xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 11f6be1ce81df7da5d2f37119777d0ad6afa1115)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGCXXABI.h"
19 #include "CGObjCRuntime.h"
20 #include "Mangle.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/Diagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "llvm/CallingConv.h"
35 #include "llvm/Module.h"
36 #include "llvm/Intrinsics.h"
37 #include "llvm/LLVMContext.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Target/TargetData.h"
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
46   switch (CGM.getContext().Target.getCXXABI()) {
47   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
48   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
49   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
50   }
51 
52   llvm_unreachable("invalid C++ ABI kind");
53   return *CreateItaniumCXXABI(CGM);
54 }
55 
56 
57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
58                              llvm::Module &M, const llvm::TargetData &TD,
59                              Diagnostic &diags)
60   : BlockModule(C, M, TD, Types, *this), Context(C),
61     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
62     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
63     ABI(createCXXABI(*this)),
64     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
65     VTables(*this), Runtime(0),
66     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
67     VMContext(M.getContext()),
68     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
69     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
70     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
71     BlockObjectAssign(0), BlockObjectDispose(0){
72 
73   if (!Features.ObjC1)
74     Runtime = 0;
75   else if (!Features.NeXTRuntime)
76     Runtime = CreateGNUObjCRuntime(*this);
77   else if (Features.ObjCNonFragileABI)
78     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
79   else
80     Runtime = CreateMacObjCRuntime(*this);
81 
82   // If debug info generation is enabled, create the CGDebugInfo object.
83   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
84 }
85 
86 CodeGenModule::~CodeGenModule() {
87   delete Runtime;
88   delete &ABI;
89   delete DebugInfo;
90 }
91 
92 void CodeGenModule::createObjCRuntime() {
93   if (!Features.NeXTRuntime)
94     Runtime = CreateGNUObjCRuntime(*this);
95   else if (Features.ObjCNonFragileABI)
96     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
97   else
98     Runtime = CreateMacObjCRuntime(*this);
99 }
100 
101 void CodeGenModule::Release() {
102   EmitDeferred();
103   EmitCXXGlobalInitFunc();
104   EmitCXXGlobalDtorFunc();
105   if (Runtime)
106     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
107       AddGlobalCtor(ObjCInitFunction);
108   EmitCtorList(GlobalCtors, "llvm.global_ctors");
109   EmitCtorList(GlobalDtors, "llvm.global_dtors");
110   EmitAnnotations();
111   EmitLLVMUsed();
112 
113   SimplifyPersonality();
114 
115   if (getCodeGenOpts().EmitDeclMetadata)
116     EmitDeclMetadata();
117 }
118 
119 bool CodeGenModule::isTargetDarwin() const {
120   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
121 }
122 
123 /// ErrorUnsupported - Print out an error that codegen doesn't support the
124 /// specified stmt yet.
125 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
126                                      bool OmitOnError) {
127   if (OmitOnError && getDiags().hasErrorOccurred())
128     return;
129   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
130                                                "cannot compile this %0 yet");
131   std::string Msg = Type;
132   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
133     << Msg << S->getSourceRange();
134 }
135 
136 /// ErrorUnsupported - Print out an error that codegen doesn't support the
137 /// specified decl yet.
138 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
139                                      bool OmitOnError) {
140   if (OmitOnError && getDiags().hasErrorOccurred())
141     return;
142   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
143                                                "cannot compile this %0 yet");
144   std::string Msg = Type;
145   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
146 }
147 
148 LangOptions::VisibilityMode
149 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
150   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
151     if (VD->getStorageClass() == SC_PrivateExtern)
152       return LangOptions::Hidden;
153 
154   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
155     switch (attr->getVisibility()) {
156     default: assert(0 && "Unknown visibility!");
157     case VisibilityAttr::Default:
158       return LangOptions::Default;
159     case VisibilityAttr::Hidden:
160       return LangOptions::Hidden;
161     case VisibilityAttr::Protected:
162       return LangOptions::Protected;
163     }
164   }
165 
166   if (getLangOptions().CPlusPlus) {
167     // Entities subject to an explicit instantiation declaration get default
168     // visibility.
169     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
170       if (Function->getTemplateSpecializationKind()
171                                         == TSK_ExplicitInstantiationDeclaration)
172         return LangOptions::Default;
173     } else if (const ClassTemplateSpecializationDecl *ClassSpec
174                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
175       if (ClassSpec->getSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
179       if (Record->getTemplateSpecializationKind()
180                                         == TSK_ExplicitInstantiationDeclaration)
181         return LangOptions::Default;
182     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
183       if (Var->isStaticDataMember() &&
184           (Var->getTemplateSpecializationKind()
185                                       == TSK_ExplicitInstantiationDeclaration))
186         return LangOptions::Default;
187     }
188 
189     // If -fvisibility-inlines-hidden was provided, then inline C++ member
190     // functions get "hidden" visibility by default.
191     if (getLangOptions().InlineVisibilityHidden)
192       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
193         if (Method->isInlined())
194           return LangOptions::Hidden;
195   }
196 
197   // If this decl is contained in a class, it should have the same visibility
198   // as the parent class.
199   if (const DeclContext *DC = D->getDeclContext())
200     if (DC->isRecord())
201       return getDeclVisibilityMode(cast<Decl>(DC));
202 
203   return getLangOptions().getVisibilityMode();
204 }
205 
206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
207                                         const Decl *D) const {
208   // Internal definitions always have default visibility.
209   if (GV->hasLocalLinkage()) {
210     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
211     return;
212   }
213 
214   switch (getDeclVisibilityMode(D)) {
215   default: assert(0 && "Unknown visibility!");
216   case LangOptions::Default:
217     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
218   case LangOptions::Hidden:
219     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220   case LangOptions::Protected:
221     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
222   }
223 }
224 
225 /// Set the symbol visibility of type information (vtable and RTTI)
226 /// associated with the given type.
227 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
228                                       const CXXRecordDecl *RD,
229                                       bool IsForRTTI) const {
230   setGlobalVisibility(GV, RD);
231 
232   if (!CodeGenOpts.HiddenWeakVTables)
233     return;
234 
235   // We want to drop the visibility to hidden for weak type symbols.
236   // This isn't possible if there might be unresolved references
237   // elsewhere that rely on this symbol being visible.
238 
239   // This should be kept roughly in sync with setThunkVisibility
240   // in CGVTables.cpp.
241 
242   // Preconditions.
243   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
244       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
245     return;
246 
247   // Don't override an explicit visibility attribute.
248   if (RD->hasAttr<VisibilityAttr>())
249     return;
250 
251   switch (RD->getTemplateSpecializationKind()) {
252   // We have to disable the optimization if this is an EI definition
253   // because there might be EI declarations in other shared objects.
254   case TSK_ExplicitInstantiationDefinition:
255   case TSK_ExplicitInstantiationDeclaration:
256     return;
257 
258   // Every use of a non-template class's type information has to emit it.
259   case TSK_Undeclared:
260     break;
261 
262   // In theory, implicit instantiations can ignore the possibility of
263   // an explicit instantiation declaration because there necessarily
264   // must be an EI definition somewhere with default visibility.  In
265   // practice, it's possible to have an explicit instantiation for
266   // an arbitrary template class, and linkers aren't necessarily able
267   // to deal with mixed-visibility symbols.
268   case TSK_ExplicitSpecialization:
269   case TSK_ImplicitInstantiation:
270     if (!CodeGenOpts.HiddenWeakTemplateVTables)
271       return;
272     break;
273   }
274 
275   // If there's a key function, there may be translation units
276   // that don't have the key function's definition.  But ignore
277   // this if we're emitting RTTI under -fno-rtti.
278   if (!IsForRTTI || Features.RTTI)
279     if (Context.getKeyFunction(RD))
280       return;
281 
282   // Otherwise, drop the visibility to hidden.
283   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
284 }
285 
286 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
287   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
288 
289   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
290   if (!Str.empty())
291     return Str;
292 
293   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
294     IdentifierInfo *II = ND->getIdentifier();
295     assert(II && "Attempt to mangle unnamed decl.");
296 
297     Str = II->getName();
298     return Str;
299   }
300 
301   llvm::SmallString<256> Buffer;
302   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
303     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
304   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
305     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
306   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
307     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
308   else
309     getCXXABI().getMangleContext().mangleName(ND, Buffer);
310 
311   // Allocate space for the mangled name.
312   size_t Length = Buffer.size();
313   char *Name = MangledNamesAllocator.Allocate<char>(Length);
314   std::copy(Buffer.begin(), Buffer.end(), Name);
315 
316   Str = llvm::StringRef(Name, Length);
317 
318   return Str;
319 }
320 
321 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                    const BlockDecl *BD) {
323   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
324 }
325 
326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
327   return getModule().getNamedValue(Name);
328 }
329 
330 /// AddGlobalCtor - Add a function to the list that will be called before
331 /// main() runs.
332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
333   // FIXME: Type coercion of void()* types.
334   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
335 }
336 
337 /// AddGlobalDtor - Add a function to the list that will be called
338 /// when the module is unloaded.
339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
340   // FIXME: Type coercion of void()* types.
341   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
342 }
343 
344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
345   // Ctor function type is void()*.
346   llvm::FunctionType* CtorFTy =
347     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
348                             std::vector<const llvm::Type*>(),
349                             false);
350   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
351 
352   // Get the type of a ctor entry, { i32, void ()* }.
353   llvm::StructType* CtorStructTy =
354     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
355                           llvm::PointerType::getUnqual(CtorFTy), NULL);
356 
357   // Construct the constructor and destructor arrays.
358   std::vector<llvm::Constant*> Ctors;
359   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
360     std::vector<llvm::Constant*> S;
361     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
362                 I->second, false));
363     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
364     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
365   }
366 
367   if (!Ctors.empty()) {
368     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
369     new llvm::GlobalVariable(TheModule, AT, false,
370                              llvm::GlobalValue::AppendingLinkage,
371                              llvm::ConstantArray::get(AT, Ctors),
372                              GlobalName);
373   }
374 }
375 
376 void CodeGenModule::EmitAnnotations() {
377   if (Annotations.empty())
378     return;
379 
380   // Create a new global variable for the ConstantStruct in the Module.
381   llvm::Constant *Array =
382   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
383                                                 Annotations.size()),
384                            Annotations);
385   llvm::GlobalValue *gv =
386   new llvm::GlobalVariable(TheModule, Array->getType(), false,
387                            llvm::GlobalValue::AppendingLinkage, Array,
388                            "llvm.global.annotations");
389   gv->setSection("llvm.metadata");
390 }
391 
392 llvm::GlobalValue::LinkageTypes
393 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
394   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
395 
396   if (Linkage == GVA_Internal)
397     return llvm::Function::InternalLinkage;
398 
399   if (D->hasAttr<DLLExportAttr>())
400     return llvm::Function::DLLExportLinkage;
401 
402   if (D->hasAttr<WeakAttr>())
403     return llvm::Function::WeakAnyLinkage;
404 
405   // In C99 mode, 'inline' functions are guaranteed to have a strong
406   // definition somewhere else, so we can use available_externally linkage.
407   if (Linkage == GVA_C99Inline)
408     return llvm::Function::AvailableExternallyLinkage;
409 
410   // In C++, the compiler has to emit a definition in every translation unit
411   // that references the function.  We should use linkonce_odr because
412   // a) if all references in this translation unit are optimized away, we
413   // don't need to codegen it.  b) if the function persists, it needs to be
414   // merged with other definitions. c) C++ has the ODR, so we know the
415   // definition is dependable.
416   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
417     return llvm::Function::LinkOnceODRLinkage;
418 
419   // An explicit instantiation of a template has weak linkage, since
420   // explicit instantiations can occur in multiple translation units
421   // and must all be equivalent. However, we are not allowed to
422   // throw away these explicit instantiations.
423   if (Linkage == GVA_ExplicitTemplateInstantiation)
424     return llvm::Function::WeakODRLinkage;
425 
426   // Otherwise, we have strong external linkage.
427   assert(Linkage == GVA_StrongExternal);
428   return llvm::Function::ExternalLinkage;
429 }
430 
431 
432 /// SetFunctionDefinitionAttributes - Set attributes for a global.
433 ///
434 /// FIXME: This is currently only done for aliases and functions, but not for
435 /// variables (these details are set in EmitGlobalVarDefinition for variables).
436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
437                                                     llvm::GlobalValue *GV) {
438   SetCommonAttributes(D, GV);
439 }
440 
441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
442                                               const CGFunctionInfo &Info,
443                                               llvm::Function *F) {
444   unsigned CallingConv;
445   AttributeListType AttributeList;
446   ConstructAttributeList(Info, D, AttributeList, CallingConv);
447   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
448                                           AttributeList.size()));
449   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
450 }
451 
452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
453                                                            llvm::Function *F) {
454   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
455     F->addFnAttr(llvm::Attribute::NoUnwind);
456 
457   if (D->hasAttr<AlwaysInlineAttr>())
458     F->addFnAttr(llvm::Attribute::AlwaysInline);
459 
460   if (D->hasAttr<NakedAttr>())
461     F->addFnAttr(llvm::Attribute::Naked);
462 
463   if (D->hasAttr<NoInlineAttr>())
464     F->addFnAttr(llvm::Attribute::NoInline);
465 
466   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
467     F->addFnAttr(llvm::Attribute::StackProtect);
468   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
469     F->addFnAttr(llvm::Attribute::StackProtectReq);
470 
471   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
472   if (alignment)
473     F->setAlignment(alignment);
474 
475   // C++ ABI requires 2-byte alignment for member functions.
476   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
477     F->setAlignment(2);
478 }
479 
480 void CodeGenModule::SetCommonAttributes(const Decl *D,
481                                         llvm::GlobalValue *GV) {
482   setGlobalVisibility(GV, D);
483 
484   if (D->hasAttr<UsedAttr>())
485     AddUsedGlobal(GV);
486 
487   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
488     GV->setSection(SA->getName());
489 
490   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
491 }
492 
493 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
494                                                   llvm::Function *F,
495                                                   const CGFunctionInfo &FI) {
496   SetLLVMFunctionAttributes(D, FI, F);
497   SetLLVMFunctionAttributesForDefinition(D, F);
498 
499   F->setLinkage(llvm::Function::InternalLinkage);
500 
501   SetCommonAttributes(D, F);
502 }
503 
504 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
505                                           llvm::Function *F,
506                                           bool IsIncompleteFunction) {
507   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
508 
509   if (!IsIncompleteFunction)
510     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
511 
512   // Only a few attributes are set on declarations; these may later be
513   // overridden by a definition.
514 
515   if (FD->hasAttr<DLLImportAttr>()) {
516     F->setLinkage(llvm::Function::DLLImportLinkage);
517   } else if (FD->hasAttr<WeakAttr>() ||
518              FD->hasAttr<WeakImportAttr>()) {
519     // "extern_weak" is overloaded in LLVM; we probably should have
520     // separate linkage types for this.
521     F->setLinkage(llvm::Function::ExternalWeakLinkage);
522   } else {
523     F->setLinkage(llvm::Function::ExternalLinkage);
524   }
525 
526   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
527     F->setSection(SA->getName());
528 }
529 
530 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
531   assert(!GV->isDeclaration() &&
532          "Only globals with definition can force usage.");
533   LLVMUsed.push_back(GV);
534 }
535 
536 void CodeGenModule::EmitLLVMUsed() {
537   // Don't create llvm.used if there is no need.
538   if (LLVMUsed.empty())
539     return;
540 
541   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
542 
543   // Convert LLVMUsed to what ConstantArray needs.
544   std::vector<llvm::Constant*> UsedArray;
545   UsedArray.resize(LLVMUsed.size());
546   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
547     UsedArray[i] =
548      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
549                                       i8PTy);
550   }
551 
552   if (UsedArray.empty())
553     return;
554   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
555 
556   llvm::GlobalVariable *GV =
557     new llvm::GlobalVariable(getModule(), ATy, false,
558                              llvm::GlobalValue::AppendingLinkage,
559                              llvm::ConstantArray::get(ATy, UsedArray),
560                              "llvm.used");
561 
562   GV->setSection("llvm.metadata");
563 }
564 
565 void CodeGenModule::EmitDeferred() {
566   // Emit code for any potentially referenced deferred decls.  Since a
567   // previously unused static decl may become used during the generation of code
568   // for a static function, iterate until no  changes are made.
569 
570   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
571     if (!DeferredVTables.empty()) {
572       const CXXRecordDecl *RD = DeferredVTables.back();
573       DeferredVTables.pop_back();
574       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
575       continue;
576     }
577 
578     GlobalDecl D = DeferredDeclsToEmit.back();
579     DeferredDeclsToEmit.pop_back();
580 
581     // Check to see if we've already emitted this.  This is necessary
582     // for a couple of reasons: first, decls can end up in the
583     // deferred-decls queue multiple times, and second, decls can end
584     // up with definitions in unusual ways (e.g. by an extern inline
585     // function acquiring a strong function redefinition).  Just
586     // ignore these cases.
587     //
588     // TODO: That said, looking this up multiple times is very wasteful.
589     llvm::StringRef Name = getMangledName(D);
590     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
591     assert(CGRef && "Deferred decl wasn't referenced?");
592 
593     if (!CGRef->isDeclaration())
594       continue;
595 
596     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
597     // purposes an alias counts as a definition.
598     if (isa<llvm::GlobalAlias>(CGRef))
599       continue;
600 
601     // Otherwise, emit the definition and move on to the next one.
602     EmitGlobalDefinition(D);
603   }
604 }
605 
606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
607 /// annotation information for a given GlobalValue.  The annotation struct is
608 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
609 /// GlobalValue being annotated.  The second field is the constant string
610 /// created from the AnnotateAttr's annotation.  The third field is a constant
611 /// string containing the name of the translation unit.  The fourth field is
612 /// the line number in the file of the annotated value declaration.
613 ///
614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
615 ///        appears to.
616 ///
617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
618                                                 const AnnotateAttr *AA,
619                                                 unsigned LineNo) {
620   llvm::Module *M = &getModule();
621 
622   // get [N x i8] constants for the annotation string, and the filename string
623   // which are the 2nd and 3rd elements of the global annotation structure.
624   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
625   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
626                                                   AA->getAnnotation(), true);
627   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
628                                                   M->getModuleIdentifier(),
629                                                   true);
630 
631   // Get the two global values corresponding to the ConstantArrays we just
632   // created to hold the bytes of the strings.
633   llvm::GlobalValue *annoGV =
634     new llvm::GlobalVariable(*M, anno->getType(), false,
635                              llvm::GlobalValue::PrivateLinkage, anno,
636                              GV->getName());
637   // translation unit name string, emitted into the llvm.metadata section.
638   llvm::GlobalValue *unitGV =
639     new llvm::GlobalVariable(*M, unit->getType(), false,
640                              llvm::GlobalValue::PrivateLinkage, unit,
641                              ".str");
642 
643   // Create the ConstantStruct for the global annotation.
644   llvm::Constant *Fields[4] = {
645     llvm::ConstantExpr::getBitCast(GV, SBP),
646     llvm::ConstantExpr::getBitCast(annoGV, SBP),
647     llvm::ConstantExpr::getBitCast(unitGV, SBP),
648     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
649   };
650   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
651 }
652 
653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
654   // Never defer when EmitAllDecls is specified.
655   if (Features.EmitAllDecls)
656     return false;
657 
658   return !getContext().DeclMustBeEmitted(Global);
659 }
660 
661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
662   const AliasAttr *AA = VD->getAttr<AliasAttr>();
663   assert(AA && "No alias?");
664 
665   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
666 
667   // See if there is already something with the target's name in the module.
668   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
669 
670   llvm::Constant *Aliasee;
671   if (isa<llvm::FunctionType>(DeclTy))
672     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
673   else
674     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
675                                     llvm::PointerType::getUnqual(DeclTy), 0);
676   if (!Entry) {
677     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
678     F->setLinkage(llvm::Function::ExternalWeakLinkage);
679     WeakRefReferences.insert(F);
680   }
681 
682   return Aliasee;
683 }
684 
685 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
686   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
687 
688   // Weak references don't produce any output by themselves.
689   if (Global->hasAttr<WeakRefAttr>())
690     return;
691 
692   // If this is an alias definition (which otherwise looks like a declaration)
693   // emit it now.
694   if (Global->hasAttr<AliasAttr>())
695     return EmitAliasDefinition(GD);
696 
697   // Ignore declarations, they will be emitted on their first use.
698   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
699     if (FD->getIdentifier()) {
700       llvm::StringRef Name = FD->getName();
701       if (Name == "_Block_object_assign") {
702         BlockObjectAssignDecl = FD;
703       } else if (Name == "_Block_object_dispose") {
704         BlockObjectDisposeDecl = FD;
705       }
706     }
707 
708     // Forward declarations are emitted lazily on first use.
709     if (!FD->isThisDeclarationADefinition())
710       return;
711   } else {
712     const VarDecl *VD = cast<VarDecl>(Global);
713     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
714 
715     if (VD->getIdentifier()) {
716       llvm::StringRef Name = VD->getName();
717       if (Name == "_NSConcreteGlobalBlock") {
718         NSConcreteGlobalBlockDecl = VD;
719       } else if (Name == "_NSConcreteStackBlock") {
720         NSConcreteStackBlockDecl = VD;
721       }
722     }
723 
724 
725     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
726       return;
727   }
728 
729   // Defer code generation when possible if this is a static definition, inline
730   // function etc.  These we only want to emit if they are used.
731   if (!MayDeferGeneration(Global)) {
732     // Emit the definition if it can't be deferred.
733     EmitGlobalDefinition(GD);
734     return;
735   }
736 
737   // If we're deferring emission of a C++ variable with an
738   // initializer, remember the order in which it appeared in the file.
739   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
740       cast<VarDecl>(Global)->hasInit()) {
741     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
742     CXXGlobalInits.push_back(0);
743   }
744 
745   // If the value has already been used, add it directly to the
746   // DeferredDeclsToEmit list.
747   llvm::StringRef MangledName = getMangledName(GD);
748   if (GetGlobalValue(MangledName))
749     DeferredDeclsToEmit.push_back(GD);
750   else {
751     // Otherwise, remember that we saw a deferred decl with this name.  The
752     // first use of the mangled name will cause it to move into
753     // DeferredDeclsToEmit.
754     DeferredDecls[MangledName] = GD;
755   }
756 }
757 
758 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
759   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
760 
761   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
762                                  Context.getSourceManager(),
763                                  "Generating code for declaration");
764 
765   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
766     // At -O0, don't generate IR for functions with available_externally
767     // linkage.
768     if (CodeGenOpts.OptimizationLevel == 0 &&
769         !Function->hasAttr<AlwaysInlineAttr>() &&
770         getFunctionLinkage(Function)
771                                   == llvm::Function::AvailableExternallyLinkage)
772       return;
773 
774     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
775       if (Method->isVirtual())
776         getVTables().EmitThunks(GD);
777 
778       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
779         return EmitCXXConstructor(CD, GD.getCtorType());
780 
781       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
782         return EmitCXXDestructor(DD, GD.getDtorType());
783     }
784 
785     return EmitGlobalFunctionDefinition(GD);
786   }
787 
788   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
789     return EmitGlobalVarDefinition(VD);
790 
791   assert(0 && "Invalid argument to EmitGlobalDefinition()");
792 }
793 
794 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
795 /// module, create and return an llvm Function with the specified type. If there
796 /// is something in the module with the specified name, return it potentially
797 /// bitcasted to the right type.
798 ///
799 /// If D is non-null, it specifies a decl that correspond to this.  This is used
800 /// to set the attributes on the function when it is first created.
801 llvm::Constant *
802 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
803                                        const llvm::Type *Ty,
804                                        GlobalDecl D) {
805   // Lookup the entry, lazily creating it if necessary.
806   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
807   if (Entry) {
808     if (WeakRefReferences.count(Entry)) {
809       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
810       if (FD && !FD->hasAttr<WeakAttr>())
811         Entry->setLinkage(llvm::Function::ExternalLinkage);
812 
813       WeakRefReferences.erase(Entry);
814     }
815 
816     if (Entry->getType()->getElementType() == Ty)
817       return Entry;
818 
819     // Make sure the result is of the correct type.
820     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
821     return llvm::ConstantExpr::getBitCast(Entry, PTy);
822   }
823 
824   // This function doesn't have a complete type (for example, the return
825   // type is an incomplete struct). Use a fake type instead, and make
826   // sure not to try to set attributes.
827   bool IsIncompleteFunction = false;
828 
829   const llvm::FunctionType *FTy;
830   if (isa<llvm::FunctionType>(Ty)) {
831     FTy = cast<llvm::FunctionType>(Ty);
832   } else {
833     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
834                                   std::vector<const llvm::Type*>(), false);
835     IsIncompleteFunction = true;
836   }
837 
838   llvm::Function *F = llvm::Function::Create(FTy,
839                                              llvm::Function::ExternalLinkage,
840                                              MangledName, &getModule());
841   assert(F->getName() == MangledName && "name was uniqued!");
842   if (D.getDecl())
843     SetFunctionAttributes(D, F, IsIncompleteFunction);
844 
845   // This is the first use or definition of a mangled name.  If there is a
846   // deferred decl with this name, remember that we need to emit it at the end
847   // of the file.
848   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
849   if (DDI != DeferredDecls.end()) {
850     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
851     // list, and remove it from DeferredDecls (since we don't need it anymore).
852     DeferredDeclsToEmit.push_back(DDI->second);
853     DeferredDecls.erase(DDI);
854   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
855     // If this the first reference to a C++ inline function in a class, queue up
856     // the deferred function body for emission.  These are not seen as
857     // top-level declarations.
858     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
859       DeferredDeclsToEmit.push_back(D);
860     // A called constructor which has no definition or declaration need be
861     // synthesized.
862     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
863       if (CD->isImplicit()) {
864         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
865         DeferredDeclsToEmit.push_back(D);
866       }
867     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
868       if (DD->isImplicit()) {
869         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
870         DeferredDeclsToEmit.push_back(D);
871       }
872     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
873       if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
874         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
875         DeferredDeclsToEmit.push_back(D);
876       }
877     }
878   }
879 
880   // Make sure the result is of the requested type.
881   if (!IsIncompleteFunction) {
882     assert(F->getType()->getElementType() == Ty);
883     return F;
884   }
885 
886   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
887   return llvm::ConstantExpr::getBitCast(F, PTy);
888 }
889 
890 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
891 /// non-null, then this function will use the specified type if it has to
892 /// create it (this occurs when we see a definition of the function).
893 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
894                                                  const llvm::Type *Ty) {
895   // If there was no specific requested type, just convert it now.
896   if (!Ty)
897     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
898 
899   llvm::StringRef MangledName = getMangledName(GD);
900   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
901 }
902 
903 /// CreateRuntimeFunction - Create a new runtime function with the specified
904 /// type and name.
905 llvm::Constant *
906 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
907                                      llvm::StringRef Name) {
908   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
909 }
910 
911 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
912   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
913     return false;
914   if (Context.getLangOptions().CPlusPlus &&
915       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
916     // FIXME: We should do something fancier here!
917     return false;
918   }
919   return true;
920 }
921 
922 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
923 /// create and return an llvm GlobalVariable with the specified type.  If there
924 /// is something in the module with the specified name, return it potentially
925 /// bitcasted to the right type.
926 ///
927 /// If D is non-null, it specifies a decl that correspond to this.  This is used
928 /// to set the attributes on the global when it is first created.
929 llvm::Constant *
930 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
931                                      const llvm::PointerType *Ty,
932                                      const VarDecl *D) {
933   // Lookup the entry, lazily creating it if necessary.
934   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
935   if (Entry) {
936     if (WeakRefReferences.count(Entry)) {
937       if (D && !D->hasAttr<WeakAttr>())
938         Entry->setLinkage(llvm::Function::ExternalLinkage);
939 
940       WeakRefReferences.erase(Entry);
941     }
942 
943     if (Entry->getType() == Ty)
944       return Entry;
945 
946     // Make sure the result is of the correct type.
947     return llvm::ConstantExpr::getBitCast(Entry, Ty);
948   }
949 
950   // This is the first use or definition of a mangled name.  If there is a
951   // deferred decl with this name, remember that we need to emit it at the end
952   // of the file.
953   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
954   if (DDI != DeferredDecls.end()) {
955     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
956     // list, and remove it from DeferredDecls (since we don't need it anymore).
957     DeferredDeclsToEmit.push_back(DDI->second);
958     DeferredDecls.erase(DDI);
959   }
960 
961   llvm::GlobalVariable *GV =
962     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
963                              llvm::GlobalValue::ExternalLinkage,
964                              0, MangledName, 0,
965                              false, Ty->getAddressSpace());
966 
967   // Handle things which are present even on external declarations.
968   if (D) {
969     // FIXME: This code is overly simple and should be merged with other global
970     // handling.
971     GV->setConstant(DeclIsConstantGlobal(Context, D));
972 
973     // FIXME: Merge with other attribute handling code.
974     if (D->getStorageClass() == SC_PrivateExtern)
975       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
976 
977     if (D->hasAttr<DLLImportAttr>())
978       GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
979     else if (D->hasAttr<WeakAttr>() ||
980         D->hasAttr<WeakImportAttr>())
981       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
982 
983     GV->setThreadLocal(D->isThreadSpecified());
984   }
985 
986   return GV;
987 }
988 
989 
990 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
991 /// given global variable.  If Ty is non-null and if the global doesn't exist,
992 /// then it will be greated with the specified type instead of whatever the
993 /// normal requested type would be.
994 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
995                                                   const llvm::Type *Ty) {
996   assert(D->hasGlobalStorage() && "Not a global variable");
997   QualType ASTTy = D->getType();
998   if (Ty == 0)
999     Ty = getTypes().ConvertTypeForMem(ASTTy);
1000 
1001   const llvm::PointerType *PTy =
1002     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1003 
1004   llvm::StringRef MangledName = getMangledName(D);
1005   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1006 }
1007 
1008 /// CreateRuntimeVariable - Create a new runtime global variable with the
1009 /// specified type and name.
1010 llvm::Constant *
1011 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1012                                      llvm::StringRef Name) {
1013   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1014 }
1015 
1016 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1017   assert(!D->getInit() && "Cannot emit definite definitions here!");
1018 
1019   if (MayDeferGeneration(D)) {
1020     // If we have not seen a reference to this variable yet, place it
1021     // into the deferred declarations table to be emitted if needed
1022     // later.
1023     llvm::StringRef MangledName = getMangledName(D);
1024     if (!GetGlobalValue(MangledName)) {
1025       DeferredDecls[MangledName] = D;
1026       return;
1027     }
1028   }
1029 
1030   // The tentative definition is the only definition.
1031   EmitGlobalVarDefinition(D);
1032 }
1033 
1034 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1035   if (DefinitionRequired)
1036     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1037 }
1038 
1039 llvm::GlobalVariable::LinkageTypes
1040 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1041   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1042     return llvm::GlobalVariable::InternalLinkage;
1043 
1044   if (const CXXMethodDecl *KeyFunction
1045                                     = RD->getASTContext().getKeyFunction(RD)) {
1046     // If this class has a key function, use that to determine the linkage of
1047     // the vtable.
1048     const FunctionDecl *Def = 0;
1049     if (KeyFunction->hasBody(Def))
1050       KeyFunction = cast<CXXMethodDecl>(Def);
1051 
1052     switch (KeyFunction->getTemplateSpecializationKind()) {
1053       case TSK_Undeclared:
1054       case TSK_ExplicitSpecialization:
1055         if (KeyFunction->isInlined())
1056           return llvm::GlobalVariable::WeakODRLinkage;
1057 
1058         return llvm::GlobalVariable::ExternalLinkage;
1059 
1060       case TSK_ImplicitInstantiation:
1061       case TSK_ExplicitInstantiationDefinition:
1062         return llvm::GlobalVariable::WeakODRLinkage;
1063 
1064       case TSK_ExplicitInstantiationDeclaration:
1065         // FIXME: Use available_externally linkage. However, this currently
1066         // breaks LLVM's build due to undefined symbols.
1067         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1068         return llvm::GlobalVariable::WeakODRLinkage;
1069     }
1070   }
1071 
1072   switch (RD->getTemplateSpecializationKind()) {
1073   case TSK_Undeclared:
1074   case TSK_ExplicitSpecialization:
1075   case TSK_ImplicitInstantiation:
1076   case TSK_ExplicitInstantiationDefinition:
1077     return llvm::GlobalVariable::WeakODRLinkage;
1078 
1079   case TSK_ExplicitInstantiationDeclaration:
1080     // FIXME: Use available_externally linkage. However, this currently
1081     // breaks LLVM's build due to undefined symbols.
1082     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1083     return llvm::GlobalVariable::WeakODRLinkage;
1084   }
1085 
1086   // Silence GCC warning.
1087   return llvm::GlobalVariable::WeakODRLinkage;
1088 }
1089 
1090 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1091     return CharUnits::fromQuantity(
1092       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1093 }
1094 
1095 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1096   llvm::Constant *Init = 0;
1097   QualType ASTTy = D->getType();
1098   bool NonConstInit = false;
1099 
1100   const Expr *InitExpr = D->getAnyInitializer();
1101 
1102   if (!InitExpr) {
1103     // This is a tentative definition; tentative definitions are
1104     // implicitly initialized with { 0 }.
1105     //
1106     // Note that tentative definitions are only emitted at the end of
1107     // a translation unit, so they should never have incomplete
1108     // type. In addition, EmitTentativeDefinition makes sure that we
1109     // never attempt to emit a tentative definition if a real one
1110     // exists. A use may still exists, however, so we still may need
1111     // to do a RAUW.
1112     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1113     Init = EmitNullConstant(D->getType());
1114   } else {
1115     Init = EmitConstantExpr(InitExpr, D->getType());
1116     if (!Init) {
1117       QualType T = InitExpr->getType();
1118       if (D->getType()->isReferenceType())
1119         T = D->getType();
1120 
1121       if (getLangOptions().CPlusPlus) {
1122         EmitCXXGlobalVarDeclInitFunc(D);
1123         Init = EmitNullConstant(T);
1124         NonConstInit = true;
1125       } else {
1126         ErrorUnsupported(D, "static initializer");
1127         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1128       }
1129     } else {
1130       // We don't need an initializer, so remove the entry for the delayed
1131       // initializer position (just in case this entry was delayed).
1132       if (getLangOptions().CPlusPlus)
1133         DelayedCXXInitPosition.erase(D);
1134     }
1135   }
1136 
1137   const llvm::Type* InitType = Init->getType();
1138   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1139 
1140   // Strip off a bitcast if we got one back.
1141   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1142     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1143            // all zero index gep.
1144            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1145     Entry = CE->getOperand(0);
1146   }
1147 
1148   // Entry is now either a Function or GlobalVariable.
1149   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1150 
1151   // We have a definition after a declaration with the wrong type.
1152   // We must make a new GlobalVariable* and update everything that used OldGV
1153   // (a declaration or tentative definition) with the new GlobalVariable*
1154   // (which will be a definition).
1155   //
1156   // This happens if there is a prototype for a global (e.g.
1157   // "extern int x[];") and then a definition of a different type (e.g.
1158   // "int x[10];"). This also happens when an initializer has a different type
1159   // from the type of the global (this happens with unions).
1160   if (GV == 0 ||
1161       GV->getType()->getElementType() != InitType ||
1162       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1163 
1164     // Move the old entry aside so that we'll create a new one.
1165     Entry->setName(llvm::StringRef());
1166 
1167     // Make a new global with the correct type, this is now guaranteed to work.
1168     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1169 
1170     // Replace all uses of the old global with the new global
1171     llvm::Constant *NewPtrForOldDecl =
1172         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1173     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1174 
1175     // Erase the old global, since it is no longer used.
1176     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1177   }
1178 
1179   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1180     SourceManager &SM = Context.getSourceManager();
1181     AddAnnotation(EmitAnnotateAttr(GV, AA,
1182                               SM.getInstantiationLineNumber(D->getLocation())));
1183   }
1184 
1185   GV->setInitializer(Init);
1186 
1187   // If it is safe to mark the global 'constant', do so now.
1188   GV->setConstant(false);
1189   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1190     GV->setConstant(true);
1191 
1192   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1193 
1194   // Set the llvm linkage type as appropriate.
1195   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1196   if (Linkage == GVA_Internal)
1197     GV->setLinkage(llvm::Function::InternalLinkage);
1198   else if (D->hasAttr<DLLImportAttr>())
1199     GV->setLinkage(llvm::Function::DLLImportLinkage);
1200   else if (D->hasAttr<DLLExportAttr>())
1201     GV->setLinkage(llvm::Function::DLLExportLinkage);
1202   else if (D->hasAttr<WeakAttr>()) {
1203     if (GV->isConstant())
1204       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1205     else
1206       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1207   } else if (Linkage == GVA_TemplateInstantiation ||
1208              Linkage == GVA_ExplicitTemplateInstantiation)
1209     // FIXME: It seems like we can provide more specific linkage here
1210     // (LinkOnceODR, WeakODR).
1211     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1212   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1213            !D->hasExternalStorage() && !D->getInit() &&
1214            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1215     // Thread local vars aren't considered common linkage.
1216     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1217     // common vars aren't constant even if declared const.
1218     GV->setConstant(false);
1219   } else
1220     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1221 
1222   SetCommonAttributes(D, GV);
1223 
1224   // Emit global variable debug information.
1225   if (CGDebugInfo *DI = getDebugInfo()) {
1226     DI->setLocation(D->getLocation());
1227     DI->EmitGlobalVariable(GV, D);
1228   }
1229 }
1230 
1231 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1232 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1233 /// existing call uses of the old function in the module, this adjusts them to
1234 /// call the new function directly.
1235 ///
1236 /// This is not just a cleanup: the always_inline pass requires direct calls to
1237 /// functions to be able to inline them.  If there is a bitcast in the way, it
1238 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1239 /// run at -O0.
1240 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1241                                                       llvm::Function *NewFn) {
1242   // If we're redefining a global as a function, don't transform it.
1243   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1244   if (OldFn == 0) return;
1245 
1246   const llvm::Type *NewRetTy = NewFn->getReturnType();
1247   llvm::SmallVector<llvm::Value*, 4> ArgList;
1248 
1249   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1250        UI != E; ) {
1251     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1252     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1253     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1254     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1255     llvm::CallSite CS(CI);
1256     if (!CI || !CS.isCallee(I)) continue;
1257 
1258     // If the return types don't match exactly, and if the call isn't dead, then
1259     // we can't transform this call.
1260     if (CI->getType() != NewRetTy && !CI->use_empty())
1261       continue;
1262 
1263     // If the function was passed too few arguments, don't transform.  If extra
1264     // arguments were passed, we silently drop them.  If any of the types
1265     // mismatch, we don't transform.
1266     unsigned ArgNo = 0;
1267     bool DontTransform = false;
1268     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1269          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1270       if (CS.arg_size() == ArgNo ||
1271           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1272         DontTransform = true;
1273         break;
1274       }
1275     }
1276     if (DontTransform)
1277       continue;
1278 
1279     // Okay, we can transform this.  Create the new call instruction and copy
1280     // over the required information.
1281     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1282     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1283                                                      ArgList.end(), "", CI);
1284     ArgList.clear();
1285     if (!NewCall->getType()->isVoidTy())
1286       NewCall->takeName(CI);
1287     NewCall->setAttributes(CI->getAttributes());
1288     NewCall->setCallingConv(CI->getCallingConv());
1289 
1290     // Finally, remove the old call, replacing any uses with the new one.
1291     if (!CI->use_empty())
1292       CI->replaceAllUsesWith(NewCall);
1293 
1294     // Copy debug location attached to CI.
1295     if (!CI->getDebugLoc().isUnknown())
1296       NewCall->setDebugLoc(CI->getDebugLoc());
1297     CI->eraseFromParent();
1298   }
1299 }
1300 
1301 
1302 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1303   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1304   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1305   getCXXABI().getMangleContext().mangleInitDiscriminator();
1306   // Get or create the prototype for the function.
1307   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1308 
1309   // Strip off a bitcast if we got one back.
1310   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1311     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1312     Entry = CE->getOperand(0);
1313   }
1314 
1315 
1316   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1317     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1318 
1319     // If the types mismatch then we have to rewrite the definition.
1320     assert(OldFn->isDeclaration() &&
1321            "Shouldn't replace non-declaration");
1322 
1323     // F is the Function* for the one with the wrong type, we must make a new
1324     // Function* and update everything that used F (a declaration) with the new
1325     // Function* (which will be a definition).
1326     //
1327     // This happens if there is a prototype for a function
1328     // (e.g. "int f()") and then a definition of a different type
1329     // (e.g. "int f(int x)").  Move the old function aside so that it
1330     // doesn't interfere with GetAddrOfFunction.
1331     OldFn->setName(llvm::StringRef());
1332     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1333 
1334     // If this is an implementation of a function without a prototype, try to
1335     // replace any existing uses of the function (which may be calls) with uses
1336     // of the new function
1337     if (D->getType()->isFunctionNoProtoType()) {
1338       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1339       OldFn->removeDeadConstantUsers();
1340     }
1341 
1342     // Replace uses of F with the Function we will endow with a body.
1343     if (!Entry->use_empty()) {
1344       llvm::Constant *NewPtrForOldDecl =
1345         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1346       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1347     }
1348 
1349     // Ok, delete the old function now, which is dead.
1350     OldFn->eraseFromParent();
1351 
1352     Entry = NewFn;
1353   }
1354 
1355   llvm::Function *Fn = cast<llvm::Function>(Entry);
1356   setFunctionLinkage(D, Fn);
1357 
1358   CodeGenFunction(*this).GenerateCode(D, Fn);
1359 
1360   SetFunctionDefinitionAttributes(D, Fn);
1361   SetLLVMFunctionAttributesForDefinition(D, Fn);
1362 
1363   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1364     AddGlobalCtor(Fn, CA->getPriority());
1365   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1366     AddGlobalDtor(Fn, DA->getPriority());
1367 }
1368 
1369 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1370   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1371   const AliasAttr *AA = D->getAttr<AliasAttr>();
1372   assert(AA && "Not an alias?");
1373 
1374   llvm::StringRef MangledName = getMangledName(GD);
1375 
1376   // If there is a definition in the module, then it wins over the alias.
1377   // This is dubious, but allow it to be safe.  Just ignore the alias.
1378   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1379   if (Entry && !Entry->isDeclaration())
1380     return;
1381 
1382   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1383 
1384   // Create a reference to the named value.  This ensures that it is emitted
1385   // if a deferred decl.
1386   llvm::Constant *Aliasee;
1387   if (isa<llvm::FunctionType>(DeclTy))
1388     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1389   else
1390     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1391                                     llvm::PointerType::getUnqual(DeclTy), 0);
1392 
1393   // Create the new alias itself, but don't set a name yet.
1394   llvm::GlobalValue *GA =
1395     new llvm::GlobalAlias(Aliasee->getType(),
1396                           llvm::Function::ExternalLinkage,
1397                           "", Aliasee, &getModule());
1398 
1399   if (Entry) {
1400     assert(Entry->isDeclaration());
1401 
1402     // If there is a declaration in the module, then we had an extern followed
1403     // by the alias, as in:
1404     //   extern int test6();
1405     //   ...
1406     //   int test6() __attribute__((alias("test7")));
1407     //
1408     // Remove it and replace uses of it with the alias.
1409     GA->takeName(Entry);
1410 
1411     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1412                                                           Entry->getType()));
1413     Entry->eraseFromParent();
1414   } else {
1415     GA->setName(MangledName);
1416   }
1417 
1418   // Set attributes which are particular to an alias; this is a
1419   // specialization of the attributes which may be set on a global
1420   // variable/function.
1421   if (D->hasAttr<DLLExportAttr>()) {
1422     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1423       // The dllexport attribute is ignored for undefined symbols.
1424       if (FD->hasBody())
1425         GA->setLinkage(llvm::Function::DLLExportLinkage);
1426     } else {
1427       GA->setLinkage(llvm::Function::DLLExportLinkage);
1428     }
1429   } else if (D->hasAttr<WeakAttr>() ||
1430              D->hasAttr<WeakRefAttr>() ||
1431              D->hasAttr<WeakImportAttr>()) {
1432     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1433   }
1434 
1435   SetCommonAttributes(D, GA);
1436 }
1437 
1438 /// getBuiltinLibFunction - Given a builtin id for a function like
1439 /// "__builtin_fabsf", return a Function* for "fabsf".
1440 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1441                                                   unsigned BuiltinID) {
1442   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1443           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1444          "isn't a lib fn");
1445 
1446   // Get the name, skip over the __builtin_ prefix (if necessary).
1447   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1448   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1449     Name += 10;
1450 
1451   const llvm::FunctionType *Ty =
1452     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1453 
1454   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1455 }
1456 
1457 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1458                                             unsigned NumTys) {
1459   return llvm::Intrinsic::getDeclaration(&getModule(),
1460                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1461 }
1462 
1463 
1464 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1465                                            const llvm::Type *SrcType,
1466                                            const llvm::Type *SizeType) {
1467   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1468   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1469 }
1470 
1471 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1472                                             const llvm::Type *SrcType,
1473                                             const llvm::Type *SizeType) {
1474   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1475   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1476 }
1477 
1478 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1479                                            const llvm::Type *SizeType) {
1480   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1481   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1482 }
1483 
1484 static llvm::StringMapEntry<llvm::Constant*> &
1485 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1486                          const StringLiteral *Literal,
1487                          bool TargetIsLSB,
1488                          bool &IsUTF16,
1489                          unsigned &StringLength) {
1490   llvm::StringRef String = Literal->getString();
1491   unsigned NumBytes = String.size();
1492 
1493   // Check for simple case.
1494   if (!Literal->containsNonAsciiOrNull()) {
1495     StringLength = NumBytes;
1496     return Map.GetOrCreateValue(String);
1497   }
1498 
1499   // Otherwise, convert the UTF8 literals into a byte string.
1500   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1501   const UTF8 *FromPtr = (UTF8 *)String.data();
1502   UTF16 *ToPtr = &ToBuf[0];
1503 
1504   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1505                            &ToPtr, ToPtr + NumBytes,
1506                            strictConversion);
1507 
1508   // ConvertUTF8toUTF16 returns the length in ToPtr.
1509   StringLength = ToPtr - &ToBuf[0];
1510 
1511   // Render the UTF-16 string into a byte array and convert to the target byte
1512   // order.
1513   //
1514   // FIXME: This isn't something we should need to do here.
1515   llvm::SmallString<128> AsBytes;
1516   AsBytes.reserve(StringLength * 2);
1517   for (unsigned i = 0; i != StringLength; ++i) {
1518     unsigned short Val = ToBuf[i];
1519     if (TargetIsLSB) {
1520       AsBytes.push_back(Val & 0xFF);
1521       AsBytes.push_back(Val >> 8);
1522     } else {
1523       AsBytes.push_back(Val >> 8);
1524       AsBytes.push_back(Val & 0xFF);
1525     }
1526   }
1527   // Append one extra null character, the second is automatically added by our
1528   // caller.
1529   AsBytes.push_back(0);
1530 
1531   IsUTF16 = true;
1532   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1533 }
1534 
1535 llvm::Constant *
1536 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1537   unsigned StringLength = 0;
1538   bool isUTF16 = false;
1539   llvm::StringMapEntry<llvm::Constant*> &Entry =
1540     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1541                              getTargetData().isLittleEndian(),
1542                              isUTF16, StringLength);
1543 
1544   if (llvm::Constant *C = Entry.getValue())
1545     return C;
1546 
1547   llvm::Constant *Zero =
1548       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1549   llvm::Constant *Zeros[] = { Zero, Zero };
1550 
1551   // If we don't already have it, get __CFConstantStringClassReference.
1552   if (!CFConstantStringClassRef) {
1553     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1554     Ty = llvm::ArrayType::get(Ty, 0);
1555     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1556                                            "__CFConstantStringClassReference");
1557     // Decay array -> ptr
1558     CFConstantStringClassRef =
1559       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1560   }
1561 
1562   QualType CFTy = getContext().getCFConstantStringType();
1563 
1564   const llvm::StructType *STy =
1565     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1566 
1567   std::vector<llvm::Constant*> Fields(4);
1568 
1569   // Class pointer.
1570   Fields[0] = CFConstantStringClassRef;
1571 
1572   // Flags.
1573   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1574   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1575     llvm::ConstantInt::get(Ty, 0x07C8);
1576 
1577   // String pointer.
1578   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1579 
1580   llvm::GlobalValue::LinkageTypes Linkage;
1581   bool isConstant;
1582   if (isUTF16) {
1583     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1584     Linkage = llvm::GlobalValue::InternalLinkage;
1585     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1586     // does make plain ascii ones writable.
1587     isConstant = true;
1588   } else {
1589     Linkage = llvm::GlobalValue::PrivateLinkage;
1590     isConstant = !Features.WritableStrings;
1591   }
1592 
1593   llvm::GlobalVariable *GV =
1594     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1595                              ".str");
1596   if (isUTF16) {
1597     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1598     GV->setAlignment(Align.getQuantity());
1599   }
1600   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1601 
1602   // String length.
1603   Ty = getTypes().ConvertType(getContext().LongTy);
1604   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1605 
1606   // The struct.
1607   C = llvm::ConstantStruct::get(STy, Fields);
1608   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1609                                 llvm::GlobalVariable::PrivateLinkage, C,
1610                                 "_unnamed_cfstring_");
1611   if (const char *Sect = getContext().Target.getCFStringSection())
1612     GV->setSection(Sect);
1613   Entry.setValue(GV);
1614 
1615   return GV;
1616 }
1617 
1618 llvm::Constant *
1619 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1620   unsigned StringLength = 0;
1621   bool isUTF16 = false;
1622   llvm::StringMapEntry<llvm::Constant*> &Entry =
1623     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1624                              getTargetData().isLittleEndian(),
1625                              isUTF16, StringLength);
1626 
1627   if (llvm::Constant *C = Entry.getValue())
1628     return C;
1629 
1630   llvm::Constant *Zero =
1631   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1632   llvm::Constant *Zeros[] = { Zero, Zero };
1633 
1634   // If we don't already have it, get _NSConstantStringClassReference.
1635   if (!NSConstantStringClassRef) {
1636     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1637     Ty = llvm::ArrayType::get(Ty, 0);
1638     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1639                                         Features.ObjCNonFragileABI ?
1640                                         "OBJC_CLASS_$_NSConstantString" :
1641                                         "_NSConstantStringClassReference");
1642     // Decay array -> ptr
1643     NSConstantStringClassRef =
1644       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1645   }
1646 
1647   QualType NSTy = getContext().getNSConstantStringType();
1648 
1649   const llvm::StructType *STy =
1650   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1651 
1652   std::vector<llvm::Constant*> Fields(3);
1653 
1654   // Class pointer.
1655   Fields[0] = NSConstantStringClassRef;
1656 
1657   // String pointer.
1658   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1659 
1660   llvm::GlobalValue::LinkageTypes Linkage;
1661   bool isConstant;
1662   if (isUTF16) {
1663     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1664     Linkage = llvm::GlobalValue::InternalLinkage;
1665     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1666     // does make plain ascii ones writable.
1667     isConstant = true;
1668   } else {
1669     Linkage = llvm::GlobalValue::PrivateLinkage;
1670     isConstant = !Features.WritableStrings;
1671   }
1672 
1673   llvm::GlobalVariable *GV =
1674   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1675                            ".str");
1676   if (isUTF16) {
1677     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1678     GV->setAlignment(Align.getQuantity());
1679   }
1680   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1681 
1682   // String length.
1683   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1684   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1685 
1686   // The struct.
1687   C = llvm::ConstantStruct::get(STy, Fields);
1688   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1689                                 llvm::GlobalVariable::PrivateLinkage, C,
1690                                 "_unnamed_nsstring_");
1691   // FIXME. Fix section.
1692   if (const char *Sect =
1693         Features.ObjCNonFragileABI
1694           ? getContext().Target.getNSStringNonFragileABISection()
1695           : getContext().Target.getNSStringSection())
1696     GV->setSection(Sect);
1697   Entry.setValue(GV);
1698 
1699   return GV;
1700 }
1701 
1702 /// GetStringForStringLiteral - Return the appropriate bytes for a
1703 /// string literal, properly padded to match the literal type.
1704 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1705   const ConstantArrayType *CAT =
1706     getContext().getAsConstantArrayType(E->getType());
1707   assert(CAT && "String isn't pointer or array!");
1708 
1709   // Resize the string to the right size.
1710   uint64_t RealLen = CAT->getSize().getZExtValue();
1711 
1712   if (E->isWide())
1713     RealLen *= getContext().Target.getWCharWidth()/8;
1714 
1715   std::string Str = E->getString().str();
1716   Str.resize(RealLen, '\0');
1717 
1718   return Str;
1719 }
1720 
1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1722 /// constant array for the given string literal.
1723 llvm::Constant *
1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1725   // FIXME: This can be more efficient.
1726   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1727   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1728   if (S->isWide()) {
1729     llvm::Type *DestTy =
1730         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1731     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1732   }
1733   return C;
1734 }
1735 
1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1737 /// array for the given ObjCEncodeExpr node.
1738 llvm::Constant *
1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1740   std::string Str;
1741   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1742 
1743   return GetAddrOfConstantCString(Str);
1744 }
1745 
1746 
1747 /// GenerateWritableString -- Creates storage for a string literal.
1748 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1749                                              bool constant,
1750                                              CodeGenModule &CGM,
1751                                              const char *GlobalName) {
1752   // Create Constant for this string literal. Don't add a '\0'.
1753   llvm::Constant *C =
1754       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1755 
1756   // Create a global variable for this string
1757   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1758                                   llvm::GlobalValue::PrivateLinkage,
1759                                   C, GlobalName);
1760 }
1761 
1762 /// GetAddrOfConstantString - Returns a pointer to a character array
1763 /// containing the literal. This contents are exactly that of the
1764 /// given string, i.e. it will not be null terminated automatically;
1765 /// see GetAddrOfConstantCString. Note that whether the result is
1766 /// actually a pointer to an LLVM constant depends on
1767 /// Feature.WriteableStrings.
1768 ///
1769 /// The result has pointer to array type.
1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1771                                                        const char *GlobalName) {
1772   bool IsConstant = !Features.WritableStrings;
1773 
1774   // Get the default prefix if a name wasn't specified.
1775   if (!GlobalName)
1776     GlobalName = ".str";
1777 
1778   // Don't share any string literals if strings aren't constant.
1779   if (!IsConstant)
1780     return GenerateStringLiteral(str, false, *this, GlobalName);
1781 
1782   llvm::StringMapEntry<llvm::Constant *> &Entry =
1783     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1784 
1785   if (Entry.getValue())
1786     return Entry.getValue();
1787 
1788   // Create a global variable for this.
1789   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1790   Entry.setValue(C);
1791   return C;
1792 }
1793 
1794 /// GetAddrOfConstantCString - Returns a pointer to a character
1795 /// array containing the literal and a terminating '\-'
1796 /// character. The result has pointer to array type.
1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1798                                                         const char *GlobalName){
1799   return GetAddrOfConstantString(str + '\0', GlobalName);
1800 }
1801 
1802 /// EmitObjCPropertyImplementations - Emit information for synthesized
1803 /// properties for an implementation.
1804 void CodeGenModule::EmitObjCPropertyImplementations(const
1805                                                     ObjCImplementationDecl *D) {
1806   for (ObjCImplementationDecl::propimpl_iterator
1807          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1808     ObjCPropertyImplDecl *PID = *i;
1809 
1810     // Dynamic is just for type-checking.
1811     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1812       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1813 
1814       // Determine which methods need to be implemented, some may have
1815       // been overridden. Note that ::isSynthesized is not the method
1816       // we want, that just indicates if the decl came from a
1817       // property. What we want to know is if the method is defined in
1818       // this implementation.
1819       if (!D->getInstanceMethod(PD->getGetterName()))
1820         CodeGenFunction(*this).GenerateObjCGetter(
1821                                  const_cast<ObjCImplementationDecl *>(D), PID);
1822       if (!PD->isReadOnly() &&
1823           !D->getInstanceMethod(PD->getSetterName()))
1824         CodeGenFunction(*this).GenerateObjCSetter(
1825                                  const_cast<ObjCImplementationDecl *>(D), PID);
1826     }
1827   }
1828 }
1829 
1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1831 /// for an implementation.
1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1833   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1834     return;
1835   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1836   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1837   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1838   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1839   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1840                                                   D->getLocation(),
1841                                                   D->getLocation(), cxxSelector,
1842                                                   getContext().VoidTy, 0,
1843                                                   DC, true, false, true, false,
1844                                                   ObjCMethodDecl::Required);
1845   D->addInstanceMethod(DTORMethod);
1846   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1847 
1848   II = &getContext().Idents.get(".cxx_construct");
1849   cxxSelector = getContext().Selectors.getSelector(0, &II);
1850   // The constructor returns 'self'.
1851   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1852                                                 D->getLocation(),
1853                                                 D->getLocation(), cxxSelector,
1854                                                 getContext().getObjCIdType(), 0,
1855                                                 DC, true, false, true, false,
1856                                                 ObjCMethodDecl::Required);
1857   D->addInstanceMethod(CTORMethod);
1858   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1859 
1860 
1861 }
1862 
1863 /// EmitNamespace - Emit all declarations in a namespace.
1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1865   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1866        I != E; ++I)
1867     EmitTopLevelDecl(*I);
1868 }
1869 
1870 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1872   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1873       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1874     ErrorUnsupported(LSD, "linkage spec");
1875     return;
1876   }
1877 
1878   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1879        I != E; ++I)
1880     EmitTopLevelDecl(*I);
1881 }
1882 
1883 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1885   // If an error has occurred, stop code generation, but continue
1886   // parsing and semantic analysis (to ensure all warnings and errors
1887   // are emitted).
1888   if (Diags.hasErrorOccurred())
1889     return;
1890 
1891   // Ignore dependent declarations.
1892   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1893     return;
1894 
1895   switch (D->getKind()) {
1896   case Decl::CXXConversion:
1897   case Decl::CXXMethod:
1898   case Decl::Function:
1899     // Skip function templates
1900     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1901       return;
1902 
1903     EmitGlobal(cast<FunctionDecl>(D));
1904     break;
1905 
1906   case Decl::Var:
1907     EmitGlobal(cast<VarDecl>(D));
1908     break;
1909 
1910   // C++ Decls
1911   case Decl::Namespace:
1912     EmitNamespace(cast<NamespaceDecl>(D));
1913     break;
1914     // No code generation needed.
1915   case Decl::UsingShadow:
1916   case Decl::Using:
1917   case Decl::UsingDirective:
1918   case Decl::ClassTemplate:
1919   case Decl::FunctionTemplate:
1920   case Decl::NamespaceAlias:
1921     break;
1922   case Decl::CXXConstructor:
1923     // Skip function templates
1924     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1925       return;
1926 
1927     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1928     break;
1929   case Decl::CXXDestructor:
1930     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1931     break;
1932 
1933   case Decl::StaticAssert:
1934     // Nothing to do.
1935     break;
1936 
1937   // Objective-C Decls
1938 
1939   // Forward declarations, no (immediate) code generation.
1940   case Decl::ObjCClass:
1941   case Decl::ObjCForwardProtocol:
1942   case Decl::ObjCInterface:
1943     break;
1944 
1945     case Decl::ObjCCategory: {
1946       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1947       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1948         Context.ResetObjCLayout(CD->getClassInterface());
1949       break;
1950     }
1951 
1952 
1953   case Decl::ObjCProtocol:
1954     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1955     break;
1956 
1957   case Decl::ObjCCategoryImpl:
1958     // Categories have properties but don't support synthesize so we
1959     // can ignore them here.
1960     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1961     break;
1962 
1963   case Decl::ObjCImplementation: {
1964     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1965     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1966       Context.ResetObjCLayout(OMD->getClassInterface());
1967     EmitObjCPropertyImplementations(OMD);
1968     EmitObjCIvarInitializations(OMD);
1969     Runtime->GenerateClass(OMD);
1970     break;
1971   }
1972   case Decl::ObjCMethod: {
1973     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1974     // If this is not a prototype, emit the body.
1975     if (OMD->getBody())
1976       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1977     break;
1978   }
1979   case Decl::ObjCCompatibleAlias:
1980     // compatibility-alias is a directive and has no code gen.
1981     break;
1982 
1983   case Decl::LinkageSpec:
1984     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1985     break;
1986 
1987   case Decl::FileScopeAsm: {
1988     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1989     llvm::StringRef AsmString = AD->getAsmString()->getString();
1990 
1991     const std::string &S = getModule().getModuleInlineAsm();
1992     if (S.empty())
1993       getModule().setModuleInlineAsm(AsmString);
1994     else
1995       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1996     break;
1997   }
1998 
1999   default:
2000     // Make sure we handled everything we should, every other kind is a
2001     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2002     // function. Need to recode Decl::Kind to do that easily.
2003     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2004   }
2005 }
2006 
2007 /// Turns the given pointer into a constant.
2008 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2009                                           const void *Ptr) {
2010   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2011   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2012   return llvm::ConstantInt::get(i64, PtrInt);
2013 }
2014 
2015 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2016                                    llvm::NamedMDNode *&GlobalMetadata,
2017                                    GlobalDecl D,
2018                                    llvm::GlobalValue *Addr) {
2019   if (!GlobalMetadata)
2020     GlobalMetadata =
2021       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2022 
2023   // TODO: should we report variant information for ctors/dtors?
2024   llvm::Value *Ops[] = {
2025     Addr,
2026     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2027   };
2028   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2029 }
2030 
2031 /// Emits metadata nodes associating all the global values in the
2032 /// current module with the Decls they came from.  This is useful for
2033 /// projects using IR gen as a subroutine.
2034 ///
2035 /// Since there's currently no way to associate an MDNode directly
2036 /// with an llvm::GlobalValue, we create a global named metadata
2037 /// with the name 'clang.global.decl.ptrs'.
2038 void CodeGenModule::EmitDeclMetadata() {
2039   llvm::NamedMDNode *GlobalMetadata = 0;
2040 
2041   // StaticLocalDeclMap
2042   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2043          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2044        I != E; ++I) {
2045     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2046     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2047   }
2048 }
2049 
2050 /// Emits metadata nodes for all the local variables in the current
2051 /// function.
2052 void CodeGenFunction::EmitDeclMetadata() {
2053   if (LocalDeclMap.empty()) return;
2054 
2055   llvm::LLVMContext &Context = getLLVMContext();
2056 
2057   // Find the unique metadata ID for this name.
2058   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2059 
2060   llvm::NamedMDNode *GlobalMetadata = 0;
2061 
2062   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2063          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2064     const Decl *D = I->first;
2065     llvm::Value *Addr = I->second;
2066 
2067     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2068       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2069       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2070     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2071       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2072       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2073     }
2074   }
2075 }
2076 
2077 ///@name Custom Runtime Function Interfaces
2078 ///@{
2079 //
2080 // FIXME: These can be eliminated once we can have clients just get the required
2081 // AST nodes from the builtin tables.
2082 
2083 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2084   if (BlockObjectDispose)
2085     return BlockObjectDispose;
2086 
2087   // If we saw an explicit decl, use that.
2088   if (BlockObjectDisposeDecl) {
2089     return BlockObjectDispose = GetAddrOfFunction(
2090       BlockObjectDisposeDecl,
2091       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2092   }
2093 
2094   // Otherwise construct the function by hand.
2095   const llvm::FunctionType *FTy;
2096   std::vector<const llvm::Type*> ArgTys;
2097   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2098   ArgTys.push_back(PtrToInt8Ty);
2099   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2100   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2101   return BlockObjectDispose =
2102     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2103 }
2104 
2105 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2106   if (BlockObjectAssign)
2107     return BlockObjectAssign;
2108 
2109   // If we saw an explicit decl, use that.
2110   if (BlockObjectAssignDecl) {
2111     return BlockObjectAssign = GetAddrOfFunction(
2112       BlockObjectAssignDecl,
2113       getTypes().GetFunctionType(BlockObjectAssignDecl));
2114   }
2115 
2116   // Otherwise construct the function by hand.
2117   const llvm::FunctionType *FTy;
2118   std::vector<const llvm::Type*> ArgTys;
2119   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2120   ArgTys.push_back(PtrToInt8Ty);
2121   ArgTys.push_back(PtrToInt8Ty);
2122   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2123   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2124   return BlockObjectAssign =
2125     CreateRuntimeFunction(FTy, "_Block_object_assign");
2126 }
2127 
2128 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2129   if (NSConcreteGlobalBlock)
2130     return NSConcreteGlobalBlock;
2131 
2132   // If we saw an explicit decl, use that.
2133   if (NSConcreteGlobalBlockDecl) {
2134     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2135       NSConcreteGlobalBlockDecl,
2136       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2137   }
2138 
2139   // Otherwise construct the variable by hand.
2140   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2141     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2142 }
2143 
2144 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2145   if (NSConcreteStackBlock)
2146     return NSConcreteStackBlock;
2147 
2148   // If we saw an explicit decl, use that.
2149   if (NSConcreteStackBlockDecl) {
2150     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2151       NSConcreteStackBlockDecl,
2152       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2153   }
2154 
2155   // Otherwise construct the variable by hand.
2156   return NSConcreteStackBlock = CreateRuntimeVariable(
2157     PtrToInt8Ty, "_NSConcreteStackBlock");
2158 }
2159 
2160 ///@}
2161