnwindExceptions(LangOpts))
1052     B.addAttribute(llvm::Attribute::NoUnwind);
1053 
1054   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1055     B.addAttribute(llvm::Attribute::StackProtect);
1056   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1057     B.addAttribute(llvm::Attribute::StackProtectStrong);
1058   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1059     B.addAttribute(llvm::Attribute::StackProtectReq);
1060 
1061   if (!D) {
1062     // If we don't have a declaration to control inlining, the function isn't
1063     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1064     // disabled, mark the function as noinline.
1065     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1066         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1067       B.addAttribute(llvm::Attribute::NoInline);
1068 
1069     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1070     return;
1071   }
1072 
1073   // Track whether we need to add the optnone LLVM attribute,
1074   // starting with the default for this optimization level.
1075   bool ShouldAddOptNone =
1076       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1077   // We can't add optnone in the following cases, it won't pass the verifier.
1078   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1079   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1080   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1081 
1082   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1083     B.addAttribute(llvm::Attribute::OptimizeNone);
1084 
1085     // OptimizeNone implies noinline; we should not be inlining such functions.
1086     B.addAttribute(llvm::Attribute::NoInline);
1087     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1088            "OptimizeNone and AlwaysInline on same function!");
1089 
1090     // We still need to handle naked functions even though optnone subsumes
1091     // much of their semantics.
1092     if (D->hasAttr<NakedAttr>())
1093       B.addAttribute(llvm::Attribute::Naked);
1094 
1095     // OptimizeNone wins over OptimizeForSize and MinSize.
1096     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1097     F->removeFnAttr(llvm::Attribute::MinSize);
1098   } else if (D->hasAttr<NakedAttr>()) {
1099     // Naked implies noinline: we should not be inlining such functions.
1100     B.addAttribute(llvm::Attribute::Naked);
1101     B.addAttribute(llvm::Attribute::NoInline);
1102   } else if (D->hasAttr<NoDuplicateAttr>()) {
1103     B.addAttribute(llvm::Attribute::NoDuplicate);
1104   } else if (D->hasAttr<NoInlineAttr>()) {
1105     B.addAttribute(llvm::Attribute::NoInline);
1106   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1107              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1108     // (noinline wins over always_inline, and we can't specify both in IR)
1109     B.addAttribute(llvm::Attribute::AlwaysInline);
1110   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1111     // If we're not inlining, then force everything that isn't always_inline to
1112     // carry an explicit noinline attribute.
1113     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1114       B.addAttribute(llvm::Attribute::NoInline);
1115   } else {
1116     // Otherwise, propagate the inline hint attribute and potentially use its
1117     // absence to mark things as noinline.
1118     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1119       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1120             return Redecl->isInlineSpecified();
1121           })) {
1122         B.addAttribute(llvm::Attribute::InlineHint);
1123       } else if (CodeGenOpts.getInlining() ==
1124                      CodeGenOptions::OnlyHintInlining &&
1125                  !FD->isInlined() &&
1126                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1127         B.addAttribute(llvm::Attribute::NoInline);
1128       }
1129     }
1130   }
1131 
1132   // Add other optimization related attributes if we are optimizing this
1133   // function.
1134   if (!D->hasAttr<OptimizeNoneAttr>()) {
1135     if (D->hasAttr<ColdAttr>()) {
1136       if (!ShouldAddOptNone)
1137         B.addAttribute(llvm::Attribute::OptimizeForSize);
1138       B.addAttribute(llvm::Attribute::Cold);
1139     }
1140 
1141     if (D->hasAttr<MinSizeAttr>())
1142       B.addAttribute(llvm::Attribute::MinSize);
1143   }
1144 
1145   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1146 
1147   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1148   if (alignment)
1149     F->setAlignment(alignment);
1150 
1151   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1152   // reserve a bit for differentiating between virtual and non-virtual member
1153   // functions. If the current target's C++ ABI requires this and this is a
1154   // member function, set its alignment accordingly.
1155   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1156     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1157       F->setAlignment(2);
1158   }
1159 
1160   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1161   if (CodeGenOpts.SanitizeCfiCrossDso)
1162     if (auto *FD = dyn_cast<FunctionDecl>(D))
1163       CreateFunctionTypeMetadata(FD, F);
1164 }
1165 
1166 void CodeGenModule::SetCommonAttributes(const Decl *D,
1167                                         llvm::GlobalValue *GV) {
1168   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1169     setGlobalVisibility(GV, ND, ForDefinition);
1170   else
1171     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1172 
1173   if (D && D->hasAttr<UsedAttr>())
1174     addUsedGlobal(GV);
1175 }
1176 
1177 void CodeGenModule::setAliasAttributes(const Decl *D,
1178                                        llvm::GlobalValue *GV) {
1179   SetCommonAttributes(D, GV);
1180 
1181   // Process the dllexport attribute based on whether the original definition
1182   // (not necessarily the aliasee) was exported.
1183   if (D->hasAttr<DLLExportAttr>())
1184     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1185 }
1186 
1187 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1188                                           llvm::GlobalObject *GO) {
1189   SetCommonAttributes(D, GO);
1190 
1191   if (D) {
1192     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1193       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1194         GV->addAttribute("bss-section", SA->getName());
1195       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1196         GV->addAttribute("data-section", SA->getName());
1197       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1198         GV->addAttribute("rodata-section", SA->getName());
1199     }
1200 
1201     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1202       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1203        if (!D->getAttr<SectionAttr>())
1204          F->addFnAttr("implicit-section-name", SA->getName());
1205     }
1206 
1207     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1208       GO->setSection(SA->getName());
1209   }
1210 
1211   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1212 }
1213 
1214 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1215                                                   llvm::Function *F,
1216                                                   const CGFunctionInfo &FI) {
1217   SetLLVMFunctionAttributes(D, FI, F);
1218   SetLLVMFunctionAttributesForDefinition(D, F);
1219 
1220   F->setLinkage(llvm::Function::InternalLinkage);
1221 
1222   setNonAliasAttributes(D, F);
1223 }
1224 
1225 static void setLinkageForGV(llvm::GlobalValue *GV,
1226                             const NamedDecl *ND) {
1227   // Set linkage and visibility in case we never see a definition.
1228   LinkageInfo LV = ND->getLinkageAndVisibility();
1229   if (!isExternallyVisible(LV.getLinkage())) {
1230     // Don't set internal linkage on declarations.
1231   } else {
1232     if (ND->hasAttr<DLLImportAttr>()) {
1233       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1234       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1235     } else if (ND->hasAttr<DLLExportAttr>()) {
1236       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1237     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1238       // "extern_weak" is overloaded in LLVM; we probably should have
1239       // separate linkage types for this.
1240       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1241     }
1242   }
1243 }
1244 
1245 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1246                                                llvm::Function *F) {
1247   // Only if we are checking indirect calls.
1248   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1249     return;
1250 
1251   // Non-static class methods are handled via vtable pointer checks elsewhere.
1252   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1253     return;
1254 
1255   // Additionally, if building with cross-DSO support...
1256   if (CodeGenOpts.SanitizeCfiCrossDso) {
1257     // Skip available_externally functions. They won't be codegen'ed in the
1258     // current module anyway.
1259     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1260       return;
1261   }
1262 
1263   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1264   F->addTypeMetadata(0, MD);
1265   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1266 
1267   // Emit a hash-based bit set entry for cross-DSO calls.
1268   if (CodeGenOpts.SanitizeCfiCrossDso)
1269     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1270       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1271 }
1272 
1273 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1274                                           bool IsIncompleteFunction,
1275                                           bool IsThunk,
1276                                           ForDefinition_t IsForDefinition) {
1277 
1278   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1279     // If this is an intrinsic function, set the function's attributes
1280     // to the intrinsic's attributes.
1281     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1282     return;
1283   }
1284 
1285   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1286 
1287   if (!IsIncompleteFunction) {
1288     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1289     // Setup target-specific attributes.
1290     if (!IsForDefinition)
1291       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1292                                                  NotForDefinition);
1293   }
1294 
1295   // Add the Returned attribute for "this", except for iOS 5 and earlier
1296   // where substantial code, including the libstdc++ dylib, was compiled with
1297   // GCC and does not actually return "this".
1298   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1299       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1300     assert(!F->arg_empty() &&
1301            F->arg_begin()->getType()
1302              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1303            "unexpected this return");
1304     F->addAttribute(1, llvm::Attribute::Returned);
1305   }
1306 
1307   // Only a few attributes are set on declarations; these may later be
1308   // overridden by a definition.
1309 
1310   setLinkageForGV(F, FD);
1311   setGlobalVisibility(F, FD, NotForDefinition);
1312 
1313   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1314     F->addFnAttr("implicit-section-name");
1315   }
1316 
1317   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1318     F->setSection(SA->getName());
1319 
1320   if (FD->isReplaceableGlobalAllocationFunction()) {
1321     // A replaceable global allocation function does not act like a builtin by
1322     // default, only if it is invoked by a new-expression or delete-expression.
1323     F->addAttribute(llvm::AttributeList::FunctionIndex,
1324                     llvm::Attribute::NoBuiltin);
1325 
1326     // A sane operator new returns a non-aliasing pointer.
1327     // FIXME: Also add NonNull attribute to the return value
1328     // for the non-nothrow forms?
1329     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1330     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1331         (Kind == OO_New || Kind == OO_Array_New))
1332       F->addAttribute(llvm::AttributeList::ReturnIndex,
1333                       llvm::Attribute::NoAlias);
1334   }
1335 
1336   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1337     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1338   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1339     if (MD->isVirtual())
1340       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1341 
1342   // Don't emit entries for function declarations in the cross-DSO mode. This
1343   // is handled with better precision by the receiving DSO.
1344   if (!CodeGenOpts.SanitizeCfiCrossDso)
1345     CreateFunctionTypeMetadata(FD, F);
1346 
1347   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1348     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1349 }
1350 
1351 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1352   assert(!GV->isDeclaration() &&
1353          "Only globals with definition can force usage.");
1354   LLVMUsed.emplace_back(GV);
1355 }
1356 
1357 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1358   assert(!GV->isDeclaration() &&
1359          "Only globals with definition can force usage.");
1360   LLVMCompilerUsed.emplace_back(GV);
1361 }
1362 
1363 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1364                      std::vector<llvm::WeakTrackingVH> &List) {
1365   // Don't create llvm.used if there is no need.
1366   if (List.empty())
1367     return;
1368 
1369   // Convert List to what ConstantArray needs.
1370   SmallVector<llvm::Constant*, 8> UsedArray;
1371   UsedArray.resize(List.size());
1372   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1373     UsedArray[i] =
1374         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1375             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1376   }
1377 
1378   if (UsedArray.empty())
1379     return;
1380   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1381 
1382   auto *GV = new llvm::GlobalVariable(
1383       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1384       llvm::ConstantArray::get(ATy, UsedArray), Name);
1385 
1386   GV->setSection("llvm.metadata");
1387 }
1388 
1389 void CodeGenModule::emitLLVMUsed() {
1390   emitUsed(*this, "llvm.used", LLVMUsed);
1391   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1392 }
1393 
1394 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1395   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1396   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1397 }
1398 
1399 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1400   llvm::SmallString<32> Opt;
1401   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1402   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1403   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1404 }
1405 
1406 void CodeGenModule::AddDependentLib(StringRef Lib) {
1407   llvm::SmallString<24> Opt;
1408   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1409   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1410   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1411 }
1412 
1413 /// \brief Add link options implied by the given module, including modules
1414 /// it depends on, using a postorder walk.
1415 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1416                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1417                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1418   // Import this module's parent.
1419   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1420     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1421   }
1422 
1423   // Import this module's dependencies.
1424   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1425     if (Visited.insert(Mod->Imports[I - 1]).second)
1426       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1427   }
1428 
1429   // Add linker options to link against the libraries/frameworks
1430   // described by this module.
1431   llvm::LLVMContext &Context = CGM.getLLVMContext();
1432   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1433     // Link against a framework.  Frameworks are currently Darwin only, so we
1434     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1435     if (Mod->LinkLibraries[I-1].IsFramework) {
1436       llvm::Metadata *Args[2] = {
1437           llvm::MDString::get(Context, "-framework"),
1438           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1439 
1440       Metadata.push_back(llvm::MDNode::get(Context, Args));
1441       continue;
1442     }
1443 
1444     // Link against a library.
1445     llvm::SmallString<24> Opt;
1446     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1447       Mod->LinkLibraries[I-1].Library, Opt);
1448     auto *OptString = llvm::MDString::get(Context, Opt);
1449     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1450   }
1451 }
1452 
1453 void CodeGenModule::EmitModuleLinkOptions() {
1454   // Collect the set of all of the modules we want to visit to emit link
1455   // options, which is essentially the imported modules and all of their
1456   // non-explicit child modules.
1457   llvm::SetVector<clang::Module *> LinkModules;
1458   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1459   SmallVector<clang::Module *, 16> Stack;
1460 
1461   // Seed the stack with imported modules.
1462   for (Module *M : ImportedModules) {
1463     // Do not add any link flags when an implementation TU of a module imports
1464     // a header of that same module.
1465     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1466         !getLangOpts().isCompilingModule())
1467       continue;
1468     if (Visited.insert(M).second)
1469       Stack.push_back(M);
1470   }
1471 
1472   // Find all of the modules to import, making a little effort to prune
1473   // non-leaf modules.
1474   while (!Stack.empty()) {
1475     clang::Module *Mod = Stack.pop_back_val();
1476 
1477     bool AnyChildren = false;
1478 
1479     // Visit the submodules of this module.
1480     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1481                                         SubEnd = Mod->submodule_end();
1482          Sub != SubEnd; ++Sub) {
1483       // Skip explicit children; they need to be explicitly imported to be
1484       // linked against.
1485       if ((*Sub)->IsExplicit)
1486         continue;
1487 
1488       if (Visited.insert(*Sub).second) {
1489         Stack.push_back(*Sub);
1490         AnyChildren = true;
1491       }
1492     }
1493 
1494     // We didn't find any children, so add this module to the list of
1495     // modules to link against.
1496     if (!AnyChildren) {
1497       LinkModules.insert(Mod);
1498     }
1499   }
1500 
1501   // Add link options for all of the imported modules in reverse topological
1502   // order.  We don't do anything to try to order import link flags with respect
1503   // to linker options inserted by things like #pragma comment().
1504   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1505   Visited.clear();
1506   for (Module *M : LinkModules)
1507     if (Visited.insert(M).second)
1508       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1509   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1510   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1511 
1512   // Add the linker options metadata flag.
1513   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1514   for (auto *MD : LinkerOptionsMetadata)
1515     NMD->addOperand(MD);
1516 }
1517 
1518 void CodeGenModule::EmitDeferred() {
1519   // Emit code for any potentially referenced deferred decls.  Since a
1520   // previously unused static decl may become used during the generation of code
1521   // for a static function, iterate until no changes are made.
1522 
1523   if (!DeferredVTables.empty()) {
1524     EmitDeferredVTables();
1525 
1526     // Emitting a vtable doesn't directly cause more vtables to
1527     // become deferred, although it can cause functions to be
1528     // emitted that then need those vtables.
1529     assert(DeferredVTables.empty());
1530   }
1531 
1532   // Stop if we're out of both deferred vtables and deferred declarations.
1533   if (DeferredDeclsToEmit.empty())
1534     return;
1535 
1536   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1537   // work, it will not interfere with this.
1538   std::vector<GlobalDecl> CurDeclsToEmit;
1539   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1540 
1541   for (GlobalDecl &D : CurDeclsToEmit) {
1542     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1543     // to get GlobalValue with exactly the type we need, not something that
1544     // might had been created for another decl with the same mangled name but
1545     // different type.
1546     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1547         GetAddrOfGlobal(D, ForDefinition));
1548 
1549     // In case of different address spaces, we may still get a cast, even with
1550     // IsForDefinition equal to true. Query mangled names table to get
1551     // GlobalValue.
1552     if (!GV)
1553       GV = GetGlobalValue(getMangledName(D));
1554 
1555     // Make sure GetGlobalValue returned non-null.
1556     assert(GV);
1557 
1558     // Check to see if we've already emitted this.  This is necessary
1559     // for a couple of reasons: first, decls can end up in the
1560     // deferred-decls queue multiple times, and second, decls can end
1561     // up with definitions in unusual ways (e.g. by an extern inline
1562     // function acquiring a strong function redefinition).  Just
1563     // ignore these cases.
1564     if (!GV->isDeclaration())
1565       continue;
1566 
1567     // Otherwise, emit the definition and move on to the next one.
1568     EmitGlobalDefinition(D, GV);
1569 
1570     // If we found out that we need to emit more decls, do that recursively.
1571     // This has the advantage that the decls are emitted in a DFS and related
1572     // ones are close together, which is convenient for testing.
1573     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1574       EmitDeferred();
1575       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1576     }
1577   }
1578 }
1579 
1580 void CodeGenModule::EmitVTablesOpportunistically() {
1581   // Try to emit external vtables as available_externally if they have emitted
1582   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1583   // is not allowed to create new references to things that need to be emitted
1584   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1585 
1586   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1587          && "Only emit opportunistic vtables with optimizations");
1588 
1589   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1590     assert(getVTables().isVTableExternal(RD) &&
1591            "This queue should only contain external vtables");
1592     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1593       VTables.GenerateClassData(RD);
1594   }
1595   OpportunisticVTables.clear();
1596 }
1597 
1598 void CodeGenModule::EmitGlobalAnnotations() {
1599   if (Annotations.empty())
1600     return;
1601 
1602   // Create a new global variable for the ConstantStruct in the Module.
1603   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1604     Annotations[0]->getType(), Annotations.size()), Annotations);
1605   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1606                                       llvm::GlobalValue::AppendingLinkage,
1607                                       Array, "llvm.global.annotations");
1608   gv->setSection(AnnotationSection);
1609 }
1610 
1611 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1612   llvm::Constant *&AStr = AnnotationStrings[Str];
1613   if (AStr)
1614     return AStr;
1615 
1616   // Not found yet, create a new global.
1617   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1618   auto *gv =
1619       new llvm::GlobalVariable(getModule(), s->getType(), true,
1620                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1621   gv->setSection(AnnotationSection);
1622   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1623   AStr = gv;
1624   return gv;
1625 }
1626 
1627 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1628   SourceManager &SM = getContext().getSourceManager();
1629   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1630   if (PLoc.isValid())
1631     return EmitAnnotationString(PLoc.getFilename());
1632   return EmitAnnotationString(SM.getBufferName(Loc));
1633 }
1634 
1635 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1636   SourceManager &SM = getContext().getSourceManager();
1637   PresumedLoc PLoc = SM.getPresumedLoc(L);
1638   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1639     SM.getExpansionLineNumber(L);
1640   return llvm::ConstantInt::get(Int32Ty, LineNo);
1641 }
1642 
1643 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1644                                                 const AnnotateAttr *AA,
1645                                                 SourceLocation L) {
1646   // Get the globals for file name, annotation, and the line number.
1647   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1648                  *UnitGV = EmitAnnotationUnit(L),
1649                  *LineNoCst = EmitAnnotationLineNo(L);
1650 
1651   // Create the ConstantStruct for the global annotation.
1652   llvm::Constant *Fields[4] = {
1653     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1654     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1655     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1656     LineNoCst
1657   };
1658   return llvm::ConstantStruct::getAnon(Fields);
1659 }
1660 
1661 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1662                                          llvm::GlobalValue *GV) {
1663   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1664   // Get the struct elements for these annotations.
1665   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1666     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1667 }
1668 
1669 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1670                                            llvm::Function *Fn,
1671                                            SourceLocation Loc) const {
1672   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1673   // Blacklist by function name.
1674   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1675     return true;
1676   // Blacklist by location.
1677   if (Loc.isValid())
1678     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1679   // If location is unknown, this may be a compiler-generated function. Assume
1680   // it's located in the main file.
1681   auto &SM = Context.getSourceManager();
1682   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1683     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1684   }
1685   return false;
1686 }
1687 
1688 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1689                                            SourceLocation Loc, QualType Ty,
1690                                            StringRef Category) const {
1691   // For now globals can be blacklisted only in ASan and KASan.
1692   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1693       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1694   if (!EnabledAsanMask)
1695     return false;
1696   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1697   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1698     return true;
1699   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1700     return true;
1701   // Check global type.
1702   if (!Ty.isNull()) {
1703     // Drill down the array types: if global variable of a fixed type is
1704     // blacklisted, we also don't instrument arrays of them.
1705     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1706       Ty = AT->getElementType();
1707     Ty = Ty.getCanonicalType().getUnqualifiedType();
1708     // We allow to blacklist only record types (classes, structs etc.)
1709     if (Ty->isRecordType()) {
1710       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1711       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1712         return true;
1713     }
1714   }
1715   return false;
1716 }
1717 
1718 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1719                                    StringRef Category) const {
1720   if (!LangOpts.XRayInstrument)
1721     return false;
1722   const auto &XRayFilter = getContext().getXRayFilter();
1723   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1724   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1725   if (Loc.isValid())
1726     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1727   if (Attr == ImbueAttr::NONE)
1728     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1729   switch (Attr) {
1730   case ImbueAttr::NONE:
1731     return false;
1732   case ImbueAttr::ALWAYS:
1733     Fn->addFnAttr("function-instrument", "xray-always");
1734     break;
1735   case ImbueAttr::ALWAYS_ARG1:
1736     Fn->addFnAttr("function-instrument", "xray-always");
1737     Fn->addFnAttr("xray-log-args", "1");
1738     break;
1739   case ImbueAttr::NEVER:
1740     Fn->addFnAttr("function-instrument", "xray-never");
1741     break;
1742   }
1743   return true;
1744 }
1745 
1746 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1747   // Never defer when EmitAllDecls is specified.
1748   if (LangOpts.EmitAllDecls)
1749     return true;
1750 
1751   return getContext().DeclMustBeEmitted(Global);
1752 }
1753 
1754 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1755   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1756     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1757       // Implicit template instantiations may change linkage if they are later
1758       // explicitly instantiated, so they should not be emitted eagerly.
1759       return false;
1760   if (const auto *VD = dyn_cast<VarDecl>(Global))
1761     if (Context.getInlineVariableDefinitionKind(VD) ==
1762         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1763       // A definition of an inline constexpr static data member may change
1764       // linkage later if it's redeclared outside the class.
1765       return false;
1766   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1767   // codegen for global variables, because they may be marked as threadprivate.
1768   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1769       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1770     return false;
1771 
1772   return true;
1773 }
1774 
1775 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1776     const CXXUuidofExpr* E) {
1777   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1778   // well-formed.
1779   StringRef Uuid = E->getUuidStr();
1780   std::string Name = "_GUID_" + Uuid.lower();
1781   std::replace(Name.begin(), Name.end(), '-', '_');
1782 
1783   // The UUID descriptor should be pointer aligned.
1784   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1785 
1786   // Look for an existing global.
1787   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1788     return ConstantAddress(GV, Alignment);
1789 
1790   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1791   assert(Init && "failed to initialize as constant");
1792 
1793   auto *GV = new llvm::GlobalVariable(
1794       getModule(), Init->getType(),
1795       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1796   if (supportsCOMDAT())
1797     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1798   return ConstantAddress(GV, Alignment);
1799 }
1800 
1801 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1802   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1803   assert(AA && "No alias?");
1804 
1805   CharUnits Alignment = getContext().getDeclAlign(VD);
1806   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1807 
1808   // See if there is already something with the target's name in the module.
1809   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1810   if (Entry) {
1811     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1812     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1813     return ConstantAddress(Ptr, Alignment);
1814   }
1815 
1816   llvm::Constant *Aliasee;
1817   if (isa<llvm::FunctionType>(DeclTy))
1818     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1819                                       GlobalDecl(cast<FunctionDecl>(VD)),
1820                                       /*ForVTable=*/false);
1821   else
1822     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1823                                     llvm::PointerType::getUnqual(DeclTy),
1824                                     nullptr);
1825 
1826   auto *F = cast<llvm::GlobalValue>(Aliasee);
1827   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1828   WeakRefReferences.insert(F);
1829 
1830   return ConstantAddress(Aliasee, Alignment);
1831 }
1832 
1833 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1834   const auto *Global = cast<ValueDecl>(GD.getDecl());
1835 
1836   // Weak references don't produce any output by themselves.
1837   if (Global->hasAttr<WeakRefAttr>())
1838     return;
1839 
1840   // If this is an alias definition (which otherwise looks like a declaration)
1841   // emit it now.
1842   if (Global->hasAttr<AliasAttr>())
1843     return EmitAliasDefinition(GD);
1844 
1845   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1846   if (Global->hasAttr<IFuncAttr>())
1847     return emitIFuncDefinition(GD);
1848 
1849   // If this is CUDA, be selective about which declarations we emit.
1850   if (LangOpts.CUDA) {
1851     if (LangOpts.CUDAIsDevice) {
1852       if (!Global->hasAttr<CUDADeviceAttr>() &&
1853           !Global->hasAttr<CUDAGlobalAttr>() &&
1854           !Global->hasAttr<CUDAConstantAttr>() &&
1855           !Global->hasAttr<CUDASharedAttr>())
1856         return;
1857     } else {
1858       // We need to emit host-side 'shadows' for all global
1859       // device-side variables because the CUDA runtime needs their
1860       // size and host-side address in order to provide access to
1861       // their device-side incarnations.
1862 
1863       // So device-only functions are the only things we skip.
1864       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1865           Global->hasAttr<CUDADeviceAttr>())
1866         return;
1867 
1868       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1869              "Expected Variable or Function");
1870     }
1871   }
1872 
1873   if (LangOpts.OpenMP) {
1874     // If this is OpenMP device, check if it is legal to emit this global
1875     // normally.
1876     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1877       return;
1878     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1879       if (MustBeEmitted(Global))
1880         EmitOMPDeclareReduction(DRD);
1881       return;
1882     }
1883   }
1884 
1885   // Ignore declarations, they will be emitted on their first use.
1886   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1887     // Forward declarations are emitted lazily on first use.
1888     if (!FD->doesThisDeclarationHaveABody()) {
1889       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1890         return;
1891 
1892       StringRef MangledName = getMangledName(GD);
1893 
1894       // Compute the function info and LLVM type.
1895       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1896       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1897 
1898       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1899                               /*DontDefer=*/false);
1900       return;
1901     }
1902   } else {
1903     const auto *VD = cast<VarDecl>(Global);
1904     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1905     // We need to emit device-side global CUDA variables even if a
1906     // variable does not have a definition -- we still need to define
1907     // host-side shadow for it.
1908     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1909                            !VD->hasDefinition() &&
1910                            (VD->hasAttr<CUDAConstantAttr>() ||
1911                             VD->hasAttr<CUDADeviceAttr>());
1912     if (!MustEmitForCuda &&
1913         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1914         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1915       // If this declaration may have caused an inline variable definition to
1916       // change linkage, make sure that it's emitted.
1917       if (Context.getInlineVariableDefinitionKind(VD) ==
1918           ASTContext::InlineVariableDefinitionKind::Strong)
1919         GetAddrOfGlobalVar(VD);
1920       return;
1921     }
1922   }
1923 
1924   // Defer code generation to first use when possible, e.g. if this is an inline
1925   // function. If the global must always be emitted, do it eagerly if possible
1926   // to benefit from cache locality.
1927   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1928     // Emit the definition if it can't be deferred.
1929     EmitGlobalDefinition(GD);
1930     return;
1931   }
1932 
1933   // If we're deferring emission of a C++ variable with an
1934   // initializer, remember the order in which it appeared in the file.
1935   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1936       cast<VarDecl>(Global)->hasInit()) {
1937     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1938     CXXGlobalInits.push_back(nullptr);
1939   }
1940 
1941   StringRef MangledName = getMangledName(GD);
1942   if (GetGlobalValue(MangledName) != nullptr) {
1943     // The value has already been used and should therefore be emitted.
1944     addDeferredDeclToEmit(GD);
1945   } else if (MustBeEmitted(Global)) {
1946     // The value must be emitted, but cannot be emitted eagerly.
1947     assert(!MayBeEmittedEagerly(Global));
1948     addDeferredDeclToEmit(GD);
1949   } else {
1950     // Otherwise, remember that we saw a deferred decl with this name.  The
1951     // first use of the mangled name will cause it to move into
1952     // DeferredDeclsToEmit.
1953     DeferredDecls[MangledName] = GD;
1954   }
1955 }
1956 
1957 // Check if T is a class type with a destructor that's not dllimport.
1958 static bool HasNonDllImportDtor(QualType T) {
1959   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1960     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1961       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1962         return true;
1963 
1964   return false;
1965 }
1966 
1967 namespace {
1968   struct FunctionIsDirectlyRecursive :
1969     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1970     const StringRef Name;
1971     const Builtin::Context &BI;
1972     bool Result;
1973     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1974       Name(N), BI(C), Result(false) {
1975     }
1976     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1977 
1978     bool TraverseCallExpr(CallExpr *E) {
1979       const FunctionDecl *FD = E->getDirectCallee();
1980       if (!FD)
1981         return true;
1982       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1983       if (Attr && Name == Attr->getLabel()) {
1984         Result = true;
1985         return false;
1986       }
1987       unsigned BuiltinID = FD->getBuiltinID();
1988       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1989         return true;
1990       StringRef BuiltinName = BI.getName(BuiltinID);
1991       if (BuiltinName.startswith("__builtin_") &&
1992           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1993         Result = true;
1994         return false;
1995       }
1996       return true;
1997     }
1998   };
1999 
2000   // Make sure we're not referencing non-imported vars or functions.
2001   struct DLLImportFunctionVisitor
2002       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2003     bool SafeToInline = true;
2004 
2005     bool shouldVisitImplicitCode() const { return true; }
2006 
2007     bool VisitVarDecl(VarDecl *VD) {
2008       if (VD->getTLSKind()) {
2009         // A thread-local variable cannot be imported.
2010         SafeToInline = false;
2011         return SafeToInline;
2012       }
2013 
2014       // A variable definition might imply a destructor call.
2015       if (VD->isThisDeclarationADefinition())
2016         SafeToInline = !HasNonDllImportDtor(VD->getType());
2017 
2018       return SafeToInline;
2019     }
2020 
2021     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2022       if (const auto *D = E->getTemporary()->getDestructor())
2023         SafeToInline = D->hasAttr<DLLImportAttr>();
2024       return SafeToInline;
2025     }
2026 
2027     bool VisitDeclRefExpr(DeclRefExpr *E) {
2028       ValueDecl *VD = E->getDecl();
2029       if (isa<FunctionDecl>(VD))
2030         SafeToInline = VD->hasAttr<DLLImportAttr>();
2031       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2032         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2033       return SafeToInline;
2034     }
2035 
2036     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2037       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2038       return SafeToInline;
2039     }
2040 
2041     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2042       CXXMethodDecl *M = E->getMethodDecl();
2043       if (!M) {
2044         // Call through a pointer to member function. This is safe to inline.
2045         SafeToInline = true;
2046       } else {
2047         SafeToInline = M->hasAttr<DLLImportAttr>();
2048       }
2049       return SafeToInline;
2050     }
2051 
2052     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2053       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2054       return SafeToInline;
2055     }
2056 
2057     bool VisitCXXNewExpr(CXXNewExpr *E) {
2058       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2059       return SafeToInline;
2060     }
2061   };
2062 }
2063 
2064 // isTriviallyRecursive - Check if this function calls another
2065 // decl that, because of the asm attribute or the other decl being a builtin,
2066 // ends up pointing to itself.
2067 bool
2068 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2069   StringRef Name;
2070   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2071     // asm labels are a special kind of mangling we have to support.
2072     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2073     if (!Attr)
2074       return false;
2075     Name = Attr->getLabel();
2076   } else {
2077     Name = FD->getName();
2078   }
2079 
2080   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2081   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2082   return Walker.Result;
2083 }
2084 
2085 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2086   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2087     return true;
2088   const auto *F = cast<FunctionDecl>(GD.getDecl());
2089   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2090     return false;
2091 
2092   if (F->hasAttr<DLLImportAttr>()) {
2093     // Check whether it would be safe to inline this dllimport function.
2094     DLLImportFunctionVisitor Visitor;
2095     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2096     if (!Visitor.SafeToInline)
2097       return false;
2098 
2099     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2100       // Implicit destructor invocations aren't captured in the AST, so the
2101       // check above can't see them. Check for them manually here.
2102       for (const Decl *Member : Dtor->getParent()->decls())
2103         if (isa<FieldDecl>(Member))
2104           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2105             return false;
2106       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2107         if (HasNonDllImportDtor(B.getType()))
2108           return false;
2109     }
2110   }
2111 
2112   // PR9614. Avoid cases where the source code is lying to us. An available
2113   // externally function should have an equivalent function somewhere else,
2114   // but a function that calls itself is clearly not equivalent to the real
2115   // implementation.
2116   // This happens in glibc's btowc and in some configure checks.
2117   return !isTriviallyRecursive(F);
2118 }
2119 
2120 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2121   return CodeGenOpts.OptimizationLevel > 0;
2122 }
2123 
2124 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2125   const auto *D = cast<ValueDecl>(GD.getDecl());
2126 
2127   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2128                                  Context.getSourceManager(),
2129                                  "Generating code for declaration");
2130 
2131   if (isa<FunctionDecl>(D)) {
2132     // At -O0, don't generate IR for functions with available_externally
2133     // linkage.
2134     if (!shouldEmitFunction(GD))
2135       return;
2136 
2137     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2138       // Make sure to emit the definition(s) before we emit the thunks.
2139       // This is necessary for the generation of certain thunks.
2140       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2141         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2142       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2143         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2144       else
2145         EmitGlobalFunctionDefinition(GD, GV);
2146 
2147       if (Method->isVirtual())
2148         getVTables().EmitThunks(GD);
2149 
2150       return;
2151     }
2152 
2153     return EmitGlobalFunctionDefinition(GD, GV);
2154   }
2155 
2156   if (const auto *VD = dyn_cast<VarDecl>(D))
2157     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2158 
2159   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2160 }
2161 
2162 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2163                                                       llvm::Function *NewFn);
2164 
2165 void CodeGenModule::emitMultiVersionFunctions() {
2166   for (GlobalDecl GD : MultiVersionFuncs) {
2167     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2168     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2169     getContext().forEachMultiversionedFunctionVersion(
2170         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2171           GlobalDecl CurGD{
2172               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2173           StringRef MangledName = getMangledName(CurGD);
2174           llvm::Constant *Func = GetGlobalValue(MangledName);
2175           if (!Func) {
2176             if (CurFD->isDefined()) {
2177               EmitGlobalFunctionDefinition(CurGD, nullptr);
2178               Func = GetGlobalValue(MangledName);
2179             } else {
2180               const CGFunctionInfo &FI =
2181                   getTypes().arrangeGlobalDeclaration(GD);
2182               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2183               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2184                                        /*DontDefer=*/false, ForDefinition);
2185             }
2186             assert(Func && "This should have just been created");
2187           }
2188           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2189                                CurFD->getAttr<TargetAttr>()->parse());
2190         });
2191 
2192     llvm::Function *ResolverFunc = cast<llvm::Function>(
2193         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2194     if (supportsCOMDAT())
2195       ResolverFunc->setComdat(
2196           getModule().getOrInsertComdat(ResolverFunc->getName()));
2197     std::stable_sort(
2198         Options.begin(), Options.end(),
2199         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2200     CodeGenFunction CGF(*this);
2201     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2202   }
2203 }
2204 
2205 /// If an ifunc for the specified mangled name is not in the module, create and
2206 /// return an llvm IFunc Function with the specified type.
2207 llvm::Constant *
2208 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2209                                             StringRef MangledName,
2210                                             const FunctionDecl *FD) {
2211   std::string IFuncName = (MangledName + ".ifunc").str();
2212   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2213     return IFuncGV;
2214 
2215   // Since this is the first time we've created this IFunc, make sure
2216   // that we put this multiversioned function into the list to be
2217   // replaced later.
2218   MultiVersionFuncs.push_back(GD);
2219 
2220   std::string ResolverName = (MangledName + ".resolver").str();
2221   llvm::Type *ResolverType = llvm::FunctionType::get(
2222       llvm::PointerType::get(DeclTy,
2223                              Context.getTargetAddressSpace(FD->getType())),
2224       false);
2225   llvm::Constant *Resolver =
2226       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2227                               /*ForVTable=*/false);
2228   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2229       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2230   GIF->setName(IFuncName);
2231   SetCommonAttributes(FD, GIF);
2232 
2233   return GIF;
2234 }
2235 
2236 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2237 /// module, create and return an llvm Function with the specified type. If there
2238 /// is something in the module with the specified name, return it potentially
2239 /// bitcasted to the right type.
2240 ///
2241 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2242 /// to set the attributes on the function when it is first created.
2243 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2244     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2245     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2246     ForDefinition_t IsForDefinition) {
2247   const Decl *D = GD.getDecl();
2248 
2249   // Any attempts to use a MultiVersion function should result in retrieving
2250   // the iFunc instead. Name Mangling will handle the rest of the changes.
2251   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2252     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2253       UpdateMultiVersionNames(GD, FD);
2254       if (!IsForDefinition)
2255         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2256     }
2257   }
2258 
2259   // Lookup the entry, lazily creating it if necessary.
2260   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2261   if (Entry) {
2262     if (WeakRefReferences.erase(Entry)) {
2263       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2264       if (FD && !FD->hasAttr<WeakAttr>())
2265         Entry->setLinkage(llvm::Function::ExternalLinkage);
2266     }
2267 
2268     // Handle dropped DLL attributes.
2269     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2270       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2271 
2272     // If there are two attempts to define the same mangled name, issue an
2273     // error.
2274     if (IsForDefinition && !Entry->isDeclaration()) {
2275       GlobalDecl OtherGD;
2276       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2277       // to make sure that we issue an error only once.
2278       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2279           (GD.getCanonicalDecl().getDecl() !=
2280            OtherGD.getCanonicalDecl().getDecl()) &&
2281           DiagnosedConflictingDefinitions.insert(GD).second) {
2282         getDiags().Report(D->getLocation(),
2283                           diag::err_duplicate_mangled_name);
2284         getDiags().Report(OtherGD.getDecl()->getLocation(),
2285                           diag::note_previous_definition);
2286       }
2287     }
2288 
2289     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2290         (Entry->getType()->getElementType() == Ty)) {
2291       return Entry;
2292     }
2293 
2294     // Make sure the result is of the correct type.
2295     // (If function is requested for a definition, we always need to create a new
2296     // function, not just return a bitcast.)
2297     if (!IsForDefinition)
2298       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2299   }
2300 
2301   // This function doesn't have a complete type (for example, the return
2302   // type is an incomplete struct). Use a fake type instead, and make
2303   // sure not to try to set attributes.
2304   bool IsIncompleteFunction = false;
2305 
2306   llvm::FunctionType *FTy;
2307   if (isa<llvm::FunctionType>(Ty)) {
2308     FTy = cast<llvm::FunctionType>(Ty);
2309   } else {
2310     FTy = llvm::FunctionType::get(VoidTy, false);
2311     IsIncompleteFunction = true;
2312   }
2313 
2314   llvm::Function *F =
2315       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2316                              Entry ? StringRef() : MangledName, &getModule());
2317 
2318   // If we already created a function with the same mangled name (but different
2319   // type) before, take its name and add it to the list of functions to be
2320   // replaced with F at the end of CodeGen.
2321   //
2322   // This happens if there is a prototype for a function (e.g. "int f()") and
2323   // then a definition of a different type (e.g. "int f(int x)").
2324   if (Entry) {
2325     F->takeName(Entry);
2326 
2327     // This might be an implementation of a function without a prototype, in
2328     // which case, try to do special replacement of calls which match the new
2329     // prototype.  The really key thing here is that we also potentially drop
2330     // arguments from the call site so as to make a direct call, which makes the
2331     // inliner happier and suppresses a number of optimizer warnings (!) about
2332     // dropping arguments.
2333     if (!Entry->use_empty()) {
2334       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2335       Entry->removeDeadConstantUsers();
2336     }
2337 
2338     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2339         F, Entry->getType()->getElementType()->getPointerTo());
2340     addGlobalValReplacement(Entry, BC);
2341   }
2342 
2343   assert(F->getName() == MangledName && "name was uniqued!");
2344   if (D)
2345     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2346                           IsForDefinition);
2347   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2348     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2349     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2350   }
2351 
2352   if (!DontDefer) {
2353     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2354     // each other bottoming out with the base dtor.  Therefore we emit non-base
2355     // dtors on usage, even if there is no dtor definition in the TU.
2356     if (D && isa<CXXDestructorDecl>(D) &&
2357         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2358                                            GD.getDtorType()))
2359       addDeferredDeclToEmit(GD);
2360 
2361     // This is the first use or definition of a mangled name.  If there is a
2362     // deferred decl with this name, remember that we need to emit it at the end
2363     // of the file.
2364     auto DDI = DeferredDecls.find(MangledName);
2365     if (DDI != DeferredDecls.end()) {
2366       // Move the potentially referenced deferred decl to the
2367       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2368       // don't need it anymore).
2369       addDeferredDeclToEmit(DDI->second);
2370       DeferredDecls.erase(DDI);
2371 
2372       // Otherwise, there are cases we have to worry about where we're
2373       // using a declaration for which we must emit a definition but where
2374       // we might not find a top-level definition:
2375       //   - member functions defined inline in their classes
2376       //   - friend functions defined inline in some class
2377       //   - special member functions with implicit definitions
2378       // If we ever change our AST traversal to walk into class methods,
2379       // this will be unnecessary.
2380       //
2381       // We also don't emit a definition for a function if it's going to be an
2382       // entry in a vtable, unless it's already marked as used.
2383     } else if (getLangOpts().CPlusPlus && D) {
2384       // Look for a declaration that's lexically in a record.
2385       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2386            FD = FD->getPreviousDecl()) {
2387         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2388           if (FD->doesThisDeclarationHaveABody()) {
2389             addDeferredDeclToEmit(GD.getWithDecl(FD));
2390             break;
2391           }
2392         }
2393       }
2394     }
2395   }
2396 
2397   // Make sure the result is of the requested type.
2398   if (!IsIncompleteFunction) {
2399     assert(F->getType()->getElementType() == Ty);
2400     return F;
2401   }
2402 
2403   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2404   return llvm::ConstantExpr::getBitCast(F, PTy);
2405 }
2406 
2407 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2408 /// non-null, then this function will use the specified type if it has to
2409 /// create it (this occurs when we see a definition of the function).
2410 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2411                                                  llvm::Type *Ty,
2412                                                  bool ForVTable,
2413                                                  bool DontDefer,
2414                                               ForDefinition_t IsForDefinition) {
2415   // If there was no specific requested type, just convert it now.
2416   if (!Ty) {
2417     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2418     auto CanonTy = Context.getCanonicalType(FD->getType());
2419     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2420   }
2421 
2422   StringRef MangledName = getMangledName(GD);
2423   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2424                                  /*IsThunk=*/false, llvm::AttributeList(),
2425                                  IsForDefinition);
2426 }
2427 
2428 static const FunctionDecl *
2429 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2430   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2431   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2432 
2433   IdentifierInfo &CII = C.Idents.get(Name);
2434   for (const auto &Result : DC->lookup(&CII))
2435     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2436       return FD;
2437 
2438   if (!C.getLangOpts().CPlusPlus)
2439     return nullptr;
2440 
2441   // Demangle the premangled name from getTerminateFn()
2442   IdentifierInfo &CXXII =
2443       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2444           ? C.Idents.get("terminate")
2445           : C.Idents.get(Name);
2446 
2447   for (const auto &N : {"__cxxabiv1", "std"}) {
2448     IdentifierInfo &NS = C.Idents.get(N);
2449     for (const auto &Result : DC->lookup(&NS)) {
2450       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2451       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2452         for (const auto &Result : LSD->lookup(&NS))
2453           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2454             break;
2455 
2456       if (ND)
2457         for (const auto &Result : ND->lookup(&CXXII))
2458           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2459             return FD;
2460     }
2461   }
2462 
2463   return nullptr;
2464 }
2465 
2466 /// CreateRuntimeFunction - Create a new runtime function with the specified
2467 /// type and name.
2468 llvm::Constant *
2469 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2470                                      llvm::AttributeList ExtraAttrs,
2471                                      bool Local) {
2472   llvm::Constant *C =
2473       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2474                               /*DontDefer=*/false, /*IsThunk=*/false,
2475                               ExtraAttrs);
2476 
2477   if (auto *F = dyn_cast<llvm::Function>(C)) {
2478     if (F->empty()) {
2479       F->setCallingConv(getRuntimeCC());
2480 
2481       if (!Local && getTriple().isOSBinFormatCOFF() &&
2482           !getCodeGenOpts().LTOVisibilityPublicStd &&
2483           !getTriple().isWindowsGNUEnvironment()) {
2484         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2485         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2486           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2487           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2488         }
2489       }
2490     }
2491   }
2492 
2493   return C;
2494 }
2495 
2496 /// CreateBuiltinFunction - Create a new builtin function with the specified
2497 /// type and name.
2498 llvm::Constant *
2499 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2500                                      llvm::AttributeList ExtraAttrs) {
2501   llvm::Constant *C =
2502       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2503                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2504   if (auto *F = dyn_cast<llvm::Function>(C))
2505     if (F->empty())
2506       F->setCallingConv(getBuiltinCC());
2507   return C;
2508 }
2509 
2510 /// isTypeConstant - Determine whether an object of this type can be emitted
2511 /// as a constant.
2512 ///
2513 /// If ExcludeCtor is true, the duration when the object's constructor runs
2514 /// will not be considered. The caller will need to verify that the object is
2515 /// not written to during its construction.
2516 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2517   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2518     return false;
2519 
2520   if (Context.getLangOpts().CPlusPlus) {
2521     if (const CXXRecordDecl *Record
2522           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2523       return ExcludeCtor && !Record->hasMutableFields() &&
2524              Record->hasTrivialDestructor();
2525   }
2526 
2527   return true;
2528 }
2529 
2530 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2531 /// create and return an llvm GlobalVariable with the specified type.  If there
2532 /// is something in the module with the specified name, return it potentially
2533 /// bitcasted to the right type.
2534 ///
2535 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2536 /// to set the attributes on the global when it is first created.
2537 ///
2538 /// If IsForDefinition is true, it is guranteed that an actual global with
2539 /// type Ty will be returned, not conversion of a variable with the same
2540 /// mangled name but some other type.
2541 llvm::Constant *
2542 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2543                                      llvm::PointerType *Ty,
2544                                      const VarDecl *D,
2545                                      ForDefinition_t IsForDefinition) {
2546   // Lookup the entry, lazily creating it if necessary.
2547   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2548   if (Entry) {
2549     if (WeakRefReferences.erase(Entry)) {
2550       if (D && !D->hasAttr<WeakAttr>())
2551         Entry->setLinkage(llvm::Function::ExternalLinkage);
2552     }
2553 
2554     // Handle dropped DLL attributes.
2555     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2556       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2557 
2558     if (Entry->getType() == Ty)
2559       return Entry;
2560 
2561     // If there are two attempts to define the same mangled name, issue an
2562     // error.
2563     if (IsForDefinition && !Entry->isDeclaration()) {
2564       GlobalDecl OtherGD;
2565       const VarDecl *OtherD;
2566 
2567       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2568       // to make sure that we issue an error only once.
2569       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2570           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2571           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2572           OtherD->hasInit() &&
2573           DiagnosedConflictingDefinitions.insert(D).second) {
2574         getDiags().Report(D->getLocation(),
2575                           diag::err_duplicate_mangled_name);
2576         getDiags().Report(OtherGD.getDecl()->getLocation(),
2577                           diag::note_previous_definition);
2578       }
2579     }
2580 
2581     // Make sure the result is of the correct type.
2582     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2583       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2584 
2585     // (If global is requested for a definition, we always need to create a new
2586     // global, not just return a bitcast.)
2587     if (!IsForDefinition)
2588       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2589   }
2590 
2591   auto AddrSpace = GetGlobalVarAddressSpace(D);
2592   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2593 
2594   auto *GV = new llvm::GlobalVariable(
2595       getModule(), Ty->getElementType(), false,
2596       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2597       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2598 
2599   // If we already created a global with the same mangled name (but different
2600   // type) before, take its name and remove it from its parent.
2601   if (Entry) {
2602     GV->takeName(Entry);
2603 
2604     if (!Entry->use_empty()) {
2605       llvm::Constant *NewPtrForOldDecl =
2606           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2607       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2608     }
2609 
2610     Entry->eraseFromParent();
2611   }
2612 
2613   // This is the first use or definition of a mangled name.  If there is a
2614   // deferred decl with this name, remember that we need to emit it at the end
2615   // of the file.
2616   auto DDI = DeferredDecls.find(MangledName);
2617   if (DDI != DeferredDecls.end()) {
2618     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2619     // list, and remove it from DeferredDecls (since we don't need it anymore).
2620     addDeferredDeclToEmit(DDI->second);
2621     DeferredDecls.erase(DDI);
2622   }
2623 
2624   // Handle things which are present even on external declarations.
2625   if (D) {
2626     // FIXME: This code is overly simple and should be merged with other global
2627     // handling.
2628     GV->setConstant(isTypeConstant(D->getType(), false));
2629 
2630     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2631 
2632     setLinkageForGV(GV, D);
2633     setGlobalVisibility(GV, D, NotForDefinition);
2634 
2635     if (D->getTLSKind()) {
2636       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2637         CXXThreadLocals.push_back(D);
2638       setTLSMode(GV, *D);
2639     }
2640 
2641     // If required by the ABI, treat declarations of static data members with
2642     // inline initializers as definitions.
2643     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2644       EmitGlobalVarDefinition(D);
2645     }
2646 
2647     // Emit section information for extern variables.
2648     if (D->hasExternalStorage()) {
2649       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2650         GV->setSection(SA->getName());
2651     }
2652 
2653     // Handle XCore specific ABI requirements.
2654     if (getTriple().getArch() == llvm::Triple::xcore &&
2655         D->getLanguageLinkage() == CLanguageLinkage &&
2656         D->getType().isConstant(Context) &&
2657         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2658       GV->setSection(".cp.rodata");
2659 
2660     // Check if we a have a const declaration with an initializer, we may be
2661     // able to emit it as available_externally to expose it's value to the
2662     // optimizer.
2663     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2664         D->getType().isConstQualified() && !GV->hasInitializer() &&
2665         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2666       const auto *Record =
2667           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2668       bool HasMutableFields = Record && Record->hasMutableFields();
2669       if (!HasMutableFields) {
2670         const VarDecl *InitDecl;
2671         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2672         if (InitExpr) {
2673           ConstantEmitter emitter(*this);
2674           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2675           if (Init) {
2676             auto *InitType = Init->getType();
2677             if (GV->getType()->getElementType() != InitType) {
2678               // The type of the initializer does not match the definition.
2679               // This happens when an initializer has a different type from
2680               // the type of the global (because of padding at the end of a
2681               // structure for instance).
2682               GV->setName(StringRef());
2683               // Make a new global with the correct type, this is now guaranteed
2684               // to work.
2685               auto *NewGV = cast<llvm::GlobalVariable>(
2686                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2687 
2688               // Erase the old global, since it is no longer used.
2689               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2690               GV = NewGV;
2691             } else {
2692               GV->setInitializer(Init);
2693               GV->setConstant(true);
2694               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2695             }
2696             emitter.finalize(GV);
2697           }
2698         }
2699       }
2700     }
2701   }
2702 
2703   LangAS ExpectedAS =
2704       D ? D->getType().getAddressSpace()
2705         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2706   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2707          Ty->getPointerAddressSpace());
2708   if (AddrSpace != ExpectedAS)
2709     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2710                                                        ExpectedAS, Ty);
2711 
2712   return GV;
2713 }
2714 
2715 llvm::Constant *
2716 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2717                                ForDefinition_t IsForDefinition) {
2718   const Decl *D = GD.getDecl();
2719   if (isa<CXXConstructorDecl>(D))
2720     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2721                                 getFromCtorType(GD.getCtorType()),
2722                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2723                                 /*DontDefer=*/false, IsForDefinition);
2724   else if (isa<CXXDestructorDecl>(D))
2725     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2726                                 getFromDtorType(GD.getDtorType()),
2727                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2728                                 /*DontDefer=*/false, IsForDefinition);
2729   else if (isa<CXXMethodDecl>(D)) {
2730     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2731         cast<CXXMethodDecl>(D));
2732     auto Ty = getTypes().GetFunctionType(*FInfo);
2733     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2734                              IsForDefinition);
2735   } else if (isa<FunctionDecl>(D)) {
2736     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2737     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2738     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2739                              IsForDefinition);
2740   } else
2741     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2742                               IsForDefinition);
2743 }
2744 
2745 llvm::GlobalVariable *
2746 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2747                                       llvm::Type *Ty,
2748                                       llvm::GlobalValue::LinkageTypes Linkage) {
2749   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2750   llvm::GlobalVariable *OldGV = nullptr;
2751 
2752   if (GV) {
2753     // Check if the variable has the right type.
2754     if (GV->getType()->getElementType() == Ty)
2755       return GV;
2756 
2757     // Because C++ name mangling, the only way we can end up with an already
2758     // existing global with the same name is if it has been declared extern "C".
2759     assert(GV->isDeclaration() && "Declaration has wrong type!");
2760     OldGV = GV;
2761   }
2762 
2763   // Create a new variable.
2764   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2765                                 Linkage, nullptr, Name);
2766 
2767   if (OldGV) {
2768     // Replace occurrences of the old variable if needed.
2769     GV->takeName(OldGV);
2770 
2771     if (!OldGV->use_empty()) {
2772       llvm::Constant *NewPtrForOldDecl =
2773       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2774       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2775     }
2776 
2777     OldGV->eraseFromParent();
2778   }
2779 
2780   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2781       !GV->hasAvailableExternallyLinkage())
2782     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2783 
2784   return GV;
2785 }
2786 
2787 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2788 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2789 /// then it will be created with the specified type instead of whatever the
2790 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2791 /// that an actual global with type Ty will be returned, not conversion of a
2792 /// variable with the same mangled name but some other type.
2793 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2794                                                   llvm::Type *Ty,
2795                                            ForDefinition_t IsForDefinition) {
2796   assert(D->hasGlobalStorage() && "Not a global variable");
2797   QualType ASTTy = D->getType();
2798   if (!Ty)
2799     Ty = getTypes().ConvertTypeForMem(ASTTy);
2800 
2801   llvm::PointerType *PTy =
2802     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2803 
2804   StringRef MangledName = getMangledName(D);
2805   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2806 }
2807 
2808 /// CreateRuntimeVariable - Create a new runtime global variable with the
2809 /// specified type and name.
2810 llvm::Constant *
2811 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2812                                      StringRef Name) {
2813   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2814 }
2815 
2816 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2817   assert(!D->getInit() && "Cannot emit definite definitions here!");
2818 
2819   StringRef MangledName = getMangledName(D);
2820   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2821 
2822   // We already have a definition, not declaration, with the same mangled name.
2823   // Emitting of declaration is not required (and actually overwrites emitted
2824   // definition).
2825   if (GV && !GV->isDeclaration())
2826     return;
2827 
2828   // If we have not seen a reference to this variable yet, place it into the
2829   // deferred declarations table to be emitted if needed later.
2830   if (!MustBeEmitted(D) && !GV) {
2831       DeferredDecls[MangledName] = D;
2832       return;
2833   }
2834 
2835   // The tentative definition is the only definition.
2836   EmitGlobalVarDefinition(D);
2837 }
2838 
2839 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2840   return Context.toCharUnitsFromBits(
2841       getDataLayout().getTypeStoreSizeInBits(Ty));
2842 }
2843 
2844 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2845   LangAS AddrSpace = LangAS::Default;
2846   if (LangOpts.OpenCL) {
2847     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2848     assert(AddrSpace == LangAS::opencl_global ||
2849            AddrSpace == LangAS::opencl_constant ||
2850            AddrSpace == LangAS::opencl_local ||
2851            AddrSpace >= LangAS::FirstTargetAddressSpace);
2852     return AddrSpace;
2853   }
2854 
2855   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2856     if (D && D->hasAttr<CUDAConstantAttr>())
2857       return LangAS::cuda_constant;
2858     else if (D && D->hasAttr<CUDASharedAttr>())
2859       return LangAS::cuda_shared;
2860     else
2861       return LangAS::cuda_device;
2862   }
2863 
2864   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2865 }
2866 
2867 template<typename SomeDecl>
2868 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2869                                                llvm::GlobalValue *GV) {
2870   if (!getLangOpts().CPlusPlus)
2871     return;
2872 
2873   // Must have 'used' attribute, or else inline assembly can't rely on
2874   // the name existing.
2875   if (!D->template hasAttr<UsedAttr>())
2876     return;
2877 
2878   // Must have internal linkage and an ordinary name.
2879   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2880     return;
2881 
2882   // Must be in an extern "C" context. Entities declared directly within
2883   // a record are not extern "C" even if the record is in such a context.
2884   const SomeDecl *First = D->getFirstDecl();
2885   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2886     return;
2887 
2888   // OK, this is an internal linkage entity inside an extern "C" linkage
2889   // specification. Make a note of that so we can give it the "expected"
2890   // mangled name if nothing else is using that name.
2891   std::pair<StaticExternCMap::iterator, bool> R =
2892       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2893 
2894   // If we have multiple internal linkage entities with the same name
2895   // in extern "C" regions, none of them gets that name.
2896   if (!R.second)
2897     R.first->second = nullptr;
2898 }
2899 
2900 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2901   if (!CGM.supportsCOMDAT())
2902     return false;
2903 
2904   if (D.hasAttr<SelectAnyAttr>())
2905     return true;
2906 
2907   GVALinkage Linkage;
2908   if (auto *VD = dyn_cast<VarDecl>(&D))
2909     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2910   else
2911     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2912 
2913   switch (Linkage) {
2914   case GVA_Internal:
2915   case GVA_AvailableExternally:
2916   case GVA_StrongExternal:
2917     return false;
2918   case GVA_DiscardableODR:
2919   case GVA_StrongODR:
2920     return true;
2921   }
2922   llvm_unreachable("No such linkage");
2923 }
2924 
2925 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2926                                           llvm::GlobalObject &GO) {
2927   if (!shouldBeInCOMDAT(*this, D))
2928     return;
2929   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2930 }
2931 
2932 /// Pass IsTentative as true if you want to create a tentative definition.
2933 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2934                                             bool IsTentative) {
2935   // OpenCL global variables of sampler type are translated to function calls,
2936   // therefore no need to be translated.
2937   QualType ASTTy = D->getType();
2938   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2939     return;
2940 
2941   llvm::Constant *Init = nullptr;
2942   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2943   bool NeedsGlobalCtor = false;
2944   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2945 
2946   const VarDecl *InitDecl;
2947   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2948 
2949   Optional<ConstantEmitter> emitter;
2950 
2951   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2952   // as part of their declaration."  Sema has already checked for
2953   // error cases, so we just need to set Init to UndefValue.
2954   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2955       D->hasAttr<CUDASharedAttr>())
2956     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2957   else if (!InitExpr) {
2958     // This is a tentative definition; tentative definitions are
2959     // implicitly initialized with { 0 }.
2960     //
2961     // Note that tentative definitions are only emitted at the end of
2962     // a translation unit, so they should never have incomplete
2963     // type. In addition, EmitTentativeDefinition makes sure that we
2964     // never attempt to emit a tentative definition if a real one
2965     // exists. A use may still exists, however, so we still may need
2966     // to do a RAUW.
2967     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2968     Init = EmitNullConstant(D->getType());
2969   } else {
2970     initializedGlobalDecl = GlobalDecl(D);
2971     emitter.emplace(*this);
2972     Init = emitter->tryEmitForInitializer(*InitDecl);
2973 
2974     if (!Init) {
2975       QualType T = InitExpr->getType();
2976       if (D->getType()->isReferenceType())
2977         T = D->getType();
2978 
2979       if (getLangOpts().CPlusPlus) {
2980         Init = EmitNullConstant(T);
2981         NeedsGlobalCtor = true;
2982       } else {
2983         ErrorUnsupported(D, "static initializer");
2984         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2985       }
2986     } else {
2987       // We don't need an initializer, so remove the entry for the delayed
2988       // initializer position (just in case this entry was delayed) if we
2989       // also don't need to register a destructor.
2990       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2991         DelayedCXXInitPosition.erase(D);
2992     }
2993   }
2994 
2995   llvm::Type* InitType = Init->getType();
2996   llvm::Constant *Entry =
2997       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2998 
2999   // Strip off a bitcast if we got one back.
3000   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3001     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3002            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3003            // All zero index gep.
3004            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3005     Entry = CE->getOperand(0);
3006   }
3007 
3008   // Entry is now either a Function or GlobalVariable.
3009   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3010 
3011   // We have a definition after a declaration with the wrong type.
3012   // We must make a new GlobalVariable* and update everything that used OldGV
3013   // (a declaration or tentative definition) with the new GlobalVariable*
3014   // (which will be a definition).
3015   //
3016   // This happens if there is a prototype for a global (e.g.
3017   // "extern int x[];") and then a definition of a different type (e.g.
3018   // "int x[10];"). This also happens when an initializer has a different type
3019   // from the type of the global (this happens with unions).
3020   if (!GV || GV->getType()->getElementType() != InitType ||
3021       GV->getType()->getAddressSpace() !=
3022           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3023 
3024     // Move the old entry aside so that we'll create a new one.
3025     Entry->setName(StringRef());
3026 
3027     // Make a new global with the correct type, this is now guaranteed to work.
3028     GV = cast<llvm::GlobalVariable>(
3029         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3030 
3031     // Replace all uses of the old global with the new global
3032     llvm::Constant *NewPtrForOldDecl =
3033         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3034     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3035 
3036     // Erase the old global, since it is no longer used.
3037     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3038   }
3039 
3040   MaybeHandleStaticInExternC(D, GV);
3041 
3042   if (D->hasAttr<AnnotateAttr>())
3043     AddGlobalAnnotations(D, GV);
3044 
3045   // Set the llvm linkage type as appropriate.
3046   llvm::GlobalValue::LinkageTypes Linkage =
3047       getLLVMLinkageVarDefinition(D, GV->isConstant());
3048 
3049   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3050   // the device. [...]"
3051   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3052   // __device__, declares a variable that: [...]
3053   // Is accessible from all the threads within the grid and from the host
3054   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3055   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3056   if (GV && LangOpts.CUDA) {
3057     if (LangOpts.CUDAIsDevice) {
3058       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3059         GV->setExternallyInitialized(true);
3060     } else {
3061       // Host-side shadows of external declarations of device-side
3062       // global variables become internal definitions. These have to
3063       // be internal in order to prevent name conflicts with global
3064       // host variables with the same name in a different TUs.
3065       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3066         Linkage = llvm::GlobalValue::InternalLinkage;
3067 
3068         // Shadow variables and their properties must be registered
3069         // with CUDA runtime.
3070         unsigned Flags = 0;
3071         if (!D->hasDefinition())
3072           Flags |= CGCUDARuntime::ExternDeviceVar;
3073         if (D->hasAttr<CUDAConstantAttr>())
3074           Flags |= CGCUDARuntime::ConstantDeviceVar;
3075         getCUDARuntime().registerDeviceVar(*GV, Flags);
3076       } else if (D->hasAttr<CUDASharedAttr>())
3077         // __shared__ variables are odd. Shadows do get created, but
3078         // they are not registered with the CUDA runtime, so they
3079         // can't really be used to access their device-side
3080         // counterparts. It's not clear yet whether it's nvcc's bug or
3081         // a feature, but we've got to do the same for compatibility.
3082         Linkage = llvm::GlobalValue::InternalLinkage;
3083     }
3084   }
3085 
3086   GV->setInitializer(Init);
3087   if (emitter) emitter->finalize(GV);
3088 
3089   // If it is safe to mark the global 'constant', do so now.
3090   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3091                   isTypeConstant(D->getType(), true));
3092 
3093   // If it is in a read-only section, mark it 'constant'.
3094   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3095     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3096     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3097       GV->setConstant(true);
3098   }
3099 
3100   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3101 
3102 
3103   // On Darwin, if the normal linkage of a C++ thread_local variable is
3104   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3105   // copies within a linkage unit; otherwise, the backing variable has
3106   // internal linkage and all accesses should just be calls to the
3107   // Itanium-specified entry point, which has the normal linkage of the
3108   // variable. This is to preserve the ability to change the implementation
3109   // behind the scenes.
3110   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3111       Context.getTargetInfo().getTriple().isOSDarwin() &&
3112       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3113       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3114     Linkage = llvm::GlobalValue::InternalLinkage;
3115 
3116   GV->setLinkage(Linkage);
3117   if (D->hasAttr<DLLImportAttr>())
3118     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3119   else if (D->hasAttr<DLLExportAttr>())
3120     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3121   else
3122     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3123 
3124   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3125     // common vars aren't constant even if declared const.
3126     GV->setConstant(false);
3127     // Tentative definition of global variables may be initialized with
3128     // non-zero null pointers. In this case they should have weak linkage
3129     // since common linkage must have zero initializer and must not have
3130     // explicit section therefore cannot have non-zero initial value.
3131     if (!GV->getInitializer()->isNullValue())
3132       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3133   }
3134 
3135   setNonAliasAttributes(D, GV);
3136 
3137   if (D->getTLSKind() && !GV->isThreadLocal()) {
3138     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3139       CXXThreadLocals.push_back(D);
3140     setTLSMode(GV, *D);
3141   }
3142 
3143   maybeSetTrivialComdat(*D, *GV);
3144 
3145   // Emit the initializer function if necessary.
3146   if (NeedsGlobalCtor || NeedsGlobalDtor)
3147     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3148 
3149   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3150 
3151   // Emit global variable debug information.
3152   if (CGDebugInfo *DI = getModuleDebugInfo())
3153     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3154       DI->EmitGlobalVariable(GV, D);
3155 }
3156 
3157 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3158                                       CodeGenModule &CGM, const VarDecl *D,
3159                                       bool NoCommon) {
3160   // Don't give variables common linkage if -fno-common was specified unless it
3161   // was overridden by a NoCommon attribute.
3162   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3163     return true;
3164 
3165   // C11 6.9.2/2:
3166   //   A declaration of an identifier for an object that has file scope without
3167   //   an initializer, and without a storage-class specifier or with the
3168   //   storage-class specifier static, constitutes a tentative definition.
3169   if (D->getInit() || D->hasExternalStorage())
3170     return true;
3171 
3172   // A variable cannot be both common and exist in a section.
3173   if (D->hasAttr<SectionAttr>())
3174     return true;
3175 
3176   // A variable cannot be both common and exist in a section.
3177   // We dont try to determine which is the right section in the front-end.
3178   // If no specialized section name is applicable, it will resort to default.
3179   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3180       D->hasAttr<PragmaClangDataSectionAttr>() ||
3181       D->hasAttr<PragmaClangRodataSectionAttr>())
3182     return true;
3183 
3184   // Thread local vars aren't considered common linkage.
3185   if (D->getTLSKind())
3186     return true;
3187 
3188   // Tentative definitions marked with WeakImportAttr are true definitions.
3189   if (D->hasAttr<WeakImportAttr>())
3190     return true;
3191 
3192   // A variable cannot be both common and exist in a comdat.
3193   if (shouldBeInCOMDAT(CGM, *D))
3194     return true;
3195 
3196   // Declarations with a required alignment do not have common linkage in MSVC
3197   // mode.
3198   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3199     if (D->hasAttr<AlignedAttr>())
3200       return true;
3201     QualType VarType = D->getType();
3202     if (Context.isAlignmentRequired(VarType))
3203       return true;
3204 
3205     if (const auto *RT = VarType->getAs<RecordType>()) {
3206       const RecordDecl *RD = RT->getDecl();
3207       for (const FieldDecl *FD : RD->fields()) {
3208         if (FD->isBitField())
3209           continue;
3210         if (FD->hasAttr<AlignedAttr>())
3211           return true;
3212         if (Context.isAlignmentRequired(FD->getType()))
3213           return true;
3214       }
3215     }
3216   }
3217 
3218   return false;
3219 }
3220 
3221 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3222     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3223   if (Linkage == GVA_Internal)
3224     return llvm::Function::InternalLinkage;
3225 
3226   if (D->hasAttr<WeakAttr>()) {
3227     if (IsConstantVariable)
3228       return llvm::GlobalVariable::WeakODRLinkage;
3229     else
3230       return llvm::GlobalVariable::WeakAnyLinkage;
3231   }
3232 
3233   // We are guaranteed to have a strong definition somewhere else,
3234   // so we can use available_externally linkage.
3235   if (Linkage == GVA_AvailableExternally)
3236     return llvm::GlobalValue::AvailableExternallyLinkage;
3237 
3238   // Note that Apple's kernel linker doesn't support symbol
3239   // coalescing, so we need to avoid linkonce and weak linkages there.
3240   // Normally, this means we just map to internal, but for explicit
3241   // instantiations we'll map to external.
3242 
3243   // In C++, the compiler has to emit a definition in every translation unit
3244   // that references the function.  We should use linkonce_odr because
3245   // a) if all references in this translation unit are optimized away, we
3246   // don't need to codegen it.  b) if the function persists, it needs to be
3247   // merged with other definitions. c) C++ has the ODR, so we know the
3248   // definition is dependable.
3249   if (Linkage == GVA_DiscardableODR)
3250     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3251                                             : llvm::Function::InternalLinkage;
3252 
3253   // An explicit instantiation of a template has weak linkage, since
3254   // explicit instantiations can occur in multiple translation units
3255   // and must all be equivalent. However, we are not allowed to
3256   // throw away these explicit instantiations.
3257   //
3258   // We don't currently support CUDA device code spread out across multiple TUs,
3259   // so say that CUDA templates are either external (for kernels) or internal.
3260   // This lets llvm perform aggressive inter-procedural optimizations.
3261   if (Linkage == GVA_StrongODR) {
3262     if (Context.getLangOpts().AppleKext)
3263       return llvm::Function::ExternalLinkage;
3264     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3265       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3266                                           : llvm::Function::InternalLinkage;
3267     return llvm::Function::WeakODRLinkage;
3268   }
3269 
3270   // C++ doesn't have tentative definitions and thus cannot have common
3271   // linkage.
3272   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3273       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3274                                  CodeGenOpts.NoCommon))
3275     return llvm::GlobalVariable::CommonLinkage;
3276 
3277   // selectany symbols are externally visible, so use weak instead of
3278   // linkonce.  MSVC optimizes away references to const selectany globals, so
3279   // all definitions should be the same and ODR linkage should be used.
3280   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3281   if (D->hasAttr<SelectAnyAttr>())
3282     return llvm::GlobalVariable::WeakODRLinkage;
3283 
3284   // Otherwise, we have strong external linkage.
3285   assert(Linkage == GVA_StrongExternal);
3286   return llvm::GlobalVariable::ExternalLinkage;
3287 }
3288 
3289 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3290     const VarDecl *VD, bool IsConstant) {
3291   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3292   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3293 }
3294 
3295 /// Replace the uses of a function that was declared with a non-proto type.
3296 /// We want to silently drop extra arguments from call sites
3297 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3298                                           llvm::Function *newFn) {
3299   // Fast path.
3300   if (old->use_empty()) return;
3301 
3302   llvm::Type *newRetTy = newFn->getReturnType();
3303   SmallVector<llvm::Value*, 4> newArgs;
3304   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3305 
3306   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3307          ui != ue; ) {
3308     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3309     llvm::User *user = use->getUser();
3310 
3311     // Recognize and replace uses of bitcasts.  Most calls to
3312     // unprototyped functions will use bitcasts.
3313     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3314       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3315         replaceUsesOfNonProtoConstant(bitcast, newFn);
3316       continue;
3317     }
3318 
3319     // Recognize calls to the function.
3320     llvm::CallSite callSite(user);
3321     if (!callSite) continue;
3322     if (!callSite.isCallee(&*use)) continue;
3323 
3324     // If the return types don't match exactly, then we can't
3325     // transform this call unless it's dead.
3326     if (callSite->getType() != newRetTy && !callSite->use_empty())
3327       continue;
3328 
3329     // Get the call site's attribute list.
3330     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3331     llvm::AttributeList oldAttrs = callSite.getAttributes();
3332 
3333     // If the function was passed too few arguments, don't transform.
3334     unsigned newNumArgs = newFn->arg_size();
3335     if (callSite.arg_size() < newNumArgs) continue;
3336 
3337     // If extra arguments were passed, we silently drop them.
3338     // If any of the types mismatch, we don't transform.
3339     unsigned argNo = 0;
3340     bool dontTransform = false;
3341     for (llvm::Argument &A : newFn->args()) {
3342       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3343         dontTransform = true;
3344         break;
3345       }
3346 
3347       // Add any parameter attributes.
3348       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3349       argNo++;
3350     }
3351     if (dontTransform)
3352       continue;
3353 
3354     // Okay, we can transform this.  Create the new call instruction and copy
3355     // over the required information.
3356     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3357 
3358     // Copy over any operand bundles.
3359     callSite.getOperandBundlesAsDefs(newBundles);
3360 
3361     llvm::CallSite newCall;
3362     if (callSite.isCall()) {
3363       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3364                                        callSite.getInstruction());
3365     } else {
3366       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3367       newCall = llvm::InvokeInst::Create(newFn,
3368                                          oldInvoke->getNormalDest(),
3369                                          oldInvoke->getUnwindDest(),
3370                                          newArgs, newBundles, "",
3371                                          callSite.getInstruction());
3372     }
3373     newArgs.clear(); // for the next iteration
3374 
3375     if (!newCall->getType()->isVoidTy())
3376       newCall->takeName(callSite.getInstruction());
3377     newCall.setAttributes(llvm::AttributeList::get(
3378         newFn->getContext(), oldAttrs.getFnAttributes(),
3379         oldAttrs.getRetAttributes(), newArgAttrs));
3380     newCall.setCallingConv(callSite.getCallingConv());
3381 
3382     // Finally, remove the old call, replacing any uses with the new one.
3383     if (!callSite->use_empty())
3384       callSite->replaceAllUsesWith(newCall.getInstruction());
3385 
3386     // Copy debug location attached to CI.
3387     if (callSite->getDebugLoc())
3388       newCall->setDebugLoc(callSite->getDebugLoc());
3389 
3390     callSite->eraseFromParent();
3391   }
3392 }
3393 
3394 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3395 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3396 /// existing call uses of the old function in the module, this adjusts them to
3397 /// call the new function directly.
3398 ///
3399 /// This is not just a cleanup: the always_inline pass requires direct calls to
3400 /// functions to be able to inline them.  If there is a bitcast in the way, it
3401 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3402 /// run at -O0.
3403 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3404                                                       llvm::Function *NewFn) {
3405   // If we're redefining a global as a function, don't transform it.
3406   if (!isa<llvm::Function>(Old)) return;
3407 
3408   replaceUsesOfNonProtoConstant(Old, NewFn);
3409 }
3410 
3411 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3412   auto DK = VD->isThisDeclarationADefinition();
3413   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3414     return;
3415 
3416   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3417   // If we have a definition, this might be a deferred decl. If the
3418   // instantiation is explicit, make sure we emit it at the end.
3419   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3420     GetAddrOfGlobalVar(VD);
3421 
3422   EmitTopLevelDecl(VD);
3423 }
3424 
3425 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3426                                                  llvm::GlobalValue *GV) {
3427   const auto *D = cast<FunctionDecl>(GD.getDecl());
3428 
3429   // Compute the function info and LLVM type.
3430   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3431   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3432 
3433   // Get or create the prototype for the function.
3434   if (!GV || (GV->getType()->getElementType() != Ty))
3435     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3436                                                    /*DontDefer=*/true,
3437                                                    ForDefinition));
3438 
3439   // Already emitted.
3440   if (!GV->isDeclaration())
3441     return;
3442 
3443   // We need to set linkage and visibility on the function before
3444   // generating code for it because various parts of IR generation
3445   // want to propagate this information down (e.g. to local static
3446   // declarations).
3447   auto *Fn = cast<llvm::Function>(GV);
3448   setFunctionLinkage(GD, Fn);
3449   setFunctionDLLStorageClass(GD, Fn);
3450 
3451   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3452   setGlobalVisibility(Fn, D, ForDefinition);
3453 
3454   MaybeHandleStaticInExternC(D, Fn);
3455 
3456   maybeSetTrivialComdat(*D, *Fn);
3457 
3458   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3459 
3460   setFunctionDefinitionAttributes(D, Fn);
3461   SetLLVMFunctionAttributesForDefinition(D, Fn);
3462 
3463   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3464     AddGlobalCtor(Fn, CA->getPriority());
3465   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3466     AddGlobalDtor(Fn, DA->getPriority());
3467   if (D->hasAttr<AnnotateAttr>())
3468     AddGlobalAnnotations(D, Fn);
3469 }
3470 
3471 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3472   const auto *D = cast<ValueDecl>(GD.getDecl());
3473   const AliasAttr *AA = D->getAttr<AliasAttr>();
3474   assert(AA && "Not an alias?");
3475 
3476   StringRef MangledName = getMangledName(GD);
3477 
3478   if (AA->getAliasee() == MangledName) {
3479     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3480     return;
3481   }
3482 
3483   // If there is a definition in the module, then it wins over the alias.
3484   // This is dubious, but allow it to be safe.  Just ignore the alias.
3485   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3486   if (Entry && !Entry->isDeclaration())
3487     return;
3488 
3489   Aliases.push_back(GD);
3490 
3491   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3492 
3493   // Create a reference to the named value.  This ensures that it is emitted
3494   // if a deferred decl.
3495   llvm::Constant *Aliasee;
3496   if (isa<llvm::FunctionType>(DeclTy))
3497     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3498                                       /*ForVTable=*/false);
3499   else
3500     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3501                                     llvm::PointerType::getUnqual(DeclTy),
3502                                     /*D=*/nullptr);
3503 
3504   // Create the new alias itself, but don't set a name yet.
3505   auto *GA = llvm::GlobalAlias::create(
3506       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3507 
3508   if (Entry) {
3509     if (GA->getAliasee() == Entry) {
3510       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3511       return;
3512     }
3513 
3514     assert(Entry->isDeclaration());
3515 
3516     // If there is a declaration in the module, then we had an extern followed
3517     // by the alias, as in:
3518     //   extern int test6();
3519     //   ...
3520     //   int test6() __attribute__((alias("test7")));
3521     //
3522     // Remove it and replace uses of it with the alias.
3523     GA->takeName(Entry);
3524 
3525     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3526                                                           Entry->getType()));
3527     Entry->eraseFromParent();
3528   } else {
3529     GA->setName(MangledName);
3530   }
3531 
3532   // Set attributes which are particular to an alias; this is a
3533   // specialization of the attributes which may be set on a global
3534   // variable/function.
3535   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3536       D->isWeakImported()) {
3537     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3538   }
3539 
3540   if (const auto *VD = dyn_cast<VarDecl>(D))
3541     if (VD->getTLSKind())
3542       setTLSMode(GA, *VD);
3543 
3544   setAliasAttributes(D, GA);
3545 }
3546 
3547 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3548   const auto *D = cast<ValueDecl>(GD.getDecl());
3549   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3550   assert(IFA && "Not an ifunc?");
3551 
3552   StringRef MangledName = getMangledName(GD);
3553 
3554   if (IFA->getResolver() == MangledName) {
3555     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3556     return;
3557   }
3558 
3559   // Report an error if some definition overrides ifunc.
3560   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3561   if (Entry && !Entry->isDeclaration()) {
3562     GlobalDecl OtherGD;
3563     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3564         DiagnosedConflictingDefinitions.insert(GD).second) {
3565       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3566       Diags.Report(OtherGD.getDecl()->getLocation(),
3567                    diag::note_previous_definition);
3568     }
3569     return;
3570   }
3571 
3572   Aliases.push_back(GD);
3573 
3574   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3575   llvm::Constant *Resolver =
3576       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3577                               /*ForVTable=*/false);
3578   llvm::GlobalIFunc *GIF =
3579       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3580                                 "", Resolver, &getModule());
3581   if (Entry) {
3582     if (GIF->getResolver() == Entry) {
3583       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3584       return;
3585     }
3586     assert(Entry->isDeclaration());
3587 
3588     // If there is a declaration in the module, then we had an extern followed
3589     // by the ifunc, as in:
3590     //   extern int test();
3591     //   ...
3592     //   int test() __attribute__((ifunc("resolver")));
3593     //
3594     // Remove it and replace uses of it with the ifunc.
3595     GIF->takeName(Entry);
3596 
3597     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3598                                                           Entry->getType()));
3599     Entry->eraseFromParent();
3600   } else
3601     GIF->setName(MangledName);
3602 
3603   SetCommonAttributes(D, GIF);
3604 }
3605 
3606 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3607                                             ArrayRef<llvm::Type*> Tys) {
3608   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3609                                          Tys);
3610 }
3611 
3612 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3613 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3614                          const StringLiteral *Literal, bool TargetIsLSB,
3615                          bool &IsUTF16, unsigned &StringLength) {
3616   StringRef String = Literal->getString();
3617   unsigned NumBytes = String.size();
3618 
3619   // Check for simple case.
3620   if (!Literal->containsNonAsciiOrNull()) {
3621     StringLength = NumBytes;
3622     return *Map.insert(std::make_pair(String, nullptr)).first;
3623   }
3624 
3625   // Otherwise, convert the UTF8 literals into a string of shorts.
3626   IsUTF16 = true;
3627 
3628   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3629   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3630   llvm::UTF16 *ToPtr = &ToBuf[0];
3631 
3632   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3633                                  ToPtr + NumBytes, llvm::strictConversion);
3634 
3635   // ConvertUTF8toUTF16 returns the length in ToPtr.
3636   StringLength = ToPtr - &ToBuf[0];
3637 
3638   // Add an explicit null.
3639   *ToPtr = 0;
3640   return *Map.insert(std::make_pair(
3641                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3642                                    (StringLength + 1) * 2),
3643                          nullptr)).first;
3644 }
3645 
3646 ConstantAddress
3647 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3648   unsigned StringLength = 0;
3649   bool isUTF16 = false;
3650   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3651       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3652                                getDataLayout().isLittleEndian(), isUTF16,
3653                                StringLength);
3654 
3655   if (auto *C = Entry.second)
3656     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3657 
3658   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3659   llvm::Constant *Zeros[] = { Zero, Zero };
3660 
3661   // If we don't already have it, get __CFConstantStringClassReference.
3662   if (!CFConstantStringClassRef) {
3663     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3664     Ty = llvm::ArrayType::get(Ty, 0);
3665     llvm::Constant *GV =
3666         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3667 
3668     if (getTriple().isOSBinFormatCOFF()) {
3669       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3670       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3671       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3672       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3673 
3674       const VarDecl *VD = nullptr;
3675       for (const auto &Result : DC->lookup(&II))
3676         if ((VD = dyn_cast<VarDecl>(Result)))
3677           break;
3678 
3679       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3680         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3681         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3682       } else {
3683         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3684         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3685       }
3686     }
3687 
3688     // Decay array -> ptr
3689     CFConstantStringClassRef =
3690         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3691   }
3692 
3693   QualType CFTy = getContext().getCFConstantStringType();
3694 
3695   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3696 
3697   ConstantInitBuilder Builder(*this);
3698   auto Fields = Builder.beginStruct(STy);
3699 
3700   // Class pointer.
3701   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3702 
3703   // Flags.
3704   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3705 
3706   // String pointer.
3707   llvm::Constant *C = nullptr;
3708   if (isUTF16) {
3709     auto Arr = llvm::makeArrayRef(
3710         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3711         Entry.first().size() / 2);
3712     C = llvm::ConstantDataArray::get(VMContext, Arr);
3713   } else {
3714     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3715   }
3716 
3717   // Note: -fwritable-strings doesn't make the backing store strings of
3718   // CFStrings writable. (See <rdar://problem/10657500>)
3719   auto *GV =
3720       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3721                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3722   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3723   // Don't enforce the target's minimum global alignment, since the only use
3724   // of the string is via this class initializer.
3725   CharUnits Align = isUTF16
3726                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3727                         : getContext().getTypeAlignInChars(getContext().CharTy);
3728   GV->setAlignment(Align.getQuantity());
3729 
3730   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3731   // Without it LLVM can merge the string with a non unnamed_addr one during
3732   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3733   if (getTriple().isOSBinFormatMachO())
3734     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3735                            : "__TEXT,__cstring,cstring_literals");
3736 
3737   // String.
3738   llvm::Constant *Str =
3739       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3740 
3741   if (isUTF16)
3742     // Cast the UTF16 string to the correct type.
3743     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3744   Fields.add(Str);
3745 
3746   // String length.
3747   auto Ty = getTypes().ConvertType(getContext().LongTy);
3748   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3749 
3750   CharUnits Alignment = getPointerAlign();
3751 
3752   // The struct.
3753   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3754                                     /*isConstant=*/false,
3755                                     llvm::GlobalVariable::PrivateLinkage);
3756   switch (getTriple().getObjectFormat()) {
3757   case llvm::Triple::UnknownObjectFormat:
3758     llvm_unreachable("unknown file format");
3759   case llvm::Triple::COFF:
3760   case llvm::Triple::ELF:
3761   case llvm::Triple::Wasm:
3762     GV->setSection("cfstring");
3763     break;
3764   case llvm::Triple::MachO:
3765     GV->setSection("__DATA,__cfstring");
3766     break;
3767   }
3768   Entry.second = GV;
3769 
3770   return ConstantAddress(GV, Alignment);
3771 }
3772 
3773 bool CodeGenModule::getExpressionLocationsEnabled() const {
3774   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3775 }
3776 
3777 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3778   if (ObjCFastEnumerationStateType.isNull()) {
3779     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3780     D->startDefinition();
3781 
3782     QualType FieldTypes[] = {
3783       Context.UnsignedLongTy,
3784       Context.getPointerType(Context.getObjCIdType()),
3785       Context.getPointerType(Context.UnsignedLongTy),
3786       Context.getConstantArrayType(Context.UnsignedLongTy,
3787                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3788     };
3789 
3790     for (size_t i = 0; i < 4; ++i) {
3791       FieldDecl *Field = FieldDecl::Create(Context,
3792                                            D,
3793                                            SourceLocation(),
3794                                            SourceLocation(), nullptr,
3795                                            FieldTypes[i], /*TInfo=*/nullptr,
3796                                            /*BitWidth=*/nullptr,
3797                                            /*Mutable=*/false,
3798                                            ICIS_NoInit);
3799       Field->setAccess(AS_public);
3800       D->addDecl(Field);
3801     }
3802 
3803     D->completeDefinition();
3804     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3805   }
3806 
3807   return ObjCFastEnumerationStateType;
3808 }
3809 
3810 llvm::Constant *
3811 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3812   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3813 
3814   // Don't emit it as the address of the string, emit the string data itself
3815   // as an inline array.
3816   if (E->getCharByteWidth() == 1) {
3817     SmallString<64> Str(E->getString());
3818 
3819     // Resize the string to the right size, which is indicated by its type.
3820     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3821     Str.resize(CAT->getSize().getZExtValue());
3822     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3823   }
3824 
3825   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3826   llvm::Type *ElemTy = AType->getElementType();
3827   unsigned NumElements = AType->getNumElements();
3828 
3829   // Wide strings have either 2-byte or 4-byte elements.
3830   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3831     SmallVector<uint16_t, 32> Elements;
3832     Elements.reserve(NumElements);
3833 
3834     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3835       Elements.push_back(E->getCodeUnit(i));
3836     Elements.resize(NumElements);
3837     return llvm::ConstantDataArray::get(VMContext, Elements);
3838   }
3839 
3840   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3841   SmallVector<uint32_t, 32> Elements;
3842   Elements.reserve(NumElements);
3843 
3844   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3845     Elements.push_back(E->getCodeUnit(i));
3846   Elements.resize(NumElements);
3847   return llvm::ConstantDataArray::get(VMContext, Elements);
3848 }
3849 
3850 static llvm::GlobalVariable *
3851 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3852                       CodeGenModule &CGM, StringRef GlobalName,
3853                       CharUnits Alignment) {
3854   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3855   unsigned AddrSpace = 0;
3856   if (CGM.getLangOpts().OpenCL)
3857     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3858 
3859   llvm::Module &M = CGM.getModule();
3860   // Create a global variable for this string
3861   auto *GV = new llvm::GlobalVariable(
3862       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3863       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3864   GV->setAlignment(Alignment.getQuantity());
3865   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3866   if (GV->isWeakForLinker()) {
3867     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3868     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3869   }
3870 
3871   return GV;
3872 }
3873 
3874 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3875 /// constant array for the given string literal.
3876 ConstantAddress
3877 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3878                                                   StringRef Name) {
3879   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3880 
3881   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3882   llvm::GlobalVariable **Entry = nullptr;
3883   if (!LangOpts.WritableStrings) {
3884     Entry = &ConstantStringMap[C];
3885     if (auto GV = *Entry) {
3886       if (Alignment.getQuantity() > GV->getAlignment())
3887         GV->setAlignment(Alignment.getQuantity());
3888       return ConstantAddress(GV, Alignment);
3889     }
3890   }
3891 
3892   SmallString<256> MangledNameBuffer;
3893   StringRef GlobalVariableName;
3894   llvm::GlobalValue::LinkageTypes LT;
3895 
3896   // Mangle the string literal if the ABI allows for it.  However, we cannot
3897   // do this if  we are compiling with ASan or -fwritable-strings because they
3898   // rely on strings having normal linkage.
3899   if (!LangOpts.WritableStrings &&
3900       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3901       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3902     llvm::raw_svector_ostream Out(MangledNameBuffer);
3903     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3904 
3905     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3906     GlobalVariableName = MangledNameBuffer;
3907   } else {
3908     LT = llvm::GlobalValue::PrivateLinkage;
3909     GlobalVariableName = Name;
3910   }
3911 
3912   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3913   if (Entry)
3914     *Entry = GV;
3915 
3916   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3917                                   QualType());
3918   return ConstantAddress(GV, Alignment);
3919 }
3920 
3921 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3922 /// array for the given ObjCEncodeExpr node.
3923 ConstantAddress
3924 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3925   std::string Str;
3926   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3927 
3928   return GetAddrOfConstantCString(Str);
3929 }
3930 
3931 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3932 /// the literal and a terminating '\0' character.
3933 /// The result has pointer to array type.
3934 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3935     const std::string &Str, const char *GlobalName) {
3936   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3937   CharUnits Alignment =
3938     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3939 
3940   llvm::Constant *C =
3941       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3942 
3943   // Don't share any string literals if strings aren't constant.
3944   llvm::GlobalVariable **Entry = nullptr;
3945   if (!LangOpts.WritableStrings) {
3946     Entry = &ConstantStringMap[C];
3947     if (auto GV = *Entry) {
3948       if (Alignment.getQuantity() > GV->getAlignment())
3949         GV->setAlignment(Alignment.getQuantity());
3950       return ConstantAddress(GV, Alignment);
3951     }
3952   }
3953 
3954   // Get the default prefix if a name wasn't specified.
3955   if (!GlobalName)
3956     GlobalName = ".str";
3957   // Create a global variable for this.
3958   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3959                                   GlobalName, Alignment);
3960   if (Entry)
3961     *Entry = GV;
3962   return ConstantAddress(GV, Alignment);
3963 }
3964 
3965 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3966     const MaterializeTemporaryExpr *E, const Expr *Init) {
3967   assert((E->getStorageDuration() == SD_Static ||
3968           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3969   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3970 
3971   // If we're not materializing a subobject of the temporary, keep the
3972   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3973   QualType MaterializedType = Init->getType();
3974   if (Init == E->GetTemporaryExpr())
3975     MaterializedType = E->getType();
3976 
3977   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3978 
3979   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3980     return ConstantAddress(Slot, Align);
3981 
3982   // FIXME: If an externally-visible declaration extends multiple temporaries,
3983   // we need to give each temporary the same name in every translation unit (and
3984   // we also need to make the temporaries externally-visible).
3985   SmallString<256> Name;
3986   llvm::raw_svector_ostream Out(Name);
3987   getCXXABI().getMangleContext().mangleReferenceTemporary(
3988       VD, E->getManglingNumber(), Out);
3989 
3990   APValue *Value = nullptr;
3991   if (E->getStorageDuration() == SD_Static) {
3992     // We might have a cached constant initializer for this temporary. Note
3993     // that this might have a different value from the value computed by
3994     // evaluating the initializer if the surrounding constant expression
3995     // modifies the temporary.
3996     Value = getContext().getMaterializedTemporaryValue(E, false);
3997     if (Value && Value->isUninit())
3998       Value = nullptr;
3999   }
4000 
4001   // Try evaluating it now, it might have a constant initializer.
4002   Expr::EvalResult EvalResult;
4003   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4004       !EvalResult.hasSideEffects())
4005     Value = &EvalResult.Val;
4006 
4007   LangAS AddrSpace =
4008       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4009 
4010   Optional<ConstantEmitter> emitter;
4011   llvm::Constant *InitialValue = nullptr;
4012   bool Constant = false;
4013   llvm::Type *Type;
4014   if (Value) {
4015     // The temporary has a constant initializer, use it.
4016     emitter.emplace(*this);
4017     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4018                                                MaterializedType);
4019     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4020     Type = InitialValue->getType();
4021   } else {
4022     // No initializer, the initialization will be provided when we
4023     // initialize the declaration which performed lifetime extension.
4024     Type = getTypes().ConvertTypeForMem(MaterializedType);
4025   }
4026 
4027   // Create a global variable for this lifetime-extended temporary.
4028   llvm::GlobalValue::LinkageTypes Linkage =
4029       getLLVMLinkageVarDefinition(VD, Constant);
4030   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4031     const VarDecl *InitVD;
4032     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4033         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4034       // Temporaries defined inside a class get linkonce_odr linkage because the
4035       // class can be defined in multipe translation units.
4036       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4037     } else {
4038       // There is no need for this temporary to have external linkage if the
4039       // VarDecl has external linkage.
4040       Linkage = llvm::GlobalVariable::InternalLinkage;
4041     }
4042   }
4043   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4044   auto *GV = new llvm::GlobalVariable(
4045       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4046       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4047   if (emitter) emitter->finalize(GV);
4048   setGlobalVisibility(GV, VD, ForDefinition);
4049   GV->setAlignment(Align.getQuantity());
4050   if (supportsCOMDAT() && GV->isWeakForLinker())
4051     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4052   if (VD->getTLSKind())
4053     setTLSMode(GV, *VD);
4054   llvm::Constant *CV = GV;
4055   if (AddrSpace != LangAS::Default)
4056     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4057         *this, GV, AddrSpace, LangAS::Default,
4058         Type->getPointerTo(
4059             getContext().getTargetAddressSpace(LangAS::Default)));
4060   MaterializedGlobalTemporaryMap[E] = CV;
4061   return ConstantAddress(CV, Align);
4062 }
4063 
4064 /// EmitObjCPropertyImplementations - Emit information for synthesized
4065 /// properties for an implementation.
4066 void CodeGenModule::EmitObjCPropertyImplementations(const
4067                                                     ObjCImplementationDecl *D) {
4068   for (const auto *PID : D->property_impls()) {
4069     // Dynamic is just for type-checking.
4070     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4071       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4072 
4073       // Determine which methods need to be implemented, some may have
4074       // been overridden. Note that ::isPropertyAccessor is not the method
4075       // we want, that just indicates if the decl came from a
4076       // property. What we want to know is if the method is defined in
4077       // this implementation.
4078       if (!D->getInstanceMethod(PD->getGetterName()))
4079         CodeGenFunction(*this).GenerateObjCGetter(
4080                                  const_cast<ObjCImplementationDecl *>(D), PID);
4081       if (!PD->isReadOnly() &&
4082           !D->getInstanceMethod(PD->getSetterName()))
4083         CodeGenFunction(*this).GenerateObjCSetter(
4084                                  const_cast<ObjCImplementationDecl *>(D), PID);
4085     }
4086   }
4087 }
4088 
4089 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4090   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4091   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4092        ivar; ivar = ivar->getNextIvar())
4093     if (ivar->getType().isDestructedType())
4094       return true;
4095 
4096   return false;
4097 }
4098 
4099 static bool AllTrivialInitializers(CodeGenModule &CGM,
4100                                    ObjCImplementationDecl *D) {
4101   CodeGenFunction CGF(CGM);
4102   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4103        E = D->init_end(); B != E; ++B) {
4104     CXXCtorInitializer *CtorInitExp = *B;
4105     Expr *Init = CtorInitExp->getInit();
4106     if (!CGF.isTrivialInitializer(Init))
4107       return false;
4108   }
4109   return true;
4110 }
4111 
4112 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4113 /// for an implementation.
4114 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4115   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4116   if (needsDestructMethod(D)) {
4117     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4118     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4119     ObjCMethodDecl *DTORMethod =
4120       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4121                              cxxSelector, getContext().VoidTy, nullptr, D,
4122                              /*isInstance=*/true, /*isVariadic=*/false,
4123                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4124                              /*isDefined=*/false, ObjCMethodDecl::Required);
4125     D->addInstanceMethod(DTORMethod);
4126     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4127     D->setHasDestructors(true);
4128   }
4129 
4130   // If the implementation doesn't have any ivar initializers, we don't need
4131   // a .cxx_construct.
4132   if (D->getNumIvarInitializers() == 0 ||
4133       AllTrivialInitializers(*this, D))
4134     return;
4135 
4136   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4137   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4138   // The constructor returns 'self'.
4139   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4140                                                 D->getLocation(),
4141                                                 D->getLocation(),
4142                                                 cxxSelector,
4143                                                 getContext().getObjCIdType(),
4144                                                 nullptr, D, /*isInstance=*/true,
4145                                                 /*isVariadic=*/false,
4146                                                 /*isPropertyAccessor=*/true,
4147                                                 /*isImplicitlyDeclared=*/true,
4148                                                 /*isDefined=*/false,
4149                                                 ObjCMethodDecl::Required);
4150   D->addInstanceMethod(CTORMethod);
4151   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4152   D->setHasNonZeroConstructors(true);
4153 }
4154 
4155 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4156 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4157   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4158       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4159     ErrorUnsupported(LSD, "linkage spec");
4160     return;
4161   }
4162 
4163   EmitDeclContext(LSD);
4164 }
4165 
4166 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4167   for (auto *I : DC->decls()) {
4168     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4169     // are themselves considered "top-level", so EmitTopLevelDecl on an
4170     // ObjCImplDecl does not recursively visit them. We need to do that in
4171     // case they're nested inside another construct (LinkageSpecDecl /
4172     // ExportDecl) that does stop them from being considered "top-level".
4173     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4174       for (auto *M : OID->methods())
4175         EmitTopLevelDecl(M);
4176     }
4177 
4178     EmitTopLevelDecl(I);
4179   }
4180 }
4181 
4182 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4183 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4184   // Ignore dependent declarations.
4185   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
4186     return;
4187 
4188   switch (D->getKind()) {
4189   case Decl::CXXConversion:
4190   case Decl::CXXMethod:
4191   case Decl::Function:
4192     // Skip function templates
4193     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4194         cast<FunctionDecl>(D)->isLateTemplateParsed())
4195       return;
4196 
4197     EmitGlobal(cast<FunctionDecl>(D));
4198     // Always provide some coverage mapping
4199     // even for the functions that aren't emitted.
4200     AddDeferredUnusedCoverageMapping(D);
4201     break;
4202 
4203   case Decl::CXXDeductionGuide:
4204     // Function-like, but does not result in code emission.
4205     break;
4206 
4207   case Decl::Var:
4208   case Decl::Decomposition:
4209     // Skip variable templates
4210     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4211       return;
4212     LLVM_FALLTHROUGH;
4213   case Decl::VarTemplateSpecialization:
4214     EmitGlobal(cast<VarDecl>(D));
4215     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4216       for (auto *B : DD->bindings())
4217         if (auto *HD = B->getHoldingVar())
4218           EmitGlobal(HD);
4219     break;
4220 
4221   // Indirect fields from global anonymous structs and unions can be
4222   // ignored; only the actual variable requires IR gen support.
4223   case Decl::IndirectField:
4224     break;
4225 
4226   // C++ Decls
4227   case Decl::Namespace:
4228     EmitDeclContext(cast<NamespaceDecl>(D));
4229     break;
4230   case Decl::ClassTemplateSpecialization: {
4231     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4232     if (DebugInfo &&
4233         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4234         Spec->hasDefinition())
4235       DebugInfo->completeTemplateDefinition(*Spec);
4236   } LLVM_FALLTHROUGH;
4237   case Decl::CXXRecord:
4238     if (DebugInfo) {
4239       if (auto *ES = D->getASTContext().getExternalSource())
4240         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4241           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4242     }
4243     // Emit any static data members, they may be definitions.
4244     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4245       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4246         EmitTopLevelDecl(I);
4247     break;
4248     // No code generation needed.
4249   case Decl::UsingShadow:
4250   case Decl::ClassTemplate:
4251   case Decl::VarTemplate:
4252   case Decl::VarTemplatePartialSpecialization:
4253   case Decl::FunctionTemplate:
4254   case Decl::TypeAliasTemplate:
4255   case Decl::Block:
4256   case Decl::Empty:
4257     break;
4258   case Decl::Using:          // using X; [C++]
4259     if (CGDebugInfo *DI = getModuleDebugInfo())
4260         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4261     return;
4262   case Decl::NamespaceAlias:
4263     if (CGDebugInfo *DI = getModuleDebugInfo())
4264         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4265     return;
4266   case Decl::UsingDirective: // using namespace X; [C++]
4267     if (CGDebugInfo *DI = getModuleDebugInfo())
4268       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4269     return;
4270   case Decl::CXXConstructor:
4271     // Skip function templates
4272     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4273         cast<FunctionDecl>(D)->isLateTemplateParsed())
4274       return;
4275 
4276     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4277     break;
4278   case Decl::CXXDestructor:
4279     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4280       return;
4281     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4282     break;
4283 
4284   case Decl::StaticAssert:
4285     // Nothing to do.
4286     break;
4287 
4288   // Objective-C Decls
4289 
4290   // Forward declarations, no (immediate) code generation.
4291   case Decl::ObjCInterface:
4292   case Decl::ObjCCategory:
4293     break;
4294 
4295   case Decl::ObjCProtocol: {
4296     auto *Proto = cast<ObjCProtocolDecl>(D);
4297     if (Proto->isThisDeclarationADefinition())
4298       ObjCRuntime->GenerateProtocol(Proto);
4299     break;
4300   }
4301 
4302   case Decl::ObjCCategoryImpl:
4303     // Categories have properties but don't support synthesize so we
4304     // can ignore them here.
4305     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4306     break;
4307 
4308   case Decl::ObjCImplementation: {
4309     auto *OMD = cast<ObjCImplementationDecl>(D);
4310     EmitObjCPropertyImplementations(OMD);
4311     EmitObjCIvarInitializations(OMD);
4312     ObjCRuntime->GenerateClass(OMD);
4313     // Emit global variable debug information.
4314     if (CGDebugInfo *DI = getModuleDebugInfo())
4315       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4316         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4317             OMD->getClassInterface()), OMD->getLocation());
4318     break;
4319   }
4320   case Decl::ObjCMethod: {
4321     auto *OMD = cast<ObjCMethodDecl>(D);
4322     // If this is not a prototype, emit the body.
4323     if (OMD->getBody())
4324       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4325     break;
4326   }
4327   case Decl::ObjCCompatibleAlias:
4328     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4329     break;
4330 
4331   case Decl::PragmaComment: {
4332     const auto *PCD = cast<PragmaCommentDecl>(D);
4333     switch (PCD->getCommentKind()) {
4334     case PCK_Unknown:
4335       llvm_unreachable("unexpected pragma comment kind");
4336     case PCK_Linker:
4337       AppendLinkerOptions(PCD->getArg());
4338       break;
4339     case PCK_Lib:
4340       AddDependentLib(PCD->getArg());
4341       break;
4342     case PCK_Compiler:
4343     case PCK_ExeStr:
4344     case PCK_User:
4345       break; // We ignore all of these.
4346     }
4347     break;
4348   }
4349 
4350   case Decl::PragmaDetectMismatch: {
4351     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4352     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4353     break;
4354   }
4355 
4356   case Decl::LinkageSpec:
4357     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4358     break;
4359 
4360   case Decl::FileScopeAsm: {
4361     // File-scope asm is ignored during device-side CUDA compilation.
4362     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4363       break;
4364     // File-scope asm is ignored during device-side OpenMP compilation.
4365     if (LangOpts.OpenMPIsDevice)
4366       break;
4367     auto *AD = cast<FileScopeAsmDecl>(D);
4368     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4369     break;
4370   }
4371 
4372   case Decl::Import: {
4373     auto *Import = cast<ImportDecl>(D);
4374 
4375     // If we've already imported this module, we're done.
4376     if (!ImportedModules.insert(Import->getImportedModule()))
4377       break;
4378 
4379     // Emit debug information for direct imports.
4380     if (!Import->getImportedOwningModule()) {
4381       if (CGDebugInfo *DI = getModuleDebugInfo())
4382         DI->EmitImportDecl(*Import);
4383     }
4384 
4385     // Find all of the submodules and emit the module initializers.
4386     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4387     SmallVector<clang::Module *, 16> Stack;
4388     Visited.insert(Import->getImportedModule());
4389     Stack.push_back(Import->getImportedModule());
4390 
4391     while (!Stack.empty()) {
4392       clang::Module *Mod = Stack.pop_back_val();
4393       if (!EmittedModuleInitializers.insert(Mod).second)
4394         continue;
4395 
4396       for (auto *D : Context.getModuleInitializers(Mod))
4397         EmitTopLevelDecl(D);
4398 
4399       // Visit the submodules of this module.
4400       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4401                                              SubEnd = Mod->submodule_end();
4402            Sub != SubEnd; ++Sub) {
4403         // Skip explicit children; they need to be explicitly imported to emit
4404         // the initializers.
4405         if ((*Sub)->IsExplicit)
4406           continue;
4407 
4408         if (Visited.insert(*Sub).second)
4409           Stack.push_back(*Sub);
4410       }
4411     }
4412     break;
4413   }
4414 
4415   case Decl::Export:
4416     EmitDeclContext(cast<ExportDecl>(D));
4417     break;
4418 
4419   case Decl::OMPThreadPrivate:
4420     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4421     break;
4422 
4423   case Decl::OMPDeclareReduction:
4424     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4425     break;
4426 
4427   default:
4428     // Make sure we handled everything we should, every other kind is a
4429     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4430     // function. Need to recode Decl::Kind to do that easily.
4431     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4432     break;
4433   }
4434 }
4435 
4436 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4437   // Do we need to generate coverage mapping?
4438   if (!CodeGenOpts.CoverageMapping)
4439     return;
4440   switch (D->getKind()) {
4441   case Decl::CXXConversion:
4442   case Decl::CXXMethod:
4443   case Decl::Function:
4444   case Decl::ObjCMethod:
4445   case Decl::CXXConstructor:
4446   case Decl::CXXDestructor: {
4447     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4448       return;
4449     SourceManager &SM = getContext().getSourceManager();
4450     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4451       return;
4452     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4453     if (I == DeferredEmptyCoverageMappingDecls.end())
4454       DeferredEmptyCoverageMappingDecls[D] = true;
4455     break;
4456   }
4457   default:
4458     break;
4459   };
4460 }
4461 
4462 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4463   // Do we need to generate coverage mapping?
4464   if (!CodeGenOpts.CoverageMapping)
4465     return;
4466   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4467     if (Fn->isTemplateInstantiation())
4468       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4469   }
4470   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4471   if (I == DeferredEmptyCoverageMappingDecls.end())
4472     DeferredEmptyCoverageMappingDecls[D] = false;
4473   else
4474     I->second = false;
4475 }
4476 
4477 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4478   // We call takeVector() here to avoid use-after-free.
4479   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4480   // we deserialize function bodies to emit coverage info for them, and that
4481   // deserializes more declarations. How should we handle that case?
4482   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4483     if (!Entry.second)
4484       continue;
4485     const Decl *D = Entry.first;
4486     switch (D->getKind()) {
4487     case Decl::CXXConversion:
4488     case Decl::CXXMethod:
4489     case Decl::Function:
4490     case Decl::ObjCMethod: {
4491       CodeGenPGO PGO(*this);
4492       GlobalDecl GD(cast<FunctionDecl>(D));
4493       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4494                                   getFunctionLinkage(GD));
4495       break;
4496     }
4497     case Decl::CXXConstructor: {
4498       CodeGenPGO PGO(*this);
4499       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4500       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4501                                   getFunctionLinkage(GD));
4502       break;
4503     }
4504     case Decl::CXXDestructor: {
4505       CodeGenPGO PGO(*this);
4506       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4507       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4508                                   getFunctionLinkage(GD));
4509       break;
4510     }
4511     default:
4512       break;
4513     };
4514   }
4515 }
4516 
4517 /// Turns the given pointer into a constant.
4518 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4519                                           const void *Ptr) {
4520   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4521   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4522   return llvm::ConstantInt::get(i64, PtrInt);
4523 }
4524 
4525 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4526                                    llvm::NamedMDNode *&GlobalMetadata,
4527                                    GlobalDecl D,
4528                                    llvm::GlobalValue *Addr) {
4529   if (!GlobalMetadata)
4530     GlobalMetadata =
4531       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4532 
4533   // TODO: should we report variant information for ctors/dtors?
4534   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4535                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4536                                CGM.getLLVMContext(), D.getDecl()))};
4537   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4538 }
4539 
4540 /// For each function which is declared within an extern "C" region and marked
4541 /// as 'used', but has internal linkage, create an alias from the unmangled
4542 /// name to the mangled name if possible. People expect to be able to refer
4543 /// to such functions with an unmangled name from inline assembly within the
4544 /// same translation unit.
4545 void CodeGenModule::EmitStaticExternCAliases() {
4546   // Don't do anything if we're generating CUDA device code -- the NVPTX
4547   // assembly target doesn't support aliases.
4548   if (Context.getTargetInfo().getTriple().isNVPTX())
4549     return;
4550   for (auto &I : StaticExternCValues) {
4551     IdentifierInfo *Name = I.first;
4552     llvm::GlobalValue *Val = I.second;
4553     if (Val && !getModule().getNamedValue(Name->getName()))
4554       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4555   }
4556 }
4557 
4558 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4559                                              GlobalDecl &Result) const {
4560   auto Res = Manglings.find(MangledName);
4561   if (Res == Manglings.end())
4562     return false;
4563   Result = Res->getValue();
4564   return true;
4565 }
4566 
4567 /// Emits metadata nodes associating all the global values in the
4568 /// current module with the Decls they came from.  This is useful for
4569 /// projects using IR gen as a subroutine.
4570 ///
4571 /// Since there's currently no way to associate an MDNode directly
4572 /// with an llvm::GlobalValue, we create a global named metadata
4573 /// with the name 'clang.global.decl.ptrs'.
4574 void CodeGenModule::EmitDeclMetadata() {
4575   llvm::NamedMDNode *GlobalMetadata = nullptr;
4576 
4577   for (auto &I : MangledDeclNames) {
4578     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4579     // Some mangled names don't necessarily have an associated GlobalValue
4580     // in this module, e.g. if we mangled it for DebugInfo.
4581     if (Addr)
4582       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4583   }
4584 }
4585 
4586 /// Emits metadata nodes for all the local variables in the current
4587 /// function.
4588 void CodeGenFunction::EmitDeclMetadata() {
4589   if (LocalDeclMap.empty()) return;
4590 
4591   llvm::LLVMContext &Context = getLLVMContext();
4592 
4593   // Find the unique metadata ID for this name.
4594   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4595 
4596   llvm::NamedMDNode *GlobalMetadata = nullptr;
4597 
4598   for (auto &I : LocalDeclMap) {
4599     const Decl *D = I.first;
4600     llvm::Value *Addr = I.second.getPointer();
4601     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4602       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4603       Alloca->setMetadata(
4604           DeclPtrKind, llvm::MDNode::get(
4605                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4606     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4607       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4608       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4609     }
4610   }
4611 }
4612 
4613 void CodeGenModule::EmitVersionIdentMetadata() {
4614   llvm::NamedMDNode *IdentMetadata =
4615     TheModule.getOrInsertNamedMetadata("llvm.ident");
4616   std::string Version = getClangFullVersion();
4617   llvm::LLVMContext &Ctx = TheModule.getContext();
4618 
4619   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4620   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4621 }
4622 
4623 void CodeGenModule::EmitTargetMetadata() {
4624   // Warning, new MangledDeclNames may be appended within this loop.
4625   // We rely on MapVector insertions adding new elements to the end
4626   // of the container.
4627   // FIXME: Move this loop into the one target that needs it, and only
4628   // loop over those declarations for which we couldn't emit the target
4629   // metadata when we emitted the declaration.
4630   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4631     auto Val = *(MangledDeclNames.begin() + I);
4632     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4633     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4634     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4635   }
4636 }
4637 
4638 void CodeGenModule::EmitCoverageFile() {
4639   if (getCodeGenOpts().CoverageDataFile.empty() &&
4640       getCodeGenOpts().CoverageNotesFile.empty())
4641     return;
4642 
4643   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4644   if (!CUNode)
4645     return;
4646 
4647   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4648   llvm::LLVMContext &Ctx = TheModule.getContext();
4649   auto *CoverageDataFile =
4650       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4651   auto *CoverageNotesFile =
4652       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4653   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4654     llvm::MDNode *CU = CUNode->getOperand(i);
4655     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4656     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4657   }
4658 }
4659 
4660 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4661   // Sema has checked that all uuid strings are of the form
4662   // "12345678-1234-1234-1234-1234567890ab".
4663   assert(Uuid.size() == 36);
4664   for (unsigned i = 0; i < 36; ++i) {
4665     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4666     else                                         assert(isHexDigit(Uuid[i]));
4667   }
4668 
4669   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4670   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4671 
4672   llvm::Constant *Field3[8];
4673   for (unsigned Idx = 0; Idx < 8; ++Idx)
4674     Field3[Idx] = llvm::ConstantInt::get(
4675         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4676 
4677   llvm::Constant *Fields[4] = {
4678     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4679     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4680     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4681     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4682   };
4683 
4684   return llvm::ConstantStruct::getAnon(Fields);
4685 }
4686 
4687 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4688                                                        bool ForEH) {
4689   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4690   // FIXME: should we even be calling this method if RTTI is disabled
4691   // and it's not for EH?
4692   if (!ForEH && !getLangOpts().RTTI)
4693     return llvm::Constant::getNullValue(Int8PtrTy);
4694 
4695   if (ForEH && Ty->isObjCObjectPointerType() &&
4696       LangOpts.ObjCRuntime.isGNUFamily())
4697     return ObjCRuntime->GetEHType(Ty);
4698 
4699   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4700 }
4701 
4702 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4703   // Do not emit threadprivates in simd-only mode.
4704   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4705     return;
4706   for (auto RefExpr : D->varlists()) {
4707     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4708     bool PerformInit =
4709         VD->getAnyInitializer() &&
4710         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4711                                                         /*ForRef=*/false);
4712 
4713     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4714     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4715             VD, Addr, RefExpr->getLocStart(), PerformInit))
4716       CXXGlobalInits.push_back(InitFunction);
4717   }
4718 }
4719 
4720 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4721   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4722   if (InternalId)
4723     return InternalId;
4724 
4725   if (isExternallyVisible(T->getLinkage())) {
4726     std::string OutName;
4727     llvm::raw_string_ostream Out(OutName);
4728     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4729 
4730     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4731   } else {
4732     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4733                                            llvm::ArrayRef<llvm::Metadata *>());
4734   }
4735 
4736   return InternalId;
4737 }
4738 
4739 // Generalize pointer types to a void pointer with the qualifiers of the
4740 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4741 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4742 // 'void *'.
4743 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4744   if (!Ty->isPointerType())
4745     return Ty;
4746 
4747   return Ctx.getPointerType(
4748       QualType(Ctx.VoidTy).withCVRQualifiers(
4749           Ty->getPointeeType().getCVRQualifiers()));
4750 }
4751 
4752 // Apply type generalization to a FunctionType's return and argument types
4753 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4754   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4755     SmallVector<QualType, 8> GeneralizedParams;
4756     for (auto &Param : FnType->param_types())
4757       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4758 
4759     return Ctx.getFunctionType(
4760         GeneralizeType(Ctx, FnType->getReturnType()),
4761         GeneralizedParams, FnType->getExtProtoInfo());
4762   }
4763 
4764   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4765     return Ctx.getFunctionNoProtoType(
4766         GeneralizeType(Ctx, FnType->getReturnType()));
4767 
4768   llvm_unreachable("Encountered unknown FunctionType");
4769 }
4770 
4771 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4772   T = GeneralizeFunctionType(getContext(), T);
4773 
4774   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4775   if (InternalId)
4776     return InternalId;
4777 
4778   if (isExternallyVisible(T->getLinkage())) {
4779     std::string OutName;
4780     llvm::raw_string_ostream Out(OutName);
4781     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4782     Out << ".generalized";
4783 
4784     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4785   } else {
4786     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4787                                            llvm::ArrayRef<llvm::Metadata *>());
4788   }
4789 
4790   return InternalId;
4791 }
4792 
4793 /// Returns whether this module needs the "all-vtables" type identifier.
4794 bool CodeGenModule::NeedAllVtablesTypeId() const {
4795   // Returns true if at least one of vtable-based CFI checkers is enabled and
4796   // is not in the trapping mode.
4797   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4798            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4799           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4800            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4801           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4802            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4803           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4804            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4805 }
4806 
4807 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4808                                           CharUnits Offset,
4809                                           const CXXRecordDecl *RD) {
4810   llvm::Metadata *MD =
4811       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4812   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4813 
4814   if (CodeGenOpts.SanitizeCfiCrossDso)
4815     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4816       VTable->addTypeMetadata(Offset.getQuantity(),
4817                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4818 
4819   if (NeedAllVtablesTypeId()) {
4820     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4821     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4822   }
4823 }
4824 
4825 // Fills in the supplied string map with the set of target features for the
4826 // passed in function.
4827 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4828                                           const FunctionDecl *FD) {
4829   StringRef TargetCPU = Target.getTargetOpts().CPU;
4830   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4831     // If we have a TargetAttr build up the feature map based on that.
4832     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4833 
4834     ParsedAttr.Features.erase(
4835         llvm::remove_if(ParsedAttr.Features,
4836                         [&](const std::string &Feat) {
4837                           return !Target.isValidFeatureName(
4838                               StringRef{Feat}.substr(1));
4839                         }),
4840         ParsedAttr.Features.end());
4841 
4842     // Make a copy of the features as passed on the command line into the
4843     // beginning of the additional features from the function to override.
4844     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4845                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4846                             Target.getTargetOpts().FeaturesAsWritten.end());
4847 
4848     if (ParsedAttr.Architecture != "" &&
4849         Target.isValidCPUName(ParsedAttr.Architecture))
4850       TargetCPU = ParsedAttr.Architecture;
4851 
4852     // Now populate the feature map, first with the TargetCPU which is either
4853     // the default or a new one from the target attribute string. Then we'll use
4854     // the passed in features (FeaturesAsWritten) along with the new ones from
4855     // the attribute.
4856     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4857                           ParsedAttr.Features);
4858   } else {
4859     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4860                           Target.getTargetOpts().Features);
4861   }
4862 }
4863 
4864 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4865   if (!SanStats)
4866     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4867 
4868   return *SanStats;
4869 }
4870 llvm::Value *
4871 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4872                                                   CodeGenFunction &CGF) {
4873   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4874   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4875   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4876   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4877                                 "__translate_sampler_initializer"),
4878                                 {C});
4879 }
4880