xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0e64e0d4fd7c5ae535ba8805c21146a9414f19b3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 void CodeGenModule::checkAliases() {
229   // Check if the constructed aliases are well formed. It is really unfortunate
230   // that we have to do this in CodeGen, but we only construct mangled names
231   // and aliases during codegen.
232   bool Error = false;
233   DiagnosticsEngine &Diags = getDiags();
234   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
235          E = Aliases.end(); I != E; ++I) {
236     const GlobalDecl &GD = *I;
237     const auto *D = cast<ValueDecl>(GD.getDecl());
238     const AliasAttr *AA = D->getAttr<AliasAttr>();
239     StringRef MangledName = getMangledName(GD);
240     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
241     auto *Alias = cast<llvm::GlobalAlias>(Entry);
242     llvm::GlobalValue *GV = Alias->getAliasee();
243     if (GV->isDeclaration()) {
244       Error = true;
245       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
246     }
247 
248     llvm::GlobalObject *Aliasee = Alias->getAliasee();
249     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
250       StringRef AliasSection = SA->getName();
251       if (AliasSection != Aliasee->getSection())
252         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
253             << AliasSection;
254     }
255   }
256   if (!Error)
257     return;
258 
259   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
260          E = Aliases.end(); I != E; ++I) {
261     const GlobalDecl &GD = *I;
262     StringRef MangledName = getMangledName(GD);
263     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
264     auto *Alias = cast<llvm::GlobalAlias>(Entry);
265     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
266     Alias->eraseFromParent();
267   }
268 }
269 
270 void CodeGenModule::clear() {
271   DeferredDeclsToEmit.clear();
272 }
273 
274 void CodeGenModule::Release() {
275   EmitDeferred();
276   applyReplacements();
277   checkAliases();
278   EmitCXXGlobalInitFunc();
279   EmitCXXGlobalDtorFunc();
280   EmitCXXThreadLocalInitFunc();
281   if (ObjCRuntime)
282     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
283       AddGlobalCtor(ObjCInitFunction);
284   if (getCodeGenOpts().ProfileInstrGenerate)
285     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
286       AddGlobalCtor(PGOInit, 0);
287   if (PGOReader && PGOStats.isOutOfDate())
288     getDiags().Report(diag::warn_profile_data_out_of_date)
289         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
290   EmitCtorList(GlobalCtors, "llvm.global_ctors");
291   EmitCtorList(GlobalDtors, "llvm.global_dtors");
292   EmitGlobalAnnotations();
293   EmitStaticExternCAliases();
294   emitLLVMUsed();
295 
296   if (CodeGenOpts.Autolink &&
297       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
298     EmitModuleLinkOptions();
299   }
300   if (CodeGenOpts.DwarfVersion)
301     // We actually want the latest version when there are conflicts.
302     // We can change from Warning to Latest if such mode is supported.
303     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
304                               CodeGenOpts.DwarfVersion);
305   if (DebugInfo)
306     // We support a single version in the linked module. The LLVM
307     // parser will drop debug info with a different version number
308     // (and warn about it, too).
309     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
310                               llvm::DEBUG_METADATA_VERSION);
311 
312   SimplifyPersonality();
313 
314   if (getCodeGenOpts().EmitDeclMetadata)
315     EmitDeclMetadata();
316 
317   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
318     EmitCoverageFile();
319 
320   if (DebugInfo)
321     DebugInfo->finalize();
322 
323   EmitVersionIdentMetadata();
324 }
325 
326 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
327   // Make sure that this type is translated.
328   Types.UpdateCompletedType(TD);
329 }
330 
331 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
332   if (!TBAA)
333     return nullptr;
334   return TBAA->getTBAAInfo(QTy);
335 }
336 
337 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
338   if (!TBAA)
339     return nullptr;
340   return TBAA->getTBAAInfoForVTablePtr();
341 }
342 
343 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
344   if (!TBAA)
345     return nullptr;
346   return TBAA->getTBAAStructInfo(QTy);
347 }
348 
349 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
350   if (!TBAA)
351     return nullptr;
352   return TBAA->getTBAAStructTypeInfo(QTy);
353 }
354 
355 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
356                                                   llvm::MDNode *AccessN,
357                                                   uint64_t O) {
358   if (!TBAA)
359     return nullptr;
360   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
361 }
362 
363 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
364 /// and struct-path aware TBAA, the tag has the same format:
365 /// base type, access type and offset.
366 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
367 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
368                                         llvm::MDNode *TBAAInfo,
369                                         bool ConvertTypeToTag) {
370   if (ConvertTypeToTag && TBAA)
371     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
372                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
373   else
374     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
375 }
376 
377 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
378   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
379   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
380 }
381 
382 /// ErrorUnsupported - Print out an error that codegen doesn't support the
383 /// specified stmt yet.
384 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
385   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
386                                                "cannot compile this %0 yet");
387   std::string Msg = Type;
388   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
389     << Msg << S->getSourceRange();
390 }
391 
392 /// ErrorUnsupported - Print out an error that codegen doesn't support the
393 /// specified decl yet.
394 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
395   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
396                                                "cannot compile this %0 yet");
397   std::string Msg = Type;
398   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
399 }
400 
401 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
402   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
403 }
404 
405 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
406                                         const NamedDecl *D) const {
407   // Internal definitions always have default visibility.
408   if (GV->hasLocalLinkage()) {
409     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
410     return;
411   }
412 
413   // Set visibility for definitions.
414   LinkageInfo LV = D->getLinkageAndVisibility();
415   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
416     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
417 }
418 
419 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
420   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
421       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
422       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
423       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
424       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
425 }
426 
427 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
428     CodeGenOptions::TLSModel M) {
429   switch (M) {
430   case CodeGenOptions::GeneralDynamicTLSModel:
431     return llvm::GlobalVariable::GeneralDynamicTLSModel;
432   case CodeGenOptions::LocalDynamicTLSModel:
433     return llvm::GlobalVariable::LocalDynamicTLSModel;
434   case CodeGenOptions::InitialExecTLSModel:
435     return llvm::GlobalVariable::InitialExecTLSModel;
436   case CodeGenOptions::LocalExecTLSModel:
437     return llvm::GlobalVariable::LocalExecTLSModel;
438   }
439   llvm_unreachable("Invalid TLS model!");
440 }
441 
442 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
443                                const VarDecl &D) const {
444   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
445 
446   llvm::GlobalVariable::ThreadLocalMode TLM;
447   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
448 
449   // Override the TLS model if it is explicitly specified.
450   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
451     TLM = GetLLVMTLSModel(Attr->getModel());
452   }
453 
454   GV->setThreadLocalMode(TLM);
455 }
456 
457 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
458   const auto *ND = cast<NamedDecl>(GD.getDecl());
459 
460   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
461   if (!Str.empty())
462     return Str;
463 
464   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
465     IdentifierInfo *II = ND->getIdentifier();
466     assert(II && "Attempt to mangle unnamed decl.");
467 
468     Str = II->getName();
469     return Str;
470   }
471 
472   SmallString<256> Buffer;
473   llvm::raw_svector_ostream Out(Buffer);
474   if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
476   else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
477     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
478   else
479     getCXXABI().getMangleContext().mangleName(ND, Out);
480 
481   // Allocate space for the mangled name.
482   Out.flush();
483   size_t Length = Buffer.size();
484   char *Name = MangledNamesAllocator.Allocate<char>(Length);
485   std::copy(Buffer.begin(), Buffer.end(), Name);
486 
487   Str = StringRef(Name, Length);
488 
489   return Str;
490 }
491 
492 std::string CodeGenModule::getBlockMangledName(GlobalDecl GD,
493                                                const BlockDecl *BD) {
494   MangleContext &MangleCtx = getCXXABI().getMangleContext();
495   const Decl *D = GD.getDecl();
496 
497   std::string Buffer;
498   llvm::raw_string_ostream Out(Buffer);
499   if (!D)
500     MangleCtx.mangleGlobalBlock(BD,
501       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
502   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
503     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
504   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
505     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
506   else
507     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
508 
509   return Out.str();
510 }
511 
512 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
513   return getModule().getNamedValue(Name);
514 }
515 
516 /// AddGlobalCtor - Add a function to the list that will be called before
517 /// main() runs.
518 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
519                                   llvm::Constant *AssociatedData) {
520   // FIXME: Type coercion of void()* types.
521   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
522 }
523 
524 /// AddGlobalDtor - Add a function to the list that will be called
525 /// when the module is unloaded.
526 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
527   // FIXME: Type coercion of void()* types.
528   GlobalDtors.push_back(Structor(Priority, Dtor, 0));
529 }
530 
531 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
532   // Ctor function type is void()*.
533   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
534   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
535 
536   // Get the type of a ctor entry, { i32, void ()*, i8* }.
537   llvm::StructType *CtorStructTy = llvm::StructType::get(
538       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
539 
540   // Construct the constructor and destructor arrays.
541   SmallVector<llvm::Constant*, 8> Ctors;
542   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
543     llvm::Constant *S[] = {
544       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
545       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
546       (I->AssociatedData
547            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
548            : llvm::Constant::getNullValue(VoidPtrTy))
549     };
550     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
551   }
552 
553   if (!Ctors.empty()) {
554     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
555     new llvm::GlobalVariable(TheModule, AT, false,
556                              llvm::GlobalValue::AppendingLinkage,
557                              llvm::ConstantArray::get(AT, Ctors),
558                              GlobalName);
559   }
560 }
561 
562 llvm::GlobalValue::LinkageTypes
563 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
564   const auto *D = cast<FunctionDecl>(GD.getDecl());
565 
566   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
567 
568   if (isa<CXXDestructorDecl>(D) &&
569       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
570                                          GD.getDtorType())) {
571     // Destructor variants in the Microsoft C++ ABI are always internal or
572     // linkonce_odr thunks emitted on an as-needed basis.
573     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
574                                    : llvm::GlobalValue::LinkOnceODRLinkage;
575   }
576 
577   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
578 }
579 
580 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
581                                                     llvm::Function *F) {
582   setNonAliasAttributes(D, F);
583 }
584 
585 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
586                                               const CGFunctionInfo &Info,
587                                               llvm::Function *F) {
588   unsigned CallingConv;
589   AttributeListType AttributeList;
590   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
591   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
592   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
593 }
594 
595 /// Determines whether the language options require us to model
596 /// unwind exceptions.  We treat -fexceptions as mandating this
597 /// except under the fragile ObjC ABI with only ObjC exceptions
598 /// enabled.  This means, for example, that C with -fexceptions
599 /// enables this.
600 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
601   // If exceptions are completely disabled, obviously this is false.
602   if (!LangOpts.Exceptions) return false;
603 
604   // If C++ exceptions are enabled, this is true.
605   if (LangOpts.CXXExceptions) return true;
606 
607   // If ObjC exceptions are enabled, this depends on the ABI.
608   if (LangOpts.ObjCExceptions) {
609     return LangOpts.ObjCRuntime.hasUnwindExceptions();
610   }
611 
612   return true;
613 }
614 
615 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
616                                                            llvm::Function *F) {
617   llvm::AttrBuilder B;
618 
619   if (CodeGenOpts.UnwindTables)
620     B.addAttribute(llvm::Attribute::UWTable);
621 
622   if (!hasUnwindExceptions(LangOpts))
623     B.addAttribute(llvm::Attribute::NoUnwind);
624 
625   if (D->hasAttr<NakedAttr>()) {
626     // Naked implies noinline: we should not be inlining such functions.
627     B.addAttribute(llvm::Attribute::Naked);
628     B.addAttribute(llvm::Attribute::NoInline);
629   } else if (D->hasAttr<OptimizeNoneAttr>()) {
630     // OptimizeNone implies noinline; we should not be inlining such functions.
631     B.addAttribute(llvm::Attribute::OptimizeNone);
632     B.addAttribute(llvm::Attribute::NoInline);
633   } else if (D->hasAttr<NoDuplicateAttr>()) {
634     B.addAttribute(llvm::Attribute::NoDuplicate);
635   } else if (D->hasAttr<NoInlineAttr>()) {
636     B.addAttribute(llvm::Attribute::NoInline);
637   } else if (D->hasAttr<AlwaysInlineAttr>() &&
638              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
639                                               llvm::Attribute::NoInline)) {
640     // (noinline wins over always_inline, and we can't specify both in IR)
641     B.addAttribute(llvm::Attribute::AlwaysInline);
642   }
643 
644   if (D->hasAttr<ColdAttr>()) {
645     B.addAttribute(llvm::Attribute::OptimizeForSize);
646     B.addAttribute(llvm::Attribute::Cold);
647   }
648 
649   if (D->hasAttr<MinSizeAttr>())
650     B.addAttribute(llvm::Attribute::MinSize);
651 
652   if (D->hasAttr<OptimizeNoneAttr>()) {
653     // OptimizeNone wins over OptimizeForSize and MinSize.
654     B.removeAttribute(llvm::Attribute::OptimizeForSize);
655     B.removeAttribute(llvm::Attribute::MinSize);
656   }
657 
658   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
659     B.addAttribute(llvm::Attribute::StackProtect);
660   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
661     B.addAttribute(llvm::Attribute::StackProtectStrong);
662   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
663     B.addAttribute(llvm::Attribute::StackProtectReq);
664 
665   // Add sanitizer attributes if function is not blacklisted.
666   if (!SanitizerBlacklist->isIn(*F)) {
667     // When AddressSanitizer is enabled, set SanitizeAddress attribute
668     // unless __attribute__((no_sanitize_address)) is used.
669     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
670       B.addAttribute(llvm::Attribute::SanitizeAddress);
671     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
672     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
673       B.addAttribute(llvm::Attribute::SanitizeThread);
674     }
675     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
676     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
677       B.addAttribute(llvm::Attribute::SanitizeMemory);
678   }
679 
680   F->addAttributes(llvm::AttributeSet::FunctionIndex,
681                    llvm::AttributeSet::get(
682                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
683 
684   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
685     F->setUnnamedAddr(true);
686   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
687     if (MD->isVirtual())
688       F->setUnnamedAddr(true);
689 
690   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
691   if (alignment)
692     F->setAlignment(alignment);
693 
694   // C++ ABI requires 2-byte alignment for member functions.
695   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
696     F->setAlignment(2);
697 }
698 
699 void CodeGenModule::SetCommonAttributes(const Decl *D,
700                                         llvm::GlobalValue *GV) {
701   if (const auto *ND = dyn_cast<NamedDecl>(D))
702     setGlobalVisibility(GV, ND);
703   else
704     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
705 
706   if (D->hasAttr<UsedAttr>())
707     addUsedGlobal(GV);
708 }
709 
710 void CodeGenModule::setNonAliasAttributes(const Decl *D,
711                                           llvm::GlobalObject *GO) {
712   SetCommonAttributes(D, GO);
713 
714   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
715     GO->setSection(SA->getName());
716 
717   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
718 }
719 
720 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
721                                                   llvm::Function *F,
722                                                   const CGFunctionInfo &FI) {
723   SetLLVMFunctionAttributes(D, FI, F);
724   SetLLVMFunctionAttributesForDefinition(D, F);
725 
726   F->setLinkage(llvm::Function::InternalLinkage);
727 
728   setNonAliasAttributes(D, F);
729 }
730 
731 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
732                                          const NamedDecl *ND) {
733   // Set linkage and visibility in case we never see a definition.
734   LinkageInfo LV = ND->getLinkageAndVisibility();
735   if (LV.getLinkage() != ExternalLinkage) {
736     // Don't set internal linkage on declarations.
737   } else {
738     if (ND->hasAttr<DLLImportAttr>()) {
739       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
740       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
741     } else if (ND->hasAttr<DLLExportAttr>()) {
742       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
743       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
744     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
745       // "extern_weak" is overloaded in LLVM; we probably should have
746       // separate linkage types for this.
747       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
748     }
749 
750     // Set visibility on a declaration only if it's explicit.
751     if (LV.isVisibilityExplicit())
752       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
753   }
754 }
755 
756 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
757                                           llvm::Function *F,
758                                           bool IsIncompleteFunction) {
759   if (unsigned IID = F->getIntrinsicID()) {
760     // If this is an intrinsic function, set the function's attributes
761     // to the intrinsic's attributes.
762     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
763                                                     (llvm::Intrinsic::ID)IID));
764     return;
765   }
766 
767   const auto *FD = cast<FunctionDecl>(GD.getDecl());
768 
769   if (!IsIncompleteFunction)
770     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
771 
772   // Add the Returned attribute for "this", except for iOS 5 and earlier
773   // where substantial code, including the libstdc++ dylib, was compiled with
774   // GCC and does not actually return "this".
775   if (getCXXABI().HasThisReturn(GD) &&
776       !(getTarget().getTriple().isiOS() &&
777         getTarget().getTriple().isOSVersionLT(6))) {
778     assert(!F->arg_empty() &&
779            F->arg_begin()->getType()
780              ->canLosslesslyBitCastTo(F->getReturnType()) &&
781            "unexpected this return");
782     F->addAttribute(1, llvm::Attribute::Returned);
783   }
784 
785   // Only a few attributes are set on declarations; these may later be
786   // overridden by a definition.
787 
788   setLinkageAndVisibilityForGV(F, FD);
789 
790   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
791     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
792       // Don't dllexport/import destructor thunks.
793       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
794     }
795   }
796 
797   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
798     F->setSection(SA->getName());
799 
800   // A replaceable global allocation function does not act like a builtin by
801   // default, only if it is invoked by a new-expression or delete-expression.
802   if (FD->isReplaceableGlobalAllocationFunction())
803     F->addAttribute(llvm::AttributeSet::FunctionIndex,
804                     llvm::Attribute::NoBuiltin);
805 }
806 
807 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
808   assert(!GV->isDeclaration() &&
809          "Only globals with definition can force usage.");
810   LLVMUsed.push_back(GV);
811 }
812 
813 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
814   assert(!GV->isDeclaration() &&
815          "Only globals with definition can force usage.");
816   LLVMCompilerUsed.push_back(GV);
817 }
818 
819 static void emitUsed(CodeGenModule &CGM, StringRef Name,
820                      std::vector<llvm::WeakVH> &List) {
821   // Don't create llvm.used if there is no need.
822   if (List.empty())
823     return;
824 
825   // Convert List to what ConstantArray needs.
826   SmallVector<llvm::Constant*, 8> UsedArray;
827   UsedArray.resize(List.size());
828   for (unsigned i = 0, e = List.size(); i != e; ++i) {
829     UsedArray[i] =
830      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
831                                     CGM.Int8PtrTy);
832   }
833 
834   if (UsedArray.empty())
835     return;
836   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
837 
838   auto *GV = new llvm::GlobalVariable(
839       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
840       llvm::ConstantArray::get(ATy, UsedArray), Name);
841 
842   GV->setSection("llvm.metadata");
843 }
844 
845 void CodeGenModule::emitLLVMUsed() {
846   emitUsed(*this, "llvm.used", LLVMUsed);
847   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
848 }
849 
850 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
851   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
852   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
853 }
854 
855 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
856   llvm::SmallString<32> Opt;
857   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
858   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
859   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
860 }
861 
862 void CodeGenModule::AddDependentLib(StringRef Lib) {
863   llvm::SmallString<24> Opt;
864   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
865   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
866   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
867 }
868 
869 /// \brief Add link options implied by the given module, including modules
870 /// it depends on, using a postorder walk.
871 static void addLinkOptionsPostorder(CodeGenModule &CGM,
872                                     Module *Mod,
873                                     SmallVectorImpl<llvm::Value *> &Metadata,
874                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
875   // Import this module's parent.
876   if (Mod->Parent && Visited.insert(Mod->Parent)) {
877     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
878   }
879 
880   // Import this module's dependencies.
881   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
882     if (Visited.insert(Mod->Imports[I-1]))
883       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
884   }
885 
886   // Add linker options to link against the libraries/frameworks
887   // described by this module.
888   llvm::LLVMContext &Context = CGM.getLLVMContext();
889   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
890     // Link against a framework.  Frameworks are currently Darwin only, so we
891     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
892     if (Mod->LinkLibraries[I-1].IsFramework) {
893       llvm::Value *Args[2] = {
894         llvm::MDString::get(Context, "-framework"),
895         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
896       };
897 
898       Metadata.push_back(llvm::MDNode::get(Context, Args));
899       continue;
900     }
901 
902     // Link against a library.
903     llvm::SmallString<24> Opt;
904     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
905       Mod->LinkLibraries[I-1].Library, Opt);
906     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
907     Metadata.push_back(llvm::MDNode::get(Context, OptString));
908   }
909 }
910 
911 void CodeGenModule::EmitModuleLinkOptions() {
912   // Collect the set of all of the modules we want to visit to emit link
913   // options, which is essentially the imported modules and all of their
914   // non-explicit child modules.
915   llvm::SetVector<clang::Module *> LinkModules;
916   llvm::SmallPtrSet<clang::Module *, 16> Visited;
917   SmallVector<clang::Module *, 16> Stack;
918 
919   // Seed the stack with imported modules.
920   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
921                                                MEnd = ImportedModules.end();
922        M != MEnd; ++M) {
923     if (Visited.insert(*M))
924       Stack.push_back(*M);
925   }
926 
927   // Find all of the modules to import, making a little effort to prune
928   // non-leaf modules.
929   while (!Stack.empty()) {
930     clang::Module *Mod = Stack.pop_back_val();
931 
932     bool AnyChildren = false;
933 
934     // Visit the submodules of this module.
935     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
936                                         SubEnd = Mod->submodule_end();
937          Sub != SubEnd; ++Sub) {
938       // Skip explicit children; they need to be explicitly imported to be
939       // linked against.
940       if ((*Sub)->IsExplicit)
941         continue;
942 
943       if (Visited.insert(*Sub)) {
944         Stack.push_back(*Sub);
945         AnyChildren = true;
946       }
947     }
948 
949     // We didn't find any children, so add this module to the list of
950     // modules to link against.
951     if (!AnyChildren) {
952       LinkModules.insert(Mod);
953     }
954   }
955 
956   // Add link options for all of the imported modules in reverse topological
957   // order.  We don't do anything to try to order import link flags with respect
958   // to linker options inserted by things like #pragma comment().
959   SmallVector<llvm::Value *, 16> MetadataArgs;
960   Visited.clear();
961   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
962                                                MEnd = LinkModules.end();
963        M != MEnd; ++M) {
964     if (Visited.insert(*M))
965       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
966   }
967   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
968   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
969 
970   // Add the linker options metadata flag.
971   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
972                             llvm::MDNode::get(getLLVMContext(),
973                                               LinkerOptionsMetadata));
974 }
975 
976 void CodeGenModule::EmitDeferred() {
977   // Emit code for any potentially referenced deferred decls.  Since a
978   // previously unused static decl may become used during the generation of code
979   // for a static function, iterate until no changes are made.
980 
981   while (true) {
982     if (!DeferredVTables.empty()) {
983       EmitDeferredVTables();
984 
985       // Emitting a v-table doesn't directly cause more v-tables to
986       // become deferred, although it can cause functions to be
987       // emitted that then need those v-tables.
988       assert(DeferredVTables.empty());
989     }
990 
991     // Stop if we're out of both deferred v-tables and deferred declarations.
992     if (DeferredDeclsToEmit.empty()) break;
993 
994     DeferredGlobal &G = DeferredDeclsToEmit.back();
995     GlobalDecl D = G.GD;
996     llvm::GlobalValue *GV = G.GV;
997     DeferredDeclsToEmit.pop_back();
998 
999     assert(GV == GetGlobalValue(getMangledName(D)));
1000     // Check to see if we've already emitted this.  This is necessary
1001     // for a couple of reasons: first, decls can end up in the
1002     // deferred-decls queue multiple times, and second, decls can end
1003     // up with definitions in unusual ways (e.g. by an extern inline
1004     // function acquiring a strong function redefinition).  Just
1005     // ignore these cases.
1006     if(!GV->isDeclaration())
1007       continue;
1008 
1009     // Otherwise, emit the definition and move on to the next one.
1010     EmitGlobalDefinition(D, GV);
1011   }
1012 }
1013 
1014 void CodeGenModule::EmitGlobalAnnotations() {
1015   if (Annotations.empty())
1016     return;
1017 
1018   // Create a new global variable for the ConstantStruct in the Module.
1019   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1020     Annotations[0]->getType(), Annotations.size()), Annotations);
1021   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1022                                       llvm::GlobalValue::AppendingLinkage,
1023                                       Array, "llvm.global.annotations");
1024   gv->setSection(AnnotationSection);
1025 }
1026 
1027 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1028   llvm::Constant *&AStr = AnnotationStrings[Str];
1029   if (AStr)
1030     return AStr;
1031 
1032   // Not found yet, create a new global.
1033   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1034   auto *gv =
1035       new llvm::GlobalVariable(getModule(), s->getType(), true,
1036                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1037   gv->setSection(AnnotationSection);
1038   gv->setUnnamedAddr(true);
1039   AStr = gv;
1040   return gv;
1041 }
1042 
1043 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1044   SourceManager &SM = getContext().getSourceManager();
1045   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1046   if (PLoc.isValid())
1047     return EmitAnnotationString(PLoc.getFilename());
1048   return EmitAnnotationString(SM.getBufferName(Loc));
1049 }
1050 
1051 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1052   SourceManager &SM = getContext().getSourceManager();
1053   PresumedLoc PLoc = SM.getPresumedLoc(L);
1054   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1055     SM.getExpansionLineNumber(L);
1056   return llvm::ConstantInt::get(Int32Ty, LineNo);
1057 }
1058 
1059 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1060                                                 const AnnotateAttr *AA,
1061                                                 SourceLocation L) {
1062   // Get the globals for file name, annotation, and the line number.
1063   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1064                  *UnitGV = EmitAnnotationUnit(L),
1065                  *LineNoCst = EmitAnnotationLineNo(L);
1066 
1067   // Create the ConstantStruct for the global annotation.
1068   llvm::Constant *Fields[4] = {
1069     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1070     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1071     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1072     LineNoCst
1073   };
1074   return llvm::ConstantStruct::getAnon(Fields);
1075 }
1076 
1077 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1078                                          llvm::GlobalValue *GV) {
1079   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1080   // Get the struct elements for these annotations.
1081   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1082     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1083 }
1084 
1085 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1086   // Never defer when EmitAllDecls is specified.
1087   if (LangOpts.EmitAllDecls)
1088     return false;
1089 
1090   return !getContext().DeclMustBeEmitted(Global);
1091 }
1092 
1093 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1094     const CXXUuidofExpr* E) {
1095   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1096   // well-formed.
1097   StringRef Uuid = E->getUuidAsStringRef(Context);
1098   std::string Name = "_GUID_" + Uuid.lower();
1099   std::replace(Name.begin(), Name.end(), '-', '_');
1100 
1101   // Look for an existing global.
1102   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1103     return GV;
1104 
1105   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1106   assert(Init && "failed to initialize as constant");
1107 
1108   auto *GV = new llvm::GlobalVariable(
1109       getModule(), Init->getType(),
1110       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1111   return GV;
1112 }
1113 
1114 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1115   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1116   assert(AA && "No alias?");
1117 
1118   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1119 
1120   // See if there is already something with the target's name in the module.
1121   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1122   if (Entry) {
1123     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1124     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1125   }
1126 
1127   llvm::Constant *Aliasee;
1128   if (isa<llvm::FunctionType>(DeclTy))
1129     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1130                                       GlobalDecl(cast<FunctionDecl>(VD)),
1131                                       /*ForVTable=*/false);
1132   else
1133     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1134                                     llvm::PointerType::getUnqual(DeclTy),
1135                                     nullptr);
1136 
1137   auto *F = cast<llvm::GlobalValue>(Aliasee);
1138   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1139   WeakRefReferences.insert(F);
1140 
1141   return Aliasee;
1142 }
1143 
1144 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1145   const auto *Global = cast<ValueDecl>(GD.getDecl());
1146 
1147   // Weak references don't produce any output by themselves.
1148   if (Global->hasAttr<WeakRefAttr>())
1149     return;
1150 
1151   // If this is an alias definition (which otherwise looks like a declaration)
1152   // emit it now.
1153   if (Global->hasAttr<AliasAttr>())
1154     return EmitAliasDefinition(GD);
1155 
1156   // If this is CUDA, be selective about which declarations we emit.
1157   if (LangOpts.CUDA) {
1158     if (CodeGenOpts.CUDAIsDevice) {
1159       if (!Global->hasAttr<CUDADeviceAttr>() &&
1160           !Global->hasAttr<CUDAGlobalAttr>() &&
1161           !Global->hasAttr<CUDAConstantAttr>() &&
1162           !Global->hasAttr<CUDASharedAttr>())
1163         return;
1164     } else {
1165       if (!Global->hasAttr<CUDAHostAttr>() && (
1166             Global->hasAttr<CUDADeviceAttr>() ||
1167             Global->hasAttr<CUDAConstantAttr>() ||
1168             Global->hasAttr<CUDASharedAttr>()))
1169         return;
1170     }
1171   }
1172 
1173   // Ignore declarations, they will be emitted on their first use.
1174   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1175     // Forward declarations are emitted lazily on first use.
1176     if (!FD->doesThisDeclarationHaveABody()) {
1177       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1178         return;
1179 
1180       StringRef MangledName = getMangledName(GD);
1181 
1182       // Compute the function info and LLVM type.
1183       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1184       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1185 
1186       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1187                               /*DontDefer=*/false);
1188       return;
1189     }
1190   } else {
1191     const auto *VD = cast<VarDecl>(Global);
1192     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1193 
1194     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1195       return;
1196   }
1197 
1198   // Defer code generation when possible if this is a static definition, inline
1199   // function etc.  These we only want to emit if they are used.
1200   if (!MayDeferGeneration(Global)) {
1201     // Emit the definition if it can't be deferred.
1202     EmitGlobalDefinition(GD);
1203     return;
1204   }
1205 
1206   // If we're deferring emission of a C++ variable with an
1207   // initializer, remember the order in which it appeared in the file.
1208   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1209       cast<VarDecl>(Global)->hasInit()) {
1210     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1211     CXXGlobalInits.push_back(nullptr);
1212   }
1213 
1214   // If the value has already been used, add it directly to the
1215   // DeferredDeclsToEmit list.
1216   StringRef MangledName = getMangledName(GD);
1217   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1218     addDeferredDeclToEmit(GV, GD);
1219   else {
1220     // Otherwise, remember that we saw a deferred decl with this name.  The
1221     // first use of the mangled name will cause it to move into
1222     // DeferredDeclsToEmit.
1223     DeferredDecls[MangledName] = GD;
1224   }
1225 }
1226 
1227 namespace {
1228   struct FunctionIsDirectlyRecursive :
1229     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1230     const StringRef Name;
1231     const Builtin::Context &BI;
1232     bool Result;
1233     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1234       Name(N), BI(C), Result(false) {
1235     }
1236     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1237 
1238     bool TraverseCallExpr(CallExpr *E) {
1239       const FunctionDecl *FD = E->getDirectCallee();
1240       if (!FD)
1241         return true;
1242       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1243       if (Attr && Name == Attr->getLabel()) {
1244         Result = true;
1245         return false;
1246       }
1247       unsigned BuiltinID = FD->getBuiltinID();
1248       if (!BuiltinID)
1249         return true;
1250       StringRef BuiltinName = BI.GetName(BuiltinID);
1251       if (BuiltinName.startswith("__builtin_") &&
1252           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1253         Result = true;
1254         return false;
1255       }
1256       return true;
1257     }
1258   };
1259 }
1260 
1261 // isTriviallyRecursive - Check if this function calls another
1262 // decl that, because of the asm attribute or the other decl being a builtin,
1263 // ends up pointing to itself.
1264 bool
1265 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1266   StringRef Name;
1267   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1268     // asm labels are a special kind of mangling we have to support.
1269     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1270     if (!Attr)
1271       return false;
1272     Name = Attr->getLabel();
1273   } else {
1274     Name = FD->getName();
1275   }
1276 
1277   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1278   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1279   return Walker.Result;
1280 }
1281 
1282 bool
1283 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1284   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1285     return true;
1286   const auto *F = cast<FunctionDecl>(GD.getDecl());
1287   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1288     return false;
1289   // PR9614. Avoid cases where the source code is lying to us. An available
1290   // externally function should have an equivalent function somewhere else,
1291   // but a function that calls itself is clearly not equivalent to the real
1292   // implementation.
1293   // This happens in glibc's btowc and in some configure checks.
1294   return !isTriviallyRecursive(F);
1295 }
1296 
1297 /// If the type for the method's class was generated by
1298 /// CGDebugInfo::createContextChain(), the cache contains only a
1299 /// limited DIType without any declarations. Since EmitFunctionStart()
1300 /// needs to find the canonical declaration for each method, we need
1301 /// to construct the complete type prior to emitting the method.
1302 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1303   if (!D->isInstance())
1304     return;
1305 
1306   if (CGDebugInfo *DI = getModuleDebugInfo())
1307     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1308       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1309       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1310     }
1311 }
1312 
1313 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1314   const auto *D = cast<ValueDecl>(GD.getDecl());
1315 
1316   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1317                                  Context.getSourceManager(),
1318                                  "Generating code for declaration");
1319 
1320   if (isa<FunctionDecl>(D)) {
1321     // At -O0, don't generate IR for functions with available_externally
1322     // linkage.
1323     if (!shouldEmitFunction(GD))
1324       return;
1325 
1326     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1327       CompleteDIClassType(Method);
1328       // Make sure to emit the definition(s) before we emit the thunks.
1329       // This is necessary for the generation of certain thunks.
1330       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1331         EmitCXXConstructor(CD, GD.getCtorType());
1332       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1333         EmitCXXDestructor(DD, GD.getDtorType());
1334       else
1335         EmitGlobalFunctionDefinition(GD, GV);
1336 
1337       if (Method->isVirtual())
1338         getVTables().EmitThunks(GD);
1339 
1340       return;
1341     }
1342 
1343     return EmitGlobalFunctionDefinition(GD, GV);
1344   }
1345 
1346   if (const auto *VD = dyn_cast<VarDecl>(D))
1347     return EmitGlobalVarDefinition(VD);
1348 
1349   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1350 }
1351 
1352 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1353 /// module, create and return an llvm Function with the specified type. If there
1354 /// is something in the module with the specified name, return it potentially
1355 /// bitcasted to the right type.
1356 ///
1357 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1358 /// to set the attributes on the function when it is first created.
1359 llvm::Constant *
1360 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1361                                        llvm::Type *Ty,
1362                                        GlobalDecl GD, bool ForVTable,
1363                                        bool DontDefer,
1364                                        llvm::AttributeSet ExtraAttrs) {
1365   const Decl *D = GD.getDecl();
1366 
1367   // Lookup the entry, lazily creating it if necessary.
1368   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1369   if (Entry) {
1370     if (WeakRefReferences.erase(Entry)) {
1371       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1372       if (FD && !FD->hasAttr<WeakAttr>())
1373         Entry->setLinkage(llvm::Function::ExternalLinkage);
1374     }
1375 
1376     if (Entry->getType()->getElementType() == Ty)
1377       return Entry;
1378 
1379     // Make sure the result is of the correct type.
1380     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1381   }
1382 
1383   // This function doesn't have a complete type (for example, the return
1384   // type is an incomplete struct). Use a fake type instead, and make
1385   // sure not to try to set attributes.
1386   bool IsIncompleteFunction = false;
1387 
1388   llvm::FunctionType *FTy;
1389   if (isa<llvm::FunctionType>(Ty)) {
1390     FTy = cast<llvm::FunctionType>(Ty);
1391   } else {
1392     FTy = llvm::FunctionType::get(VoidTy, false);
1393     IsIncompleteFunction = true;
1394   }
1395 
1396   llvm::Function *F = llvm::Function::Create(FTy,
1397                                              llvm::Function::ExternalLinkage,
1398                                              MangledName, &getModule());
1399   assert(F->getName() == MangledName && "name was uniqued!");
1400   if (D)
1401     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1402   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1403     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1404     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1405                      llvm::AttributeSet::get(VMContext,
1406                                              llvm::AttributeSet::FunctionIndex,
1407                                              B));
1408   }
1409 
1410   if (!DontDefer) {
1411     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1412     // each other bottoming out with the base dtor.  Therefore we emit non-base
1413     // dtors on usage, even if there is no dtor definition in the TU.
1414     if (D && isa<CXXDestructorDecl>(D) &&
1415         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1416                                            GD.getDtorType()))
1417       addDeferredDeclToEmit(F, GD);
1418 
1419     // This is the first use or definition of a mangled name.  If there is a
1420     // deferred decl with this name, remember that we need to emit it at the end
1421     // of the file.
1422     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1423     if (DDI != DeferredDecls.end()) {
1424       // Move the potentially referenced deferred decl to the
1425       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1426       // don't need it anymore).
1427       addDeferredDeclToEmit(F, DDI->second);
1428       DeferredDecls.erase(DDI);
1429 
1430       // Otherwise, if this is a sized deallocation function, emit a weak
1431       // definition
1432       // for it at the end of the translation unit.
1433     } else if (D && cast<FunctionDecl>(D)
1434                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1435       addDeferredDeclToEmit(F, GD);
1436 
1437       // Otherwise, there are cases we have to worry about where we're
1438       // using a declaration for which we must emit a definition but where
1439       // we might not find a top-level definition:
1440       //   - member functions defined inline in their classes
1441       //   - friend functions defined inline in some class
1442       //   - special member functions with implicit definitions
1443       // If we ever change our AST traversal to walk into class methods,
1444       // this will be unnecessary.
1445       //
1446       // We also don't emit a definition for a function if it's going to be an
1447       // entry
1448       // in a vtable, unless it's already marked as used.
1449     } else if (getLangOpts().CPlusPlus && D) {
1450       // Look for a declaration that's lexically in a record.
1451       const auto *FD = cast<FunctionDecl>(D);
1452       FD = FD->getMostRecentDecl();
1453       do {
1454         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1455           if (FD->isImplicit() && !ForVTable) {
1456             assert(FD->isUsed() &&
1457                    "Sema didn't mark implicit function as used!");
1458             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1459             break;
1460           } else if (FD->doesThisDeclarationHaveABody()) {
1461             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1462             break;
1463           }
1464         }
1465         FD = FD->getPreviousDecl();
1466       } while (FD);
1467     }
1468   }
1469 
1470   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1471 
1472   // Make sure the result is of the requested type.
1473   if (!IsIncompleteFunction) {
1474     assert(F->getType()->getElementType() == Ty);
1475     return F;
1476   }
1477 
1478   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1479   return llvm::ConstantExpr::getBitCast(F, PTy);
1480 }
1481 
1482 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1483 /// non-null, then this function will use the specified type if it has to
1484 /// create it (this occurs when we see a definition of the function).
1485 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1486                                                  llvm::Type *Ty,
1487                                                  bool ForVTable,
1488                                                  bool DontDefer) {
1489   // If there was no specific requested type, just convert it now.
1490   if (!Ty)
1491     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1492 
1493   StringRef MangledName = getMangledName(GD);
1494   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1495 }
1496 
1497 /// CreateRuntimeFunction - Create a new runtime function with the specified
1498 /// type and name.
1499 llvm::Constant *
1500 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1501                                      StringRef Name,
1502                                      llvm::AttributeSet ExtraAttrs) {
1503   llvm::Constant *C =
1504       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1505                               /*DontDefer=*/false, ExtraAttrs);
1506   if (auto *F = dyn_cast<llvm::Function>(C))
1507     if (F->empty())
1508       F->setCallingConv(getRuntimeCC());
1509   return C;
1510 }
1511 
1512 /// isTypeConstant - Determine whether an object of this type can be emitted
1513 /// as a constant.
1514 ///
1515 /// If ExcludeCtor is true, the duration when the object's constructor runs
1516 /// will not be considered. The caller will need to verify that the object is
1517 /// not written to during its construction.
1518 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1519   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1520     return false;
1521 
1522   if (Context.getLangOpts().CPlusPlus) {
1523     if (const CXXRecordDecl *Record
1524           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1525       return ExcludeCtor && !Record->hasMutableFields() &&
1526              Record->hasTrivialDestructor();
1527   }
1528 
1529   return true;
1530 }
1531 
1532 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1533   if (!VD->isStaticDataMember())
1534     return false;
1535   const VarDecl *InitDecl;
1536   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1537   if (!InitExpr)
1538     return false;
1539   if (InitDecl->isThisDeclarationADefinition())
1540     return false;
1541   return true;
1542 }
1543 
1544 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1545 /// create and return an llvm GlobalVariable with the specified type.  If there
1546 /// is something in the module with the specified name, return it potentially
1547 /// bitcasted to the right type.
1548 ///
1549 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1550 /// to set the attributes on the global when it is first created.
1551 llvm::Constant *
1552 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1553                                      llvm::PointerType *Ty,
1554                                      const VarDecl *D) {
1555   // Lookup the entry, lazily creating it if necessary.
1556   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1557   if (Entry) {
1558     if (WeakRefReferences.erase(Entry)) {
1559       if (D && !D->hasAttr<WeakAttr>())
1560         Entry->setLinkage(llvm::Function::ExternalLinkage);
1561     }
1562 
1563     if (Entry->getType() == Ty)
1564       return Entry;
1565 
1566     // Make sure the result is of the correct type.
1567     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1568       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1569 
1570     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1571   }
1572 
1573   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1574   auto *GV = new llvm::GlobalVariable(
1575       getModule(), Ty->getElementType(), false,
1576       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1577       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1578 
1579   // This is the first use or definition of a mangled name.  If there is a
1580   // deferred decl with this name, remember that we need to emit it at the end
1581   // of the file.
1582   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1583   if (DDI != DeferredDecls.end()) {
1584     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1585     // list, and remove it from DeferredDecls (since we don't need it anymore).
1586     addDeferredDeclToEmit(GV, DDI->second);
1587     DeferredDecls.erase(DDI);
1588   }
1589 
1590   // Handle things which are present even on external declarations.
1591   if (D) {
1592     // FIXME: This code is overly simple and should be merged with other global
1593     // handling.
1594     GV->setConstant(isTypeConstant(D->getType(), false));
1595 
1596     setLinkageAndVisibilityForGV(GV, D);
1597 
1598     if (D->getTLSKind()) {
1599       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1600         CXXThreadLocals.push_back(std::make_pair(D, GV));
1601       setTLSMode(GV, *D);
1602     }
1603 
1604     // If required by the ABI, treat declarations of static data members with
1605     // inline initializers as definitions.
1606     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1607         isVarDeclInlineInitializedStaticDataMember(D))
1608       EmitGlobalVarDefinition(D);
1609 
1610     // Handle XCore specific ABI requirements.
1611     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1612         D->getLanguageLinkage() == CLanguageLinkage &&
1613         D->getType().isConstant(Context) &&
1614         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1615       GV->setSection(".cp.rodata");
1616   }
1617 
1618   if (AddrSpace != Ty->getAddressSpace())
1619     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1620 
1621   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1622 
1623   return GV;
1624 }
1625 
1626 
1627 llvm::GlobalVariable *
1628 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1629                                       llvm::Type *Ty,
1630                                       llvm::GlobalValue::LinkageTypes Linkage) {
1631   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1632   llvm::GlobalVariable *OldGV = nullptr;
1633 
1634   if (GV) {
1635     // Check if the variable has the right type.
1636     if (GV->getType()->getElementType() == Ty)
1637       return GV;
1638 
1639     // Because C++ name mangling, the only way we can end up with an already
1640     // existing global with the same name is if it has been declared extern "C".
1641     assert(GV->isDeclaration() && "Declaration has wrong type!");
1642     OldGV = GV;
1643   }
1644 
1645   // Create a new variable.
1646   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1647                                 Linkage, nullptr, Name);
1648 
1649   if (OldGV) {
1650     // Replace occurrences of the old variable if needed.
1651     GV->takeName(OldGV);
1652 
1653     if (!OldGV->use_empty()) {
1654       llvm::Constant *NewPtrForOldDecl =
1655       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1656       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1657     }
1658 
1659     OldGV->eraseFromParent();
1660   }
1661 
1662   return GV;
1663 }
1664 
1665 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1666 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1667 /// then it will be created with the specified type instead of whatever the
1668 /// normal requested type would be.
1669 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1670                                                   llvm::Type *Ty) {
1671   assert(D->hasGlobalStorage() && "Not a global variable");
1672   QualType ASTTy = D->getType();
1673   if (!Ty)
1674     Ty = getTypes().ConvertTypeForMem(ASTTy);
1675 
1676   llvm::PointerType *PTy =
1677     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1678 
1679   StringRef MangledName = getMangledName(D);
1680   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1681 }
1682 
1683 /// CreateRuntimeVariable - Create a new runtime global variable with the
1684 /// specified type and name.
1685 llvm::Constant *
1686 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1687                                      StringRef Name) {
1688   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1689 }
1690 
1691 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1692   assert(!D->getInit() && "Cannot emit definite definitions here!");
1693 
1694   if (MayDeferGeneration(D)) {
1695     // If we have not seen a reference to this variable yet, place it
1696     // into the deferred declarations table to be emitted if needed
1697     // later.
1698     StringRef MangledName = getMangledName(D);
1699     if (!GetGlobalValue(MangledName)) {
1700       DeferredDecls[MangledName] = D;
1701       return;
1702     }
1703   }
1704 
1705   // The tentative definition is the only definition.
1706   EmitGlobalVarDefinition(D);
1707 }
1708 
1709 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1710     return Context.toCharUnitsFromBits(
1711       TheDataLayout.getTypeStoreSizeInBits(Ty));
1712 }
1713 
1714 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1715                                                  unsigned AddrSpace) {
1716   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1717     if (D->hasAttr<CUDAConstantAttr>())
1718       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1719     else if (D->hasAttr<CUDASharedAttr>())
1720       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1721     else
1722       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1723   }
1724 
1725   return AddrSpace;
1726 }
1727 
1728 template<typename SomeDecl>
1729 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1730                                                llvm::GlobalValue *GV) {
1731   if (!getLangOpts().CPlusPlus)
1732     return;
1733 
1734   // Must have 'used' attribute, or else inline assembly can't rely on
1735   // the name existing.
1736   if (!D->template hasAttr<UsedAttr>())
1737     return;
1738 
1739   // Must have internal linkage and an ordinary name.
1740   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1741     return;
1742 
1743   // Must be in an extern "C" context. Entities declared directly within
1744   // a record are not extern "C" even if the record is in such a context.
1745   const SomeDecl *First = D->getFirstDecl();
1746   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1747     return;
1748 
1749   // OK, this is an internal linkage entity inside an extern "C" linkage
1750   // specification. Make a note of that so we can give it the "expected"
1751   // mangled name if nothing else is using that name.
1752   std::pair<StaticExternCMap::iterator, bool> R =
1753       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1754 
1755   // If we have multiple internal linkage entities with the same name
1756   // in extern "C" regions, none of them gets that name.
1757   if (!R.second)
1758     R.first->second = nullptr;
1759 }
1760 
1761 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1762   llvm::Constant *Init = nullptr;
1763   QualType ASTTy = D->getType();
1764   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1765   bool NeedsGlobalCtor = false;
1766   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1767 
1768   const VarDecl *InitDecl;
1769   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1770 
1771   if (!InitExpr) {
1772     // This is a tentative definition; tentative definitions are
1773     // implicitly initialized with { 0 }.
1774     //
1775     // Note that tentative definitions are only emitted at the end of
1776     // a translation unit, so they should never have incomplete
1777     // type. In addition, EmitTentativeDefinition makes sure that we
1778     // never attempt to emit a tentative definition if a real one
1779     // exists. A use may still exists, however, so we still may need
1780     // to do a RAUW.
1781     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1782     Init = EmitNullConstant(D->getType());
1783   } else {
1784     initializedGlobalDecl = GlobalDecl(D);
1785     Init = EmitConstantInit(*InitDecl);
1786 
1787     if (!Init) {
1788       QualType T = InitExpr->getType();
1789       if (D->getType()->isReferenceType())
1790         T = D->getType();
1791 
1792       if (getLangOpts().CPlusPlus) {
1793         Init = EmitNullConstant(T);
1794         NeedsGlobalCtor = true;
1795       } else {
1796         ErrorUnsupported(D, "static initializer");
1797         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1798       }
1799     } else {
1800       // We don't need an initializer, so remove the entry for the delayed
1801       // initializer position (just in case this entry was delayed) if we
1802       // also don't need to register a destructor.
1803       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1804         DelayedCXXInitPosition.erase(D);
1805     }
1806   }
1807 
1808   llvm::Type* InitType = Init->getType();
1809   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1810 
1811   // Strip off a bitcast if we got one back.
1812   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1813     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1814            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1815            // All zero index gep.
1816            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1817     Entry = CE->getOperand(0);
1818   }
1819 
1820   // Entry is now either a Function or GlobalVariable.
1821   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1822 
1823   // We have a definition after a declaration with the wrong type.
1824   // We must make a new GlobalVariable* and update everything that used OldGV
1825   // (a declaration or tentative definition) with the new GlobalVariable*
1826   // (which will be a definition).
1827   //
1828   // This happens if there is a prototype for a global (e.g.
1829   // "extern int x[];") and then a definition of a different type (e.g.
1830   // "int x[10];"). This also happens when an initializer has a different type
1831   // from the type of the global (this happens with unions).
1832   if (!GV ||
1833       GV->getType()->getElementType() != InitType ||
1834       GV->getType()->getAddressSpace() !=
1835        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1836 
1837     // Move the old entry aside so that we'll create a new one.
1838     Entry->setName(StringRef());
1839 
1840     // Make a new global with the correct type, this is now guaranteed to work.
1841     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1842 
1843     // Replace all uses of the old global with the new global
1844     llvm::Constant *NewPtrForOldDecl =
1845         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1846     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1847 
1848     // Erase the old global, since it is no longer used.
1849     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1850   }
1851 
1852   MaybeHandleStaticInExternC(D, GV);
1853 
1854   if (D->hasAttr<AnnotateAttr>())
1855     AddGlobalAnnotations(D, GV);
1856 
1857   GV->setInitializer(Init);
1858 
1859   // If it is safe to mark the global 'constant', do so now.
1860   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1861                   isTypeConstant(D->getType(), true));
1862 
1863   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1864 
1865   // Set the llvm linkage type as appropriate.
1866   llvm::GlobalValue::LinkageTypes Linkage =
1867       getLLVMLinkageVarDefinition(D, GV->isConstant());
1868   GV->setLinkage(Linkage);
1869   if (D->hasAttr<DLLImportAttr>())
1870     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1871   else if (D->hasAttr<DLLExportAttr>())
1872     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1873 
1874   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1875     // common vars aren't constant even if declared const.
1876     GV->setConstant(false);
1877 
1878   setNonAliasAttributes(D, GV);
1879 
1880   // Emit the initializer function if necessary.
1881   if (NeedsGlobalCtor || NeedsGlobalDtor)
1882     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1883 
1884   // If we are compiling with ASan, add metadata indicating dynamically
1885   // initialized (and not blacklisted) globals.
1886   if (SanOpts.Address && NeedsGlobalCtor &&
1887       !SanitizerBlacklist->isIn(*GV, "init")) {
1888     llvm::NamedMDNode *DynamicInitializers = TheModule.getOrInsertNamedMetadata(
1889         "llvm.asan.dynamically_initialized_globals");
1890     llvm::Value *GlobalToAdd[] = { GV };
1891     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1892     DynamicInitializers->addOperand(ThisGlobal);
1893   }
1894 
1895   // Emit global variable debug information.
1896   if (CGDebugInfo *DI = getModuleDebugInfo())
1897     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1898       DI->EmitGlobalVariable(GV, D);
1899 }
1900 
1901 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1902   // Don't give variables common linkage if -fno-common was specified unless it
1903   // was overridden by a NoCommon attribute.
1904   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1905     return true;
1906 
1907   // C11 6.9.2/2:
1908   //   A declaration of an identifier for an object that has file scope without
1909   //   an initializer, and without a storage-class specifier or with the
1910   //   storage-class specifier static, constitutes a tentative definition.
1911   if (D->getInit() || D->hasExternalStorage())
1912     return true;
1913 
1914   // A variable cannot be both common and exist in a section.
1915   if (D->hasAttr<SectionAttr>())
1916     return true;
1917 
1918   // Thread local vars aren't considered common linkage.
1919   if (D->getTLSKind())
1920     return true;
1921 
1922   // Tentative definitions marked with WeakImportAttr are true definitions.
1923   if (D->hasAttr<WeakImportAttr>())
1924     return true;
1925 
1926   return false;
1927 }
1928 
1929 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1930     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
1931   if (Linkage == GVA_Internal)
1932     return llvm::Function::InternalLinkage;
1933 
1934   if (D->hasAttr<WeakAttr>()) {
1935     if (IsConstantVariable)
1936       return llvm::GlobalVariable::WeakODRLinkage;
1937     else
1938       return llvm::GlobalVariable::WeakAnyLinkage;
1939   }
1940 
1941   // We are guaranteed to have a strong definition somewhere else,
1942   // so we can use available_externally linkage.
1943   if (Linkage == GVA_AvailableExternally)
1944     return llvm::Function::AvailableExternallyLinkage;
1945 
1946   // Note that Apple's kernel linker doesn't support symbol
1947   // coalescing, so we need to avoid linkonce and weak linkages there.
1948   // Normally, this means we just map to internal, but for explicit
1949   // instantiations we'll map to external.
1950 
1951   // In C++, the compiler has to emit a definition in every translation unit
1952   // that references the function.  We should use linkonce_odr because
1953   // a) if all references in this translation unit are optimized away, we
1954   // don't need to codegen it.  b) if the function persists, it needs to be
1955   // merged with other definitions. c) C++ has the ODR, so we know the
1956   // definition is dependable.
1957   if (Linkage == GVA_DiscardableODR)
1958     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
1959                                             : llvm::Function::InternalLinkage;
1960 
1961   // An explicit instantiation of a template has weak linkage, since
1962   // explicit instantiations can occur in multiple translation units
1963   // and must all be equivalent. However, we are not allowed to
1964   // throw away these explicit instantiations.
1965   if (Linkage == GVA_StrongODR)
1966     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1967                                             : llvm::Function::ExternalLinkage;
1968 
1969   // If required by the ABI, give definitions of static data members with inline
1970   // initializers at least linkonce_odr linkage.
1971   auto const VD = dyn_cast<VarDecl>(D);
1972   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1973       VD && isVarDeclInlineInitializedStaticDataMember(VD)) {
1974     if (VD->hasAttr<DLLImportAttr>())
1975       return llvm::GlobalValue::AvailableExternallyLinkage;
1976     if (VD->hasAttr<DLLExportAttr>())
1977       return llvm::GlobalValue::WeakODRLinkage;
1978     return llvm::GlobalValue::LinkOnceODRLinkage;
1979   }
1980 
1981   // C++ doesn't have tentative definitions and thus cannot have common
1982   // linkage.
1983   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
1984       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
1985     return llvm::GlobalVariable::CommonLinkage;
1986 
1987   // selectany symbols are externally visible, so use weak instead of
1988   // linkonce.  MSVC optimizes away references to const selectany globals, so
1989   // all definitions should be the same and ODR linkage should be used.
1990   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1991   if (D->hasAttr<SelectAnyAttr>())
1992     return llvm::GlobalVariable::WeakODRLinkage;
1993 
1994   // Otherwise, we have strong external linkage.
1995   assert(Linkage == GVA_StrongExternal);
1996   return llvm::GlobalVariable::ExternalLinkage;
1997 }
1998 
1999 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2000     const VarDecl *VD, bool IsConstant) {
2001   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2002   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2003 }
2004 
2005 /// Replace the uses of a function that was declared with a non-proto type.
2006 /// We want to silently drop extra arguments from call sites
2007 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2008                                           llvm::Function *newFn) {
2009   // Fast path.
2010   if (old->use_empty()) return;
2011 
2012   llvm::Type *newRetTy = newFn->getReturnType();
2013   SmallVector<llvm::Value*, 4> newArgs;
2014 
2015   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2016          ui != ue; ) {
2017     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2018     llvm::User *user = use->getUser();
2019 
2020     // Recognize and replace uses of bitcasts.  Most calls to
2021     // unprototyped functions will use bitcasts.
2022     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2023       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2024         replaceUsesOfNonProtoConstant(bitcast, newFn);
2025       continue;
2026     }
2027 
2028     // Recognize calls to the function.
2029     llvm::CallSite callSite(user);
2030     if (!callSite) continue;
2031     if (!callSite.isCallee(&*use)) continue;
2032 
2033     // If the return types don't match exactly, then we can't
2034     // transform this call unless it's dead.
2035     if (callSite->getType() != newRetTy && !callSite->use_empty())
2036       continue;
2037 
2038     // Get the call site's attribute list.
2039     SmallVector<llvm::AttributeSet, 8> newAttrs;
2040     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2041 
2042     // Collect any return attributes from the call.
2043     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2044       newAttrs.push_back(
2045         llvm::AttributeSet::get(newFn->getContext(),
2046                                 oldAttrs.getRetAttributes()));
2047 
2048     // If the function was passed too few arguments, don't transform.
2049     unsigned newNumArgs = newFn->arg_size();
2050     if (callSite.arg_size() < newNumArgs) continue;
2051 
2052     // If extra arguments were passed, we silently drop them.
2053     // If any of the types mismatch, we don't transform.
2054     unsigned argNo = 0;
2055     bool dontTransform = false;
2056     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2057            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2058       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2059         dontTransform = true;
2060         break;
2061       }
2062 
2063       // Add any parameter attributes.
2064       if (oldAttrs.hasAttributes(argNo + 1))
2065         newAttrs.
2066           push_back(llvm::
2067                     AttributeSet::get(newFn->getContext(),
2068                                       oldAttrs.getParamAttributes(argNo + 1)));
2069     }
2070     if (dontTransform)
2071       continue;
2072 
2073     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2074       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2075                                                  oldAttrs.getFnAttributes()));
2076 
2077     // Okay, we can transform this.  Create the new call instruction and copy
2078     // over the required information.
2079     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2080 
2081     llvm::CallSite newCall;
2082     if (callSite.isCall()) {
2083       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2084                                        callSite.getInstruction());
2085     } else {
2086       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2087       newCall = llvm::InvokeInst::Create(newFn,
2088                                          oldInvoke->getNormalDest(),
2089                                          oldInvoke->getUnwindDest(),
2090                                          newArgs, "",
2091                                          callSite.getInstruction());
2092     }
2093     newArgs.clear(); // for the next iteration
2094 
2095     if (!newCall->getType()->isVoidTy())
2096       newCall->takeName(callSite.getInstruction());
2097     newCall.setAttributes(
2098                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2099     newCall.setCallingConv(callSite.getCallingConv());
2100 
2101     // Finally, remove the old call, replacing any uses with the new one.
2102     if (!callSite->use_empty())
2103       callSite->replaceAllUsesWith(newCall.getInstruction());
2104 
2105     // Copy debug location attached to CI.
2106     if (!callSite->getDebugLoc().isUnknown())
2107       newCall->setDebugLoc(callSite->getDebugLoc());
2108     callSite->eraseFromParent();
2109   }
2110 }
2111 
2112 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2113 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2114 /// existing call uses of the old function in the module, this adjusts them to
2115 /// call the new function directly.
2116 ///
2117 /// This is not just a cleanup: the always_inline pass requires direct calls to
2118 /// functions to be able to inline them.  If there is a bitcast in the way, it
2119 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2120 /// run at -O0.
2121 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2122                                                       llvm::Function *NewFn) {
2123   // If we're redefining a global as a function, don't transform it.
2124   if (!isa<llvm::Function>(Old)) return;
2125 
2126   replaceUsesOfNonProtoConstant(Old, NewFn);
2127 }
2128 
2129 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2130   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2131   // If we have a definition, this might be a deferred decl. If the
2132   // instantiation is explicit, make sure we emit it at the end.
2133   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2134     GetAddrOfGlobalVar(VD);
2135 
2136   EmitTopLevelDecl(VD);
2137 }
2138 
2139 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2140                                                  llvm::GlobalValue *GV) {
2141   const auto *D = cast<FunctionDecl>(GD.getDecl());
2142 
2143   // Compute the function info and LLVM type.
2144   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2145   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2146 
2147   // Get or create the prototype for the function.
2148   if (!GV) {
2149     llvm::Constant *C =
2150         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2151 
2152     // Strip off a bitcast if we got one back.
2153     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2154       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2155       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2156     } else {
2157       GV = cast<llvm::GlobalValue>(C);
2158     }
2159   }
2160 
2161   if (!GV->isDeclaration()) {
2162     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2163     return;
2164   }
2165 
2166   if (GV->getType()->getElementType() != Ty) {
2167     // If the types mismatch then we have to rewrite the definition.
2168     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2169 
2170     // F is the Function* for the one with the wrong type, we must make a new
2171     // Function* and update everything that used F (a declaration) with the new
2172     // Function* (which will be a definition).
2173     //
2174     // This happens if there is a prototype for a function
2175     // (e.g. "int f()") and then a definition of a different type
2176     // (e.g. "int f(int x)").  Move the old function aside so that it
2177     // doesn't interfere with GetAddrOfFunction.
2178     GV->setName(StringRef());
2179     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2180 
2181     // This might be an implementation of a function without a
2182     // prototype, in which case, try to do special replacement of
2183     // calls which match the new prototype.  The really key thing here
2184     // is that we also potentially drop arguments from the call site
2185     // so as to make a direct call, which makes the inliner happier
2186     // and suppresses a number of optimizer warnings (!) about
2187     // dropping arguments.
2188     if (!GV->use_empty()) {
2189       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2190       GV->removeDeadConstantUsers();
2191     }
2192 
2193     // Replace uses of F with the Function we will endow with a body.
2194     if (!GV->use_empty()) {
2195       llvm::Constant *NewPtrForOldDecl =
2196           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2197       GV->replaceAllUsesWith(NewPtrForOldDecl);
2198     }
2199 
2200     // Ok, delete the old function now, which is dead.
2201     GV->eraseFromParent();
2202 
2203     GV = NewFn;
2204   }
2205 
2206   // We need to set linkage and visibility on the function before
2207   // generating code for it because various parts of IR generation
2208   // want to propagate this information down (e.g. to local static
2209   // declarations).
2210   auto *Fn = cast<llvm::Function>(GV);
2211   setFunctionLinkage(GD, Fn);
2212 
2213   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2214   setGlobalVisibility(Fn, D);
2215 
2216   MaybeHandleStaticInExternC(D, Fn);
2217 
2218   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2219 
2220   setFunctionDefinitionAttributes(D, Fn);
2221   SetLLVMFunctionAttributesForDefinition(D, Fn);
2222 
2223   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2224     AddGlobalCtor(Fn, CA->getPriority());
2225   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2226     AddGlobalDtor(Fn, DA->getPriority());
2227   if (D->hasAttr<AnnotateAttr>())
2228     AddGlobalAnnotations(D, Fn);
2229 }
2230 
2231 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags,
2232                                                  const AliasAttr *AA,
2233                                                  llvm::Constant *C) {
2234   if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
2235     return *GO;
2236 
2237   auto *GA = dyn_cast<llvm::GlobalAlias>(C);
2238   if (GA) {
2239     if (GA->mayBeOverridden()) {
2240       Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
2241           << GA->getAliasee()->getName() << GA->getName();
2242     }
2243 
2244     return *GA->getAliasee();
2245   }
2246 
2247   auto *CE = cast<llvm::ConstantExpr>(C);
2248   assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2249          CE->getOpcode() == llvm::Instruction::GetElementPtr ||
2250          CE->getOpcode() == llvm::Instruction::AddrSpaceCast);
2251   return *cast<llvm::GlobalObject>(CE->getOperand(0));
2252 }
2253 
2254 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2255   const auto *D = cast<ValueDecl>(GD.getDecl());
2256   const AliasAttr *AA = D->getAttr<AliasAttr>();
2257   assert(AA && "Not an alias?");
2258 
2259   StringRef MangledName = getMangledName(GD);
2260 
2261   // If there is a definition in the module, then it wins over the alias.
2262   // This is dubious, but allow it to be safe.  Just ignore the alias.
2263   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2264   if (Entry && !Entry->isDeclaration())
2265     return;
2266 
2267   Aliases.push_back(GD);
2268 
2269   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2270 
2271   // Create a reference to the named value.  This ensures that it is emitted
2272   // if a deferred decl.
2273   llvm::Constant *Aliasee;
2274   if (isa<llvm::FunctionType>(DeclTy))
2275     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2276                                       /*ForVTable=*/false);
2277   else
2278     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2279                                     llvm::PointerType::getUnqual(DeclTy),
2280                                     nullptr);
2281 
2282   // Create the new alias itself, but don't set a name yet.
2283   auto *GA = llvm::GlobalAlias::create(
2284       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2285       llvm::Function::ExternalLinkage, "",
2286       &getGlobalObjectInExpr(Diags, AA, Aliasee));
2287 
2288   if (Entry) {
2289     if (GA->getAliasee() == Entry) {
2290       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2291       return;
2292     }
2293 
2294     assert(Entry->isDeclaration());
2295 
2296     // If there is a declaration in the module, then we had an extern followed
2297     // by the alias, as in:
2298     //   extern int test6();
2299     //   ...
2300     //   int test6() __attribute__((alias("test7")));
2301     //
2302     // Remove it and replace uses of it with the alias.
2303     GA->takeName(Entry);
2304 
2305     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2306                                                           Entry->getType()));
2307     Entry->eraseFromParent();
2308   } else {
2309     GA->setName(MangledName);
2310   }
2311 
2312   // Set attributes which are particular to an alias; this is a
2313   // specialization of the attributes which may be set on a global
2314   // variable/function.
2315   if (D->hasAttr<DLLExportAttr>()) {
2316     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2317       // The dllexport attribute is ignored for undefined symbols.
2318       if (FD->hasBody())
2319         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2320     } else {
2321       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2322     }
2323   } else if (D->hasAttr<WeakAttr>() ||
2324              D->hasAttr<WeakRefAttr>() ||
2325              D->isWeakImported()) {
2326     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2327   }
2328 
2329   SetCommonAttributes(D, GA);
2330 }
2331 
2332 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2333                                             ArrayRef<llvm::Type*> Tys) {
2334   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2335                                          Tys);
2336 }
2337 
2338 static llvm::StringMapEntry<llvm::Constant*> &
2339 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2340                          const StringLiteral *Literal,
2341                          bool TargetIsLSB,
2342                          bool &IsUTF16,
2343                          unsigned &StringLength) {
2344   StringRef String = Literal->getString();
2345   unsigned NumBytes = String.size();
2346 
2347   // Check for simple case.
2348   if (!Literal->containsNonAsciiOrNull()) {
2349     StringLength = NumBytes;
2350     return Map.GetOrCreateValue(String);
2351   }
2352 
2353   // Otherwise, convert the UTF8 literals into a string of shorts.
2354   IsUTF16 = true;
2355 
2356   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2357   const UTF8 *FromPtr = (const UTF8 *)String.data();
2358   UTF16 *ToPtr = &ToBuf[0];
2359 
2360   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2361                            &ToPtr, ToPtr + NumBytes,
2362                            strictConversion);
2363 
2364   // ConvertUTF8toUTF16 returns the length in ToPtr.
2365   StringLength = ToPtr - &ToBuf[0];
2366 
2367   // Add an explicit null.
2368   *ToPtr = 0;
2369   return Map.
2370     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2371                                (StringLength + 1) * 2));
2372 }
2373 
2374 static llvm::StringMapEntry<llvm::Constant*> &
2375 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2376                        const StringLiteral *Literal,
2377                        unsigned &StringLength) {
2378   StringRef String = Literal->getString();
2379   StringLength = String.size();
2380   return Map.GetOrCreateValue(String);
2381 }
2382 
2383 llvm::Constant *
2384 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2385   unsigned StringLength = 0;
2386   bool isUTF16 = false;
2387   llvm::StringMapEntry<llvm::Constant*> &Entry =
2388     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2389                              getDataLayout().isLittleEndian(),
2390                              isUTF16, StringLength);
2391 
2392   if (llvm::Constant *C = Entry.getValue())
2393     return C;
2394 
2395   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2396   llvm::Constant *Zeros[] = { Zero, Zero };
2397   llvm::Value *V;
2398 
2399   // If we don't already have it, get __CFConstantStringClassReference.
2400   if (!CFConstantStringClassRef) {
2401     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2402     Ty = llvm::ArrayType::get(Ty, 0);
2403     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2404                                            "__CFConstantStringClassReference");
2405     // Decay array -> ptr
2406     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2407     CFConstantStringClassRef = V;
2408   }
2409   else
2410     V = CFConstantStringClassRef;
2411 
2412   QualType CFTy = getContext().getCFConstantStringType();
2413 
2414   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2415 
2416   llvm::Constant *Fields[4];
2417 
2418   // Class pointer.
2419   Fields[0] = cast<llvm::ConstantExpr>(V);
2420 
2421   // Flags.
2422   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2423   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2424     llvm::ConstantInt::get(Ty, 0x07C8);
2425 
2426   // String pointer.
2427   llvm::Constant *C = nullptr;
2428   if (isUTF16) {
2429     ArrayRef<uint16_t> Arr =
2430       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2431                                      const_cast<char *>(Entry.getKey().data())),
2432                                    Entry.getKey().size() / 2);
2433     C = llvm::ConstantDataArray::get(VMContext, Arr);
2434   } else {
2435     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2436   }
2437 
2438   // Note: -fwritable-strings doesn't make the backing store strings of
2439   // CFStrings writable. (See <rdar://problem/10657500>)
2440   auto *GV =
2441       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2442                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2443   GV->setUnnamedAddr(true);
2444   // Don't enforce the target's minimum global alignment, since the only use
2445   // of the string is via this class initializer.
2446   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2447   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2448   // that changes the section it ends in, which surprises ld64.
2449   if (isUTF16) {
2450     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2451     GV->setAlignment(Align.getQuantity());
2452     GV->setSection("__TEXT,__ustring");
2453   } else {
2454     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2455     GV->setAlignment(Align.getQuantity());
2456     GV->setSection("__TEXT,__cstring,cstring_literals");
2457   }
2458 
2459   // String.
2460   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2461 
2462   if (isUTF16)
2463     // Cast the UTF16 string to the correct type.
2464     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2465 
2466   // String length.
2467   Ty = getTypes().ConvertType(getContext().LongTy);
2468   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2469 
2470   // The struct.
2471   C = llvm::ConstantStruct::get(STy, Fields);
2472   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2473                                 llvm::GlobalVariable::PrivateLinkage, C,
2474                                 "_unnamed_cfstring_");
2475   GV->setSection("__DATA,__cfstring");
2476   Entry.setValue(GV);
2477 
2478   return GV;
2479 }
2480 
2481 llvm::Constant *
2482 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2483   unsigned StringLength = 0;
2484   llvm::StringMapEntry<llvm::Constant*> &Entry =
2485     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2486 
2487   if (llvm::Constant *C = Entry.getValue())
2488     return C;
2489 
2490   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2491   llvm::Constant *Zeros[] = { Zero, Zero };
2492   llvm::Value *V;
2493   // If we don't already have it, get _NSConstantStringClassReference.
2494   if (!ConstantStringClassRef) {
2495     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2496     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2497     llvm::Constant *GV;
2498     if (LangOpts.ObjCRuntime.isNonFragile()) {
2499       std::string str =
2500         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2501                             : "OBJC_CLASS_$_" + StringClass;
2502       GV = getObjCRuntime().GetClassGlobal(str);
2503       // Make sure the result is of the correct type.
2504       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2505       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2506       ConstantStringClassRef = V;
2507     } else {
2508       std::string str =
2509         StringClass.empty() ? "_NSConstantStringClassReference"
2510                             : "_" + StringClass + "ClassReference";
2511       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2512       GV = CreateRuntimeVariable(PTy, str);
2513       // Decay array -> ptr
2514       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2515       ConstantStringClassRef = V;
2516     }
2517   }
2518   else
2519     V = ConstantStringClassRef;
2520 
2521   if (!NSConstantStringType) {
2522     // Construct the type for a constant NSString.
2523     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2524     D->startDefinition();
2525 
2526     QualType FieldTypes[3];
2527 
2528     // const int *isa;
2529     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2530     // const char *str;
2531     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2532     // unsigned int length;
2533     FieldTypes[2] = Context.UnsignedIntTy;
2534 
2535     // Create fields
2536     for (unsigned i = 0; i < 3; ++i) {
2537       FieldDecl *Field = FieldDecl::Create(Context, D,
2538                                            SourceLocation(),
2539                                            SourceLocation(), nullptr,
2540                                            FieldTypes[i], /*TInfo=*/nullptr,
2541                                            /*BitWidth=*/nullptr,
2542                                            /*Mutable=*/false,
2543                                            ICIS_NoInit);
2544       Field->setAccess(AS_public);
2545       D->addDecl(Field);
2546     }
2547 
2548     D->completeDefinition();
2549     QualType NSTy = Context.getTagDeclType(D);
2550     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2551   }
2552 
2553   llvm::Constant *Fields[3];
2554 
2555   // Class pointer.
2556   Fields[0] = cast<llvm::ConstantExpr>(V);
2557 
2558   // String pointer.
2559   llvm::Constant *C =
2560     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2561 
2562   llvm::GlobalValue::LinkageTypes Linkage;
2563   bool isConstant;
2564   Linkage = llvm::GlobalValue::PrivateLinkage;
2565   isConstant = !LangOpts.WritableStrings;
2566 
2567   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2568                                       Linkage, C, ".str");
2569   GV->setUnnamedAddr(true);
2570   // Don't enforce the target's minimum global alignment, since the only use
2571   // of the string is via this class initializer.
2572   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2573   GV->setAlignment(Align.getQuantity());
2574   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2575 
2576   // String length.
2577   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2578   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2579 
2580   // The struct.
2581   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2582   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2583                                 llvm::GlobalVariable::PrivateLinkage, C,
2584                                 "_unnamed_nsstring_");
2585   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2586   const char *NSStringNonFragileABISection =
2587       "__DATA,__objc_stringobj,regular,no_dead_strip";
2588   // FIXME. Fix section.
2589   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2590                      ? NSStringNonFragileABISection
2591                      : NSStringSection);
2592   Entry.setValue(GV);
2593 
2594   return GV;
2595 }
2596 
2597 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2598   if (ObjCFastEnumerationStateType.isNull()) {
2599     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2600     D->startDefinition();
2601 
2602     QualType FieldTypes[] = {
2603       Context.UnsignedLongTy,
2604       Context.getPointerType(Context.getObjCIdType()),
2605       Context.getPointerType(Context.UnsignedLongTy),
2606       Context.getConstantArrayType(Context.UnsignedLongTy,
2607                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2608     };
2609 
2610     for (size_t i = 0; i < 4; ++i) {
2611       FieldDecl *Field = FieldDecl::Create(Context,
2612                                            D,
2613                                            SourceLocation(),
2614                                            SourceLocation(), nullptr,
2615                                            FieldTypes[i], /*TInfo=*/nullptr,
2616                                            /*BitWidth=*/nullptr,
2617                                            /*Mutable=*/false,
2618                                            ICIS_NoInit);
2619       Field->setAccess(AS_public);
2620       D->addDecl(Field);
2621     }
2622 
2623     D->completeDefinition();
2624     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2625   }
2626 
2627   return ObjCFastEnumerationStateType;
2628 }
2629 
2630 llvm::Constant *
2631 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2632   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2633 
2634   // Don't emit it as the address of the string, emit the string data itself
2635   // as an inline array.
2636   if (E->getCharByteWidth() == 1) {
2637     SmallString<64> Str(E->getString());
2638 
2639     // Resize the string to the right size, which is indicated by its type.
2640     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2641     Str.resize(CAT->getSize().getZExtValue());
2642     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2643   }
2644 
2645   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2646   llvm::Type *ElemTy = AType->getElementType();
2647   unsigned NumElements = AType->getNumElements();
2648 
2649   // Wide strings have either 2-byte or 4-byte elements.
2650   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2651     SmallVector<uint16_t, 32> Elements;
2652     Elements.reserve(NumElements);
2653 
2654     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2655       Elements.push_back(E->getCodeUnit(i));
2656     Elements.resize(NumElements);
2657     return llvm::ConstantDataArray::get(VMContext, Elements);
2658   }
2659 
2660   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2661   SmallVector<uint32_t, 32> Elements;
2662   Elements.reserve(NumElements);
2663 
2664   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2665     Elements.push_back(E->getCodeUnit(i));
2666   Elements.resize(NumElements);
2667   return llvm::ConstantDataArray::get(VMContext, Elements);
2668 }
2669 
2670 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2671 /// constant array for the given string literal.
2672 llvm::Constant *
2673 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2674   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2675 
2676   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2677   llvm::GlobalVariable *GV = nullptr;
2678   if (!LangOpts.WritableStrings) {
2679     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2680     switch (S->getCharByteWidth()) {
2681     case 1:
2682       ConstantStringMap = &Constant1ByteStringMap;
2683       break;
2684     case 2:
2685       ConstantStringMap = &Constant2ByteStringMap;
2686       break;
2687     case 4:
2688       ConstantStringMap = &Constant4ByteStringMap;
2689       break;
2690     default:
2691       llvm_unreachable("unhandled byte width!");
2692     }
2693     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2694     GV = Entry->getValue();
2695   }
2696 
2697   if (!GV) {
2698     SmallString<256> MangledNameBuffer;
2699     StringRef GlobalVariableName;
2700     llvm::GlobalValue::LinkageTypes LT;
2701 
2702     // Mangle the string literal if the ABI allows for it.  However, we cannot
2703     // do this if  we are compiling with ASan or -fwritable-strings because they
2704     // rely on strings having normal linkage.
2705     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2706         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2707       llvm::raw_svector_ostream Out(MangledNameBuffer);
2708       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2709       Out.flush();
2710 
2711       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2712       GlobalVariableName = MangledNameBuffer;
2713     } else {
2714       LT = llvm::GlobalValue::PrivateLinkage;
2715       GlobalVariableName = ".str";
2716     }
2717 
2718     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2719     unsigned AddrSpace = 0;
2720     if (getLangOpts().OpenCL)
2721       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2722 
2723     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2724     GV = new llvm::GlobalVariable(
2725         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2726         GlobalVariableName, /*InsertBefore=*/nullptr,
2727         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2728     GV->setUnnamedAddr(true);
2729     if (Entry)
2730       Entry->setValue(GV);
2731   }
2732 
2733   if (Align.getQuantity() > GV->getAlignment())
2734     GV->setAlignment(Align.getQuantity());
2735 
2736   return GV;
2737 }
2738 
2739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2740 /// array for the given ObjCEncodeExpr node.
2741 llvm::Constant *
2742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2743   std::string Str;
2744   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2745 
2746   return GetAddrOfConstantCString(Str);
2747 }
2748 
2749 
2750 /// GenerateWritableString -- Creates storage for a string literal.
2751 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2752                                              bool constant,
2753                                              CodeGenModule &CGM,
2754                                              const char *GlobalName,
2755                                              unsigned Alignment) {
2756   // Create Constant for this string literal. Don't add a '\0'.
2757   llvm::Constant *C =
2758       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2759 
2760   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2761   unsigned AddrSpace = 0;
2762   if (CGM.getLangOpts().OpenCL)
2763     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2764 
2765   // Create a global variable for this string
2766   auto *GV = new llvm::GlobalVariable(
2767       CGM.getModule(), C->getType(), constant,
2768       llvm::GlobalValue::PrivateLinkage, C, GlobalName, nullptr,
2769       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2770   GV->setAlignment(Alignment);
2771   GV->setUnnamedAddr(true);
2772   return GV;
2773 }
2774 
2775 /// GetAddrOfConstantString - Returns a pointer to a character array
2776 /// containing the literal. This contents are exactly that of the
2777 /// given string, i.e. it will not be null terminated automatically;
2778 /// see GetAddrOfConstantCString. Note that whether the result is
2779 /// actually a pointer to an LLVM constant depends on
2780 /// Feature.WriteableStrings.
2781 ///
2782 /// The result has pointer to array type.
2783 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2784                                                        const char *GlobalName,
2785                                                        unsigned Alignment) {
2786   // Get the default prefix if a name wasn't specified.
2787   if (!GlobalName)
2788     GlobalName = ".str";
2789 
2790   if (Alignment == 0)
2791     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2792       .getQuantity();
2793 
2794   // Don't share any string literals if strings aren't constant.
2795   if (LangOpts.WritableStrings)
2796     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2797 
2798   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2799     Constant1ByteStringMap.GetOrCreateValue(Str);
2800 
2801   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2802     if (Alignment > GV->getAlignment()) {
2803       GV->setAlignment(Alignment);
2804     }
2805     return GV;
2806   }
2807 
2808   // Create a global variable for this.
2809   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2810                                                    Alignment);
2811   Entry.setValue(GV);
2812   return GV;
2813 }
2814 
2815 /// GetAddrOfConstantCString - Returns a pointer to a character
2816 /// array containing the literal and a terminating '\0'
2817 /// character. The result has pointer to array type.
2818 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2819                                                         const char *GlobalName,
2820                                                         unsigned Alignment) {
2821   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2822   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2823 }
2824 
2825 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2826     const MaterializeTemporaryExpr *E, const Expr *Init) {
2827   assert((E->getStorageDuration() == SD_Static ||
2828           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2829   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2830 
2831   // If we're not materializing a subobject of the temporary, keep the
2832   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2833   QualType MaterializedType = Init->getType();
2834   if (Init == E->GetTemporaryExpr())
2835     MaterializedType = E->getType();
2836 
2837   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2838   if (Slot)
2839     return Slot;
2840 
2841   // FIXME: If an externally-visible declaration extends multiple temporaries,
2842   // we need to give each temporary the same name in every translation unit (and
2843   // we also need to make the temporaries externally-visible).
2844   SmallString<256> Name;
2845   llvm::raw_svector_ostream Out(Name);
2846   getCXXABI().getMangleContext().mangleReferenceTemporary(
2847       VD, E->getManglingNumber(), Out);
2848   Out.flush();
2849 
2850   APValue *Value = nullptr;
2851   if (E->getStorageDuration() == SD_Static) {
2852     // We might have a cached constant initializer for this temporary. Note
2853     // that this might have a different value from the value computed by
2854     // evaluating the initializer if the surrounding constant expression
2855     // modifies the temporary.
2856     Value = getContext().getMaterializedTemporaryValue(E, false);
2857     if (Value && Value->isUninit())
2858       Value = nullptr;
2859   }
2860 
2861   // Try evaluating it now, it might have a constant initializer.
2862   Expr::EvalResult EvalResult;
2863   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2864       !EvalResult.hasSideEffects())
2865     Value = &EvalResult.Val;
2866 
2867   llvm::Constant *InitialValue = nullptr;
2868   bool Constant = false;
2869   llvm::Type *Type;
2870   if (Value) {
2871     // The temporary has a constant initializer, use it.
2872     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2873     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2874     Type = InitialValue->getType();
2875   } else {
2876     // No initializer, the initialization will be provided when we
2877     // initialize the declaration which performed lifetime extension.
2878     Type = getTypes().ConvertTypeForMem(MaterializedType);
2879   }
2880 
2881   // Create a global variable for this lifetime-extended temporary.
2882   llvm::GlobalValue::LinkageTypes Linkage =
2883       getLLVMLinkageVarDefinition(VD, Constant);
2884   // There is no need for this temporary to have global linkage if the global
2885   // variable has external linkage.
2886   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2887     Linkage = llvm::GlobalVariable::PrivateLinkage;
2888   unsigned AddrSpace = GetGlobalVarAddressSpace(
2889       VD, getContext().getTargetAddressSpace(MaterializedType));
2890   auto *GV = new llvm::GlobalVariable(
2891       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2892       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2893       AddrSpace);
2894   setGlobalVisibility(GV, VD);
2895   GV->setAlignment(
2896       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2897   if (VD->getTLSKind())
2898     setTLSMode(GV, *VD);
2899   Slot = GV;
2900   return GV;
2901 }
2902 
2903 /// EmitObjCPropertyImplementations - Emit information for synthesized
2904 /// properties for an implementation.
2905 void CodeGenModule::EmitObjCPropertyImplementations(const
2906                                                     ObjCImplementationDecl *D) {
2907   for (const auto *PID : D->property_impls()) {
2908     // Dynamic is just for type-checking.
2909     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2910       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2911 
2912       // Determine which methods need to be implemented, some may have
2913       // been overridden. Note that ::isPropertyAccessor is not the method
2914       // we want, that just indicates if the decl came from a
2915       // property. What we want to know is if the method is defined in
2916       // this implementation.
2917       if (!D->getInstanceMethod(PD->getGetterName()))
2918         CodeGenFunction(*this).GenerateObjCGetter(
2919                                  const_cast<ObjCImplementationDecl *>(D), PID);
2920       if (!PD->isReadOnly() &&
2921           !D->getInstanceMethod(PD->getSetterName()))
2922         CodeGenFunction(*this).GenerateObjCSetter(
2923                                  const_cast<ObjCImplementationDecl *>(D), PID);
2924     }
2925   }
2926 }
2927 
2928 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2929   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2930   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2931        ivar; ivar = ivar->getNextIvar())
2932     if (ivar->getType().isDestructedType())
2933       return true;
2934 
2935   return false;
2936 }
2937 
2938 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2939 /// for an implementation.
2940 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2941   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2942   if (needsDestructMethod(D)) {
2943     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2944     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2945     ObjCMethodDecl *DTORMethod =
2946       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2947                              cxxSelector, getContext().VoidTy, nullptr, D,
2948                              /*isInstance=*/true, /*isVariadic=*/false,
2949                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2950                              /*isDefined=*/false, ObjCMethodDecl::Required);
2951     D->addInstanceMethod(DTORMethod);
2952     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2953     D->setHasDestructors(true);
2954   }
2955 
2956   // If the implementation doesn't have any ivar initializers, we don't need
2957   // a .cxx_construct.
2958   if (D->getNumIvarInitializers() == 0)
2959     return;
2960 
2961   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2962   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2963   // The constructor returns 'self'.
2964   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2965                                                 D->getLocation(),
2966                                                 D->getLocation(),
2967                                                 cxxSelector,
2968                                                 getContext().getObjCIdType(),
2969                                                 nullptr, D, /*isInstance=*/true,
2970                                                 /*isVariadic=*/false,
2971                                                 /*isPropertyAccessor=*/true,
2972                                                 /*isImplicitlyDeclared=*/true,
2973                                                 /*isDefined=*/false,
2974                                                 ObjCMethodDecl::Required);
2975   D->addInstanceMethod(CTORMethod);
2976   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2977   D->setHasNonZeroConstructors(true);
2978 }
2979 
2980 /// EmitNamespace - Emit all declarations in a namespace.
2981 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2982   for (auto *I : ND->decls()) {
2983     if (const auto *VD = dyn_cast<VarDecl>(I))
2984       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2985           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2986         continue;
2987     EmitTopLevelDecl(I);
2988   }
2989 }
2990 
2991 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2992 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2993   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2994       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2995     ErrorUnsupported(LSD, "linkage spec");
2996     return;
2997   }
2998 
2999   for (auto *I : LSD->decls()) {
3000     // Meta-data for ObjC class includes references to implemented methods.
3001     // Generate class's method definitions first.
3002     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3003       for (auto *M : OID->methods())
3004         EmitTopLevelDecl(M);
3005     }
3006     EmitTopLevelDecl(I);
3007   }
3008 }
3009 
3010 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3011 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3012   // Ignore dependent declarations.
3013   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3014     return;
3015 
3016   switch (D->getKind()) {
3017   case Decl::CXXConversion:
3018   case Decl::CXXMethod:
3019   case Decl::Function:
3020     // Skip function templates
3021     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3022         cast<FunctionDecl>(D)->isLateTemplateParsed())
3023       return;
3024 
3025     EmitGlobal(cast<FunctionDecl>(D));
3026     break;
3027 
3028   case Decl::Var:
3029     // Skip variable templates
3030     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3031       return;
3032   case Decl::VarTemplateSpecialization:
3033     EmitGlobal(cast<VarDecl>(D));
3034     break;
3035 
3036   // Indirect fields from global anonymous structs and unions can be
3037   // ignored; only the actual variable requires IR gen support.
3038   case Decl::IndirectField:
3039     break;
3040 
3041   // C++ Decls
3042   case Decl::Namespace:
3043     EmitNamespace(cast<NamespaceDecl>(D));
3044     break;
3045     // No code generation needed.
3046   case Decl::UsingShadow:
3047   case Decl::ClassTemplate:
3048   case Decl::VarTemplate:
3049   case Decl::VarTemplatePartialSpecialization:
3050   case Decl::FunctionTemplate:
3051   case Decl::TypeAliasTemplate:
3052   case Decl::Block:
3053   case Decl::Empty:
3054     break;
3055   case Decl::Using:          // using X; [C++]
3056     if (CGDebugInfo *DI = getModuleDebugInfo())
3057         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3058     return;
3059   case Decl::NamespaceAlias:
3060     if (CGDebugInfo *DI = getModuleDebugInfo())
3061         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3062     return;
3063   case Decl::UsingDirective: // using namespace X; [C++]
3064     if (CGDebugInfo *DI = getModuleDebugInfo())
3065       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3066     return;
3067   case Decl::CXXConstructor:
3068     // Skip function templates
3069     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3070         cast<FunctionDecl>(D)->isLateTemplateParsed())
3071       return;
3072 
3073     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3074     break;
3075   case Decl::CXXDestructor:
3076     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3077       return;
3078     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3079     break;
3080 
3081   case Decl::StaticAssert:
3082     // Nothing to do.
3083     break;
3084 
3085   // Objective-C Decls
3086 
3087   // Forward declarations, no (immediate) code generation.
3088   case Decl::ObjCInterface:
3089   case Decl::ObjCCategory:
3090     break;
3091 
3092   case Decl::ObjCProtocol: {
3093     auto *Proto = cast<ObjCProtocolDecl>(D);
3094     if (Proto->isThisDeclarationADefinition())
3095       ObjCRuntime->GenerateProtocol(Proto);
3096     break;
3097   }
3098 
3099   case Decl::ObjCCategoryImpl:
3100     // Categories have properties but don't support synthesize so we
3101     // can ignore them here.
3102     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3103     break;
3104 
3105   case Decl::ObjCImplementation: {
3106     auto *OMD = cast<ObjCImplementationDecl>(D);
3107     EmitObjCPropertyImplementations(OMD);
3108     EmitObjCIvarInitializations(OMD);
3109     ObjCRuntime->GenerateClass(OMD);
3110     // Emit global variable debug information.
3111     if (CGDebugInfo *DI = getModuleDebugInfo())
3112       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3113         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3114             OMD->getClassInterface()), OMD->getLocation());
3115     break;
3116   }
3117   case Decl::ObjCMethod: {
3118     auto *OMD = cast<ObjCMethodDecl>(D);
3119     // If this is not a prototype, emit the body.
3120     if (OMD->getBody())
3121       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3122     break;
3123   }
3124   case Decl::ObjCCompatibleAlias:
3125     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3126     break;
3127 
3128   case Decl::LinkageSpec:
3129     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3130     break;
3131 
3132   case Decl::FileScopeAsm: {
3133     auto *AD = cast<FileScopeAsmDecl>(D);
3134     StringRef AsmString = AD->getAsmString()->getString();
3135 
3136     const std::string &S = getModule().getModuleInlineAsm();
3137     if (S.empty())
3138       getModule().setModuleInlineAsm(AsmString);
3139     else if (S.end()[-1] == '\n')
3140       getModule().setModuleInlineAsm(S + AsmString.str());
3141     else
3142       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3143     break;
3144   }
3145 
3146   case Decl::Import: {
3147     auto *Import = cast<ImportDecl>(D);
3148 
3149     // Ignore import declarations that come from imported modules.
3150     if (clang::Module *Owner = Import->getOwningModule()) {
3151       if (getLangOpts().CurrentModule.empty() ||
3152           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3153         break;
3154     }
3155 
3156     ImportedModules.insert(Import->getImportedModule());
3157     break;
3158   }
3159 
3160   case Decl::ClassTemplateSpecialization: {
3161     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3162     if (DebugInfo &&
3163         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3164       DebugInfo->completeTemplateDefinition(*Spec);
3165   }
3166 
3167   default:
3168     // Make sure we handled everything we should, every other kind is a
3169     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3170     // function. Need to recode Decl::Kind to do that easily.
3171     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3172   }
3173 }
3174 
3175 /// Turns the given pointer into a constant.
3176 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3177                                           const void *Ptr) {
3178   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3179   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3180   return llvm::ConstantInt::get(i64, PtrInt);
3181 }
3182 
3183 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3184                                    llvm::NamedMDNode *&GlobalMetadata,
3185                                    GlobalDecl D,
3186                                    llvm::GlobalValue *Addr) {
3187   if (!GlobalMetadata)
3188     GlobalMetadata =
3189       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3190 
3191   // TODO: should we report variant information for ctors/dtors?
3192   llvm::Value *Ops[] = {
3193     Addr,
3194     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3195   };
3196   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3197 }
3198 
3199 /// For each function which is declared within an extern "C" region and marked
3200 /// as 'used', but has internal linkage, create an alias from the unmangled
3201 /// name to the mangled name if possible. People expect to be able to refer
3202 /// to such functions with an unmangled name from inline assembly within the
3203 /// same translation unit.
3204 void CodeGenModule::EmitStaticExternCAliases() {
3205   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3206                                   E = StaticExternCValues.end();
3207        I != E; ++I) {
3208     IdentifierInfo *Name = I->first;
3209     llvm::GlobalValue *Val = I->second;
3210     if (Val && !getModule().getNamedValue(Name->getName()))
3211       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(),
3212                                               cast<llvm::GlobalObject>(Val)));
3213   }
3214 }
3215 
3216 /// Emits metadata nodes associating all the global values in the
3217 /// current module with the Decls they came from.  This is useful for
3218 /// projects using IR gen as a subroutine.
3219 ///
3220 /// Since there's currently no way to associate an MDNode directly
3221 /// with an llvm::GlobalValue, we create a global named metadata
3222 /// with the name 'clang.global.decl.ptrs'.
3223 void CodeGenModule::EmitDeclMetadata() {
3224   llvm::NamedMDNode *GlobalMetadata = nullptr;
3225 
3226   // StaticLocalDeclMap
3227   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3228          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3229        I != E; ++I) {
3230     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3231     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3232   }
3233 }
3234 
3235 /// Emits metadata nodes for all the local variables in the current
3236 /// function.
3237 void CodeGenFunction::EmitDeclMetadata() {
3238   if (LocalDeclMap.empty()) return;
3239 
3240   llvm::LLVMContext &Context = getLLVMContext();
3241 
3242   // Find the unique metadata ID for this name.
3243   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3244 
3245   llvm::NamedMDNode *GlobalMetadata = nullptr;
3246 
3247   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3248          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3249     const Decl *D = I->first;
3250     llvm::Value *Addr = I->second;
3251 
3252     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3253       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3254       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3255     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3256       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3257       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3258     }
3259   }
3260 }
3261 
3262 void CodeGenModule::EmitVersionIdentMetadata() {
3263   llvm::NamedMDNode *IdentMetadata =
3264     TheModule.getOrInsertNamedMetadata("llvm.ident");
3265   std::string Version = getClangFullVersion();
3266   llvm::LLVMContext &Ctx = TheModule.getContext();
3267 
3268   llvm::Value *IdentNode[] = {
3269     llvm::MDString::get(Ctx, Version)
3270   };
3271   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3272 }
3273 
3274 void CodeGenModule::EmitCoverageFile() {
3275   if (!getCodeGenOpts().CoverageFile.empty()) {
3276     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3277       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3278       llvm::LLVMContext &Ctx = TheModule.getContext();
3279       llvm::MDString *CoverageFile =
3280           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3281       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3282         llvm::MDNode *CU = CUNode->getOperand(i);
3283         llvm::Value *node[] = { CoverageFile, CU };
3284         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3285         GCov->addOperand(N);
3286       }
3287     }
3288   }
3289 }
3290 
3291 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3292                                                      QualType GuidType) {
3293   // Sema has checked that all uuid strings are of the form
3294   // "12345678-1234-1234-1234-1234567890ab".
3295   assert(Uuid.size() == 36);
3296   for (unsigned i = 0; i < 36; ++i) {
3297     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3298     else                                         assert(isHexDigit(Uuid[i]));
3299   }
3300 
3301   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3302 
3303   llvm::Constant *Field3[8];
3304   for (unsigned Idx = 0; Idx < 8; ++Idx)
3305     Field3[Idx] = llvm::ConstantInt::get(
3306         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3307 
3308   llvm::Constant *Fields[4] = {
3309     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3310     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3311     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3312     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3313   };
3314 
3315   return llvm::ConstantStruct::getAnon(Fields);
3316 }
3317