xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0e17372b380467ac8339afdec992fbf887a11feb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsTargetDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first;
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->isDeclaration()) {
577     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578     Diags.Report(Location, diag::note_alias_requires_mangled_name)
579         << IsIFunc << IsIFunc;
580     // Provide a note if the given function is not found and exists as a
581     // mangled name.
582     for (const auto &[Decl, Name] : MangledDeclNames) {
583       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584         if (ND->getName() == GV->getName()) {
585           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586               << Name
587               << FixItHint::CreateReplacement(
588                      AliasRange,
589                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                          .str());
591         }
592       }
593     }
594     return false;
595   }
596 
597   if (IsIFunc) {
598     // Check resolver function type.
599     const auto *F = dyn_cast<llvm::Function>(GV);
600     if (!F) {
601       Diags.Report(Location, diag::err_alias_to_undefined)
602           << IsIFunc << IsIFunc;
603       return false;
604     }
605 
606     llvm::FunctionType *FTy = F->getFunctionType();
607     if (!FTy->getReturnType()->isPointerTy()) {
608       Diags.Report(Location, diag::err_ifunc_resolver_return);
609       return false;
610     }
611   }
612 
613   return true;
614 }
615 
616 void CodeGenModule::checkAliases() {
617   // Check if the constructed aliases are well formed. It is really unfortunate
618   // that we have to do this in CodeGen, but we only construct mangled names
619   // and aliases during codegen.
620   bool Error = false;
621   DiagnosticsEngine &Diags = getDiags();
622   for (const GlobalDecl &GD : Aliases) {
623     const auto *D = cast<ValueDecl>(GD.getDecl());
624     SourceLocation Location;
625     SourceRange Range;
626     bool IsIFunc = D->hasAttr<IFuncAttr>();
627     if (const Attr *A = D->getDefiningAttr()) {
628       Location = A->getLocation();
629       Range = A->getRange();
630     } else
631       llvm_unreachable("Not an alias or ifunc?");
632 
633     StringRef MangledName = getMangledName(GD);
634     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635     const llvm::GlobalValue *GV = nullptr;
636     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                             MangledDeclNames, Range)) {
638       Error = true;
639       continue;
640     }
641 
642     llvm::Constant *Aliasee =
643         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645 
646     llvm::GlobalValue *AliaseeGV;
647     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649     else
650       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651 
652     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653       StringRef AliasSection = SA->getName();
654       if (AliasSection != AliaseeGV->getSection())
655         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656             << AliasSection << IsIFunc << IsIFunc;
657     }
658 
659     // We have to handle alias to weak aliases in here. LLVM itself disallows
660     // this since the object semantics would not match the IL one. For
661     // compatibility with gcc we implement it by just pointing the alias
662     // to its aliasee's aliasee. We also warn, since the user is probably
663     // expecting the link to be weak.
664     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665       if (GA->isInterposable()) {
666         Diags.Report(Location, diag::warn_alias_to_weak_alias)
667             << GV->getName() << GA->getName() << IsIFunc;
668         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669             GA->getAliasee(), Alias->getType());
670 
671         if (IsIFunc)
672           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673         else
674           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675       }
676     }
677   }
678   if (!Error)
679     return;
680 
681   for (const GlobalDecl &GD : Aliases) {
682     StringRef MangledName = getMangledName(GD);
683     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685     Alias->eraseFromParent();
686   }
687 }
688 
689 void CodeGenModule::clear() {
690   DeferredDeclsToEmit.clear();
691   EmittedDeferredDecls.clear();
692   if (OpenMPRuntime)
693     OpenMPRuntime->clear();
694 }
695 
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                        StringRef MainFile) {
698   if (!hasDiagnostics())
699     return;
700   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701     if (MainFile.empty())
702       MainFile = "<stdin>";
703     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704   } else {
705     if (Mismatched > 0)
706       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707 
708     if (Missing > 0)
709       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710   }
711 }
712 
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                              llvm::Module &M) {
715   if (!LO.VisibilityFromDLLStorageClass)
716     return;
717 
718   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725       CodeGenModule::GetLLVMVisibility(
726           LO.getExternDeclNoDLLStorageClassVisibility());
727 
728   for (llvm::GlobalValue &GV : M.global_values()) {
729     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730       continue;
731 
732     // Reset DSO locality before setting the visibility. This removes
733     // any effects that visibility options and annotations may have
734     // had on the DSO locality. Setting the visibility will implicitly set
735     // appropriate globals to DSO Local; however, this will be pessimistic
736     // w.r.t. to the normal compiler IRGen.
737     GV.setDSOLocal(false);
738 
739     if (GV.isDeclarationForLinker()) {
740       GV.setVisibility(GV.getDLLStorageClass() ==
741                                llvm::GlobalValue::DLLImportStorageClass
742                            ? ExternDeclDLLImportVisibility
743                            : ExternDeclNoDLLStorageClassVisibility);
744     } else {
745       GV.setVisibility(GV.getDLLStorageClass() ==
746                                llvm::GlobalValue::DLLExportStorageClass
747                            ? DLLExportVisibility
748                            : NoDLLStorageClassVisibility);
749     }
750 
751     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752   }
753 }
754 
755 void CodeGenModule::Release() {
756   Module *Primary = getContext().getCurrentNamedModule();
757   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758     EmitModuleInitializers(Primary);
759   EmitDeferred();
760   DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                        EmittedDeferredDecls.end());
762   EmittedDeferredDecls.clear();
763   EmitVTablesOpportunistically();
764   applyGlobalValReplacements();
765   applyReplacements();
766   emitMultiVersionFunctions();
767 
768   if (Context.getLangOpts().IncrementalExtensions &&
769       GlobalTopLevelStmtBlockInFlight.first) {
770     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773   }
774 
775   // Module implementations are initialized the same way as a regular TU that
776   // imports one or more modules.
777   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778     EmitCXXModuleInitFunc(Primary);
779   else
780     EmitCXXGlobalInitFunc();
781   EmitCXXGlobalCleanUpFunc();
782   registerGlobalDtorsWithAtExit();
783   EmitCXXThreadLocalInitFunc();
784   if (ObjCRuntime)
785     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786       AddGlobalCtor(ObjCInitFunction);
787   if (Context.getLangOpts().CUDA && CUDARuntime) {
788     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789       AddGlobalCtor(CudaCtorFunction);
790   }
791   if (OpenMPRuntime) {
792     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795     }
796     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797     OpenMPRuntime->clear();
798   }
799   if (PGOReader) {
800     getModule().setProfileSummary(
801         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802         llvm::ProfileSummary::PSK_Instr);
803     if (PGOStats.hasDiagnostics())
804       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805   }
806   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807     return L.LexOrder < R.LexOrder;
808   });
809   EmitCtorList(GlobalCtors, "llvm.global_ctors");
810   EmitCtorList(GlobalDtors, "llvm.global_dtors");
811   EmitGlobalAnnotations();
812   EmitStaticExternCAliases();
813   checkAliases();
814   EmitDeferredUnusedCoverageMappings();
815   CodeGenPGO(*this).setValueProfilingFlag(getModule());
816   if (CoverageMapping)
817     CoverageMapping->emit();
818   if (CodeGenOpts.SanitizeCfiCrossDso) {
819     CodeGenFunction(*this).EmitCfiCheckFail();
820     CodeGenFunction(*this).EmitCfiCheckStub();
821   }
822   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823     finalizeKCFITypes();
824   emitAtAvailableLinkGuard();
825   if (Context.getTargetInfo().getTriple().isWasm())
826     EmitMainVoidAlias();
827 
828   if (getTriple().isAMDGPU()) {
829     // Emit amdgpu_code_object_version module flag, which is code object version
830     // times 100.
831     if (getTarget().getTargetOpts().CodeObjectVersion !=
832         TargetOptions::COV_None) {
833       getModule().addModuleFlag(llvm::Module::Error,
834                                 "amdgpu_code_object_version",
835                                 getTarget().getTargetOpts().CodeObjectVersion);
836     }
837 
838     // Currently, "-mprintf-kind" option is only supported for HIP
839     if (LangOpts.HIP) {
840       auto *MDStr = llvm::MDString::get(
841           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                              TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                 ? "hostcall"
844                                 : "buffered");
845       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                 MDStr);
847     }
848   }
849 
850   // Emit a global array containing all external kernels or device variables
851   // used by host functions and mark it as used for CUDA/HIP. This is necessary
852   // to get kernels or device variables in archives linked in even if these
853   // kernels or device variables are only used in host functions.
854   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855     SmallVector<llvm::Constant *, 8> UsedArray;
856     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857       GlobalDecl GD;
858       if (auto *FD = dyn_cast<FunctionDecl>(D))
859         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860       else
861         GD = GlobalDecl(D);
862       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863           GetAddrOfGlobal(GD), Int8PtrTy));
864     }
865 
866     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867 
868     auto *GV = new llvm::GlobalVariable(
869         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871     addCompilerUsedGlobal(GV);
872   }
873 
874   emitLLVMUsed();
875   if (SanStats)
876     SanStats->finish();
877 
878   if (CodeGenOpts.Autolink &&
879       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880     EmitModuleLinkOptions();
881   }
882 
883   // On ELF we pass the dependent library specifiers directly to the linker
884   // without manipulating them. This is in contrast to other platforms where
885   // they are mapped to a specific linker option by the compiler. This
886   // difference is a result of the greater variety of ELF linkers and the fact
887   // that ELF linkers tend to handle libraries in a more complicated fashion
888   // than on other platforms. This forces us to defer handling the dependent
889   // libs to the linker.
890   //
891   // CUDA/HIP device and host libraries are different. Currently there is no
892   // way to differentiate dependent libraries for host or device. Existing
893   // usage of #pragma comment(lib, *) is intended for host libraries on
894   // Windows. Therefore emit llvm.dependent-libraries only for host.
895   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897     for (auto *MD : ELFDependentLibraries)
898       NMD->addOperand(MD);
899   }
900 
901   // Record mregparm value now so it is visible through rest of codegen.
902   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                               CodeGenOpts.NumRegisterParameters);
905 
906   if (CodeGenOpts.DwarfVersion) {
907     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                               CodeGenOpts.DwarfVersion);
909   }
910 
911   if (CodeGenOpts.Dwarf64)
912     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913 
914   if (Context.getLangOpts().SemanticInterposition)
915     // Require various optimization to respect semantic interposition.
916     getModule().setSemanticInterposition(true);
917 
918   if (CodeGenOpts.EmitCodeView) {
919     // Indicate that we want CodeView in the metadata.
920     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921   }
922   if (CodeGenOpts.CodeViewGHash) {
923     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924   }
925   if (CodeGenOpts.ControlFlowGuard) {
926     // Function ID tables and checks for Control Flow Guard (cfguard=2).
927     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929     // Function ID tables for Control Flow Guard (cfguard=1).
930     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931   }
932   if (CodeGenOpts.EHContGuard) {
933     // Function ID tables for EH Continuation Guard.
934     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935   }
936   if (Context.getLangOpts().Kernel) {
937     // Note if we are compiling with /kernel.
938     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939   }
940   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941     // We don't support LTO with 2 with different StrictVTablePointers
942     // FIXME: we could support it by stripping all the information introduced
943     // by StrictVTablePointers.
944 
945     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946 
947     llvm::Metadata *Ops[2] = {
948               llvm::MDString::get(VMContext, "StrictVTablePointers"),
949               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                   llvm::Type::getInt32Ty(VMContext), 1))};
951 
952     getModule().addModuleFlag(llvm::Module::Require,
953                               "StrictVTablePointersRequirement",
954                               llvm::MDNode::get(VMContext, Ops));
955   }
956   if (getModuleDebugInfo())
957     // We support a single version in the linked module. The LLVM
958     // parser will drop debug info with a different version number
959     // (and warn about it, too).
960     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                               llvm::DEBUG_METADATA_VERSION);
962 
963   // We need to record the widths of enums and wchar_t, so that we can generate
964   // the correct build attributes in the ARM backend. wchar_size is also used by
965   // TargetLibraryInfo.
966   uint64_t WCharWidth =
967       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969 
970   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971   if (   Arch == llvm::Triple::arm
972       || Arch == llvm::Triple::armeb
973       || Arch == llvm::Triple::thumb
974       || Arch == llvm::Triple::thumbeb) {
975     // The minimum width of an enum in bytes
976     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978   }
979 
980   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981     StringRef ABIStr = Target.getABI();
982     llvm::LLVMContext &Ctx = TheModule.getContext();
983     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                               llvm::MDString::get(Ctx, ABIStr));
985   }
986 
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     // Indicate that we want cross-DSO control flow integrity checks.
989     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990   }
991 
992   if (CodeGenOpts.WholeProgramVTables) {
993     // Indicate whether VFE was enabled for this module, so that the
994     // vcall_visibility metadata added under whole program vtables is handled
995     // appropriately in the optimizer.
996     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                               CodeGenOpts.VirtualFunctionElimination);
998   }
999 
1000   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001     getModule().addModuleFlag(llvm::Module::Override,
1002                               "CFI Canonical Jump Tables",
1003                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004   }
1005 
1006   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008     // KCFI assumes patchable-function-prefix is the same for all indirectly
1009     // called functions. Store the expected offset for code generation.
1010     if (CodeGenOpts.PatchableFunctionEntryOffset)
1011       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                 CodeGenOpts.PatchableFunctionEntryOffset);
1013   }
1014 
1015   if (CodeGenOpts.CFProtectionReturn &&
1016       Target.checkCFProtectionReturnSupported(getDiags())) {
1017     // Indicate that we want to instrument return control flow protection.
1018     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                               1);
1020   }
1021 
1022   if (CodeGenOpts.CFProtectionBranch &&
1023       Target.checkCFProtectionBranchSupported(getDiags())) {
1024     // Indicate that we want to instrument branch control flow protection.
1025     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                               1);
1027   }
1028 
1029   if (CodeGenOpts.FunctionReturnThunks)
1030     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031 
1032   if (CodeGenOpts.IndirectBranchCSPrefix)
1033     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034 
1035   // Add module metadata for return address signing (ignoring
1036   // non-leaf/all) and stack tagging. These are actually turned on by function
1037   // attributes, but we use module metadata to emit build attributes. This is
1038   // needed for LTO, where the function attributes are inside bitcode
1039   // serialised into a global variable by the time build attributes are
1040   // emitted, so we can't access them. LTO objects could be compiled with
1041   // different flags therefore module flags are set to "Min" behavior to achieve
1042   // the same end result of the normal build where e.g BTI is off if any object
1043   // doesn't support it.
1044   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045       LangOpts.getSignReturnAddressScope() !=
1046           LangOptions::SignReturnAddressScopeKind::None)
1047     getModule().addModuleFlag(llvm::Module::Override,
1048                               "sign-return-address-buildattr", 1);
1049   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050     getModule().addModuleFlag(llvm::Module::Override,
1051                               "tag-stack-memory-buildattr", 1);
1052 
1053   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056       Arch == llvm::Triple::aarch64_be) {
1057     if (LangOpts.BranchTargetEnforcement)
1058       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                 1);
1060     if (LangOpts.hasSignReturnAddress())
1061       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062     if (LangOpts.isSignReturnAddressScopeAll())
1063       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                 1);
1065     if (!LangOpts.isSignReturnAddressWithAKey())
1066       getModule().addModuleFlag(llvm::Module::Min,
1067                                 "sign-return-address-with-bkey", 1);
1068   }
1069 
1070   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071     llvm::LLVMContext &Ctx = TheModule.getContext();
1072     getModule().addModuleFlag(
1073         llvm::Module::Error, "MemProfProfileFilename",
1074         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075   }
1076 
1077   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078     // Indicate whether __nvvm_reflect should be configured to flush denormal
1079     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080     // property.)
1081     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                               CodeGenOpts.FP32DenormalMode.Output !=
1083                                   llvm::DenormalMode::IEEE);
1084   }
1085 
1086   if (LangOpts.EHAsynch)
1087     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088 
1089   // Indicate whether this Module was compiled with -fopenmp
1090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092   if (getLangOpts().OpenMPIsTargetDevice)
1093     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                               LangOpts.OpenMP);
1095 
1096   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098     EmitOpenCLMetadata();
1099     // Emit SPIR version.
1100     if (getTriple().isSPIR()) {
1101       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102       // opencl.spir.version named metadata.
1103       // C++ for OpenCL has a distinct mapping for version compatibility with
1104       // OpenCL.
1105       auto Version = LangOpts.getOpenCLCompatibleVersion();
1106       llvm::Metadata *SPIRVerElts[] = {
1107           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108               Int32Ty, Version / 100)),
1109           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111       llvm::NamedMDNode *SPIRVerMD =
1112           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113       llvm::LLVMContext &Ctx = TheModule.getContext();
1114       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115     }
1116   }
1117 
1118   // HLSL related end of code gen work items.
1119   if (LangOpts.HLSL)
1120     getHLSLRuntime().finishCodeGen();
1121 
1122   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123     assert(PLevel < 3 && "Invalid PIC Level");
1124     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125     if (Context.getLangOpts().PIE)
1126       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127   }
1128 
1129   if (getCodeGenOpts().CodeModel.size() > 0) {
1130     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                   .Case("tiny", llvm::CodeModel::Tiny)
1132                   .Case("small", llvm::CodeModel::Small)
1133                   .Case("kernel", llvm::CodeModel::Kernel)
1134                   .Case("medium", llvm::CodeModel::Medium)
1135                   .Case("large", llvm::CodeModel::Large)
1136                   .Default(~0u);
1137     if (CM != ~0u) {
1138       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139       getModule().setCodeModel(codeModel);
1140     }
1141   }
1142 
1143   if (CodeGenOpts.NoPLT)
1144     getModule().setRtLibUseGOT();
1145   if (getTriple().isOSBinFormatELF() &&
1146       CodeGenOpts.DirectAccessExternalData !=
1147           getModule().getDirectAccessExternalData()) {
1148     getModule().setDirectAccessExternalData(
1149         CodeGenOpts.DirectAccessExternalData);
1150   }
1151   if (CodeGenOpts.UnwindTables)
1152     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153 
1154   switch (CodeGenOpts.getFramePointer()) {
1155   case CodeGenOptions::FramePointerKind::None:
1156     // 0 ("none") is the default.
1157     break;
1158   case CodeGenOptions::FramePointerKind::NonLeaf:
1159     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160     break;
1161   case CodeGenOptions::FramePointerKind::All:
1162     getModule().setFramePointer(llvm::FramePointerKind::All);
1163     break;
1164   }
1165 
1166   SimplifyPersonality();
1167 
1168   if (getCodeGenOpts().EmitDeclMetadata)
1169     EmitDeclMetadata();
1170 
1171   if (getCodeGenOpts().CoverageNotesFile.size() ||
1172       getCodeGenOpts().CoverageDataFile.size())
1173     EmitCoverageFile();
1174 
1175   if (CGDebugInfo *DI = getModuleDebugInfo())
1176     DI->finalize();
1177 
1178   if (getCodeGenOpts().EmitVersionIdentMetadata)
1179     EmitVersionIdentMetadata();
1180 
1181   if (!getCodeGenOpts().RecordCommandLine.empty())
1182     EmitCommandLineMetadata();
1183 
1184   if (!getCodeGenOpts().StackProtectorGuard.empty())
1185     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187     getModule().setStackProtectorGuardReg(
1188         getCodeGenOpts().StackProtectorGuardReg);
1189   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190     getModule().setStackProtectorGuardSymbol(
1191         getCodeGenOpts().StackProtectorGuardSymbol);
1192   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193     getModule().setStackProtectorGuardOffset(
1194         getCodeGenOpts().StackProtectorGuardOffset);
1195   if (getCodeGenOpts().StackAlignment)
1196     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197   if (getCodeGenOpts().SkipRaxSetup)
1198     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199   if (getLangOpts().RegCall4)
1200     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1201 
1202   if (getContext().getTargetInfo().getMaxTLSAlign())
1203     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1204                               getContext().getTargetInfo().getMaxTLSAlign());
1205 
1206   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1207 
1208   EmitBackendOptionsMetadata(getCodeGenOpts());
1209 
1210   // If there is device offloading code embed it in the host now.
1211   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1212 
1213   // Set visibility from DLL storage class
1214   // We do this at the end of LLVM IR generation; after any operation
1215   // that might affect the DLL storage class or the visibility, and
1216   // before anything that might act on these.
1217   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1218 }
1219 
1220 void CodeGenModule::EmitOpenCLMetadata() {
1221   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1222   // opencl.ocl.version named metadata node.
1223   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1224   auto Version = LangOpts.getOpenCLCompatibleVersion();
1225   llvm::Metadata *OCLVerElts[] = {
1226       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227           Int32Ty, Version / 100)),
1228       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1229           Int32Ty, (Version % 100) / 10))};
1230   llvm::NamedMDNode *OCLVerMD =
1231       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1232   llvm::LLVMContext &Ctx = TheModule.getContext();
1233   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1234 }
1235 
1236 void CodeGenModule::EmitBackendOptionsMetadata(
1237     const CodeGenOptions &CodeGenOpts) {
1238   if (getTriple().isRISCV()) {
1239     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1240                               CodeGenOpts.SmallDataLimit);
1241   }
1242 }
1243 
1244 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1245   // Make sure that this type is translated.
1246   Types.UpdateCompletedType(TD);
1247 }
1248 
1249 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1250   // Make sure that this type is translated.
1251   Types.RefreshTypeCacheForClass(RD);
1252 }
1253 
1254 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1255   if (!TBAA)
1256     return nullptr;
1257   return TBAA->getTypeInfo(QTy);
1258 }
1259 
1260 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1261   if (!TBAA)
1262     return TBAAAccessInfo();
1263   if (getLangOpts().CUDAIsDevice) {
1264     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1265     // access info.
1266     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1267       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1268           nullptr)
1269         return TBAAAccessInfo();
1270     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1271       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1272           nullptr)
1273         return TBAAAccessInfo();
1274     }
1275   }
1276   return TBAA->getAccessInfo(AccessType);
1277 }
1278 
1279 TBAAAccessInfo
1280 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1281   if (!TBAA)
1282     return TBAAAccessInfo();
1283   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1284 }
1285 
1286 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1287   if (!TBAA)
1288     return nullptr;
1289   return TBAA->getTBAAStructInfo(QTy);
1290 }
1291 
1292 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1293   if (!TBAA)
1294     return nullptr;
1295   return TBAA->getBaseTypeInfo(QTy);
1296 }
1297 
1298 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1299   if (!TBAA)
1300     return nullptr;
1301   return TBAA->getAccessTagInfo(Info);
1302 }
1303 
1304 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1305                                                    TBAAAccessInfo TargetInfo) {
1306   if (!TBAA)
1307     return TBAAAccessInfo();
1308   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1309 }
1310 
1311 TBAAAccessInfo
1312 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1313                                                    TBAAAccessInfo InfoB) {
1314   if (!TBAA)
1315     return TBAAAccessInfo();
1316   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1317 }
1318 
1319 TBAAAccessInfo
1320 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1321                                               TBAAAccessInfo SrcInfo) {
1322   if (!TBAA)
1323     return TBAAAccessInfo();
1324   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1325 }
1326 
1327 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1328                                                 TBAAAccessInfo TBAAInfo) {
1329   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1330     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1331 }
1332 
1333 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1334     llvm::Instruction *I, const CXXRecordDecl *RD) {
1335   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1336                  llvm::MDNode::get(getLLVMContext(), {}));
1337 }
1338 
1339 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1340   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1341   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1342 }
1343 
1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1345 /// specified stmt yet.
1346 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1347   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1348                                                "cannot compile this %0 yet");
1349   std::string Msg = Type;
1350   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1351       << Msg << S->getSourceRange();
1352 }
1353 
1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1355 /// specified decl yet.
1356 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1357   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1358                                                "cannot compile this %0 yet");
1359   std::string Msg = Type;
1360   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1361 }
1362 
1363 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1364   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1365 }
1366 
1367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1368                                         const NamedDecl *D) const {
1369   // Internal definitions always have default visibility.
1370   if (GV->hasLocalLinkage()) {
1371     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1372     return;
1373   }
1374   if (!D)
1375     return;
1376   // Set visibility for definitions, and for declarations if requested globally
1377   // or set explicitly.
1378   LinkageInfo LV = D->getLinkageAndVisibility();
1379   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1380     // Reject incompatible dlllstorage and visibility annotations.
1381     if (!LV.isVisibilityExplicit())
1382       return;
1383     if (GV->hasDLLExportStorageClass()) {
1384       if (LV.getVisibility() == HiddenVisibility)
1385         getDiags().Report(D->getLocation(),
1386                           diag::err_hidden_visibility_dllexport);
1387     } else if (LV.getVisibility() != DefaultVisibility) {
1388       getDiags().Report(D->getLocation(),
1389                         diag::err_non_default_visibility_dllimport);
1390     }
1391     return;
1392   }
1393 
1394   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1395       !GV->isDeclarationForLinker())
1396     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1397 }
1398 
1399 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1400                                  llvm::GlobalValue *GV) {
1401   if (GV->hasLocalLinkage())
1402     return true;
1403 
1404   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1405     return true;
1406 
1407   // DLLImport explicitly marks the GV as external.
1408   if (GV->hasDLLImportStorageClass())
1409     return false;
1410 
1411   const llvm::Triple &TT = CGM.getTriple();
1412   if (TT.isWindowsGNUEnvironment()) {
1413     // In MinGW, variables without DLLImport can still be automatically
1414     // imported from a DLL by the linker; don't mark variables that
1415     // potentially could come from another DLL as DSO local.
1416 
1417     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1418     // (and this actually happens in the public interface of libstdc++), so
1419     // such variables can't be marked as DSO local. (Native TLS variables
1420     // can't be dllimported at all, though.)
1421     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1422         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1423       return false;
1424   }
1425 
1426   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1427   // remain unresolved in the link, they can be resolved to zero, which is
1428   // outside the current DSO.
1429   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1430     return false;
1431 
1432   // Every other GV is local on COFF.
1433   // Make an exception for windows OS in the triple: Some firmware builds use
1434   // *-win32-macho triples. This (accidentally?) produced windows relocations
1435   // without GOT tables in older clang versions; Keep this behaviour.
1436   // FIXME: even thread local variables?
1437   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1438     return true;
1439 
1440   // Only handle COFF and ELF for now.
1441   if (!TT.isOSBinFormatELF())
1442     return false;
1443 
1444   // If this is not an executable, don't assume anything is local.
1445   const auto &CGOpts = CGM.getCodeGenOpts();
1446   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1447   const auto &LOpts = CGM.getLangOpts();
1448   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1449     // On ELF, if -fno-semantic-interposition is specified and the target
1450     // supports local aliases, there will be neither CC1
1451     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1452     // dso_local on the function if using a local alias is preferable (can avoid
1453     // PLT indirection).
1454     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1455       return false;
1456     return !(CGM.getLangOpts().SemanticInterposition ||
1457              CGM.getLangOpts().HalfNoSemanticInterposition);
1458   }
1459 
1460   // A definition cannot be preempted from an executable.
1461   if (!GV->isDeclarationForLinker())
1462     return true;
1463 
1464   // Most PIC code sequences that assume that a symbol is local cannot produce a
1465   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1466   // depended, it seems worth it to handle it here.
1467   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1468     return false;
1469 
1470   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1471   if (TT.isPPC64())
1472     return false;
1473 
1474   if (CGOpts.DirectAccessExternalData) {
1475     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1476     // for non-thread-local variables. If the symbol is not defined in the
1477     // executable, a copy relocation will be needed at link time. dso_local is
1478     // excluded for thread-local variables because they generally don't support
1479     // copy relocations.
1480     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1481       if (!Var->isThreadLocal())
1482         return true;
1483 
1484     // -fno-pic sets dso_local on a function declaration to allow direct
1485     // accesses when taking its address (similar to a data symbol). If the
1486     // function is not defined in the executable, a canonical PLT entry will be
1487     // needed at link time. -fno-direct-access-external-data can avoid the
1488     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1489     // it could just cause trouble without providing perceptible benefits.
1490     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1491       return true;
1492   }
1493 
1494   // If we can use copy relocations we can assume it is local.
1495 
1496   // Otherwise don't assume it is local.
1497   return false;
1498 }
1499 
1500 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1501   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1502 }
1503 
1504 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1505                                           GlobalDecl GD) const {
1506   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1507   // C++ destructors have a few C++ ABI specific special cases.
1508   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1509     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1510     return;
1511   }
1512   setDLLImportDLLExport(GV, D);
1513 }
1514 
1515 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1516                                           const NamedDecl *D) const {
1517   if (D && D->isExternallyVisible()) {
1518     if (D->hasAttr<DLLImportAttr>())
1519       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1520     else if ((D->hasAttr<DLLExportAttr>() ||
1521               shouldMapVisibilityToDLLExport(D)) &&
1522              !GV->isDeclarationForLinker())
1523       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1524   }
1525 }
1526 
1527 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1528                                     GlobalDecl GD) const {
1529   setDLLImportDLLExport(GV, GD);
1530   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1531 }
1532 
1533 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1534                                     const NamedDecl *D) const {
1535   setDLLImportDLLExport(GV, D);
1536   setGVPropertiesAux(GV, D);
1537 }
1538 
1539 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1540                                        const NamedDecl *D) const {
1541   setGlobalVisibility(GV, D);
1542   setDSOLocal(GV);
1543   GV->setPartition(CodeGenOpts.SymbolPartition);
1544 }
1545 
1546 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1547   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1548       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1549       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1550       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1551       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1552 }
1553 
1554 llvm::GlobalVariable::ThreadLocalMode
1555 CodeGenModule::GetDefaultLLVMTLSModel() const {
1556   switch (CodeGenOpts.getDefaultTLSModel()) {
1557   case CodeGenOptions::GeneralDynamicTLSModel:
1558     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1559   case CodeGenOptions::LocalDynamicTLSModel:
1560     return llvm::GlobalVariable::LocalDynamicTLSModel;
1561   case CodeGenOptions::InitialExecTLSModel:
1562     return llvm::GlobalVariable::InitialExecTLSModel;
1563   case CodeGenOptions::LocalExecTLSModel:
1564     return llvm::GlobalVariable::LocalExecTLSModel;
1565   }
1566   llvm_unreachable("Invalid TLS model!");
1567 }
1568 
1569 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1570   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1571 
1572   llvm::GlobalValue::ThreadLocalMode TLM;
1573   TLM = GetDefaultLLVMTLSModel();
1574 
1575   // Override the TLS model if it is explicitly specified.
1576   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1577     TLM = GetLLVMTLSModel(Attr->getModel());
1578   }
1579 
1580   GV->setThreadLocalMode(TLM);
1581 }
1582 
1583 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1584                                           StringRef Name) {
1585   const TargetInfo &Target = CGM.getTarget();
1586   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1587 }
1588 
1589 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1590                                                  const CPUSpecificAttr *Attr,
1591                                                  unsigned CPUIndex,
1592                                                  raw_ostream &Out) {
1593   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1594   // supported.
1595   if (Attr)
1596     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1597   else if (CGM.getTarget().supportsIFunc())
1598     Out << ".resolver";
1599 }
1600 
1601 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1602                                         const TargetVersionAttr *Attr,
1603                                         raw_ostream &Out) {
1604   if (Attr->isDefaultVersion())
1605     return;
1606   Out << "._";
1607   const TargetInfo &TI = CGM.getTarget();
1608   llvm::SmallVector<StringRef, 8> Feats;
1609   Attr->getFeatures(Feats);
1610   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1611     return TI.multiVersionSortPriority(FeatL) <
1612            TI.multiVersionSortPriority(FeatR);
1613   });
1614   for (const auto &Feat : Feats) {
1615     Out << 'M';
1616     Out << Feat;
1617   }
1618 }
1619 
1620 static void AppendTargetMangling(const CodeGenModule &CGM,
1621                                  const TargetAttr *Attr, raw_ostream &Out) {
1622   if (Attr->isDefaultVersion())
1623     return;
1624 
1625   Out << '.';
1626   const TargetInfo &Target = CGM.getTarget();
1627   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1628   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1629     // Multiversioning doesn't allow "no-${feature}", so we can
1630     // only have "+" prefixes here.
1631     assert(LHS.startswith("+") && RHS.startswith("+") &&
1632            "Features should always have a prefix.");
1633     return Target.multiVersionSortPriority(LHS.substr(1)) >
1634            Target.multiVersionSortPriority(RHS.substr(1));
1635   });
1636 
1637   bool IsFirst = true;
1638 
1639   if (!Info.CPU.empty()) {
1640     IsFirst = false;
1641     Out << "arch_" << Info.CPU;
1642   }
1643 
1644   for (StringRef Feat : Info.Features) {
1645     if (!IsFirst)
1646       Out << '_';
1647     IsFirst = false;
1648     Out << Feat.substr(1);
1649   }
1650 }
1651 
1652 // Returns true if GD is a function decl with internal linkage and
1653 // needs a unique suffix after the mangled name.
1654 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1655                                         CodeGenModule &CGM) {
1656   const Decl *D = GD.getDecl();
1657   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1658          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1659 }
1660 
1661 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1662                                        const TargetClonesAttr *Attr,
1663                                        unsigned VersionIndex,
1664                                        raw_ostream &Out) {
1665   const TargetInfo &TI = CGM.getTarget();
1666   if (TI.getTriple().isAArch64()) {
1667     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1668     if (FeatureStr == "default")
1669       return;
1670     Out << "._";
1671     SmallVector<StringRef, 8> Features;
1672     FeatureStr.split(Features, "+");
1673     llvm::stable_sort(Features,
1674                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1675                         return TI.multiVersionSortPriority(FeatL) <
1676                                TI.multiVersionSortPriority(FeatR);
1677                       });
1678     for (auto &Feat : Features) {
1679       Out << 'M';
1680       Out << Feat;
1681     }
1682   } else {
1683     Out << '.';
1684     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1685     if (FeatureStr.startswith("arch="))
1686       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1687     else
1688       Out << FeatureStr;
1689 
1690     Out << '.' << Attr->getMangledIndex(VersionIndex);
1691   }
1692 }
1693 
1694 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1695                                       const NamedDecl *ND,
1696                                       bool OmitMultiVersionMangling = false) {
1697   SmallString<256> Buffer;
1698   llvm::raw_svector_ostream Out(Buffer);
1699   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1700   if (!CGM.getModuleNameHash().empty())
1701     MC.needsUniqueInternalLinkageNames();
1702   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1703   if (ShouldMangle)
1704     MC.mangleName(GD.getWithDecl(ND), Out);
1705   else {
1706     IdentifierInfo *II = ND->getIdentifier();
1707     assert(II && "Attempt to mangle unnamed decl.");
1708     const auto *FD = dyn_cast<FunctionDecl>(ND);
1709 
1710     if (FD &&
1711         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1712       if (CGM.getLangOpts().RegCall4)
1713         Out << "__regcall4__" << II->getName();
1714       else
1715         Out << "__regcall3__" << II->getName();
1716     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1717                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1718       Out << "__device_stub__" << II->getName();
1719     } else {
1720       Out << II->getName();
1721     }
1722   }
1723 
1724   // Check if the module name hash should be appended for internal linkage
1725   // symbols.   This should come before multi-version target suffixes are
1726   // appended. This is to keep the name and module hash suffix of the
1727   // internal linkage function together.  The unique suffix should only be
1728   // added when name mangling is done to make sure that the final name can
1729   // be properly demangled.  For example, for C functions without prototypes,
1730   // name mangling is not done and the unique suffix should not be appeneded
1731   // then.
1732   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1733     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1734            "Hash computed when not explicitly requested");
1735     Out << CGM.getModuleNameHash();
1736   }
1737 
1738   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1739     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1740       switch (FD->getMultiVersionKind()) {
1741       case MultiVersionKind::CPUDispatch:
1742       case MultiVersionKind::CPUSpecific:
1743         AppendCPUSpecificCPUDispatchMangling(CGM,
1744                                              FD->getAttr<CPUSpecificAttr>(),
1745                                              GD.getMultiVersionIndex(), Out);
1746         break;
1747       case MultiVersionKind::Target:
1748         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1749         break;
1750       case MultiVersionKind::TargetVersion:
1751         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1752         break;
1753       case MultiVersionKind::TargetClones:
1754         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1755                                    GD.getMultiVersionIndex(), Out);
1756         break;
1757       case MultiVersionKind::None:
1758         llvm_unreachable("None multiversion type isn't valid here");
1759       }
1760     }
1761 
1762   // Make unique name for device side static file-scope variable for HIP.
1763   if (CGM.getContext().shouldExternalize(ND) &&
1764       CGM.getLangOpts().GPURelocatableDeviceCode &&
1765       CGM.getLangOpts().CUDAIsDevice)
1766     CGM.printPostfixForExternalizedDecl(Out, ND);
1767 
1768   return std::string(Out.str());
1769 }
1770 
1771 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1772                                             const FunctionDecl *FD,
1773                                             StringRef &CurName) {
1774   if (!FD->isMultiVersion())
1775     return;
1776 
1777   // Get the name of what this would be without the 'target' attribute.  This
1778   // allows us to lookup the version that was emitted when this wasn't a
1779   // multiversion function.
1780   std::string NonTargetName =
1781       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1782   GlobalDecl OtherGD;
1783   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1784     assert(OtherGD.getCanonicalDecl()
1785                .getDecl()
1786                ->getAsFunction()
1787                ->isMultiVersion() &&
1788            "Other GD should now be a multiversioned function");
1789     // OtherFD is the version of this function that was mangled BEFORE
1790     // becoming a MultiVersion function.  It potentially needs to be updated.
1791     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1792                                       .getDecl()
1793                                       ->getAsFunction()
1794                                       ->getMostRecentDecl();
1795     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1796     // This is so that if the initial version was already the 'default'
1797     // version, we don't try to update it.
1798     if (OtherName != NonTargetName) {
1799       // Remove instead of erase, since others may have stored the StringRef
1800       // to this.
1801       const auto ExistingRecord = Manglings.find(NonTargetName);
1802       if (ExistingRecord != std::end(Manglings))
1803         Manglings.remove(&(*ExistingRecord));
1804       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1805       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1806           Result.first->first();
1807       // If this is the current decl is being created, make sure we update the name.
1808       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1809         CurName = OtherNameRef;
1810       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1811         Entry->setName(OtherName);
1812     }
1813   }
1814 }
1815 
1816 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1817   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1818 
1819   // Some ABIs don't have constructor variants.  Make sure that base and
1820   // complete constructors get mangled the same.
1821   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1822     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1823       CXXCtorType OrigCtorType = GD.getCtorType();
1824       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1825       if (OrigCtorType == Ctor_Base)
1826         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1827     }
1828   }
1829 
1830   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1831   // static device variable depends on whether the variable is referenced by
1832   // a host or device host function. Therefore the mangled name cannot be
1833   // cached.
1834   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1835     auto FoundName = MangledDeclNames.find(CanonicalGD);
1836     if (FoundName != MangledDeclNames.end())
1837       return FoundName->second;
1838   }
1839 
1840   // Keep the first result in the case of a mangling collision.
1841   const auto *ND = cast<NamedDecl>(GD.getDecl());
1842   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1843 
1844   // Ensure either we have different ABIs between host and device compilations,
1845   // says host compilation following MSVC ABI but device compilation follows
1846   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1847   // mangling should be the same after name stubbing. The later checking is
1848   // very important as the device kernel name being mangled in host-compilation
1849   // is used to resolve the device binaries to be executed. Inconsistent naming
1850   // result in undefined behavior. Even though we cannot check that naming
1851   // directly between host- and device-compilations, the host- and
1852   // device-mangling in host compilation could help catching certain ones.
1853   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1854          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1855          (getContext().getAuxTargetInfo() &&
1856           (getContext().getAuxTargetInfo()->getCXXABI() !=
1857            getContext().getTargetInfo().getCXXABI())) ||
1858          getCUDARuntime().getDeviceSideName(ND) ==
1859              getMangledNameImpl(
1860                  *this,
1861                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1862                  ND));
1863 
1864   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1865   return MangledDeclNames[CanonicalGD] = Result.first->first();
1866 }
1867 
1868 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1869                                              const BlockDecl *BD) {
1870   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1871   const Decl *D = GD.getDecl();
1872 
1873   SmallString<256> Buffer;
1874   llvm::raw_svector_ostream Out(Buffer);
1875   if (!D)
1876     MangleCtx.mangleGlobalBlock(BD,
1877       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1878   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1879     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1880   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1881     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1882   else
1883     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1884 
1885   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1886   return Result.first->first();
1887 }
1888 
1889 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1890   auto it = MangledDeclNames.begin();
1891   while (it != MangledDeclNames.end()) {
1892     if (it->second == Name)
1893       return it->first;
1894     it++;
1895   }
1896   return GlobalDecl();
1897 }
1898 
1899 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1900   return getModule().getNamedValue(Name);
1901 }
1902 
1903 /// AddGlobalCtor - Add a function to the list that will be called before
1904 /// main() runs.
1905 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1906                                   unsigned LexOrder,
1907                                   llvm::Constant *AssociatedData) {
1908   // FIXME: Type coercion of void()* types.
1909   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1910 }
1911 
1912 /// AddGlobalDtor - Add a function to the list that will be called
1913 /// when the module is unloaded.
1914 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1915                                   bool IsDtorAttrFunc) {
1916   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1917       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1918     DtorsUsingAtExit[Priority].push_back(Dtor);
1919     return;
1920   }
1921 
1922   // FIXME: Type coercion of void()* types.
1923   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1924 }
1925 
1926 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1927   if (Fns.empty()) return;
1928 
1929   // Ctor function type is void()*.
1930   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1931   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1932       TheModule.getDataLayout().getProgramAddressSpace());
1933 
1934   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1935   llvm::StructType *CtorStructTy = llvm::StructType::get(
1936       Int32Ty, CtorPFTy, VoidPtrTy);
1937 
1938   // Construct the constructor and destructor arrays.
1939   ConstantInitBuilder builder(*this);
1940   auto ctors = builder.beginArray(CtorStructTy);
1941   for (const auto &I : Fns) {
1942     auto ctor = ctors.beginStruct(CtorStructTy);
1943     ctor.addInt(Int32Ty, I.Priority);
1944     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1945     if (I.AssociatedData)
1946       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1947     else
1948       ctor.addNullPointer(VoidPtrTy);
1949     ctor.finishAndAddTo(ctors);
1950   }
1951 
1952   auto list =
1953     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1954                                 /*constant*/ false,
1955                                 llvm::GlobalValue::AppendingLinkage);
1956 
1957   // The LTO linker doesn't seem to like it when we set an alignment
1958   // on appending variables.  Take it off as a workaround.
1959   list->setAlignment(std::nullopt);
1960 
1961   Fns.clear();
1962 }
1963 
1964 llvm::GlobalValue::LinkageTypes
1965 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1966   const auto *D = cast<FunctionDecl>(GD.getDecl());
1967 
1968   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1969 
1970   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1971     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1972 
1973   if (isa<CXXConstructorDecl>(D) &&
1974       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1975       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1976     // Our approach to inheriting constructors is fundamentally different from
1977     // that used by the MS ABI, so keep our inheriting constructor thunks
1978     // internal rather than trying to pick an unambiguous mangling for them.
1979     return llvm::GlobalValue::InternalLinkage;
1980   }
1981 
1982   return getLLVMLinkageForDeclarator(D, Linkage);
1983 }
1984 
1985 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1986   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1987   if (!MDS) return nullptr;
1988 
1989   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1990 }
1991 
1992 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1993   if (auto *FnType = T->getAs<FunctionProtoType>())
1994     T = getContext().getFunctionType(
1995         FnType->getReturnType(), FnType->getParamTypes(),
1996         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1997 
1998   std::string OutName;
1999   llvm::raw_string_ostream Out(OutName);
2000   getCXXABI().getMangleContext().mangleTypeName(
2001       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2002 
2003   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2004     Out << ".normalized";
2005 
2006   return llvm::ConstantInt::get(Int32Ty,
2007                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2008 }
2009 
2010 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2011                                               const CGFunctionInfo &Info,
2012                                               llvm::Function *F, bool IsThunk) {
2013   unsigned CallingConv;
2014   llvm::AttributeList PAL;
2015   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2016                          /*AttrOnCallSite=*/false, IsThunk);
2017   F->setAttributes(PAL);
2018   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2019 }
2020 
2021 static void removeImageAccessQualifier(std::string& TyName) {
2022   std::string ReadOnlyQual("__read_only");
2023   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2024   if (ReadOnlyPos != std::string::npos)
2025     // "+ 1" for the space after access qualifier.
2026     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2027   else {
2028     std::string WriteOnlyQual("__write_only");
2029     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2030     if (WriteOnlyPos != std::string::npos)
2031       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2032     else {
2033       std::string ReadWriteQual("__read_write");
2034       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2035       if (ReadWritePos != std::string::npos)
2036         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2037     }
2038   }
2039 }
2040 
2041 // Returns the address space id that should be produced to the
2042 // kernel_arg_addr_space metadata. This is always fixed to the ids
2043 // as specified in the SPIR 2.0 specification in order to differentiate
2044 // for example in clGetKernelArgInfo() implementation between the address
2045 // spaces with targets without unique mapping to the OpenCL address spaces
2046 // (basically all single AS CPUs).
2047 static unsigned ArgInfoAddressSpace(LangAS AS) {
2048   switch (AS) {
2049   case LangAS::opencl_global:
2050     return 1;
2051   case LangAS::opencl_constant:
2052     return 2;
2053   case LangAS::opencl_local:
2054     return 3;
2055   case LangAS::opencl_generic:
2056     return 4; // Not in SPIR 2.0 specs.
2057   case LangAS::opencl_global_device:
2058     return 5;
2059   case LangAS::opencl_global_host:
2060     return 6;
2061   default:
2062     return 0; // Assume private.
2063   }
2064 }
2065 
2066 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2067                                          const FunctionDecl *FD,
2068                                          CodeGenFunction *CGF) {
2069   assert(((FD && CGF) || (!FD && !CGF)) &&
2070          "Incorrect use - FD and CGF should either be both null or not!");
2071   // Create MDNodes that represent the kernel arg metadata.
2072   // Each MDNode is a list in the form of "key", N number of values which is
2073   // the same number of values as their are kernel arguments.
2074 
2075   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2076 
2077   // MDNode for the kernel argument address space qualifiers.
2078   SmallVector<llvm::Metadata *, 8> addressQuals;
2079 
2080   // MDNode for the kernel argument access qualifiers (images only).
2081   SmallVector<llvm::Metadata *, 8> accessQuals;
2082 
2083   // MDNode for the kernel argument type names.
2084   SmallVector<llvm::Metadata *, 8> argTypeNames;
2085 
2086   // MDNode for the kernel argument base type names.
2087   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2088 
2089   // MDNode for the kernel argument type qualifiers.
2090   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2091 
2092   // MDNode for the kernel argument names.
2093   SmallVector<llvm::Metadata *, 8> argNames;
2094 
2095   if (FD && CGF)
2096     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2097       const ParmVarDecl *parm = FD->getParamDecl(i);
2098       // Get argument name.
2099       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2100 
2101       if (!getLangOpts().OpenCL)
2102         continue;
2103       QualType ty = parm->getType();
2104       std::string typeQuals;
2105 
2106       // Get image and pipe access qualifier:
2107       if (ty->isImageType() || ty->isPipeType()) {
2108         const Decl *PDecl = parm;
2109         if (const auto *TD = ty->getAs<TypedefType>())
2110           PDecl = TD->getDecl();
2111         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2112         if (A && A->isWriteOnly())
2113           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2114         else if (A && A->isReadWrite())
2115           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2116         else
2117           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2118       } else
2119         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2120 
2121       auto getTypeSpelling = [&](QualType Ty) {
2122         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2123 
2124         if (Ty.isCanonical()) {
2125           StringRef typeNameRef = typeName;
2126           // Turn "unsigned type" to "utype"
2127           if (typeNameRef.consume_front("unsigned "))
2128             return std::string("u") + typeNameRef.str();
2129           if (typeNameRef.consume_front("signed "))
2130             return typeNameRef.str();
2131         }
2132 
2133         return typeName;
2134       };
2135 
2136       if (ty->isPointerType()) {
2137         QualType pointeeTy = ty->getPointeeType();
2138 
2139         // Get address qualifier.
2140         addressQuals.push_back(
2141             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2142                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2143 
2144         // Get argument type name.
2145         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2146         std::string baseTypeName =
2147             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2148         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2149         argBaseTypeNames.push_back(
2150             llvm::MDString::get(VMContext, baseTypeName));
2151 
2152         // Get argument type qualifiers:
2153         if (ty.isRestrictQualified())
2154           typeQuals = "restrict";
2155         if (pointeeTy.isConstQualified() ||
2156             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2157           typeQuals += typeQuals.empty() ? "const" : " const";
2158         if (pointeeTy.isVolatileQualified())
2159           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2160       } else {
2161         uint32_t AddrSpc = 0;
2162         bool isPipe = ty->isPipeType();
2163         if (ty->isImageType() || isPipe)
2164           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2165 
2166         addressQuals.push_back(
2167             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2168 
2169         // Get argument type name.
2170         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2171         std::string typeName = getTypeSpelling(ty);
2172         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2173 
2174         // Remove access qualifiers on images
2175         // (as they are inseparable from type in clang implementation,
2176         // but OpenCL spec provides a special query to get access qualifier
2177         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2178         if (ty->isImageType()) {
2179           removeImageAccessQualifier(typeName);
2180           removeImageAccessQualifier(baseTypeName);
2181         }
2182 
2183         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2184         argBaseTypeNames.push_back(
2185             llvm::MDString::get(VMContext, baseTypeName));
2186 
2187         if (isPipe)
2188           typeQuals = "pipe";
2189       }
2190       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2191     }
2192 
2193   if (getLangOpts().OpenCL) {
2194     Fn->setMetadata("kernel_arg_addr_space",
2195                     llvm::MDNode::get(VMContext, addressQuals));
2196     Fn->setMetadata("kernel_arg_access_qual",
2197                     llvm::MDNode::get(VMContext, accessQuals));
2198     Fn->setMetadata("kernel_arg_type",
2199                     llvm::MDNode::get(VMContext, argTypeNames));
2200     Fn->setMetadata("kernel_arg_base_type",
2201                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2202     Fn->setMetadata("kernel_arg_type_qual",
2203                     llvm::MDNode::get(VMContext, argTypeQuals));
2204   }
2205   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2206       getCodeGenOpts().HIPSaveKernelArgName)
2207     Fn->setMetadata("kernel_arg_name",
2208                     llvm::MDNode::get(VMContext, argNames));
2209 }
2210 
2211 /// Determines whether the language options require us to model
2212 /// unwind exceptions.  We treat -fexceptions as mandating this
2213 /// except under the fragile ObjC ABI with only ObjC exceptions
2214 /// enabled.  This means, for example, that C with -fexceptions
2215 /// enables this.
2216 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2217   // If exceptions are completely disabled, obviously this is false.
2218   if (!LangOpts.Exceptions) return false;
2219 
2220   // If C++ exceptions are enabled, this is true.
2221   if (LangOpts.CXXExceptions) return true;
2222 
2223   // If ObjC exceptions are enabled, this depends on the ABI.
2224   if (LangOpts.ObjCExceptions) {
2225     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2226   }
2227 
2228   return true;
2229 }
2230 
2231 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2232                                                       const CXXMethodDecl *MD) {
2233   // Check that the type metadata can ever actually be used by a call.
2234   if (!CGM.getCodeGenOpts().LTOUnit ||
2235       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2236     return false;
2237 
2238   // Only functions whose address can be taken with a member function pointer
2239   // need this sort of type metadata.
2240   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2241          !isa<CXXDestructorDecl>(MD);
2242 }
2243 
2244 SmallVector<const CXXRecordDecl *, 0>
2245 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2246   llvm::SetVector<const CXXRecordDecl *> MostBases;
2247 
2248   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2249   CollectMostBases = [&](const CXXRecordDecl *RD) {
2250     if (RD->getNumBases() == 0)
2251       MostBases.insert(RD);
2252     for (const CXXBaseSpecifier &B : RD->bases())
2253       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2254   };
2255   CollectMostBases(RD);
2256   return MostBases.takeVector();
2257 }
2258 
2259 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2260                                                            llvm::Function *F) {
2261   llvm::AttrBuilder B(F->getContext());
2262 
2263   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2264     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2265 
2266   if (CodeGenOpts.StackClashProtector)
2267     B.addAttribute("probe-stack", "inline-asm");
2268 
2269   if (!hasUnwindExceptions(LangOpts))
2270     B.addAttribute(llvm::Attribute::NoUnwind);
2271 
2272   if (D && D->hasAttr<NoStackProtectorAttr>())
2273     ; // Do nothing.
2274   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2275            LangOpts.getStackProtector() == LangOptions::SSPOn)
2276     B.addAttribute(llvm::Attribute::StackProtectStrong);
2277   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2278     B.addAttribute(llvm::Attribute::StackProtect);
2279   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2280     B.addAttribute(llvm::Attribute::StackProtectStrong);
2281   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2282     B.addAttribute(llvm::Attribute::StackProtectReq);
2283 
2284   if (!D) {
2285     // If we don't have a declaration to control inlining, the function isn't
2286     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2287     // disabled, mark the function as noinline.
2288     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2289         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2290       B.addAttribute(llvm::Attribute::NoInline);
2291 
2292     F->addFnAttrs(B);
2293     return;
2294   }
2295 
2296   // Handle SME attributes that apply to function definitions,
2297   // rather than to function prototypes.
2298   if (D->hasAttr<ArmLocallyStreamingAttr>())
2299     B.addAttribute("aarch64_pstate_sm_body");
2300 
2301   if (D->hasAttr<ArmNewZAAttr>())
2302     B.addAttribute("aarch64_pstate_za_new");
2303 
2304   // Track whether we need to add the optnone LLVM attribute,
2305   // starting with the default for this optimization level.
2306   bool ShouldAddOptNone =
2307       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2308   // We can't add optnone in the following cases, it won't pass the verifier.
2309   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2310   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2311 
2312   // Add optnone, but do so only if the function isn't always_inline.
2313   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2314       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2315     B.addAttribute(llvm::Attribute::OptimizeNone);
2316 
2317     // OptimizeNone implies noinline; we should not be inlining such functions.
2318     B.addAttribute(llvm::Attribute::NoInline);
2319 
2320     // We still need to handle naked functions even though optnone subsumes
2321     // much of their semantics.
2322     if (D->hasAttr<NakedAttr>())
2323       B.addAttribute(llvm::Attribute::Naked);
2324 
2325     // OptimizeNone wins over OptimizeForSize and MinSize.
2326     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2327     F->removeFnAttr(llvm::Attribute::MinSize);
2328   } else if (D->hasAttr<NakedAttr>()) {
2329     // Naked implies noinline: we should not be inlining such functions.
2330     B.addAttribute(llvm::Attribute::Naked);
2331     B.addAttribute(llvm::Attribute::NoInline);
2332   } else if (D->hasAttr<NoDuplicateAttr>()) {
2333     B.addAttribute(llvm::Attribute::NoDuplicate);
2334   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2335     // Add noinline if the function isn't always_inline.
2336     B.addAttribute(llvm::Attribute::NoInline);
2337   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2338              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2339     // (noinline wins over always_inline, and we can't specify both in IR)
2340     B.addAttribute(llvm::Attribute::AlwaysInline);
2341   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2342     // If we're not inlining, then force everything that isn't always_inline to
2343     // carry an explicit noinline attribute.
2344     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2345       B.addAttribute(llvm::Attribute::NoInline);
2346   } else {
2347     // Otherwise, propagate the inline hint attribute and potentially use its
2348     // absence to mark things as noinline.
2349     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2350       // Search function and template pattern redeclarations for inline.
2351       auto CheckForInline = [](const FunctionDecl *FD) {
2352         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2353           return Redecl->isInlineSpecified();
2354         };
2355         if (any_of(FD->redecls(), CheckRedeclForInline))
2356           return true;
2357         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2358         if (!Pattern)
2359           return false;
2360         return any_of(Pattern->redecls(), CheckRedeclForInline);
2361       };
2362       if (CheckForInline(FD)) {
2363         B.addAttribute(llvm::Attribute::InlineHint);
2364       } else if (CodeGenOpts.getInlining() ==
2365                      CodeGenOptions::OnlyHintInlining &&
2366                  !FD->isInlined() &&
2367                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2368         B.addAttribute(llvm::Attribute::NoInline);
2369       }
2370     }
2371   }
2372 
2373   // Add other optimization related attributes if we are optimizing this
2374   // function.
2375   if (!D->hasAttr<OptimizeNoneAttr>()) {
2376     if (D->hasAttr<ColdAttr>()) {
2377       if (!ShouldAddOptNone)
2378         B.addAttribute(llvm::Attribute::OptimizeForSize);
2379       B.addAttribute(llvm::Attribute::Cold);
2380     }
2381     if (D->hasAttr<HotAttr>())
2382       B.addAttribute(llvm::Attribute::Hot);
2383     if (D->hasAttr<MinSizeAttr>())
2384       B.addAttribute(llvm::Attribute::MinSize);
2385   }
2386 
2387   F->addFnAttrs(B);
2388 
2389   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2390   if (alignment)
2391     F->setAlignment(llvm::Align(alignment));
2392 
2393   if (!D->hasAttr<AlignedAttr>())
2394     if (LangOpts.FunctionAlignment)
2395       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2396 
2397   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2398   // reserve a bit for differentiating between virtual and non-virtual member
2399   // functions. If the current target's C++ ABI requires this and this is a
2400   // member function, set its alignment accordingly.
2401   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2402     if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D))
2403       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2404   }
2405 
2406   // In the cross-dso CFI mode with canonical jump tables, we want !type
2407   // attributes on definitions only.
2408   if (CodeGenOpts.SanitizeCfiCrossDso &&
2409       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2410     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2411       // Skip available_externally functions. They won't be codegen'ed in the
2412       // current module anyway.
2413       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2414         CreateFunctionTypeMetadataForIcall(FD, F);
2415     }
2416   }
2417 
2418   // Emit type metadata on member functions for member function pointer checks.
2419   // These are only ever necessary on definitions; we're guaranteed that the
2420   // definition will be present in the LTO unit as a result of LTO visibility.
2421   auto *MD = dyn_cast<CXXMethodDecl>(D);
2422   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2423     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2424       llvm::Metadata *Id =
2425           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2426               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2427       F->addTypeMetadata(0, Id);
2428     }
2429   }
2430 }
2431 
2432 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2433   const Decl *D = GD.getDecl();
2434   if (isa_and_nonnull<NamedDecl>(D))
2435     setGVProperties(GV, GD);
2436   else
2437     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2438 
2439   if (D && D->hasAttr<UsedAttr>())
2440     addUsedOrCompilerUsedGlobal(GV);
2441 
2442   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2443       VD &&
2444       ((CodeGenOpts.KeepPersistentStorageVariables &&
2445         (VD->getStorageDuration() == SD_Static ||
2446          VD->getStorageDuration() == SD_Thread)) ||
2447        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2448         VD->getType().isConstQualified())))
2449     addUsedOrCompilerUsedGlobal(GV);
2450 }
2451 
2452 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2453                                                 llvm::AttrBuilder &Attrs,
2454                                                 bool SetTargetFeatures) {
2455   // Add target-cpu and target-features attributes to functions. If
2456   // we have a decl for the function and it has a target attribute then
2457   // parse that and add it to the feature set.
2458   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2459   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2460   std::vector<std::string> Features;
2461   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2462   FD = FD ? FD->getMostRecentDecl() : FD;
2463   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2464   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2465   assert((!TD || !TV) && "both target_version and target specified");
2466   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2467   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2468   bool AddedAttr = false;
2469   if (TD || TV || SD || TC) {
2470     llvm::StringMap<bool> FeatureMap;
2471     getContext().getFunctionFeatureMap(FeatureMap, GD);
2472 
2473     // Produce the canonical string for this set of features.
2474     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2475       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2476 
2477     // Now add the target-cpu and target-features to the function.
2478     // While we populated the feature map above, we still need to
2479     // get and parse the target attribute so we can get the cpu for
2480     // the function.
2481     if (TD) {
2482       ParsedTargetAttr ParsedAttr =
2483           Target.parseTargetAttr(TD->getFeaturesStr());
2484       if (!ParsedAttr.CPU.empty() &&
2485           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2486         TargetCPU = ParsedAttr.CPU;
2487         TuneCPU = ""; // Clear the tune CPU.
2488       }
2489       if (!ParsedAttr.Tune.empty() &&
2490           getTarget().isValidCPUName(ParsedAttr.Tune))
2491         TuneCPU = ParsedAttr.Tune;
2492     }
2493 
2494     if (SD) {
2495       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2496       // favor this processor.
2497       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2498     }
2499   } else {
2500     // Otherwise just add the existing target cpu and target features to the
2501     // function.
2502     Features = getTarget().getTargetOpts().Features;
2503   }
2504 
2505   if (!TargetCPU.empty()) {
2506     Attrs.addAttribute("target-cpu", TargetCPU);
2507     AddedAttr = true;
2508   }
2509   if (!TuneCPU.empty()) {
2510     Attrs.addAttribute("tune-cpu", TuneCPU);
2511     AddedAttr = true;
2512   }
2513   if (!Features.empty() && SetTargetFeatures) {
2514     llvm::erase_if(Features, [&](const std::string& F) {
2515        return getTarget().isReadOnlyFeature(F.substr(1));
2516     });
2517     llvm::sort(Features);
2518     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2519     AddedAttr = true;
2520   }
2521 
2522   return AddedAttr;
2523 }
2524 
2525 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2526                                           llvm::GlobalObject *GO) {
2527   const Decl *D = GD.getDecl();
2528   SetCommonAttributes(GD, GO);
2529 
2530   if (D) {
2531     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2532       if (D->hasAttr<RetainAttr>())
2533         addUsedGlobal(GV);
2534       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2535         GV->addAttribute("bss-section", SA->getName());
2536       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2537         GV->addAttribute("data-section", SA->getName());
2538       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2539         GV->addAttribute("rodata-section", SA->getName());
2540       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2541         GV->addAttribute("relro-section", SA->getName());
2542     }
2543 
2544     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2545       if (D->hasAttr<RetainAttr>())
2546         addUsedGlobal(F);
2547       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2548         if (!D->getAttr<SectionAttr>())
2549           F->addFnAttr("implicit-section-name", SA->getName());
2550 
2551       llvm::AttrBuilder Attrs(F->getContext());
2552       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2553         // We know that GetCPUAndFeaturesAttributes will always have the
2554         // newest set, since it has the newest possible FunctionDecl, so the
2555         // new ones should replace the old.
2556         llvm::AttributeMask RemoveAttrs;
2557         RemoveAttrs.addAttribute("target-cpu");
2558         RemoveAttrs.addAttribute("target-features");
2559         RemoveAttrs.addAttribute("tune-cpu");
2560         F->removeFnAttrs(RemoveAttrs);
2561         F->addFnAttrs(Attrs);
2562       }
2563     }
2564 
2565     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2566       GO->setSection(CSA->getName());
2567     else if (const auto *SA = D->getAttr<SectionAttr>())
2568       GO->setSection(SA->getName());
2569   }
2570 
2571   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2572 }
2573 
2574 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2575                                                   llvm::Function *F,
2576                                                   const CGFunctionInfo &FI) {
2577   const Decl *D = GD.getDecl();
2578   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2579   SetLLVMFunctionAttributesForDefinition(D, F);
2580 
2581   F->setLinkage(llvm::Function::InternalLinkage);
2582 
2583   setNonAliasAttributes(GD, F);
2584 }
2585 
2586 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2587   // Set linkage and visibility in case we never see a definition.
2588   LinkageInfo LV = ND->getLinkageAndVisibility();
2589   // Don't set internal linkage on declarations.
2590   // "extern_weak" is overloaded in LLVM; we probably should have
2591   // separate linkage types for this.
2592   if (isExternallyVisible(LV.getLinkage()) &&
2593       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2594     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2595 }
2596 
2597 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2598                                                        llvm::Function *F) {
2599   // Only if we are checking indirect calls.
2600   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2601     return;
2602 
2603   // Non-static class methods are handled via vtable or member function pointer
2604   // checks elsewhere.
2605   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2606     return;
2607 
2608   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2609   F->addTypeMetadata(0, MD);
2610   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2611 
2612   // Emit a hash-based bit set entry for cross-DSO calls.
2613   if (CodeGenOpts.SanitizeCfiCrossDso)
2614     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2615       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2616 }
2617 
2618 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2619   llvm::LLVMContext &Ctx = F->getContext();
2620   llvm::MDBuilder MDB(Ctx);
2621   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2622                  llvm::MDNode::get(
2623                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2624 }
2625 
2626 static bool allowKCFIIdentifier(StringRef Name) {
2627   // KCFI type identifier constants are only necessary for external assembly
2628   // functions, which means it's safe to skip unusual names. Subset of
2629   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2630   return llvm::all_of(Name, [](const char &C) {
2631     return llvm::isAlnum(C) || C == '_' || C == '.';
2632   });
2633 }
2634 
2635 void CodeGenModule::finalizeKCFITypes() {
2636   llvm::Module &M = getModule();
2637   for (auto &F : M.functions()) {
2638     // Remove KCFI type metadata from non-address-taken local functions.
2639     bool AddressTaken = F.hasAddressTaken();
2640     if (!AddressTaken && F.hasLocalLinkage())
2641       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2642 
2643     // Generate a constant with the expected KCFI type identifier for all
2644     // address-taken function declarations to support annotating indirectly
2645     // called assembly functions.
2646     if (!AddressTaken || !F.isDeclaration())
2647       continue;
2648 
2649     const llvm::ConstantInt *Type;
2650     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2651       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2652     else
2653       continue;
2654 
2655     StringRef Name = F.getName();
2656     if (!allowKCFIIdentifier(Name))
2657       continue;
2658 
2659     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2660                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2661                           .str();
2662     M.appendModuleInlineAsm(Asm);
2663   }
2664 }
2665 
2666 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2667                                           bool IsIncompleteFunction,
2668                                           bool IsThunk) {
2669 
2670   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2671     // If this is an intrinsic function, set the function's attributes
2672     // to the intrinsic's attributes.
2673     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2674     return;
2675   }
2676 
2677   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2678 
2679   if (!IsIncompleteFunction)
2680     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2681                               IsThunk);
2682 
2683   // Add the Returned attribute for "this", except for iOS 5 and earlier
2684   // where substantial code, including the libstdc++ dylib, was compiled with
2685   // GCC and does not actually return "this".
2686   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2687       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2688     assert(!F->arg_empty() &&
2689            F->arg_begin()->getType()
2690              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2691            "unexpected this return");
2692     F->addParamAttr(0, llvm::Attribute::Returned);
2693   }
2694 
2695   // Only a few attributes are set on declarations; these may later be
2696   // overridden by a definition.
2697 
2698   setLinkageForGV(F, FD);
2699   setGVProperties(F, FD);
2700 
2701   // Setup target-specific attributes.
2702   if (!IsIncompleteFunction && F->isDeclaration())
2703     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2704 
2705   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2706     F->setSection(CSA->getName());
2707   else if (const auto *SA = FD->getAttr<SectionAttr>())
2708      F->setSection(SA->getName());
2709 
2710   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2711     if (EA->isError())
2712       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2713     else if (EA->isWarning())
2714       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2715   }
2716 
2717   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2718   if (FD->isInlineBuiltinDeclaration()) {
2719     const FunctionDecl *FDBody;
2720     bool HasBody = FD->hasBody(FDBody);
2721     (void)HasBody;
2722     assert(HasBody && "Inline builtin declarations should always have an "
2723                       "available body!");
2724     if (shouldEmitFunction(FDBody))
2725       F->addFnAttr(llvm::Attribute::NoBuiltin);
2726   }
2727 
2728   if (FD->isReplaceableGlobalAllocationFunction()) {
2729     // A replaceable global allocation function does not act like a builtin by
2730     // default, only if it is invoked by a new-expression or delete-expression.
2731     F->addFnAttr(llvm::Attribute::NoBuiltin);
2732   }
2733 
2734   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2735     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2736   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2737     if (MD->isVirtual())
2738       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2739 
2740   // Don't emit entries for function declarations in the cross-DSO mode. This
2741   // is handled with better precision by the receiving DSO. But if jump tables
2742   // are non-canonical then we need type metadata in order to produce the local
2743   // jump table.
2744   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2745       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2746     CreateFunctionTypeMetadataForIcall(FD, F);
2747 
2748   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2749     setKCFIType(FD, F);
2750 
2751   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2752     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2753 
2754   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2755     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2756 
2757   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2758     // Annotate the callback behavior as metadata:
2759     //  - The callback callee (as argument number).
2760     //  - The callback payloads (as argument numbers).
2761     llvm::LLVMContext &Ctx = F->getContext();
2762     llvm::MDBuilder MDB(Ctx);
2763 
2764     // The payload indices are all but the first one in the encoding. The first
2765     // identifies the callback callee.
2766     int CalleeIdx = *CB->encoding_begin();
2767     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2768     F->addMetadata(llvm::LLVMContext::MD_callback,
2769                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2770                                                CalleeIdx, PayloadIndices,
2771                                                /* VarArgsArePassed */ false)}));
2772   }
2773 }
2774 
2775 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2776   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2777          "Only globals with definition can force usage.");
2778   LLVMUsed.emplace_back(GV);
2779 }
2780 
2781 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2782   assert(!GV->isDeclaration() &&
2783          "Only globals with definition can force usage.");
2784   LLVMCompilerUsed.emplace_back(GV);
2785 }
2786 
2787 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2788   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2789          "Only globals with definition can force usage.");
2790   if (getTriple().isOSBinFormatELF())
2791     LLVMCompilerUsed.emplace_back(GV);
2792   else
2793     LLVMUsed.emplace_back(GV);
2794 }
2795 
2796 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2797                      std::vector<llvm::WeakTrackingVH> &List) {
2798   // Don't create llvm.used if there is no need.
2799   if (List.empty())
2800     return;
2801 
2802   // Convert List to what ConstantArray needs.
2803   SmallVector<llvm::Constant*, 8> UsedArray;
2804   UsedArray.resize(List.size());
2805   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2806     UsedArray[i] =
2807         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2808             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2809   }
2810 
2811   if (UsedArray.empty())
2812     return;
2813   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2814 
2815   auto *GV = new llvm::GlobalVariable(
2816       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2817       llvm::ConstantArray::get(ATy, UsedArray), Name);
2818 
2819   GV->setSection("llvm.metadata");
2820 }
2821 
2822 void CodeGenModule::emitLLVMUsed() {
2823   emitUsed(*this, "llvm.used", LLVMUsed);
2824   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2825 }
2826 
2827 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2828   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2829   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2830 }
2831 
2832 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2833   llvm::SmallString<32> Opt;
2834   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2835   if (Opt.empty())
2836     return;
2837   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2838   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2839 }
2840 
2841 void CodeGenModule::AddDependentLib(StringRef Lib) {
2842   auto &C = getLLVMContext();
2843   if (getTarget().getTriple().isOSBinFormatELF()) {
2844       ELFDependentLibraries.push_back(
2845         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2846     return;
2847   }
2848 
2849   llvm::SmallString<24> Opt;
2850   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2851   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2852   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2853 }
2854 
2855 /// Add link options implied by the given module, including modules
2856 /// it depends on, using a postorder walk.
2857 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2858                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2859                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2860   // Import this module's parent.
2861   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2862     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2863   }
2864 
2865   // Import this module's dependencies.
2866   for (Module *Import : llvm::reverse(Mod->Imports)) {
2867     if (Visited.insert(Import).second)
2868       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2869   }
2870 
2871   // Add linker options to link against the libraries/frameworks
2872   // described by this module.
2873   llvm::LLVMContext &Context = CGM.getLLVMContext();
2874   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2875 
2876   // For modules that use export_as for linking, use that module
2877   // name instead.
2878   if (Mod->UseExportAsModuleLinkName)
2879     return;
2880 
2881   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2882     // Link against a framework.  Frameworks are currently Darwin only, so we
2883     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2884     if (LL.IsFramework) {
2885       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2886                                  llvm::MDString::get(Context, LL.Library)};
2887 
2888       Metadata.push_back(llvm::MDNode::get(Context, Args));
2889       continue;
2890     }
2891 
2892     // Link against a library.
2893     if (IsELF) {
2894       llvm::Metadata *Args[2] = {
2895           llvm::MDString::get(Context, "lib"),
2896           llvm::MDString::get(Context, LL.Library),
2897       };
2898       Metadata.push_back(llvm::MDNode::get(Context, Args));
2899     } else {
2900       llvm::SmallString<24> Opt;
2901       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2902       auto *OptString = llvm::MDString::get(Context, Opt);
2903       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2904     }
2905   }
2906 }
2907 
2908 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2909   // Emit the initializers in the order that sub-modules appear in the
2910   // source, first Global Module Fragments, if present.
2911   if (auto GMF = Primary->getGlobalModuleFragment()) {
2912     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2913       if (isa<ImportDecl>(D))
2914         continue;
2915       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2916       EmitTopLevelDecl(D);
2917     }
2918   }
2919   // Second any associated with the module, itself.
2920   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2921     // Skip import decls, the inits for those are called explicitly.
2922     if (isa<ImportDecl>(D))
2923       continue;
2924     EmitTopLevelDecl(D);
2925   }
2926   // Third any associated with the Privat eMOdule Fragment, if present.
2927   if (auto PMF = Primary->getPrivateModuleFragment()) {
2928     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2929       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2930       EmitTopLevelDecl(D);
2931     }
2932   }
2933 }
2934 
2935 void CodeGenModule::EmitModuleLinkOptions() {
2936   // Collect the set of all of the modules we want to visit to emit link
2937   // options, which is essentially the imported modules and all of their
2938   // non-explicit child modules.
2939   llvm::SetVector<clang::Module *> LinkModules;
2940   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2941   SmallVector<clang::Module *, 16> Stack;
2942 
2943   // Seed the stack with imported modules.
2944   for (Module *M : ImportedModules) {
2945     // Do not add any link flags when an implementation TU of a module imports
2946     // a header of that same module.
2947     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2948         !getLangOpts().isCompilingModule())
2949       continue;
2950     if (Visited.insert(M).second)
2951       Stack.push_back(M);
2952   }
2953 
2954   // Find all of the modules to import, making a little effort to prune
2955   // non-leaf modules.
2956   while (!Stack.empty()) {
2957     clang::Module *Mod = Stack.pop_back_val();
2958 
2959     bool AnyChildren = false;
2960 
2961     // Visit the submodules of this module.
2962     for (const auto &SM : Mod->submodules()) {
2963       // Skip explicit children; they need to be explicitly imported to be
2964       // linked against.
2965       if (SM->IsExplicit)
2966         continue;
2967 
2968       if (Visited.insert(SM).second) {
2969         Stack.push_back(SM);
2970         AnyChildren = true;
2971       }
2972     }
2973 
2974     // We didn't find any children, so add this module to the list of
2975     // modules to link against.
2976     if (!AnyChildren) {
2977       LinkModules.insert(Mod);
2978     }
2979   }
2980 
2981   // Add link options for all of the imported modules in reverse topological
2982   // order.  We don't do anything to try to order import link flags with respect
2983   // to linker options inserted by things like #pragma comment().
2984   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2985   Visited.clear();
2986   for (Module *M : LinkModules)
2987     if (Visited.insert(M).second)
2988       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2989   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2990   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2991 
2992   // Add the linker options metadata flag.
2993   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2994   for (auto *MD : LinkerOptionsMetadata)
2995     NMD->addOperand(MD);
2996 }
2997 
2998 void CodeGenModule::EmitDeferred() {
2999   // Emit deferred declare target declarations.
3000   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3001     getOpenMPRuntime().emitDeferredTargetDecls();
3002 
3003   // Emit code for any potentially referenced deferred decls.  Since a
3004   // previously unused static decl may become used during the generation of code
3005   // for a static function, iterate until no changes are made.
3006 
3007   if (!DeferredVTables.empty()) {
3008     EmitDeferredVTables();
3009 
3010     // Emitting a vtable doesn't directly cause more vtables to
3011     // become deferred, although it can cause functions to be
3012     // emitted that then need those vtables.
3013     assert(DeferredVTables.empty());
3014   }
3015 
3016   // Emit CUDA/HIP static device variables referenced by host code only.
3017   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3018   // needed for further handling.
3019   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3020     llvm::append_range(DeferredDeclsToEmit,
3021                        getContext().CUDADeviceVarODRUsedByHost);
3022 
3023   // Stop if we're out of both deferred vtables and deferred declarations.
3024   if (DeferredDeclsToEmit.empty())
3025     return;
3026 
3027   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3028   // work, it will not interfere with this.
3029   std::vector<GlobalDecl> CurDeclsToEmit;
3030   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3031 
3032   for (GlobalDecl &D : CurDeclsToEmit) {
3033     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3034     // to get GlobalValue with exactly the type we need, not something that
3035     // might had been created for another decl with the same mangled name but
3036     // different type.
3037     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3038         GetAddrOfGlobal(D, ForDefinition));
3039 
3040     // In case of different address spaces, we may still get a cast, even with
3041     // IsForDefinition equal to true. Query mangled names table to get
3042     // GlobalValue.
3043     if (!GV)
3044       GV = GetGlobalValue(getMangledName(D));
3045 
3046     // Make sure GetGlobalValue returned non-null.
3047     assert(GV);
3048 
3049     // Check to see if we've already emitted this.  This is necessary
3050     // for a couple of reasons: first, decls can end up in the
3051     // deferred-decls queue multiple times, and second, decls can end
3052     // up with definitions in unusual ways (e.g. by an extern inline
3053     // function acquiring a strong function redefinition).  Just
3054     // ignore these cases.
3055     if (!GV->isDeclaration())
3056       continue;
3057 
3058     // If this is OpenMP, check if it is legal to emit this global normally.
3059     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3060       continue;
3061 
3062     // Otherwise, emit the definition and move on to the next one.
3063     EmitGlobalDefinition(D, GV);
3064 
3065     // If we found out that we need to emit more decls, do that recursively.
3066     // This has the advantage that the decls are emitted in a DFS and related
3067     // ones are close together, which is convenient for testing.
3068     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3069       EmitDeferred();
3070       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3071     }
3072   }
3073 }
3074 
3075 void CodeGenModule::EmitVTablesOpportunistically() {
3076   // Try to emit external vtables as available_externally if they have emitted
3077   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3078   // is not allowed to create new references to things that need to be emitted
3079   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3080 
3081   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3082          && "Only emit opportunistic vtables with optimizations");
3083 
3084   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3085     assert(getVTables().isVTableExternal(RD) &&
3086            "This queue should only contain external vtables");
3087     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3088       VTables.GenerateClassData(RD);
3089   }
3090   OpportunisticVTables.clear();
3091 }
3092 
3093 void CodeGenModule::EmitGlobalAnnotations() {
3094   if (Annotations.empty())
3095     return;
3096 
3097   // Create a new global variable for the ConstantStruct in the Module.
3098   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3099     Annotations[0]->getType(), Annotations.size()), Annotations);
3100   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3101                                       llvm::GlobalValue::AppendingLinkage,
3102                                       Array, "llvm.global.annotations");
3103   gv->setSection(AnnotationSection);
3104 }
3105 
3106 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3107   llvm::Constant *&AStr = AnnotationStrings[Str];
3108   if (AStr)
3109     return AStr;
3110 
3111   // Not found yet, create a new global.
3112   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3113   auto *gv = new llvm::GlobalVariable(
3114       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3115       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3116       ConstGlobalsPtrTy->getAddressSpace());
3117   gv->setSection(AnnotationSection);
3118   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3119   AStr = gv;
3120   return gv;
3121 }
3122 
3123 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3124   SourceManager &SM = getContext().getSourceManager();
3125   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3126   if (PLoc.isValid())
3127     return EmitAnnotationString(PLoc.getFilename());
3128   return EmitAnnotationString(SM.getBufferName(Loc));
3129 }
3130 
3131 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3132   SourceManager &SM = getContext().getSourceManager();
3133   PresumedLoc PLoc = SM.getPresumedLoc(L);
3134   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3135     SM.getExpansionLineNumber(L);
3136   return llvm::ConstantInt::get(Int32Ty, LineNo);
3137 }
3138 
3139 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3140   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3141   if (Exprs.empty())
3142     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3143 
3144   llvm::FoldingSetNodeID ID;
3145   for (Expr *E : Exprs) {
3146     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3147   }
3148   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3149   if (Lookup)
3150     return Lookup;
3151 
3152   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3153   LLVMArgs.reserve(Exprs.size());
3154   ConstantEmitter ConstEmiter(*this);
3155   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3156     const auto *CE = cast<clang::ConstantExpr>(E);
3157     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3158                                     CE->getType());
3159   });
3160   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3161   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3162                                       llvm::GlobalValue::PrivateLinkage, Struct,
3163                                       ".args");
3164   GV->setSection(AnnotationSection);
3165   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3166   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3167 
3168   Lookup = Bitcasted;
3169   return Bitcasted;
3170 }
3171 
3172 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3173                                                 const AnnotateAttr *AA,
3174                                                 SourceLocation L) {
3175   // Get the globals for file name, annotation, and the line number.
3176   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3177                  *UnitGV = EmitAnnotationUnit(L),
3178                  *LineNoCst = EmitAnnotationLineNo(L),
3179                  *Args = EmitAnnotationArgs(AA);
3180 
3181   llvm::Constant *GVInGlobalsAS = GV;
3182   if (GV->getAddressSpace() !=
3183       getDataLayout().getDefaultGlobalsAddressSpace()) {
3184     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3185         GV, GV->getValueType()->getPointerTo(
3186                 getDataLayout().getDefaultGlobalsAddressSpace()));
3187   }
3188 
3189   // Create the ConstantStruct for the global annotation.
3190   llvm::Constant *Fields[] = {
3191       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3192       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3193       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3194       LineNoCst,
3195       Args,
3196   };
3197   return llvm::ConstantStruct::getAnon(Fields);
3198 }
3199 
3200 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3201                                          llvm::GlobalValue *GV) {
3202   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3203   // Get the struct elements for these annotations.
3204   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3205     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3206 }
3207 
3208 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3209                                        SourceLocation Loc) const {
3210   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3211   // NoSanitize by function name.
3212   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3213     return true;
3214   // NoSanitize by location. Check "mainfile" prefix.
3215   auto &SM = Context.getSourceManager();
3216   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3217   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3218     return true;
3219 
3220   // Check "src" prefix.
3221   if (Loc.isValid())
3222     return NoSanitizeL.containsLocation(Kind, Loc);
3223   // If location is unknown, this may be a compiler-generated function. Assume
3224   // it's located in the main file.
3225   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3226 }
3227 
3228 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3229                                        llvm::GlobalVariable *GV,
3230                                        SourceLocation Loc, QualType Ty,
3231                                        StringRef Category) const {
3232   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3233   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3234     return true;
3235   auto &SM = Context.getSourceManager();
3236   if (NoSanitizeL.containsMainFile(
3237           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3238     return true;
3239   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3240     return true;
3241 
3242   // Check global type.
3243   if (!Ty.isNull()) {
3244     // Drill down the array types: if global variable of a fixed type is
3245     // not sanitized, we also don't instrument arrays of them.
3246     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3247       Ty = AT->getElementType();
3248     Ty = Ty.getCanonicalType().getUnqualifiedType();
3249     // Only record types (classes, structs etc.) are ignored.
3250     if (Ty->isRecordType()) {
3251       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3252       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3253         return true;
3254     }
3255   }
3256   return false;
3257 }
3258 
3259 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3260                                    StringRef Category) const {
3261   const auto &XRayFilter = getContext().getXRayFilter();
3262   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3263   auto Attr = ImbueAttr::NONE;
3264   if (Loc.isValid())
3265     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3266   if (Attr == ImbueAttr::NONE)
3267     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3268   switch (Attr) {
3269   case ImbueAttr::NONE:
3270     return false;
3271   case ImbueAttr::ALWAYS:
3272     Fn->addFnAttr("function-instrument", "xray-always");
3273     break;
3274   case ImbueAttr::ALWAYS_ARG1:
3275     Fn->addFnAttr("function-instrument", "xray-always");
3276     Fn->addFnAttr("xray-log-args", "1");
3277     break;
3278   case ImbueAttr::NEVER:
3279     Fn->addFnAttr("function-instrument", "xray-never");
3280     break;
3281   }
3282   return true;
3283 }
3284 
3285 ProfileList::ExclusionType
3286 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3287                                               SourceLocation Loc) const {
3288   const auto &ProfileList = getContext().getProfileList();
3289   // If the profile list is empty, then instrument everything.
3290   if (ProfileList.isEmpty())
3291     return ProfileList::Allow;
3292   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3293   // First, check the function name.
3294   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3295     return *V;
3296   // Next, check the source location.
3297   if (Loc.isValid())
3298     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3299       return *V;
3300   // If location is unknown, this may be a compiler-generated function. Assume
3301   // it's located in the main file.
3302   auto &SM = Context.getSourceManager();
3303   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3304     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3305       return *V;
3306   return ProfileList.getDefault(Kind);
3307 }
3308 
3309 ProfileList::ExclusionType
3310 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3311                                                  SourceLocation Loc) const {
3312   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3313   if (V != ProfileList::Allow)
3314     return V;
3315 
3316   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3317   if (NumGroups > 1) {
3318     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3319     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3320       return ProfileList::Skip;
3321   }
3322   return ProfileList::Allow;
3323 }
3324 
3325 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3326   // Never defer when EmitAllDecls is specified.
3327   if (LangOpts.EmitAllDecls)
3328     return true;
3329 
3330   const auto *VD = dyn_cast<VarDecl>(Global);
3331   if (VD &&
3332       ((CodeGenOpts.KeepPersistentStorageVariables &&
3333         (VD->getStorageDuration() == SD_Static ||
3334          VD->getStorageDuration() == SD_Thread)) ||
3335        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3336         VD->getType().isConstQualified())))
3337     return true;
3338 
3339   return getContext().DeclMustBeEmitted(Global);
3340 }
3341 
3342 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3343   // In OpenMP 5.0 variables and function may be marked as
3344   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3345   // that they must be emitted on the host/device. To be sure we need to have
3346   // seen a declare target with an explicit mentioning of the function, we know
3347   // we have if the level of the declare target attribute is -1. Note that we
3348   // check somewhere else if we should emit this at all.
3349   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3350     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3351         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3352     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3353       return false;
3354   }
3355 
3356   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3357     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3358       // Implicit template instantiations may change linkage if they are later
3359       // explicitly instantiated, so they should not be emitted eagerly.
3360       return false;
3361   }
3362   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3363     if (Context.getInlineVariableDefinitionKind(VD) ==
3364         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3365       // A definition of an inline constexpr static data member may change
3366       // linkage later if it's redeclared outside the class.
3367       return false;
3368     if (CXX20ModuleInits && VD->getOwningModule() &&
3369         !VD->getOwningModule()->isModuleMapModule()) {
3370       // For CXX20, module-owned initializers need to be deferred, since it is
3371       // not known at this point if they will be run for the current module or
3372       // as part of the initializer for an imported one.
3373       return false;
3374     }
3375   }
3376   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3377   // codegen for global variables, because they may be marked as threadprivate.
3378   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3379       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3380       !Global->getType().isConstantStorage(getContext(), false, false) &&
3381       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3382     return false;
3383 
3384   return true;
3385 }
3386 
3387 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3388   StringRef Name = getMangledName(GD);
3389 
3390   // The UUID descriptor should be pointer aligned.
3391   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3392 
3393   // Look for an existing global.
3394   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3395     return ConstantAddress(GV, GV->getValueType(), Alignment);
3396 
3397   ConstantEmitter Emitter(*this);
3398   llvm::Constant *Init;
3399 
3400   APValue &V = GD->getAsAPValue();
3401   if (!V.isAbsent()) {
3402     // If possible, emit the APValue version of the initializer. In particular,
3403     // this gets the type of the constant right.
3404     Init = Emitter.emitForInitializer(
3405         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3406   } else {
3407     // As a fallback, directly construct the constant.
3408     // FIXME: This may get padding wrong under esoteric struct layout rules.
3409     // MSVC appears to create a complete type 'struct __s_GUID' that it
3410     // presumably uses to represent these constants.
3411     MSGuidDecl::Parts Parts = GD->getParts();
3412     llvm::Constant *Fields[4] = {
3413         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3414         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3415         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3416         llvm::ConstantDataArray::getRaw(
3417             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3418             Int8Ty)};
3419     Init = llvm::ConstantStruct::getAnon(Fields);
3420   }
3421 
3422   auto *GV = new llvm::GlobalVariable(
3423       getModule(), Init->getType(),
3424       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3425   if (supportsCOMDAT())
3426     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3427   setDSOLocal(GV);
3428 
3429   if (!V.isAbsent()) {
3430     Emitter.finalize(GV);
3431     return ConstantAddress(GV, GV->getValueType(), Alignment);
3432   }
3433 
3434   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3435   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3436       GV, Ty->getPointerTo(GV->getAddressSpace()));
3437   return ConstantAddress(Addr, Ty, Alignment);
3438 }
3439 
3440 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3441     const UnnamedGlobalConstantDecl *GCD) {
3442   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3443 
3444   llvm::GlobalVariable **Entry = nullptr;
3445   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3446   if (*Entry)
3447     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3448 
3449   ConstantEmitter Emitter(*this);
3450   llvm::Constant *Init;
3451 
3452   const APValue &V = GCD->getValue();
3453 
3454   assert(!V.isAbsent());
3455   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3456                                     GCD->getType());
3457 
3458   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3459                                       /*isConstant=*/true,
3460                                       llvm::GlobalValue::PrivateLinkage, Init,
3461                                       ".constant");
3462   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3463   GV->setAlignment(Alignment.getAsAlign());
3464 
3465   Emitter.finalize(GV);
3466 
3467   *Entry = GV;
3468   return ConstantAddress(GV, GV->getValueType(), Alignment);
3469 }
3470 
3471 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3472     const TemplateParamObjectDecl *TPO) {
3473   StringRef Name = getMangledName(TPO);
3474   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3475 
3476   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3477     return ConstantAddress(GV, GV->getValueType(), Alignment);
3478 
3479   ConstantEmitter Emitter(*this);
3480   llvm::Constant *Init = Emitter.emitForInitializer(
3481         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3482 
3483   if (!Init) {
3484     ErrorUnsupported(TPO, "template parameter object");
3485     return ConstantAddress::invalid();
3486   }
3487 
3488   llvm::GlobalValue::LinkageTypes Linkage =
3489       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3490           ? llvm::GlobalValue::LinkOnceODRLinkage
3491           : llvm::GlobalValue::InternalLinkage;
3492   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3493                                       /*isConstant=*/true, Linkage, Init, Name);
3494   setGVProperties(GV, TPO);
3495   if (supportsCOMDAT())
3496     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3497   Emitter.finalize(GV);
3498 
3499   return ConstantAddress(GV, GV->getValueType(), Alignment);
3500 }
3501 
3502 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3503   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3504   assert(AA && "No alias?");
3505 
3506   CharUnits Alignment = getContext().getDeclAlign(VD);
3507   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3508 
3509   // See if there is already something with the target's name in the module.
3510   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3511   if (Entry) {
3512     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3513     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3514     return ConstantAddress(Ptr, DeclTy, Alignment);
3515   }
3516 
3517   llvm::Constant *Aliasee;
3518   if (isa<llvm::FunctionType>(DeclTy))
3519     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3520                                       GlobalDecl(cast<FunctionDecl>(VD)),
3521                                       /*ForVTable=*/false);
3522   else
3523     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3524                                     nullptr);
3525 
3526   auto *F = cast<llvm::GlobalValue>(Aliasee);
3527   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3528   WeakRefReferences.insert(F);
3529 
3530   return ConstantAddress(Aliasee, DeclTy, Alignment);
3531 }
3532 
3533 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3534   const auto *Global = cast<ValueDecl>(GD.getDecl());
3535 
3536   // Weak references don't produce any output by themselves.
3537   if (Global->hasAttr<WeakRefAttr>())
3538     return;
3539 
3540   // If this is an alias definition (which otherwise looks like a declaration)
3541   // emit it now.
3542   if (Global->hasAttr<AliasAttr>())
3543     return EmitAliasDefinition(GD);
3544 
3545   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3546   if (Global->hasAttr<IFuncAttr>())
3547     return emitIFuncDefinition(GD);
3548 
3549   // If this is a cpu_dispatch multiversion function, emit the resolver.
3550   if (Global->hasAttr<CPUDispatchAttr>())
3551     return emitCPUDispatchDefinition(GD);
3552 
3553   // If this is CUDA, be selective about which declarations we emit.
3554   if (LangOpts.CUDA) {
3555     if (LangOpts.CUDAIsDevice) {
3556       if (!Global->hasAttr<CUDADeviceAttr>() &&
3557           !Global->hasAttr<CUDAGlobalAttr>() &&
3558           !Global->hasAttr<CUDAConstantAttr>() &&
3559           !Global->hasAttr<CUDASharedAttr>() &&
3560           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3561           !Global->getType()->isCUDADeviceBuiltinTextureType())
3562         return;
3563     } else {
3564       // We need to emit host-side 'shadows' for all global
3565       // device-side variables because the CUDA runtime needs their
3566       // size and host-side address in order to provide access to
3567       // their device-side incarnations.
3568 
3569       // So device-only functions are the only things we skip.
3570       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3571           Global->hasAttr<CUDADeviceAttr>())
3572         return;
3573 
3574       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3575              "Expected Variable or Function");
3576     }
3577   }
3578 
3579   if (LangOpts.OpenMP) {
3580     // If this is OpenMP, check if it is legal to emit this global normally.
3581     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3582       return;
3583     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3584       if (MustBeEmitted(Global))
3585         EmitOMPDeclareReduction(DRD);
3586       return;
3587     }
3588     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3589       if (MustBeEmitted(Global))
3590         EmitOMPDeclareMapper(DMD);
3591       return;
3592     }
3593   }
3594 
3595   // Ignore declarations, they will be emitted on their first use.
3596   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3597     // Forward declarations are emitted lazily on first use.
3598     if (!FD->doesThisDeclarationHaveABody()) {
3599       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3600         return;
3601 
3602       StringRef MangledName = getMangledName(GD);
3603 
3604       // Compute the function info and LLVM type.
3605       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3606       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3607 
3608       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3609                               /*DontDefer=*/false);
3610       return;
3611     }
3612   } else {
3613     const auto *VD = cast<VarDecl>(Global);
3614     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3615     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3616         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3617       if (LangOpts.OpenMP) {
3618         // Emit declaration of the must-be-emitted declare target variable.
3619         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3620                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3621 
3622           // If this variable has external storage and doesn't require special
3623           // link handling we defer to its canonical definition.
3624           if (VD->hasExternalStorage() &&
3625               Res != OMPDeclareTargetDeclAttr::MT_Link)
3626             return;
3627 
3628           bool UnifiedMemoryEnabled =
3629               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3630           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3631                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3632               !UnifiedMemoryEnabled) {
3633             (void)GetAddrOfGlobalVar(VD);
3634           } else {
3635             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3636                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3637                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3638                      UnifiedMemoryEnabled)) &&
3639                    "Link clause or to clause with unified memory expected.");
3640             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3641           }
3642 
3643           return;
3644         }
3645       }
3646       // If this declaration may have caused an inline variable definition to
3647       // change linkage, make sure that it's emitted.
3648       if (Context.getInlineVariableDefinitionKind(VD) ==
3649           ASTContext::InlineVariableDefinitionKind::Strong)
3650         GetAddrOfGlobalVar(VD);
3651       return;
3652     }
3653   }
3654 
3655   // Defer code generation to first use when possible, e.g. if this is an inline
3656   // function. If the global must always be emitted, do it eagerly if possible
3657   // to benefit from cache locality.
3658   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3659     // Emit the definition if it can't be deferred.
3660     EmitGlobalDefinition(GD);
3661     return;
3662   }
3663 
3664   // If we're deferring emission of a C++ variable with an
3665   // initializer, remember the order in which it appeared in the file.
3666   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3667       cast<VarDecl>(Global)->hasInit()) {
3668     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3669     CXXGlobalInits.push_back(nullptr);
3670   }
3671 
3672   StringRef MangledName = getMangledName(GD);
3673   if (GetGlobalValue(MangledName) != nullptr) {
3674     // The value has already been used and should therefore be emitted.
3675     addDeferredDeclToEmit(GD);
3676   } else if (MustBeEmitted(Global)) {
3677     // The value must be emitted, but cannot be emitted eagerly.
3678     assert(!MayBeEmittedEagerly(Global));
3679     addDeferredDeclToEmit(GD);
3680   } else {
3681     // Otherwise, remember that we saw a deferred decl with this name.  The
3682     // first use of the mangled name will cause it to move into
3683     // DeferredDeclsToEmit.
3684     DeferredDecls[MangledName] = GD;
3685   }
3686 }
3687 
3688 // Check if T is a class type with a destructor that's not dllimport.
3689 static bool HasNonDllImportDtor(QualType T) {
3690   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3691     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3692       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3693         return true;
3694 
3695   return false;
3696 }
3697 
3698 namespace {
3699   struct FunctionIsDirectlyRecursive
3700       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3701     const StringRef Name;
3702     const Builtin::Context &BI;
3703     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3704         : Name(N), BI(C) {}
3705 
3706     bool VisitCallExpr(const CallExpr *E) {
3707       const FunctionDecl *FD = E->getDirectCallee();
3708       if (!FD)
3709         return false;
3710       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3711       if (Attr && Name == Attr->getLabel())
3712         return true;
3713       unsigned BuiltinID = FD->getBuiltinID();
3714       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3715         return false;
3716       StringRef BuiltinName = BI.getName(BuiltinID);
3717       if (BuiltinName.startswith("__builtin_") &&
3718           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3719         return true;
3720       }
3721       return false;
3722     }
3723 
3724     bool VisitStmt(const Stmt *S) {
3725       for (const Stmt *Child : S->children())
3726         if (Child && this->Visit(Child))
3727           return true;
3728       return false;
3729     }
3730   };
3731 
3732   // Make sure we're not referencing non-imported vars or functions.
3733   struct DLLImportFunctionVisitor
3734       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3735     bool SafeToInline = true;
3736 
3737     bool shouldVisitImplicitCode() const { return true; }
3738 
3739     bool VisitVarDecl(VarDecl *VD) {
3740       if (VD->getTLSKind()) {
3741         // A thread-local variable cannot be imported.
3742         SafeToInline = false;
3743         return SafeToInline;
3744       }
3745 
3746       // A variable definition might imply a destructor call.
3747       if (VD->isThisDeclarationADefinition())
3748         SafeToInline = !HasNonDllImportDtor(VD->getType());
3749 
3750       return SafeToInline;
3751     }
3752 
3753     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3754       if (const auto *D = E->getTemporary()->getDestructor())
3755         SafeToInline = D->hasAttr<DLLImportAttr>();
3756       return SafeToInline;
3757     }
3758 
3759     bool VisitDeclRefExpr(DeclRefExpr *E) {
3760       ValueDecl *VD = E->getDecl();
3761       if (isa<FunctionDecl>(VD))
3762         SafeToInline = VD->hasAttr<DLLImportAttr>();
3763       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3764         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3765       return SafeToInline;
3766     }
3767 
3768     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3769       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3770       return SafeToInline;
3771     }
3772 
3773     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3774       CXXMethodDecl *M = E->getMethodDecl();
3775       if (!M) {
3776         // Call through a pointer to member function. This is safe to inline.
3777         SafeToInline = true;
3778       } else {
3779         SafeToInline = M->hasAttr<DLLImportAttr>();
3780       }
3781       return SafeToInline;
3782     }
3783 
3784     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3785       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3786       return SafeToInline;
3787     }
3788 
3789     bool VisitCXXNewExpr(CXXNewExpr *E) {
3790       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3791       return SafeToInline;
3792     }
3793   };
3794 }
3795 
3796 // isTriviallyRecursive - Check if this function calls another
3797 // decl that, because of the asm attribute or the other decl being a builtin,
3798 // ends up pointing to itself.
3799 bool
3800 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3801   StringRef Name;
3802   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3803     // asm labels are a special kind of mangling we have to support.
3804     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3805     if (!Attr)
3806       return false;
3807     Name = Attr->getLabel();
3808   } else {
3809     Name = FD->getName();
3810   }
3811 
3812   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3813   const Stmt *Body = FD->getBody();
3814   return Body ? Walker.Visit(Body) : false;
3815 }
3816 
3817 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3818   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3819     return true;
3820   const auto *F = cast<FunctionDecl>(GD.getDecl());
3821   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3822     return false;
3823 
3824   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3825     // Check whether it would be safe to inline this dllimport function.
3826     DLLImportFunctionVisitor Visitor;
3827     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3828     if (!Visitor.SafeToInline)
3829       return false;
3830 
3831     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3832       // Implicit destructor invocations aren't captured in the AST, so the
3833       // check above can't see them. Check for them manually here.
3834       for (const Decl *Member : Dtor->getParent()->decls())
3835         if (isa<FieldDecl>(Member))
3836           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3837             return false;
3838       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3839         if (HasNonDllImportDtor(B.getType()))
3840           return false;
3841     }
3842   }
3843 
3844   // Inline builtins declaration must be emitted. They often are fortified
3845   // functions.
3846   if (F->isInlineBuiltinDeclaration())
3847     return true;
3848 
3849   // PR9614. Avoid cases where the source code is lying to us. An available
3850   // externally function should have an equivalent function somewhere else,
3851   // but a function that calls itself through asm label/`__builtin_` trickery is
3852   // clearly not equivalent to the real implementation.
3853   // This happens in glibc's btowc and in some configure checks.
3854   return !isTriviallyRecursive(F);
3855 }
3856 
3857 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3858   return CodeGenOpts.OptimizationLevel > 0;
3859 }
3860 
3861 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3862                                                        llvm::GlobalValue *GV) {
3863   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3864 
3865   if (FD->isCPUSpecificMultiVersion()) {
3866     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3867     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3868       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3869   } else if (FD->isTargetClonesMultiVersion()) {
3870     auto *Clone = FD->getAttr<TargetClonesAttr>();
3871     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3872       if (Clone->isFirstOfVersion(I))
3873         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3874     // Ensure that the resolver function is also emitted.
3875     GetOrCreateMultiVersionResolver(GD);
3876   } else
3877     EmitGlobalFunctionDefinition(GD, GV);
3878 }
3879 
3880 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3881   const auto *D = cast<ValueDecl>(GD.getDecl());
3882 
3883   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3884                                  Context.getSourceManager(),
3885                                  "Generating code for declaration");
3886 
3887   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3888     // At -O0, don't generate IR for functions with available_externally
3889     // linkage.
3890     if (!shouldEmitFunction(GD))
3891       return;
3892 
3893     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3894       std::string Name;
3895       llvm::raw_string_ostream OS(Name);
3896       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3897                                /*Qualified=*/true);
3898       return Name;
3899     });
3900 
3901     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3902       // Make sure to emit the definition(s) before we emit the thunks.
3903       // This is necessary for the generation of certain thunks.
3904       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3905         ABI->emitCXXStructor(GD);
3906       else if (FD->isMultiVersion())
3907         EmitMultiVersionFunctionDefinition(GD, GV);
3908       else
3909         EmitGlobalFunctionDefinition(GD, GV);
3910 
3911       if (Method->isVirtual())
3912         getVTables().EmitThunks(GD);
3913 
3914       return;
3915     }
3916 
3917     if (FD->isMultiVersion())
3918       return EmitMultiVersionFunctionDefinition(GD, GV);
3919     return EmitGlobalFunctionDefinition(GD, GV);
3920   }
3921 
3922   if (const auto *VD = dyn_cast<VarDecl>(D))
3923     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3924 
3925   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3926 }
3927 
3928 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3929                                                       llvm::Function *NewFn);
3930 
3931 static unsigned
3932 TargetMVPriority(const TargetInfo &TI,
3933                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3934   unsigned Priority = 0;
3935   unsigned NumFeatures = 0;
3936   for (StringRef Feat : RO.Conditions.Features) {
3937     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3938     NumFeatures++;
3939   }
3940 
3941   if (!RO.Conditions.Architecture.empty())
3942     Priority = std::max(
3943         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3944 
3945   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3946 
3947   return Priority;
3948 }
3949 
3950 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3951 // TU can forward declare the function without causing problems.  Particularly
3952 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3953 // work with internal linkage functions, so that the same function name can be
3954 // used with internal linkage in multiple TUs.
3955 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3956                                                        GlobalDecl GD) {
3957   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3958   if (FD->getFormalLinkage() == InternalLinkage)
3959     return llvm::GlobalValue::InternalLinkage;
3960   return llvm::GlobalValue::WeakODRLinkage;
3961 }
3962 
3963 void CodeGenModule::emitMultiVersionFunctions() {
3964   std::vector<GlobalDecl> MVFuncsToEmit;
3965   MultiVersionFuncs.swap(MVFuncsToEmit);
3966   for (GlobalDecl GD : MVFuncsToEmit) {
3967     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3968     assert(FD && "Expected a FunctionDecl");
3969 
3970     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3971     if (FD->isTargetMultiVersion()) {
3972       getContext().forEachMultiversionedFunctionVersion(
3973           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3974             GlobalDecl CurGD{
3975                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3976             StringRef MangledName = getMangledName(CurGD);
3977             llvm::Constant *Func = GetGlobalValue(MangledName);
3978             if (!Func) {
3979               if (CurFD->isDefined()) {
3980                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3981                 Func = GetGlobalValue(MangledName);
3982               } else {
3983                 const CGFunctionInfo &FI =
3984                     getTypes().arrangeGlobalDeclaration(GD);
3985                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3986                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3987                                          /*DontDefer=*/false, ForDefinition);
3988               }
3989               assert(Func && "This should have just been created");
3990             }
3991             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3992               const auto *TA = CurFD->getAttr<TargetAttr>();
3993               llvm::SmallVector<StringRef, 8> Feats;
3994               TA->getAddedFeatures(Feats);
3995               Options.emplace_back(cast<llvm::Function>(Func),
3996                                    TA->getArchitecture(), Feats);
3997             } else {
3998               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3999               llvm::SmallVector<StringRef, 8> Feats;
4000               TVA->getFeatures(Feats);
4001               Options.emplace_back(cast<llvm::Function>(Func),
4002                                    /*Architecture*/ "", Feats);
4003             }
4004           });
4005     } else if (FD->isTargetClonesMultiVersion()) {
4006       const auto *TC = FD->getAttr<TargetClonesAttr>();
4007       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4008            ++VersionIndex) {
4009         if (!TC->isFirstOfVersion(VersionIndex))
4010           continue;
4011         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4012                          VersionIndex};
4013         StringRef Version = TC->getFeatureStr(VersionIndex);
4014         StringRef MangledName = getMangledName(CurGD);
4015         llvm::Constant *Func = GetGlobalValue(MangledName);
4016         if (!Func) {
4017           if (FD->isDefined()) {
4018             EmitGlobalFunctionDefinition(CurGD, nullptr);
4019             Func = GetGlobalValue(MangledName);
4020           } else {
4021             const CGFunctionInfo &FI =
4022                 getTypes().arrangeGlobalDeclaration(CurGD);
4023             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4024             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4025                                      /*DontDefer=*/false, ForDefinition);
4026           }
4027           assert(Func && "This should have just been created");
4028         }
4029 
4030         StringRef Architecture;
4031         llvm::SmallVector<StringRef, 1> Feature;
4032 
4033         if (getTarget().getTriple().isAArch64()) {
4034           if (Version != "default") {
4035             llvm::SmallVector<StringRef, 8> VerFeats;
4036             Version.split(VerFeats, "+");
4037             for (auto &CurFeat : VerFeats)
4038               Feature.push_back(CurFeat.trim());
4039           }
4040         } else {
4041           if (Version.startswith("arch="))
4042             Architecture = Version.drop_front(sizeof("arch=") - 1);
4043           else if (Version != "default")
4044             Feature.push_back(Version);
4045         }
4046 
4047         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4048       }
4049     } else {
4050       assert(0 && "Expected a target or target_clones multiversion function");
4051       continue;
4052     }
4053 
4054     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4055     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4056       ResolverConstant = IFunc->getResolver();
4057     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4058 
4059     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4060 
4061     if (supportsCOMDAT())
4062       ResolverFunc->setComdat(
4063           getModule().getOrInsertComdat(ResolverFunc->getName()));
4064 
4065     const TargetInfo &TI = getTarget();
4066     llvm::stable_sort(
4067         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4068                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4069           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4070         });
4071     CodeGenFunction CGF(*this);
4072     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4073   }
4074 
4075   // Ensure that any additions to the deferred decls list caused by emitting a
4076   // variant are emitted.  This can happen when the variant itself is inline and
4077   // calls a function without linkage.
4078   if (!MVFuncsToEmit.empty())
4079     EmitDeferred();
4080 
4081   // Ensure that any additions to the multiversion funcs list from either the
4082   // deferred decls or the multiversion functions themselves are emitted.
4083   if (!MultiVersionFuncs.empty())
4084     emitMultiVersionFunctions();
4085 }
4086 
4087 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4088   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4089   assert(FD && "Not a FunctionDecl?");
4090   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4091   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4092   assert(DD && "Not a cpu_dispatch Function?");
4093 
4094   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4095   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4096 
4097   StringRef ResolverName = getMangledName(GD);
4098   UpdateMultiVersionNames(GD, FD, ResolverName);
4099 
4100   llvm::Type *ResolverType;
4101   GlobalDecl ResolverGD;
4102   if (getTarget().supportsIFunc()) {
4103     ResolverType = llvm::FunctionType::get(
4104         llvm::PointerType::get(DeclTy,
4105                                getTypes().getTargetAddressSpace(FD->getType())),
4106         false);
4107   }
4108   else {
4109     ResolverType = DeclTy;
4110     ResolverGD = GD;
4111   }
4112 
4113   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4114       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4115   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4116   if (supportsCOMDAT())
4117     ResolverFunc->setComdat(
4118         getModule().getOrInsertComdat(ResolverFunc->getName()));
4119 
4120   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4121   const TargetInfo &Target = getTarget();
4122   unsigned Index = 0;
4123   for (const IdentifierInfo *II : DD->cpus()) {
4124     // Get the name of the target function so we can look it up/create it.
4125     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4126                               getCPUSpecificMangling(*this, II->getName());
4127 
4128     llvm::Constant *Func = GetGlobalValue(MangledName);
4129 
4130     if (!Func) {
4131       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4132       if (ExistingDecl.getDecl() &&
4133           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4134         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4135         Func = GetGlobalValue(MangledName);
4136       } else {
4137         if (!ExistingDecl.getDecl())
4138           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4139 
4140       Func = GetOrCreateLLVMFunction(
4141           MangledName, DeclTy, ExistingDecl,
4142           /*ForVTable=*/false, /*DontDefer=*/true,
4143           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4144       }
4145     }
4146 
4147     llvm::SmallVector<StringRef, 32> Features;
4148     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4149     llvm::transform(Features, Features.begin(),
4150                     [](StringRef Str) { return Str.substr(1); });
4151     llvm::erase_if(Features, [&Target](StringRef Feat) {
4152       return !Target.validateCpuSupports(Feat);
4153     });
4154     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4155     ++Index;
4156   }
4157 
4158   llvm::stable_sort(
4159       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4160                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4161         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4162                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4163       });
4164 
4165   // If the list contains multiple 'default' versions, such as when it contains
4166   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4167   // always run on at least a 'pentium'). We do this by deleting the 'least
4168   // advanced' (read, lowest mangling letter).
4169   while (Options.size() > 1 &&
4170          llvm::X86::getCpuSupportsMask(
4171              (Options.end() - 2)->Conditions.Features) == 0) {
4172     StringRef LHSName = (Options.end() - 2)->Function->getName();
4173     StringRef RHSName = (Options.end() - 1)->Function->getName();
4174     if (LHSName.compare(RHSName) < 0)
4175       Options.erase(Options.end() - 2);
4176     else
4177       Options.erase(Options.end() - 1);
4178   }
4179 
4180   CodeGenFunction CGF(*this);
4181   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4182 
4183   if (getTarget().supportsIFunc()) {
4184     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4185     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4186 
4187     // Fix up function declarations that were created for cpu_specific before
4188     // cpu_dispatch was known
4189     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4190       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4191       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4192                                            &getModule());
4193       GI->takeName(IFunc);
4194       IFunc->replaceAllUsesWith(GI);
4195       IFunc->eraseFromParent();
4196       IFunc = GI;
4197     }
4198 
4199     std::string AliasName = getMangledNameImpl(
4200         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4201     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4202     if (!AliasFunc) {
4203       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4204                                            &getModule());
4205       SetCommonAttributes(GD, GA);
4206     }
4207   }
4208 }
4209 
4210 /// If a dispatcher for the specified mangled name is not in the module, create
4211 /// and return an llvm Function with the specified type.
4212 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4213   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4214   assert(FD && "Not a FunctionDecl?");
4215 
4216   std::string MangledName =
4217       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4218 
4219   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4220   // a separate resolver).
4221   std::string ResolverName = MangledName;
4222   if (getTarget().supportsIFunc())
4223     ResolverName += ".ifunc";
4224   else if (FD->isTargetMultiVersion())
4225     ResolverName += ".resolver";
4226 
4227   // If the resolver has already been created, just return it.
4228   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4229     return ResolverGV;
4230 
4231   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4232   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4233 
4234   // The resolver needs to be created. For target and target_clones, defer
4235   // creation until the end of the TU.
4236   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4237     MultiVersionFuncs.push_back(GD);
4238 
4239   // For cpu_specific, don't create an ifunc yet because we don't know if the
4240   // cpu_dispatch will be emitted in this translation unit.
4241   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4242     llvm::Type *ResolverType = llvm::FunctionType::get(
4243         llvm::PointerType::get(DeclTy,
4244                                getTypes().getTargetAddressSpace(FD->getType())),
4245         false);
4246     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4247         MangledName + ".resolver", ResolverType, GlobalDecl{},
4248         /*ForVTable=*/false);
4249     llvm::GlobalIFunc *GIF =
4250         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4251                                   "", Resolver, &getModule());
4252     GIF->setName(ResolverName);
4253     SetCommonAttributes(FD, GIF);
4254 
4255     return GIF;
4256   }
4257 
4258   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4259       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4260   assert(isa<llvm::GlobalValue>(Resolver) &&
4261          "Resolver should be created for the first time");
4262   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4263   return Resolver;
4264 }
4265 
4266 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4267 /// module, create and return an llvm Function with the specified type. If there
4268 /// is something in the module with the specified name, return it potentially
4269 /// bitcasted to the right type.
4270 ///
4271 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4272 /// to set the attributes on the function when it is first created.
4273 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4274     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4275     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4276     ForDefinition_t IsForDefinition) {
4277   const Decl *D = GD.getDecl();
4278 
4279   // Any attempts to use a MultiVersion function should result in retrieving
4280   // the iFunc instead. Name Mangling will handle the rest of the changes.
4281   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4282     // For the device mark the function as one that should be emitted.
4283     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4284         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4285         !DontDefer && !IsForDefinition) {
4286       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4287         GlobalDecl GDDef;
4288         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4289           GDDef = GlobalDecl(CD, GD.getCtorType());
4290         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4291           GDDef = GlobalDecl(DD, GD.getDtorType());
4292         else
4293           GDDef = GlobalDecl(FDDef);
4294         EmitGlobal(GDDef);
4295       }
4296     }
4297 
4298     if (FD->isMultiVersion()) {
4299       UpdateMultiVersionNames(GD, FD, MangledName);
4300       if (!IsForDefinition)
4301         return GetOrCreateMultiVersionResolver(GD);
4302     }
4303   }
4304 
4305   // Lookup the entry, lazily creating it if necessary.
4306   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4307   if (Entry) {
4308     if (WeakRefReferences.erase(Entry)) {
4309       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4310       if (FD && !FD->hasAttr<WeakAttr>())
4311         Entry->setLinkage(llvm::Function::ExternalLinkage);
4312     }
4313 
4314     // Handle dropped DLL attributes.
4315     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4316         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4317       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4318       setDSOLocal(Entry);
4319     }
4320 
4321     // If there are two attempts to define the same mangled name, issue an
4322     // error.
4323     if (IsForDefinition && !Entry->isDeclaration()) {
4324       GlobalDecl OtherGD;
4325       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4326       // to make sure that we issue an error only once.
4327       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4328           (GD.getCanonicalDecl().getDecl() !=
4329            OtherGD.getCanonicalDecl().getDecl()) &&
4330           DiagnosedConflictingDefinitions.insert(GD).second) {
4331         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4332             << MangledName;
4333         getDiags().Report(OtherGD.getDecl()->getLocation(),
4334                           diag::note_previous_definition);
4335       }
4336     }
4337 
4338     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4339         (Entry->getValueType() == Ty)) {
4340       return Entry;
4341     }
4342 
4343     // Make sure the result is of the correct type.
4344     // (If function is requested for a definition, we always need to create a new
4345     // function, not just return a bitcast.)
4346     if (!IsForDefinition)
4347       return llvm::ConstantExpr::getBitCast(
4348           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4349   }
4350 
4351   // This function doesn't have a complete type (for example, the return
4352   // type is an incomplete struct). Use a fake type instead, and make
4353   // sure not to try to set attributes.
4354   bool IsIncompleteFunction = false;
4355 
4356   llvm::FunctionType *FTy;
4357   if (isa<llvm::FunctionType>(Ty)) {
4358     FTy = cast<llvm::FunctionType>(Ty);
4359   } else {
4360     FTy = llvm::FunctionType::get(VoidTy, false);
4361     IsIncompleteFunction = true;
4362   }
4363 
4364   llvm::Function *F =
4365       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4366                              Entry ? StringRef() : MangledName, &getModule());
4367 
4368   // If we already created a function with the same mangled name (but different
4369   // type) before, take its name and add it to the list of functions to be
4370   // replaced with F at the end of CodeGen.
4371   //
4372   // This happens if there is a prototype for a function (e.g. "int f()") and
4373   // then a definition of a different type (e.g. "int f(int x)").
4374   if (Entry) {
4375     F->takeName(Entry);
4376 
4377     // This might be an implementation of a function without a prototype, in
4378     // which case, try to do special replacement of calls which match the new
4379     // prototype.  The really key thing here is that we also potentially drop
4380     // arguments from the call site so as to make a direct call, which makes the
4381     // inliner happier and suppresses a number of optimizer warnings (!) about
4382     // dropping arguments.
4383     if (!Entry->use_empty()) {
4384       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4385       Entry->removeDeadConstantUsers();
4386     }
4387 
4388     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4389         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4390     addGlobalValReplacement(Entry, BC);
4391   }
4392 
4393   assert(F->getName() == MangledName && "name was uniqued!");
4394   if (D)
4395     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4396   if (ExtraAttrs.hasFnAttrs()) {
4397     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4398     F->addFnAttrs(B);
4399   }
4400 
4401   if (!DontDefer) {
4402     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4403     // each other bottoming out with the base dtor.  Therefore we emit non-base
4404     // dtors on usage, even if there is no dtor definition in the TU.
4405     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4406         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4407                                            GD.getDtorType()))
4408       addDeferredDeclToEmit(GD);
4409 
4410     // This is the first use or definition of a mangled name.  If there is a
4411     // deferred decl with this name, remember that we need to emit it at the end
4412     // of the file.
4413     auto DDI = DeferredDecls.find(MangledName);
4414     if (DDI != DeferredDecls.end()) {
4415       // Move the potentially referenced deferred decl to the
4416       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4417       // don't need it anymore).
4418       addDeferredDeclToEmit(DDI->second);
4419       DeferredDecls.erase(DDI);
4420 
4421       // Otherwise, there are cases we have to worry about where we're
4422       // using a declaration for which we must emit a definition but where
4423       // we might not find a top-level definition:
4424       //   - member functions defined inline in their classes
4425       //   - friend functions defined inline in some class
4426       //   - special member functions with implicit definitions
4427       // If we ever change our AST traversal to walk into class methods,
4428       // this will be unnecessary.
4429       //
4430       // We also don't emit a definition for a function if it's going to be an
4431       // entry in a vtable, unless it's already marked as used.
4432     } else if (getLangOpts().CPlusPlus && D) {
4433       // Look for a declaration that's lexically in a record.
4434       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4435            FD = FD->getPreviousDecl()) {
4436         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4437           if (FD->doesThisDeclarationHaveABody()) {
4438             addDeferredDeclToEmit(GD.getWithDecl(FD));
4439             break;
4440           }
4441         }
4442       }
4443     }
4444   }
4445 
4446   // Make sure the result is of the requested type.
4447   if (!IsIncompleteFunction) {
4448     assert(F->getFunctionType() == Ty);
4449     return F;
4450   }
4451 
4452   return llvm::ConstantExpr::getBitCast(F,
4453                                         Ty->getPointerTo(F->getAddressSpace()));
4454 }
4455 
4456 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4457 /// non-null, then this function will use the specified type if it has to
4458 /// create it (this occurs when we see a definition of the function).
4459 llvm::Constant *
4460 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4461                                  bool DontDefer,
4462                                  ForDefinition_t IsForDefinition) {
4463   // If there was no specific requested type, just convert it now.
4464   if (!Ty) {
4465     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4466     Ty = getTypes().ConvertType(FD->getType());
4467   }
4468 
4469   // Devirtualized destructor calls may come through here instead of via
4470   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4471   // of the complete destructor when necessary.
4472   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4473     if (getTarget().getCXXABI().isMicrosoft() &&
4474         GD.getDtorType() == Dtor_Complete &&
4475         DD->getParent()->getNumVBases() == 0)
4476       GD = GlobalDecl(DD, Dtor_Base);
4477   }
4478 
4479   StringRef MangledName = getMangledName(GD);
4480   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4481                                     /*IsThunk=*/false, llvm::AttributeList(),
4482                                     IsForDefinition);
4483   // Returns kernel handle for HIP kernel stub function.
4484   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4485       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4486     auto *Handle = getCUDARuntime().getKernelHandle(
4487         cast<llvm::Function>(F->stripPointerCasts()), GD);
4488     if (IsForDefinition)
4489       return F;
4490     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4491   }
4492   return F;
4493 }
4494 
4495 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4496   llvm::GlobalValue *F =
4497       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4498 
4499   return llvm::ConstantExpr::getBitCast(
4500       llvm::NoCFIValue::get(F),
4501       llvm::PointerType::get(VMContext, F->getAddressSpace()));
4502 }
4503 
4504 static const FunctionDecl *
4505 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4506   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4507   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4508 
4509   IdentifierInfo &CII = C.Idents.get(Name);
4510   for (const auto *Result : DC->lookup(&CII))
4511     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4512       return FD;
4513 
4514   if (!C.getLangOpts().CPlusPlus)
4515     return nullptr;
4516 
4517   // Demangle the premangled name from getTerminateFn()
4518   IdentifierInfo &CXXII =
4519       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4520           ? C.Idents.get("terminate")
4521           : C.Idents.get(Name);
4522 
4523   for (const auto &N : {"__cxxabiv1", "std"}) {
4524     IdentifierInfo &NS = C.Idents.get(N);
4525     for (const auto *Result : DC->lookup(&NS)) {
4526       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4527       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4528         for (const auto *Result : LSD->lookup(&NS))
4529           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4530             break;
4531 
4532       if (ND)
4533         for (const auto *Result : ND->lookup(&CXXII))
4534           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4535             return FD;
4536     }
4537   }
4538 
4539   return nullptr;
4540 }
4541 
4542 /// CreateRuntimeFunction - Create a new runtime function with the specified
4543 /// type and name.
4544 llvm::FunctionCallee
4545 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4546                                      llvm::AttributeList ExtraAttrs, bool Local,
4547                                      bool AssumeConvergent) {
4548   if (AssumeConvergent) {
4549     ExtraAttrs =
4550         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4551   }
4552 
4553   llvm::Constant *C =
4554       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4555                               /*DontDefer=*/false, /*IsThunk=*/false,
4556                               ExtraAttrs);
4557 
4558   if (auto *F = dyn_cast<llvm::Function>(C)) {
4559     if (F->empty()) {
4560       F->setCallingConv(getRuntimeCC());
4561 
4562       // In Windows Itanium environments, try to mark runtime functions
4563       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4564       // will link their standard library statically or dynamically. Marking
4565       // functions imported when they are not imported can cause linker errors
4566       // and warnings.
4567       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4568           !getCodeGenOpts().LTOVisibilityPublicStd) {
4569         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4570         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4571           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4572           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4573         }
4574       }
4575       setDSOLocal(F);
4576     }
4577   }
4578 
4579   return {FTy, C};
4580 }
4581 
4582 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4583 /// create and return an llvm GlobalVariable with the specified type and address
4584 /// space. If there is something in the module with the specified name, return
4585 /// it potentially bitcasted to the right type.
4586 ///
4587 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4588 /// to set the attributes on the global when it is first created.
4589 ///
4590 /// If IsForDefinition is true, it is guaranteed that an actual global with
4591 /// type Ty will be returned, not conversion of a variable with the same
4592 /// mangled name but some other type.
4593 llvm::Constant *
4594 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4595                                      LangAS AddrSpace, const VarDecl *D,
4596                                      ForDefinition_t IsForDefinition) {
4597   // Lookup the entry, lazily creating it if necessary.
4598   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4599   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4600   if (Entry) {
4601     if (WeakRefReferences.erase(Entry)) {
4602       if (D && !D->hasAttr<WeakAttr>())
4603         Entry->setLinkage(llvm::Function::ExternalLinkage);
4604     }
4605 
4606     // Handle dropped DLL attributes.
4607     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4608         !shouldMapVisibilityToDLLExport(D))
4609       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4610 
4611     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4612       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4613 
4614     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4615       return Entry;
4616 
4617     // If there are two attempts to define the same mangled name, issue an
4618     // error.
4619     if (IsForDefinition && !Entry->isDeclaration()) {
4620       GlobalDecl OtherGD;
4621       const VarDecl *OtherD;
4622 
4623       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4624       // to make sure that we issue an error only once.
4625       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4626           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4627           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4628           OtherD->hasInit() &&
4629           DiagnosedConflictingDefinitions.insert(D).second) {
4630         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4631             << MangledName;
4632         getDiags().Report(OtherGD.getDecl()->getLocation(),
4633                           diag::note_previous_definition);
4634       }
4635     }
4636 
4637     // Make sure the result is of the correct type.
4638     if (Entry->getType()->getAddressSpace() != TargetAS) {
4639       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4640                                                   Ty->getPointerTo(TargetAS));
4641     }
4642 
4643     // (If global is requested for a definition, we always need to create a new
4644     // global, not just return a bitcast.)
4645     if (!IsForDefinition)
4646       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4647   }
4648 
4649   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4650 
4651   auto *GV = new llvm::GlobalVariable(
4652       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4653       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4654       getContext().getTargetAddressSpace(DAddrSpace));
4655 
4656   // If we already created a global with the same mangled name (but different
4657   // type) before, take its name and remove it from its parent.
4658   if (Entry) {
4659     GV->takeName(Entry);
4660 
4661     if (!Entry->use_empty()) {
4662       llvm::Constant *NewPtrForOldDecl =
4663           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4664       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4665     }
4666 
4667     Entry->eraseFromParent();
4668   }
4669 
4670   // This is the first use or definition of a mangled name.  If there is a
4671   // deferred decl with this name, remember that we need to emit it at the end
4672   // of the file.
4673   auto DDI = DeferredDecls.find(MangledName);
4674   if (DDI != DeferredDecls.end()) {
4675     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4676     // list, and remove it from DeferredDecls (since we don't need it anymore).
4677     addDeferredDeclToEmit(DDI->second);
4678     DeferredDecls.erase(DDI);
4679   }
4680 
4681   // Handle things which are present even on external declarations.
4682   if (D) {
4683     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4684       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4685 
4686     // FIXME: This code is overly simple and should be merged with other global
4687     // handling.
4688     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4689 
4690     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4691 
4692     setLinkageForGV(GV, D);
4693 
4694     if (D->getTLSKind()) {
4695       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4696         CXXThreadLocals.push_back(D);
4697       setTLSMode(GV, *D);
4698     }
4699 
4700     setGVProperties(GV, D);
4701 
4702     // If required by the ABI, treat declarations of static data members with
4703     // inline initializers as definitions.
4704     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4705       EmitGlobalVarDefinition(D);
4706     }
4707 
4708     // Emit section information for extern variables.
4709     if (D->hasExternalStorage()) {
4710       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4711         GV->setSection(SA->getName());
4712     }
4713 
4714     // Handle XCore specific ABI requirements.
4715     if (getTriple().getArch() == llvm::Triple::xcore &&
4716         D->getLanguageLinkage() == CLanguageLinkage &&
4717         D->getType().isConstant(Context) &&
4718         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4719       GV->setSection(".cp.rodata");
4720 
4721     // Check if we a have a const declaration with an initializer, we may be
4722     // able to emit it as available_externally to expose it's value to the
4723     // optimizer.
4724     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4725         D->getType().isConstQualified() && !GV->hasInitializer() &&
4726         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4727       const auto *Record =
4728           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4729       bool HasMutableFields = Record && Record->hasMutableFields();
4730       if (!HasMutableFields) {
4731         const VarDecl *InitDecl;
4732         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4733         if (InitExpr) {
4734           ConstantEmitter emitter(*this);
4735           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4736           if (Init) {
4737             auto *InitType = Init->getType();
4738             if (GV->getValueType() != InitType) {
4739               // The type of the initializer does not match the definition.
4740               // This happens when an initializer has a different type from
4741               // the type of the global (because of padding at the end of a
4742               // structure for instance).
4743               GV->setName(StringRef());
4744               // Make a new global with the correct type, this is now guaranteed
4745               // to work.
4746               auto *NewGV = cast<llvm::GlobalVariable>(
4747                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4748                       ->stripPointerCasts());
4749 
4750               // Erase the old global, since it is no longer used.
4751               GV->eraseFromParent();
4752               GV = NewGV;
4753             } else {
4754               GV->setInitializer(Init);
4755               GV->setConstant(true);
4756               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4757             }
4758             emitter.finalize(GV);
4759           }
4760         }
4761       }
4762     }
4763   }
4764 
4765   if (D &&
4766       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4767     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4768     // External HIP managed variables needed to be recorded for transformation
4769     // in both device and host compilations.
4770     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4771         D->hasExternalStorage())
4772       getCUDARuntime().handleVarRegistration(D, *GV);
4773   }
4774 
4775   if (D)
4776     SanitizerMD->reportGlobal(GV, *D);
4777 
4778   LangAS ExpectedAS =
4779       D ? D->getType().getAddressSpace()
4780         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4781   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4782   if (DAddrSpace != ExpectedAS) {
4783     return getTargetCodeGenInfo().performAddrSpaceCast(
4784         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4785   }
4786 
4787   return GV;
4788 }
4789 
4790 llvm::Constant *
4791 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4792   const Decl *D = GD.getDecl();
4793 
4794   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4795     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4796                                 /*DontDefer=*/false, IsForDefinition);
4797 
4798   if (isa<CXXMethodDecl>(D)) {
4799     auto FInfo =
4800         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4801     auto Ty = getTypes().GetFunctionType(*FInfo);
4802     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4803                              IsForDefinition);
4804   }
4805 
4806   if (isa<FunctionDecl>(D)) {
4807     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4808     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4809     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4810                              IsForDefinition);
4811   }
4812 
4813   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4814 }
4815 
4816 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4817     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4818     llvm::Align Alignment) {
4819   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4820   llvm::GlobalVariable *OldGV = nullptr;
4821 
4822   if (GV) {
4823     // Check if the variable has the right type.
4824     if (GV->getValueType() == Ty)
4825       return GV;
4826 
4827     // Because C++ name mangling, the only way we can end up with an already
4828     // existing global with the same name is if it has been declared extern "C".
4829     assert(GV->isDeclaration() && "Declaration has wrong type!");
4830     OldGV = GV;
4831   }
4832 
4833   // Create a new variable.
4834   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4835                                 Linkage, nullptr, Name);
4836 
4837   if (OldGV) {
4838     // Replace occurrences of the old variable if needed.
4839     GV->takeName(OldGV);
4840 
4841     if (!OldGV->use_empty()) {
4842       llvm::Constant *NewPtrForOldDecl =
4843       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4844       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4845     }
4846 
4847     OldGV->eraseFromParent();
4848   }
4849 
4850   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4851       !GV->hasAvailableExternallyLinkage())
4852     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4853 
4854   GV->setAlignment(Alignment);
4855 
4856   return GV;
4857 }
4858 
4859 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4860 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4861 /// then it will be created with the specified type instead of whatever the
4862 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4863 /// that an actual global with type Ty will be returned, not conversion of a
4864 /// variable with the same mangled name but some other type.
4865 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4866                                                   llvm::Type *Ty,
4867                                            ForDefinition_t IsForDefinition) {
4868   assert(D->hasGlobalStorage() && "Not a global variable");
4869   QualType ASTTy = D->getType();
4870   if (!Ty)
4871     Ty = getTypes().ConvertTypeForMem(ASTTy);
4872 
4873   StringRef MangledName = getMangledName(D);
4874   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4875                                IsForDefinition);
4876 }
4877 
4878 /// CreateRuntimeVariable - Create a new runtime global variable with the
4879 /// specified type and name.
4880 llvm::Constant *
4881 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4882                                      StringRef Name) {
4883   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4884                                                        : LangAS::Default;
4885   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4886   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4887   return Ret;
4888 }
4889 
4890 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4891   assert(!D->getInit() && "Cannot emit definite definitions here!");
4892 
4893   StringRef MangledName = getMangledName(D);
4894   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4895 
4896   // We already have a definition, not declaration, with the same mangled name.
4897   // Emitting of declaration is not required (and actually overwrites emitted
4898   // definition).
4899   if (GV && !GV->isDeclaration())
4900     return;
4901 
4902   // If we have not seen a reference to this variable yet, place it into the
4903   // deferred declarations table to be emitted if needed later.
4904   if (!MustBeEmitted(D) && !GV) {
4905       DeferredDecls[MangledName] = D;
4906       return;
4907   }
4908 
4909   // The tentative definition is the only definition.
4910   EmitGlobalVarDefinition(D);
4911 }
4912 
4913 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4914   EmitExternalVarDeclaration(D);
4915 }
4916 
4917 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4918   return Context.toCharUnitsFromBits(
4919       getDataLayout().getTypeStoreSizeInBits(Ty));
4920 }
4921 
4922 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4923   if (LangOpts.OpenCL) {
4924     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4925     assert(AS == LangAS::opencl_global ||
4926            AS == LangAS::opencl_global_device ||
4927            AS == LangAS::opencl_global_host ||
4928            AS == LangAS::opencl_constant ||
4929            AS == LangAS::opencl_local ||
4930            AS >= LangAS::FirstTargetAddressSpace);
4931     return AS;
4932   }
4933 
4934   if (LangOpts.SYCLIsDevice &&
4935       (!D || D->getType().getAddressSpace() == LangAS::Default))
4936     return LangAS::sycl_global;
4937 
4938   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4939     if (D) {
4940       if (D->hasAttr<CUDAConstantAttr>())
4941         return LangAS::cuda_constant;
4942       if (D->hasAttr<CUDASharedAttr>())
4943         return LangAS::cuda_shared;
4944       if (D->hasAttr<CUDADeviceAttr>())
4945         return LangAS::cuda_device;
4946       if (D->getType().isConstQualified())
4947         return LangAS::cuda_constant;
4948     }
4949     return LangAS::cuda_device;
4950   }
4951 
4952   if (LangOpts.OpenMP) {
4953     LangAS AS;
4954     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4955       return AS;
4956   }
4957   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4958 }
4959 
4960 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4961   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4962   if (LangOpts.OpenCL)
4963     return LangAS::opencl_constant;
4964   if (LangOpts.SYCLIsDevice)
4965     return LangAS::sycl_global;
4966   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4967     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4968     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4969     // with OpVariable instructions with Generic storage class which is not
4970     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4971     // UniformConstant storage class is not viable as pointers to it may not be
4972     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4973     return LangAS::cuda_device;
4974   if (auto AS = getTarget().getConstantAddressSpace())
4975     return *AS;
4976   return LangAS::Default;
4977 }
4978 
4979 // In address space agnostic languages, string literals are in default address
4980 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4981 // emitted in constant address space in LLVM IR. To be consistent with other
4982 // parts of AST, string literal global variables in constant address space
4983 // need to be casted to default address space before being put into address
4984 // map and referenced by other part of CodeGen.
4985 // In OpenCL, string literals are in constant address space in AST, therefore
4986 // they should not be casted to default address space.
4987 static llvm::Constant *
4988 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4989                                        llvm::GlobalVariable *GV) {
4990   llvm::Constant *Cast = GV;
4991   if (!CGM.getLangOpts().OpenCL) {
4992     auto AS = CGM.GetGlobalConstantAddressSpace();
4993     if (AS != LangAS::Default)
4994       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4995           CGM, GV, AS, LangAS::Default,
4996           GV->getValueType()->getPointerTo(
4997               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4998   }
4999   return Cast;
5000 }
5001 
5002 template<typename SomeDecl>
5003 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5004                                                llvm::GlobalValue *GV) {
5005   if (!getLangOpts().CPlusPlus)
5006     return;
5007 
5008   // Must have 'used' attribute, or else inline assembly can't rely on
5009   // the name existing.
5010   if (!D->template hasAttr<UsedAttr>())
5011     return;
5012 
5013   // Must have internal linkage and an ordinary name.
5014   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5015     return;
5016 
5017   // Must be in an extern "C" context. Entities declared directly within
5018   // a record are not extern "C" even if the record is in such a context.
5019   const SomeDecl *First = D->getFirstDecl();
5020   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5021     return;
5022 
5023   // OK, this is an internal linkage entity inside an extern "C" linkage
5024   // specification. Make a note of that so we can give it the "expected"
5025   // mangled name if nothing else is using that name.
5026   std::pair<StaticExternCMap::iterator, bool> R =
5027       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5028 
5029   // If we have multiple internal linkage entities with the same name
5030   // in extern "C" regions, none of them gets that name.
5031   if (!R.second)
5032     R.first->second = nullptr;
5033 }
5034 
5035 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5036   if (!CGM.supportsCOMDAT())
5037     return false;
5038 
5039   if (D.hasAttr<SelectAnyAttr>())
5040     return true;
5041 
5042   GVALinkage Linkage;
5043   if (auto *VD = dyn_cast<VarDecl>(&D))
5044     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5045   else
5046     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5047 
5048   switch (Linkage) {
5049   case GVA_Internal:
5050   case GVA_AvailableExternally:
5051   case GVA_StrongExternal:
5052     return false;
5053   case GVA_DiscardableODR:
5054   case GVA_StrongODR:
5055     return true;
5056   }
5057   llvm_unreachable("No such linkage");
5058 }
5059 
5060 bool CodeGenModule::supportsCOMDAT() const {
5061   return getTriple().supportsCOMDAT();
5062 }
5063 
5064 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5065                                           llvm::GlobalObject &GO) {
5066   if (!shouldBeInCOMDAT(*this, D))
5067     return;
5068   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5069 }
5070 
5071 /// Pass IsTentative as true if you want to create a tentative definition.
5072 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5073                                             bool IsTentative) {
5074   // OpenCL global variables of sampler type are translated to function calls,
5075   // therefore no need to be translated.
5076   QualType ASTTy = D->getType();
5077   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5078     return;
5079 
5080   // If this is OpenMP device, check if it is legal to emit this global
5081   // normally.
5082   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5083       OpenMPRuntime->emitTargetGlobalVariable(D))
5084     return;
5085 
5086   llvm::TrackingVH<llvm::Constant> Init;
5087   bool NeedsGlobalCtor = false;
5088   // Whether the definition of the variable is available externally.
5089   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5090   // since this is the job for its original source.
5091   bool IsDefinitionAvailableExternally =
5092       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5093   bool NeedsGlobalDtor =
5094       !IsDefinitionAvailableExternally &&
5095       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5096 
5097   const VarDecl *InitDecl;
5098   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5099 
5100   std::optional<ConstantEmitter> emitter;
5101 
5102   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5103   // as part of their declaration."  Sema has already checked for
5104   // error cases, so we just need to set Init to UndefValue.
5105   bool IsCUDASharedVar =
5106       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5107   // Shadows of initialized device-side global variables are also left
5108   // undefined.
5109   // Managed Variables should be initialized on both host side and device side.
5110   bool IsCUDAShadowVar =
5111       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5112       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5113        D->hasAttr<CUDASharedAttr>());
5114   bool IsCUDADeviceShadowVar =
5115       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5116       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5117        D->getType()->isCUDADeviceBuiltinTextureType());
5118   if (getLangOpts().CUDA &&
5119       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5120     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5121   else if (D->hasAttr<LoaderUninitializedAttr>())
5122     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5123   else if (!InitExpr) {
5124     // This is a tentative definition; tentative definitions are
5125     // implicitly initialized with { 0 }.
5126     //
5127     // Note that tentative definitions are only emitted at the end of
5128     // a translation unit, so they should never have incomplete
5129     // type. In addition, EmitTentativeDefinition makes sure that we
5130     // never attempt to emit a tentative definition if a real one
5131     // exists. A use may still exists, however, so we still may need
5132     // to do a RAUW.
5133     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5134     Init = EmitNullConstant(D->getType());
5135   } else {
5136     initializedGlobalDecl = GlobalDecl(D);
5137     emitter.emplace(*this);
5138     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5139     if (!Initializer) {
5140       QualType T = InitExpr->getType();
5141       if (D->getType()->isReferenceType())
5142         T = D->getType();
5143 
5144       if (getLangOpts().CPlusPlus) {
5145         if (InitDecl->hasFlexibleArrayInit(getContext()))
5146           ErrorUnsupported(D, "flexible array initializer");
5147         Init = EmitNullConstant(T);
5148 
5149         if (!IsDefinitionAvailableExternally)
5150           NeedsGlobalCtor = true;
5151       } else {
5152         ErrorUnsupported(D, "static initializer");
5153         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5154       }
5155     } else {
5156       Init = Initializer;
5157       // We don't need an initializer, so remove the entry for the delayed
5158       // initializer position (just in case this entry was delayed) if we
5159       // also don't need to register a destructor.
5160       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5161         DelayedCXXInitPosition.erase(D);
5162 
5163 #ifndef NDEBUG
5164       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5165                           InitDecl->getFlexibleArrayInitChars(getContext());
5166       CharUnits CstSize = CharUnits::fromQuantity(
5167           getDataLayout().getTypeAllocSize(Init->getType()));
5168       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5169 #endif
5170     }
5171   }
5172 
5173   llvm::Type* InitType = Init->getType();
5174   llvm::Constant *Entry =
5175       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5176 
5177   // Strip off pointer casts if we got them.
5178   Entry = Entry->stripPointerCasts();
5179 
5180   // Entry is now either a Function or GlobalVariable.
5181   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5182 
5183   // We have a definition after a declaration with the wrong type.
5184   // We must make a new GlobalVariable* and update everything that used OldGV
5185   // (a declaration or tentative definition) with the new GlobalVariable*
5186   // (which will be a definition).
5187   //
5188   // This happens if there is a prototype for a global (e.g.
5189   // "extern int x[];") and then a definition of a different type (e.g.
5190   // "int x[10];"). This also happens when an initializer has a different type
5191   // from the type of the global (this happens with unions).
5192   if (!GV || GV->getValueType() != InitType ||
5193       GV->getType()->getAddressSpace() !=
5194           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5195 
5196     // Move the old entry aside so that we'll create a new one.
5197     Entry->setName(StringRef());
5198 
5199     // Make a new global with the correct type, this is now guaranteed to work.
5200     GV = cast<llvm::GlobalVariable>(
5201         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5202             ->stripPointerCasts());
5203 
5204     // Replace all uses of the old global with the new global
5205     llvm::Constant *NewPtrForOldDecl =
5206         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5207                                                              Entry->getType());
5208     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5209 
5210     // Erase the old global, since it is no longer used.
5211     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5212   }
5213 
5214   MaybeHandleStaticInExternC(D, GV);
5215 
5216   if (D->hasAttr<AnnotateAttr>())
5217     AddGlobalAnnotations(D, GV);
5218 
5219   // Set the llvm linkage type as appropriate.
5220   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5221 
5222   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5223   // the device. [...]"
5224   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5225   // __device__, declares a variable that: [...]
5226   // Is accessible from all the threads within the grid and from the host
5227   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5228   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5229   if (LangOpts.CUDA) {
5230     if (LangOpts.CUDAIsDevice) {
5231       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5232           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5233            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5234            D->getType()->isCUDADeviceBuiltinTextureType()))
5235         GV->setExternallyInitialized(true);
5236     } else {
5237       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5238     }
5239     getCUDARuntime().handleVarRegistration(D, *GV);
5240   }
5241 
5242   GV->setInitializer(Init);
5243   if (emitter)
5244     emitter->finalize(GV);
5245 
5246   // If it is safe to mark the global 'constant', do so now.
5247   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5248                   D->getType().isConstantStorage(getContext(), true, true));
5249 
5250   // If it is in a read-only section, mark it 'constant'.
5251   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5252     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5253     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5254       GV->setConstant(true);
5255   }
5256 
5257   CharUnits AlignVal = getContext().getDeclAlign(D);
5258   // Check for alignment specifed in an 'omp allocate' directive.
5259   if (std::optional<CharUnits> AlignValFromAllocate =
5260           getOMPAllocateAlignment(D))
5261     AlignVal = *AlignValFromAllocate;
5262   GV->setAlignment(AlignVal.getAsAlign());
5263 
5264   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5265   // function is only defined alongside the variable, not also alongside
5266   // callers. Normally, all accesses to a thread_local go through the
5267   // thread-wrapper in order to ensure initialization has occurred, underlying
5268   // variable will never be used other than the thread-wrapper, so it can be
5269   // converted to internal linkage.
5270   //
5271   // However, if the variable has the 'constinit' attribute, it _can_ be
5272   // referenced directly, without calling the thread-wrapper, so the linkage
5273   // must not be changed.
5274   //
5275   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5276   // weak or linkonce, the de-duplication semantics are important to preserve,
5277   // so we don't change the linkage.
5278   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5279       Linkage == llvm::GlobalValue::ExternalLinkage &&
5280       Context.getTargetInfo().getTriple().isOSDarwin() &&
5281       !D->hasAttr<ConstInitAttr>())
5282     Linkage = llvm::GlobalValue::InternalLinkage;
5283 
5284   GV->setLinkage(Linkage);
5285   if (D->hasAttr<DLLImportAttr>())
5286     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5287   else if (D->hasAttr<DLLExportAttr>())
5288     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5289   else
5290     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5291 
5292   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5293     // common vars aren't constant even if declared const.
5294     GV->setConstant(false);
5295     // Tentative definition of global variables may be initialized with
5296     // non-zero null pointers. In this case they should have weak linkage
5297     // since common linkage must have zero initializer and must not have
5298     // explicit section therefore cannot have non-zero initial value.
5299     if (!GV->getInitializer()->isNullValue())
5300       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5301   }
5302 
5303   setNonAliasAttributes(D, GV);
5304 
5305   if (D->getTLSKind() && !GV->isThreadLocal()) {
5306     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5307       CXXThreadLocals.push_back(D);
5308     setTLSMode(GV, *D);
5309   }
5310 
5311   maybeSetTrivialComdat(*D, *GV);
5312 
5313   // Emit the initializer function if necessary.
5314   if (NeedsGlobalCtor || NeedsGlobalDtor)
5315     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5316 
5317   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5318 
5319   // Emit global variable debug information.
5320   if (CGDebugInfo *DI = getModuleDebugInfo())
5321     if (getCodeGenOpts().hasReducedDebugInfo())
5322       DI->EmitGlobalVariable(GV, D);
5323 }
5324 
5325 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5326   if (CGDebugInfo *DI = getModuleDebugInfo())
5327     if (getCodeGenOpts().hasReducedDebugInfo()) {
5328       QualType ASTTy = D->getType();
5329       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5330       llvm::Constant *GV =
5331           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5332       DI->EmitExternalVariable(
5333           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5334     }
5335 }
5336 
5337 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5338                                       CodeGenModule &CGM, const VarDecl *D,
5339                                       bool NoCommon) {
5340   // Don't give variables common linkage if -fno-common was specified unless it
5341   // was overridden by a NoCommon attribute.
5342   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5343     return true;
5344 
5345   // C11 6.9.2/2:
5346   //   A declaration of an identifier for an object that has file scope without
5347   //   an initializer, and without a storage-class specifier or with the
5348   //   storage-class specifier static, constitutes a tentative definition.
5349   if (D->getInit() || D->hasExternalStorage())
5350     return true;
5351 
5352   // A variable cannot be both common and exist in a section.
5353   if (D->hasAttr<SectionAttr>())
5354     return true;
5355 
5356   // A variable cannot be both common and exist in a section.
5357   // We don't try to determine which is the right section in the front-end.
5358   // If no specialized section name is applicable, it will resort to default.
5359   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5360       D->hasAttr<PragmaClangDataSectionAttr>() ||
5361       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5362       D->hasAttr<PragmaClangRodataSectionAttr>())
5363     return true;
5364 
5365   // Thread local vars aren't considered common linkage.
5366   if (D->getTLSKind())
5367     return true;
5368 
5369   // Tentative definitions marked with WeakImportAttr are true definitions.
5370   if (D->hasAttr<WeakImportAttr>())
5371     return true;
5372 
5373   // A variable cannot be both common and exist in a comdat.
5374   if (shouldBeInCOMDAT(CGM, *D))
5375     return true;
5376 
5377   // Declarations with a required alignment do not have common linkage in MSVC
5378   // mode.
5379   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5380     if (D->hasAttr<AlignedAttr>())
5381       return true;
5382     QualType VarType = D->getType();
5383     if (Context.isAlignmentRequired(VarType))
5384       return true;
5385 
5386     if (const auto *RT = VarType->getAs<RecordType>()) {
5387       const RecordDecl *RD = RT->getDecl();
5388       for (const FieldDecl *FD : RD->fields()) {
5389         if (FD->isBitField())
5390           continue;
5391         if (FD->hasAttr<AlignedAttr>())
5392           return true;
5393         if (Context.isAlignmentRequired(FD->getType()))
5394           return true;
5395       }
5396     }
5397   }
5398 
5399   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5400   // common symbols, so symbols with greater alignment requirements cannot be
5401   // common.
5402   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5403   // alignments for common symbols via the aligncomm directive, so this
5404   // restriction only applies to MSVC environments.
5405   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5406       Context.getTypeAlignIfKnown(D->getType()) >
5407           Context.toBits(CharUnits::fromQuantity(32)))
5408     return true;
5409 
5410   return false;
5411 }
5412 
5413 llvm::GlobalValue::LinkageTypes
5414 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5415                                            GVALinkage Linkage) {
5416   if (Linkage == GVA_Internal)
5417     return llvm::Function::InternalLinkage;
5418 
5419   if (D->hasAttr<WeakAttr>())
5420     return llvm::GlobalVariable::WeakAnyLinkage;
5421 
5422   if (const auto *FD = D->getAsFunction())
5423     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5424       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5425 
5426   // We are guaranteed to have a strong definition somewhere else,
5427   // so we can use available_externally linkage.
5428   if (Linkage == GVA_AvailableExternally)
5429     return llvm::GlobalValue::AvailableExternallyLinkage;
5430 
5431   // Note that Apple's kernel linker doesn't support symbol
5432   // coalescing, so we need to avoid linkonce and weak linkages there.
5433   // Normally, this means we just map to internal, but for explicit
5434   // instantiations we'll map to external.
5435 
5436   // In C++, the compiler has to emit a definition in every translation unit
5437   // that references the function.  We should use linkonce_odr because
5438   // a) if all references in this translation unit are optimized away, we
5439   // don't need to codegen it.  b) if the function persists, it needs to be
5440   // merged with other definitions. c) C++ has the ODR, so we know the
5441   // definition is dependable.
5442   if (Linkage == GVA_DiscardableODR)
5443     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5444                                             : llvm::Function::InternalLinkage;
5445 
5446   // An explicit instantiation of a template has weak linkage, since
5447   // explicit instantiations can occur in multiple translation units
5448   // and must all be equivalent. However, we are not allowed to
5449   // throw away these explicit instantiations.
5450   //
5451   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5452   // so say that CUDA templates are either external (for kernels) or internal.
5453   // This lets llvm perform aggressive inter-procedural optimizations. For
5454   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5455   // therefore we need to follow the normal linkage paradigm.
5456   if (Linkage == GVA_StrongODR) {
5457     if (getLangOpts().AppleKext)
5458       return llvm::Function::ExternalLinkage;
5459     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5460         !getLangOpts().GPURelocatableDeviceCode)
5461       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5462                                           : llvm::Function::InternalLinkage;
5463     return llvm::Function::WeakODRLinkage;
5464   }
5465 
5466   // C++ doesn't have tentative definitions and thus cannot have common
5467   // linkage.
5468   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5469       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5470                                  CodeGenOpts.NoCommon))
5471     return llvm::GlobalVariable::CommonLinkage;
5472 
5473   // selectany symbols are externally visible, so use weak instead of
5474   // linkonce.  MSVC optimizes away references to const selectany globals, so
5475   // all definitions should be the same and ODR linkage should be used.
5476   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5477   if (D->hasAttr<SelectAnyAttr>())
5478     return llvm::GlobalVariable::WeakODRLinkage;
5479 
5480   // Otherwise, we have strong external linkage.
5481   assert(Linkage == GVA_StrongExternal);
5482   return llvm::GlobalVariable::ExternalLinkage;
5483 }
5484 
5485 llvm::GlobalValue::LinkageTypes
5486 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5487   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5488   return getLLVMLinkageForDeclarator(VD, Linkage);
5489 }
5490 
5491 /// Replace the uses of a function that was declared with a non-proto type.
5492 /// We want to silently drop extra arguments from call sites
5493 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5494                                           llvm::Function *newFn) {
5495   // Fast path.
5496   if (old->use_empty()) return;
5497 
5498   llvm::Type *newRetTy = newFn->getReturnType();
5499   SmallVector<llvm::Value*, 4> newArgs;
5500 
5501   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5502          ui != ue; ) {
5503     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5504     llvm::User *user = use->getUser();
5505 
5506     // Recognize and replace uses of bitcasts.  Most calls to
5507     // unprototyped functions will use bitcasts.
5508     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5509       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5510         replaceUsesOfNonProtoConstant(bitcast, newFn);
5511       continue;
5512     }
5513 
5514     // Recognize calls to the function.
5515     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5516     if (!callSite) continue;
5517     if (!callSite->isCallee(&*use))
5518       continue;
5519 
5520     // If the return types don't match exactly, then we can't
5521     // transform this call unless it's dead.
5522     if (callSite->getType() != newRetTy && !callSite->use_empty())
5523       continue;
5524 
5525     // Get the call site's attribute list.
5526     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5527     llvm::AttributeList oldAttrs = callSite->getAttributes();
5528 
5529     // If the function was passed too few arguments, don't transform.
5530     unsigned newNumArgs = newFn->arg_size();
5531     if (callSite->arg_size() < newNumArgs)
5532       continue;
5533 
5534     // If extra arguments were passed, we silently drop them.
5535     // If any of the types mismatch, we don't transform.
5536     unsigned argNo = 0;
5537     bool dontTransform = false;
5538     for (llvm::Argument &A : newFn->args()) {
5539       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5540         dontTransform = true;
5541         break;
5542       }
5543 
5544       // Add any parameter attributes.
5545       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5546       argNo++;
5547     }
5548     if (dontTransform)
5549       continue;
5550 
5551     // Okay, we can transform this.  Create the new call instruction and copy
5552     // over the required information.
5553     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5554 
5555     // Copy over any operand bundles.
5556     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5557     callSite->getOperandBundlesAsDefs(newBundles);
5558 
5559     llvm::CallBase *newCall;
5560     if (isa<llvm::CallInst>(callSite)) {
5561       newCall =
5562           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5563     } else {
5564       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5565       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5566                                          oldInvoke->getUnwindDest(), newArgs,
5567                                          newBundles, "", callSite);
5568     }
5569     newArgs.clear(); // for the next iteration
5570 
5571     if (!newCall->getType()->isVoidTy())
5572       newCall->takeName(callSite);
5573     newCall->setAttributes(
5574         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5575                                  oldAttrs.getRetAttrs(), newArgAttrs));
5576     newCall->setCallingConv(callSite->getCallingConv());
5577 
5578     // Finally, remove the old call, replacing any uses with the new one.
5579     if (!callSite->use_empty())
5580       callSite->replaceAllUsesWith(newCall);
5581 
5582     // Copy debug location attached to CI.
5583     if (callSite->getDebugLoc())
5584       newCall->setDebugLoc(callSite->getDebugLoc());
5585 
5586     callSite->eraseFromParent();
5587   }
5588 }
5589 
5590 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5591 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5592 /// existing call uses of the old function in the module, this adjusts them to
5593 /// call the new function directly.
5594 ///
5595 /// This is not just a cleanup: the always_inline pass requires direct calls to
5596 /// functions to be able to inline them.  If there is a bitcast in the way, it
5597 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5598 /// run at -O0.
5599 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5600                                                       llvm::Function *NewFn) {
5601   // If we're redefining a global as a function, don't transform it.
5602   if (!isa<llvm::Function>(Old)) return;
5603 
5604   replaceUsesOfNonProtoConstant(Old, NewFn);
5605 }
5606 
5607 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5608   auto DK = VD->isThisDeclarationADefinition();
5609   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5610     return;
5611 
5612   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5613   // If we have a definition, this might be a deferred decl. If the
5614   // instantiation is explicit, make sure we emit it at the end.
5615   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5616     GetAddrOfGlobalVar(VD);
5617 
5618   EmitTopLevelDecl(VD);
5619 }
5620 
5621 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5622                                                  llvm::GlobalValue *GV) {
5623   const auto *D = cast<FunctionDecl>(GD.getDecl());
5624 
5625   // Compute the function info and LLVM type.
5626   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5627   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5628 
5629   // Get or create the prototype for the function.
5630   if (!GV || (GV->getValueType() != Ty))
5631     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5632                                                    /*DontDefer=*/true,
5633                                                    ForDefinition));
5634 
5635   // Already emitted.
5636   if (!GV->isDeclaration())
5637     return;
5638 
5639   // We need to set linkage and visibility on the function before
5640   // generating code for it because various parts of IR generation
5641   // want to propagate this information down (e.g. to local static
5642   // declarations).
5643   auto *Fn = cast<llvm::Function>(GV);
5644   setFunctionLinkage(GD, Fn);
5645 
5646   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5647   setGVProperties(Fn, GD);
5648 
5649   MaybeHandleStaticInExternC(D, Fn);
5650 
5651   maybeSetTrivialComdat(*D, *Fn);
5652 
5653   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5654 
5655   setNonAliasAttributes(GD, Fn);
5656   SetLLVMFunctionAttributesForDefinition(D, Fn);
5657 
5658   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5659     AddGlobalCtor(Fn, CA->getPriority());
5660   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5661     AddGlobalDtor(Fn, DA->getPriority(), true);
5662   if (D->hasAttr<AnnotateAttr>())
5663     AddGlobalAnnotations(D, Fn);
5664 }
5665 
5666 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5667   const auto *D = cast<ValueDecl>(GD.getDecl());
5668   const AliasAttr *AA = D->getAttr<AliasAttr>();
5669   assert(AA && "Not an alias?");
5670 
5671   StringRef MangledName = getMangledName(GD);
5672 
5673   if (AA->getAliasee() == MangledName) {
5674     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5675     return;
5676   }
5677 
5678   // If there is a definition in the module, then it wins over the alias.
5679   // This is dubious, but allow it to be safe.  Just ignore the alias.
5680   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5681   if (Entry && !Entry->isDeclaration())
5682     return;
5683 
5684   Aliases.push_back(GD);
5685 
5686   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5687 
5688   // Create a reference to the named value.  This ensures that it is emitted
5689   // if a deferred decl.
5690   llvm::Constant *Aliasee;
5691   llvm::GlobalValue::LinkageTypes LT;
5692   if (isa<llvm::FunctionType>(DeclTy)) {
5693     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5694                                       /*ForVTable=*/false);
5695     LT = getFunctionLinkage(GD);
5696   } else {
5697     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5698                                     /*D=*/nullptr);
5699     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5700       LT = getLLVMLinkageVarDefinition(VD);
5701     else
5702       LT = getFunctionLinkage(GD);
5703   }
5704 
5705   // Create the new alias itself, but don't set a name yet.
5706   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5707   auto *GA =
5708       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5709 
5710   if (Entry) {
5711     if (GA->getAliasee() == Entry) {
5712       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5713       return;
5714     }
5715 
5716     assert(Entry->isDeclaration());
5717 
5718     // If there is a declaration in the module, then we had an extern followed
5719     // by the alias, as in:
5720     //   extern int test6();
5721     //   ...
5722     //   int test6() __attribute__((alias("test7")));
5723     //
5724     // Remove it and replace uses of it with the alias.
5725     GA->takeName(Entry);
5726 
5727     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5728                                                           Entry->getType()));
5729     Entry->eraseFromParent();
5730   } else {
5731     GA->setName(MangledName);
5732   }
5733 
5734   // Set attributes which are particular to an alias; this is a
5735   // specialization of the attributes which may be set on a global
5736   // variable/function.
5737   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5738       D->isWeakImported()) {
5739     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5740   }
5741 
5742   if (const auto *VD = dyn_cast<VarDecl>(D))
5743     if (VD->getTLSKind())
5744       setTLSMode(GA, *VD);
5745 
5746   SetCommonAttributes(GD, GA);
5747 
5748   // Emit global alias debug information.
5749   if (isa<VarDecl>(D))
5750     if (CGDebugInfo *DI = getModuleDebugInfo())
5751       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5752 }
5753 
5754 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5755   const auto *D = cast<ValueDecl>(GD.getDecl());
5756   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5757   assert(IFA && "Not an ifunc?");
5758 
5759   StringRef MangledName = getMangledName(GD);
5760 
5761   if (IFA->getResolver() == MangledName) {
5762     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5763     return;
5764   }
5765 
5766   // Report an error if some definition overrides ifunc.
5767   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5768   if (Entry && !Entry->isDeclaration()) {
5769     GlobalDecl OtherGD;
5770     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5771         DiagnosedConflictingDefinitions.insert(GD).second) {
5772       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5773           << MangledName;
5774       Diags.Report(OtherGD.getDecl()->getLocation(),
5775                    diag::note_previous_definition);
5776     }
5777     return;
5778   }
5779 
5780   Aliases.push_back(GD);
5781 
5782   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5783   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5784   llvm::Constant *Resolver =
5785       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5786                               /*ForVTable=*/false);
5787   llvm::GlobalIFunc *GIF =
5788       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5789                                 "", Resolver, &getModule());
5790   if (Entry) {
5791     if (GIF->getResolver() == Entry) {
5792       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5793       return;
5794     }
5795     assert(Entry->isDeclaration());
5796 
5797     // If there is a declaration in the module, then we had an extern followed
5798     // by the ifunc, as in:
5799     //   extern int test();
5800     //   ...
5801     //   int test() __attribute__((ifunc("resolver")));
5802     //
5803     // Remove it and replace uses of it with the ifunc.
5804     GIF->takeName(Entry);
5805 
5806     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5807                                                           Entry->getType()));
5808     Entry->eraseFromParent();
5809   } else
5810     GIF->setName(MangledName);
5811   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
5812     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
5813   }
5814   SetCommonAttributes(GD, GIF);
5815 }
5816 
5817 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5818                                             ArrayRef<llvm::Type*> Tys) {
5819   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5820                                          Tys);
5821 }
5822 
5823 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5824 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5825                          const StringLiteral *Literal, bool TargetIsLSB,
5826                          bool &IsUTF16, unsigned &StringLength) {
5827   StringRef String = Literal->getString();
5828   unsigned NumBytes = String.size();
5829 
5830   // Check for simple case.
5831   if (!Literal->containsNonAsciiOrNull()) {
5832     StringLength = NumBytes;
5833     return *Map.insert(std::make_pair(String, nullptr)).first;
5834   }
5835 
5836   // Otherwise, convert the UTF8 literals into a string of shorts.
5837   IsUTF16 = true;
5838 
5839   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5840   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5841   llvm::UTF16 *ToPtr = &ToBuf[0];
5842 
5843   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5844                                  ToPtr + NumBytes, llvm::strictConversion);
5845 
5846   // ConvertUTF8toUTF16 returns the length in ToPtr.
5847   StringLength = ToPtr - &ToBuf[0];
5848 
5849   // Add an explicit null.
5850   *ToPtr = 0;
5851   return *Map.insert(std::make_pair(
5852                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5853                                    (StringLength + 1) * 2),
5854                          nullptr)).first;
5855 }
5856 
5857 ConstantAddress
5858 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5859   unsigned StringLength = 0;
5860   bool isUTF16 = false;
5861   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5862       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5863                                getDataLayout().isLittleEndian(), isUTF16,
5864                                StringLength);
5865 
5866   if (auto *C = Entry.second)
5867     return ConstantAddress(
5868         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5869 
5870   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5871   llvm::Constant *Zeros[] = { Zero, Zero };
5872 
5873   const ASTContext &Context = getContext();
5874   const llvm::Triple &Triple = getTriple();
5875 
5876   const auto CFRuntime = getLangOpts().CFRuntime;
5877   const bool IsSwiftABI =
5878       static_cast<unsigned>(CFRuntime) >=
5879       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5880   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5881 
5882   // If we don't already have it, get __CFConstantStringClassReference.
5883   if (!CFConstantStringClassRef) {
5884     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5885     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5886     Ty = llvm::ArrayType::get(Ty, 0);
5887 
5888     switch (CFRuntime) {
5889     default: break;
5890     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5891     case LangOptions::CoreFoundationABI::Swift5_0:
5892       CFConstantStringClassName =
5893           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5894                               : "$s10Foundation19_NSCFConstantStringCN";
5895       Ty = IntPtrTy;
5896       break;
5897     case LangOptions::CoreFoundationABI::Swift4_2:
5898       CFConstantStringClassName =
5899           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5900                               : "$S10Foundation19_NSCFConstantStringCN";
5901       Ty = IntPtrTy;
5902       break;
5903     case LangOptions::CoreFoundationABI::Swift4_1:
5904       CFConstantStringClassName =
5905           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5906                               : "__T010Foundation19_NSCFConstantStringCN";
5907       Ty = IntPtrTy;
5908       break;
5909     }
5910 
5911     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5912 
5913     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5914       llvm::GlobalValue *GV = nullptr;
5915 
5916       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5917         IdentifierInfo &II = Context.Idents.get(GV->getName());
5918         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5919         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5920 
5921         const VarDecl *VD = nullptr;
5922         for (const auto *Result : DC->lookup(&II))
5923           if ((VD = dyn_cast<VarDecl>(Result)))
5924             break;
5925 
5926         if (Triple.isOSBinFormatELF()) {
5927           if (!VD)
5928             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5929         } else {
5930           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5931           if (!VD || !VD->hasAttr<DLLExportAttr>())
5932             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5933           else
5934             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5935         }
5936 
5937         setDSOLocal(GV);
5938       }
5939     }
5940 
5941     // Decay array -> ptr
5942     CFConstantStringClassRef =
5943         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5944                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5945   }
5946 
5947   QualType CFTy = Context.getCFConstantStringType();
5948 
5949   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5950 
5951   ConstantInitBuilder Builder(*this);
5952   auto Fields = Builder.beginStruct(STy);
5953 
5954   // Class pointer.
5955   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5956 
5957   // Flags.
5958   if (IsSwiftABI) {
5959     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5960     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5961   } else {
5962     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5963   }
5964 
5965   // String pointer.
5966   llvm::Constant *C = nullptr;
5967   if (isUTF16) {
5968     auto Arr = llvm::ArrayRef(
5969         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5970         Entry.first().size() / 2);
5971     C = llvm::ConstantDataArray::get(VMContext, Arr);
5972   } else {
5973     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5974   }
5975 
5976   // Note: -fwritable-strings doesn't make the backing store strings of
5977   // CFStrings writable.
5978   auto *GV =
5979       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5980                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5981   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5982   // Don't enforce the target's minimum global alignment, since the only use
5983   // of the string is via this class initializer.
5984   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5985                             : Context.getTypeAlignInChars(Context.CharTy);
5986   GV->setAlignment(Align.getAsAlign());
5987 
5988   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5989   // Without it LLVM can merge the string with a non unnamed_addr one during
5990   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5991   if (Triple.isOSBinFormatMachO())
5992     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5993                            : "__TEXT,__cstring,cstring_literals");
5994   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5995   // the static linker to adjust permissions to read-only later on.
5996   else if (Triple.isOSBinFormatELF())
5997     GV->setSection(".rodata");
5998 
5999   // String.
6000   llvm::Constant *Str =
6001       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6002 
6003   if (isUTF16)
6004     // Cast the UTF16 string to the correct type.
6005     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6006   Fields.add(Str);
6007 
6008   // String length.
6009   llvm::IntegerType *LengthTy =
6010       llvm::IntegerType::get(getModule().getContext(),
6011                              Context.getTargetInfo().getLongWidth());
6012   if (IsSwiftABI) {
6013     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6014         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6015       LengthTy = Int32Ty;
6016     else
6017       LengthTy = IntPtrTy;
6018   }
6019   Fields.addInt(LengthTy, StringLength);
6020 
6021   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6022   // properly aligned on 32-bit platforms.
6023   CharUnits Alignment =
6024       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6025 
6026   // The struct.
6027   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6028                                     /*isConstant=*/false,
6029                                     llvm::GlobalVariable::PrivateLinkage);
6030   GV->addAttribute("objc_arc_inert");
6031   switch (Triple.getObjectFormat()) {
6032   case llvm::Triple::UnknownObjectFormat:
6033     llvm_unreachable("unknown file format");
6034   case llvm::Triple::DXContainer:
6035   case llvm::Triple::GOFF:
6036   case llvm::Triple::SPIRV:
6037   case llvm::Triple::XCOFF:
6038     llvm_unreachable("unimplemented");
6039   case llvm::Triple::COFF:
6040   case llvm::Triple::ELF:
6041   case llvm::Triple::Wasm:
6042     GV->setSection("cfstring");
6043     break;
6044   case llvm::Triple::MachO:
6045     GV->setSection("__DATA,__cfstring");
6046     break;
6047   }
6048   Entry.second = GV;
6049 
6050   return ConstantAddress(GV, GV->getValueType(), Alignment);
6051 }
6052 
6053 bool CodeGenModule::getExpressionLocationsEnabled() const {
6054   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6055 }
6056 
6057 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6058   if (ObjCFastEnumerationStateType.isNull()) {
6059     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6060     D->startDefinition();
6061 
6062     QualType FieldTypes[] = {
6063       Context.UnsignedLongTy,
6064       Context.getPointerType(Context.getObjCIdType()),
6065       Context.getPointerType(Context.UnsignedLongTy),
6066       Context.getConstantArrayType(Context.UnsignedLongTy,
6067                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6068     };
6069 
6070     for (size_t i = 0; i < 4; ++i) {
6071       FieldDecl *Field = FieldDecl::Create(Context,
6072                                            D,
6073                                            SourceLocation(),
6074                                            SourceLocation(), nullptr,
6075                                            FieldTypes[i], /*TInfo=*/nullptr,
6076                                            /*BitWidth=*/nullptr,
6077                                            /*Mutable=*/false,
6078                                            ICIS_NoInit);
6079       Field->setAccess(AS_public);
6080       D->addDecl(Field);
6081     }
6082 
6083     D->completeDefinition();
6084     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6085   }
6086 
6087   return ObjCFastEnumerationStateType;
6088 }
6089 
6090 llvm::Constant *
6091 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6092   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6093 
6094   // Don't emit it as the address of the string, emit the string data itself
6095   // as an inline array.
6096   if (E->getCharByteWidth() == 1) {
6097     SmallString<64> Str(E->getString());
6098 
6099     // Resize the string to the right size, which is indicated by its type.
6100     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6101     assert(CAT && "String literal not of constant array type!");
6102     Str.resize(CAT->getSize().getZExtValue());
6103     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6104   }
6105 
6106   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6107   llvm::Type *ElemTy = AType->getElementType();
6108   unsigned NumElements = AType->getNumElements();
6109 
6110   // Wide strings have either 2-byte or 4-byte elements.
6111   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6112     SmallVector<uint16_t, 32> Elements;
6113     Elements.reserve(NumElements);
6114 
6115     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6116       Elements.push_back(E->getCodeUnit(i));
6117     Elements.resize(NumElements);
6118     return llvm::ConstantDataArray::get(VMContext, Elements);
6119   }
6120 
6121   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6122   SmallVector<uint32_t, 32> Elements;
6123   Elements.reserve(NumElements);
6124 
6125   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6126     Elements.push_back(E->getCodeUnit(i));
6127   Elements.resize(NumElements);
6128   return llvm::ConstantDataArray::get(VMContext, Elements);
6129 }
6130 
6131 static llvm::GlobalVariable *
6132 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6133                       CodeGenModule &CGM, StringRef GlobalName,
6134                       CharUnits Alignment) {
6135   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6136       CGM.GetGlobalConstantAddressSpace());
6137 
6138   llvm::Module &M = CGM.getModule();
6139   // Create a global variable for this string
6140   auto *GV = new llvm::GlobalVariable(
6141       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6142       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6143   GV->setAlignment(Alignment.getAsAlign());
6144   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6145   if (GV->isWeakForLinker()) {
6146     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6147     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6148   }
6149   CGM.setDSOLocal(GV);
6150 
6151   return GV;
6152 }
6153 
6154 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6155 /// constant array for the given string literal.
6156 ConstantAddress
6157 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6158                                                   StringRef Name) {
6159   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6160 
6161   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6162   llvm::GlobalVariable **Entry = nullptr;
6163   if (!LangOpts.WritableStrings) {
6164     Entry = &ConstantStringMap[C];
6165     if (auto GV = *Entry) {
6166       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6167         GV->setAlignment(Alignment.getAsAlign());
6168       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6169                              GV->getValueType(), Alignment);
6170     }
6171   }
6172 
6173   SmallString<256> MangledNameBuffer;
6174   StringRef GlobalVariableName;
6175   llvm::GlobalValue::LinkageTypes LT;
6176 
6177   // Mangle the string literal if that's how the ABI merges duplicate strings.
6178   // Don't do it if they are writable, since we don't want writes in one TU to
6179   // affect strings in another.
6180   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6181       !LangOpts.WritableStrings) {
6182     llvm::raw_svector_ostream Out(MangledNameBuffer);
6183     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6184     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6185     GlobalVariableName = MangledNameBuffer;
6186   } else {
6187     LT = llvm::GlobalValue::PrivateLinkage;
6188     GlobalVariableName = Name;
6189   }
6190 
6191   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6192 
6193   CGDebugInfo *DI = getModuleDebugInfo();
6194   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6195     DI->AddStringLiteralDebugInfo(GV, S);
6196 
6197   if (Entry)
6198     *Entry = GV;
6199 
6200   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6201 
6202   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6203                          GV->getValueType(), Alignment);
6204 }
6205 
6206 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6207 /// array for the given ObjCEncodeExpr node.
6208 ConstantAddress
6209 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6210   std::string Str;
6211   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6212 
6213   return GetAddrOfConstantCString(Str);
6214 }
6215 
6216 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6217 /// the literal and a terminating '\0' character.
6218 /// The result has pointer to array type.
6219 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6220     const std::string &Str, const char *GlobalName) {
6221   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6222   CharUnits Alignment =
6223     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6224 
6225   llvm::Constant *C =
6226       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6227 
6228   // Don't share any string literals if strings aren't constant.
6229   llvm::GlobalVariable **Entry = nullptr;
6230   if (!LangOpts.WritableStrings) {
6231     Entry = &ConstantStringMap[C];
6232     if (auto GV = *Entry) {
6233       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6234         GV->setAlignment(Alignment.getAsAlign());
6235       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6236                              GV->getValueType(), Alignment);
6237     }
6238   }
6239 
6240   // Get the default prefix if a name wasn't specified.
6241   if (!GlobalName)
6242     GlobalName = ".str";
6243   // Create a global variable for this.
6244   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6245                                   GlobalName, Alignment);
6246   if (Entry)
6247     *Entry = GV;
6248 
6249   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6250                          GV->getValueType(), Alignment);
6251 }
6252 
6253 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6254     const MaterializeTemporaryExpr *E, const Expr *Init) {
6255   assert((E->getStorageDuration() == SD_Static ||
6256           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6257   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6258 
6259   // If we're not materializing a subobject of the temporary, keep the
6260   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6261   QualType MaterializedType = Init->getType();
6262   if (Init == E->getSubExpr())
6263     MaterializedType = E->getType();
6264 
6265   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6266 
6267   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6268   if (!InsertResult.second) {
6269     // We've seen this before: either we already created it or we're in the
6270     // process of doing so.
6271     if (!InsertResult.first->second) {
6272       // We recursively re-entered this function, probably during emission of
6273       // the initializer. Create a placeholder. We'll clean this up in the
6274       // outer call, at the end of this function.
6275       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6276       InsertResult.first->second = new llvm::GlobalVariable(
6277           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6278           nullptr);
6279     }
6280     return ConstantAddress(InsertResult.first->second,
6281                            llvm::cast<llvm::GlobalVariable>(
6282                                InsertResult.first->second->stripPointerCasts())
6283                                ->getValueType(),
6284                            Align);
6285   }
6286 
6287   // FIXME: If an externally-visible declaration extends multiple temporaries,
6288   // we need to give each temporary the same name in every translation unit (and
6289   // we also need to make the temporaries externally-visible).
6290   SmallString<256> Name;
6291   llvm::raw_svector_ostream Out(Name);
6292   getCXXABI().getMangleContext().mangleReferenceTemporary(
6293       VD, E->getManglingNumber(), Out);
6294 
6295   APValue *Value = nullptr;
6296   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6297     // If the initializer of the extending declaration is a constant
6298     // initializer, we should have a cached constant initializer for this
6299     // temporary. Note that this might have a different value from the value
6300     // computed by evaluating the initializer if the surrounding constant
6301     // expression modifies the temporary.
6302     Value = E->getOrCreateValue(false);
6303   }
6304 
6305   // Try evaluating it now, it might have a constant initializer.
6306   Expr::EvalResult EvalResult;
6307   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6308       !EvalResult.hasSideEffects())
6309     Value = &EvalResult.Val;
6310 
6311   LangAS AddrSpace =
6312       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6313 
6314   std::optional<ConstantEmitter> emitter;
6315   llvm::Constant *InitialValue = nullptr;
6316   bool Constant = false;
6317   llvm::Type *Type;
6318   if (Value) {
6319     // The temporary has a constant initializer, use it.
6320     emitter.emplace(*this);
6321     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6322                                                MaterializedType);
6323     Constant =
6324         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6325                                            /*ExcludeDtor*/ false);
6326     Type = InitialValue->getType();
6327   } else {
6328     // No initializer, the initialization will be provided when we
6329     // initialize the declaration which performed lifetime extension.
6330     Type = getTypes().ConvertTypeForMem(MaterializedType);
6331   }
6332 
6333   // Create a global variable for this lifetime-extended temporary.
6334   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6335   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6336     const VarDecl *InitVD;
6337     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6338         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6339       // Temporaries defined inside a class get linkonce_odr linkage because the
6340       // class can be defined in multiple translation units.
6341       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6342     } else {
6343       // There is no need for this temporary to have external linkage if the
6344       // VarDecl has external linkage.
6345       Linkage = llvm::GlobalVariable::InternalLinkage;
6346     }
6347   }
6348   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6349   auto *GV = new llvm::GlobalVariable(
6350       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6351       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6352   if (emitter) emitter->finalize(GV);
6353   // Don't assign dllimport or dllexport to local linkage globals.
6354   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6355     setGVProperties(GV, VD);
6356     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6357       // The reference temporary should never be dllexport.
6358       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6359   }
6360   GV->setAlignment(Align.getAsAlign());
6361   if (supportsCOMDAT() && GV->isWeakForLinker())
6362     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6363   if (VD->getTLSKind())
6364     setTLSMode(GV, *VD);
6365   llvm::Constant *CV = GV;
6366   if (AddrSpace != LangAS::Default)
6367     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6368         *this, GV, AddrSpace, LangAS::Default,
6369         Type->getPointerTo(
6370             getContext().getTargetAddressSpace(LangAS::Default)));
6371 
6372   // Update the map with the new temporary. If we created a placeholder above,
6373   // replace it with the new global now.
6374   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6375   if (Entry) {
6376     Entry->replaceAllUsesWith(
6377         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6378     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6379   }
6380   Entry = CV;
6381 
6382   return ConstantAddress(CV, Type, Align);
6383 }
6384 
6385 /// EmitObjCPropertyImplementations - Emit information for synthesized
6386 /// properties for an implementation.
6387 void CodeGenModule::EmitObjCPropertyImplementations(const
6388                                                     ObjCImplementationDecl *D) {
6389   for (const auto *PID : D->property_impls()) {
6390     // Dynamic is just for type-checking.
6391     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6392       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6393 
6394       // Determine which methods need to be implemented, some may have
6395       // been overridden. Note that ::isPropertyAccessor is not the method
6396       // we want, that just indicates if the decl came from a
6397       // property. What we want to know is if the method is defined in
6398       // this implementation.
6399       auto *Getter = PID->getGetterMethodDecl();
6400       if (!Getter || Getter->isSynthesizedAccessorStub())
6401         CodeGenFunction(*this).GenerateObjCGetter(
6402             const_cast<ObjCImplementationDecl *>(D), PID);
6403       auto *Setter = PID->getSetterMethodDecl();
6404       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6405         CodeGenFunction(*this).GenerateObjCSetter(
6406                                  const_cast<ObjCImplementationDecl *>(D), PID);
6407     }
6408   }
6409 }
6410 
6411 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6412   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6413   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6414        ivar; ivar = ivar->getNextIvar())
6415     if (ivar->getType().isDestructedType())
6416       return true;
6417 
6418   return false;
6419 }
6420 
6421 static bool AllTrivialInitializers(CodeGenModule &CGM,
6422                                    ObjCImplementationDecl *D) {
6423   CodeGenFunction CGF(CGM);
6424   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6425        E = D->init_end(); B != E; ++B) {
6426     CXXCtorInitializer *CtorInitExp = *B;
6427     Expr *Init = CtorInitExp->getInit();
6428     if (!CGF.isTrivialInitializer(Init))
6429       return false;
6430   }
6431   return true;
6432 }
6433 
6434 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6435 /// for an implementation.
6436 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6437   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6438   if (needsDestructMethod(D)) {
6439     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6440     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6441     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6442         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6443         getContext().VoidTy, nullptr, D,
6444         /*isInstance=*/true, /*isVariadic=*/false,
6445         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6446         /*isImplicitlyDeclared=*/true,
6447         /*isDefined=*/false, ObjCMethodDecl::Required);
6448     D->addInstanceMethod(DTORMethod);
6449     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6450     D->setHasDestructors(true);
6451   }
6452 
6453   // If the implementation doesn't have any ivar initializers, we don't need
6454   // a .cxx_construct.
6455   if (D->getNumIvarInitializers() == 0 ||
6456       AllTrivialInitializers(*this, D))
6457     return;
6458 
6459   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6460   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6461   // The constructor returns 'self'.
6462   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6463       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6464       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6465       /*isVariadic=*/false,
6466       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6467       /*isImplicitlyDeclared=*/true,
6468       /*isDefined=*/false, ObjCMethodDecl::Required);
6469   D->addInstanceMethod(CTORMethod);
6470   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6471   D->setHasNonZeroConstructors(true);
6472 }
6473 
6474 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6475 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6476   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6477       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6478     ErrorUnsupported(LSD, "linkage spec");
6479     return;
6480   }
6481 
6482   EmitDeclContext(LSD);
6483 }
6484 
6485 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6486   // Device code should not be at top level.
6487   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6488     return;
6489 
6490   std::unique_ptr<CodeGenFunction> &CurCGF =
6491       GlobalTopLevelStmtBlockInFlight.first;
6492 
6493   // We emitted a top-level stmt but after it there is initialization.
6494   // Stop squashing the top-level stmts into a single function.
6495   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6496     CurCGF->FinishFunction(D->getEndLoc());
6497     CurCGF = nullptr;
6498   }
6499 
6500   if (!CurCGF) {
6501     // void __stmts__N(void)
6502     // FIXME: Ask the ABI name mangler to pick a name.
6503     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6504     FunctionArgList Args;
6505     QualType RetTy = getContext().VoidTy;
6506     const CGFunctionInfo &FnInfo =
6507         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6508     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6509     llvm::Function *Fn = llvm::Function::Create(
6510         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6511 
6512     CurCGF.reset(new CodeGenFunction(*this));
6513     GlobalTopLevelStmtBlockInFlight.second = D;
6514     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6515                           D->getBeginLoc(), D->getBeginLoc());
6516     CXXGlobalInits.push_back(Fn);
6517   }
6518 
6519   CurCGF->EmitStmt(D->getStmt());
6520 }
6521 
6522 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6523   for (auto *I : DC->decls()) {
6524     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6525     // are themselves considered "top-level", so EmitTopLevelDecl on an
6526     // ObjCImplDecl does not recursively visit them. We need to do that in
6527     // case they're nested inside another construct (LinkageSpecDecl /
6528     // ExportDecl) that does stop them from being considered "top-level".
6529     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6530       for (auto *M : OID->methods())
6531         EmitTopLevelDecl(M);
6532     }
6533 
6534     EmitTopLevelDecl(I);
6535   }
6536 }
6537 
6538 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6539 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6540   // Ignore dependent declarations.
6541   if (D->isTemplated())
6542     return;
6543 
6544   // Consteval function shouldn't be emitted.
6545   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6546     return;
6547 
6548   switch (D->getKind()) {
6549   case Decl::CXXConversion:
6550   case Decl::CXXMethod:
6551   case Decl::Function:
6552     EmitGlobal(cast<FunctionDecl>(D));
6553     // Always provide some coverage mapping
6554     // even for the functions that aren't emitted.
6555     AddDeferredUnusedCoverageMapping(D);
6556     break;
6557 
6558   case Decl::CXXDeductionGuide:
6559     // Function-like, but does not result in code emission.
6560     break;
6561 
6562   case Decl::Var:
6563   case Decl::Decomposition:
6564   case Decl::VarTemplateSpecialization:
6565     EmitGlobal(cast<VarDecl>(D));
6566     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6567       for (auto *B : DD->bindings())
6568         if (auto *HD = B->getHoldingVar())
6569           EmitGlobal(HD);
6570     break;
6571 
6572   // Indirect fields from global anonymous structs and unions can be
6573   // ignored; only the actual variable requires IR gen support.
6574   case Decl::IndirectField:
6575     break;
6576 
6577   // C++ Decls
6578   case Decl::Namespace:
6579     EmitDeclContext(cast<NamespaceDecl>(D));
6580     break;
6581   case Decl::ClassTemplateSpecialization: {
6582     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6583     if (CGDebugInfo *DI = getModuleDebugInfo())
6584       if (Spec->getSpecializationKind() ==
6585               TSK_ExplicitInstantiationDefinition &&
6586           Spec->hasDefinition())
6587         DI->completeTemplateDefinition(*Spec);
6588   } [[fallthrough]];
6589   case Decl::CXXRecord: {
6590     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6591     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6592       if (CRD->hasDefinition())
6593         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6594       if (auto *ES = D->getASTContext().getExternalSource())
6595         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6596           DI->completeUnusedClass(*CRD);
6597     }
6598     // Emit any static data members, they may be definitions.
6599     for (auto *I : CRD->decls())
6600       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6601         EmitTopLevelDecl(I);
6602     break;
6603   }
6604     // No code generation needed.
6605   case Decl::UsingShadow:
6606   case Decl::ClassTemplate:
6607   case Decl::VarTemplate:
6608   case Decl::Concept:
6609   case Decl::VarTemplatePartialSpecialization:
6610   case Decl::FunctionTemplate:
6611   case Decl::TypeAliasTemplate:
6612   case Decl::Block:
6613   case Decl::Empty:
6614   case Decl::Binding:
6615     break;
6616   case Decl::Using:          // using X; [C++]
6617     if (CGDebugInfo *DI = getModuleDebugInfo())
6618         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6619     break;
6620   case Decl::UsingEnum: // using enum X; [C++]
6621     if (CGDebugInfo *DI = getModuleDebugInfo())
6622       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6623     break;
6624   case Decl::NamespaceAlias:
6625     if (CGDebugInfo *DI = getModuleDebugInfo())
6626         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6627     break;
6628   case Decl::UsingDirective: // using namespace X; [C++]
6629     if (CGDebugInfo *DI = getModuleDebugInfo())
6630       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6631     break;
6632   case Decl::CXXConstructor:
6633     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6634     break;
6635   case Decl::CXXDestructor:
6636     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6637     break;
6638 
6639   case Decl::StaticAssert:
6640     // Nothing to do.
6641     break;
6642 
6643   // Objective-C Decls
6644 
6645   // Forward declarations, no (immediate) code generation.
6646   case Decl::ObjCInterface:
6647   case Decl::ObjCCategory:
6648     break;
6649 
6650   case Decl::ObjCProtocol: {
6651     auto *Proto = cast<ObjCProtocolDecl>(D);
6652     if (Proto->isThisDeclarationADefinition())
6653       ObjCRuntime->GenerateProtocol(Proto);
6654     break;
6655   }
6656 
6657   case Decl::ObjCCategoryImpl:
6658     // Categories have properties but don't support synthesize so we
6659     // can ignore them here.
6660     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6661     break;
6662 
6663   case Decl::ObjCImplementation: {
6664     auto *OMD = cast<ObjCImplementationDecl>(D);
6665     EmitObjCPropertyImplementations(OMD);
6666     EmitObjCIvarInitializations(OMD);
6667     ObjCRuntime->GenerateClass(OMD);
6668     // Emit global variable debug information.
6669     if (CGDebugInfo *DI = getModuleDebugInfo())
6670       if (getCodeGenOpts().hasReducedDebugInfo())
6671         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6672             OMD->getClassInterface()), OMD->getLocation());
6673     break;
6674   }
6675   case Decl::ObjCMethod: {
6676     auto *OMD = cast<ObjCMethodDecl>(D);
6677     // If this is not a prototype, emit the body.
6678     if (OMD->getBody())
6679       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6680     break;
6681   }
6682   case Decl::ObjCCompatibleAlias:
6683     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6684     break;
6685 
6686   case Decl::PragmaComment: {
6687     const auto *PCD = cast<PragmaCommentDecl>(D);
6688     switch (PCD->getCommentKind()) {
6689     case PCK_Unknown:
6690       llvm_unreachable("unexpected pragma comment kind");
6691     case PCK_Linker:
6692       AppendLinkerOptions(PCD->getArg());
6693       break;
6694     case PCK_Lib:
6695         AddDependentLib(PCD->getArg());
6696       break;
6697     case PCK_Compiler:
6698     case PCK_ExeStr:
6699     case PCK_User:
6700       break; // We ignore all of these.
6701     }
6702     break;
6703   }
6704 
6705   case Decl::PragmaDetectMismatch: {
6706     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6707     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6708     break;
6709   }
6710 
6711   case Decl::LinkageSpec:
6712     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6713     break;
6714 
6715   case Decl::FileScopeAsm: {
6716     // File-scope asm is ignored during device-side CUDA compilation.
6717     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6718       break;
6719     // File-scope asm is ignored during device-side OpenMP compilation.
6720     if (LangOpts.OpenMPIsTargetDevice)
6721       break;
6722     // File-scope asm is ignored during device-side SYCL compilation.
6723     if (LangOpts.SYCLIsDevice)
6724       break;
6725     auto *AD = cast<FileScopeAsmDecl>(D);
6726     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6727     break;
6728   }
6729 
6730   case Decl::TopLevelStmt:
6731     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6732     break;
6733 
6734   case Decl::Import: {
6735     auto *Import = cast<ImportDecl>(D);
6736 
6737     // If we've already imported this module, we're done.
6738     if (!ImportedModules.insert(Import->getImportedModule()))
6739       break;
6740 
6741     // Emit debug information for direct imports.
6742     if (!Import->getImportedOwningModule()) {
6743       if (CGDebugInfo *DI = getModuleDebugInfo())
6744         DI->EmitImportDecl(*Import);
6745     }
6746 
6747     // For C++ standard modules we are done - we will call the module
6748     // initializer for imported modules, and that will likewise call those for
6749     // any imports it has.
6750     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6751         !Import->getImportedOwningModule()->isModuleMapModule())
6752       break;
6753 
6754     // For clang C++ module map modules the initializers for sub-modules are
6755     // emitted here.
6756 
6757     // Find all of the submodules and emit the module initializers.
6758     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6759     SmallVector<clang::Module *, 16> Stack;
6760     Visited.insert(Import->getImportedModule());
6761     Stack.push_back(Import->getImportedModule());
6762 
6763     while (!Stack.empty()) {
6764       clang::Module *Mod = Stack.pop_back_val();
6765       if (!EmittedModuleInitializers.insert(Mod).second)
6766         continue;
6767 
6768       for (auto *D : Context.getModuleInitializers(Mod))
6769         EmitTopLevelDecl(D);
6770 
6771       // Visit the submodules of this module.
6772       for (auto *Submodule : Mod->submodules()) {
6773         // Skip explicit children; they need to be explicitly imported to emit
6774         // the initializers.
6775         if (Submodule->IsExplicit)
6776           continue;
6777 
6778         if (Visited.insert(Submodule).second)
6779           Stack.push_back(Submodule);
6780       }
6781     }
6782     break;
6783   }
6784 
6785   case Decl::Export:
6786     EmitDeclContext(cast<ExportDecl>(D));
6787     break;
6788 
6789   case Decl::OMPThreadPrivate:
6790     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6791     break;
6792 
6793   case Decl::OMPAllocate:
6794     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6795     break;
6796 
6797   case Decl::OMPDeclareReduction:
6798     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6799     break;
6800 
6801   case Decl::OMPDeclareMapper:
6802     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6803     break;
6804 
6805   case Decl::OMPRequires:
6806     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6807     break;
6808 
6809   case Decl::Typedef:
6810   case Decl::TypeAlias: // using foo = bar; [C++11]
6811     if (CGDebugInfo *DI = getModuleDebugInfo())
6812       DI->EmitAndRetainType(
6813           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6814     break;
6815 
6816   case Decl::Record:
6817     if (CGDebugInfo *DI = getModuleDebugInfo())
6818       if (cast<RecordDecl>(D)->getDefinition())
6819         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6820     break;
6821 
6822   case Decl::Enum:
6823     if (CGDebugInfo *DI = getModuleDebugInfo())
6824       if (cast<EnumDecl>(D)->getDefinition())
6825         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6826     break;
6827 
6828   case Decl::HLSLBuffer:
6829     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6830     break;
6831 
6832   default:
6833     // Make sure we handled everything we should, every other kind is a
6834     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6835     // function. Need to recode Decl::Kind to do that easily.
6836     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6837     break;
6838   }
6839 }
6840 
6841 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6842   // Do we need to generate coverage mapping?
6843   if (!CodeGenOpts.CoverageMapping)
6844     return;
6845   switch (D->getKind()) {
6846   case Decl::CXXConversion:
6847   case Decl::CXXMethod:
6848   case Decl::Function:
6849   case Decl::ObjCMethod:
6850   case Decl::CXXConstructor:
6851   case Decl::CXXDestructor: {
6852     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6853       break;
6854     SourceManager &SM = getContext().getSourceManager();
6855     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6856       break;
6857     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6858     if (I == DeferredEmptyCoverageMappingDecls.end())
6859       DeferredEmptyCoverageMappingDecls[D] = true;
6860     break;
6861   }
6862   default:
6863     break;
6864   };
6865 }
6866 
6867 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6868   // Do we need to generate coverage mapping?
6869   if (!CodeGenOpts.CoverageMapping)
6870     return;
6871   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6872     if (Fn->isTemplateInstantiation())
6873       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6874   }
6875   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6876   if (I == DeferredEmptyCoverageMappingDecls.end())
6877     DeferredEmptyCoverageMappingDecls[D] = false;
6878   else
6879     I->second = false;
6880 }
6881 
6882 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6883   // We call takeVector() here to avoid use-after-free.
6884   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6885   // we deserialize function bodies to emit coverage info for them, and that
6886   // deserializes more declarations. How should we handle that case?
6887   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6888     if (!Entry.second)
6889       continue;
6890     const Decl *D = Entry.first;
6891     switch (D->getKind()) {
6892     case Decl::CXXConversion:
6893     case Decl::CXXMethod:
6894     case Decl::Function:
6895     case Decl::ObjCMethod: {
6896       CodeGenPGO PGO(*this);
6897       GlobalDecl GD(cast<FunctionDecl>(D));
6898       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6899                                   getFunctionLinkage(GD));
6900       break;
6901     }
6902     case Decl::CXXConstructor: {
6903       CodeGenPGO PGO(*this);
6904       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6905       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6906                                   getFunctionLinkage(GD));
6907       break;
6908     }
6909     case Decl::CXXDestructor: {
6910       CodeGenPGO PGO(*this);
6911       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6912       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6913                                   getFunctionLinkage(GD));
6914       break;
6915     }
6916     default:
6917       break;
6918     };
6919   }
6920 }
6921 
6922 void CodeGenModule::EmitMainVoidAlias() {
6923   // In order to transition away from "__original_main" gracefully, emit an
6924   // alias for "main" in the no-argument case so that libc can detect when
6925   // new-style no-argument main is in used.
6926   if (llvm::Function *F = getModule().getFunction("main")) {
6927     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6928         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6929       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6930       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6931     }
6932   }
6933 }
6934 
6935 /// Turns the given pointer into a constant.
6936 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6937                                           const void *Ptr) {
6938   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6939   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6940   return llvm::ConstantInt::get(i64, PtrInt);
6941 }
6942 
6943 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6944                                    llvm::NamedMDNode *&GlobalMetadata,
6945                                    GlobalDecl D,
6946                                    llvm::GlobalValue *Addr) {
6947   if (!GlobalMetadata)
6948     GlobalMetadata =
6949       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6950 
6951   // TODO: should we report variant information for ctors/dtors?
6952   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6953                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6954                                CGM.getLLVMContext(), D.getDecl()))};
6955   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6956 }
6957 
6958 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6959                                                  llvm::GlobalValue *CppFunc) {
6960   // Store the list of ifuncs we need to replace uses in.
6961   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6962   // List of ConstantExprs that we should be able to delete when we're done
6963   // here.
6964   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6965 
6966   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6967   if (Elem == CppFunc)
6968     return false;
6969 
6970   // First make sure that all users of this are ifuncs (or ifuncs via a
6971   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6972   // later.
6973   for (llvm::User *User : Elem->users()) {
6974     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6975     // ifunc directly. In any other case, just give up, as we don't know what we
6976     // could break by changing those.
6977     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6978       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6979         return false;
6980 
6981       for (llvm::User *CEUser : ConstExpr->users()) {
6982         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6983           IFuncs.push_back(IFunc);
6984         } else {
6985           return false;
6986         }
6987       }
6988       CEs.push_back(ConstExpr);
6989     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6990       IFuncs.push_back(IFunc);
6991     } else {
6992       // This user is one we don't know how to handle, so fail redirection. This
6993       // will result in an ifunc retaining a resolver name that will ultimately
6994       // fail to be resolved to a defined function.
6995       return false;
6996     }
6997   }
6998 
6999   // Now we know this is a valid case where we can do this alias replacement, we
7000   // need to remove all of the references to Elem (and the bitcasts!) so we can
7001   // delete it.
7002   for (llvm::GlobalIFunc *IFunc : IFuncs)
7003     IFunc->setResolver(nullptr);
7004   for (llvm::ConstantExpr *ConstExpr : CEs)
7005     ConstExpr->destroyConstant();
7006 
7007   // We should now be out of uses for the 'old' version of this function, so we
7008   // can erase it as well.
7009   Elem->eraseFromParent();
7010 
7011   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7012     // The type of the resolver is always just a function-type that returns the
7013     // type of the IFunc, so create that here. If the type of the actual
7014     // resolver doesn't match, it just gets bitcast to the right thing.
7015     auto *ResolverTy =
7016         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7017     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7018         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7019     IFunc->setResolver(Resolver);
7020   }
7021   return true;
7022 }
7023 
7024 /// For each function which is declared within an extern "C" region and marked
7025 /// as 'used', but has internal linkage, create an alias from the unmangled
7026 /// name to the mangled name if possible. People expect to be able to refer
7027 /// to such functions with an unmangled name from inline assembly within the
7028 /// same translation unit.
7029 void CodeGenModule::EmitStaticExternCAliases() {
7030   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7031     return;
7032   for (auto &I : StaticExternCValues) {
7033     IdentifierInfo *Name = I.first;
7034     llvm::GlobalValue *Val = I.second;
7035 
7036     // If Val is null, that implies there were multiple declarations that each
7037     // had a claim to the unmangled name. In this case, generation of the alias
7038     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7039     if (!Val)
7040       break;
7041 
7042     llvm::GlobalValue *ExistingElem =
7043         getModule().getNamedValue(Name->getName());
7044 
7045     // If there is either not something already by this name, or we were able to
7046     // replace all uses from IFuncs, create the alias.
7047     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7048       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7049   }
7050 }
7051 
7052 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7053                                              GlobalDecl &Result) const {
7054   auto Res = Manglings.find(MangledName);
7055   if (Res == Manglings.end())
7056     return false;
7057   Result = Res->getValue();
7058   return true;
7059 }
7060 
7061 /// Emits metadata nodes associating all the global values in the
7062 /// current module with the Decls they came from.  This is useful for
7063 /// projects using IR gen as a subroutine.
7064 ///
7065 /// Since there's currently no way to associate an MDNode directly
7066 /// with an llvm::GlobalValue, we create a global named metadata
7067 /// with the name 'clang.global.decl.ptrs'.
7068 void CodeGenModule::EmitDeclMetadata() {
7069   llvm::NamedMDNode *GlobalMetadata = nullptr;
7070 
7071   for (auto &I : MangledDeclNames) {
7072     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7073     // Some mangled names don't necessarily have an associated GlobalValue
7074     // in this module, e.g. if we mangled it for DebugInfo.
7075     if (Addr)
7076       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7077   }
7078 }
7079 
7080 /// Emits metadata nodes for all the local variables in the current
7081 /// function.
7082 void CodeGenFunction::EmitDeclMetadata() {
7083   if (LocalDeclMap.empty()) return;
7084 
7085   llvm::LLVMContext &Context = getLLVMContext();
7086 
7087   // Find the unique metadata ID for this name.
7088   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7089 
7090   llvm::NamedMDNode *GlobalMetadata = nullptr;
7091 
7092   for (auto &I : LocalDeclMap) {
7093     const Decl *D = I.first;
7094     llvm::Value *Addr = I.second.getPointer();
7095     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7096       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7097       Alloca->setMetadata(
7098           DeclPtrKind, llvm::MDNode::get(
7099                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7100     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7101       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7102       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7103     }
7104   }
7105 }
7106 
7107 void CodeGenModule::EmitVersionIdentMetadata() {
7108   llvm::NamedMDNode *IdentMetadata =
7109     TheModule.getOrInsertNamedMetadata("llvm.ident");
7110   std::string Version = getClangFullVersion();
7111   llvm::LLVMContext &Ctx = TheModule.getContext();
7112 
7113   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7114   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7115 }
7116 
7117 void CodeGenModule::EmitCommandLineMetadata() {
7118   llvm::NamedMDNode *CommandLineMetadata =
7119     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7120   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7121   llvm::LLVMContext &Ctx = TheModule.getContext();
7122 
7123   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7124   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7125 }
7126 
7127 void CodeGenModule::EmitCoverageFile() {
7128   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7129   if (!CUNode)
7130     return;
7131 
7132   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7133   llvm::LLVMContext &Ctx = TheModule.getContext();
7134   auto *CoverageDataFile =
7135       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7136   auto *CoverageNotesFile =
7137       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7138   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7139     llvm::MDNode *CU = CUNode->getOperand(i);
7140     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7141     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7142   }
7143 }
7144 
7145 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7146                                                        bool ForEH) {
7147   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7148   // FIXME: should we even be calling this method if RTTI is disabled
7149   // and it's not for EH?
7150   if (!shouldEmitRTTI(ForEH))
7151     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7152 
7153   if (ForEH && Ty->isObjCObjectPointerType() &&
7154       LangOpts.ObjCRuntime.isGNUFamily())
7155     return ObjCRuntime->GetEHType(Ty);
7156 
7157   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7158 }
7159 
7160 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7161   // Do not emit threadprivates in simd-only mode.
7162   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7163     return;
7164   for (auto RefExpr : D->varlists()) {
7165     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7166     bool PerformInit =
7167         VD->getAnyInitializer() &&
7168         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7169                                                         /*ForRef=*/false);
7170 
7171     Address Addr(GetAddrOfGlobalVar(VD),
7172                  getTypes().ConvertTypeForMem(VD->getType()),
7173                  getContext().getDeclAlign(VD));
7174     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7175             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7176       CXXGlobalInits.push_back(InitFunction);
7177   }
7178 }
7179 
7180 llvm::Metadata *
7181 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7182                                             StringRef Suffix) {
7183   if (auto *FnType = T->getAs<FunctionProtoType>())
7184     T = getContext().getFunctionType(
7185         FnType->getReturnType(), FnType->getParamTypes(),
7186         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7187 
7188   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7189   if (InternalId)
7190     return InternalId;
7191 
7192   if (isExternallyVisible(T->getLinkage())) {
7193     std::string OutName;
7194     llvm::raw_string_ostream Out(OutName);
7195     getCXXABI().getMangleContext().mangleTypeName(
7196         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7197 
7198     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7199       Out << ".normalized";
7200 
7201     Out << Suffix;
7202 
7203     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7204   } else {
7205     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7206                                            llvm::ArrayRef<llvm::Metadata *>());
7207   }
7208 
7209   return InternalId;
7210 }
7211 
7212 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7213   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7214 }
7215 
7216 llvm::Metadata *
7217 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7218   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7219 }
7220 
7221 // Generalize pointer types to a void pointer with the qualifiers of the
7222 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7223 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7224 // 'void *'.
7225 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7226   if (!Ty->isPointerType())
7227     return Ty;
7228 
7229   return Ctx.getPointerType(
7230       QualType(Ctx.VoidTy).withCVRQualifiers(
7231           Ty->getPointeeType().getCVRQualifiers()));
7232 }
7233 
7234 // Apply type generalization to a FunctionType's return and argument types
7235 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7236   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7237     SmallVector<QualType, 8> GeneralizedParams;
7238     for (auto &Param : FnType->param_types())
7239       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7240 
7241     return Ctx.getFunctionType(
7242         GeneralizeType(Ctx, FnType->getReturnType()),
7243         GeneralizedParams, FnType->getExtProtoInfo());
7244   }
7245 
7246   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7247     return Ctx.getFunctionNoProtoType(
7248         GeneralizeType(Ctx, FnType->getReturnType()));
7249 
7250   llvm_unreachable("Encountered unknown FunctionType");
7251 }
7252 
7253 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7254   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7255                                       GeneralizedMetadataIdMap, ".generalized");
7256 }
7257 
7258 /// Returns whether this module needs the "all-vtables" type identifier.
7259 bool CodeGenModule::NeedAllVtablesTypeId() const {
7260   // Returns true if at least one of vtable-based CFI checkers is enabled and
7261   // is not in the trapping mode.
7262   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7263            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7264           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7265            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7266           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7267            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7268           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7269            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7270 }
7271 
7272 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7273                                           CharUnits Offset,
7274                                           const CXXRecordDecl *RD) {
7275   llvm::Metadata *MD =
7276       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7277   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7278 
7279   if (CodeGenOpts.SanitizeCfiCrossDso)
7280     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7281       VTable->addTypeMetadata(Offset.getQuantity(),
7282                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7283 
7284   if (NeedAllVtablesTypeId()) {
7285     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7286     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7287   }
7288 }
7289 
7290 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7291   if (!SanStats)
7292     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7293 
7294   return *SanStats;
7295 }
7296 
7297 llvm::Value *
7298 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7299                                                   CodeGenFunction &CGF) {
7300   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7301   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7302   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7303   auto *Call = CGF.EmitRuntimeCall(
7304       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7305   return Call;
7306 }
7307 
7308 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7309     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7310   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7311                                  /* forPointeeType= */ true);
7312 }
7313 
7314 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7315                                                  LValueBaseInfo *BaseInfo,
7316                                                  TBAAAccessInfo *TBAAInfo,
7317                                                  bool forPointeeType) {
7318   if (TBAAInfo)
7319     *TBAAInfo = getTBAAAccessInfo(T);
7320 
7321   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7322   // that doesn't return the information we need to compute BaseInfo.
7323 
7324   // Honor alignment typedef attributes even on incomplete types.
7325   // We also honor them straight for C++ class types, even as pointees;
7326   // there's an expressivity gap here.
7327   if (auto TT = T->getAs<TypedefType>()) {
7328     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7329       if (BaseInfo)
7330         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7331       return getContext().toCharUnitsFromBits(Align);
7332     }
7333   }
7334 
7335   bool AlignForArray = T->isArrayType();
7336 
7337   // Analyze the base element type, so we don't get confused by incomplete
7338   // array types.
7339   T = getContext().getBaseElementType(T);
7340 
7341   if (T->isIncompleteType()) {
7342     // We could try to replicate the logic from
7343     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7344     // type is incomplete, so it's impossible to test. We could try to reuse
7345     // getTypeAlignIfKnown, but that doesn't return the information we need
7346     // to set BaseInfo.  So just ignore the possibility that the alignment is
7347     // greater than one.
7348     if (BaseInfo)
7349       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7350     return CharUnits::One();
7351   }
7352 
7353   if (BaseInfo)
7354     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7355 
7356   CharUnits Alignment;
7357   const CXXRecordDecl *RD;
7358   if (T.getQualifiers().hasUnaligned()) {
7359     Alignment = CharUnits::One();
7360   } else if (forPointeeType && !AlignForArray &&
7361              (RD = T->getAsCXXRecordDecl())) {
7362     // For C++ class pointees, we don't know whether we're pointing at a
7363     // base or a complete object, so we generally need to use the
7364     // non-virtual alignment.
7365     Alignment = getClassPointerAlignment(RD);
7366   } else {
7367     Alignment = getContext().getTypeAlignInChars(T);
7368   }
7369 
7370   // Cap to the global maximum type alignment unless the alignment
7371   // was somehow explicit on the type.
7372   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7373     if (Alignment.getQuantity() > MaxAlign &&
7374         !getContext().isAlignmentRequired(T))
7375       Alignment = CharUnits::fromQuantity(MaxAlign);
7376   }
7377   return Alignment;
7378 }
7379 
7380 bool CodeGenModule::stopAutoInit() {
7381   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7382   if (StopAfter) {
7383     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7384     // used
7385     if (NumAutoVarInit >= StopAfter) {
7386       return true;
7387     }
7388     if (!NumAutoVarInit) {
7389       unsigned DiagID = getDiags().getCustomDiagID(
7390           DiagnosticsEngine::Warning,
7391           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7392           "number of times ftrivial-auto-var-init=%1 gets applied.");
7393       getDiags().Report(DiagID)
7394           << StopAfter
7395           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7396                       LangOptions::TrivialAutoVarInitKind::Zero
7397                   ? "zero"
7398                   : "pattern");
7399     }
7400     ++NumAutoVarInit;
7401   }
7402   return false;
7403 }
7404 
7405 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7406                                                     const Decl *D) const {
7407   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7408   // postfix beginning with '.' since the symbol name can be demangled.
7409   if (LangOpts.HIP)
7410     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7411   else
7412     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7413 
7414   // If the CUID is not specified we try to generate a unique postfix.
7415   if (getLangOpts().CUID.empty()) {
7416     SourceManager &SM = getContext().getSourceManager();
7417     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7418     assert(PLoc.isValid() && "Source location is expected to be valid.");
7419 
7420     // Get the hash of the user defined macros.
7421     llvm::MD5 Hash;
7422     llvm::MD5::MD5Result Result;
7423     for (const auto &Arg : PreprocessorOpts.Macros)
7424       Hash.update(Arg.first);
7425     Hash.final(Result);
7426 
7427     // Get the UniqueID for the file containing the decl.
7428     llvm::sys::fs::UniqueID ID;
7429     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7430       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7431       assert(PLoc.isValid() && "Source location is expected to be valid.");
7432       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7433         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7434             << PLoc.getFilename() << EC.message();
7435     }
7436     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7437        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7438   } else {
7439     OS << getContext().getCUIDHash();
7440   }
7441 }
7442 
7443 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7444   assert(DeferredDeclsToEmit.empty() &&
7445          "Should have emitted all decls deferred to emit.");
7446   assert(NewBuilder->DeferredDecls.empty() &&
7447          "Newly created module should not have deferred decls");
7448   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7449   assert(EmittedDeferredDecls.empty() &&
7450          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7451 
7452   assert(NewBuilder->DeferredVTables.empty() &&
7453          "Newly created module should not have deferred vtables");
7454   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7455 
7456   assert(NewBuilder->MangledDeclNames.empty() &&
7457          "Newly created module should not have mangled decl names");
7458   assert(NewBuilder->Manglings.empty() &&
7459          "Newly created module should not have manglings");
7460   NewBuilder->Manglings = std::move(Manglings);
7461 
7462   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7463 
7464   NewBuilder->TBAA = std::move(TBAA);
7465 
7466   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7467 }
7468