xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0fad0d7724339d9397ad55ec6c9580a9236dad17)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 
210   EmitVersionIdentMetadata();
211 }
212 
213 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
214   // Make sure that this type is translated.
215   Types.UpdateCompletedType(TD);
216 }
217 
218 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
219   if (!TBAA)
220     return 0;
221   return TBAA->getTBAAInfo(QTy);
222 }
223 
224 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
225   if (!TBAA)
226     return 0;
227   return TBAA->getTBAAInfoForVTablePtr();
228 }
229 
230 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
231   if (!TBAA)
232     return 0;
233   return TBAA->getTBAAStructInfo(QTy);
234 }
235 
236 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
237   if (!TBAA)
238     return 0;
239   return TBAA->getTBAAStructTypeInfo(QTy);
240 }
241 
242 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
243                                                   llvm::MDNode *AccessN,
244                                                   uint64_t O) {
245   if (!TBAA)
246     return 0;
247   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
248 }
249 
250 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
251 /// and struct-path aware TBAA, the tag has the same format:
252 /// base type, access type and offset.
253 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
254 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
255                                         llvm::MDNode *TBAAInfo,
256                                         bool ConvertTypeToTag) {
257   if (ConvertTypeToTag && TBAA)
258     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
259                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
260   else
261     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
262 }
263 
264 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
265   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
266   getDiags().Report(Context.getFullLoc(loc), diagID);
267 }
268 
269 /// ErrorUnsupported - Print out an error that codegen doesn't support the
270 /// specified stmt yet.
271 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
272   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
273                                                "cannot compile this %0 yet");
274   std::string Msg = Type;
275   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
276     << Msg << S->getSourceRange();
277 }
278 
279 /// ErrorUnsupported - Print out an error that codegen doesn't support the
280 /// specified decl yet.
281 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
282   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
283                                                "cannot compile this %0 yet");
284   std::string Msg = Type;
285   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
286 }
287 
288 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
289   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
290 }
291 
292 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
293                                         const NamedDecl *D) const {
294   // Internal definitions always have default visibility.
295   if (GV->hasLocalLinkage()) {
296     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
297     return;
298   }
299 
300   // Set visibility for definitions.
301   LinkageInfo LV = D->getLinkageAndVisibility();
302   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
303     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
304 }
305 
306 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
307   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
308       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
309       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
310       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
311       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
312 }
313 
314 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
315     CodeGenOptions::TLSModel M) {
316   switch (M) {
317   case CodeGenOptions::GeneralDynamicTLSModel:
318     return llvm::GlobalVariable::GeneralDynamicTLSModel;
319   case CodeGenOptions::LocalDynamicTLSModel:
320     return llvm::GlobalVariable::LocalDynamicTLSModel;
321   case CodeGenOptions::InitialExecTLSModel:
322     return llvm::GlobalVariable::InitialExecTLSModel;
323   case CodeGenOptions::LocalExecTLSModel:
324     return llvm::GlobalVariable::LocalExecTLSModel;
325   }
326   llvm_unreachable("Invalid TLS model!");
327 }
328 
329 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
330                                const VarDecl &D) const {
331   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
332 
333   llvm::GlobalVariable::ThreadLocalMode TLM;
334   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
335 
336   // Override the TLS model if it is explicitly specified.
337   if (D.hasAttr<TLSModelAttr>()) {
338     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
339     TLM = GetLLVMTLSModel(Attr->getModel());
340   }
341 
342   GV->setThreadLocalMode(TLM);
343 }
344 
345 /// Set the symbol visibility of type information (vtable and RTTI)
346 /// associated with the given type.
347 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
348                                       const CXXRecordDecl *RD,
349                                       TypeVisibilityKind TVK) const {
350   setGlobalVisibility(GV, RD);
351 
352   if (!CodeGenOpts.HiddenWeakVTables)
353     return;
354 
355   // We never want to drop the visibility for RTTI names.
356   if (TVK == TVK_ForRTTIName)
357     return;
358 
359   // We want to drop the visibility to hidden for weak type symbols.
360   // This isn't possible if there might be unresolved references
361   // elsewhere that rely on this symbol being visible.
362 
363   // This should be kept roughly in sync with setThunkVisibility
364   // in CGVTables.cpp.
365 
366   // Preconditions.
367   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
368       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
369     return;
370 
371   // Don't override an explicit visibility attribute.
372   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
373     return;
374 
375   switch (RD->getTemplateSpecializationKind()) {
376   // We have to disable the optimization if this is an EI definition
377   // because there might be EI declarations in other shared objects.
378   case TSK_ExplicitInstantiationDefinition:
379   case TSK_ExplicitInstantiationDeclaration:
380     return;
381 
382   // Every use of a non-template class's type information has to emit it.
383   case TSK_Undeclared:
384     break;
385 
386   // In theory, implicit instantiations can ignore the possibility of
387   // an explicit instantiation declaration because there necessarily
388   // must be an EI definition somewhere with default visibility.  In
389   // practice, it's possible to have an explicit instantiation for
390   // an arbitrary template class, and linkers aren't necessarily able
391   // to deal with mixed-visibility symbols.
392   case TSK_ExplicitSpecialization:
393   case TSK_ImplicitInstantiation:
394     return;
395   }
396 
397   // If there's a key function, there may be translation units
398   // that don't have the key function's definition.  But ignore
399   // this if we're emitting RTTI under -fno-rtti.
400   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
401     // FIXME: what should we do if we "lose" the key function during
402     // the emission of the file?
403     if (Context.getCurrentKeyFunction(RD))
404       return;
405   }
406 
407   // Otherwise, drop the visibility to hidden.
408   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
409   GV->setUnnamedAddr(true);
410 }
411 
412 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
413   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
414 
415   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
416   if (!Str.empty())
417     return Str;
418 
419   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
420     IdentifierInfo *II = ND->getIdentifier();
421     assert(II && "Attempt to mangle unnamed decl.");
422 
423     Str = II->getName();
424     return Str;
425   }
426 
427   SmallString<256> Buffer;
428   llvm::raw_svector_ostream Out(Buffer);
429   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
430     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
431   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
432     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
433   else
434     getCXXABI().getMangleContext().mangleName(ND, Out);
435 
436   // Allocate space for the mangled name.
437   Out.flush();
438   size_t Length = Buffer.size();
439   char *Name = MangledNamesAllocator.Allocate<char>(Length);
440   std::copy(Buffer.begin(), Buffer.end(), Name);
441 
442   Str = StringRef(Name, Length);
443 
444   return Str;
445 }
446 
447 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
448                                         const BlockDecl *BD) {
449   MangleContext &MangleCtx = getCXXABI().getMangleContext();
450   const Decl *D = GD.getDecl();
451   llvm::raw_svector_ostream Out(Buffer.getBuffer());
452   if (D == 0)
453     MangleCtx.mangleGlobalBlock(BD,
454       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
455   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
456     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
457   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
458     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
459   else
460     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
461 }
462 
463 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
464   return getModule().getNamedValue(Name);
465 }
466 
467 /// AddGlobalCtor - Add a function to the list that will be called before
468 /// main() runs.
469 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
470   // FIXME: Type coercion of void()* types.
471   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
472 }
473 
474 /// AddGlobalDtor - Add a function to the list that will be called
475 /// when the module is unloaded.
476 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
477   // FIXME: Type coercion of void()* types.
478   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
479 }
480 
481 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
482   // Ctor function type is void()*.
483   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
484   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
485 
486   // Get the type of a ctor entry, { i32, void ()* }.
487   llvm::StructType *CtorStructTy =
488     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
489 
490   // Construct the constructor and destructor arrays.
491   SmallVector<llvm::Constant*, 8> Ctors;
492   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
493     llvm::Constant *S[] = {
494       llvm::ConstantInt::get(Int32Ty, I->second, false),
495       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
496     };
497     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
498   }
499 
500   if (!Ctors.empty()) {
501     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
502     new llvm::GlobalVariable(TheModule, AT, false,
503                              llvm::GlobalValue::AppendingLinkage,
504                              llvm::ConstantArray::get(AT, Ctors),
505                              GlobalName);
506   }
507 }
508 
509 llvm::GlobalValue::LinkageTypes
510 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
511   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
512 
513   if (isa<CXXDestructorDecl>(D) &&
514       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
515                                          GD.getDtorType()))
516     return llvm::Function::LinkOnceODRLinkage;
517 
518   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
519 
520   if (Linkage == GVA_Internal)
521     return llvm::Function::InternalLinkage;
522 
523   if (D->hasAttr<DLLExportAttr>())
524     return llvm::Function::DLLExportLinkage;
525 
526   if (D->hasAttr<WeakAttr>())
527     return llvm::Function::WeakAnyLinkage;
528 
529   // In C99 mode, 'inline' functions are guaranteed to have a strong
530   // definition somewhere else, so we can use available_externally linkage.
531   if (Linkage == GVA_C99Inline)
532     return llvm::Function::AvailableExternallyLinkage;
533 
534   // Note that Apple's kernel linker doesn't support symbol
535   // coalescing, so we need to avoid linkonce and weak linkages there.
536   // Normally, this means we just map to internal, but for explicit
537   // instantiations we'll map to external.
538 
539   // In C++, the compiler has to emit a definition in every translation unit
540   // that references the function.  We should use linkonce_odr because
541   // a) if all references in this translation unit are optimized away, we
542   // don't need to codegen it.  b) if the function persists, it needs to be
543   // merged with other definitions. c) C++ has the ODR, so we know the
544   // definition is dependable.
545   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
546     return !Context.getLangOpts().AppleKext
547              ? llvm::Function::LinkOnceODRLinkage
548              : llvm::Function::InternalLinkage;
549 
550   // An explicit instantiation of a template has weak linkage, since
551   // explicit instantiations can occur in multiple translation units
552   // and must all be equivalent. However, we are not allowed to
553   // throw away these explicit instantiations.
554   if (Linkage == GVA_ExplicitTemplateInstantiation)
555     return !Context.getLangOpts().AppleKext
556              ? llvm::Function::WeakODRLinkage
557              : llvm::Function::ExternalLinkage;
558 
559   // Otherwise, we have strong external linkage.
560   assert(Linkage == GVA_StrongExternal);
561   return llvm::Function::ExternalLinkage;
562 }
563 
564 
565 /// SetFunctionDefinitionAttributes - Set attributes for a global.
566 ///
567 /// FIXME: This is currently only done for aliases and functions, but not for
568 /// variables (these details are set in EmitGlobalVarDefinition for variables).
569 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
570                                                     llvm::GlobalValue *GV) {
571   SetCommonAttributes(D, GV);
572 }
573 
574 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
575                                               const CGFunctionInfo &Info,
576                                               llvm::Function *F) {
577   unsigned CallingConv;
578   AttributeListType AttributeList;
579   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
580   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
581   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
582 }
583 
584 /// Determines whether the language options require us to model
585 /// unwind exceptions.  We treat -fexceptions as mandating this
586 /// except under the fragile ObjC ABI with only ObjC exceptions
587 /// enabled.  This means, for example, that C with -fexceptions
588 /// enables this.
589 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
590   // If exceptions are completely disabled, obviously this is false.
591   if (!LangOpts.Exceptions) return false;
592 
593   // If C++ exceptions are enabled, this is true.
594   if (LangOpts.CXXExceptions) return true;
595 
596   // If ObjC exceptions are enabled, this depends on the ABI.
597   if (LangOpts.ObjCExceptions) {
598     return LangOpts.ObjCRuntime.hasUnwindExceptions();
599   }
600 
601   return true;
602 }
603 
604 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
605                                                            llvm::Function *F) {
606   llvm::AttrBuilder B;
607 
608   if (CodeGenOpts.UnwindTables)
609     B.addAttribute(llvm::Attribute::UWTable);
610 
611   if (!hasUnwindExceptions(LangOpts))
612     B.addAttribute(llvm::Attribute::NoUnwind);
613 
614   if (D->hasAttr<NakedAttr>()) {
615     // Naked implies noinline: we should not be inlining such functions.
616     B.addAttribute(llvm::Attribute::Naked);
617     B.addAttribute(llvm::Attribute::NoInline);
618   } else if (D->hasAttr<NoInlineAttr>()) {
619     B.addAttribute(llvm::Attribute::NoInline);
620   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
621               D->hasAttr<ForceInlineAttr>()) &&
622              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
623                                               llvm::Attribute::NoInline)) {
624     // (noinline wins over always_inline, and we can't specify both in IR)
625     B.addAttribute(llvm::Attribute::AlwaysInline);
626   }
627 
628   if (D->hasAttr<ColdAttr>()) {
629     B.addAttribute(llvm::Attribute::OptimizeForSize);
630     B.addAttribute(llvm::Attribute::Cold);
631   }
632 
633   if (D->hasAttr<MinSizeAttr>())
634     B.addAttribute(llvm::Attribute::MinSize);
635 
636   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
637     B.addAttribute(llvm::Attribute::StackProtect);
638   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
639     B.addAttribute(llvm::Attribute::StackProtectReq);
640 
641   // Add sanitizer attributes if function is not blacklisted.
642   if (!SanitizerBlacklist->isIn(*F)) {
643     // When AddressSanitizer is enabled, set SanitizeAddress attribute
644     // unless __attribute__((no_sanitize_address)) is used.
645     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
646       B.addAttribute(llvm::Attribute::SanitizeAddress);
647     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
648     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
649       B.addAttribute(llvm::Attribute::SanitizeThread);
650     }
651     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
652     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
653       B.addAttribute(llvm::Attribute::SanitizeMemory);
654   }
655 
656   F->addAttributes(llvm::AttributeSet::FunctionIndex,
657                    llvm::AttributeSet::get(
658                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
659 
660   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
661     F->setUnnamedAddr(true);
662   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
663     if (MD->isVirtual())
664       F->setUnnamedAddr(true);
665 
666   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
667   if (alignment)
668     F->setAlignment(alignment);
669 
670   // C++ ABI requires 2-byte alignment for member functions.
671   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
672     F->setAlignment(2);
673 }
674 
675 void CodeGenModule::SetCommonAttributes(const Decl *D,
676                                         llvm::GlobalValue *GV) {
677   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
678     setGlobalVisibility(GV, ND);
679   else
680     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
681 
682   if (D->hasAttr<UsedAttr>())
683     AddUsedGlobal(GV);
684 
685   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
686     GV->setSection(SA->getName());
687 
688   // Alias cannot have attributes. Filter them here.
689   if (!isa<llvm::GlobalAlias>(GV))
690     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
691 }
692 
693 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
694                                                   llvm::Function *F,
695                                                   const CGFunctionInfo &FI) {
696   SetLLVMFunctionAttributes(D, FI, F);
697   SetLLVMFunctionAttributesForDefinition(D, F);
698 
699   F->setLinkage(llvm::Function::InternalLinkage);
700 
701   SetCommonAttributes(D, F);
702 }
703 
704 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
705                                           llvm::Function *F,
706                                           bool IsIncompleteFunction) {
707   if (unsigned IID = F->getIntrinsicID()) {
708     // If this is an intrinsic function, set the function's attributes
709     // to the intrinsic's attributes.
710     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
711                                                     (llvm::Intrinsic::ID)IID));
712     return;
713   }
714 
715   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
716 
717   if (!IsIncompleteFunction)
718     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
719 
720   if (getCXXABI().HasThisReturn(GD)) {
721     assert(!F->arg_empty() &&
722            F->arg_begin()->getType()
723              ->canLosslesslyBitCastTo(F->getReturnType()) &&
724            "unexpected this return");
725     F->addAttribute(1, llvm::Attribute::Returned);
726   }
727 
728   // Only a few attributes are set on declarations; these may later be
729   // overridden by a definition.
730 
731   if (FD->hasAttr<DLLImportAttr>()) {
732     F->setLinkage(llvm::Function::DLLImportLinkage);
733   } else if (FD->hasAttr<WeakAttr>() ||
734              FD->isWeakImported()) {
735     // "extern_weak" is overloaded in LLVM; we probably should have
736     // separate linkage types for this.
737     F->setLinkage(llvm::Function::ExternalWeakLinkage);
738   } else {
739     F->setLinkage(llvm::Function::ExternalLinkage);
740 
741     LinkageInfo LV = FD->getLinkageAndVisibility();
742     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
743       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
744     }
745   }
746 
747   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
748     F->setSection(SA->getName());
749 
750   // A replaceable global allocation function does not act like a builtin by
751   // default, only if it is invoked by a new-expression or delete-expression.
752   if (FD->isReplaceableGlobalAllocationFunction())
753     F->addAttribute(llvm::AttributeSet::FunctionIndex,
754                     llvm::Attribute::NoBuiltin);
755 }
756 
757 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
758   assert(!GV->isDeclaration() &&
759          "Only globals with definition can force usage.");
760   LLVMUsed.push_back(GV);
761 }
762 
763 void CodeGenModule::EmitLLVMUsed() {
764   // Don't create llvm.used if there is no need.
765   if (LLVMUsed.empty())
766     return;
767 
768   // Convert LLVMUsed to what ConstantArray needs.
769   SmallVector<llvm::Constant*, 8> UsedArray;
770   UsedArray.resize(LLVMUsed.size());
771   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
772     UsedArray[i] =
773      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
774                                     Int8PtrTy);
775   }
776 
777   if (UsedArray.empty())
778     return;
779   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
780 
781   llvm::GlobalVariable *GV =
782     new llvm::GlobalVariable(getModule(), ATy, false,
783                              llvm::GlobalValue::AppendingLinkage,
784                              llvm::ConstantArray::get(ATy, UsedArray),
785                              "llvm.used");
786 
787   GV->setSection("llvm.metadata");
788 }
789 
790 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
791   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
792   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
793 }
794 
795 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
796   llvm::SmallString<32> Opt;
797   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
798   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
799   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
800 }
801 
802 void CodeGenModule::AddDependentLib(StringRef Lib) {
803   llvm::SmallString<24> Opt;
804   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
805   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
806   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
807 }
808 
809 /// \brief Add link options implied by the given module, including modules
810 /// it depends on, using a postorder walk.
811 static void addLinkOptionsPostorder(CodeGenModule &CGM,
812                                     Module *Mod,
813                                     SmallVectorImpl<llvm::Value *> &Metadata,
814                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
815   // Import this module's parent.
816   if (Mod->Parent && Visited.insert(Mod->Parent)) {
817     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
818   }
819 
820   // Import this module's dependencies.
821   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
822     if (Visited.insert(Mod->Imports[I-1]))
823       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
824   }
825 
826   // Add linker options to link against the libraries/frameworks
827   // described by this module.
828   llvm::LLVMContext &Context = CGM.getLLVMContext();
829   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
830     // Link against a framework.  Frameworks are currently Darwin only, so we
831     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
832     if (Mod->LinkLibraries[I-1].IsFramework) {
833       llvm::Value *Args[2] = {
834         llvm::MDString::get(Context, "-framework"),
835         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
836       };
837 
838       Metadata.push_back(llvm::MDNode::get(Context, Args));
839       continue;
840     }
841 
842     // Link against a library.
843     llvm::SmallString<24> Opt;
844     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
845       Mod->LinkLibraries[I-1].Library, Opt);
846     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
847     Metadata.push_back(llvm::MDNode::get(Context, OptString));
848   }
849 }
850 
851 void CodeGenModule::EmitModuleLinkOptions() {
852   // Collect the set of all of the modules we want to visit to emit link
853   // options, which is essentially the imported modules and all of their
854   // non-explicit child modules.
855   llvm::SetVector<clang::Module *> LinkModules;
856   llvm::SmallPtrSet<clang::Module *, 16> Visited;
857   SmallVector<clang::Module *, 16> Stack;
858 
859   // Seed the stack with imported modules.
860   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
861                                                MEnd = ImportedModules.end();
862        M != MEnd; ++M) {
863     if (Visited.insert(*M))
864       Stack.push_back(*M);
865   }
866 
867   // Find all of the modules to import, making a little effort to prune
868   // non-leaf modules.
869   while (!Stack.empty()) {
870     clang::Module *Mod = Stack.pop_back_val();
871 
872     bool AnyChildren = false;
873 
874     // Visit the submodules of this module.
875     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
876                                         SubEnd = Mod->submodule_end();
877          Sub != SubEnd; ++Sub) {
878       // Skip explicit children; they need to be explicitly imported to be
879       // linked against.
880       if ((*Sub)->IsExplicit)
881         continue;
882 
883       if (Visited.insert(*Sub)) {
884         Stack.push_back(*Sub);
885         AnyChildren = true;
886       }
887     }
888 
889     // We didn't find any children, so add this module to the list of
890     // modules to link against.
891     if (!AnyChildren) {
892       LinkModules.insert(Mod);
893     }
894   }
895 
896   // Add link options for all of the imported modules in reverse topological
897   // order.  We don't do anything to try to order import link flags with respect
898   // to linker options inserted by things like #pragma comment().
899   SmallVector<llvm::Value *, 16> MetadataArgs;
900   Visited.clear();
901   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
902                                                MEnd = LinkModules.end();
903        M != MEnd; ++M) {
904     if (Visited.insert(*M))
905       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
906   }
907   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
908   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
909 
910   // Add the linker options metadata flag.
911   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
912                             llvm::MDNode::get(getLLVMContext(),
913                                               LinkerOptionsMetadata));
914 }
915 
916 void CodeGenModule::EmitDeferred() {
917   // Emit code for any potentially referenced deferred decls.  Since a
918   // previously unused static decl may become used during the generation of code
919   // for a static function, iterate until no changes are made.
920 
921   while (true) {
922     if (!DeferredVTables.empty()) {
923       EmitDeferredVTables();
924 
925       // Emitting a v-table doesn't directly cause more v-tables to
926       // become deferred, although it can cause functions to be
927       // emitted that then need those v-tables.
928       assert(DeferredVTables.empty());
929     }
930 
931     // Stop if we're out of both deferred v-tables and deferred declarations.
932     if (DeferredDeclsToEmit.empty()) break;
933 
934     GlobalDecl D = DeferredDeclsToEmit.back();
935     DeferredDeclsToEmit.pop_back();
936 
937     const ValueDecl *Global = cast<ValueDecl>(D.getDecl());
938     if (Global->hasAttr<AliasAttr>()) {
939       EmitAliasDefinition(D);
940       continue;
941     }
942 
943     // Check to see if we've already emitted this.  This is necessary
944     // for a couple of reasons: first, decls can end up in the
945     // deferred-decls queue multiple times, and second, decls can end
946     // up with definitions in unusual ways (e.g. by an extern inline
947     // function acquiring a strong function redefinition).  Just
948     // ignore these cases.
949     //
950     // TODO: That said, looking this up multiple times is very wasteful.
951     StringRef Name = getMangledName(D);
952     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
953     assert(CGRef && "Deferred decl wasn't referenced?");
954 
955     if (!CGRef->isDeclaration())
956       continue;
957 
958     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
959     // purposes an alias counts as a definition.
960     if (isa<llvm::GlobalAlias>(CGRef))
961       continue;
962 
963     // Otherwise, emit the definition and move on to the next one.
964     EmitGlobalDefinition(D);
965   }
966 }
967 
968 void CodeGenModule::EmitGlobalAnnotations() {
969   if (Annotations.empty())
970     return;
971 
972   // Create a new global variable for the ConstantStruct in the Module.
973   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
974     Annotations[0]->getType(), Annotations.size()), Annotations);
975   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
976     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
977     "llvm.global.annotations");
978   gv->setSection(AnnotationSection);
979 }
980 
981 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
982   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
983   if (i != AnnotationStrings.end())
984     return i->second;
985 
986   // Not found yet, create a new global.
987   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
988   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
989     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
990   gv->setSection(AnnotationSection);
991   gv->setUnnamedAddr(true);
992   AnnotationStrings[Str] = gv;
993   return gv;
994 }
995 
996 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
997   SourceManager &SM = getContext().getSourceManager();
998   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
999   if (PLoc.isValid())
1000     return EmitAnnotationString(PLoc.getFilename());
1001   return EmitAnnotationString(SM.getBufferName(Loc));
1002 }
1003 
1004 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1005   SourceManager &SM = getContext().getSourceManager();
1006   PresumedLoc PLoc = SM.getPresumedLoc(L);
1007   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1008     SM.getExpansionLineNumber(L);
1009   return llvm::ConstantInt::get(Int32Ty, LineNo);
1010 }
1011 
1012 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1013                                                 const AnnotateAttr *AA,
1014                                                 SourceLocation L) {
1015   // Get the globals for file name, annotation, and the line number.
1016   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1017                  *UnitGV = EmitAnnotationUnit(L),
1018                  *LineNoCst = EmitAnnotationLineNo(L);
1019 
1020   // Create the ConstantStruct for the global annotation.
1021   llvm::Constant *Fields[4] = {
1022     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1023     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1024     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1025     LineNoCst
1026   };
1027   return llvm::ConstantStruct::getAnon(Fields);
1028 }
1029 
1030 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1031                                          llvm::GlobalValue *GV) {
1032   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1033   // Get the struct elements for these annotations.
1034   for (specific_attr_iterator<AnnotateAttr>
1035        ai = D->specific_attr_begin<AnnotateAttr>(),
1036        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1037     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1038 }
1039 
1040 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1041   // Never defer when EmitAllDecls is specified.
1042   if (LangOpts.EmitAllDecls)
1043     return false;
1044 
1045   return !getContext().DeclMustBeEmitted(Global);
1046 }
1047 
1048 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1049     const CXXUuidofExpr* E) {
1050   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1051   // well-formed.
1052   StringRef Uuid = E->getUuidAsStringRef(Context);
1053   std::string Name = "_GUID_" + Uuid.lower();
1054   std::replace(Name.begin(), Name.end(), '-', '_');
1055 
1056   // Look for an existing global.
1057   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1058     return GV;
1059 
1060   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1061   assert(Init && "failed to initialize as constant");
1062 
1063   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1064       getModule(), Init->getType(),
1065       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1066   return GV;
1067 }
1068 
1069 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1070   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1071   assert(AA && "No alias?");
1072 
1073   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1074 
1075   // See if there is already something with the target's name in the module.
1076   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1077   if (Entry) {
1078     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1079     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1080   }
1081 
1082   llvm::Constant *Aliasee;
1083   if (isa<llvm::FunctionType>(DeclTy))
1084     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1085                                       GlobalDecl(cast<FunctionDecl>(VD)),
1086                                       /*ForVTable=*/false);
1087   else
1088     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1089                                     llvm::PointerType::getUnqual(DeclTy), 0);
1090 
1091   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1092   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1093   WeakRefReferences.insert(F);
1094 
1095   return Aliasee;
1096 }
1097 
1098 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1099   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1100 
1101   // Weak references don't produce any output by themselves.
1102   if (Global->hasAttr<WeakRefAttr>())
1103     return;
1104 
1105   // If this is an alias definition (which otherwise looks like a declaration)
1106   // emit it now.
1107   if (Global->hasAttr<AliasAttr>())
1108     return scheduleAliasDefinitionEmission(GD);
1109 
1110   // If this is CUDA, be selective about which declarations we emit.
1111   if (LangOpts.CUDA) {
1112     if (CodeGenOpts.CUDAIsDevice) {
1113       if (!Global->hasAttr<CUDADeviceAttr>() &&
1114           !Global->hasAttr<CUDAGlobalAttr>() &&
1115           !Global->hasAttr<CUDAConstantAttr>() &&
1116           !Global->hasAttr<CUDASharedAttr>())
1117         return;
1118     } else {
1119       if (!Global->hasAttr<CUDAHostAttr>() && (
1120             Global->hasAttr<CUDADeviceAttr>() ||
1121             Global->hasAttr<CUDAConstantAttr>() ||
1122             Global->hasAttr<CUDASharedAttr>()))
1123         return;
1124     }
1125   }
1126 
1127   // Ignore declarations, they will be emitted on their first use.
1128   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1129     // Forward declarations are emitted lazily on first use.
1130     if (!FD->doesThisDeclarationHaveABody()) {
1131       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1132         return;
1133 
1134       const FunctionDecl *InlineDefinition = 0;
1135       FD->getBody(InlineDefinition);
1136 
1137       StringRef MangledName = getMangledName(GD);
1138       DeferredDecls.erase(MangledName);
1139       EmitGlobalDefinition(InlineDefinition);
1140       return;
1141     }
1142   } else {
1143     const VarDecl *VD = cast<VarDecl>(Global);
1144     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1145 
1146     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1147       return;
1148   }
1149 
1150   // Defer code generation when possible if this is a static definition, inline
1151   // function etc.  These we only want to emit if they are used.
1152   if (!MayDeferGeneration(Global)) {
1153     // Emit the definition if it can't be deferred.
1154     EmitGlobalDefinition(GD);
1155     return;
1156   }
1157 
1158   // If we're deferring emission of a C++ variable with an
1159   // initializer, remember the order in which it appeared in the file.
1160   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1161       cast<VarDecl>(Global)->hasInit()) {
1162     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1163     CXXGlobalInits.push_back(0);
1164   }
1165 
1166   // If the value has already been used, add it directly to the
1167   // DeferredDeclsToEmit list.
1168   StringRef MangledName = getMangledName(GD);
1169   if (GetGlobalValue(MangledName))
1170     DeferredDeclsToEmit.push_back(GD);
1171   else {
1172     // Otherwise, remember that we saw a deferred decl with this name.  The
1173     // first use of the mangled name will cause it to move into
1174     // DeferredDeclsToEmit.
1175     DeferredDecls[MangledName] = GD;
1176   }
1177 }
1178 
1179 namespace {
1180   struct FunctionIsDirectlyRecursive :
1181     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1182     const StringRef Name;
1183     const Builtin::Context &BI;
1184     bool Result;
1185     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1186       Name(N), BI(C), Result(false) {
1187     }
1188     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1189 
1190     bool TraverseCallExpr(CallExpr *E) {
1191       const FunctionDecl *FD = E->getDirectCallee();
1192       if (!FD)
1193         return true;
1194       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1195       if (Attr && Name == Attr->getLabel()) {
1196         Result = true;
1197         return false;
1198       }
1199       unsigned BuiltinID = FD->getBuiltinID();
1200       if (!BuiltinID)
1201         return true;
1202       StringRef BuiltinName = BI.GetName(BuiltinID);
1203       if (BuiltinName.startswith("__builtin_") &&
1204           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1205         Result = true;
1206         return false;
1207       }
1208       return true;
1209     }
1210   };
1211 }
1212 
1213 // isTriviallyRecursive - Check if this function calls another
1214 // decl that, because of the asm attribute or the other decl being a builtin,
1215 // ends up pointing to itself.
1216 bool
1217 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1218   StringRef Name;
1219   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1220     // asm labels are a special kind of mangling we have to support.
1221     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1222     if (!Attr)
1223       return false;
1224     Name = Attr->getLabel();
1225   } else {
1226     Name = FD->getName();
1227   }
1228 
1229   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1230   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1231   return Walker.Result;
1232 }
1233 
1234 bool
1235 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1236   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1237     return true;
1238   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1239   if (CodeGenOpts.OptimizationLevel == 0 &&
1240       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1241     return false;
1242   // PR9614. Avoid cases where the source code is lying to us. An available
1243   // externally function should have an equivalent function somewhere else,
1244   // but a function that calls itself is clearly not equivalent to the real
1245   // implementation.
1246   // This happens in glibc's btowc and in some configure checks.
1247   return !isTriviallyRecursive(F);
1248 }
1249 
1250 /// If the type for the method's class was generated by
1251 /// CGDebugInfo::createContextChain(), the cache contains only a
1252 /// limited DIType without any declarations. Since EmitFunctionStart()
1253 /// needs to find the canonical declaration for each method, we need
1254 /// to construct the complete type prior to emitting the method.
1255 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1256   if (!D->isInstance())
1257     return;
1258 
1259   if (CGDebugInfo *DI = getModuleDebugInfo())
1260     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1261       const PointerType *ThisPtr =
1262         cast<PointerType>(D->getThisType(getContext()));
1263       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1264     }
1265 }
1266 
1267 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1268   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1269 
1270   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1271                                  Context.getSourceManager(),
1272                                  "Generating code for declaration");
1273 
1274   if (isa<FunctionDecl>(D)) {
1275     // At -O0, don't generate IR for functions with available_externally
1276     // linkage.
1277     if (!shouldEmitFunction(GD))
1278       return;
1279 
1280     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1281       CompleteDIClassType(Method);
1282       // Make sure to emit the definition(s) before we emit the thunks.
1283       // This is necessary for the generation of certain thunks.
1284       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1285         EmitCXXConstructor(CD, GD.getCtorType());
1286       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1287         EmitCXXDestructor(DD, GD.getDtorType());
1288       else
1289         EmitGlobalFunctionDefinition(GD);
1290 
1291       if (Method->isVirtual())
1292         getVTables().EmitThunks(GD);
1293 
1294       return;
1295     }
1296 
1297     return EmitGlobalFunctionDefinition(GD);
1298   }
1299 
1300   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1301     return EmitGlobalVarDefinition(VD);
1302 
1303   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1304 }
1305 
1306 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1307 /// module, create and return an llvm Function with the specified type. If there
1308 /// is something in the module with the specified name, return it potentially
1309 /// bitcasted to the right type.
1310 ///
1311 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1312 /// to set the attributes on the function when it is first created.
1313 llvm::Constant *
1314 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1315                                        llvm::Type *Ty,
1316                                        GlobalDecl GD, bool ForVTable,
1317                                        llvm::AttributeSet ExtraAttrs) {
1318   const Decl *D = GD.getDecl();
1319 
1320   // Lookup the entry, lazily creating it if necessary.
1321   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1322   if (Entry) {
1323     if (WeakRefReferences.erase(Entry)) {
1324       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1325       if (FD && !FD->hasAttr<WeakAttr>())
1326         Entry->setLinkage(llvm::Function::ExternalLinkage);
1327     }
1328 
1329     if (Entry->getType()->getElementType() == Ty)
1330       return Entry;
1331 
1332     // Make sure the result is of the correct type.
1333     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1334   }
1335 
1336   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1337   // each other bottoming out with the base dtor.  Therefore we emit non-base
1338   // dtors on usage, even if there is no dtor definition in the TU.
1339   if (D && isa<CXXDestructorDecl>(D) &&
1340       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1341                                          GD.getDtorType()))
1342     DeferredDeclsToEmit.push_back(GD);
1343 
1344   // This function doesn't have a complete type (for example, the return
1345   // type is an incomplete struct). Use a fake type instead, and make
1346   // sure not to try to set attributes.
1347   bool IsIncompleteFunction = false;
1348 
1349   llvm::FunctionType *FTy;
1350   if (isa<llvm::FunctionType>(Ty)) {
1351     FTy = cast<llvm::FunctionType>(Ty);
1352   } else {
1353     FTy = llvm::FunctionType::get(VoidTy, false);
1354     IsIncompleteFunction = true;
1355   }
1356 
1357   llvm::Function *F = llvm::Function::Create(FTy,
1358                                              llvm::Function::ExternalLinkage,
1359                                              MangledName, &getModule());
1360   assert(F->getName() == MangledName && "name was uniqued!");
1361   if (D)
1362     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1363   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1364     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1365     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1366                      llvm::AttributeSet::get(VMContext,
1367                                              llvm::AttributeSet::FunctionIndex,
1368                                              B));
1369   }
1370 
1371   // This is the first use or definition of a mangled name.  If there is a
1372   // deferred decl with this name, remember that we need to emit it at the end
1373   // of the file.
1374   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1375   if (DDI != DeferredDecls.end()) {
1376     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1377     // list, and remove it from DeferredDecls (since we don't need it anymore).
1378     DeferredDeclsToEmit.push_back(DDI->second);
1379     DeferredDecls.erase(DDI);
1380 
1381   // Otherwise, there are cases we have to worry about where we're
1382   // using a declaration for which we must emit a definition but where
1383   // we might not find a top-level definition:
1384   //   - member functions defined inline in their classes
1385   //   - friend functions defined inline in some class
1386   //   - special member functions with implicit definitions
1387   // If we ever change our AST traversal to walk into class methods,
1388   // this will be unnecessary.
1389   //
1390   // We also don't emit a definition for a function if it's going to be an entry
1391   // in a vtable, unless it's already marked as used.
1392   } else if (getLangOpts().CPlusPlus && D) {
1393     // Look for a declaration that's lexically in a record.
1394     const FunctionDecl *FD = cast<FunctionDecl>(D);
1395     FD = FD->getMostRecentDecl();
1396     do {
1397       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1398         if (FD->isImplicit() && !ForVTable) {
1399           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1400           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1401           break;
1402         } else if (FD->doesThisDeclarationHaveABody()) {
1403           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1404           break;
1405         }
1406       }
1407       FD = FD->getPreviousDecl();
1408     } while (FD);
1409   }
1410 
1411   // Make sure the result is of the requested type.
1412   if (!IsIncompleteFunction) {
1413     assert(F->getType()->getElementType() == Ty);
1414     return F;
1415   }
1416 
1417   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1418   return llvm::ConstantExpr::getBitCast(F, PTy);
1419 }
1420 
1421 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1422 /// non-null, then this function will use the specified type if it has to
1423 /// create it (this occurs when we see a definition of the function).
1424 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1425                                                  llvm::Type *Ty,
1426                                                  bool ForVTable) {
1427   // If there was no specific requested type, just convert it now.
1428   if (!Ty)
1429     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1430 
1431   StringRef MangledName = getMangledName(GD);
1432   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1433 }
1434 
1435 /// CreateRuntimeFunction - Create a new runtime function with the specified
1436 /// type and name.
1437 llvm::Constant *
1438 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1439                                      StringRef Name,
1440                                      llvm::AttributeSet ExtraAttrs) {
1441   llvm::Constant *C
1442     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1443                               ExtraAttrs);
1444   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1445     if (F->empty())
1446       F->setCallingConv(getRuntimeCC());
1447   return C;
1448 }
1449 
1450 /// isTypeConstant - Determine whether an object of this type can be emitted
1451 /// as a constant.
1452 ///
1453 /// If ExcludeCtor is true, the duration when the object's constructor runs
1454 /// will not be considered. The caller will need to verify that the object is
1455 /// not written to during its construction.
1456 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1457   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1458     return false;
1459 
1460   if (Context.getLangOpts().CPlusPlus) {
1461     if (const CXXRecordDecl *Record
1462           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1463       return ExcludeCtor && !Record->hasMutableFields() &&
1464              Record->hasTrivialDestructor();
1465   }
1466 
1467   return true;
1468 }
1469 
1470 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1471 /// create and return an llvm GlobalVariable with the specified type.  If there
1472 /// is something in the module with the specified name, return it potentially
1473 /// bitcasted to the right type.
1474 ///
1475 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1476 /// to set the attributes on the global when it is first created.
1477 llvm::Constant *
1478 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1479                                      llvm::PointerType *Ty,
1480                                      const VarDecl *D,
1481                                      bool UnnamedAddr) {
1482   // Lookup the entry, lazily creating it if necessary.
1483   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1484   if (Entry) {
1485     if (WeakRefReferences.erase(Entry)) {
1486       if (D && !D->hasAttr<WeakAttr>())
1487         Entry->setLinkage(llvm::Function::ExternalLinkage);
1488     }
1489 
1490     if (UnnamedAddr)
1491       Entry->setUnnamedAddr(true);
1492 
1493     if (Entry->getType() == Ty)
1494       return Entry;
1495 
1496     // Make sure the result is of the correct type.
1497     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1498   }
1499 
1500   // This is the first use or definition of a mangled name.  If there is a
1501   // deferred decl with this name, remember that we need to emit it at the end
1502   // of the file.
1503   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1504   if (DDI != DeferredDecls.end()) {
1505     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1506     // list, and remove it from DeferredDecls (since we don't need it anymore).
1507     DeferredDeclsToEmit.push_back(DDI->second);
1508     DeferredDecls.erase(DDI);
1509   }
1510 
1511   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1512   llvm::GlobalVariable *GV =
1513     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1514                              llvm::GlobalValue::ExternalLinkage,
1515                              0, MangledName, 0,
1516                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1517 
1518   // Handle things which are present even on external declarations.
1519   if (D) {
1520     // FIXME: This code is overly simple and should be merged with other global
1521     // handling.
1522     GV->setConstant(isTypeConstant(D->getType(), false));
1523 
1524     // Set linkage and visibility in case we never see a definition.
1525     LinkageInfo LV = D->getLinkageAndVisibility();
1526     if (LV.getLinkage() != ExternalLinkage) {
1527       // Don't set internal linkage on declarations.
1528     } else {
1529       if (D->hasAttr<DLLImportAttr>())
1530         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1531       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1532         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1533 
1534       // Set visibility on a declaration only if it's explicit.
1535       if (LV.isVisibilityExplicit())
1536         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1537     }
1538 
1539     if (D->getTLSKind()) {
1540       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1541         CXXThreadLocals.push_back(std::make_pair(D, GV));
1542       setTLSMode(GV, *D);
1543     }
1544   }
1545 
1546   if (AddrSpace != Ty->getAddressSpace())
1547     return llvm::ConstantExpr::getBitCast(GV, Ty);
1548   else
1549     return GV;
1550 }
1551 
1552 
1553 llvm::GlobalVariable *
1554 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1555                                       llvm::Type *Ty,
1556                                       llvm::GlobalValue::LinkageTypes Linkage) {
1557   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1558   llvm::GlobalVariable *OldGV = 0;
1559 
1560 
1561   if (GV) {
1562     // Check if the variable has the right type.
1563     if (GV->getType()->getElementType() == Ty)
1564       return GV;
1565 
1566     // Because C++ name mangling, the only way we can end up with an already
1567     // existing global with the same name is if it has been declared extern "C".
1568     assert(GV->isDeclaration() && "Declaration has wrong type!");
1569     OldGV = GV;
1570   }
1571 
1572   // Create a new variable.
1573   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1574                                 Linkage, 0, Name);
1575 
1576   if (OldGV) {
1577     // Replace occurrences of the old variable if needed.
1578     GV->takeName(OldGV);
1579 
1580     if (!OldGV->use_empty()) {
1581       llvm::Constant *NewPtrForOldDecl =
1582       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1583       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1584     }
1585 
1586     OldGV->eraseFromParent();
1587   }
1588 
1589   return GV;
1590 }
1591 
1592 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1593 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1594 /// then it will be created with the specified type instead of whatever the
1595 /// normal requested type would be.
1596 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1597                                                   llvm::Type *Ty) {
1598   assert(D->hasGlobalStorage() && "Not a global variable");
1599   QualType ASTTy = D->getType();
1600   if (Ty == 0)
1601     Ty = getTypes().ConvertTypeForMem(ASTTy);
1602 
1603   llvm::PointerType *PTy =
1604     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1605 
1606   StringRef MangledName = getMangledName(D);
1607   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1608 }
1609 
1610 /// CreateRuntimeVariable - Create a new runtime global variable with the
1611 /// specified type and name.
1612 llvm::Constant *
1613 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1614                                      StringRef Name) {
1615   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1616                                true);
1617 }
1618 
1619 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1620   assert(!D->getInit() && "Cannot emit definite definitions here!");
1621 
1622   if (MayDeferGeneration(D)) {
1623     // If we have not seen a reference to this variable yet, place it
1624     // into the deferred declarations table to be emitted if needed
1625     // later.
1626     StringRef MangledName = getMangledName(D);
1627     if (!GetGlobalValue(MangledName)) {
1628       DeferredDecls[MangledName] = D;
1629       return;
1630     }
1631   }
1632 
1633   // The tentative definition is the only definition.
1634   EmitGlobalVarDefinition(D);
1635 }
1636 
1637 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1638     return Context.toCharUnitsFromBits(
1639       TheDataLayout.getTypeStoreSizeInBits(Ty));
1640 }
1641 
1642 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1643                                                  unsigned AddrSpace) {
1644   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1645     if (D->hasAttr<CUDAConstantAttr>())
1646       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1647     else if (D->hasAttr<CUDASharedAttr>())
1648       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1649     else
1650       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1651   }
1652 
1653   return AddrSpace;
1654 }
1655 
1656 template<typename SomeDecl>
1657 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1658                                                llvm::GlobalValue *GV) {
1659   if (!getLangOpts().CPlusPlus)
1660     return;
1661 
1662   // Must have 'used' attribute, or else inline assembly can't rely on
1663   // the name existing.
1664   if (!D->template hasAttr<UsedAttr>())
1665     return;
1666 
1667   // Must have internal linkage and an ordinary name.
1668   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1669     return;
1670 
1671   // Must be in an extern "C" context. Entities declared directly within
1672   // a record are not extern "C" even if the record is in such a context.
1673   const SomeDecl *First = D->getFirstDecl();
1674   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1675     return;
1676 
1677   // OK, this is an internal linkage entity inside an extern "C" linkage
1678   // specification. Make a note of that so we can give it the "expected"
1679   // mangled name if nothing else is using that name.
1680   std::pair<StaticExternCMap::iterator, bool> R =
1681       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1682 
1683   // If we have multiple internal linkage entities with the same name
1684   // in extern "C" regions, none of them gets that name.
1685   if (!R.second)
1686     R.first->second = 0;
1687 }
1688 
1689 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1690   llvm::Constant *Init = 0;
1691   QualType ASTTy = D->getType();
1692   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1693   bool NeedsGlobalCtor = false;
1694   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1695 
1696   const VarDecl *InitDecl;
1697   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1698 
1699   if (!InitExpr) {
1700     // This is a tentative definition; tentative definitions are
1701     // implicitly initialized with { 0 }.
1702     //
1703     // Note that tentative definitions are only emitted at the end of
1704     // a translation unit, so they should never have incomplete
1705     // type. In addition, EmitTentativeDefinition makes sure that we
1706     // never attempt to emit a tentative definition if a real one
1707     // exists. A use may still exists, however, so we still may need
1708     // to do a RAUW.
1709     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1710     Init = EmitNullConstant(D->getType());
1711   } else {
1712     initializedGlobalDecl = GlobalDecl(D);
1713     Init = EmitConstantInit(*InitDecl);
1714 
1715     if (!Init) {
1716       QualType T = InitExpr->getType();
1717       if (D->getType()->isReferenceType())
1718         T = D->getType();
1719 
1720       if (getLangOpts().CPlusPlus) {
1721         Init = EmitNullConstant(T);
1722         NeedsGlobalCtor = true;
1723       } else {
1724         ErrorUnsupported(D, "static initializer");
1725         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1726       }
1727     } else {
1728       // We don't need an initializer, so remove the entry for the delayed
1729       // initializer position (just in case this entry was delayed) if we
1730       // also don't need to register a destructor.
1731       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1732         DelayedCXXInitPosition.erase(D);
1733     }
1734   }
1735 
1736   llvm::Type* InitType = Init->getType();
1737   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1738 
1739   // Strip off a bitcast if we got one back.
1740   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1741     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1742            // all zero index gep.
1743            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1744     Entry = CE->getOperand(0);
1745   }
1746 
1747   // Entry is now either a Function or GlobalVariable.
1748   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1749 
1750   // We have a definition after a declaration with the wrong type.
1751   // We must make a new GlobalVariable* and update everything that used OldGV
1752   // (a declaration or tentative definition) with the new GlobalVariable*
1753   // (which will be a definition).
1754   //
1755   // This happens if there is a prototype for a global (e.g.
1756   // "extern int x[];") and then a definition of a different type (e.g.
1757   // "int x[10];"). This also happens when an initializer has a different type
1758   // from the type of the global (this happens with unions).
1759   if (GV == 0 ||
1760       GV->getType()->getElementType() != InitType ||
1761       GV->getType()->getAddressSpace() !=
1762        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1763 
1764     // Move the old entry aside so that we'll create a new one.
1765     Entry->setName(StringRef());
1766 
1767     // Make a new global with the correct type, this is now guaranteed to work.
1768     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1769 
1770     // Replace all uses of the old global with the new global
1771     llvm::Constant *NewPtrForOldDecl =
1772         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1773     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1774 
1775     // Erase the old global, since it is no longer used.
1776     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1777   }
1778 
1779   MaybeHandleStaticInExternC(D, GV);
1780 
1781   if (D->hasAttr<AnnotateAttr>())
1782     AddGlobalAnnotations(D, GV);
1783 
1784   GV->setInitializer(Init);
1785 
1786   // If it is safe to mark the global 'constant', do so now.
1787   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1788                   isTypeConstant(D->getType(), true));
1789 
1790   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1791 
1792   // Set the llvm linkage type as appropriate.
1793   llvm::GlobalValue::LinkageTypes Linkage =
1794     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1795   GV->setLinkage(Linkage);
1796   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1797     // common vars aren't constant even if declared const.
1798     GV->setConstant(false);
1799 
1800   SetCommonAttributes(D, GV);
1801 
1802   // Emit the initializer function if necessary.
1803   if (NeedsGlobalCtor || NeedsGlobalDtor)
1804     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1805 
1806   // If we are compiling with ASan, add metadata indicating dynamically
1807   // initialized globals.
1808   if (SanOpts.Address && NeedsGlobalCtor) {
1809     llvm::Module &M = getModule();
1810 
1811     llvm::NamedMDNode *DynamicInitializers =
1812         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1813     llvm::Value *GlobalToAdd[] = { GV };
1814     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1815     DynamicInitializers->addOperand(ThisGlobal);
1816   }
1817 
1818   // Emit global variable debug information.
1819   if (CGDebugInfo *DI = getModuleDebugInfo())
1820     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1821       DI->EmitGlobalVariable(GV, D);
1822 }
1823 
1824 llvm::GlobalValue::LinkageTypes
1825 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1826   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1827   if (Linkage == GVA_Internal)
1828     return llvm::Function::InternalLinkage;
1829   else if (D->hasAttr<DLLImportAttr>())
1830     return llvm::Function::DLLImportLinkage;
1831   else if (D->hasAttr<DLLExportAttr>())
1832     return llvm::Function::DLLExportLinkage;
1833   else if (D->hasAttr<SelectAnyAttr>()) {
1834     // selectany symbols are externally visible, so use weak instead of
1835     // linkonce.  MSVC optimizes away references to const selectany globals, so
1836     // all definitions should be the same and ODR linkage should be used.
1837     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1838     return llvm::GlobalVariable::WeakODRLinkage;
1839   } else if (D->hasAttr<WeakAttr>()) {
1840     if (isConstant)
1841       return llvm::GlobalVariable::WeakODRLinkage;
1842     else
1843       return llvm::GlobalVariable::WeakAnyLinkage;
1844   } else if (Linkage == GVA_TemplateInstantiation ||
1845              Linkage == GVA_ExplicitTemplateInstantiation)
1846     return llvm::GlobalVariable::WeakODRLinkage;
1847   else if (!getLangOpts().CPlusPlus &&
1848            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1849              D->getAttr<CommonAttr>()) &&
1850            !D->hasExternalStorage() && !D->getInit() &&
1851            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1852            !D->getAttr<WeakImportAttr>()) {
1853     // Thread local vars aren't considered common linkage.
1854     return llvm::GlobalVariable::CommonLinkage;
1855   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1856              getTarget().getTriple().isMacOSX())
1857     // On Darwin, the backing variable for a C++11 thread_local variable always
1858     // has internal linkage; all accesses should just be calls to the
1859     // Itanium-specified entry point, which has the normal linkage of the
1860     // variable.
1861     return llvm::GlobalValue::InternalLinkage;
1862   return llvm::GlobalVariable::ExternalLinkage;
1863 }
1864 
1865 /// Replace the uses of a function that was declared with a non-proto type.
1866 /// We want to silently drop extra arguments from call sites
1867 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1868                                           llvm::Function *newFn) {
1869   // Fast path.
1870   if (old->use_empty()) return;
1871 
1872   llvm::Type *newRetTy = newFn->getReturnType();
1873   SmallVector<llvm::Value*, 4> newArgs;
1874 
1875   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1876          ui != ue; ) {
1877     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1878     llvm::User *user = *use;
1879 
1880     // Recognize and replace uses of bitcasts.  Most calls to
1881     // unprototyped functions will use bitcasts.
1882     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1883       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1884         replaceUsesOfNonProtoConstant(bitcast, newFn);
1885       continue;
1886     }
1887 
1888     // Recognize calls to the function.
1889     llvm::CallSite callSite(user);
1890     if (!callSite) continue;
1891     if (!callSite.isCallee(use)) continue;
1892 
1893     // If the return types don't match exactly, then we can't
1894     // transform this call unless it's dead.
1895     if (callSite->getType() != newRetTy && !callSite->use_empty())
1896       continue;
1897 
1898     // Get the call site's attribute list.
1899     SmallVector<llvm::AttributeSet, 8> newAttrs;
1900     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1901 
1902     // Collect any return attributes from the call.
1903     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1904       newAttrs.push_back(
1905         llvm::AttributeSet::get(newFn->getContext(),
1906                                 oldAttrs.getRetAttributes()));
1907 
1908     // If the function was passed too few arguments, don't transform.
1909     unsigned newNumArgs = newFn->arg_size();
1910     if (callSite.arg_size() < newNumArgs) continue;
1911 
1912     // If extra arguments were passed, we silently drop them.
1913     // If any of the types mismatch, we don't transform.
1914     unsigned argNo = 0;
1915     bool dontTransform = false;
1916     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1917            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1918       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1919         dontTransform = true;
1920         break;
1921       }
1922 
1923       // Add any parameter attributes.
1924       if (oldAttrs.hasAttributes(argNo + 1))
1925         newAttrs.
1926           push_back(llvm::
1927                     AttributeSet::get(newFn->getContext(),
1928                                       oldAttrs.getParamAttributes(argNo + 1)));
1929     }
1930     if (dontTransform)
1931       continue;
1932 
1933     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1934       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1935                                                  oldAttrs.getFnAttributes()));
1936 
1937     // Okay, we can transform this.  Create the new call instruction and copy
1938     // over the required information.
1939     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1940 
1941     llvm::CallSite newCall;
1942     if (callSite.isCall()) {
1943       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1944                                        callSite.getInstruction());
1945     } else {
1946       llvm::InvokeInst *oldInvoke =
1947         cast<llvm::InvokeInst>(callSite.getInstruction());
1948       newCall = llvm::InvokeInst::Create(newFn,
1949                                          oldInvoke->getNormalDest(),
1950                                          oldInvoke->getUnwindDest(),
1951                                          newArgs, "",
1952                                          callSite.getInstruction());
1953     }
1954     newArgs.clear(); // for the next iteration
1955 
1956     if (!newCall->getType()->isVoidTy())
1957       newCall->takeName(callSite.getInstruction());
1958     newCall.setAttributes(
1959                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1960     newCall.setCallingConv(callSite.getCallingConv());
1961 
1962     // Finally, remove the old call, replacing any uses with the new one.
1963     if (!callSite->use_empty())
1964       callSite->replaceAllUsesWith(newCall.getInstruction());
1965 
1966     // Copy debug location attached to CI.
1967     if (!callSite->getDebugLoc().isUnknown())
1968       newCall->setDebugLoc(callSite->getDebugLoc());
1969     callSite->eraseFromParent();
1970   }
1971 }
1972 
1973 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1974 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1975 /// existing call uses of the old function in the module, this adjusts them to
1976 /// call the new function directly.
1977 ///
1978 /// This is not just a cleanup: the always_inline pass requires direct calls to
1979 /// functions to be able to inline them.  If there is a bitcast in the way, it
1980 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1981 /// run at -O0.
1982 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1983                                                       llvm::Function *NewFn) {
1984   // If we're redefining a global as a function, don't transform it.
1985   if (!isa<llvm::Function>(Old)) return;
1986 
1987   replaceUsesOfNonProtoConstant(Old, NewFn);
1988 }
1989 
1990 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1991   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1992   // If we have a definition, this might be a deferred decl. If the
1993   // instantiation is explicit, make sure we emit it at the end.
1994   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1995     GetAddrOfGlobalVar(VD);
1996 
1997   EmitTopLevelDecl(VD);
1998 }
1999 
2000 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2001   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2002 
2003   // Compute the function info and LLVM type.
2004   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2005   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2006 
2007   // Get or create the prototype for the function.
2008   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2009 
2010   // Strip off a bitcast if we got one back.
2011   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2012     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2013     Entry = CE->getOperand(0);
2014   }
2015 
2016 
2017   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2018     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2019 
2020     // If the types mismatch then we have to rewrite the definition.
2021     assert(OldFn->isDeclaration() &&
2022            "Shouldn't replace non-declaration");
2023 
2024     // F is the Function* for the one with the wrong type, we must make a new
2025     // Function* and update everything that used F (a declaration) with the new
2026     // Function* (which will be a definition).
2027     //
2028     // This happens if there is a prototype for a function
2029     // (e.g. "int f()") and then a definition of a different type
2030     // (e.g. "int f(int x)").  Move the old function aside so that it
2031     // doesn't interfere with GetAddrOfFunction.
2032     OldFn->setName(StringRef());
2033     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2034 
2035     // This might be an implementation of a function without a
2036     // prototype, in which case, try to do special replacement of
2037     // calls which match the new prototype.  The really key thing here
2038     // is that we also potentially drop arguments from the call site
2039     // so as to make a direct call, which makes the inliner happier
2040     // and suppresses a number of optimizer warnings (!) about
2041     // dropping arguments.
2042     if (!OldFn->use_empty()) {
2043       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2044       OldFn->removeDeadConstantUsers();
2045     }
2046 
2047     // Replace uses of F with the Function we will endow with a body.
2048     if (!Entry->use_empty()) {
2049       llvm::Constant *NewPtrForOldDecl =
2050         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2051       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2052     }
2053 
2054     // Ok, delete the old function now, which is dead.
2055     OldFn->eraseFromParent();
2056 
2057     Entry = NewFn;
2058   }
2059 
2060   // We need to set linkage and visibility on the function before
2061   // generating code for it because various parts of IR generation
2062   // want to propagate this information down (e.g. to local static
2063   // declarations).
2064   llvm::Function *Fn = cast<llvm::Function>(Entry);
2065   setFunctionLinkage(GD, Fn);
2066 
2067   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2068   setGlobalVisibility(Fn, D);
2069 
2070   MaybeHandleStaticInExternC(D, Fn);
2071 
2072   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2073 
2074   SetFunctionDefinitionAttributes(D, Fn);
2075   SetLLVMFunctionAttributesForDefinition(D, Fn);
2076 
2077   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2078     AddGlobalCtor(Fn, CA->getPriority());
2079   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2080     AddGlobalDtor(Fn, DA->getPriority());
2081   if (D->hasAttr<AnnotateAttr>())
2082     AddGlobalAnnotations(D, Fn);
2083 }
2084 
2085 void CodeGenModule::scheduleAliasDefinitionEmission(GlobalDecl GD) {
2086   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2087   const AliasAttr *AA = D->getAttr<AliasAttr>();
2088   assert(AA && "Not an alias?");
2089 
2090   // Schedule it.
2091   DeferredDeclsToEmit.push_back(GD);
2092 
2093   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2094 
2095   // Cause the aliasee emission to be scheduled.
2096   if (isa<llvm::FunctionType>(DeclTy))
2097     GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, /*ForVTable=*/false);
2098   else
2099     GetOrCreateLLVMGlobal(AA->getAliasee(),
2100                           llvm::PointerType::getUnqual(DeclTy), 0);
2101 }
2102 
2103 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2104   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2105   const AliasAttr *AA = D->getAttr<AliasAttr>();
2106   assert(AA && "Not an alias?");
2107 
2108   StringRef MangledName = getMangledName(GD);
2109 
2110   // If there is a definition in the module, then it wins over the alias.
2111   // This is dubious, but allow it to be safe.  Just ignore the alias.
2112   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2113   if (Entry && !Entry->isDeclaration())
2114     return;
2115 
2116   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2117 
2118   // Create a reference to the named value.  This ensures that it is emitted
2119   // if a deferred decl.
2120   llvm::Constant *Aliasee;
2121   if (isa<llvm::FunctionType>(DeclTy))
2122     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2123                                       /*ForVTable=*/false);
2124   else
2125     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2126                                     llvm::PointerType::getUnqual(DeclTy), 0);
2127 
2128   llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Aliasee);
2129   if (!GV) {
2130     llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Aliasee);
2131     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2132            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2133     GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2134   }
2135   if (GV->isDeclaration()) {
2136     getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
2137     return;
2138   }
2139 
2140   // Create the new alias itself, but don't set a name yet.
2141   llvm::GlobalValue *GA =
2142     new llvm::GlobalAlias(Aliasee->getType(),
2143                           llvm::Function::ExternalLinkage,
2144                           "", Aliasee, &getModule());
2145 
2146   if (Entry) {
2147     assert(Entry->isDeclaration());
2148 
2149     // If there is a declaration in the module, then we had an extern followed
2150     // by the alias, as in:
2151     //   extern int test6();
2152     //   ...
2153     //   int test6() __attribute__((alias("test7")));
2154     //
2155     // Remove it and replace uses of it with the alias.
2156     GA->takeName(Entry);
2157 
2158     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2159                                                           Entry->getType()));
2160     Entry->eraseFromParent();
2161   } else {
2162     GA->setName(MangledName);
2163   }
2164 
2165   // Set attributes which are particular to an alias; this is a
2166   // specialization of the attributes which may be set on a global
2167   // variable/function.
2168   if (D->hasAttr<DLLExportAttr>()) {
2169     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2170       // The dllexport attribute is ignored for undefined symbols.
2171       if (FD->hasBody())
2172         GA->setLinkage(llvm::Function::DLLExportLinkage);
2173     } else {
2174       GA->setLinkage(llvm::Function::DLLExportLinkage);
2175     }
2176   } else if (D->hasAttr<WeakAttr>() ||
2177              D->hasAttr<WeakRefAttr>() ||
2178              D->isWeakImported()) {
2179     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2180   }
2181 
2182   SetCommonAttributes(D, GA);
2183 }
2184 
2185 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2186                                             ArrayRef<llvm::Type*> Tys) {
2187   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2188                                          Tys);
2189 }
2190 
2191 static llvm::StringMapEntry<llvm::Constant*> &
2192 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2193                          const StringLiteral *Literal,
2194                          bool TargetIsLSB,
2195                          bool &IsUTF16,
2196                          unsigned &StringLength) {
2197   StringRef String = Literal->getString();
2198   unsigned NumBytes = String.size();
2199 
2200   // Check for simple case.
2201   if (!Literal->containsNonAsciiOrNull()) {
2202     StringLength = NumBytes;
2203     return Map.GetOrCreateValue(String);
2204   }
2205 
2206   // Otherwise, convert the UTF8 literals into a string of shorts.
2207   IsUTF16 = true;
2208 
2209   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2210   const UTF8 *FromPtr = (const UTF8 *)String.data();
2211   UTF16 *ToPtr = &ToBuf[0];
2212 
2213   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2214                            &ToPtr, ToPtr + NumBytes,
2215                            strictConversion);
2216 
2217   // ConvertUTF8toUTF16 returns the length in ToPtr.
2218   StringLength = ToPtr - &ToBuf[0];
2219 
2220   // Add an explicit null.
2221   *ToPtr = 0;
2222   return Map.
2223     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2224                                (StringLength + 1) * 2));
2225 }
2226 
2227 static llvm::StringMapEntry<llvm::Constant*> &
2228 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2229                        const StringLiteral *Literal,
2230                        unsigned &StringLength) {
2231   StringRef String = Literal->getString();
2232   StringLength = String.size();
2233   return Map.GetOrCreateValue(String);
2234 }
2235 
2236 llvm::Constant *
2237 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2238   unsigned StringLength = 0;
2239   bool isUTF16 = false;
2240   llvm::StringMapEntry<llvm::Constant*> &Entry =
2241     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2242                              getDataLayout().isLittleEndian(),
2243                              isUTF16, StringLength);
2244 
2245   if (llvm::Constant *C = Entry.getValue())
2246     return C;
2247 
2248   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2249   llvm::Constant *Zeros[] = { Zero, Zero };
2250   llvm::Value *V;
2251 
2252   // If we don't already have it, get __CFConstantStringClassReference.
2253   if (!CFConstantStringClassRef) {
2254     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2255     Ty = llvm::ArrayType::get(Ty, 0);
2256     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2257                                            "__CFConstantStringClassReference");
2258     // Decay array -> ptr
2259     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2260     CFConstantStringClassRef = V;
2261   }
2262   else
2263     V = CFConstantStringClassRef;
2264 
2265   QualType CFTy = getContext().getCFConstantStringType();
2266 
2267   llvm::StructType *STy =
2268     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2269 
2270   llvm::Constant *Fields[4];
2271 
2272   // Class pointer.
2273   Fields[0] = cast<llvm::ConstantExpr>(V);
2274 
2275   // Flags.
2276   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2277   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2278     llvm::ConstantInt::get(Ty, 0x07C8);
2279 
2280   // String pointer.
2281   llvm::Constant *C = 0;
2282   if (isUTF16) {
2283     ArrayRef<uint16_t> Arr =
2284       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2285                                      const_cast<char *>(Entry.getKey().data())),
2286                                    Entry.getKey().size() / 2);
2287     C = llvm::ConstantDataArray::get(VMContext, Arr);
2288   } else {
2289     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2290   }
2291 
2292   llvm::GlobalValue::LinkageTypes Linkage;
2293   if (isUTF16)
2294     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2295     Linkage = llvm::GlobalValue::InternalLinkage;
2296   else
2297     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2298     // when using private linkage. It is not clear if this is a bug in ld
2299     // or a reasonable new restriction.
2300     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2301 
2302   // Note: -fwritable-strings doesn't make the backing store strings of
2303   // CFStrings writable. (See <rdar://problem/10657500>)
2304   llvm::GlobalVariable *GV =
2305     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2306                              Linkage, C, ".str");
2307   GV->setUnnamedAddr(true);
2308   // Don't enforce the target's minimum global alignment, since the only use
2309   // of the string is via this class initializer.
2310   if (isUTF16) {
2311     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2312     GV->setAlignment(Align.getQuantity());
2313   } else {
2314     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2315     GV->setAlignment(Align.getQuantity());
2316   }
2317 
2318   // String.
2319   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2320 
2321   if (isUTF16)
2322     // Cast the UTF16 string to the correct type.
2323     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2324 
2325   // String length.
2326   Ty = getTypes().ConvertType(getContext().LongTy);
2327   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2328 
2329   // The struct.
2330   C = llvm::ConstantStruct::get(STy, Fields);
2331   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2332                                 llvm::GlobalVariable::PrivateLinkage, C,
2333                                 "_unnamed_cfstring_");
2334   if (const char *Sect = getTarget().getCFStringSection())
2335     GV->setSection(Sect);
2336   Entry.setValue(GV);
2337 
2338   return GV;
2339 }
2340 
2341 static RecordDecl *
2342 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2343                  DeclContext *DC, IdentifierInfo *Id) {
2344   SourceLocation Loc;
2345   if (Ctx.getLangOpts().CPlusPlus)
2346     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2347   else
2348     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2349 }
2350 
2351 llvm::Constant *
2352 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2353   unsigned StringLength = 0;
2354   llvm::StringMapEntry<llvm::Constant*> &Entry =
2355     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2356 
2357   if (llvm::Constant *C = Entry.getValue())
2358     return C;
2359 
2360   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2361   llvm::Constant *Zeros[] = { Zero, Zero };
2362   llvm::Value *V;
2363   // If we don't already have it, get _NSConstantStringClassReference.
2364   if (!ConstantStringClassRef) {
2365     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2366     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2367     llvm::Constant *GV;
2368     if (LangOpts.ObjCRuntime.isNonFragile()) {
2369       std::string str =
2370         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2371                             : "OBJC_CLASS_$_" + StringClass;
2372       GV = getObjCRuntime().GetClassGlobal(str);
2373       // Make sure the result is of the correct type.
2374       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2375       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2376       ConstantStringClassRef = V;
2377     } else {
2378       std::string str =
2379         StringClass.empty() ? "_NSConstantStringClassReference"
2380                             : "_" + StringClass + "ClassReference";
2381       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2382       GV = CreateRuntimeVariable(PTy, str);
2383       // Decay array -> ptr
2384       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2385       ConstantStringClassRef = V;
2386     }
2387   }
2388   else
2389     V = ConstantStringClassRef;
2390 
2391   if (!NSConstantStringType) {
2392     // Construct the type for a constant NSString.
2393     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2394                                      Context.getTranslationUnitDecl(),
2395                                    &Context.Idents.get("__builtin_NSString"));
2396     D->startDefinition();
2397 
2398     QualType FieldTypes[3];
2399 
2400     // const int *isa;
2401     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2402     // const char *str;
2403     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2404     // unsigned int length;
2405     FieldTypes[2] = Context.UnsignedIntTy;
2406 
2407     // Create fields
2408     for (unsigned i = 0; i < 3; ++i) {
2409       FieldDecl *Field = FieldDecl::Create(Context, D,
2410                                            SourceLocation(),
2411                                            SourceLocation(), 0,
2412                                            FieldTypes[i], /*TInfo=*/0,
2413                                            /*BitWidth=*/0,
2414                                            /*Mutable=*/false,
2415                                            ICIS_NoInit);
2416       Field->setAccess(AS_public);
2417       D->addDecl(Field);
2418     }
2419 
2420     D->completeDefinition();
2421     QualType NSTy = Context.getTagDeclType(D);
2422     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2423   }
2424 
2425   llvm::Constant *Fields[3];
2426 
2427   // Class pointer.
2428   Fields[0] = cast<llvm::ConstantExpr>(V);
2429 
2430   // String pointer.
2431   llvm::Constant *C =
2432     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2433 
2434   llvm::GlobalValue::LinkageTypes Linkage;
2435   bool isConstant;
2436   Linkage = llvm::GlobalValue::PrivateLinkage;
2437   isConstant = !LangOpts.WritableStrings;
2438 
2439   llvm::GlobalVariable *GV =
2440   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2441                            ".str");
2442   GV->setUnnamedAddr(true);
2443   // Don't enforce the target's minimum global alignment, since the only use
2444   // of the string is via this class initializer.
2445   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2446   GV->setAlignment(Align.getQuantity());
2447   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2448 
2449   // String length.
2450   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2451   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2452 
2453   // The struct.
2454   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2455   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2456                                 llvm::GlobalVariable::PrivateLinkage, C,
2457                                 "_unnamed_nsstring_");
2458   // FIXME. Fix section.
2459   if (const char *Sect =
2460         LangOpts.ObjCRuntime.isNonFragile()
2461           ? getTarget().getNSStringNonFragileABISection()
2462           : getTarget().getNSStringSection())
2463     GV->setSection(Sect);
2464   Entry.setValue(GV);
2465 
2466   return GV;
2467 }
2468 
2469 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2470   if (ObjCFastEnumerationStateType.isNull()) {
2471     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2472                                      Context.getTranslationUnitDecl(),
2473                       &Context.Idents.get("__objcFastEnumerationState"));
2474     D->startDefinition();
2475 
2476     QualType FieldTypes[] = {
2477       Context.UnsignedLongTy,
2478       Context.getPointerType(Context.getObjCIdType()),
2479       Context.getPointerType(Context.UnsignedLongTy),
2480       Context.getConstantArrayType(Context.UnsignedLongTy,
2481                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2482     };
2483 
2484     for (size_t i = 0; i < 4; ++i) {
2485       FieldDecl *Field = FieldDecl::Create(Context,
2486                                            D,
2487                                            SourceLocation(),
2488                                            SourceLocation(), 0,
2489                                            FieldTypes[i], /*TInfo=*/0,
2490                                            /*BitWidth=*/0,
2491                                            /*Mutable=*/false,
2492                                            ICIS_NoInit);
2493       Field->setAccess(AS_public);
2494       D->addDecl(Field);
2495     }
2496 
2497     D->completeDefinition();
2498     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2499   }
2500 
2501   return ObjCFastEnumerationStateType;
2502 }
2503 
2504 llvm::Constant *
2505 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2506   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2507 
2508   // Don't emit it as the address of the string, emit the string data itself
2509   // as an inline array.
2510   if (E->getCharByteWidth() == 1) {
2511     SmallString<64> Str(E->getString());
2512 
2513     // Resize the string to the right size, which is indicated by its type.
2514     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2515     Str.resize(CAT->getSize().getZExtValue());
2516     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2517   }
2518 
2519   llvm::ArrayType *AType =
2520     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2521   llvm::Type *ElemTy = AType->getElementType();
2522   unsigned NumElements = AType->getNumElements();
2523 
2524   // Wide strings have either 2-byte or 4-byte elements.
2525   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2526     SmallVector<uint16_t, 32> Elements;
2527     Elements.reserve(NumElements);
2528 
2529     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2530       Elements.push_back(E->getCodeUnit(i));
2531     Elements.resize(NumElements);
2532     return llvm::ConstantDataArray::get(VMContext, Elements);
2533   }
2534 
2535   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2536   SmallVector<uint32_t, 32> Elements;
2537   Elements.reserve(NumElements);
2538 
2539   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2540     Elements.push_back(E->getCodeUnit(i));
2541   Elements.resize(NumElements);
2542   return llvm::ConstantDataArray::get(VMContext, Elements);
2543 }
2544 
2545 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2546 /// constant array for the given string literal.
2547 llvm::Constant *
2548 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2549   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2550   if (S->isAscii() || S->isUTF8()) {
2551     SmallString<64> Str(S->getString());
2552 
2553     // Resize the string to the right size, which is indicated by its type.
2554     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2555     Str.resize(CAT->getSize().getZExtValue());
2556     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2557   }
2558 
2559   // FIXME: the following does not memoize wide strings.
2560   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2561   llvm::GlobalVariable *GV =
2562     new llvm::GlobalVariable(getModule(),C->getType(),
2563                              !LangOpts.WritableStrings,
2564                              llvm::GlobalValue::PrivateLinkage,
2565                              C,".str");
2566 
2567   GV->setAlignment(Align.getQuantity());
2568   GV->setUnnamedAddr(true);
2569   return GV;
2570 }
2571 
2572 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2573 /// array for the given ObjCEncodeExpr node.
2574 llvm::Constant *
2575 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2576   std::string Str;
2577   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2578 
2579   return GetAddrOfConstantCString(Str);
2580 }
2581 
2582 
2583 /// GenerateWritableString -- Creates storage for a string literal.
2584 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2585                                              bool constant,
2586                                              CodeGenModule &CGM,
2587                                              const char *GlobalName,
2588                                              unsigned Alignment) {
2589   // Create Constant for this string literal. Don't add a '\0'.
2590   llvm::Constant *C =
2591       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2592 
2593   // Create a global variable for this string
2594   llvm::GlobalVariable *GV =
2595     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2596                              llvm::GlobalValue::PrivateLinkage,
2597                              C, GlobalName);
2598   GV->setAlignment(Alignment);
2599   GV->setUnnamedAddr(true);
2600   return GV;
2601 }
2602 
2603 /// GetAddrOfConstantString - Returns a pointer to a character array
2604 /// containing the literal. This contents are exactly that of the
2605 /// given string, i.e. it will not be null terminated automatically;
2606 /// see GetAddrOfConstantCString. Note that whether the result is
2607 /// actually a pointer to an LLVM constant depends on
2608 /// Feature.WriteableStrings.
2609 ///
2610 /// The result has pointer to array type.
2611 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2612                                                        const char *GlobalName,
2613                                                        unsigned Alignment) {
2614   // Get the default prefix if a name wasn't specified.
2615   if (!GlobalName)
2616     GlobalName = ".str";
2617 
2618   if (Alignment == 0)
2619     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2620       .getQuantity();
2621 
2622   // Don't share any string literals if strings aren't constant.
2623   if (LangOpts.WritableStrings)
2624     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2625 
2626   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2627     ConstantStringMap.GetOrCreateValue(Str);
2628 
2629   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2630     if (Alignment > GV->getAlignment()) {
2631       GV->setAlignment(Alignment);
2632     }
2633     return GV;
2634   }
2635 
2636   // Create a global variable for this.
2637   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2638                                                    Alignment);
2639   Entry.setValue(GV);
2640   return GV;
2641 }
2642 
2643 /// GetAddrOfConstantCString - Returns a pointer to a character
2644 /// array containing the literal and a terminating '\0'
2645 /// character. The result has pointer to array type.
2646 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2647                                                         const char *GlobalName,
2648                                                         unsigned Alignment) {
2649   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2650   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2651 }
2652 
2653 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2654     const MaterializeTemporaryExpr *E, const Expr *Init) {
2655   assert((E->getStorageDuration() == SD_Static ||
2656           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2657   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2658 
2659   // If we're not materializing a subobject of the temporary, keep the
2660   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2661   QualType MaterializedType = Init->getType();
2662   if (Init == E->GetTemporaryExpr())
2663     MaterializedType = E->getType();
2664 
2665   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2666   if (Slot)
2667     return Slot;
2668 
2669   // FIXME: If an externally-visible declaration extends multiple temporaries,
2670   // we need to give each temporary the same name in every translation unit (and
2671   // we also need to make the temporaries externally-visible).
2672   SmallString<256> Name;
2673   llvm::raw_svector_ostream Out(Name);
2674   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2675   Out.flush();
2676 
2677   APValue *Value = 0;
2678   if (E->getStorageDuration() == SD_Static) {
2679     // We might have a cached constant initializer for this temporary. Note
2680     // that this might have a different value from the value computed by
2681     // evaluating the initializer if the surrounding constant expression
2682     // modifies the temporary.
2683     Value = getContext().getMaterializedTemporaryValue(E, false);
2684     if (Value && Value->isUninit())
2685       Value = 0;
2686   }
2687 
2688   // Try evaluating it now, it might have a constant initializer.
2689   Expr::EvalResult EvalResult;
2690   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2691       !EvalResult.hasSideEffects())
2692     Value = &EvalResult.Val;
2693 
2694   llvm::Constant *InitialValue = 0;
2695   bool Constant = false;
2696   llvm::Type *Type;
2697   if (Value) {
2698     // The temporary has a constant initializer, use it.
2699     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2700     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2701     Type = InitialValue->getType();
2702   } else {
2703     // No initializer, the initialization will be provided when we
2704     // initialize the declaration which performed lifetime extension.
2705     Type = getTypes().ConvertTypeForMem(MaterializedType);
2706   }
2707 
2708   // Create a global variable for this lifetime-extended temporary.
2709   llvm::GlobalVariable *GV =
2710     new llvm::GlobalVariable(getModule(), Type, Constant,
2711                              llvm::GlobalValue::PrivateLinkage,
2712                              InitialValue, Name.c_str());
2713   GV->setAlignment(
2714       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2715   if (VD->getTLSKind())
2716     setTLSMode(GV, *VD);
2717   Slot = GV;
2718   return GV;
2719 }
2720 
2721 /// EmitObjCPropertyImplementations - Emit information for synthesized
2722 /// properties for an implementation.
2723 void CodeGenModule::EmitObjCPropertyImplementations(const
2724                                                     ObjCImplementationDecl *D) {
2725   for (ObjCImplementationDecl::propimpl_iterator
2726          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2727     ObjCPropertyImplDecl *PID = *i;
2728 
2729     // Dynamic is just for type-checking.
2730     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2731       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2732 
2733       // Determine which methods need to be implemented, some may have
2734       // been overridden. Note that ::isPropertyAccessor is not the method
2735       // we want, that just indicates if the decl came from a
2736       // property. What we want to know is if the method is defined in
2737       // this implementation.
2738       if (!D->getInstanceMethod(PD->getGetterName()))
2739         CodeGenFunction(*this).GenerateObjCGetter(
2740                                  const_cast<ObjCImplementationDecl *>(D), PID);
2741       if (!PD->isReadOnly() &&
2742           !D->getInstanceMethod(PD->getSetterName()))
2743         CodeGenFunction(*this).GenerateObjCSetter(
2744                                  const_cast<ObjCImplementationDecl *>(D), PID);
2745     }
2746   }
2747 }
2748 
2749 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2750   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2751   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2752        ivar; ivar = ivar->getNextIvar())
2753     if (ivar->getType().isDestructedType())
2754       return true;
2755 
2756   return false;
2757 }
2758 
2759 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2760 /// for an implementation.
2761 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2762   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2763   if (needsDestructMethod(D)) {
2764     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2765     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2766     ObjCMethodDecl *DTORMethod =
2767       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2768                              cxxSelector, getContext().VoidTy, 0, D,
2769                              /*isInstance=*/true, /*isVariadic=*/false,
2770                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2771                              /*isDefined=*/false, ObjCMethodDecl::Required);
2772     D->addInstanceMethod(DTORMethod);
2773     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2774     D->setHasDestructors(true);
2775   }
2776 
2777   // If the implementation doesn't have any ivar initializers, we don't need
2778   // a .cxx_construct.
2779   if (D->getNumIvarInitializers() == 0)
2780     return;
2781 
2782   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2783   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2784   // The constructor returns 'self'.
2785   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2786                                                 D->getLocation(),
2787                                                 D->getLocation(),
2788                                                 cxxSelector,
2789                                                 getContext().getObjCIdType(), 0,
2790                                                 D, /*isInstance=*/true,
2791                                                 /*isVariadic=*/false,
2792                                                 /*isPropertyAccessor=*/true,
2793                                                 /*isImplicitlyDeclared=*/true,
2794                                                 /*isDefined=*/false,
2795                                                 ObjCMethodDecl::Required);
2796   D->addInstanceMethod(CTORMethod);
2797   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2798   D->setHasNonZeroConstructors(true);
2799 }
2800 
2801 /// EmitNamespace - Emit all declarations in a namespace.
2802 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2803   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2804        I != E; ++I) {
2805     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2806       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2807           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2808         continue;
2809     EmitTopLevelDecl(*I);
2810   }
2811 }
2812 
2813 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2814 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2815   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2816       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2817     ErrorUnsupported(LSD, "linkage spec");
2818     return;
2819   }
2820 
2821   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2822        I != E; ++I) {
2823     // Meta-data for ObjC class includes references to implemented methods.
2824     // Generate class's method definitions first.
2825     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2826       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2827            MEnd = OID->meth_end();
2828            M != MEnd; ++M)
2829         EmitTopLevelDecl(*M);
2830     }
2831     EmitTopLevelDecl(*I);
2832   }
2833 }
2834 
2835 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2836 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2837   // Ignore dependent declarations.
2838   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2839     return;
2840 
2841   switch (D->getKind()) {
2842   case Decl::CXXConversion:
2843   case Decl::CXXMethod:
2844   case Decl::Function:
2845     // Skip function templates
2846     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2847         cast<FunctionDecl>(D)->isLateTemplateParsed())
2848       return;
2849 
2850     EmitGlobal(cast<FunctionDecl>(D));
2851     break;
2852 
2853   case Decl::Var:
2854     // Skip variable templates
2855     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2856       return;
2857   case Decl::VarTemplateSpecialization:
2858     EmitGlobal(cast<VarDecl>(D));
2859     break;
2860 
2861   // Indirect fields from global anonymous structs and unions can be
2862   // ignored; only the actual variable requires IR gen support.
2863   case Decl::IndirectField:
2864     break;
2865 
2866   // C++ Decls
2867   case Decl::Namespace:
2868     EmitNamespace(cast<NamespaceDecl>(D));
2869     break;
2870     // No code generation needed.
2871   case Decl::UsingShadow:
2872   case Decl::Using:
2873   case Decl::ClassTemplate:
2874   case Decl::VarTemplate:
2875   case Decl::VarTemplatePartialSpecialization:
2876   case Decl::FunctionTemplate:
2877   case Decl::TypeAliasTemplate:
2878   case Decl::Block:
2879   case Decl::Empty:
2880     break;
2881   case Decl::NamespaceAlias:
2882     if (CGDebugInfo *DI = getModuleDebugInfo())
2883         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2884     return;
2885   case Decl::UsingDirective: // using namespace X; [C++]
2886     if (CGDebugInfo *DI = getModuleDebugInfo())
2887       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2888     return;
2889   case Decl::CXXConstructor:
2890     // Skip function templates
2891     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2892         cast<FunctionDecl>(D)->isLateTemplateParsed())
2893       return;
2894 
2895     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2896     break;
2897   case Decl::CXXDestructor:
2898     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2899       return;
2900     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2901     break;
2902 
2903   case Decl::StaticAssert:
2904     // Nothing to do.
2905     break;
2906 
2907   // Objective-C Decls
2908 
2909   // Forward declarations, no (immediate) code generation.
2910   case Decl::ObjCInterface:
2911   case Decl::ObjCCategory:
2912     break;
2913 
2914   case Decl::ObjCProtocol: {
2915     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2916     if (Proto->isThisDeclarationADefinition())
2917       ObjCRuntime->GenerateProtocol(Proto);
2918     break;
2919   }
2920 
2921   case Decl::ObjCCategoryImpl:
2922     // Categories have properties but don't support synthesize so we
2923     // can ignore them here.
2924     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2925     break;
2926 
2927   case Decl::ObjCImplementation: {
2928     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2929     EmitObjCPropertyImplementations(OMD);
2930     EmitObjCIvarInitializations(OMD);
2931     ObjCRuntime->GenerateClass(OMD);
2932     // Emit global variable debug information.
2933     if (CGDebugInfo *DI = getModuleDebugInfo())
2934       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2935         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2936             OMD->getClassInterface()), OMD->getLocation());
2937     break;
2938   }
2939   case Decl::ObjCMethod: {
2940     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2941     // If this is not a prototype, emit the body.
2942     if (OMD->getBody())
2943       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2944     break;
2945   }
2946   case Decl::ObjCCompatibleAlias:
2947     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2948     break;
2949 
2950   case Decl::LinkageSpec:
2951     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2952     break;
2953 
2954   case Decl::FileScopeAsm: {
2955     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2956     StringRef AsmString = AD->getAsmString()->getString();
2957 
2958     const std::string &S = getModule().getModuleInlineAsm();
2959     if (S.empty())
2960       getModule().setModuleInlineAsm(AsmString);
2961     else if (S.end()[-1] == '\n')
2962       getModule().setModuleInlineAsm(S + AsmString.str());
2963     else
2964       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2965     break;
2966   }
2967 
2968   case Decl::Import: {
2969     ImportDecl *Import = cast<ImportDecl>(D);
2970 
2971     // Ignore import declarations that come from imported modules.
2972     if (clang::Module *Owner = Import->getOwningModule()) {
2973       if (getLangOpts().CurrentModule.empty() ||
2974           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2975         break;
2976     }
2977 
2978     ImportedModules.insert(Import->getImportedModule());
2979     break;
2980  }
2981 
2982   default:
2983     // Make sure we handled everything we should, every other kind is a
2984     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2985     // function. Need to recode Decl::Kind to do that easily.
2986     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2987   }
2988 }
2989 
2990 /// Turns the given pointer into a constant.
2991 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2992                                           const void *Ptr) {
2993   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2994   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2995   return llvm::ConstantInt::get(i64, PtrInt);
2996 }
2997 
2998 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2999                                    llvm::NamedMDNode *&GlobalMetadata,
3000                                    GlobalDecl D,
3001                                    llvm::GlobalValue *Addr) {
3002   if (!GlobalMetadata)
3003     GlobalMetadata =
3004       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3005 
3006   // TODO: should we report variant information for ctors/dtors?
3007   llvm::Value *Ops[] = {
3008     Addr,
3009     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3010   };
3011   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3012 }
3013 
3014 /// For each function which is declared within an extern "C" region and marked
3015 /// as 'used', but has internal linkage, create an alias from the unmangled
3016 /// name to the mangled name if possible. People expect to be able to refer
3017 /// to such functions with an unmangled name from inline assembly within the
3018 /// same translation unit.
3019 void CodeGenModule::EmitStaticExternCAliases() {
3020   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3021                                   E = StaticExternCValues.end();
3022        I != E; ++I) {
3023     IdentifierInfo *Name = I->first;
3024     llvm::GlobalValue *Val = I->second;
3025     if (Val && !getModule().getNamedValue(Name->getName()))
3026       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3027                                           Name->getName(), Val, &getModule()));
3028   }
3029 }
3030 
3031 /// Emits metadata nodes associating all the global values in the
3032 /// current module with the Decls they came from.  This is useful for
3033 /// projects using IR gen as a subroutine.
3034 ///
3035 /// Since there's currently no way to associate an MDNode directly
3036 /// with an llvm::GlobalValue, we create a global named metadata
3037 /// with the name 'clang.global.decl.ptrs'.
3038 void CodeGenModule::EmitDeclMetadata() {
3039   llvm::NamedMDNode *GlobalMetadata = 0;
3040 
3041   // StaticLocalDeclMap
3042   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3043          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3044        I != E; ++I) {
3045     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3046     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3047   }
3048 }
3049 
3050 /// Emits metadata nodes for all the local variables in the current
3051 /// function.
3052 void CodeGenFunction::EmitDeclMetadata() {
3053   if (LocalDeclMap.empty()) return;
3054 
3055   llvm::LLVMContext &Context = getLLVMContext();
3056 
3057   // Find the unique metadata ID for this name.
3058   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3059 
3060   llvm::NamedMDNode *GlobalMetadata = 0;
3061 
3062   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3063          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3064     const Decl *D = I->first;
3065     llvm::Value *Addr = I->second;
3066 
3067     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3068       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3069       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3070     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3071       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3072       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3073     }
3074   }
3075 }
3076 
3077 void CodeGenModule::EmitVersionIdentMetadata() {
3078   llvm::NamedMDNode *IdentMetadata =
3079     TheModule.getOrInsertNamedMetadata("llvm.ident");
3080   std::string Version = getClangFullVersion();
3081   llvm::LLVMContext &Ctx = TheModule.getContext();
3082 
3083   llvm::Value *IdentNode[] = {
3084     llvm::MDString::get(Ctx, Version)
3085   };
3086   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3087 }
3088 
3089 void CodeGenModule::EmitCoverageFile() {
3090   if (!getCodeGenOpts().CoverageFile.empty()) {
3091     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3092       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3093       llvm::LLVMContext &Ctx = TheModule.getContext();
3094       llvm::MDString *CoverageFile =
3095           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3096       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3097         llvm::MDNode *CU = CUNode->getOperand(i);
3098         llvm::Value *node[] = { CoverageFile, CU };
3099         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3100         GCov->addOperand(N);
3101       }
3102     }
3103   }
3104 }
3105 
3106 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3107                                                      QualType GuidType) {
3108   // Sema has checked that all uuid strings are of the form
3109   // "12345678-1234-1234-1234-1234567890ab".
3110   assert(Uuid.size() == 36);
3111   for (unsigned i = 0; i < 36; ++i) {
3112     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3113     else                                         assert(isHexDigit(Uuid[i]));
3114   }
3115 
3116   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3117 
3118   llvm::Constant *Field3[8];
3119   for (unsigned Idx = 0; Idx < 8; ++Idx)
3120     Field3[Idx] = llvm::ConstantInt::get(
3121         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3122 
3123   llvm::Constant *Fields[4] = {
3124     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3125     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3126     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3127     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3128   };
3129 
3130   return llvm::ConstantStruct::getAnon(Fields);
3131 }
3132