1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallingConv.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CallSite.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 81 CFConstantStringClassRef(0), 82 ConstantStringClassRef(0), NSConstantStringType(0), 83 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 84 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist( 87 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 88 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 89 : LangOpts.Sanitize) { 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 VoidTy = llvm::Type::getVoidTy(LLVMContext); 94 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 95 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 96 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 97 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 98 FloatTy = llvm::Type::getFloatTy(LLVMContext); 99 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 108 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 109 110 if (LangOpts.ObjC1) 111 createObjCRuntime(); 112 if (LangOpts.OpenCL) 113 createOpenCLRuntime(); 114 if (LangOpts.CUDA) 115 createCUDARuntime(); 116 117 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 118 if (SanOpts.Thread || 119 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 120 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 121 getCXXABI().getMangleContext()); 122 123 // If debug info or coverage generation is enabled, create the CGDebugInfo 124 // object. 125 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 126 CodeGenOpts.EmitGcovArcs || 127 CodeGenOpts.EmitGcovNotes) 128 DebugInfo = new CGDebugInfo(*this); 129 130 Block.GlobalUniqueCount = 0; 131 132 if (C.getLangOpts().ObjCAutoRefCount) 133 ARCData = new ARCEntrypoints(); 134 RRData = new RREntrypoints(); 135 136 if (!CodeGenOpts.InstrProfileInput.empty()) 137 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 138 } 139 140 CodeGenModule::~CodeGenModule() { 141 delete ObjCRuntime; 142 delete OpenCLRuntime; 143 delete CUDARuntime; 144 delete TheTargetCodeGenInfo; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::applyReplacements() { 179 for (ReplacementsTy::iterator I = Replacements.begin(), 180 E = Replacements.end(); 181 I != E; ++I) { 182 StringRef MangledName = I->first(); 183 llvm::Constant *Replacement = I->second; 184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 185 if (!Entry) 186 continue; 187 llvm::Function *OldF = cast<llvm::Function>(Entry); 188 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 189 if (!NewF) { 190 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 191 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 192 } else { 193 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 194 assert(CE->getOpcode() == llvm::Instruction::BitCast || 195 CE->getOpcode() == llvm::Instruction::GetElementPtr); 196 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 197 } 198 } 199 200 // Replace old with new, but keep the old order. 201 OldF->replaceAllUsesWith(Replacement); 202 if (NewF) { 203 NewF->removeFromParent(); 204 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 205 } 206 OldF->eraseFromParent(); 207 } 208 } 209 210 void CodeGenModule::checkAliases() { 211 bool Error = false; 212 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 213 E = Aliases.end(); I != E; ++I) { 214 const GlobalDecl &GD = *I; 215 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 216 const AliasAttr *AA = D->getAttr<AliasAttr>(); 217 StringRef MangledName = getMangledName(GD); 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 220 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 221 if (GV->isDeclaration()) { 222 Error = true; 223 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 224 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 225 Error = true; 226 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 227 } 228 } 229 if (!Error) 230 return; 231 232 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 233 E = Aliases.end(); I != E; ++I) { 234 const GlobalDecl &GD = *I; 235 StringRef MangledName = getMangledName(GD); 236 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 237 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 238 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 239 Alias->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::clear() { 244 DeferredDeclsToEmit.clear(); 245 } 246 247 void CodeGenModule::Release() { 248 EmitDeferred(); 249 applyReplacements(); 250 checkAliases(); 251 EmitCXXGlobalInitFunc(); 252 EmitCXXGlobalDtorFunc(); 253 EmitCXXThreadLocalInitFunc(); 254 if (ObjCRuntime) 255 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 256 AddGlobalCtor(ObjCInitFunction); 257 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 258 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 259 EmitGlobalAnnotations(); 260 EmitStaticExternCAliases(); 261 EmitLLVMUsed(); 262 263 if (CodeGenOpts.Autolink && 264 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 265 EmitModuleLinkOptions(); 266 } 267 if (CodeGenOpts.DwarfVersion) 268 // We actually want the latest version when there are conflicts. 269 // We can change from Warning to Latest if such mode is supported. 270 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 271 CodeGenOpts.DwarfVersion); 272 if (DebugInfo) 273 // We support a single version in the linked module: error out when 274 // modules do not have the same version. We are going to implement dropping 275 // debug info when the version number is not up-to-date. Once that is 276 // done, the bitcode linker is not going to see modules with different 277 // version numbers. 278 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 279 llvm::DEBUG_METADATA_VERSION); 280 281 SimplifyPersonality(); 282 283 if (getCodeGenOpts().EmitDeclMetadata) 284 EmitDeclMetadata(); 285 286 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 287 EmitCoverageFile(); 288 289 if (DebugInfo) 290 DebugInfo->finalize(); 291 292 EmitVersionIdentMetadata(); 293 } 294 295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 296 // Make sure that this type is translated. 297 Types.UpdateCompletedType(TD); 298 } 299 300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 301 if (!TBAA) 302 return 0; 303 return TBAA->getTBAAInfo(QTy); 304 } 305 306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 307 if (!TBAA) 308 return 0; 309 return TBAA->getTBAAInfoForVTablePtr(); 310 } 311 312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 313 if (!TBAA) 314 return 0; 315 return TBAA->getTBAAStructInfo(QTy); 316 } 317 318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 319 if (!TBAA) 320 return 0; 321 return TBAA->getTBAAStructTypeInfo(QTy); 322 } 323 324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 325 llvm::MDNode *AccessN, 326 uint64_t O) { 327 if (!TBAA) 328 return 0; 329 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 330 } 331 332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 333 /// and struct-path aware TBAA, the tag has the same format: 334 /// base type, access type and offset. 335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 337 llvm::MDNode *TBAAInfo, 338 bool ConvertTypeToTag) { 339 if (ConvertTypeToTag && TBAA) 340 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 341 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 342 else 343 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 344 } 345 346 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 347 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 348 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 349 } 350 351 /// ErrorUnsupported - Print out an error that codegen doesn't support the 352 /// specified stmt yet. 353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 354 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 355 "cannot compile this %0 yet"); 356 std::string Msg = Type; 357 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 358 << Msg << S->getSourceRange(); 359 } 360 361 /// ErrorUnsupported - Print out an error that codegen doesn't support the 362 /// specified decl yet. 363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 364 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 365 "cannot compile this %0 yet"); 366 std::string Msg = Type; 367 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 368 } 369 370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 371 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 372 } 373 374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 375 const NamedDecl *D) const { 376 // Internal definitions always have default visibility. 377 if (GV->hasLocalLinkage()) { 378 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 379 return; 380 } 381 382 // Set visibility for definitions. 383 LinkageInfo LV = D->getLinkageAndVisibility(); 384 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 385 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 386 } 387 388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 389 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 390 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 391 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 392 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 393 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 394 } 395 396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 397 CodeGenOptions::TLSModel M) { 398 switch (M) { 399 case CodeGenOptions::GeneralDynamicTLSModel: 400 return llvm::GlobalVariable::GeneralDynamicTLSModel; 401 case CodeGenOptions::LocalDynamicTLSModel: 402 return llvm::GlobalVariable::LocalDynamicTLSModel; 403 case CodeGenOptions::InitialExecTLSModel: 404 return llvm::GlobalVariable::InitialExecTLSModel; 405 case CodeGenOptions::LocalExecTLSModel: 406 return llvm::GlobalVariable::LocalExecTLSModel; 407 } 408 llvm_unreachable("Invalid TLS model!"); 409 } 410 411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 412 const VarDecl &D) const { 413 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 414 415 llvm::GlobalVariable::ThreadLocalMode TLM; 416 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 417 418 // Override the TLS model if it is explicitly specified. 419 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 420 TLM = GetLLVMTLSModel(Attr->getModel()); 421 } 422 423 GV->setThreadLocalMode(TLM); 424 } 425 426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 427 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 428 429 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 430 if (!Str.empty()) 431 return Str; 432 433 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 434 IdentifierInfo *II = ND->getIdentifier(); 435 assert(II && "Attempt to mangle unnamed decl."); 436 437 Str = II->getName(); 438 return Str; 439 } 440 441 SmallString<256> Buffer; 442 llvm::raw_svector_ostream Out(Buffer); 443 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 444 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 445 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 446 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 447 else 448 getCXXABI().getMangleContext().mangleName(ND, Out); 449 450 // Allocate space for the mangled name. 451 Out.flush(); 452 size_t Length = Buffer.size(); 453 char *Name = MangledNamesAllocator.Allocate<char>(Length); 454 std::copy(Buffer.begin(), Buffer.end(), Name); 455 456 Str = StringRef(Name, Length); 457 458 return Str; 459 } 460 461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 462 const BlockDecl *BD) { 463 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 464 const Decl *D = GD.getDecl(); 465 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 466 if (D == 0) 467 MangleCtx.mangleGlobalBlock(BD, 468 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 469 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 470 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 471 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 472 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 473 else 474 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 475 } 476 477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 478 return getModule().getNamedValue(Name); 479 } 480 481 /// AddGlobalCtor - Add a function to the list that will be called before 482 /// main() runs. 483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 484 // FIXME: Type coercion of void()* types. 485 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 486 } 487 488 /// AddGlobalDtor - Add a function to the list that will be called 489 /// when the module is unloaded. 490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 491 // FIXME: Type coercion of void()* types. 492 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 493 } 494 495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 496 // Ctor function type is void()*. 497 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 498 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 499 500 // Get the type of a ctor entry, { i32, void ()* }. 501 llvm::StructType *CtorStructTy = 502 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 503 504 // Construct the constructor and destructor arrays. 505 SmallVector<llvm::Constant*, 8> Ctors; 506 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 507 llvm::Constant *S[] = { 508 llvm::ConstantInt::get(Int32Ty, I->second, false), 509 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 510 }; 511 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 512 } 513 514 if (!Ctors.empty()) { 515 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 516 new llvm::GlobalVariable(TheModule, AT, false, 517 llvm::GlobalValue::AppendingLinkage, 518 llvm::ConstantArray::get(AT, Ctors), 519 GlobalName); 520 } 521 } 522 523 llvm::GlobalValue::LinkageTypes 524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 525 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 526 527 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 528 529 if (Linkage == GVA_Internal) 530 return llvm::Function::InternalLinkage; 531 532 if (D->hasAttr<DLLExportAttr>()) 533 return llvm::Function::ExternalLinkage; 534 535 if (D->hasAttr<WeakAttr>()) 536 return llvm::Function::WeakAnyLinkage; 537 538 // In C99 mode, 'inline' functions are guaranteed to have a strong 539 // definition somewhere else, so we can use available_externally linkage. 540 if (Linkage == GVA_C99Inline) 541 return llvm::Function::AvailableExternallyLinkage; 542 543 // Note that Apple's kernel linker doesn't support symbol 544 // coalescing, so we need to avoid linkonce and weak linkages there. 545 // Normally, this means we just map to internal, but for explicit 546 // instantiations we'll map to external. 547 548 // In C++, the compiler has to emit a definition in every translation unit 549 // that references the function. We should use linkonce_odr because 550 // a) if all references in this translation unit are optimized away, we 551 // don't need to codegen it. b) if the function persists, it needs to be 552 // merged with other definitions. c) C++ has the ODR, so we know the 553 // definition is dependable. 554 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 555 return !Context.getLangOpts().AppleKext 556 ? llvm::Function::LinkOnceODRLinkage 557 : llvm::Function::InternalLinkage; 558 559 // An explicit instantiation of a template has weak linkage, since 560 // explicit instantiations can occur in multiple translation units 561 // and must all be equivalent. However, we are not allowed to 562 // throw away these explicit instantiations. 563 if (Linkage == GVA_ExplicitTemplateInstantiation) 564 return !Context.getLangOpts().AppleKext 565 ? llvm::Function::WeakODRLinkage 566 : llvm::Function::ExternalLinkage; 567 568 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 569 // emitted on an as-needed basis. 570 if (isa<CXXDestructorDecl>(D) && 571 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 572 GD.getDtorType())) 573 return llvm::Function::LinkOnceODRLinkage; 574 575 // Otherwise, we have strong external linkage. 576 assert(Linkage == GVA_StrongExternal); 577 return llvm::Function::ExternalLinkage; 578 } 579 580 581 /// SetFunctionDefinitionAttributes - Set attributes for a global. 582 /// 583 /// FIXME: This is currently only done for aliases and functions, but not for 584 /// variables (these details are set in EmitGlobalVarDefinition for variables). 585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 586 llvm::GlobalValue *GV) { 587 SetCommonAttributes(D, GV); 588 } 589 590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 591 const CGFunctionInfo &Info, 592 llvm::Function *F) { 593 unsigned CallingConv; 594 AttributeListType AttributeList; 595 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 596 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 597 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 598 } 599 600 /// Determines whether the language options require us to model 601 /// unwind exceptions. We treat -fexceptions as mandating this 602 /// except under the fragile ObjC ABI with only ObjC exceptions 603 /// enabled. This means, for example, that C with -fexceptions 604 /// enables this. 605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 606 // If exceptions are completely disabled, obviously this is false. 607 if (!LangOpts.Exceptions) return false; 608 609 // If C++ exceptions are enabled, this is true. 610 if (LangOpts.CXXExceptions) return true; 611 612 // If ObjC exceptions are enabled, this depends on the ABI. 613 if (LangOpts.ObjCExceptions) { 614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 615 } 616 617 return true; 618 } 619 620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 621 llvm::Function *F) { 622 llvm::AttrBuilder B; 623 624 if (CodeGenOpts.UnwindTables) 625 B.addAttribute(llvm::Attribute::UWTable); 626 627 if (!hasUnwindExceptions(LangOpts)) 628 B.addAttribute(llvm::Attribute::NoUnwind); 629 630 if (D->hasAttr<NakedAttr>()) { 631 // Naked implies noinline: we should not be inlining such functions. 632 B.addAttribute(llvm::Attribute::Naked); 633 B.addAttribute(llvm::Attribute::NoInline); 634 } else if (D->hasAttr<NoDuplicateAttr>()) { 635 B.addAttribute(llvm::Attribute::NoDuplicate); 636 } else if (D->hasAttr<NoInlineAttr>()) { 637 B.addAttribute(llvm::Attribute::NoInline); 638 } else if (D->hasAttr<AlwaysInlineAttr>() && 639 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 640 llvm::Attribute::NoInline)) { 641 // (noinline wins over always_inline, and we can't specify both in IR) 642 B.addAttribute(llvm::Attribute::AlwaysInline); 643 } 644 645 if (D->hasAttr<ColdAttr>()) { 646 B.addAttribute(llvm::Attribute::OptimizeForSize); 647 B.addAttribute(llvm::Attribute::Cold); 648 } 649 650 if (D->hasAttr<MinSizeAttr>()) 651 B.addAttribute(llvm::Attribute::MinSize); 652 653 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 654 B.addAttribute(llvm::Attribute::StackProtect); 655 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 656 B.addAttribute(llvm::Attribute::StackProtectStrong); 657 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 658 B.addAttribute(llvm::Attribute::StackProtectReq); 659 660 // Add sanitizer attributes if function is not blacklisted. 661 if (!SanitizerBlacklist->isIn(*F)) { 662 // When AddressSanitizer is enabled, set SanitizeAddress attribute 663 // unless __attribute__((no_sanitize_address)) is used. 664 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 665 B.addAttribute(llvm::Attribute::SanitizeAddress); 666 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 667 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 668 B.addAttribute(llvm::Attribute::SanitizeThread); 669 } 670 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 671 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 672 B.addAttribute(llvm::Attribute::SanitizeMemory); 673 } 674 675 F->addAttributes(llvm::AttributeSet::FunctionIndex, 676 llvm::AttributeSet::get( 677 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 678 679 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 680 F->setUnnamedAddr(true); 681 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 682 if (MD->isVirtual()) 683 F->setUnnamedAddr(true); 684 685 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 686 if (alignment) 687 F->setAlignment(alignment); 688 689 // C++ ABI requires 2-byte alignment for member functions. 690 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 691 F->setAlignment(2); 692 } 693 694 void CodeGenModule::SetCommonAttributes(const Decl *D, 695 llvm::GlobalValue *GV) { 696 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 697 setGlobalVisibility(GV, ND); 698 else 699 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 700 701 if (D->hasAttr<UsedAttr>()) 702 AddUsedGlobal(GV); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 705 GV->setSection(SA->getName()); 706 707 // Alias cannot have attributes. Filter them here. 708 if (!isa<llvm::GlobalAlias>(GV)) 709 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 710 } 711 712 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 713 llvm::Function *F, 714 const CGFunctionInfo &FI) { 715 SetLLVMFunctionAttributes(D, FI, F); 716 SetLLVMFunctionAttributesForDefinition(D, F); 717 718 F->setLinkage(llvm::Function::InternalLinkage); 719 720 SetCommonAttributes(D, F); 721 } 722 723 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 724 llvm::Function *F, 725 bool IsIncompleteFunction) { 726 if (unsigned IID = F->getIntrinsicID()) { 727 // If this is an intrinsic function, set the function's attributes 728 // to the intrinsic's attributes. 729 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 730 (llvm::Intrinsic::ID)IID)); 731 return; 732 } 733 734 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 735 736 if (!IsIncompleteFunction) 737 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 738 739 if (getCXXABI().HasThisReturn(GD)) { 740 assert(!F->arg_empty() && 741 F->arg_begin()->getType() 742 ->canLosslesslyBitCastTo(F->getReturnType()) && 743 "unexpected this return"); 744 F->addAttribute(1, llvm::Attribute::Returned); 745 } 746 747 // Only a few attributes are set on declarations; these may later be 748 // overridden by a definition. 749 750 if (FD->hasAttr<DLLImportAttr>()) { 751 F->setLinkage(llvm::Function::ExternalLinkage); 752 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 753 } else if (FD->hasAttr<WeakAttr>() || 754 FD->isWeakImported()) { 755 // "extern_weak" is overloaded in LLVM; we probably should have 756 // separate linkage types for this. 757 F->setLinkage(llvm::Function::ExternalWeakLinkage); 758 } else { 759 F->setLinkage(llvm::Function::ExternalLinkage); 760 if (FD->hasAttr<DLLExportAttr>()) 761 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 762 763 LinkageInfo LV = FD->getLinkageAndVisibility(); 764 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 765 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 766 } 767 } 768 769 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 770 F->setSection(SA->getName()); 771 772 // A replaceable global allocation function does not act like a builtin by 773 // default, only if it is invoked by a new-expression or delete-expression. 774 if (FD->isReplaceableGlobalAllocationFunction()) 775 F->addAttribute(llvm::AttributeSet::FunctionIndex, 776 llvm::Attribute::NoBuiltin); 777 } 778 779 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 780 assert(!GV->isDeclaration() && 781 "Only globals with definition can force usage."); 782 LLVMUsed.push_back(GV); 783 } 784 785 void CodeGenModule::EmitLLVMUsed() { 786 // Don't create llvm.used if there is no need. 787 if (LLVMUsed.empty()) 788 return; 789 790 // Convert LLVMUsed to what ConstantArray needs. 791 SmallVector<llvm::Constant*, 8> UsedArray; 792 UsedArray.resize(LLVMUsed.size()); 793 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 794 UsedArray[i] = 795 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 796 Int8PtrTy); 797 } 798 799 if (UsedArray.empty()) 800 return; 801 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 802 803 llvm::GlobalVariable *GV = 804 new llvm::GlobalVariable(getModule(), ATy, false, 805 llvm::GlobalValue::AppendingLinkage, 806 llvm::ConstantArray::get(ATy, UsedArray), 807 "llvm.used"); 808 809 GV->setSection("llvm.metadata"); 810 } 811 812 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 813 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 814 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 815 } 816 817 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 818 llvm::SmallString<32> Opt; 819 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 820 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 821 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 822 } 823 824 void CodeGenModule::AddDependentLib(StringRef Lib) { 825 llvm::SmallString<24> Opt; 826 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 827 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 828 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 829 } 830 831 /// \brief Add link options implied by the given module, including modules 832 /// it depends on, using a postorder walk. 833 static void addLinkOptionsPostorder(CodeGenModule &CGM, 834 Module *Mod, 835 SmallVectorImpl<llvm::Value *> &Metadata, 836 llvm::SmallPtrSet<Module *, 16> &Visited) { 837 // Import this module's parent. 838 if (Mod->Parent && Visited.insert(Mod->Parent)) { 839 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 840 } 841 842 // Import this module's dependencies. 843 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 844 if (Visited.insert(Mod->Imports[I-1])) 845 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 846 } 847 848 // Add linker options to link against the libraries/frameworks 849 // described by this module. 850 llvm::LLVMContext &Context = CGM.getLLVMContext(); 851 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 852 // Link against a framework. Frameworks are currently Darwin only, so we 853 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 854 if (Mod->LinkLibraries[I-1].IsFramework) { 855 llvm::Value *Args[2] = { 856 llvm::MDString::get(Context, "-framework"), 857 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 858 }; 859 860 Metadata.push_back(llvm::MDNode::get(Context, Args)); 861 continue; 862 } 863 864 // Link against a library. 865 llvm::SmallString<24> Opt; 866 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 867 Mod->LinkLibraries[I-1].Library, Opt); 868 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 869 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 870 } 871 } 872 873 void CodeGenModule::EmitModuleLinkOptions() { 874 // Collect the set of all of the modules we want to visit to emit link 875 // options, which is essentially the imported modules and all of their 876 // non-explicit child modules. 877 llvm::SetVector<clang::Module *> LinkModules; 878 llvm::SmallPtrSet<clang::Module *, 16> Visited; 879 SmallVector<clang::Module *, 16> Stack; 880 881 // Seed the stack with imported modules. 882 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 883 MEnd = ImportedModules.end(); 884 M != MEnd; ++M) { 885 if (Visited.insert(*M)) 886 Stack.push_back(*M); 887 } 888 889 // Find all of the modules to import, making a little effort to prune 890 // non-leaf modules. 891 while (!Stack.empty()) { 892 clang::Module *Mod = Stack.pop_back_val(); 893 894 bool AnyChildren = false; 895 896 // Visit the submodules of this module. 897 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 898 SubEnd = Mod->submodule_end(); 899 Sub != SubEnd; ++Sub) { 900 // Skip explicit children; they need to be explicitly imported to be 901 // linked against. 902 if ((*Sub)->IsExplicit) 903 continue; 904 905 if (Visited.insert(*Sub)) { 906 Stack.push_back(*Sub); 907 AnyChildren = true; 908 } 909 } 910 911 // We didn't find any children, so add this module to the list of 912 // modules to link against. 913 if (!AnyChildren) { 914 LinkModules.insert(Mod); 915 } 916 } 917 918 // Add link options for all of the imported modules in reverse topological 919 // order. We don't do anything to try to order import link flags with respect 920 // to linker options inserted by things like #pragma comment(). 921 SmallVector<llvm::Value *, 16> MetadataArgs; 922 Visited.clear(); 923 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 924 MEnd = LinkModules.end(); 925 M != MEnd; ++M) { 926 if (Visited.insert(*M)) 927 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 928 } 929 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 930 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 931 932 // Add the linker options metadata flag. 933 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 934 llvm::MDNode::get(getLLVMContext(), 935 LinkerOptionsMetadata)); 936 } 937 938 void CodeGenModule::EmitDeferred() { 939 // Emit code for any potentially referenced deferred decls. Since a 940 // previously unused static decl may become used during the generation of code 941 // for a static function, iterate until no changes are made. 942 943 while (true) { 944 if (!DeferredVTables.empty()) { 945 EmitDeferredVTables(); 946 947 // Emitting a v-table doesn't directly cause more v-tables to 948 // become deferred, although it can cause functions to be 949 // emitted that then need those v-tables. 950 assert(DeferredVTables.empty()); 951 } 952 953 // Stop if we're out of both deferred v-tables and deferred declarations. 954 if (DeferredDeclsToEmit.empty()) break; 955 956 DeferredGlobal &G = DeferredDeclsToEmit.back(); 957 GlobalDecl D = G.GD; 958 llvm::GlobalValue *GV = G.GV; 959 DeferredDeclsToEmit.pop_back(); 960 961 assert(GV == GetGlobalValue(getMangledName(D))); 962 // Check to see if we've already emitted this. This is necessary 963 // for a couple of reasons: first, decls can end up in the 964 // deferred-decls queue multiple times, and second, decls can end 965 // up with definitions in unusual ways (e.g. by an extern inline 966 // function acquiring a strong function redefinition). Just 967 // ignore these cases. 968 if(!GV->isDeclaration()) 969 continue; 970 971 // Otherwise, emit the definition and move on to the next one. 972 EmitGlobalDefinition(D, GV); 973 } 974 } 975 976 void CodeGenModule::EmitGlobalAnnotations() { 977 if (Annotations.empty()) 978 return; 979 980 // Create a new global variable for the ConstantStruct in the Module. 981 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 982 Annotations[0]->getType(), Annotations.size()), Annotations); 983 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 984 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 985 "llvm.global.annotations"); 986 gv->setSection(AnnotationSection); 987 } 988 989 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 990 llvm::Constant *&AStr = AnnotationStrings[Str]; 991 if (AStr) 992 return AStr; 993 994 // Not found yet, create a new global. 995 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 996 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 997 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 998 gv->setSection(AnnotationSection); 999 gv->setUnnamedAddr(true); 1000 AStr = gv; 1001 return gv; 1002 } 1003 1004 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1005 SourceManager &SM = getContext().getSourceManager(); 1006 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1007 if (PLoc.isValid()) 1008 return EmitAnnotationString(PLoc.getFilename()); 1009 return EmitAnnotationString(SM.getBufferName(Loc)); 1010 } 1011 1012 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1013 SourceManager &SM = getContext().getSourceManager(); 1014 PresumedLoc PLoc = SM.getPresumedLoc(L); 1015 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1016 SM.getExpansionLineNumber(L); 1017 return llvm::ConstantInt::get(Int32Ty, LineNo); 1018 } 1019 1020 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1021 const AnnotateAttr *AA, 1022 SourceLocation L) { 1023 // Get the globals for file name, annotation, and the line number. 1024 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1025 *UnitGV = EmitAnnotationUnit(L), 1026 *LineNoCst = EmitAnnotationLineNo(L); 1027 1028 // Create the ConstantStruct for the global annotation. 1029 llvm::Constant *Fields[4] = { 1030 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1031 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1032 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1033 LineNoCst 1034 }; 1035 return llvm::ConstantStruct::getAnon(Fields); 1036 } 1037 1038 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1039 llvm::GlobalValue *GV) { 1040 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1041 // Get the struct elements for these annotations. 1042 for (specific_attr_iterator<AnnotateAttr> 1043 ai = D->specific_attr_begin<AnnotateAttr>(), 1044 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1045 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1046 } 1047 1048 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1049 // Never defer when EmitAllDecls is specified. 1050 if (LangOpts.EmitAllDecls) 1051 return false; 1052 1053 return !getContext().DeclMustBeEmitted(Global); 1054 } 1055 1056 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1057 const CXXUuidofExpr* E) { 1058 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1059 // well-formed. 1060 StringRef Uuid = E->getUuidAsStringRef(Context); 1061 std::string Name = "_GUID_" + Uuid.lower(); 1062 std::replace(Name.begin(), Name.end(), '-', '_'); 1063 1064 // Look for an existing global. 1065 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1066 return GV; 1067 1068 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1069 assert(Init && "failed to initialize as constant"); 1070 1071 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1072 getModule(), Init->getType(), 1073 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1074 return GV; 1075 } 1076 1077 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1078 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1079 assert(AA && "No alias?"); 1080 1081 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1082 1083 // See if there is already something with the target's name in the module. 1084 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1085 if (Entry) { 1086 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1087 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1088 } 1089 1090 llvm::Constant *Aliasee; 1091 if (isa<llvm::FunctionType>(DeclTy)) 1092 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1093 GlobalDecl(cast<FunctionDecl>(VD)), 1094 /*ForVTable=*/false); 1095 else 1096 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1097 llvm::PointerType::getUnqual(DeclTy), 0); 1098 1099 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1100 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1101 WeakRefReferences.insert(F); 1102 1103 return Aliasee; 1104 } 1105 1106 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1107 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1108 1109 // Weak references don't produce any output by themselves. 1110 if (Global->hasAttr<WeakRefAttr>()) 1111 return; 1112 1113 // If this is an alias definition (which otherwise looks like a declaration) 1114 // emit it now. 1115 if (Global->hasAttr<AliasAttr>()) 1116 return EmitAliasDefinition(GD); 1117 1118 // If this is CUDA, be selective about which declarations we emit. 1119 if (LangOpts.CUDA) { 1120 if (CodeGenOpts.CUDAIsDevice) { 1121 if (!Global->hasAttr<CUDADeviceAttr>() && 1122 !Global->hasAttr<CUDAGlobalAttr>() && 1123 !Global->hasAttr<CUDAConstantAttr>() && 1124 !Global->hasAttr<CUDASharedAttr>()) 1125 return; 1126 } else { 1127 if (!Global->hasAttr<CUDAHostAttr>() && ( 1128 Global->hasAttr<CUDADeviceAttr>() || 1129 Global->hasAttr<CUDAConstantAttr>() || 1130 Global->hasAttr<CUDASharedAttr>())) 1131 return; 1132 } 1133 } 1134 1135 // Ignore declarations, they will be emitted on their first use. 1136 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1137 // Forward declarations are emitted lazily on first use. 1138 if (!FD->doesThisDeclarationHaveABody()) { 1139 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1140 return; 1141 1142 const FunctionDecl *InlineDefinition = 0; 1143 FD->getBody(InlineDefinition); 1144 1145 StringRef MangledName = getMangledName(GD); 1146 DeferredDecls.erase(MangledName); 1147 EmitGlobalDefinition(InlineDefinition); 1148 return; 1149 } 1150 } else { 1151 const VarDecl *VD = cast<VarDecl>(Global); 1152 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1153 1154 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1155 return; 1156 } 1157 1158 // Defer code generation when possible if this is a static definition, inline 1159 // function etc. These we only want to emit if they are used. 1160 if (!MayDeferGeneration(Global)) { 1161 // Emit the definition if it can't be deferred. 1162 EmitGlobalDefinition(GD); 1163 return; 1164 } 1165 1166 // If we're deferring emission of a C++ variable with an 1167 // initializer, remember the order in which it appeared in the file. 1168 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1169 cast<VarDecl>(Global)->hasInit()) { 1170 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1171 CXXGlobalInits.push_back(0); 1172 } 1173 1174 // If the value has already been used, add it directly to the 1175 // DeferredDeclsToEmit list. 1176 StringRef MangledName = getMangledName(GD); 1177 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1178 addDeferredDeclToEmit(GV, GD); 1179 else { 1180 // Otherwise, remember that we saw a deferred decl with this name. The 1181 // first use of the mangled name will cause it to move into 1182 // DeferredDeclsToEmit. 1183 DeferredDecls[MangledName] = GD; 1184 } 1185 } 1186 1187 namespace { 1188 struct FunctionIsDirectlyRecursive : 1189 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1190 const StringRef Name; 1191 const Builtin::Context &BI; 1192 bool Result; 1193 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1194 Name(N), BI(C), Result(false) { 1195 } 1196 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1197 1198 bool TraverseCallExpr(CallExpr *E) { 1199 const FunctionDecl *FD = E->getDirectCallee(); 1200 if (!FD) 1201 return true; 1202 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1203 if (Attr && Name == Attr->getLabel()) { 1204 Result = true; 1205 return false; 1206 } 1207 unsigned BuiltinID = FD->getBuiltinID(); 1208 if (!BuiltinID) 1209 return true; 1210 StringRef BuiltinName = BI.GetName(BuiltinID); 1211 if (BuiltinName.startswith("__builtin_") && 1212 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1213 Result = true; 1214 return false; 1215 } 1216 return true; 1217 } 1218 }; 1219 } 1220 1221 // isTriviallyRecursive - Check if this function calls another 1222 // decl that, because of the asm attribute or the other decl being a builtin, 1223 // ends up pointing to itself. 1224 bool 1225 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1226 StringRef Name; 1227 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1228 // asm labels are a special kind of mangling we have to support. 1229 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1230 if (!Attr) 1231 return false; 1232 Name = Attr->getLabel(); 1233 } else { 1234 Name = FD->getName(); 1235 } 1236 1237 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1238 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1239 return Walker.Result; 1240 } 1241 1242 bool 1243 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1244 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1245 return true; 1246 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1247 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1248 return false; 1249 // PR9614. Avoid cases where the source code is lying to us. An available 1250 // externally function should have an equivalent function somewhere else, 1251 // but a function that calls itself is clearly not equivalent to the real 1252 // implementation. 1253 // This happens in glibc's btowc and in some configure checks. 1254 return !isTriviallyRecursive(F); 1255 } 1256 1257 /// If the type for the method's class was generated by 1258 /// CGDebugInfo::createContextChain(), the cache contains only a 1259 /// limited DIType without any declarations. Since EmitFunctionStart() 1260 /// needs to find the canonical declaration for each method, we need 1261 /// to construct the complete type prior to emitting the method. 1262 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1263 if (!D->isInstance()) 1264 return; 1265 1266 if (CGDebugInfo *DI = getModuleDebugInfo()) 1267 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1268 const PointerType *ThisPtr = 1269 cast<PointerType>(D->getThisType(getContext())); 1270 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1271 } 1272 } 1273 1274 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1275 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1276 1277 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1278 Context.getSourceManager(), 1279 "Generating code for declaration"); 1280 1281 if (isa<FunctionDecl>(D)) { 1282 // At -O0, don't generate IR for functions with available_externally 1283 // linkage. 1284 if (!shouldEmitFunction(GD)) 1285 return; 1286 1287 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1288 CompleteDIClassType(Method); 1289 // Make sure to emit the definition(s) before we emit the thunks. 1290 // This is necessary for the generation of certain thunks. 1291 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1292 EmitCXXConstructor(CD, GD.getCtorType()); 1293 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1294 EmitCXXDestructor(DD, GD.getDtorType()); 1295 else 1296 EmitGlobalFunctionDefinition(GD, GV); 1297 1298 if (Method->isVirtual()) 1299 getVTables().EmitThunks(GD); 1300 1301 return; 1302 } 1303 1304 return EmitGlobalFunctionDefinition(GD, GV); 1305 } 1306 1307 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1308 return EmitGlobalVarDefinition(VD); 1309 1310 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1311 } 1312 1313 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1314 /// module, create and return an llvm Function with the specified type. If there 1315 /// is something in the module with the specified name, return it potentially 1316 /// bitcasted to the right type. 1317 /// 1318 /// If D is non-null, it specifies a decl that correspond to this. This is used 1319 /// to set the attributes on the function when it is first created. 1320 llvm::Constant * 1321 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1322 llvm::Type *Ty, 1323 GlobalDecl GD, bool ForVTable, 1324 bool DontDefer, 1325 llvm::AttributeSet ExtraAttrs) { 1326 const Decl *D = GD.getDecl(); 1327 1328 // Lookup the entry, lazily creating it if necessary. 1329 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1330 if (Entry) { 1331 if (WeakRefReferences.erase(Entry)) { 1332 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1333 if (FD && !FD->hasAttr<WeakAttr>()) 1334 Entry->setLinkage(llvm::Function::ExternalLinkage); 1335 } 1336 1337 if (Entry->getType()->getElementType() == Ty) 1338 return Entry; 1339 1340 // Make sure the result is of the correct type. 1341 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1342 } 1343 1344 // This function doesn't have a complete type (for example, the return 1345 // type is an incomplete struct). Use a fake type instead, and make 1346 // sure not to try to set attributes. 1347 bool IsIncompleteFunction = false; 1348 1349 llvm::FunctionType *FTy; 1350 if (isa<llvm::FunctionType>(Ty)) { 1351 FTy = cast<llvm::FunctionType>(Ty); 1352 } else { 1353 FTy = llvm::FunctionType::get(VoidTy, false); 1354 IsIncompleteFunction = true; 1355 } 1356 1357 llvm::Function *F = llvm::Function::Create(FTy, 1358 llvm::Function::ExternalLinkage, 1359 MangledName, &getModule()); 1360 assert(F->getName() == MangledName && "name was uniqued!"); 1361 if (D) 1362 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1363 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1364 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1365 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1366 llvm::AttributeSet::get(VMContext, 1367 llvm::AttributeSet::FunctionIndex, 1368 B)); 1369 } 1370 1371 if (!DontDefer) { 1372 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1373 // each other bottoming out with the base dtor. Therefore we emit non-base 1374 // dtors on usage, even if there is no dtor definition in the TU. 1375 if (D && isa<CXXDestructorDecl>(D) && 1376 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1377 GD.getDtorType())) 1378 addDeferredDeclToEmit(F, GD); 1379 1380 // This is the first use or definition of a mangled name. If there is a 1381 // deferred decl with this name, remember that we need to emit it at the end 1382 // of the file. 1383 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1384 if (DDI != DeferredDecls.end()) { 1385 // Move the potentially referenced deferred decl to the 1386 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1387 // don't need it anymore). 1388 addDeferredDeclToEmit(F, DDI->second); 1389 DeferredDecls.erase(DDI); 1390 1391 // Otherwise, if this is a sized deallocation function, emit a weak 1392 // definition 1393 // for it at the end of the translation unit. 1394 } else if (D && cast<FunctionDecl>(D) 1395 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1396 addDeferredDeclToEmit(F, GD); 1397 1398 // Otherwise, there are cases we have to worry about where we're 1399 // using a declaration for which we must emit a definition but where 1400 // we might not find a top-level definition: 1401 // - member functions defined inline in their classes 1402 // - friend functions defined inline in some class 1403 // - special member functions with implicit definitions 1404 // If we ever change our AST traversal to walk into class methods, 1405 // this will be unnecessary. 1406 // 1407 // We also don't emit a definition for a function if it's going to be an 1408 // entry 1409 // in a vtable, unless it's already marked as used. 1410 } else if (getLangOpts().CPlusPlus && D) { 1411 // Look for a declaration that's lexically in a record. 1412 const FunctionDecl *FD = cast<FunctionDecl>(D); 1413 FD = FD->getMostRecentDecl(); 1414 do { 1415 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1416 if (FD->isImplicit() && !ForVTable) { 1417 assert(FD->isUsed() && 1418 "Sema didn't mark implicit function as used!"); 1419 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1420 break; 1421 } else if (FD->doesThisDeclarationHaveABody()) { 1422 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1423 break; 1424 } 1425 } 1426 FD = FD->getPreviousDecl(); 1427 } while (FD); 1428 } 1429 } 1430 1431 // Make sure the result is of the requested type. 1432 if (!IsIncompleteFunction) { 1433 assert(F->getType()->getElementType() == Ty); 1434 return F; 1435 } 1436 1437 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1438 return llvm::ConstantExpr::getBitCast(F, PTy); 1439 } 1440 1441 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1442 /// non-null, then this function will use the specified type if it has to 1443 /// create it (this occurs when we see a definition of the function). 1444 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1445 llvm::Type *Ty, 1446 bool ForVTable, 1447 bool DontDefer) { 1448 // If there was no specific requested type, just convert it now. 1449 if (!Ty) 1450 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1451 1452 StringRef MangledName = getMangledName(GD); 1453 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1454 } 1455 1456 /// CreateRuntimeFunction - Create a new runtime function with the specified 1457 /// type and name. 1458 llvm::Constant * 1459 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1460 StringRef Name, 1461 llvm::AttributeSet ExtraAttrs) { 1462 llvm::Constant *C = 1463 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1464 /*DontDefer=*/false, ExtraAttrs); 1465 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1466 if (F->empty()) 1467 F->setCallingConv(getRuntimeCC()); 1468 return C; 1469 } 1470 1471 /// isTypeConstant - Determine whether an object of this type can be emitted 1472 /// as a constant. 1473 /// 1474 /// If ExcludeCtor is true, the duration when the object's constructor runs 1475 /// will not be considered. The caller will need to verify that the object is 1476 /// not written to during its construction. 1477 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1478 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1479 return false; 1480 1481 if (Context.getLangOpts().CPlusPlus) { 1482 if (const CXXRecordDecl *Record 1483 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1484 return ExcludeCtor && !Record->hasMutableFields() && 1485 Record->hasTrivialDestructor(); 1486 } 1487 1488 return true; 1489 } 1490 1491 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1492 /// create and return an llvm GlobalVariable with the specified type. If there 1493 /// is something in the module with the specified name, return it potentially 1494 /// bitcasted to the right type. 1495 /// 1496 /// If D is non-null, it specifies a decl that correspond to this. This is used 1497 /// to set the attributes on the global when it is first created. 1498 llvm::Constant * 1499 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1500 llvm::PointerType *Ty, 1501 const VarDecl *D, 1502 bool UnnamedAddr) { 1503 // Lookup the entry, lazily creating it if necessary. 1504 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1505 if (Entry) { 1506 if (WeakRefReferences.erase(Entry)) { 1507 if (D && !D->hasAttr<WeakAttr>()) 1508 Entry->setLinkage(llvm::Function::ExternalLinkage); 1509 } 1510 1511 if (UnnamedAddr) 1512 Entry->setUnnamedAddr(true); 1513 1514 if (Entry->getType() == Ty) 1515 return Entry; 1516 1517 // Make sure the result is of the correct type. 1518 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1519 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1520 1521 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1522 } 1523 1524 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1525 llvm::GlobalVariable *GV = 1526 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1527 llvm::GlobalValue::ExternalLinkage, 1528 0, MangledName, 0, 1529 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1530 1531 // This is the first use or definition of a mangled name. If there is a 1532 // deferred decl with this name, remember that we need to emit it at the end 1533 // of the file. 1534 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1535 if (DDI != DeferredDecls.end()) { 1536 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1537 // list, and remove it from DeferredDecls (since we don't need it anymore). 1538 addDeferredDeclToEmit(GV, DDI->second); 1539 DeferredDecls.erase(DDI); 1540 } 1541 1542 // Handle things which are present even on external declarations. 1543 if (D) { 1544 // FIXME: This code is overly simple and should be merged with other global 1545 // handling. 1546 GV->setConstant(isTypeConstant(D->getType(), false)); 1547 1548 // Set linkage and visibility in case we never see a definition. 1549 LinkageInfo LV = D->getLinkageAndVisibility(); 1550 if (LV.getLinkage() != ExternalLinkage) { 1551 // Don't set internal linkage on declarations. 1552 } else { 1553 if (D->hasAttr<DLLImportAttr>()) { 1554 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1555 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1556 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1557 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1558 1559 // Set visibility on a declaration only if it's explicit. 1560 if (LV.isVisibilityExplicit()) 1561 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1562 } 1563 1564 if (D->getTLSKind()) { 1565 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1566 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1567 setTLSMode(GV, *D); 1568 } 1569 1570 // If required by the ABI, treat declarations of static data members with 1571 // inline initializers as definitions. 1572 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1573 D->isStaticDataMember() && D->hasInit() && 1574 !D->isThisDeclarationADefinition()) 1575 EmitGlobalVarDefinition(D); 1576 } 1577 1578 if (AddrSpace != Ty->getAddressSpace()) 1579 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1580 1581 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1582 D->getLanguageLinkage() == CLanguageLinkage && 1583 D->getType().isConstant(Context) && 1584 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1585 GV->setSection(".cp.rodata"); 1586 1587 return GV; 1588 } 1589 1590 1591 llvm::GlobalVariable * 1592 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1593 llvm::Type *Ty, 1594 llvm::GlobalValue::LinkageTypes Linkage) { 1595 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1596 llvm::GlobalVariable *OldGV = 0; 1597 1598 1599 if (GV) { 1600 // Check if the variable has the right type. 1601 if (GV->getType()->getElementType() == Ty) 1602 return GV; 1603 1604 // Because C++ name mangling, the only way we can end up with an already 1605 // existing global with the same name is if it has been declared extern "C". 1606 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1607 OldGV = GV; 1608 } 1609 1610 // Create a new variable. 1611 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1612 Linkage, 0, Name); 1613 1614 if (OldGV) { 1615 // Replace occurrences of the old variable if needed. 1616 GV->takeName(OldGV); 1617 1618 if (!OldGV->use_empty()) { 1619 llvm::Constant *NewPtrForOldDecl = 1620 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1621 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1622 } 1623 1624 OldGV->eraseFromParent(); 1625 } 1626 1627 return GV; 1628 } 1629 1630 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1631 /// given global variable. If Ty is non-null and if the global doesn't exist, 1632 /// then it will be created with the specified type instead of whatever the 1633 /// normal requested type would be. 1634 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1635 llvm::Type *Ty) { 1636 assert(D->hasGlobalStorage() && "Not a global variable"); 1637 QualType ASTTy = D->getType(); 1638 if (Ty == 0) 1639 Ty = getTypes().ConvertTypeForMem(ASTTy); 1640 1641 llvm::PointerType *PTy = 1642 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1643 1644 StringRef MangledName = getMangledName(D); 1645 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1646 } 1647 1648 /// CreateRuntimeVariable - Create a new runtime global variable with the 1649 /// specified type and name. 1650 llvm::Constant * 1651 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1652 StringRef Name) { 1653 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1654 true); 1655 } 1656 1657 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1658 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1659 1660 if (MayDeferGeneration(D)) { 1661 // If we have not seen a reference to this variable yet, place it 1662 // into the deferred declarations table to be emitted if needed 1663 // later. 1664 StringRef MangledName = getMangledName(D); 1665 if (!GetGlobalValue(MangledName)) { 1666 DeferredDecls[MangledName] = D; 1667 return; 1668 } 1669 } 1670 1671 // The tentative definition is the only definition. 1672 EmitGlobalVarDefinition(D); 1673 } 1674 1675 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1676 return Context.toCharUnitsFromBits( 1677 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1678 } 1679 1680 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1681 unsigned AddrSpace) { 1682 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1683 if (D->hasAttr<CUDAConstantAttr>()) 1684 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1685 else if (D->hasAttr<CUDASharedAttr>()) 1686 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1687 else 1688 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1689 } 1690 1691 return AddrSpace; 1692 } 1693 1694 template<typename SomeDecl> 1695 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1696 llvm::GlobalValue *GV) { 1697 if (!getLangOpts().CPlusPlus) 1698 return; 1699 1700 // Must have 'used' attribute, or else inline assembly can't rely on 1701 // the name existing. 1702 if (!D->template hasAttr<UsedAttr>()) 1703 return; 1704 1705 // Must have internal linkage and an ordinary name. 1706 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1707 return; 1708 1709 // Must be in an extern "C" context. Entities declared directly within 1710 // a record are not extern "C" even if the record is in such a context. 1711 const SomeDecl *First = D->getFirstDecl(); 1712 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1713 return; 1714 1715 // OK, this is an internal linkage entity inside an extern "C" linkage 1716 // specification. Make a note of that so we can give it the "expected" 1717 // mangled name if nothing else is using that name. 1718 std::pair<StaticExternCMap::iterator, bool> R = 1719 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1720 1721 // If we have multiple internal linkage entities with the same name 1722 // in extern "C" regions, none of them gets that name. 1723 if (!R.second) 1724 R.first->second = 0; 1725 } 1726 1727 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1728 llvm::Constant *Init = 0; 1729 QualType ASTTy = D->getType(); 1730 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1731 bool NeedsGlobalCtor = false; 1732 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1733 1734 const VarDecl *InitDecl; 1735 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1736 1737 if (!InitExpr) { 1738 // This is a tentative definition; tentative definitions are 1739 // implicitly initialized with { 0 }. 1740 // 1741 // Note that tentative definitions are only emitted at the end of 1742 // a translation unit, so they should never have incomplete 1743 // type. In addition, EmitTentativeDefinition makes sure that we 1744 // never attempt to emit a tentative definition if a real one 1745 // exists. A use may still exists, however, so we still may need 1746 // to do a RAUW. 1747 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1748 Init = EmitNullConstant(D->getType()); 1749 } else { 1750 initializedGlobalDecl = GlobalDecl(D); 1751 Init = EmitConstantInit(*InitDecl); 1752 1753 if (!Init) { 1754 QualType T = InitExpr->getType(); 1755 if (D->getType()->isReferenceType()) 1756 T = D->getType(); 1757 1758 if (getLangOpts().CPlusPlus) { 1759 Init = EmitNullConstant(T); 1760 NeedsGlobalCtor = true; 1761 } else { 1762 ErrorUnsupported(D, "static initializer"); 1763 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1764 } 1765 } else { 1766 // We don't need an initializer, so remove the entry for the delayed 1767 // initializer position (just in case this entry was delayed) if we 1768 // also don't need to register a destructor. 1769 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1770 DelayedCXXInitPosition.erase(D); 1771 } 1772 } 1773 1774 llvm::Type* InitType = Init->getType(); 1775 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1776 1777 // Strip off a bitcast if we got one back. 1778 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1779 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1780 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1781 // All zero index gep. 1782 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1783 Entry = CE->getOperand(0); 1784 } 1785 1786 // Entry is now either a Function or GlobalVariable. 1787 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1788 1789 // We have a definition after a declaration with the wrong type. 1790 // We must make a new GlobalVariable* and update everything that used OldGV 1791 // (a declaration or tentative definition) with the new GlobalVariable* 1792 // (which will be a definition). 1793 // 1794 // This happens if there is a prototype for a global (e.g. 1795 // "extern int x[];") and then a definition of a different type (e.g. 1796 // "int x[10];"). This also happens when an initializer has a different type 1797 // from the type of the global (this happens with unions). 1798 if (GV == 0 || 1799 GV->getType()->getElementType() != InitType || 1800 GV->getType()->getAddressSpace() != 1801 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1802 1803 // Move the old entry aside so that we'll create a new one. 1804 Entry->setName(StringRef()); 1805 1806 // Make a new global with the correct type, this is now guaranteed to work. 1807 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1808 1809 // Replace all uses of the old global with the new global 1810 llvm::Constant *NewPtrForOldDecl = 1811 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1812 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1813 1814 // Erase the old global, since it is no longer used. 1815 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1816 } 1817 1818 MaybeHandleStaticInExternC(D, GV); 1819 1820 if (D->hasAttr<AnnotateAttr>()) 1821 AddGlobalAnnotations(D, GV); 1822 1823 GV->setInitializer(Init); 1824 1825 // If it is safe to mark the global 'constant', do so now. 1826 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1827 isTypeConstant(D->getType(), true)); 1828 1829 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1830 1831 // Set the llvm linkage type as appropriate. 1832 llvm::GlobalValue::LinkageTypes Linkage = 1833 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1834 GV->setLinkage(Linkage); 1835 if (D->hasAttr<DLLImportAttr>()) 1836 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1837 else if (D->hasAttr<DLLExportAttr>()) 1838 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1839 1840 // If required by the ABI, give definitions of static data members with inline 1841 // initializers linkonce_odr linkage. 1842 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1843 D->isStaticDataMember() && InitExpr && 1844 !InitDecl->isThisDeclarationADefinition()) 1845 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1846 1847 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1848 // common vars aren't constant even if declared const. 1849 GV->setConstant(false); 1850 1851 SetCommonAttributes(D, GV); 1852 1853 // Emit the initializer function if necessary. 1854 if (NeedsGlobalCtor || NeedsGlobalDtor) 1855 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1856 1857 // If we are compiling with ASan, add metadata indicating dynamically 1858 // initialized globals. 1859 if (SanOpts.Address && NeedsGlobalCtor) { 1860 llvm::Module &M = getModule(); 1861 1862 llvm::NamedMDNode *DynamicInitializers = 1863 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1864 llvm::Value *GlobalToAdd[] = { GV }; 1865 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1866 DynamicInitializers->addOperand(ThisGlobal); 1867 } 1868 1869 // Emit global variable debug information. 1870 if (CGDebugInfo *DI = getModuleDebugInfo()) 1871 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1872 DI->EmitGlobalVariable(GV, D); 1873 } 1874 1875 llvm::GlobalValue::LinkageTypes 1876 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1877 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1878 if (Linkage == GVA_Internal) 1879 return llvm::Function::InternalLinkage; 1880 else if (D->hasAttr<DLLImportAttr>()) 1881 return llvm::Function::ExternalLinkage; 1882 else if (D->hasAttr<DLLExportAttr>()) 1883 return llvm::Function::ExternalLinkage; 1884 else if (D->hasAttr<SelectAnyAttr>()) { 1885 // selectany symbols are externally visible, so use weak instead of 1886 // linkonce. MSVC optimizes away references to const selectany globals, so 1887 // all definitions should be the same and ODR linkage should be used. 1888 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1889 return llvm::GlobalVariable::WeakODRLinkage; 1890 } else if (D->hasAttr<WeakAttr>()) { 1891 if (isConstant) 1892 return llvm::GlobalVariable::WeakODRLinkage; 1893 else 1894 return llvm::GlobalVariable::WeakAnyLinkage; 1895 } else if (Linkage == GVA_TemplateInstantiation || 1896 Linkage == GVA_ExplicitTemplateInstantiation) 1897 return llvm::GlobalVariable::WeakODRLinkage; 1898 else if (!getLangOpts().CPlusPlus && 1899 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1900 D->hasAttr<CommonAttr>()) && 1901 !D->hasExternalStorage() && !D->getInit() && 1902 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1903 !D->hasAttr<WeakImportAttr>()) { 1904 // Thread local vars aren't considered common linkage. 1905 return llvm::GlobalVariable::CommonLinkage; 1906 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1907 getTarget().getTriple().isMacOSX()) 1908 // On Darwin, the backing variable for a C++11 thread_local variable always 1909 // has internal linkage; all accesses should just be calls to the 1910 // Itanium-specified entry point, which has the normal linkage of the 1911 // variable. 1912 return llvm::GlobalValue::InternalLinkage; 1913 return llvm::GlobalVariable::ExternalLinkage; 1914 } 1915 1916 /// Replace the uses of a function that was declared with a non-proto type. 1917 /// We want to silently drop extra arguments from call sites 1918 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1919 llvm::Function *newFn) { 1920 // Fast path. 1921 if (old->use_empty()) return; 1922 1923 llvm::Type *newRetTy = newFn->getReturnType(); 1924 SmallVector<llvm::Value*, 4> newArgs; 1925 1926 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1927 ui != ue; ) { 1928 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1929 llvm::User *user = *use; 1930 1931 // Recognize and replace uses of bitcasts. Most calls to 1932 // unprototyped functions will use bitcasts. 1933 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1934 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1935 replaceUsesOfNonProtoConstant(bitcast, newFn); 1936 continue; 1937 } 1938 1939 // Recognize calls to the function. 1940 llvm::CallSite callSite(user); 1941 if (!callSite) continue; 1942 if (!callSite.isCallee(use)) continue; 1943 1944 // If the return types don't match exactly, then we can't 1945 // transform this call unless it's dead. 1946 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1947 continue; 1948 1949 // Get the call site's attribute list. 1950 SmallVector<llvm::AttributeSet, 8> newAttrs; 1951 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1952 1953 // Collect any return attributes from the call. 1954 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1955 newAttrs.push_back( 1956 llvm::AttributeSet::get(newFn->getContext(), 1957 oldAttrs.getRetAttributes())); 1958 1959 // If the function was passed too few arguments, don't transform. 1960 unsigned newNumArgs = newFn->arg_size(); 1961 if (callSite.arg_size() < newNumArgs) continue; 1962 1963 // If extra arguments were passed, we silently drop them. 1964 // If any of the types mismatch, we don't transform. 1965 unsigned argNo = 0; 1966 bool dontTransform = false; 1967 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1968 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1969 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1970 dontTransform = true; 1971 break; 1972 } 1973 1974 // Add any parameter attributes. 1975 if (oldAttrs.hasAttributes(argNo + 1)) 1976 newAttrs. 1977 push_back(llvm:: 1978 AttributeSet::get(newFn->getContext(), 1979 oldAttrs.getParamAttributes(argNo + 1))); 1980 } 1981 if (dontTransform) 1982 continue; 1983 1984 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1985 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1986 oldAttrs.getFnAttributes())); 1987 1988 // Okay, we can transform this. Create the new call instruction and copy 1989 // over the required information. 1990 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1991 1992 llvm::CallSite newCall; 1993 if (callSite.isCall()) { 1994 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1995 callSite.getInstruction()); 1996 } else { 1997 llvm::InvokeInst *oldInvoke = 1998 cast<llvm::InvokeInst>(callSite.getInstruction()); 1999 newCall = llvm::InvokeInst::Create(newFn, 2000 oldInvoke->getNormalDest(), 2001 oldInvoke->getUnwindDest(), 2002 newArgs, "", 2003 callSite.getInstruction()); 2004 } 2005 newArgs.clear(); // for the next iteration 2006 2007 if (!newCall->getType()->isVoidTy()) 2008 newCall->takeName(callSite.getInstruction()); 2009 newCall.setAttributes( 2010 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2011 newCall.setCallingConv(callSite.getCallingConv()); 2012 2013 // Finally, remove the old call, replacing any uses with the new one. 2014 if (!callSite->use_empty()) 2015 callSite->replaceAllUsesWith(newCall.getInstruction()); 2016 2017 // Copy debug location attached to CI. 2018 if (!callSite->getDebugLoc().isUnknown()) 2019 newCall->setDebugLoc(callSite->getDebugLoc()); 2020 callSite->eraseFromParent(); 2021 } 2022 } 2023 2024 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2025 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2026 /// existing call uses of the old function in the module, this adjusts them to 2027 /// call the new function directly. 2028 /// 2029 /// This is not just a cleanup: the always_inline pass requires direct calls to 2030 /// functions to be able to inline them. If there is a bitcast in the way, it 2031 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2032 /// run at -O0. 2033 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2034 llvm::Function *NewFn) { 2035 // If we're redefining a global as a function, don't transform it. 2036 if (!isa<llvm::Function>(Old)) return; 2037 2038 replaceUsesOfNonProtoConstant(Old, NewFn); 2039 } 2040 2041 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2042 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2043 // If we have a definition, this might be a deferred decl. If the 2044 // instantiation is explicit, make sure we emit it at the end. 2045 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2046 GetAddrOfGlobalVar(VD); 2047 2048 EmitTopLevelDecl(VD); 2049 } 2050 2051 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2052 llvm::GlobalValue *GV) { 2053 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2054 2055 // Compute the function info and LLVM type. 2056 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2057 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2058 2059 // Get or create the prototype for the function. 2060 llvm::Constant *Entry = 2061 GV ? GV 2062 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2063 2064 // Strip off a bitcast if we got one back. 2065 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2066 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2067 Entry = CE->getOperand(0); 2068 } 2069 2070 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2071 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2072 return; 2073 } 2074 2075 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2076 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2077 2078 // If the types mismatch then we have to rewrite the definition. 2079 assert(OldFn->isDeclaration() && 2080 "Shouldn't replace non-declaration"); 2081 2082 // F is the Function* for the one with the wrong type, we must make a new 2083 // Function* and update everything that used F (a declaration) with the new 2084 // Function* (which will be a definition). 2085 // 2086 // This happens if there is a prototype for a function 2087 // (e.g. "int f()") and then a definition of a different type 2088 // (e.g. "int f(int x)"). Move the old function aside so that it 2089 // doesn't interfere with GetAddrOfFunction. 2090 OldFn->setName(StringRef()); 2091 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2092 2093 // This might be an implementation of a function without a 2094 // prototype, in which case, try to do special replacement of 2095 // calls which match the new prototype. The really key thing here 2096 // is that we also potentially drop arguments from the call site 2097 // so as to make a direct call, which makes the inliner happier 2098 // and suppresses a number of optimizer warnings (!) about 2099 // dropping arguments. 2100 if (!OldFn->use_empty()) { 2101 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2102 OldFn->removeDeadConstantUsers(); 2103 } 2104 2105 // Replace uses of F with the Function we will endow with a body. 2106 if (!Entry->use_empty()) { 2107 llvm::Constant *NewPtrForOldDecl = 2108 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2109 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2110 } 2111 2112 // Ok, delete the old function now, which is dead. 2113 OldFn->eraseFromParent(); 2114 2115 Entry = NewFn; 2116 } 2117 2118 // We need to set linkage and visibility on the function before 2119 // generating code for it because various parts of IR generation 2120 // want to propagate this information down (e.g. to local static 2121 // declarations). 2122 llvm::Function *Fn = cast<llvm::Function>(Entry); 2123 setFunctionLinkage(GD, Fn); 2124 2125 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2126 setGlobalVisibility(Fn, D); 2127 2128 MaybeHandleStaticInExternC(D, Fn); 2129 2130 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2131 2132 SetFunctionDefinitionAttributes(D, Fn); 2133 SetLLVMFunctionAttributesForDefinition(D, Fn); 2134 2135 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2136 AddGlobalCtor(Fn, CA->getPriority()); 2137 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2138 AddGlobalDtor(Fn, DA->getPriority()); 2139 if (D->hasAttr<AnnotateAttr>()) 2140 AddGlobalAnnotations(D, Fn); 2141 2142 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2143 if (PGOInit) 2144 AddGlobalCtor(PGOInit, 0); 2145 } 2146 2147 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2148 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2149 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2150 assert(AA && "Not an alias?"); 2151 2152 StringRef MangledName = getMangledName(GD); 2153 2154 // If there is a definition in the module, then it wins over the alias. 2155 // This is dubious, but allow it to be safe. Just ignore the alias. 2156 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2157 if (Entry && !Entry->isDeclaration()) 2158 return; 2159 2160 Aliases.push_back(GD); 2161 2162 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2163 2164 // Create a reference to the named value. This ensures that it is emitted 2165 // if a deferred decl. 2166 llvm::Constant *Aliasee; 2167 if (isa<llvm::FunctionType>(DeclTy)) 2168 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2169 /*ForVTable=*/false); 2170 else 2171 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2172 llvm::PointerType::getUnqual(DeclTy), 0); 2173 2174 // Create the new alias itself, but don't set a name yet. 2175 llvm::GlobalValue *GA = 2176 new llvm::GlobalAlias(Aliasee->getType(), 2177 llvm::Function::ExternalLinkage, 2178 "", Aliasee, &getModule()); 2179 2180 if (Entry) { 2181 assert(Entry->isDeclaration()); 2182 2183 // If there is a declaration in the module, then we had an extern followed 2184 // by the alias, as in: 2185 // extern int test6(); 2186 // ... 2187 // int test6() __attribute__((alias("test7"))); 2188 // 2189 // Remove it and replace uses of it with the alias. 2190 GA->takeName(Entry); 2191 2192 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2193 Entry->getType())); 2194 Entry->eraseFromParent(); 2195 } else { 2196 GA->setName(MangledName); 2197 } 2198 2199 // Set attributes which are particular to an alias; this is a 2200 // specialization of the attributes which may be set on a global 2201 // variable/function. 2202 if (D->hasAttr<DLLExportAttr>()) { 2203 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2204 // The dllexport attribute is ignored for undefined symbols. 2205 if (FD->hasBody()) 2206 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2207 } else { 2208 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2209 } 2210 } else if (D->hasAttr<WeakAttr>() || 2211 D->hasAttr<WeakRefAttr>() || 2212 D->isWeakImported()) { 2213 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2214 } 2215 2216 SetCommonAttributes(D, GA); 2217 } 2218 2219 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2220 ArrayRef<llvm::Type*> Tys) { 2221 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2222 Tys); 2223 } 2224 2225 static llvm::StringMapEntry<llvm::Constant*> & 2226 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2227 const StringLiteral *Literal, 2228 bool TargetIsLSB, 2229 bool &IsUTF16, 2230 unsigned &StringLength) { 2231 StringRef String = Literal->getString(); 2232 unsigned NumBytes = String.size(); 2233 2234 // Check for simple case. 2235 if (!Literal->containsNonAsciiOrNull()) { 2236 StringLength = NumBytes; 2237 return Map.GetOrCreateValue(String); 2238 } 2239 2240 // Otherwise, convert the UTF8 literals into a string of shorts. 2241 IsUTF16 = true; 2242 2243 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2244 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2245 UTF16 *ToPtr = &ToBuf[0]; 2246 2247 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2248 &ToPtr, ToPtr + NumBytes, 2249 strictConversion); 2250 2251 // ConvertUTF8toUTF16 returns the length in ToPtr. 2252 StringLength = ToPtr - &ToBuf[0]; 2253 2254 // Add an explicit null. 2255 *ToPtr = 0; 2256 return Map. 2257 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2258 (StringLength + 1) * 2)); 2259 } 2260 2261 static llvm::StringMapEntry<llvm::Constant*> & 2262 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2263 const StringLiteral *Literal, 2264 unsigned &StringLength) { 2265 StringRef String = Literal->getString(); 2266 StringLength = String.size(); 2267 return Map.GetOrCreateValue(String); 2268 } 2269 2270 llvm::Constant * 2271 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2272 unsigned StringLength = 0; 2273 bool isUTF16 = false; 2274 llvm::StringMapEntry<llvm::Constant*> &Entry = 2275 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2276 getDataLayout().isLittleEndian(), 2277 isUTF16, StringLength); 2278 2279 if (llvm::Constant *C = Entry.getValue()) 2280 return C; 2281 2282 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2283 llvm::Constant *Zeros[] = { Zero, Zero }; 2284 llvm::Value *V; 2285 2286 // If we don't already have it, get __CFConstantStringClassReference. 2287 if (!CFConstantStringClassRef) { 2288 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2289 Ty = llvm::ArrayType::get(Ty, 0); 2290 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2291 "__CFConstantStringClassReference"); 2292 // Decay array -> ptr 2293 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2294 CFConstantStringClassRef = V; 2295 } 2296 else 2297 V = CFConstantStringClassRef; 2298 2299 QualType CFTy = getContext().getCFConstantStringType(); 2300 2301 llvm::StructType *STy = 2302 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2303 2304 llvm::Constant *Fields[4]; 2305 2306 // Class pointer. 2307 Fields[0] = cast<llvm::ConstantExpr>(V); 2308 2309 // Flags. 2310 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2311 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2312 llvm::ConstantInt::get(Ty, 0x07C8); 2313 2314 // String pointer. 2315 llvm::Constant *C = 0; 2316 if (isUTF16) { 2317 ArrayRef<uint16_t> Arr = 2318 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2319 const_cast<char *>(Entry.getKey().data())), 2320 Entry.getKey().size() / 2); 2321 C = llvm::ConstantDataArray::get(VMContext, Arr); 2322 } else { 2323 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2324 } 2325 2326 // Note: -fwritable-strings doesn't make the backing store strings of 2327 // CFStrings writable. (See <rdar://problem/10657500>) 2328 llvm::GlobalVariable *GV = 2329 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2330 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2331 GV->setUnnamedAddr(true); 2332 // Don't enforce the target's minimum global alignment, since the only use 2333 // of the string is via this class initializer. 2334 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2335 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2336 // that changes the section it ends in, which surprises ld64. 2337 if (isUTF16) { 2338 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2339 GV->setAlignment(Align.getQuantity()); 2340 GV->setSection("__TEXT,__ustring"); 2341 } else { 2342 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2343 GV->setAlignment(Align.getQuantity()); 2344 GV->setSection("__TEXT,__cstring,cstring_literals"); 2345 } 2346 2347 // String. 2348 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2349 2350 if (isUTF16) 2351 // Cast the UTF16 string to the correct type. 2352 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2353 2354 // String length. 2355 Ty = getTypes().ConvertType(getContext().LongTy); 2356 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2357 2358 // The struct. 2359 C = llvm::ConstantStruct::get(STy, Fields); 2360 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2361 llvm::GlobalVariable::PrivateLinkage, C, 2362 "_unnamed_cfstring_"); 2363 GV->setSection("__DATA,__cfstring"); 2364 Entry.setValue(GV); 2365 2366 return GV; 2367 } 2368 2369 llvm::Constant * 2370 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2371 unsigned StringLength = 0; 2372 llvm::StringMapEntry<llvm::Constant*> &Entry = 2373 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2374 2375 if (llvm::Constant *C = Entry.getValue()) 2376 return C; 2377 2378 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2379 llvm::Constant *Zeros[] = { Zero, Zero }; 2380 llvm::Value *V; 2381 // If we don't already have it, get _NSConstantStringClassReference. 2382 if (!ConstantStringClassRef) { 2383 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2384 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2385 llvm::Constant *GV; 2386 if (LangOpts.ObjCRuntime.isNonFragile()) { 2387 std::string str = 2388 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2389 : "OBJC_CLASS_$_" + StringClass; 2390 GV = getObjCRuntime().GetClassGlobal(str); 2391 // Make sure the result is of the correct type. 2392 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2393 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2394 ConstantStringClassRef = V; 2395 } else { 2396 std::string str = 2397 StringClass.empty() ? "_NSConstantStringClassReference" 2398 : "_" + StringClass + "ClassReference"; 2399 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2400 GV = CreateRuntimeVariable(PTy, str); 2401 // Decay array -> ptr 2402 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2403 ConstantStringClassRef = V; 2404 } 2405 } 2406 else 2407 V = ConstantStringClassRef; 2408 2409 if (!NSConstantStringType) { 2410 // Construct the type for a constant NSString. 2411 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2412 D->startDefinition(); 2413 2414 QualType FieldTypes[3]; 2415 2416 // const int *isa; 2417 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2418 // const char *str; 2419 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2420 // unsigned int length; 2421 FieldTypes[2] = Context.UnsignedIntTy; 2422 2423 // Create fields 2424 for (unsigned i = 0; i < 3; ++i) { 2425 FieldDecl *Field = FieldDecl::Create(Context, D, 2426 SourceLocation(), 2427 SourceLocation(), 0, 2428 FieldTypes[i], /*TInfo=*/0, 2429 /*BitWidth=*/0, 2430 /*Mutable=*/false, 2431 ICIS_NoInit); 2432 Field->setAccess(AS_public); 2433 D->addDecl(Field); 2434 } 2435 2436 D->completeDefinition(); 2437 QualType NSTy = Context.getTagDeclType(D); 2438 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2439 } 2440 2441 llvm::Constant *Fields[3]; 2442 2443 // Class pointer. 2444 Fields[0] = cast<llvm::ConstantExpr>(V); 2445 2446 // String pointer. 2447 llvm::Constant *C = 2448 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2449 2450 llvm::GlobalValue::LinkageTypes Linkage; 2451 bool isConstant; 2452 Linkage = llvm::GlobalValue::PrivateLinkage; 2453 isConstant = !LangOpts.WritableStrings; 2454 2455 llvm::GlobalVariable *GV = 2456 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2457 ".str"); 2458 GV->setUnnamedAddr(true); 2459 // Don't enforce the target's minimum global alignment, since the only use 2460 // of the string is via this class initializer. 2461 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2462 GV->setAlignment(Align.getQuantity()); 2463 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2464 2465 // String length. 2466 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2467 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2468 2469 // The struct. 2470 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2471 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2472 llvm::GlobalVariable::PrivateLinkage, C, 2473 "_unnamed_nsstring_"); 2474 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2475 const char *NSStringNonFragileABISection = 2476 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2477 // FIXME. Fix section. 2478 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2479 ? NSStringNonFragileABISection 2480 : NSStringSection); 2481 Entry.setValue(GV); 2482 2483 return GV; 2484 } 2485 2486 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2487 if (ObjCFastEnumerationStateType.isNull()) { 2488 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2489 D->startDefinition(); 2490 2491 QualType FieldTypes[] = { 2492 Context.UnsignedLongTy, 2493 Context.getPointerType(Context.getObjCIdType()), 2494 Context.getPointerType(Context.UnsignedLongTy), 2495 Context.getConstantArrayType(Context.UnsignedLongTy, 2496 llvm::APInt(32, 5), ArrayType::Normal, 0) 2497 }; 2498 2499 for (size_t i = 0; i < 4; ++i) { 2500 FieldDecl *Field = FieldDecl::Create(Context, 2501 D, 2502 SourceLocation(), 2503 SourceLocation(), 0, 2504 FieldTypes[i], /*TInfo=*/0, 2505 /*BitWidth=*/0, 2506 /*Mutable=*/false, 2507 ICIS_NoInit); 2508 Field->setAccess(AS_public); 2509 D->addDecl(Field); 2510 } 2511 2512 D->completeDefinition(); 2513 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2514 } 2515 2516 return ObjCFastEnumerationStateType; 2517 } 2518 2519 llvm::Constant * 2520 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2521 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2522 2523 // Don't emit it as the address of the string, emit the string data itself 2524 // as an inline array. 2525 if (E->getCharByteWidth() == 1) { 2526 SmallString<64> Str(E->getString()); 2527 2528 // Resize the string to the right size, which is indicated by its type. 2529 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2530 Str.resize(CAT->getSize().getZExtValue()); 2531 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2532 } 2533 2534 llvm::ArrayType *AType = 2535 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2536 llvm::Type *ElemTy = AType->getElementType(); 2537 unsigned NumElements = AType->getNumElements(); 2538 2539 // Wide strings have either 2-byte or 4-byte elements. 2540 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2541 SmallVector<uint16_t, 32> Elements; 2542 Elements.reserve(NumElements); 2543 2544 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2545 Elements.push_back(E->getCodeUnit(i)); 2546 Elements.resize(NumElements); 2547 return llvm::ConstantDataArray::get(VMContext, Elements); 2548 } 2549 2550 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2551 SmallVector<uint32_t, 32> Elements; 2552 Elements.reserve(NumElements); 2553 2554 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2555 Elements.push_back(E->getCodeUnit(i)); 2556 Elements.resize(NumElements); 2557 return llvm::ConstantDataArray::get(VMContext, Elements); 2558 } 2559 2560 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2561 /// constant array for the given string literal. 2562 llvm::Constant * 2563 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2564 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2565 if (S->isAscii() || S->isUTF8()) { 2566 SmallString<64> Str(S->getString()); 2567 2568 // Resize the string to the right size, which is indicated by its type. 2569 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2570 Str.resize(CAT->getSize().getZExtValue()); 2571 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2572 } 2573 2574 // FIXME: the following does not memoize wide strings. 2575 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2576 llvm::GlobalVariable *GV = 2577 new llvm::GlobalVariable(getModule(),C->getType(), 2578 !LangOpts.WritableStrings, 2579 llvm::GlobalValue::PrivateLinkage, 2580 C,".str"); 2581 2582 GV->setAlignment(Align.getQuantity()); 2583 GV->setUnnamedAddr(true); 2584 return GV; 2585 } 2586 2587 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2588 /// array for the given ObjCEncodeExpr node. 2589 llvm::Constant * 2590 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2591 std::string Str; 2592 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2593 2594 return GetAddrOfConstantCString(Str); 2595 } 2596 2597 2598 /// GenerateWritableString -- Creates storage for a string literal. 2599 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2600 bool constant, 2601 CodeGenModule &CGM, 2602 const char *GlobalName, 2603 unsigned Alignment) { 2604 // Create Constant for this string literal. Don't add a '\0'. 2605 llvm::Constant *C = 2606 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2607 2608 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2609 unsigned AddrSpace = 0; 2610 if (CGM.getLangOpts().OpenCL) 2611 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2612 2613 // Create a global variable for this string 2614 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2615 CGM.getModule(), C->getType(), constant, 2616 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2617 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2618 GV->setAlignment(Alignment); 2619 GV->setUnnamedAddr(true); 2620 return GV; 2621 } 2622 2623 /// GetAddrOfConstantString - Returns a pointer to a character array 2624 /// containing the literal. This contents are exactly that of the 2625 /// given string, i.e. it will not be null terminated automatically; 2626 /// see GetAddrOfConstantCString. Note that whether the result is 2627 /// actually a pointer to an LLVM constant depends on 2628 /// Feature.WriteableStrings. 2629 /// 2630 /// The result has pointer to array type. 2631 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2632 const char *GlobalName, 2633 unsigned Alignment) { 2634 // Get the default prefix if a name wasn't specified. 2635 if (!GlobalName) 2636 GlobalName = ".str"; 2637 2638 if (Alignment == 0) 2639 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2640 .getQuantity(); 2641 2642 // Don't share any string literals if strings aren't constant. 2643 if (LangOpts.WritableStrings) 2644 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2645 2646 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2647 ConstantStringMap.GetOrCreateValue(Str); 2648 2649 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2650 if (Alignment > GV->getAlignment()) { 2651 GV->setAlignment(Alignment); 2652 } 2653 return GV; 2654 } 2655 2656 // Create a global variable for this. 2657 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2658 Alignment); 2659 Entry.setValue(GV); 2660 return GV; 2661 } 2662 2663 /// GetAddrOfConstantCString - Returns a pointer to a character 2664 /// array containing the literal and a terminating '\0' 2665 /// character. The result has pointer to array type. 2666 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2667 const char *GlobalName, 2668 unsigned Alignment) { 2669 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2670 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2671 } 2672 2673 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2674 const MaterializeTemporaryExpr *E, const Expr *Init) { 2675 assert((E->getStorageDuration() == SD_Static || 2676 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2677 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2678 2679 // If we're not materializing a subobject of the temporary, keep the 2680 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2681 QualType MaterializedType = Init->getType(); 2682 if (Init == E->GetTemporaryExpr()) 2683 MaterializedType = E->getType(); 2684 2685 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2686 if (Slot) 2687 return Slot; 2688 2689 // FIXME: If an externally-visible declaration extends multiple temporaries, 2690 // we need to give each temporary the same name in every translation unit (and 2691 // we also need to make the temporaries externally-visible). 2692 SmallString<256> Name; 2693 llvm::raw_svector_ostream Out(Name); 2694 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2695 Out.flush(); 2696 2697 APValue *Value = 0; 2698 if (E->getStorageDuration() == SD_Static) { 2699 // We might have a cached constant initializer for this temporary. Note 2700 // that this might have a different value from the value computed by 2701 // evaluating the initializer if the surrounding constant expression 2702 // modifies the temporary. 2703 Value = getContext().getMaterializedTemporaryValue(E, false); 2704 if (Value && Value->isUninit()) 2705 Value = 0; 2706 } 2707 2708 // Try evaluating it now, it might have a constant initializer. 2709 Expr::EvalResult EvalResult; 2710 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2711 !EvalResult.hasSideEffects()) 2712 Value = &EvalResult.Val; 2713 2714 llvm::Constant *InitialValue = 0; 2715 bool Constant = false; 2716 llvm::Type *Type; 2717 if (Value) { 2718 // The temporary has a constant initializer, use it. 2719 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2720 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2721 Type = InitialValue->getType(); 2722 } else { 2723 // No initializer, the initialization will be provided when we 2724 // initialize the declaration which performed lifetime extension. 2725 Type = getTypes().ConvertTypeForMem(MaterializedType); 2726 } 2727 2728 // Create a global variable for this lifetime-extended temporary. 2729 llvm::GlobalVariable *GV = 2730 new llvm::GlobalVariable(getModule(), Type, Constant, 2731 llvm::GlobalValue::PrivateLinkage, 2732 InitialValue, Name.c_str()); 2733 GV->setAlignment( 2734 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2735 if (VD->getTLSKind()) 2736 setTLSMode(GV, *VD); 2737 Slot = GV; 2738 return GV; 2739 } 2740 2741 /// EmitObjCPropertyImplementations - Emit information for synthesized 2742 /// properties for an implementation. 2743 void CodeGenModule::EmitObjCPropertyImplementations(const 2744 ObjCImplementationDecl *D) { 2745 for (ObjCImplementationDecl::propimpl_iterator 2746 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2747 ObjCPropertyImplDecl *PID = *i; 2748 2749 // Dynamic is just for type-checking. 2750 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2751 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2752 2753 // Determine which methods need to be implemented, some may have 2754 // been overridden. Note that ::isPropertyAccessor is not the method 2755 // we want, that just indicates if the decl came from a 2756 // property. What we want to know is if the method is defined in 2757 // this implementation. 2758 if (!D->getInstanceMethod(PD->getGetterName())) 2759 CodeGenFunction(*this).GenerateObjCGetter( 2760 const_cast<ObjCImplementationDecl *>(D), PID); 2761 if (!PD->isReadOnly() && 2762 !D->getInstanceMethod(PD->getSetterName())) 2763 CodeGenFunction(*this).GenerateObjCSetter( 2764 const_cast<ObjCImplementationDecl *>(D), PID); 2765 } 2766 } 2767 } 2768 2769 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2770 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2771 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2772 ivar; ivar = ivar->getNextIvar()) 2773 if (ivar->getType().isDestructedType()) 2774 return true; 2775 2776 return false; 2777 } 2778 2779 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2780 /// for an implementation. 2781 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2782 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2783 if (needsDestructMethod(D)) { 2784 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2785 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2786 ObjCMethodDecl *DTORMethod = 2787 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2788 cxxSelector, getContext().VoidTy, 0, D, 2789 /*isInstance=*/true, /*isVariadic=*/false, 2790 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2791 /*isDefined=*/false, ObjCMethodDecl::Required); 2792 D->addInstanceMethod(DTORMethod); 2793 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2794 D->setHasDestructors(true); 2795 } 2796 2797 // If the implementation doesn't have any ivar initializers, we don't need 2798 // a .cxx_construct. 2799 if (D->getNumIvarInitializers() == 0) 2800 return; 2801 2802 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2803 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2804 // The constructor returns 'self'. 2805 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2806 D->getLocation(), 2807 D->getLocation(), 2808 cxxSelector, 2809 getContext().getObjCIdType(), 0, 2810 D, /*isInstance=*/true, 2811 /*isVariadic=*/false, 2812 /*isPropertyAccessor=*/true, 2813 /*isImplicitlyDeclared=*/true, 2814 /*isDefined=*/false, 2815 ObjCMethodDecl::Required); 2816 D->addInstanceMethod(CTORMethod); 2817 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2818 D->setHasNonZeroConstructors(true); 2819 } 2820 2821 /// EmitNamespace - Emit all declarations in a namespace. 2822 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2823 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2824 I != E; ++I) { 2825 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2826 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2827 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2828 continue; 2829 EmitTopLevelDecl(*I); 2830 } 2831 } 2832 2833 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2834 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2835 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2836 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2837 ErrorUnsupported(LSD, "linkage spec"); 2838 return; 2839 } 2840 2841 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2842 I != E; ++I) { 2843 // Meta-data for ObjC class includes references to implemented methods. 2844 // Generate class's method definitions first. 2845 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2846 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2847 MEnd = OID->meth_end(); 2848 M != MEnd; ++M) 2849 EmitTopLevelDecl(*M); 2850 } 2851 EmitTopLevelDecl(*I); 2852 } 2853 } 2854 2855 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2856 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2857 // Ignore dependent declarations. 2858 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2859 return; 2860 2861 switch (D->getKind()) { 2862 case Decl::CXXConversion: 2863 case Decl::CXXMethod: 2864 case Decl::Function: 2865 // Skip function templates 2866 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2867 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2868 return; 2869 2870 EmitGlobal(cast<FunctionDecl>(D)); 2871 break; 2872 2873 case Decl::Var: 2874 // Skip variable templates 2875 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2876 return; 2877 case Decl::VarTemplateSpecialization: 2878 EmitGlobal(cast<VarDecl>(D)); 2879 break; 2880 2881 // Indirect fields from global anonymous structs and unions can be 2882 // ignored; only the actual variable requires IR gen support. 2883 case Decl::IndirectField: 2884 break; 2885 2886 // C++ Decls 2887 case Decl::Namespace: 2888 EmitNamespace(cast<NamespaceDecl>(D)); 2889 break; 2890 // No code generation needed. 2891 case Decl::UsingShadow: 2892 case Decl::ClassTemplate: 2893 case Decl::VarTemplate: 2894 case Decl::VarTemplatePartialSpecialization: 2895 case Decl::FunctionTemplate: 2896 case Decl::TypeAliasTemplate: 2897 case Decl::Block: 2898 case Decl::Empty: 2899 break; 2900 case Decl::Using: // using X; [C++] 2901 if (CGDebugInfo *DI = getModuleDebugInfo()) 2902 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 2903 return; 2904 case Decl::NamespaceAlias: 2905 if (CGDebugInfo *DI = getModuleDebugInfo()) 2906 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2907 return; 2908 case Decl::UsingDirective: // using namespace X; [C++] 2909 if (CGDebugInfo *DI = getModuleDebugInfo()) 2910 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2911 return; 2912 case Decl::CXXConstructor: 2913 // Skip function templates 2914 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2915 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2916 return; 2917 2918 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2919 break; 2920 case Decl::CXXDestructor: 2921 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2922 return; 2923 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2924 break; 2925 2926 case Decl::StaticAssert: 2927 // Nothing to do. 2928 break; 2929 2930 // Objective-C Decls 2931 2932 // Forward declarations, no (immediate) code generation. 2933 case Decl::ObjCInterface: 2934 case Decl::ObjCCategory: 2935 break; 2936 2937 case Decl::ObjCProtocol: { 2938 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2939 if (Proto->isThisDeclarationADefinition()) 2940 ObjCRuntime->GenerateProtocol(Proto); 2941 break; 2942 } 2943 2944 case Decl::ObjCCategoryImpl: 2945 // Categories have properties but don't support synthesize so we 2946 // can ignore them here. 2947 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2948 break; 2949 2950 case Decl::ObjCImplementation: { 2951 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2952 EmitObjCPropertyImplementations(OMD); 2953 EmitObjCIvarInitializations(OMD); 2954 ObjCRuntime->GenerateClass(OMD); 2955 // Emit global variable debug information. 2956 if (CGDebugInfo *DI = getModuleDebugInfo()) 2957 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2958 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2959 OMD->getClassInterface()), OMD->getLocation()); 2960 break; 2961 } 2962 case Decl::ObjCMethod: { 2963 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2964 // If this is not a prototype, emit the body. 2965 if (OMD->getBody()) 2966 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2967 break; 2968 } 2969 case Decl::ObjCCompatibleAlias: 2970 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2971 break; 2972 2973 case Decl::LinkageSpec: 2974 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2975 break; 2976 2977 case Decl::FileScopeAsm: { 2978 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2979 StringRef AsmString = AD->getAsmString()->getString(); 2980 2981 const std::string &S = getModule().getModuleInlineAsm(); 2982 if (S.empty()) 2983 getModule().setModuleInlineAsm(AsmString); 2984 else if (S.end()[-1] == '\n') 2985 getModule().setModuleInlineAsm(S + AsmString.str()); 2986 else 2987 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2988 break; 2989 } 2990 2991 case Decl::Import: { 2992 ImportDecl *Import = cast<ImportDecl>(D); 2993 2994 // Ignore import declarations that come from imported modules. 2995 if (clang::Module *Owner = Import->getOwningModule()) { 2996 if (getLangOpts().CurrentModule.empty() || 2997 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2998 break; 2999 } 3000 3001 ImportedModules.insert(Import->getImportedModule()); 3002 break; 3003 } 3004 3005 case Decl::ClassTemplateSpecialization: { 3006 const ClassTemplateSpecializationDecl *Spec = 3007 cast<ClassTemplateSpecializationDecl>(D); 3008 if (DebugInfo && 3009 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3010 DebugInfo->completeTemplateDefinition(*Spec); 3011 } 3012 3013 default: 3014 // Make sure we handled everything we should, every other kind is a 3015 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3016 // function. Need to recode Decl::Kind to do that easily. 3017 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3018 } 3019 } 3020 3021 /// Turns the given pointer into a constant. 3022 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3023 const void *Ptr) { 3024 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3025 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3026 return llvm::ConstantInt::get(i64, PtrInt); 3027 } 3028 3029 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3030 llvm::NamedMDNode *&GlobalMetadata, 3031 GlobalDecl D, 3032 llvm::GlobalValue *Addr) { 3033 if (!GlobalMetadata) 3034 GlobalMetadata = 3035 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3036 3037 // TODO: should we report variant information for ctors/dtors? 3038 llvm::Value *Ops[] = { 3039 Addr, 3040 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3041 }; 3042 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3043 } 3044 3045 /// For each function which is declared within an extern "C" region and marked 3046 /// as 'used', but has internal linkage, create an alias from the unmangled 3047 /// name to the mangled name if possible. People expect to be able to refer 3048 /// to such functions with an unmangled name from inline assembly within the 3049 /// same translation unit. 3050 void CodeGenModule::EmitStaticExternCAliases() { 3051 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3052 E = StaticExternCValues.end(); 3053 I != E; ++I) { 3054 IdentifierInfo *Name = I->first; 3055 llvm::GlobalValue *Val = I->second; 3056 if (Val && !getModule().getNamedValue(Name->getName())) 3057 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3058 Name->getName(), Val, &getModule())); 3059 } 3060 } 3061 3062 /// Emits metadata nodes associating all the global values in the 3063 /// current module with the Decls they came from. This is useful for 3064 /// projects using IR gen as a subroutine. 3065 /// 3066 /// Since there's currently no way to associate an MDNode directly 3067 /// with an llvm::GlobalValue, we create a global named metadata 3068 /// with the name 'clang.global.decl.ptrs'. 3069 void CodeGenModule::EmitDeclMetadata() { 3070 llvm::NamedMDNode *GlobalMetadata = 0; 3071 3072 // StaticLocalDeclMap 3073 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3074 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3075 I != E; ++I) { 3076 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3077 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3078 } 3079 } 3080 3081 /// Emits metadata nodes for all the local variables in the current 3082 /// function. 3083 void CodeGenFunction::EmitDeclMetadata() { 3084 if (LocalDeclMap.empty()) return; 3085 3086 llvm::LLVMContext &Context = getLLVMContext(); 3087 3088 // Find the unique metadata ID for this name. 3089 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3090 3091 llvm::NamedMDNode *GlobalMetadata = 0; 3092 3093 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3094 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3095 const Decl *D = I->first; 3096 llvm::Value *Addr = I->second; 3097 3098 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3099 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3100 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3101 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3102 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3103 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3104 } 3105 } 3106 } 3107 3108 void CodeGenModule::EmitVersionIdentMetadata() { 3109 llvm::NamedMDNode *IdentMetadata = 3110 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3111 std::string Version = getClangFullVersion(); 3112 llvm::LLVMContext &Ctx = TheModule.getContext(); 3113 3114 llvm::Value *IdentNode[] = { 3115 llvm::MDString::get(Ctx, Version) 3116 }; 3117 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3118 } 3119 3120 void CodeGenModule::EmitCoverageFile() { 3121 if (!getCodeGenOpts().CoverageFile.empty()) { 3122 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3123 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3124 llvm::LLVMContext &Ctx = TheModule.getContext(); 3125 llvm::MDString *CoverageFile = 3126 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3127 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3128 llvm::MDNode *CU = CUNode->getOperand(i); 3129 llvm::Value *node[] = { CoverageFile, CU }; 3130 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3131 GCov->addOperand(N); 3132 } 3133 } 3134 } 3135 } 3136 3137 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3138 QualType GuidType) { 3139 // Sema has checked that all uuid strings are of the form 3140 // "12345678-1234-1234-1234-1234567890ab". 3141 assert(Uuid.size() == 36); 3142 for (unsigned i = 0; i < 36; ++i) { 3143 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3144 else assert(isHexDigit(Uuid[i])); 3145 } 3146 3147 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3148 3149 llvm::Constant *Field3[8]; 3150 for (unsigned Idx = 0; Idx < 8; ++Idx) 3151 Field3[Idx] = llvm::ConstantInt::get( 3152 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3153 3154 llvm::Constant *Fields[4] = { 3155 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3156 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3157 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3158 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3159 }; 3160 3161 return llvm::ConstantStruct::getAnon(Fields); 3162 } 3163