1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGCXXABI.h" 19 #include "CGObjCRuntime.h" 20 #include "Mangle.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/RecordLayout.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 46 switch (CGM.getContext().Target.getCXXABI()) { 47 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 48 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 49 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 50 } 51 52 llvm_unreachable("invalid C++ ABI kind"); 53 return *CreateItaniumCXXABI(CGM); 54 } 55 56 57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 58 llvm::Module &M, const llvm::TargetData &TD, 59 Diagnostic &diags) 60 : BlockModule(C, M, TD, Types, *this), Context(C), 61 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 62 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 63 ABI(createCXXABI(*this)), 64 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 65 VTables(*this), Runtime(0), 66 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 67 VMContext(M.getContext()), 68 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 69 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 70 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 71 BlockObjectAssign(0), BlockObjectDispose(0){ 72 73 if (!Features.ObjC1) 74 Runtime = 0; 75 else if (!Features.NeXTRuntime) 76 Runtime = CreateGNUObjCRuntime(*this); 77 else if (Features.ObjCNonFragileABI) 78 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 79 else 80 Runtime = CreateMacObjCRuntime(*this); 81 82 // If debug info generation is enabled, create the CGDebugInfo object. 83 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 84 } 85 86 CodeGenModule::~CodeGenModule() { 87 delete Runtime; 88 delete &ABI; 89 delete DebugInfo; 90 } 91 92 void CodeGenModule::createObjCRuntime() { 93 if (!Features.NeXTRuntime) 94 Runtime = CreateGNUObjCRuntime(*this); 95 else if (Features.ObjCNonFragileABI) 96 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 97 else 98 Runtime = CreateMacObjCRuntime(*this); 99 } 100 101 void CodeGenModule::Release() { 102 EmitDeferred(); 103 EmitCXXGlobalInitFunc(); 104 EmitCXXGlobalDtorFunc(); 105 if (Runtime) 106 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 107 AddGlobalCtor(ObjCInitFunction); 108 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 109 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 110 EmitAnnotations(); 111 EmitLLVMUsed(); 112 113 SimplifyPersonality(); 114 115 if (getCodeGenOpts().EmitDeclMetadata) 116 EmitDeclMetadata(); 117 } 118 119 bool CodeGenModule::isTargetDarwin() const { 120 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 121 } 122 123 /// ErrorUnsupported - Print out an error that codegen doesn't support the 124 /// specified stmt yet. 125 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 126 bool OmitOnError) { 127 if (OmitOnError && getDiags().hasErrorOccurred()) 128 return; 129 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 130 "cannot compile this %0 yet"); 131 std::string Msg = Type; 132 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 133 << Msg << S->getSourceRange(); 134 } 135 136 /// ErrorUnsupported - Print out an error that codegen doesn't support the 137 /// specified decl yet. 138 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 139 bool OmitOnError) { 140 if (OmitOnError && getDiags().hasErrorOccurred()) 141 return; 142 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 143 "cannot compile this %0 yet"); 144 std::string Msg = Type; 145 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 146 } 147 148 LangOptions::VisibilityMode 149 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 150 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 151 if (VD->getStorageClass() == SC_PrivateExtern) 152 return LangOptions::Hidden; 153 154 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 155 switch (attr->getVisibility()) { 156 default: assert(0 && "Unknown visibility!"); 157 case VisibilityAttr::Default: 158 return LangOptions::Default; 159 case VisibilityAttr::Hidden: 160 return LangOptions::Hidden; 161 case VisibilityAttr::Protected: 162 return LangOptions::Protected; 163 } 164 } 165 166 if (getLangOptions().CPlusPlus) { 167 // Entities subject to an explicit instantiation declaration get default 168 // visibility. 169 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 170 if (Function->getTemplateSpecializationKind() 171 == TSK_ExplicitInstantiationDeclaration) 172 return LangOptions::Default; 173 } else if (const ClassTemplateSpecializationDecl *ClassSpec 174 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 175 if (ClassSpec->getSpecializationKind() 176 == TSK_ExplicitInstantiationDeclaration) 177 return LangOptions::Default; 178 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 179 if (Record->getTemplateSpecializationKind() 180 == TSK_ExplicitInstantiationDeclaration) 181 return LangOptions::Default; 182 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 183 if (Var->isStaticDataMember() && 184 (Var->getTemplateSpecializationKind() 185 == TSK_ExplicitInstantiationDeclaration)) 186 return LangOptions::Default; 187 } 188 189 // If -fvisibility-inlines-hidden was provided, then inline C++ member 190 // functions get "hidden" visibility by default. 191 if (getLangOptions().InlineVisibilityHidden) 192 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 193 if (Method->isInlined()) 194 return LangOptions::Hidden; 195 } 196 197 // If this decl is contained in a class, it should have the same visibility 198 // as the parent class. 199 if (const DeclContext *DC = D->getDeclContext()) 200 if (DC->isRecord()) 201 return getDeclVisibilityMode(cast<Decl>(DC)); 202 203 return getLangOptions().getVisibilityMode(); 204 } 205 206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 207 const Decl *D) const { 208 // Internal definitions always have default visibility. 209 if (GV->hasLocalLinkage()) { 210 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 211 return; 212 } 213 214 switch (getDeclVisibilityMode(D)) { 215 default: assert(0 && "Unknown visibility!"); 216 case LangOptions::Default: 217 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 218 case LangOptions::Hidden: 219 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 220 case LangOptions::Protected: 221 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 222 } 223 } 224 225 /// Set the symbol visibility of type information (vtable and RTTI) 226 /// associated with the given type. 227 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 228 const CXXRecordDecl *RD, 229 bool IsForRTTI) const { 230 setGlobalVisibility(GV, RD); 231 232 if (!CodeGenOpts.HiddenWeakVTables) 233 return; 234 235 // We want to drop the visibility to hidden for weak type symbols. 236 // This isn't possible if there might be unresolved references 237 // elsewhere that rely on this symbol being visible. 238 239 // This should be kept roughly in sync with setThunkVisibility 240 // in CGVTables.cpp. 241 242 // Preconditions. 243 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 244 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 245 return; 246 247 // Don't override an explicit visibility attribute. 248 if (RD->hasAttr<VisibilityAttr>()) 249 return; 250 251 switch (RD->getTemplateSpecializationKind()) { 252 // We have to disable the optimization if this is an EI definition 253 // because there might be EI declarations in other shared objects. 254 case TSK_ExplicitInstantiationDefinition: 255 case TSK_ExplicitInstantiationDeclaration: 256 return; 257 258 // Every use of a non-template class's type information has to emit it. 259 case TSK_Undeclared: 260 break; 261 262 // In theory, implicit instantiations can ignore the possibility of 263 // an explicit instantiation declaration because there necessarily 264 // must be an EI definition somewhere with default visibility. In 265 // practice, it's possible to have an explicit instantiation for 266 // an arbitrary template class, and linkers aren't necessarily able 267 // to deal with mixed-visibility symbols. 268 case TSK_ExplicitSpecialization: 269 case TSK_ImplicitInstantiation: 270 if (!CodeGenOpts.HiddenWeakTemplateVTables) 271 return; 272 break; 273 } 274 275 // If there's a key function, there may be translation units 276 // that don't have the key function's definition. But ignore 277 // this if we're emitting RTTI under -fno-rtti. 278 if (!IsForRTTI || Features.RTTI) 279 if (Context.getKeyFunction(RD)) 280 return; 281 282 // Otherwise, drop the visibility to hidden. 283 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 284 } 285 286 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 287 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 288 289 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 290 if (!Str.empty()) 291 return Str; 292 293 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 294 IdentifierInfo *II = ND->getIdentifier(); 295 assert(II && "Attempt to mangle unnamed decl."); 296 297 Str = II->getName(); 298 return Str; 299 } 300 301 llvm::SmallString<256> Buffer; 302 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 303 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 304 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 305 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 306 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 307 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 308 else 309 getCXXABI().getMangleContext().mangleName(ND, Buffer); 310 311 // Allocate space for the mangled name. 312 size_t Length = Buffer.size(); 313 char *Name = MangledNamesAllocator.Allocate<char>(Length); 314 std::copy(Buffer.begin(), Buffer.end(), Name); 315 316 Str = llvm::StringRef(Name, Length); 317 318 return Str; 319 } 320 321 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 322 const BlockDecl *BD) { 323 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 324 } 325 326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 327 return getModule().getNamedValue(Name); 328 } 329 330 /// AddGlobalCtor - Add a function to the list that will be called before 331 /// main() runs. 332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 333 // FIXME: Type coercion of void()* types. 334 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 335 } 336 337 /// AddGlobalDtor - Add a function to the list that will be called 338 /// when the module is unloaded. 339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 340 // FIXME: Type coercion of void()* types. 341 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 342 } 343 344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 345 // Ctor function type is void()*. 346 llvm::FunctionType* CtorFTy = 347 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 348 std::vector<const llvm::Type*>(), 349 false); 350 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 351 352 // Get the type of a ctor entry, { i32, void ()* }. 353 llvm::StructType* CtorStructTy = 354 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 355 llvm::PointerType::getUnqual(CtorFTy), NULL); 356 357 // Construct the constructor and destructor arrays. 358 std::vector<llvm::Constant*> Ctors; 359 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 360 std::vector<llvm::Constant*> S; 361 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 362 I->second, false)); 363 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 364 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 365 } 366 367 if (!Ctors.empty()) { 368 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 369 new llvm::GlobalVariable(TheModule, AT, false, 370 llvm::GlobalValue::AppendingLinkage, 371 llvm::ConstantArray::get(AT, Ctors), 372 GlobalName); 373 } 374 } 375 376 void CodeGenModule::EmitAnnotations() { 377 if (Annotations.empty()) 378 return; 379 380 // Create a new global variable for the ConstantStruct in the Module. 381 llvm::Constant *Array = 382 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 383 Annotations.size()), 384 Annotations); 385 llvm::GlobalValue *gv = 386 new llvm::GlobalVariable(TheModule, Array->getType(), false, 387 llvm::GlobalValue::AppendingLinkage, Array, 388 "llvm.global.annotations"); 389 gv->setSection("llvm.metadata"); 390 } 391 392 llvm::GlobalValue::LinkageTypes 393 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 394 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 395 396 if (Linkage == GVA_Internal) 397 return llvm::Function::InternalLinkage; 398 399 if (D->hasAttr<DLLExportAttr>()) 400 return llvm::Function::DLLExportLinkage; 401 402 if (D->hasAttr<WeakAttr>()) 403 return llvm::Function::WeakAnyLinkage; 404 405 // In C99 mode, 'inline' functions are guaranteed to have a strong 406 // definition somewhere else, so we can use available_externally linkage. 407 if (Linkage == GVA_C99Inline) 408 return llvm::Function::AvailableExternallyLinkage; 409 410 // In C++, the compiler has to emit a definition in every translation unit 411 // that references the function. We should use linkonce_odr because 412 // a) if all references in this translation unit are optimized away, we 413 // don't need to codegen it. b) if the function persists, it needs to be 414 // merged with other definitions. c) C++ has the ODR, so we know the 415 // definition is dependable. 416 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 417 return llvm::Function::LinkOnceODRLinkage; 418 419 // An explicit instantiation of a template has weak linkage, since 420 // explicit instantiations can occur in multiple translation units 421 // and must all be equivalent. However, we are not allowed to 422 // throw away these explicit instantiations. 423 if (Linkage == GVA_ExplicitTemplateInstantiation) 424 return llvm::Function::WeakODRLinkage; 425 426 // Otherwise, we have strong external linkage. 427 assert(Linkage == GVA_StrongExternal); 428 return llvm::Function::ExternalLinkage; 429 } 430 431 432 /// SetFunctionDefinitionAttributes - Set attributes for a global. 433 /// 434 /// FIXME: This is currently only done for aliases and functions, but not for 435 /// variables (these details are set in EmitGlobalVarDefinition for variables). 436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 437 llvm::GlobalValue *GV) { 438 SetCommonAttributes(D, GV); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 442 const CGFunctionInfo &Info, 443 llvm::Function *F) { 444 unsigned CallingConv; 445 AttributeListType AttributeList; 446 ConstructAttributeList(Info, D, AttributeList, CallingConv); 447 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 448 AttributeList.size())); 449 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 450 } 451 452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 453 llvm::Function *F) { 454 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 455 F->addFnAttr(llvm::Attribute::NoUnwind); 456 457 if (D->hasAttr<AlwaysInlineAttr>()) 458 F->addFnAttr(llvm::Attribute::AlwaysInline); 459 460 if (D->hasAttr<NakedAttr>()) 461 F->addFnAttr(llvm::Attribute::Naked); 462 463 if (D->hasAttr<NoInlineAttr>()) 464 F->addFnAttr(llvm::Attribute::NoInline); 465 466 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 467 F->addFnAttr(llvm::Attribute::StackProtect); 468 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 469 F->addFnAttr(llvm::Attribute::StackProtectReq); 470 471 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 472 if (alignment) 473 F->setAlignment(alignment); 474 475 // C++ ABI requires 2-byte alignment for member functions. 476 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 477 F->setAlignment(2); 478 } 479 480 void CodeGenModule::SetCommonAttributes(const Decl *D, 481 llvm::GlobalValue *GV) { 482 setGlobalVisibility(GV, D); 483 484 if (D->hasAttr<UsedAttr>()) 485 AddUsedGlobal(GV); 486 487 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 488 GV->setSection(SA->getName()); 489 490 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 491 } 492 493 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 494 llvm::Function *F, 495 const CGFunctionInfo &FI) { 496 SetLLVMFunctionAttributes(D, FI, F); 497 SetLLVMFunctionAttributesForDefinition(D, F); 498 499 F->setLinkage(llvm::Function::InternalLinkage); 500 501 SetCommonAttributes(D, F); 502 } 503 504 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 505 llvm::Function *F, 506 bool IsIncompleteFunction) { 507 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 508 509 if (!IsIncompleteFunction) 510 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 511 512 // Only a few attributes are set on declarations; these may later be 513 // overridden by a definition. 514 515 if (FD->hasAttr<DLLImportAttr>()) { 516 F->setLinkage(llvm::Function::DLLImportLinkage); 517 } else if (FD->hasAttr<WeakAttr>() || 518 FD->hasAttr<WeakImportAttr>()) { 519 // "extern_weak" is overloaded in LLVM; we probably should have 520 // separate linkage types for this. 521 F->setLinkage(llvm::Function::ExternalWeakLinkage); 522 } else { 523 F->setLinkage(llvm::Function::ExternalLinkage); 524 } 525 526 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 527 F->setSection(SA->getName()); 528 } 529 530 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 531 assert(!GV->isDeclaration() && 532 "Only globals with definition can force usage."); 533 LLVMUsed.push_back(GV); 534 } 535 536 void CodeGenModule::EmitLLVMUsed() { 537 // Don't create llvm.used if there is no need. 538 if (LLVMUsed.empty()) 539 return; 540 541 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 542 543 // Convert LLVMUsed to what ConstantArray needs. 544 std::vector<llvm::Constant*> UsedArray; 545 UsedArray.resize(LLVMUsed.size()); 546 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 547 UsedArray[i] = 548 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 549 i8PTy); 550 } 551 552 if (UsedArray.empty()) 553 return; 554 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 555 556 llvm::GlobalVariable *GV = 557 new llvm::GlobalVariable(getModule(), ATy, false, 558 llvm::GlobalValue::AppendingLinkage, 559 llvm::ConstantArray::get(ATy, UsedArray), 560 "llvm.used"); 561 562 GV->setSection("llvm.metadata"); 563 } 564 565 void CodeGenModule::EmitDeferred() { 566 // Emit code for any potentially referenced deferred decls. Since a 567 // previously unused static decl may become used during the generation of code 568 // for a static function, iterate until no changes are made. 569 570 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 571 if (!DeferredVTables.empty()) { 572 const CXXRecordDecl *RD = DeferredVTables.back(); 573 DeferredVTables.pop_back(); 574 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 575 continue; 576 } 577 578 GlobalDecl D = DeferredDeclsToEmit.back(); 579 DeferredDeclsToEmit.pop_back(); 580 581 // Check to see if we've already emitted this. This is necessary 582 // for a couple of reasons: first, decls can end up in the 583 // deferred-decls queue multiple times, and second, decls can end 584 // up with definitions in unusual ways (e.g. by an extern inline 585 // function acquiring a strong function redefinition). Just 586 // ignore these cases. 587 // 588 // TODO: That said, looking this up multiple times is very wasteful. 589 llvm::StringRef Name = getMangledName(D); 590 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 591 assert(CGRef && "Deferred decl wasn't referenced?"); 592 593 if (!CGRef->isDeclaration()) 594 continue; 595 596 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 597 // purposes an alias counts as a definition. 598 if (isa<llvm::GlobalAlias>(CGRef)) 599 continue; 600 601 // Otherwise, emit the definition and move on to the next one. 602 EmitGlobalDefinition(D); 603 } 604 } 605 606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 607 /// annotation information for a given GlobalValue. The annotation struct is 608 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 609 /// GlobalValue being annotated. The second field is the constant string 610 /// created from the AnnotateAttr's annotation. The third field is a constant 611 /// string containing the name of the translation unit. The fourth field is 612 /// the line number in the file of the annotated value declaration. 613 /// 614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 615 /// appears to. 616 /// 617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 618 const AnnotateAttr *AA, 619 unsigned LineNo) { 620 llvm::Module *M = &getModule(); 621 622 // get [N x i8] constants for the annotation string, and the filename string 623 // which are the 2nd and 3rd elements of the global annotation structure. 624 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 625 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 626 AA->getAnnotation(), true); 627 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 628 M->getModuleIdentifier(), 629 true); 630 631 // Get the two global values corresponding to the ConstantArrays we just 632 // created to hold the bytes of the strings. 633 llvm::GlobalValue *annoGV = 634 new llvm::GlobalVariable(*M, anno->getType(), false, 635 llvm::GlobalValue::PrivateLinkage, anno, 636 GV->getName()); 637 // translation unit name string, emitted into the llvm.metadata section. 638 llvm::GlobalValue *unitGV = 639 new llvm::GlobalVariable(*M, unit->getType(), false, 640 llvm::GlobalValue::PrivateLinkage, unit, 641 ".str"); 642 643 // Create the ConstantStruct for the global annotation. 644 llvm::Constant *Fields[4] = { 645 llvm::ConstantExpr::getBitCast(GV, SBP), 646 llvm::ConstantExpr::getBitCast(annoGV, SBP), 647 llvm::ConstantExpr::getBitCast(unitGV, SBP), 648 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 649 }; 650 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 651 } 652 653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 654 // Never defer when EmitAllDecls is specified. 655 if (Features.EmitAllDecls) 656 return false; 657 658 return !getContext().DeclMustBeEmitted(Global); 659 } 660 661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 662 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 663 assert(AA && "No alias?"); 664 665 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 666 667 // See if there is already something with the target's name in the module. 668 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 669 670 llvm::Constant *Aliasee; 671 if (isa<llvm::FunctionType>(DeclTy)) 672 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 673 else 674 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 675 llvm::PointerType::getUnqual(DeclTy), 0); 676 if (!Entry) { 677 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 678 F->setLinkage(llvm::Function::ExternalWeakLinkage); 679 WeakRefReferences.insert(F); 680 } 681 682 return Aliasee; 683 } 684 685 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 686 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 687 688 // Weak references don't produce any output by themselves. 689 if (Global->hasAttr<WeakRefAttr>()) 690 return; 691 692 // If this is an alias definition (which otherwise looks like a declaration) 693 // emit it now. 694 if (Global->hasAttr<AliasAttr>()) 695 return EmitAliasDefinition(GD); 696 697 // Ignore declarations, they will be emitted on their first use. 698 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 699 if (FD->getIdentifier()) { 700 llvm::StringRef Name = FD->getName(); 701 if (Name == "_Block_object_assign") { 702 BlockObjectAssignDecl = FD; 703 } else if (Name == "_Block_object_dispose") { 704 BlockObjectDisposeDecl = FD; 705 } 706 } 707 708 // Forward declarations are emitted lazily on first use. 709 if (!FD->isThisDeclarationADefinition()) 710 return; 711 } else { 712 const VarDecl *VD = cast<VarDecl>(Global); 713 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 714 715 if (VD->getIdentifier()) { 716 llvm::StringRef Name = VD->getName(); 717 if (Name == "_NSConcreteGlobalBlock") { 718 NSConcreteGlobalBlockDecl = VD; 719 } else if (Name == "_NSConcreteStackBlock") { 720 NSConcreteStackBlockDecl = VD; 721 } 722 } 723 724 725 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 726 return; 727 } 728 729 // Defer code generation when possible if this is a static definition, inline 730 // function etc. These we only want to emit if they are used. 731 if (!MayDeferGeneration(Global)) { 732 // Emit the definition if it can't be deferred. 733 EmitGlobalDefinition(GD); 734 return; 735 } 736 737 // If we're deferring emission of a C++ variable with an 738 // initializer, remember the order in which it appeared in the file. 739 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 740 cast<VarDecl>(Global)->hasInit()) { 741 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 742 CXXGlobalInits.push_back(0); 743 } 744 745 // If the value has already been used, add it directly to the 746 // DeferredDeclsToEmit list. 747 llvm::StringRef MangledName = getMangledName(GD); 748 if (GetGlobalValue(MangledName)) 749 DeferredDeclsToEmit.push_back(GD); 750 else { 751 // Otherwise, remember that we saw a deferred decl with this name. The 752 // first use of the mangled name will cause it to move into 753 // DeferredDeclsToEmit. 754 DeferredDecls[MangledName] = GD; 755 } 756 } 757 758 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 759 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 760 761 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 762 Context.getSourceManager(), 763 "Generating code for declaration"); 764 765 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 766 // At -O0, don't generate IR for functions with available_externally 767 // linkage. 768 if (CodeGenOpts.OptimizationLevel == 0 && 769 !Function->hasAttr<AlwaysInlineAttr>() && 770 getFunctionLinkage(Function) 771 == llvm::Function::AvailableExternallyLinkage) 772 return; 773 774 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 775 if (Method->isVirtual()) 776 getVTables().EmitThunks(GD); 777 778 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 779 return EmitCXXConstructor(CD, GD.getCtorType()); 780 781 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 782 return EmitCXXDestructor(DD, GD.getDtorType()); 783 } 784 785 return EmitGlobalFunctionDefinition(GD); 786 } 787 788 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 789 return EmitGlobalVarDefinition(VD); 790 791 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 792 } 793 794 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 795 /// module, create and return an llvm Function with the specified type. If there 796 /// is something in the module with the specified name, return it potentially 797 /// bitcasted to the right type. 798 /// 799 /// If D is non-null, it specifies a decl that correspond to this. This is used 800 /// to set the attributes on the function when it is first created. 801 llvm::Constant * 802 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 803 const llvm::Type *Ty, 804 GlobalDecl D) { 805 // Lookup the entry, lazily creating it if necessary. 806 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 807 if (Entry) { 808 if (WeakRefReferences.count(Entry)) { 809 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 810 if (FD && !FD->hasAttr<WeakAttr>()) 811 Entry->setLinkage(llvm::Function::ExternalLinkage); 812 813 WeakRefReferences.erase(Entry); 814 } 815 816 if (Entry->getType()->getElementType() == Ty) 817 return Entry; 818 819 // Make sure the result is of the correct type. 820 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 821 return llvm::ConstantExpr::getBitCast(Entry, PTy); 822 } 823 824 // This function doesn't have a complete type (for example, the return 825 // type is an incomplete struct). Use a fake type instead, and make 826 // sure not to try to set attributes. 827 bool IsIncompleteFunction = false; 828 829 const llvm::FunctionType *FTy; 830 if (isa<llvm::FunctionType>(Ty)) { 831 FTy = cast<llvm::FunctionType>(Ty); 832 } else { 833 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 834 std::vector<const llvm::Type*>(), false); 835 IsIncompleteFunction = true; 836 } 837 838 llvm::Function *F = llvm::Function::Create(FTy, 839 llvm::Function::ExternalLinkage, 840 MangledName, &getModule()); 841 assert(F->getName() == MangledName && "name was uniqued!"); 842 if (D.getDecl()) 843 SetFunctionAttributes(D, F, IsIncompleteFunction); 844 845 // This is the first use or definition of a mangled name. If there is a 846 // deferred decl with this name, remember that we need to emit it at the end 847 // of the file. 848 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 849 if (DDI != DeferredDecls.end()) { 850 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 851 // list, and remove it from DeferredDecls (since we don't need it anymore). 852 DeferredDeclsToEmit.push_back(DDI->second); 853 DeferredDecls.erase(DDI); 854 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 855 // If this the first reference to a C++ inline function in a class, queue up 856 // the deferred function body for emission. These are not seen as 857 // top-level declarations. 858 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 859 DeferredDeclsToEmit.push_back(D); 860 // A called constructor which has no definition or declaration need be 861 // synthesized. 862 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 863 if (CD->isImplicit()) { 864 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 865 DeferredDeclsToEmit.push_back(D); 866 } 867 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 868 if (DD->isImplicit()) { 869 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 870 DeferredDeclsToEmit.push_back(D); 871 } 872 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 873 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 874 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 875 DeferredDeclsToEmit.push_back(D); 876 } 877 } 878 } 879 880 // Make sure the result is of the requested type. 881 if (!IsIncompleteFunction) { 882 assert(F->getType()->getElementType() == Ty); 883 return F; 884 } 885 886 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 887 return llvm::ConstantExpr::getBitCast(F, PTy); 888 } 889 890 /// GetAddrOfFunction - Return the address of the given function. If Ty is 891 /// non-null, then this function will use the specified type if it has to 892 /// create it (this occurs when we see a definition of the function). 893 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 894 const llvm::Type *Ty) { 895 // If there was no specific requested type, just convert it now. 896 if (!Ty) 897 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 898 899 llvm::StringRef MangledName = getMangledName(GD); 900 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 901 } 902 903 /// CreateRuntimeFunction - Create a new runtime function with the specified 904 /// type and name. 905 llvm::Constant * 906 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 907 llvm::StringRef Name) { 908 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 909 } 910 911 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 912 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 913 return false; 914 if (Context.getLangOptions().CPlusPlus && 915 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 916 // FIXME: We should do something fancier here! 917 return false; 918 } 919 return true; 920 } 921 922 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 923 /// create and return an llvm GlobalVariable with the specified type. If there 924 /// is something in the module with the specified name, return it potentially 925 /// bitcasted to the right type. 926 /// 927 /// If D is non-null, it specifies a decl that correspond to this. This is used 928 /// to set the attributes on the global when it is first created. 929 llvm::Constant * 930 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 931 const llvm::PointerType *Ty, 932 const VarDecl *D) { 933 // Lookup the entry, lazily creating it if necessary. 934 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 935 if (Entry) { 936 if (WeakRefReferences.count(Entry)) { 937 if (D && !D->hasAttr<WeakAttr>()) 938 Entry->setLinkage(llvm::Function::ExternalLinkage); 939 940 WeakRefReferences.erase(Entry); 941 } 942 943 if (Entry->getType() == Ty) 944 return Entry; 945 946 // Make sure the result is of the correct type. 947 return llvm::ConstantExpr::getBitCast(Entry, Ty); 948 } 949 950 // This is the first use or definition of a mangled name. If there is a 951 // deferred decl with this name, remember that we need to emit it at the end 952 // of the file. 953 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 954 if (DDI != DeferredDecls.end()) { 955 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 956 // list, and remove it from DeferredDecls (since we don't need it anymore). 957 DeferredDeclsToEmit.push_back(DDI->second); 958 DeferredDecls.erase(DDI); 959 } 960 961 llvm::GlobalVariable *GV = 962 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 963 llvm::GlobalValue::ExternalLinkage, 964 0, MangledName, 0, 965 false, Ty->getAddressSpace()); 966 967 // Handle things which are present even on external declarations. 968 if (D) { 969 // FIXME: This code is overly simple and should be merged with other global 970 // handling. 971 GV->setConstant(DeclIsConstantGlobal(Context, D)); 972 973 // FIXME: Merge with other attribute handling code. 974 if (D->getStorageClass() == SC_PrivateExtern) 975 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 976 977 if (D->hasAttr<DLLImportAttr>()) 978 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 979 else if (D->hasAttr<WeakAttr>() || 980 D->hasAttr<WeakImportAttr>()) 981 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 982 983 GV->setThreadLocal(D->isThreadSpecified()); 984 } 985 986 return GV; 987 } 988 989 990 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 991 /// given global variable. If Ty is non-null and if the global doesn't exist, 992 /// then it will be greated with the specified type instead of whatever the 993 /// normal requested type would be. 994 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 995 const llvm::Type *Ty) { 996 assert(D->hasGlobalStorage() && "Not a global variable"); 997 QualType ASTTy = D->getType(); 998 if (Ty == 0) 999 Ty = getTypes().ConvertTypeForMem(ASTTy); 1000 1001 const llvm::PointerType *PTy = 1002 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1003 1004 llvm::StringRef MangledName = getMangledName(D); 1005 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1006 } 1007 1008 /// CreateRuntimeVariable - Create a new runtime global variable with the 1009 /// specified type and name. 1010 llvm::Constant * 1011 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1012 llvm::StringRef Name) { 1013 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1014 } 1015 1016 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1017 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1018 1019 if (MayDeferGeneration(D)) { 1020 // If we have not seen a reference to this variable yet, place it 1021 // into the deferred declarations table to be emitted if needed 1022 // later. 1023 llvm::StringRef MangledName = getMangledName(D); 1024 if (!GetGlobalValue(MangledName)) { 1025 DeferredDecls[MangledName] = D; 1026 return; 1027 } 1028 } 1029 1030 // The tentative definition is the only definition. 1031 EmitGlobalVarDefinition(D); 1032 } 1033 1034 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1035 if (DefinitionRequired) 1036 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1037 } 1038 1039 llvm::GlobalVariable::LinkageTypes 1040 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1041 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1042 return llvm::GlobalVariable::InternalLinkage; 1043 1044 if (const CXXMethodDecl *KeyFunction 1045 = RD->getASTContext().getKeyFunction(RD)) { 1046 // If this class has a key function, use that to determine the linkage of 1047 // the vtable. 1048 const FunctionDecl *Def = 0; 1049 if (KeyFunction->hasBody(Def)) 1050 KeyFunction = cast<CXXMethodDecl>(Def); 1051 1052 switch (KeyFunction->getTemplateSpecializationKind()) { 1053 case TSK_Undeclared: 1054 case TSK_ExplicitSpecialization: 1055 if (KeyFunction->isInlined()) 1056 return llvm::GlobalVariable::WeakODRLinkage; 1057 1058 return llvm::GlobalVariable::ExternalLinkage; 1059 1060 case TSK_ImplicitInstantiation: 1061 case TSK_ExplicitInstantiationDefinition: 1062 return llvm::GlobalVariable::WeakODRLinkage; 1063 1064 case TSK_ExplicitInstantiationDeclaration: 1065 // FIXME: Use available_externally linkage. However, this currently 1066 // breaks LLVM's build due to undefined symbols. 1067 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1068 return llvm::GlobalVariable::WeakODRLinkage; 1069 } 1070 } 1071 1072 switch (RD->getTemplateSpecializationKind()) { 1073 case TSK_Undeclared: 1074 case TSK_ExplicitSpecialization: 1075 case TSK_ImplicitInstantiation: 1076 case TSK_ExplicitInstantiationDefinition: 1077 return llvm::GlobalVariable::WeakODRLinkage; 1078 1079 case TSK_ExplicitInstantiationDeclaration: 1080 // FIXME: Use available_externally linkage. However, this currently 1081 // breaks LLVM's build due to undefined symbols. 1082 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1083 return llvm::GlobalVariable::WeakODRLinkage; 1084 } 1085 1086 // Silence GCC warning. 1087 return llvm::GlobalVariable::WeakODRLinkage; 1088 } 1089 1090 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1091 return CharUnits::fromQuantity( 1092 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1093 } 1094 1095 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1096 llvm::Constant *Init = 0; 1097 QualType ASTTy = D->getType(); 1098 bool NonConstInit = false; 1099 1100 const Expr *InitExpr = D->getAnyInitializer(); 1101 1102 if (!InitExpr) { 1103 // This is a tentative definition; tentative definitions are 1104 // implicitly initialized with { 0 }. 1105 // 1106 // Note that tentative definitions are only emitted at the end of 1107 // a translation unit, so they should never have incomplete 1108 // type. In addition, EmitTentativeDefinition makes sure that we 1109 // never attempt to emit a tentative definition if a real one 1110 // exists. A use may still exists, however, so we still may need 1111 // to do a RAUW. 1112 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1113 Init = EmitNullConstant(D->getType()); 1114 } else { 1115 Init = EmitConstantExpr(InitExpr, D->getType()); 1116 if (!Init) { 1117 QualType T = InitExpr->getType(); 1118 if (D->getType()->isReferenceType()) 1119 T = D->getType(); 1120 1121 if (getLangOptions().CPlusPlus) { 1122 EmitCXXGlobalVarDeclInitFunc(D); 1123 Init = EmitNullConstant(T); 1124 NonConstInit = true; 1125 } else { 1126 ErrorUnsupported(D, "static initializer"); 1127 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1128 } 1129 } else { 1130 // We don't need an initializer, so remove the entry for the delayed 1131 // initializer position (just in case this entry was delayed). 1132 if (getLangOptions().CPlusPlus) 1133 DelayedCXXInitPosition.erase(D); 1134 } 1135 } 1136 1137 const llvm::Type* InitType = Init->getType(); 1138 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1139 1140 // Strip off a bitcast if we got one back. 1141 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1142 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1143 // all zero index gep. 1144 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1145 Entry = CE->getOperand(0); 1146 } 1147 1148 // Entry is now either a Function or GlobalVariable. 1149 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1150 1151 // We have a definition after a declaration with the wrong type. 1152 // We must make a new GlobalVariable* and update everything that used OldGV 1153 // (a declaration or tentative definition) with the new GlobalVariable* 1154 // (which will be a definition). 1155 // 1156 // This happens if there is a prototype for a global (e.g. 1157 // "extern int x[];") and then a definition of a different type (e.g. 1158 // "int x[10];"). This also happens when an initializer has a different type 1159 // from the type of the global (this happens with unions). 1160 if (GV == 0 || 1161 GV->getType()->getElementType() != InitType || 1162 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1163 1164 // Move the old entry aside so that we'll create a new one. 1165 Entry->setName(llvm::StringRef()); 1166 1167 // Make a new global with the correct type, this is now guaranteed to work. 1168 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1169 1170 // Replace all uses of the old global with the new global 1171 llvm::Constant *NewPtrForOldDecl = 1172 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1173 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1174 1175 // Erase the old global, since it is no longer used. 1176 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1177 } 1178 1179 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1180 SourceManager &SM = Context.getSourceManager(); 1181 AddAnnotation(EmitAnnotateAttr(GV, AA, 1182 SM.getInstantiationLineNumber(D->getLocation()))); 1183 } 1184 1185 GV->setInitializer(Init); 1186 1187 // If it is safe to mark the global 'constant', do so now. 1188 GV->setConstant(false); 1189 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1190 GV->setConstant(true); 1191 1192 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1193 1194 // Set the llvm linkage type as appropriate. 1195 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1196 if (Linkage == GVA_Internal) 1197 GV->setLinkage(llvm::Function::InternalLinkage); 1198 else if (D->hasAttr<DLLImportAttr>()) 1199 GV->setLinkage(llvm::Function::DLLImportLinkage); 1200 else if (D->hasAttr<DLLExportAttr>()) 1201 GV->setLinkage(llvm::Function::DLLExportLinkage); 1202 else if (D->hasAttr<WeakAttr>()) { 1203 if (GV->isConstant()) 1204 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1205 else 1206 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1207 } else if (Linkage == GVA_TemplateInstantiation || 1208 Linkage == GVA_ExplicitTemplateInstantiation) 1209 // FIXME: It seems like we can provide more specific linkage here 1210 // (LinkOnceODR, WeakODR). 1211 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1212 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1213 !D->hasExternalStorage() && !D->getInit() && 1214 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1215 // Thread local vars aren't considered common linkage. 1216 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1217 // common vars aren't constant even if declared const. 1218 GV->setConstant(false); 1219 } else 1220 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1221 1222 SetCommonAttributes(D, GV); 1223 1224 // Emit global variable debug information. 1225 if (CGDebugInfo *DI = getDebugInfo()) { 1226 DI->setLocation(D->getLocation()); 1227 DI->EmitGlobalVariable(GV, D); 1228 } 1229 } 1230 1231 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1232 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1233 /// existing call uses of the old function in the module, this adjusts them to 1234 /// call the new function directly. 1235 /// 1236 /// This is not just a cleanup: the always_inline pass requires direct calls to 1237 /// functions to be able to inline them. If there is a bitcast in the way, it 1238 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1239 /// run at -O0. 1240 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1241 llvm::Function *NewFn) { 1242 // If we're redefining a global as a function, don't transform it. 1243 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1244 if (OldFn == 0) return; 1245 1246 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1247 llvm::SmallVector<llvm::Value*, 4> ArgList; 1248 1249 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1250 UI != E; ) { 1251 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1252 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1253 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1254 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1255 llvm::CallSite CS(CI); 1256 if (!CI || !CS.isCallee(I)) continue; 1257 1258 // If the return types don't match exactly, and if the call isn't dead, then 1259 // we can't transform this call. 1260 if (CI->getType() != NewRetTy && !CI->use_empty()) 1261 continue; 1262 1263 // If the function was passed too few arguments, don't transform. If extra 1264 // arguments were passed, we silently drop them. If any of the types 1265 // mismatch, we don't transform. 1266 unsigned ArgNo = 0; 1267 bool DontTransform = false; 1268 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1269 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1270 if (CS.arg_size() == ArgNo || 1271 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1272 DontTransform = true; 1273 break; 1274 } 1275 } 1276 if (DontTransform) 1277 continue; 1278 1279 // Okay, we can transform this. Create the new call instruction and copy 1280 // over the required information. 1281 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1282 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1283 ArgList.end(), "", CI); 1284 ArgList.clear(); 1285 if (!NewCall->getType()->isVoidTy()) 1286 NewCall->takeName(CI); 1287 NewCall->setAttributes(CI->getAttributes()); 1288 NewCall->setCallingConv(CI->getCallingConv()); 1289 1290 // Finally, remove the old call, replacing any uses with the new one. 1291 if (!CI->use_empty()) 1292 CI->replaceAllUsesWith(NewCall); 1293 1294 // Copy debug location attached to CI. 1295 if (!CI->getDebugLoc().isUnknown()) 1296 NewCall->setDebugLoc(CI->getDebugLoc()); 1297 CI->eraseFromParent(); 1298 } 1299 } 1300 1301 1302 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1303 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1304 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1305 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1306 // Get or create the prototype for the function. 1307 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1308 1309 // Strip off a bitcast if we got one back. 1310 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1311 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1312 Entry = CE->getOperand(0); 1313 } 1314 1315 1316 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1317 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1318 1319 // If the types mismatch then we have to rewrite the definition. 1320 assert(OldFn->isDeclaration() && 1321 "Shouldn't replace non-declaration"); 1322 1323 // F is the Function* for the one with the wrong type, we must make a new 1324 // Function* and update everything that used F (a declaration) with the new 1325 // Function* (which will be a definition). 1326 // 1327 // This happens if there is a prototype for a function 1328 // (e.g. "int f()") and then a definition of a different type 1329 // (e.g. "int f(int x)"). Move the old function aside so that it 1330 // doesn't interfere with GetAddrOfFunction. 1331 OldFn->setName(llvm::StringRef()); 1332 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1333 1334 // If this is an implementation of a function without a prototype, try to 1335 // replace any existing uses of the function (which may be calls) with uses 1336 // of the new function 1337 if (D->getType()->isFunctionNoProtoType()) { 1338 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1339 OldFn->removeDeadConstantUsers(); 1340 } 1341 1342 // Replace uses of F with the Function we will endow with a body. 1343 if (!Entry->use_empty()) { 1344 llvm::Constant *NewPtrForOldDecl = 1345 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1346 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1347 } 1348 1349 // Ok, delete the old function now, which is dead. 1350 OldFn->eraseFromParent(); 1351 1352 Entry = NewFn; 1353 } 1354 1355 llvm::Function *Fn = cast<llvm::Function>(Entry); 1356 setFunctionLinkage(D, Fn); 1357 1358 CodeGenFunction(*this).GenerateCode(D, Fn); 1359 1360 SetFunctionDefinitionAttributes(D, Fn); 1361 SetLLVMFunctionAttributesForDefinition(D, Fn); 1362 1363 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1364 AddGlobalCtor(Fn, CA->getPriority()); 1365 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1366 AddGlobalDtor(Fn, DA->getPriority()); 1367 } 1368 1369 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1370 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1371 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1372 assert(AA && "Not an alias?"); 1373 1374 llvm::StringRef MangledName = getMangledName(GD); 1375 1376 // If there is a definition in the module, then it wins over the alias. 1377 // This is dubious, but allow it to be safe. Just ignore the alias. 1378 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1379 if (Entry && !Entry->isDeclaration()) 1380 return; 1381 1382 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1383 1384 // Create a reference to the named value. This ensures that it is emitted 1385 // if a deferred decl. 1386 llvm::Constant *Aliasee; 1387 if (isa<llvm::FunctionType>(DeclTy)) 1388 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1389 else 1390 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1391 llvm::PointerType::getUnqual(DeclTy), 0); 1392 1393 // Create the new alias itself, but don't set a name yet. 1394 llvm::GlobalValue *GA = 1395 new llvm::GlobalAlias(Aliasee->getType(), 1396 llvm::Function::ExternalLinkage, 1397 "", Aliasee, &getModule()); 1398 1399 if (Entry) { 1400 assert(Entry->isDeclaration()); 1401 1402 // If there is a declaration in the module, then we had an extern followed 1403 // by the alias, as in: 1404 // extern int test6(); 1405 // ... 1406 // int test6() __attribute__((alias("test7"))); 1407 // 1408 // Remove it and replace uses of it with the alias. 1409 GA->takeName(Entry); 1410 1411 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1412 Entry->getType())); 1413 Entry->eraseFromParent(); 1414 } else { 1415 GA->setName(MangledName); 1416 } 1417 1418 // Set attributes which are particular to an alias; this is a 1419 // specialization of the attributes which may be set on a global 1420 // variable/function. 1421 if (D->hasAttr<DLLExportAttr>()) { 1422 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1423 // The dllexport attribute is ignored for undefined symbols. 1424 if (FD->hasBody()) 1425 GA->setLinkage(llvm::Function::DLLExportLinkage); 1426 } else { 1427 GA->setLinkage(llvm::Function::DLLExportLinkage); 1428 } 1429 } else if (D->hasAttr<WeakAttr>() || 1430 D->hasAttr<WeakRefAttr>() || 1431 D->hasAttr<WeakImportAttr>()) { 1432 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1433 } 1434 1435 SetCommonAttributes(D, GA); 1436 } 1437 1438 /// getBuiltinLibFunction - Given a builtin id for a function like 1439 /// "__builtin_fabsf", return a Function* for "fabsf". 1440 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1441 unsigned BuiltinID) { 1442 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1443 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1444 "isn't a lib fn"); 1445 1446 // Get the name, skip over the __builtin_ prefix (if necessary). 1447 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1448 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1449 Name += 10; 1450 1451 const llvm::FunctionType *Ty = 1452 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1453 1454 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1455 } 1456 1457 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1458 unsigned NumTys) { 1459 return llvm::Intrinsic::getDeclaration(&getModule(), 1460 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1461 } 1462 1463 1464 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1465 const llvm::Type *SrcType, 1466 const llvm::Type *SizeType) { 1467 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1468 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1469 } 1470 1471 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1472 const llvm::Type *SrcType, 1473 const llvm::Type *SizeType) { 1474 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1475 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1476 } 1477 1478 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1479 const llvm::Type *SizeType) { 1480 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1481 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1482 } 1483 1484 static llvm::StringMapEntry<llvm::Constant*> & 1485 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1486 const StringLiteral *Literal, 1487 bool TargetIsLSB, 1488 bool &IsUTF16, 1489 unsigned &StringLength) { 1490 llvm::StringRef String = Literal->getString(); 1491 unsigned NumBytes = String.size(); 1492 1493 // Check for simple case. 1494 if (!Literal->containsNonAsciiOrNull()) { 1495 StringLength = NumBytes; 1496 return Map.GetOrCreateValue(String); 1497 } 1498 1499 // Otherwise, convert the UTF8 literals into a byte string. 1500 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1501 const UTF8 *FromPtr = (UTF8 *)String.data(); 1502 UTF16 *ToPtr = &ToBuf[0]; 1503 1504 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1505 &ToPtr, ToPtr + NumBytes, 1506 strictConversion); 1507 1508 // ConvertUTF8toUTF16 returns the length in ToPtr. 1509 StringLength = ToPtr - &ToBuf[0]; 1510 1511 // Render the UTF-16 string into a byte array and convert to the target byte 1512 // order. 1513 // 1514 // FIXME: This isn't something we should need to do here. 1515 llvm::SmallString<128> AsBytes; 1516 AsBytes.reserve(StringLength * 2); 1517 for (unsigned i = 0; i != StringLength; ++i) { 1518 unsigned short Val = ToBuf[i]; 1519 if (TargetIsLSB) { 1520 AsBytes.push_back(Val & 0xFF); 1521 AsBytes.push_back(Val >> 8); 1522 } else { 1523 AsBytes.push_back(Val >> 8); 1524 AsBytes.push_back(Val & 0xFF); 1525 } 1526 } 1527 // Append one extra null character, the second is automatically added by our 1528 // caller. 1529 AsBytes.push_back(0); 1530 1531 IsUTF16 = true; 1532 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1533 } 1534 1535 llvm::Constant * 1536 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1537 unsigned StringLength = 0; 1538 bool isUTF16 = false; 1539 llvm::StringMapEntry<llvm::Constant*> &Entry = 1540 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1541 getTargetData().isLittleEndian(), 1542 isUTF16, StringLength); 1543 1544 if (llvm::Constant *C = Entry.getValue()) 1545 return C; 1546 1547 llvm::Constant *Zero = 1548 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1549 llvm::Constant *Zeros[] = { Zero, Zero }; 1550 1551 // If we don't already have it, get __CFConstantStringClassReference. 1552 if (!CFConstantStringClassRef) { 1553 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1554 Ty = llvm::ArrayType::get(Ty, 0); 1555 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1556 "__CFConstantStringClassReference"); 1557 // Decay array -> ptr 1558 CFConstantStringClassRef = 1559 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1560 } 1561 1562 QualType CFTy = getContext().getCFConstantStringType(); 1563 1564 const llvm::StructType *STy = 1565 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1566 1567 std::vector<llvm::Constant*> Fields(4); 1568 1569 // Class pointer. 1570 Fields[0] = CFConstantStringClassRef; 1571 1572 // Flags. 1573 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1574 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1575 llvm::ConstantInt::get(Ty, 0x07C8); 1576 1577 // String pointer. 1578 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1579 1580 llvm::GlobalValue::LinkageTypes Linkage; 1581 bool isConstant; 1582 if (isUTF16) { 1583 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1584 Linkage = llvm::GlobalValue::InternalLinkage; 1585 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1586 // does make plain ascii ones writable. 1587 isConstant = true; 1588 } else { 1589 Linkage = llvm::GlobalValue::PrivateLinkage; 1590 isConstant = !Features.WritableStrings; 1591 } 1592 1593 llvm::GlobalVariable *GV = 1594 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1595 ".str"); 1596 if (isUTF16) { 1597 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1598 GV->setAlignment(Align.getQuantity()); 1599 } 1600 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1601 1602 // String length. 1603 Ty = getTypes().ConvertType(getContext().LongTy); 1604 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1605 1606 // The struct. 1607 C = llvm::ConstantStruct::get(STy, Fields); 1608 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1609 llvm::GlobalVariable::PrivateLinkage, C, 1610 "_unnamed_cfstring_"); 1611 if (const char *Sect = getContext().Target.getCFStringSection()) 1612 GV->setSection(Sect); 1613 Entry.setValue(GV); 1614 1615 return GV; 1616 } 1617 1618 llvm::Constant * 1619 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1620 unsigned StringLength = 0; 1621 bool isUTF16 = false; 1622 llvm::StringMapEntry<llvm::Constant*> &Entry = 1623 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1624 getTargetData().isLittleEndian(), 1625 isUTF16, StringLength); 1626 1627 if (llvm::Constant *C = Entry.getValue()) 1628 return C; 1629 1630 llvm::Constant *Zero = 1631 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1632 llvm::Constant *Zeros[] = { Zero, Zero }; 1633 1634 // If we don't already have it, get _NSConstantStringClassReference. 1635 if (!NSConstantStringClassRef) { 1636 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1637 Ty = llvm::ArrayType::get(Ty, 0); 1638 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1639 Features.ObjCNonFragileABI ? 1640 "OBJC_CLASS_$_NSConstantString" : 1641 "_NSConstantStringClassReference"); 1642 // Decay array -> ptr 1643 NSConstantStringClassRef = 1644 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1645 } 1646 1647 QualType NSTy = getContext().getNSConstantStringType(); 1648 1649 const llvm::StructType *STy = 1650 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1651 1652 std::vector<llvm::Constant*> Fields(3); 1653 1654 // Class pointer. 1655 Fields[0] = NSConstantStringClassRef; 1656 1657 // String pointer. 1658 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1659 1660 llvm::GlobalValue::LinkageTypes Linkage; 1661 bool isConstant; 1662 if (isUTF16) { 1663 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1664 Linkage = llvm::GlobalValue::InternalLinkage; 1665 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1666 // does make plain ascii ones writable. 1667 isConstant = true; 1668 } else { 1669 Linkage = llvm::GlobalValue::PrivateLinkage; 1670 isConstant = !Features.WritableStrings; 1671 } 1672 1673 llvm::GlobalVariable *GV = 1674 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1675 ".str"); 1676 if (isUTF16) { 1677 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1678 GV->setAlignment(Align.getQuantity()); 1679 } 1680 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1681 1682 // String length. 1683 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1684 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1685 1686 // The struct. 1687 C = llvm::ConstantStruct::get(STy, Fields); 1688 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1689 llvm::GlobalVariable::PrivateLinkage, C, 1690 "_unnamed_nsstring_"); 1691 // FIXME. Fix section. 1692 if (const char *Sect = 1693 Features.ObjCNonFragileABI 1694 ? getContext().Target.getNSStringNonFragileABISection() 1695 : getContext().Target.getNSStringSection()) 1696 GV->setSection(Sect); 1697 Entry.setValue(GV); 1698 1699 return GV; 1700 } 1701 1702 /// GetStringForStringLiteral - Return the appropriate bytes for a 1703 /// string literal, properly padded to match the literal type. 1704 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1705 const ConstantArrayType *CAT = 1706 getContext().getAsConstantArrayType(E->getType()); 1707 assert(CAT && "String isn't pointer or array!"); 1708 1709 // Resize the string to the right size. 1710 uint64_t RealLen = CAT->getSize().getZExtValue(); 1711 1712 if (E->isWide()) 1713 RealLen *= getContext().Target.getWCharWidth()/8; 1714 1715 std::string Str = E->getString().str(); 1716 Str.resize(RealLen, '\0'); 1717 1718 return Str; 1719 } 1720 1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1722 /// constant array for the given string literal. 1723 llvm::Constant * 1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1725 // FIXME: This can be more efficient. 1726 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1727 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1728 if (S->isWide()) { 1729 llvm::Type *DestTy = 1730 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1731 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1732 } 1733 return C; 1734 } 1735 1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1737 /// array for the given ObjCEncodeExpr node. 1738 llvm::Constant * 1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1740 std::string Str; 1741 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1742 1743 return GetAddrOfConstantCString(Str); 1744 } 1745 1746 1747 /// GenerateWritableString -- Creates storage for a string literal. 1748 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1749 bool constant, 1750 CodeGenModule &CGM, 1751 const char *GlobalName) { 1752 // Create Constant for this string literal. Don't add a '\0'. 1753 llvm::Constant *C = 1754 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1755 1756 // Create a global variable for this string 1757 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1758 llvm::GlobalValue::PrivateLinkage, 1759 C, GlobalName); 1760 } 1761 1762 /// GetAddrOfConstantString - Returns a pointer to a character array 1763 /// containing the literal. This contents are exactly that of the 1764 /// given string, i.e. it will not be null terminated automatically; 1765 /// see GetAddrOfConstantCString. Note that whether the result is 1766 /// actually a pointer to an LLVM constant depends on 1767 /// Feature.WriteableStrings. 1768 /// 1769 /// The result has pointer to array type. 1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1771 const char *GlobalName) { 1772 bool IsConstant = !Features.WritableStrings; 1773 1774 // Get the default prefix if a name wasn't specified. 1775 if (!GlobalName) 1776 GlobalName = ".str"; 1777 1778 // Don't share any string literals if strings aren't constant. 1779 if (!IsConstant) 1780 return GenerateStringLiteral(str, false, *this, GlobalName); 1781 1782 llvm::StringMapEntry<llvm::Constant *> &Entry = 1783 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1784 1785 if (Entry.getValue()) 1786 return Entry.getValue(); 1787 1788 // Create a global variable for this. 1789 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1790 Entry.setValue(C); 1791 return C; 1792 } 1793 1794 /// GetAddrOfConstantCString - Returns a pointer to a character 1795 /// array containing the literal and a terminating '\-' 1796 /// character. The result has pointer to array type. 1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1798 const char *GlobalName){ 1799 return GetAddrOfConstantString(str + '\0', GlobalName); 1800 } 1801 1802 /// EmitObjCPropertyImplementations - Emit information for synthesized 1803 /// properties for an implementation. 1804 void CodeGenModule::EmitObjCPropertyImplementations(const 1805 ObjCImplementationDecl *D) { 1806 for (ObjCImplementationDecl::propimpl_iterator 1807 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1808 ObjCPropertyImplDecl *PID = *i; 1809 1810 // Dynamic is just for type-checking. 1811 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1812 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1813 1814 // Determine which methods need to be implemented, some may have 1815 // been overridden. Note that ::isSynthesized is not the method 1816 // we want, that just indicates if the decl came from a 1817 // property. What we want to know is if the method is defined in 1818 // this implementation. 1819 if (!D->getInstanceMethod(PD->getGetterName())) 1820 CodeGenFunction(*this).GenerateObjCGetter( 1821 const_cast<ObjCImplementationDecl *>(D), PID); 1822 if (!PD->isReadOnly() && 1823 !D->getInstanceMethod(PD->getSetterName())) 1824 CodeGenFunction(*this).GenerateObjCSetter( 1825 const_cast<ObjCImplementationDecl *>(D), PID); 1826 } 1827 } 1828 } 1829 1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1831 /// for an implementation. 1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1833 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1834 return; 1835 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1836 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1837 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1838 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1839 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1840 D->getLocation(), 1841 D->getLocation(), cxxSelector, 1842 getContext().VoidTy, 0, 1843 DC, true, false, true, false, 1844 ObjCMethodDecl::Required); 1845 D->addInstanceMethod(DTORMethod); 1846 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1847 1848 II = &getContext().Idents.get(".cxx_construct"); 1849 cxxSelector = getContext().Selectors.getSelector(0, &II); 1850 // The constructor returns 'self'. 1851 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1852 D->getLocation(), 1853 D->getLocation(), cxxSelector, 1854 getContext().getObjCIdType(), 0, 1855 DC, true, false, true, false, 1856 ObjCMethodDecl::Required); 1857 D->addInstanceMethod(CTORMethod); 1858 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1859 1860 1861 } 1862 1863 /// EmitNamespace - Emit all declarations in a namespace. 1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1865 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1866 I != E; ++I) 1867 EmitTopLevelDecl(*I); 1868 } 1869 1870 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1872 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1873 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1874 ErrorUnsupported(LSD, "linkage spec"); 1875 return; 1876 } 1877 1878 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1879 I != E; ++I) 1880 EmitTopLevelDecl(*I); 1881 } 1882 1883 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1885 // If an error has occurred, stop code generation, but continue 1886 // parsing and semantic analysis (to ensure all warnings and errors 1887 // are emitted). 1888 if (Diags.hasErrorOccurred()) 1889 return; 1890 1891 // Ignore dependent declarations. 1892 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1893 return; 1894 1895 switch (D->getKind()) { 1896 case Decl::CXXConversion: 1897 case Decl::CXXMethod: 1898 case Decl::Function: 1899 // Skip function templates 1900 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1901 return; 1902 1903 EmitGlobal(cast<FunctionDecl>(D)); 1904 break; 1905 1906 case Decl::Var: 1907 EmitGlobal(cast<VarDecl>(D)); 1908 break; 1909 1910 // C++ Decls 1911 case Decl::Namespace: 1912 EmitNamespace(cast<NamespaceDecl>(D)); 1913 break; 1914 // No code generation needed. 1915 case Decl::UsingShadow: 1916 case Decl::Using: 1917 case Decl::UsingDirective: 1918 case Decl::ClassTemplate: 1919 case Decl::FunctionTemplate: 1920 case Decl::NamespaceAlias: 1921 break; 1922 case Decl::CXXConstructor: 1923 // Skip function templates 1924 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1925 return; 1926 1927 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1928 break; 1929 case Decl::CXXDestructor: 1930 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1931 break; 1932 1933 case Decl::StaticAssert: 1934 // Nothing to do. 1935 break; 1936 1937 // Objective-C Decls 1938 1939 // Forward declarations, no (immediate) code generation. 1940 case Decl::ObjCClass: 1941 case Decl::ObjCForwardProtocol: 1942 case Decl::ObjCInterface: 1943 break; 1944 1945 case Decl::ObjCCategory: { 1946 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1947 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1948 Context.ResetObjCLayout(CD->getClassInterface()); 1949 break; 1950 } 1951 1952 1953 case Decl::ObjCProtocol: 1954 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1955 break; 1956 1957 case Decl::ObjCCategoryImpl: 1958 // Categories have properties but don't support synthesize so we 1959 // can ignore them here. 1960 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1961 break; 1962 1963 case Decl::ObjCImplementation: { 1964 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1965 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1966 Context.ResetObjCLayout(OMD->getClassInterface()); 1967 EmitObjCPropertyImplementations(OMD); 1968 EmitObjCIvarInitializations(OMD); 1969 Runtime->GenerateClass(OMD); 1970 break; 1971 } 1972 case Decl::ObjCMethod: { 1973 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1974 // If this is not a prototype, emit the body. 1975 if (OMD->getBody()) 1976 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1977 break; 1978 } 1979 case Decl::ObjCCompatibleAlias: 1980 // compatibility-alias is a directive and has no code gen. 1981 break; 1982 1983 case Decl::LinkageSpec: 1984 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1985 break; 1986 1987 case Decl::FileScopeAsm: { 1988 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1989 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1990 1991 const std::string &S = getModule().getModuleInlineAsm(); 1992 if (S.empty()) 1993 getModule().setModuleInlineAsm(AsmString); 1994 else 1995 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1996 break; 1997 } 1998 1999 default: 2000 // Make sure we handled everything we should, every other kind is a 2001 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2002 // function. Need to recode Decl::Kind to do that easily. 2003 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2004 } 2005 } 2006 2007 /// Turns the given pointer into a constant. 2008 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2009 const void *Ptr) { 2010 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2011 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2012 return llvm::ConstantInt::get(i64, PtrInt); 2013 } 2014 2015 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2016 llvm::NamedMDNode *&GlobalMetadata, 2017 GlobalDecl D, 2018 llvm::GlobalValue *Addr) { 2019 if (!GlobalMetadata) 2020 GlobalMetadata = 2021 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2022 2023 // TODO: should we report variant information for ctors/dtors? 2024 llvm::Value *Ops[] = { 2025 Addr, 2026 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2027 }; 2028 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2029 } 2030 2031 /// Emits metadata nodes associating all the global values in the 2032 /// current module with the Decls they came from. This is useful for 2033 /// projects using IR gen as a subroutine. 2034 /// 2035 /// Since there's currently no way to associate an MDNode directly 2036 /// with an llvm::GlobalValue, we create a global named metadata 2037 /// with the name 'clang.global.decl.ptrs'. 2038 void CodeGenModule::EmitDeclMetadata() { 2039 llvm::NamedMDNode *GlobalMetadata = 0; 2040 2041 // StaticLocalDeclMap 2042 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2043 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2044 I != E; ++I) { 2045 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2046 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2047 } 2048 } 2049 2050 /// Emits metadata nodes for all the local variables in the current 2051 /// function. 2052 void CodeGenFunction::EmitDeclMetadata() { 2053 if (LocalDeclMap.empty()) return; 2054 2055 llvm::LLVMContext &Context = getLLVMContext(); 2056 2057 // Find the unique metadata ID for this name. 2058 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2059 2060 llvm::NamedMDNode *GlobalMetadata = 0; 2061 2062 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2063 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2064 const Decl *D = I->first; 2065 llvm::Value *Addr = I->second; 2066 2067 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2068 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2069 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2070 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2071 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2072 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2073 } 2074 } 2075 } 2076 2077 ///@name Custom Runtime Function Interfaces 2078 ///@{ 2079 // 2080 // FIXME: These can be eliminated once we can have clients just get the required 2081 // AST nodes from the builtin tables. 2082 2083 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2084 if (BlockObjectDispose) 2085 return BlockObjectDispose; 2086 2087 // If we saw an explicit decl, use that. 2088 if (BlockObjectDisposeDecl) { 2089 return BlockObjectDispose = GetAddrOfFunction( 2090 BlockObjectDisposeDecl, 2091 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2092 } 2093 2094 // Otherwise construct the function by hand. 2095 const llvm::FunctionType *FTy; 2096 std::vector<const llvm::Type*> ArgTys; 2097 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2098 ArgTys.push_back(PtrToInt8Ty); 2099 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2100 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2101 return BlockObjectDispose = 2102 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2103 } 2104 2105 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2106 if (BlockObjectAssign) 2107 return BlockObjectAssign; 2108 2109 // If we saw an explicit decl, use that. 2110 if (BlockObjectAssignDecl) { 2111 return BlockObjectAssign = GetAddrOfFunction( 2112 BlockObjectAssignDecl, 2113 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2114 } 2115 2116 // Otherwise construct the function by hand. 2117 const llvm::FunctionType *FTy; 2118 std::vector<const llvm::Type*> ArgTys; 2119 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2120 ArgTys.push_back(PtrToInt8Ty); 2121 ArgTys.push_back(PtrToInt8Ty); 2122 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2123 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2124 return BlockObjectAssign = 2125 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2126 } 2127 2128 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2129 if (NSConcreteGlobalBlock) 2130 return NSConcreteGlobalBlock; 2131 2132 // If we saw an explicit decl, use that. 2133 if (NSConcreteGlobalBlockDecl) { 2134 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2135 NSConcreteGlobalBlockDecl, 2136 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2137 } 2138 2139 // Otherwise construct the variable by hand. 2140 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2141 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2142 } 2143 2144 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2145 if (NSConcreteStackBlock) 2146 return NSConcreteStackBlock; 2147 2148 // If we saw an explicit decl, use that. 2149 if (NSConcreteStackBlockDecl) { 2150 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2151 NSConcreteStackBlockDecl, 2152 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2153 } 2154 2155 // Otherwise construct the variable by hand. 2156 return NSConcreteStackBlock = CreateRuntimeVariable( 2157 PtrToInt8Ty, "_NSConcreteStackBlock"); 2158 } 2159 2160 ///@} 2161