1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::WatchOS: 69 case TargetCXXABI::GenericMIPS: 70 case TargetCXXABI::GenericItanium: 71 case TargetCXXABI::WebAssembly: 72 return CreateItaniumCXXABI(CGM); 73 case TargetCXXABI::Microsoft: 74 return CreateMicrosoftCXXABI(CGM); 75 } 76 77 llvm_unreachable("invalid C++ ABI kind"); 78 } 79 80 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 81 const PreprocessorOptions &PPO, 82 const CodeGenOptions &CGO, llvm::Module &M, 83 DiagnosticsEngine &diags, 84 CoverageSourceInfo *CoverageInfo) 85 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 86 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 87 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 88 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 89 Types(*this), VTables(*this), ObjCRuntime(nullptr), 90 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 91 DebugInfo(nullptr), ObjCData(nullptr), 92 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 93 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 94 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 95 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 96 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 97 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 98 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 99 100 // Initialize the type cache. 101 llvm::LLVMContext &LLVMContext = M.getContext(); 102 VoidTy = llvm::Type::getVoidTy(LLVMContext); 103 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 104 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 IntAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 114 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 115 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 116 Int8PtrTy = Int8Ty->getPointerTo(0); 117 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext()); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || 141 CodeGenOpts.EmitGcovNotes) 142 DebugInfo = new CGDebugInfo(*this); 143 144 Block.GlobalUniqueCount = 0; 145 146 if (C.getLangOpts().ObjC1) 147 ObjCData = new ObjCEntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ObjCData; 176 } 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime = CreateGNUObjCRuntime(*this); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 262 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 263 const llvm::Constant *C = &GA; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 270 if (!GA2) 271 return nullptr; 272 if (!Visited.insert(GA2).second) 273 return nullptr; 274 C = GA2->getAliasee(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 const AliasAttr *AA = D->getAttr<AliasAttr>(); 287 StringRef MangledName = getMangledName(GD); 288 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 289 auto *Alias = cast<llvm::GlobalAlias>(Entry); 290 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 291 if (!GV) { 292 Error = true; 293 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 294 } else if (GV->isDeclaration()) { 295 Error = true; 296 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 297 } 298 299 llvm::Constant *Aliasee = Alias->getAliasee(); 300 llvm::GlobalValue *AliaseeGV; 301 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 302 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 303 else 304 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 305 306 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 307 StringRef AliasSection = SA->getName(); 308 if (AliasSection != AliaseeGV->getSection()) 309 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 310 << AliasSection; 311 } 312 313 // We have to handle alias to weak aliases in here. LLVM itself disallows 314 // this since the object semantics would not match the IL one. For 315 // compatibility with gcc we implement it by just pointing the alias 316 // to its aliasee's aliasee. We also warn, since the user is probably 317 // expecting the link to be weak. 318 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 319 if (GA->mayBeOverridden()) { 320 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 321 << GV->getName() << GA->getName(); 322 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 323 GA->getAliasee(), Alias->getType()); 324 Alias->setAliasee(Aliasee); 325 } 326 } 327 } 328 if (!Error) 329 return; 330 331 for (const GlobalDecl &GD : Aliases) { 332 StringRef MangledName = getMangledName(GD); 333 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 334 auto *Alias = cast<llvm::GlobalAlias>(Entry); 335 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 336 Alias->eraseFromParent(); 337 } 338 } 339 340 void CodeGenModule::clear() { 341 DeferredDeclsToEmit.clear(); 342 if (OpenMPRuntime) 343 OpenMPRuntime->clear(); 344 } 345 346 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 347 StringRef MainFile) { 348 if (!hasDiagnostics()) 349 return; 350 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 351 if (MainFile.empty()) 352 MainFile = "<stdin>"; 353 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 354 } else 355 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 356 << Mismatched; 357 } 358 359 void CodeGenModule::Release() { 360 EmitDeferred(); 361 applyGlobalValReplacements(); 362 applyReplacements(); 363 checkAliases(); 364 EmitCXXGlobalInitFunc(); 365 EmitCXXGlobalDtorFunc(); 366 EmitCXXThreadLocalInitFunc(); 367 if (ObjCRuntime) 368 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 369 AddGlobalCtor(ObjCInitFunction); 370 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 371 CUDARuntime) { 372 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 373 AddGlobalCtor(CudaCtorFunction); 374 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 375 AddGlobalDtor(CudaDtorFunction); 376 } 377 if (PGOReader && PGOStats.hasDiagnostics()) 378 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 379 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 380 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 381 EmitGlobalAnnotations(); 382 EmitStaticExternCAliases(); 383 EmitDeferredUnusedCoverageMappings(); 384 if (CoverageMapping) 385 CoverageMapping->emit(); 386 emitLLVMUsed(); 387 388 if (CodeGenOpts.Autolink && 389 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 390 EmitModuleLinkOptions(); 391 } 392 if (CodeGenOpts.DwarfVersion) { 393 // We actually want the latest version when there are conflicts. 394 // We can change from Warning to Latest if such mode is supported. 395 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 396 CodeGenOpts.DwarfVersion); 397 } 398 if (CodeGenOpts.EmitCodeView) { 399 // Indicate that we want CodeView in the metadata. 400 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 401 } 402 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 403 // We don't support LTO with 2 with different StrictVTablePointers 404 // FIXME: we could support it by stripping all the information introduced 405 // by StrictVTablePointers. 406 407 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 408 409 llvm::Metadata *Ops[2] = { 410 llvm::MDString::get(VMContext, "StrictVTablePointers"), 411 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 412 llvm::Type::getInt32Ty(VMContext), 1))}; 413 414 getModule().addModuleFlag(llvm::Module::Require, 415 "StrictVTablePointersRequirement", 416 llvm::MDNode::get(VMContext, Ops)); 417 } 418 if (DebugInfo) 419 // We support a single version in the linked module. The LLVM 420 // parser will drop debug info with a different version number 421 // (and warn about it, too). 422 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 423 llvm::DEBUG_METADATA_VERSION); 424 425 // We need to record the widths of enums and wchar_t, so that we can generate 426 // the correct build attributes in the ARM backend. 427 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 428 if ( Arch == llvm::Triple::arm 429 || Arch == llvm::Triple::armeb 430 || Arch == llvm::Triple::thumb 431 || Arch == llvm::Triple::thumbeb) { 432 // Width of wchar_t in bytes 433 uint64_t WCharWidth = 434 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 435 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 436 437 // The minimum width of an enum in bytes 438 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 439 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 440 } 441 442 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 443 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 444 switch (PLevel) { 445 case 0: break; 446 case 1: PL = llvm::PICLevel::Small; break; 447 case 2: PL = llvm::PICLevel::Large; break; 448 default: llvm_unreachable("Invalid PIC Level"); 449 } 450 451 getModule().setPICLevel(PL); 452 } 453 454 SimplifyPersonality(); 455 456 if (getCodeGenOpts().EmitDeclMetadata) 457 EmitDeclMetadata(); 458 459 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 460 EmitCoverageFile(); 461 462 if (DebugInfo) 463 DebugInfo->finalize(); 464 465 EmitVersionIdentMetadata(); 466 467 EmitTargetMetadata(); 468 } 469 470 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 471 // Make sure that this type is translated. 472 Types.UpdateCompletedType(TD); 473 } 474 475 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 476 if (!TBAA) 477 return nullptr; 478 return TBAA->getTBAAInfo(QTy); 479 } 480 481 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 482 if (!TBAA) 483 return nullptr; 484 return TBAA->getTBAAInfoForVTablePtr(); 485 } 486 487 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 488 if (!TBAA) 489 return nullptr; 490 return TBAA->getTBAAStructInfo(QTy); 491 } 492 493 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 494 llvm::MDNode *AccessN, 495 uint64_t O) { 496 if (!TBAA) 497 return nullptr; 498 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 499 } 500 501 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 502 /// and struct-path aware TBAA, the tag has the same format: 503 /// base type, access type and offset. 504 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 505 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 506 llvm::MDNode *TBAAInfo, 507 bool ConvertTypeToTag) { 508 if (ConvertTypeToTag && TBAA) 509 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 510 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 511 else 512 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 513 } 514 515 void CodeGenModule::DecorateInstructionWithInvariantGroup( 516 llvm::Instruction *I, const CXXRecordDecl *RD) { 517 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 518 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 519 // Check if we have to wrap MDString in MDNode. 520 if (!MetaDataNode) 521 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 522 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 523 } 524 525 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 526 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 527 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 528 } 529 530 /// ErrorUnsupported - Print out an error that codegen doesn't support the 531 /// specified stmt yet. 532 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 533 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 534 "cannot compile this %0 yet"); 535 std::string Msg = Type; 536 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 537 << Msg << S->getSourceRange(); 538 } 539 540 /// ErrorUnsupported - Print out an error that codegen doesn't support the 541 /// specified decl yet. 542 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 543 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 544 "cannot compile this %0 yet"); 545 std::string Msg = Type; 546 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 547 } 548 549 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 550 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 551 } 552 553 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 554 const NamedDecl *D) const { 555 // Internal definitions always have default visibility. 556 if (GV->hasLocalLinkage()) { 557 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 558 return; 559 } 560 561 // Set visibility for definitions. 562 LinkageInfo LV = D->getLinkageAndVisibility(); 563 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 564 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 565 } 566 567 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 568 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 569 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 570 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 571 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 572 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 573 } 574 575 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 576 CodeGenOptions::TLSModel M) { 577 switch (M) { 578 case CodeGenOptions::GeneralDynamicTLSModel: 579 return llvm::GlobalVariable::GeneralDynamicTLSModel; 580 case CodeGenOptions::LocalDynamicTLSModel: 581 return llvm::GlobalVariable::LocalDynamicTLSModel; 582 case CodeGenOptions::InitialExecTLSModel: 583 return llvm::GlobalVariable::InitialExecTLSModel; 584 case CodeGenOptions::LocalExecTLSModel: 585 return llvm::GlobalVariable::LocalExecTLSModel; 586 } 587 llvm_unreachable("Invalid TLS model!"); 588 } 589 590 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 591 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 592 593 llvm::GlobalValue::ThreadLocalMode TLM; 594 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 595 596 // Override the TLS model if it is explicitly specified. 597 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 598 TLM = GetLLVMTLSModel(Attr->getModel()); 599 } 600 601 GV->setThreadLocalMode(TLM); 602 } 603 604 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 605 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 606 if (!FoundStr.empty()) 607 return FoundStr; 608 609 const auto *ND = cast<NamedDecl>(GD.getDecl()); 610 SmallString<256> Buffer; 611 StringRef Str; 612 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 613 llvm::raw_svector_ostream Out(Buffer); 614 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 615 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 616 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 617 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 618 else 619 getCXXABI().getMangleContext().mangleName(ND, Out); 620 Str = Out.str(); 621 } else { 622 IdentifierInfo *II = ND->getIdentifier(); 623 assert(II && "Attempt to mangle unnamed decl."); 624 Str = II->getName(); 625 } 626 627 // Keep the first result in the case of a mangling collision. 628 auto Result = Manglings.insert(std::make_pair(Str, GD)); 629 return FoundStr = Result.first->first(); 630 } 631 632 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 633 const BlockDecl *BD) { 634 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 635 const Decl *D = GD.getDecl(); 636 637 SmallString<256> Buffer; 638 llvm::raw_svector_ostream Out(Buffer); 639 if (!D) 640 MangleCtx.mangleGlobalBlock(BD, 641 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 642 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 643 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 644 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 645 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 646 else 647 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 648 649 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 650 return Result.first->first(); 651 } 652 653 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 654 return getModule().getNamedValue(Name); 655 } 656 657 /// AddGlobalCtor - Add a function to the list that will be called before 658 /// main() runs. 659 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 660 llvm::Constant *AssociatedData) { 661 // FIXME: Type coercion of void()* types. 662 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 663 } 664 665 /// AddGlobalDtor - Add a function to the list that will be called 666 /// when the module is unloaded. 667 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 668 // FIXME: Type coercion of void()* types. 669 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 670 } 671 672 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 673 // Ctor function type is void()*. 674 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 675 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 676 677 // Get the type of a ctor entry, { i32, void ()*, i8* }. 678 llvm::StructType *CtorStructTy = llvm::StructType::get( 679 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 680 681 // Construct the constructor and destructor arrays. 682 SmallVector<llvm::Constant *, 8> Ctors; 683 for (const auto &I : Fns) { 684 llvm::Constant *S[] = { 685 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 686 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 687 (I.AssociatedData 688 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 689 : llvm::Constant::getNullValue(VoidPtrTy))}; 690 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 691 } 692 693 if (!Ctors.empty()) { 694 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 695 new llvm::GlobalVariable(TheModule, AT, false, 696 llvm::GlobalValue::AppendingLinkage, 697 llvm::ConstantArray::get(AT, Ctors), 698 GlobalName); 699 } 700 } 701 702 llvm::GlobalValue::LinkageTypes 703 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 704 const auto *D = cast<FunctionDecl>(GD.getDecl()); 705 706 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 707 708 if (isa<CXXDestructorDecl>(D) && 709 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 710 GD.getDtorType())) { 711 // Destructor variants in the Microsoft C++ ABI are always internal or 712 // linkonce_odr thunks emitted on an as-needed basis. 713 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 714 : llvm::GlobalValue::LinkOnceODRLinkage; 715 } 716 717 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 718 } 719 720 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 721 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 722 723 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 724 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 725 // Don't dllexport/import destructor thunks. 726 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 727 return; 728 } 729 } 730 731 if (FD->hasAttr<DLLImportAttr>()) 732 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 733 else if (FD->hasAttr<DLLExportAttr>()) 734 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 735 else 736 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 737 } 738 739 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 740 llvm::Function *F) { 741 setNonAliasAttributes(D, F); 742 } 743 744 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 745 const CGFunctionInfo &Info, 746 llvm::Function *F) { 747 unsigned CallingConv; 748 AttributeListType AttributeList; 749 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 750 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 751 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 752 } 753 754 /// Determines whether the language options require us to model 755 /// unwind exceptions. We treat -fexceptions as mandating this 756 /// except under the fragile ObjC ABI with only ObjC exceptions 757 /// enabled. This means, for example, that C with -fexceptions 758 /// enables this. 759 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 760 // If exceptions are completely disabled, obviously this is false. 761 if (!LangOpts.Exceptions) return false; 762 763 // If C++ exceptions are enabled, this is true. 764 if (LangOpts.CXXExceptions) return true; 765 766 // If ObjC exceptions are enabled, this depends on the ABI. 767 if (LangOpts.ObjCExceptions) { 768 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 769 } 770 771 return true; 772 } 773 774 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 775 llvm::Function *F) { 776 llvm::AttrBuilder B; 777 778 if (CodeGenOpts.UnwindTables) 779 B.addAttribute(llvm::Attribute::UWTable); 780 781 if (!hasUnwindExceptions(LangOpts)) 782 B.addAttribute(llvm::Attribute::NoUnwind); 783 784 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 785 B.addAttribute(llvm::Attribute::StackProtect); 786 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 787 B.addAttribute(llvm::Attribute::StackProtectStrong); 788 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 789 B.addAttribute(llvm::Attribute::StackProtectReq); 790 791 if (!D) { 792 F->addAttributes(llvm::AttributeSet::FunctionIndex, 793 llvm::AttributeSet::get( 794 F->getContext(), 795 llvm::AttributeSet::FunctionIndex, B)); 796 return; 797 } 798 799 if (D->hasAttr<NakedAttr>()) { 800 // Naked implies noinline: we should not be inlining such functions. 801 B.addAttribute(llvm::Attribute::Naked); 802 B.addAttribute(llvm::Attribute::NoInline); 803 } else if (D->hasAttr<NoDuplicateAttr>()) { 804 B.addAttribute(llvm::Attribute::NoDuplicate); 805 } else if (D->hasAttr<NoInlineAttr>()) { 806 B.addAttribute(llvm::Attribute::NoInline); 807 } else if (D->hasAttr<AlwaysInlineAttr>() && 808 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 809 llvm::Attribute::NoInline)) { 810 // (noinline wins over always_inline, and we can't specify both in IR) 811 B.addAttribute(llvm::Attribute::AlwaysInline); 812 } 813 814 if (D->hasAttr<ColdAttr>()) { 815 if (!D->hasAttr<OptimizeNoneAttr>()) 816 B.addAttribute(llvm::Attribute::OptimizeForSize); 817 B.addAttribute(llvm::Attribute::Cold); 818 } 819 820 if (D->hasAttr<MinSizeAttr>()) 821 B.addAttribute(llvm::Attribute::MinSize); 822 823 F->addAttributes(llvm::AttributeSet::FunctionIndex, 824 llvm::AttributeSet::get( 825 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 826 827 if (D->hasAttr<OptimizeNoneAttr>()) { 828 // OptimizeNone implies noinline; we should not be inlining such functions. 829 F->addFnAttr(llvm::Attribute::OptimizeNone); 830 F->addFnAttr(llvm::Attribute::NoInline); 831 832 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 833 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 834 F->removeFnAttr(llvm::Attribute::MinSize); 835 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 836 "OptimizeNone and AlwaysInline on same function!"); 837 838 // Attribute 'inlinehint' has no effect on 'optnone' functions. 839 // Explicitly remove it from the set of function attributes. 840 F->removeFnAttr(llvm::Attribute::InlineHint); 841 } 842 843 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 844 F->setUnnamedAddr(true); 845 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 846 if (MD->isVirtual()) 847 F->setUnnamedAddr(true); 848 849 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 850 if (alignment) 851 F->setAlignment(alignment); 852 853 // Some C++ ABIs require 2-byte alignment for member functions, in order to 854 // reserve a bit for differentiating between virtual and non-virtual member 855 // functions. If the current target's C++ ABI requires this and this is a 856 // member function, set its alignment accordingly. 857 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 858 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 859 F->setAlignment(2); 860 } 861 } 862 863 void CodeGenModule::SetCommonAttributes(const Decl *D, 864 llvm::GlobalValue *GV) { 865 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 866 setGlobalVisibility(GV, ND); 867 else 868 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 869 870 if (D && D->hasAttr<UsedAttr>()) 871 addUsedGlobal(GV); 872 } 873 874 void CodeGenModule::setAliasAttributes(const Decl *D, 875 llvm::GlobalValue *GV) { 876 SetCommonAttributes(D, GV); 877 878 // Process the dllexport attribute based on whether the original definition 879 // (not necessarily the aliasee) was exported. 880 if (D->hasAttr<DLLExportAttr>()) 881 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 882 } 883 884 void CodeGenModule::setNonAliasAttributes(const Decl *D, 885 llvm::GlobalObject *GO) { 886 SetCommonAttributes(D, GO); 887 888 if (D) 889 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 890 GO->setSection(SA->getName()); 891 892 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 893 } 894 895 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 896 llvm::Function *F, 897 const CGFunctionInfo &FI) { 898 SetLLVMFunctionAttributes(D, FI, F); 899 SetLLVMFunctionAttributesForDefinition(D, F); 900 901 F->setLinkage(llvm::Function::InternalLinkage); 902 903 setNonAliasAttributes(D, F); 904 } 905 906 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 907 const NamedDecl *ND) { 908 // Set linkage and visibility in case we never see a definition. 909 LinkageInfo LV = ND->getLinkageAndVisibility(); 910 if (LV.getLinkage() != ExternalLinkage) { 911 // Don't set internal linkage on declarations. 912 } else { 913 if (ND->hasAttr<DLLImportAttr>()) { 914 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 915 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 916 } else if (ND->hasAttr<DLLExportAttr>()) { 917 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 918 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 919 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 920 // "extern_weak" is overloaded in LLVM; we probably should have 921 // separate linkage types for this. 922 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 923 } 924 925 // Set visibility on a declaration only if it's explicit. 926 if (LV.isVisibilityExplicit()) 927 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 928 } 929 } 930 931 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 932 bool IsIncompleteFunction, 933 bool IsThunk) { 934 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 935 // If this is an intrinsic function, set the function's attributes 936 // to the intrinsic's attributes. 937 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 938 return; 939 } 940 941 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 942 943 if (!IsIncompleteFunction) 944 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 945 946 // Add the Returned attribute for "this", except for iOS 5 and earlier 947 // where substantial code, including the libstdc++ dylib, was compiled with 948 // GCC and does not actually return "this". 949 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 950 !(getTarget().getTriple().isiOS() && 951 getTarget().getTriple().isOSVersionLT(6))) { 952 assert(!F->arg_empty() && 953 F->arg_begin()->getType() 954 ->canLosslesslyBitCastTo(F->getReturnType()) && 955 "unexpected this return"); 956 F->addAttribute(1, llvm::Attribute::Returned); 957 } 958 959 // Only a few attributes are set on declarations; these may later be 960 // overridden by a definition. 961 962 setLinkageAndVisibilityForGV(F, FD); 963 964 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 965 F->setSection(SA->getName()); 966 967 // A replaceable global allocation function does not act like a builtin by 968 // default, only if it is invoked by a new-expression or delete-expression. 969 if (FD->isReplaceableGlobalAllocationFunction()) 970 F->addAttribute(llvm::AttributeSet::FunctionIndex, 971 llvm::Attribute::NoBuiltin); 972 973 // If we are checking indirect calls and this is not a non-static member 974 // function, emit a bit set entry for the function type. 975 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 976 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 977 llvm::NamedMDNode *BitsetsMD = 978 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 979 980 llvm::Metadata *BitsetOps[] = { 981 CreateMetadataIdentifierForType(FD->getType()), 982 llvm::ConstantAsMetadata::get(F), 983 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 984 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 985 } 986 } 987 988 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 989 assert(!GV->isDeclaration() && 990 "Only globals with definition can force usage."); 991 LLVMUsed.emplace_back(GV); 992 } 993 994 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 995 assert(!GV->isDeclaration() && 996 "Only globals with definition can force usage."); 997 LLVMCompilerUsed.emplace_back(GV); 998 } 999 1000 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1001 std::vector<llvm::WeakVH> &List) { 1002 // Don't create llvm.used if there is no need. 1003 if (List.empty()) 1004 return; 1005 1006 // Convert List to what ConstantArray needs. 1007 SmallVector<llvm::Constant*, 8> UsedArray; 1008 UsedArray.resize(List.size()); 1009 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1010 UsedArray[i] = 1011 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1012 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1013 } 1014 1015 if (UsedArray.empty()) 1016 return; 1017 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1018 1019 auto *GV = new llvm::GlobalVariable( 1020 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1021 llvm::ConstantArray::get(ATy, UsedArray), Name); 1022 1023 GV->setSection("llvm.metadata"); 1024 } 1025 1026 void CodeGenModule::emitLLVMUsed() { 1027 emitUsed(*this, "llvm.used", LLVMUsed); 1028 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1029 } 1030 1031 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1032 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1033 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1034 } 1035 1036 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1037 llvm::SmallString<32> Opt; 1038 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1039 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1040 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1041 } 1042 1043 void CodeGenModule::AddDependentLib(StringRef Lib) { 1044 llvm::SmallString<24> Opt; 1045 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1046 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1047 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1048 } 1049 1050 /// \brief Add link options implied by the given module, including modules 1051 /// it depends on, using a postorder walk. 1052 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1053 SmallVectorImpl<llvm::Metadata *> &Metadata, 1054 llvm::SmallPtrSet<Module *, 16> &Visited) { 1055 // Import this module's parent. 1056 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1057 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1058 } 1059 1060 // Import this module's dependencies. 1061 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1062 if (Visited.insert(Mod->Imports[I - 1]).second) 1063 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1064 } 1065 1066 // Add linker options to link against the libraries/frameworks 1067 // described by this module. 1068 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1069 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1070 // Link against a framework. Frameworks are currently Darwin only, so we 1071 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1072 if (Mod->LinkLibraries[I-1].IsFramework) { 1073 llvm::Metadata *Args[2] = { 1074 llvm::MDString::get(Context, "-framework"), 1075 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1076 1077 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1078 continue; 1079 } 1080 1081 // Link against a library. 1082 llvm::SmallString<24> Opt; 1083 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1084 Mod->LinkLibraries[I-1].Library, Opt); 1085 auto *OptString = llvm::MDString::get(Context, Opt); 1086 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1087 } 1088 } 1089 1090 void CodeGenModule::EmitModuleLinkOptions() { 1091 // Collect the set of all of the modules we want to visit to emit link 1092 // options, which is essentially the imported modules and all of their 1093 // non-explicit child modules. 1094 llvm::SetVector<clang::Module *> LinkModules; 1095 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1096 SmallVector<clang::Module *, 16> Stack; 1097 1098 // Seed the stack with imported modules. 1099 for (Module *M : ImportedModules) 1100 if (Visited.insert(M).second) 1101 Stack.push_back(M); 1102 1103 // Find all of the modules to import, making a little effort to prune 1104 // non-leaf modules. 1105 while (!Stack.empty()) { 1106 clang::Module *Mod = Stack.pop_back_val(); 1107 1108 bool AnyChildren = false; 1109 1110 // Visit the submodules of this module. 1111 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1112 SubEnd = Mod->submodule_end(); 1113 Sub != SubEnd; ++Sub) { 1114 // Skip explicit children; they need to be explicitly imported to be 1115 // linked against. 1116 if ((*Sub)->IsExplicit) 1117 continue; 1118 1119 if (Visited.insert(*Sub).second) { 1120 Stack.push_back(*Sub); 1121 AnyChildren = true; 1122 } 1123 } 1124 1125 // We didn't find any children, so add this module to the list of 1126 // modules to link against. 1127 if (!AnyChildren) { 1128 LinkModules.insert(Mod); 1129 } 1130 } 1131 1132 // Add link options for all of the imported modules in reverse topological 1133 // order. We don't do anything to try to order import link flags with respect 1134 // to linker options inserted by things like #pragma comment(). 1135 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1136 Visited.clear(); 1137 for (Module *M : LinkModules) 1138 if (Visited.insert(M).second) 1139 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1140 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1141 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1142 1143 // Add the linker options metadata flag. 1144 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1145 llvm::MDNode::get(getLLVMContext(), 1146 LinkerOptionsMetadata)); 1147 } 1148 1149 void CodeGenModule::EmitDeferred() { 1150 // Emit code for any potentially referenced deferred decls. Since a 1151 // previously unused static decl may become used during the generation of code 1152 // for a static function, iterate until no changes are made. 1153 1154 if (!DeferredVTables.empty()) { 1155 EmitDeferredVTables(); 1156 1157 // Emitting a v-table doesn't directly cause more v-tables to 1158 // become deferred, although it can cause functions to be 1159 // emitted that then need those v-tables. 1160 assert(DeferredVTables.empty()); 1161 } 1162 1163 // Stop if we're out of both deferred v-tables and deferred declarations. 1164 if (DeferredDeclsToEmit.empty()) 1165 return; 1166 1167 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1168 // work, it will not interfere with this. 1169 std::vector<DeferredGlobal> CurDeclsToEmit; 1170 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1171 1172 for (DeferredGlobal &G : CurDeclsToEmit) { 1173 GlobalDecl D = G.GD; 1174 llvm::GlobalValue *GV = G.GV; 1175 G.GV = nullptr; 1176 1177 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1178 // to get GlobalValue with exactly the type we need, not something that 1179 // might had been created for another decl with the same mangled name but 1180 // different type. 1181 // FIXME: Support for variables is not implemented yet. 1182 if (isa<FunctionDecl>(D.getDecl())) 1183 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1184 else 1185 if (!GV) 1186 GV = GetGlobalValue(getMangledName(D)); 1187 1188 // Check to see if we've already emitted this. This is necessary 1189 // for a couple of reasons: first, decls can end up in the 1190 // deferred-decls queue multiple times, and second, decls can end 1191 // up with definitions in unusual ways (e.g. by an extern inline 1192 // function acquiring a strong function redefinition). Just 1193 // ignore these cases. 1194 if (GV && !GV->isDeclaration()) 1195 continue; 1196 1197 // Otherwise, emit the definition and move on to the next one. 1198 EmitGlobalDefinition(D, GV); 1199 1200 // If we found out that we need to emit more decls, do that recursively. 1201 // This has the advantage that the decls are emitted in a DFS and related 1202 // ones are close together, which is convenient for testing. 1203 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1204 EmitDeferred(); 1205 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1206 } 1207 } 1208 } 1209 1210 void CodeGenModule::EmitGlobalAnnotations() { 1211 if (Annotations.empty()) 1212 return; 1213 1214 // Create a new global variable for the ConstantStruct in the Module. 1215 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1216 Annotations[0]->getType(), Annotations.size()), Annotations); 1217 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1218 llvm::GlobalValue::AppendingLinkage, 1219 Array, "llvm.global.annotations"); 1220 gv->setSection(AnnotationSection); 1221 } 1222 1223 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1224 llvm::Constant *&AStr = AnnotationStrings[Str]; 1225 if (AStr) 1226 return AStr; 1227 1228 // Not found yet, create a new global. 1229 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1230 auto *gv = 1231 new llvm::GlobalVariable(getModule(), s->getType(), true, 1232 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1233 gv->setSection(AnnotationSection); 1234 gv->setUnnamedAddr(true); 1235 AStr = gv; 1236 return gv; 1237 } 1238 1239 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1240 SourceManager &SM = getContext().getSourceManager(); 1241 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1242 if (PLoc.isValid()) 1243 return EmitAnnotationString(PLoc.getFilename()); 1244 return EmitAnnotationString(SM.getBufferName(Loc)); 1245 } 1246 1247 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1248 SourceManager &SM = getContext().getSourceManager(); 1249 PresumedLoc PLoc = SM.getPresumedLoc(L); 1250 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1251 SM.getExpansionLineNumber(L); 1252 return llvm::ConstantInt::get(Int32Ty, LineNo); 1253 } 1254 1255 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1256 const AnnotateAttr *AA, 1257 SourceLocation L) { 1258 // Get the globals for file name, annotation, and the line number. 1259 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1260 *UnitGV = EmitAnnotationUnit(L), 1261 *LineNoCst = EmitAnnotationLineNo(L); 1262 1263 // Create the ConstantStruct for the global annotation. 1264 llvm::Constant *Fields[4] = { 1265 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1266 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1267 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1268 LineNoCst 1269 }; 1270 return llvm::ConstantStruct::getAnon(Fields); 1271 } 1272 1273 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1274 llvm::GlobalValue *GV) { 1275 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1276 // Get the struct elements for these annotations. 1277 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1278 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1279 } 1280 1281 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1282 SourceLocation Loc) const { 1283 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1284 // Blacklist by function name. 1285 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1286 return true; 1287 // Blacklist by location. 1288 if (Loc.isValid()) 1289 return SanitizerBL.isBlacklistedLocation(Loc); 1290 // If location is unknown, this may be a compiler-generated function. Assume 1291 // it's located in the main file. 1292 auto &SM = Context.getSourceManager(); 1293 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1294 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1295 } 1296 return false; 1297 } 1298 1299 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1300 SourceLocation Loc, QualType Ty, 1301 StringRef Category) const { 1302 // For now globals can be blacklisted only in ASan and KASan. 1303 if (!LangOpts.Sanitize.hasOneOf( 1304 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1305 return false; 1306 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1307 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1308 return true; 1309 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1310 return true; 1311 // Check global type. 1312 if (!Ty.isNull()) { 1313 // Drill down the array types: if global variable of a fixed type is 1314 // blacklisted, we also don't instrument arrays of them. 1315 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1316 Ty = AT->getElementType(); 1317 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1318 // We allow to blacklist only record types (classes, structs etc.) 1319 if (Ty->isRecordType()) { 1320 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1321 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1322 return true; 1323 } 1324 } 1325 return false; 1326 } 1327 1328 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1329 // Never defer when EmitAllDecls is specified. 1330 if (LangOpts.EmitAllDecls) 1331 return true; 1332 1333 return getContext().DeclMustBeEmitted(Global); 1334 } 1335 1336 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1337 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1338 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1339 // Implicit template instantiations may change linkage if they are later 1340 // explicitly instantiated, so they should not be emitted eagerly. 1341 return false; 1342 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1343 // codegen for global variables, because they may be marked as threadprivate. 1344 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1345 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1352 const CXXUuidofExpr* E) { 1353 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1354 // well-formed. 1355 StringRef Uuid = E->getUuidAsStringRef(Context); 1356 std::string Name = "_GUID_" + Uuid.lower(); 1357 std::replace(Name.begin(), Name.end(), '-', '_'); 1358 1359 // Contains a 32-bit field. 1360 CharUnits Alignment = CharUnits::fromQuantity(4); 1361 1362 // Look for an existing global. 1363 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1364 return ConstantAddress(GV, Alignment); 1365 1366 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1367 assert(Init && "failed to initialize as constant"); 1368 1369 auto *GV = new llvm::GlobalVariable( 1370 getModule(), Init->getType(), 1371 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1372 if (supportsCOMDAT()) 1373 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1374 return ConstantAddress(GV, Alignment); 1375 } 1376 1377 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1378 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1379 assert(AA && "No alias?"); 1380 1381 CharUnits Alignment = getContext().getDeclAlign(VD); 1382 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1383 1384 // See if there is already something with the target's name in the module. 1385 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1386 if (Entry) { 1387 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1388 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1389 return ConstantAddress(Ptr, Alignment); 1390 } 1391 1392 llvm::Constant *Aliasee; 1393 if (isa<llvm::FunctionType>(DeclTy)) 1394 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1395 GlobalDecl(cast<FunctionDecl>(VD)), 1396 /*ForVTable=*/false); 1397 else 1398 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1399 llvm::PointerType::getUnqual(DeclTy), 1400 nullptr); 1401 1402 auto *F = cast<llvm::GlobalValue>(Aliasee); 1403 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1404 WeakRefReferences.insert(F); 1405 1406 return ConstantAddress(Aliasee, Alignment); 1407 } 1408 1409 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1410 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1411 1412 // Weak references don't produce any output by themselves. 1413 if (Global->hasAttr<WeakRefAttr>()) 1414 return; 1415 1416 // If this is an alias definition (which otherwise looks like a declaration) 1417 // emit it now. 1418 if (Global->hasAttr<AliasAttr>()) 1419 return EmitAliasDefinition(GD); 1420 1421 // If this is CUDA, be selective about which declarations we emit. 1422 if (LangOpts.CUDA) { 1423 if (LangOpts.CUDAIsDevice) { 1424 if (!Global->hasAttr<CUDADeviceAttr>() && 1425 !Global->hasAttr<CUDAGlobalAttr>() && 1426 !Global->hasAttr<CUDAConstantAttr>() && 1427 !Global->hasAttr<CUDASharedAttr>()) 1428 return; 1429 } else { 1430 if (!Global->hasAttr<CUDAHostAttr>() && ( 1431 Global->hasAttr<CUDADeviceAttr>() || 1432 Global->hasAttr<CUDAConstantAttr>() || 1433 Global->hasAttr<CUDASharedAttr>())) 1434 return; 1435 } 1436 } 1437 1438 // Ignore declarations, they will be emitted on their first use. 1439 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1440 // Forward declarations are emitted lazily on first use. 1441 if (!FD->doesThisDeclarationHaveABody()) { 1442 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1443 return; 1444 1445 StringRef MangledName = getMangledName(GD); 1446 1447 // Compute the function info and LLVM type. 1448 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1449 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1450 1451 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1452 /*DontDefer=*/false); 1453 return; 1454 } 1455 } else { 1456 const auto *VD = cast<VarDecl>(Global); 1457 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1458 1459 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1460 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1461 return; 1462 } 1463 1464 // Defer code generation to first use when possible, e.g. if this is an inline 1465 // function. If the global must always be emitted, do it eagerly if possible 1466 // to benefit from cache locality. 1467 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1468 // Emit the definition if it can't be deferred. 1469 EmitGlobalDefinition(GD); 1470 return; 1471 } 1472 1473 // If we're deferring emission of a C++ variable with an 1474 // initializer, remember the order in which it appeared in the file. 1475 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1476 cast<VarDecl>(Global)->hasInit()) { 1477 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1478 CXXGlobalInits.push_back(nullptr); 1479 } 1480 1481 StringRef MangledName = getMangledName(GD); 1482 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1483 // The value has already been used and should therefore be emitted. 1484 addDeferredDeclToEmit(GV, GD); 1485 } else if (MustBeEmitted(Global)) { 1486 // The value must be emitted, but cannot be emitted eagerly. 1487 assert(!MayBeEmittedEagerly(Global)); 1488 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1489 } else { 1490 // Otherwise, remember that we saw a deferred decl with this name. The 1491 // first use of the mangled name will cause it to move into 1492 // DeferredDeclsToEmit. 1493 DeferredDecls[MangledName] = GD; 1494 } 1495 } 1496 1497 namespace { 1498 struct FunctionIsDirectlyRecursive : 1499 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1500 const StringRef Name; 1501 const Builtin::Context &BI; 1502 bool Result; 1503 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1504 Name(N), BI(C), Result(false) { 1505 } 1506 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1507 1508 bool TraverseCallExpr(CallExpr *E) { 1509 const FunctionDecl *FD = E->getDirectCallee(); 1510 if (!FD) 1511 return true; 1512 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1513 if (Attr && Name == Attr->getLabel()) { 1514 Result = true; 1515 return false; 1516 } 1517 unsigned BuiltinID = FD->getBuiltinID(); 1518 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1519 return true; 1520 StringRef BuiltinName = BI.getName(BuiltinID); 1521 if (BuiltinName.startswith("__builtin_") && 1522 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1523 Result = true; 1524 return false; 1525 } 1526 return true; 1527 } 1528 }; 1529 1530 struct DLLImportFunctionVisitor 1531 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1532 bool SafeToInline = true; 1533 1534 bool VisitVarDecl(VarDecl *VD) { 1535 // A thread-local variable cannot be imported. 1536 SafeToInline = !VD->getTLSKind(); 1537 return SafeToInline; 1538 } 1539 1540 // Make sure we're not referencing non-imported vars or functions. 1541 bool VisitDeclRefExpr(DeclRefExpr *E) { 1542 ValueDecl *VD = E->getDecl(); 1543 if (isa<FunctionDecl>(VD)) 1544 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1545 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1546 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1547 return SafeToInline; 1548 } 1549 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1550 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1551 return SafeToInline; 1552 } 1553 bool VisitCXXNewExpr(CXXNewExpr *E) { 1554 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1555 return SafeToInline; 1556 } 1557 }; 1558 } 1559 1560 // isTriviallyRecursive - Check if this function calls another 1561 // decl that, because of the asm attribute or the other decl being a builtin, 1562 // ends up pointing to itself. 1563 bool 1564 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1565 StringRef Name; 1566 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1567 // asm labels are a special kind of mangling we have to support. 1568 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1569 if (!Attr) 1570 return false; 1571 Name = Attr->getLabel(); 1572 } else { 1573 Name = FD->getName(); 1574 } 1575 1576 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1577 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1578 return Walker.Result; 1579 } 1580 1581 bool 1582 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1583 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1584 return true; 1585 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1586 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1587 return false; 1588 1589 if (F->hasAttr<DLLImportAttr>()) { 1590 // Check whether it would be safe to inline this dllimport function. 1591 DLLImportFunctionVisitor Visitor; 1592 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1593 if (!Visitor.SafeToInline) 1594 return false; 1595 } 1596 1597 // PR9614. Avoid cases where the source code is lying to us. An available 1598 // externally function should have an equivalent function somewhere else, 1599 // but a function that calls itself is clearly not equivalent to the real 1600 // implementation. 1601 // This happens in glibc's btowc and in some configure checks. 1602 return !isTriviallyRecursive(F); 1603 } 1604 1605 /// If the type for the method's class was generated by 1606 /// CGDebugInfo::createContextChain(), the cache contains only a 1607 /// limited DIType without any declarations. Since EmitFunctionStart() 1608 /// needs to find the canonical declaration for each method, we need 1609 /// to construct the complete type prior to emitting the method. 1610 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1611 if (!D->isInstance()) 1612 return; 1613 1614 if (CGDebugInfo *DI = getModuleDebugInfo()) 1615 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1616 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1617 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1618 } 1619 } 1620 1621 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1622 const auto *D = cast<ValueDecl>(GD.getDecl()); 1623 1624 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1625 Context.getSourceManager(), 1626 "Generating code for declaration"); 1627 1628 if (isa<FunctionDecl>(D)) { 1629 // At -O0, don't generate IR for functions with available_externally 1630 // linkage. 1631 if (!shouldEmitFunction(GD)) 1632 return; 1633 1634 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1635 CompleteDIClassType(Method); 1636 // Make sure to emit the definition(s) before we emit the thunks. 1637 // This is necessary for the generation of certain thunks. 1638 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1639 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1640 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1641 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1642 else 1643 EmitGlobalFunctionDefinition(GD, GV); 1644 1645 if (Method->isVirtual()) 1646 getVTables().EmitThunks(GD); 1647 1648 return; 1649 } 1650 1651 return EmitGlobalFunctionDefinition(GD, GV); 1652 } 1653 1654 if (const auto *VD = dyn_cast<VarDecl>(D)) 1655 return EmitGlobalVarDefinition(VD); 1656 1657 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1658 } 1659 1660 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1661 llvm::Function *NewFn); 1662 1663 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1664 /// module, create and return an llvm Function with the specified type. If there 1665 /// is something in the module with the specified name, return it potentially 1666 /// bitcasted to the right type. 1667 /// 1668 /// If D is non-null, it specifies a decl that correspond to this. This is used 1669 /// to set the attributes on the function when it is first created. 1670 llvm::Constant * 1671 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1672 llvm::Type *Ty, 1673 GlobalDecl GD, bool ForVTable, 1674 bool DontDefer, bool IsThunk, 1675 llvm::AttributeSet ExtraAttrs, 1676 bool IsForDefinition) { 1677 const Decl *D = GD.getDecl(); 1678 1679 // Lookup the entry, lazily creating it if necessary. 1680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1681 if (Entry) { 1682 if (WeakRefReferences.erase(Entry)) { 1683 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1684 if (FD && !FD->hasAttr<WeakAttr>()) 1685 Entry->setLinkage(llvm::Function::ExternalLinkage); 1686 } 1687 1688 // Handle dropped DLL attributes. 1689 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1690 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1691 1692 // If there are two attempts to define the same mangled name, issue an 1693 // error. 1694 if (IsForDefinition && !Entry->isDeclaration()) { 1695 GlobalDecl OtherGD; 1696 // Check that GD is not yet in ExplicitDefinitions is required to make 1697 // sure that we issue an error only once. 1698 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1699 (GD.getCanonicalDecl().getDecl() != 1700 OtherGD.getCanonicalDecl().getDecl()) && 1701 DiagnosedConflictingDefinitions.insert(GD).second) { 1702 getDiags().Report(D->getLocation(), 1703 diag::err_duplicate_mangled_name); 1704 getDiags().Report(OtherGD.getDecl()->getLocation(), 1705 diag::note_previous_definition); 1706 } 1707 } 1708 1709 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1710 (Entry->getType()->getElementType() == Ty)) { 1711 return Entry; 1712 } 1713 1714 // Make sure the result is of the correct type. 1715 // (If function is requested for a definition, we always need to create a new 1716 // function, not just return a bitcast.) 1717 if (!IsForDefinition) 1718 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1719 } 1720 1721 // This function doesn't have a complete type (for example, the return 1722 // type is an incomplete struct). Use a fake type instead, and make 1723 // sure not to try to set attributes. 1724 bool IsIncompleteFunction = false; 1725 1726 llvm::FunctionType *FTy; 1727 if (isa<llvm::FunctionType>(Ty)) { 1728 FTy = cast<llvm::FunctionType>(Ty); 1729 } else { 1730 FTy = llvm::FunctionType::get(VoidTy, false); 1731 IsIncompleteFunction = true; 1732 } 1733 1734 llvm::Function *F = 1735 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1736 Entry ? StringRef() : MangledName, &getModule()); 1737 1738 // If we already created a function with the same mangled name (but different 1739 // type) before, take its name and add it to the list of functions to be 1740 // replaced with F at the end of CodeGen. 1741 // 1742 // This happens if there is a prototype for a function (e.g. "int f()") and 1743 // then a definition of a different type (e.g. "int f(int x)"). 1744 if (Entry) { 1745 F->takeName(Entry); 1746 1747 // This might be an implementation of a function without a prototype, in 1748 // which case, try to do special replacement of calls which match the new 1749 // prototype. The really key thing here is that we also potentially drop 1750 // arguments from the call site so as to make a direct call, which makes the 1751 // inliner happier and suppresses a number of optimizer warnings (!) about 1752 // dropping arguments. 1753 if (!Entry->use_empty()) { 1754 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1755 Entry->removeDeadConstantUsers(); 1756 } 1757 1758 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1759 F, Entry->getType()->getElementType()->getPointerTo()); 1760 addGlobalValReplacement(Entry, BC); 1761 } 1762 1763 assert(F->getName() == MangledName && "name was uniqued!"); 1764 if (D) 1765 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1766 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1767 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1768 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1769 llvm::AttributeSet::get(VMContext, 1770 llvm::AttributeSet::FunctionIndex, 1771 B)); 1772 } 1773 1774 if (!DontDefer) { 1775 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1776 // each other bottoming out with the base dtor. Therefore we emit non-base 1777 // dtors on usage, even if there is no dtor definition in the TU. 1778 if (D && isa<CXXDestructorDecl>(D) && 1779 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1780 GD.getDtorType())) 1781 addDeferredDeclToEmit(F, GD); 1782 1783 // This is the first use or definition of a mangled name. If there is a 1784 // deferred decl with this name, remember that we need to emit it at the end 1785 // of the file. 1786 auto DDI = DeferredDecls.find(MangledName); 1787 if (DDI != DeferredDecls.end()) { 1788 // Move the potentially referenced deferred decl to the 1789 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1790 // don't need it anymore). 1791 addDeferredDeclToEmit(F, DDI->second); 1792 DeferredDecls.erase(DDI); 1793 1794 // Otherwise, there are cases we have to worry about where we're 1795 // using a declaration for which we must emit a definition but where 1796 // we might not find a top-level definition: 1797 // - member functions defined inline in their classes 1798 // - friend functions defined inline in some class 1799 // - special member functions with implicit definitions 1800 // If we ever change our AST traversal to walk into class methods, 1801 // this will be unnecessary. 1802 // 1803 // We also don't emit a definition for a function if it's going to be an 1804 // entry in a vtable, unless it's already marked as used. 1805 } else if (getLangOpts().CPlusPlus && D) { 1806 // Look for a declaration that's lexically in a record. 1807 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1808 FD = FD->getPreviousDecl()) { 1809 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1810 if (FD->doesThisDeclarationHaveABody()) { 1811 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1812 break; 1813 } 1814 } 1815 } 1816 } 1817 } 1818 1819 // Make sure the result is of the requested type. 1820 if (!IsIncompleteFunction) { 1821 assert(F->getType()->getElementType() == Ty); 1822 return F; 1823 } 1824 1825 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1826 return llvm::ConstantExpr::getBitCast(F, PTy); 1827 } 1828 1829 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1830 /// non-null, then this function will use the specified type if it has to 1831 /// create it (this occurs when we see a definition of the function). 1832 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1833 llvm::Type *Ty, 1834 bool ForVTable, 1835 bool DontDefer, 1836 bool IsForDefinition) { 1837 // If there was no specific requested type, just convert it now. 1838 if (!Ty) { 1839 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1840 auto CanonTy = Context.getCanonicalType(FD->getType()); 1841 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1842 } 1843 1844 StringRef MangledName = getMangledName(GD); 1845 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1846 /*IsThunk=*/false, llvm::AttributeSet(), 1847 IsForDefinition); 1848 } 1849 1850 /// CreateRuntimeFunction - Create a new runtime function with the specified 1851 /// type and name. 1852 llvm::Constant * 1853 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1854 StringRef Name, 1855 llvm::AttributeSet ExtraAttrs) { 1856 llvm::Constant *C = 1857 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1858 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1859 if (auto *F = dyn_cast<llvm::Function>(C)) 1860 if (F->empty()) 1861 F->setCallingConv(getRuntimeCC()); 1862 return C; 1863 } 1864 1865 /// CreateBuiltinFunction - Create a new builtin function with the specified 1866 /// type and name. 1867 llvm::Constant * 1868 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1869 StringRef Name, 1870 llvm::AttributeSet ExtraAttrs) { 1871 llvm::Constant *C = 1872 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1873 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1874 if (auto *F = dyn_cast<llvm::Function>(C)) 1875 if (F->empty()) 1876 F->setCallingConv(getBuiltinCC()); 1877 return C; 1878 } 1879 1880 /// isTypeConstant - Determine whether an object of this type can be emitted 1881 /// as a constant. 1882 /// 1883 /// If ExcludeCtor is true, the duration when the object's constructor runs 1884 /// will not be considered. The caller will need to verify that the object is 1885 /// not written to during its construction. 1886 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1887 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1888 return false; 1889 1890 if (Context.getLangOpts().CPlusPlus) { 1891 if (const CXXRecordDecl *Record 1892 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1893 return ExcludeCtor && !Record->hasMutableFields() && 1894 Record->hasTrivialDestructor(); 1895 } 1896 1897 return true; 1898 } 1899 1900 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1901 /// create and return an llvm GlobalVariable with the specified type. If there 1902 /// is something in the module with the specified name, return it potentially 1903 /// bitcasted to the right type. 1904 /// 1905 /// If D is non-null, it specifies a decl that correspond to this. This is used 1906 /// to set the attributes on the global when it is first created. 1907 llvm::Constant * 1908 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1909 llvm::PointerType *Ty, 1910 const VarDecl *D) { 1911 // Lookup the entry, lazily creating it if necessary. 1912 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1913 if (Entry) { 1914 if (WeakRefReferences.erase(Entry)) { 1915 if (D && !D->hasAttr<WeakAttr>()) 1916 Entry->setLinkage(llvm::Function::ExternalLinkage); 1917 } 1918 1919 // Handle dropped DLL attributes. 1920 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1921 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1922 1923 if (Entry->getType() == Ty) 1924 return Entry; 1925 1926 // Make sure the result is of the correct type. 1927 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1928 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1929 1930 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1931 } 1932 1933 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1934 auto *GV = new llvm::GlobalVariable( 1935 getModule(), Ty->getElementType(), false, 1936 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1937 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1938 1939 // This is the first use or definition of a mangled name. If there is a 1940 // deferred decl with this name, remember that we need to emit it at the end 1941 // of the file. 1942 auto DDI = DeferredDecls.find(MangledName); 1943 if (DDI != DeferredDecls.end()) { 1944 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1945 // list, and remove it from DeferredDecls (since we don't need it anymore). 1946 addDeferredDeclToEmit(GV, DDI->second); 1947 DeferredDecls.erase(DDI); 1948 } 1949 1950 // Handle things which are present even on external declarations. 1951 if (D) { 1952 // FIXME: This code is overly simple and should be merged with other global 1953 // handling. 1954 GV->setConstant(isTypeConstant(D->getType(), false)); 1955 1956 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1957 1958 setLinkageAndVisibilityForGV(GV, D); 1959 1960 if (D->getTLSKind()) { 1961 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1962 CXXThreadLocals.push_back(D); 1963 setTLSMode(GV, *D); 1964 } 1965 1966 // If required by the ABI, treat declarations of static data members with 1967 // inline initializers as definitions. 1968 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1969 EmitGlobalVarDefinition(D); 1970 } 1971 1972 // Handle XCore specific ABI requirements. 1973 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1974 D->getLanguageLinkage() == CLanguageLinkage && 1975 D->getType().isConstant(Context) && 1976 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1977 GV->setSection(".cp.rodata"); 1978 } 1979 1980 if (AddrSpace != Ty->getAddressSpace()) 1981 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1982 1983 return GV; 1984 } 1985 1986 llvm::Constant * 1987 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1988 bool IsForDefinition) { 1989 if (isa<CXXConstructorDecl>(GD.getDecl())) 1990 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1991 getFromCtorType(GD.getCtorType()), 1992 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1993 /*DontDefer=*/false, IsForDefinition); 1994 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1995 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1996 getFromDtorType(GD.getDtorType()), 1997 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1998 /*DontDefer=*/false, IsForDefinition); 1999 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2000 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2001 cast<CXXMethodDecl>(GD.getDecl())); 2002 auto Ty = getTypes().GetFunctionType(*FInfo); 2003 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2004 IsForDefinition); 2005 } else if (isa<FunctionDecl>(GD.getDecl())) { 2006 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2007 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2008 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2009 IsForDefinition); 2010 } else 2011 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2012 } 2013 2014 llvm::GlobalVariable * 2015 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2016 llvm::Type *Ty, 2017 llvm::GlobalValue::LinkageTypes Linkage) { 2018 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2019 llvm::GlobalVariable *OldGV = nullptr; 2020 2021 if (GV) { 2022 // Check if the variable has the right type. 2023 if (GV->getType()->getElementType() == Ty) 2024 return GV; 2025 2026 // Because C++ name mangling, the only way we can end up with an already 2027 // existing global with the same name is if it has been declared extern "C". 2028 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2029 OldGV = GV; 2030 } 2031 2032 // Create a new variable. 2033 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2034 Linkage, nullptr, Name); 2035 2036 if (OldGV) { 2037 // Replace occurrences of the old variable if needed. 2038 GV->takeName(OldGV); 2039 2040 if (!OldGV->use_empty()) { 2041 llvm::Constant *NewPtrForOldDecl = 2042 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2043 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2044 } 2045 2046 OldGV->eraseFromParent(); 2047 } 2048 2049 if (supportsCOMDAT() && GV->isWeakForLinker() && 2050 !GV->hasAvailableExternallyLinkage()) 2051 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2052 2053 return GV; 2054 } 2055 2056 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2057 /// given global variable. If Ty is non-null and if the global doesn't exist, 2058 /// then it will be created with the specified type instead of whatever the 2059 /// normal requested type would be. 2060 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2061 llvm::Type *Ty) { 2062 assert(D->hasGlobalStorage() && "Not a global variable"); 2063 QualType ASTTy = D->getType(); 2064 if (!Ty) 2065 Ty = getTypes().ConvertTypeForMem(ASTTy); 2066 2067 llvm::PointerType *PTy = 2068 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2069 2070 StringRef MangledName = getMangledName(D); 2071 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2072 } 2073 2074 /// CreateRuntimeVariable - Create a new runtime global variable with the 2075 /// specified type and name. 2076 llvm::Constant * 2077 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2078 StringRef Name) { 2079 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2080 } 2081 2082 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2083 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2084 2085 if (!MustBeEmitted(D)) { 2086 // If we have not seen a reference to this variable yet, place it 2087 // into the deferred declarations table to be emitted if needed 2088 // later. 2089 StringRef MangledName = getMangledName(D); 2090 if (!GetGlobalValue(MangledName)) { 2091 DeferredDecls[MangledName] = D; 2092 return; 2093 } 2094 } 2095 2096 // The tentative definition is the only definition. 2097 EmitGlobalVarDefinition(D); 2098 } 2099 2100 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2101 return Context.toCharUnitsFromBits( 2102 getDataLayout().getTypeStoreSizeInBits(Ty)); 2103 } 2104 2105 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2106 unsigned AddrSpace) { 2107 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2108 if (D->hasAttr<CUDAConstantAttr>()) 2109 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2110 else if (D->hasAttr<CUDASharedAttr>()) 2111 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2112 else 2113 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2114 } 2115 2116 return AddrSpace; 2117 } 2118 2119 template<typename SomeDecl> 2120 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2121 llvm::GlobalValue *GV) { 2122 if (!getLangOpts().CPlusPlus) 2123 return; 2124 2125 // Must have 'used' attribute, or else inline assembly can't rely on 2126 // the name existing. 2127 if (!D->template hasAttr<UsedAttr>()) 2128 return; 2129 2130 // Must have internal linkage and an ordinary name. 2131 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2132 return; 2133 2134 // Must be in an extern "C" context. Entities declared directly within 2135 // a record are not extern "C" even if the record is in such a context. 2136 const SomeDecl *First = D->getFirstDecl(); 2137 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2138 return; 2139 2140 // OK, this is an internal linkage entity inside an extern "C" linkage 2141 // specification. Make a note of that so we can give it the "expected" 2142 // mangled name if nothing else is using that name. 2143 std::pair<StaticExternCMap::iterator, bool> R = 2144 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2145 2146 // If we have multiple internal linkage entities with the same name 2147 // in extern "C" regions, none of them gets that name. 2148 if (!R.second) 2149 R.first->second = nullptr; 2150 } 2151 2152 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2153 if (!CGM.supportsCOMDAT()) 2154 return false; 2155 2156 if (D.hasAttr<SelectAnyAttr>()) 2157 return true; 2158 2159 GVALinkage Linkage; 2160 if (auto *VD = dyn_cast<VarDecl>(&D)) 2161 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2162 else 2163 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2164 2165 switch (Linkage) { 2166 case GVA_Internal: 2167 case GVA_AvailableExternally: 2168 case GVA_StrongExternal: 2169 return false; 2170 case GVA_DiscardableODR: 2171 case GVA_StrongODR: 2172 return true; 2173 } 2174 llvm_unreachable("No such linkage"); 2175 } 2176 2177 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2178 llvm::GlobalObject &GO) { 2179 if (!shouldBeInCOMDAT(*this, D)) 2180 return; 2181 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2182 } 2183 2184 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2185 llvm::Constant *Init = nullptr; 2186 QualType ASTTy = D->getType(); 2187 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2188 bool NeedsGlobalCtor = false; 2189 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2190 2191 const VarDecl *InitDecl; 2192 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2193 2194 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2195 // of their declaration." 2196 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2197 && D->hasAttr<CUDASharedAttr>()) { 2198 if (InitExpr) { 2199 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2200 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2201 Error(D->getLocation(), 2202 "__shared__ variable cannot have an initialization."); 2203 } 2204 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2205 } else if (!InitExpr) { 2206 // This is a tentative definition; tentative definitions are 2207 // implicitly initialized with { 0 }. 2208 // 2209 // Note that tentative definitions are only emitted at the end of 2210 // a translation unit, so they should never have incomplete 2211 // type. In addition, EmitTentativeDefinition makes sure that we 2212 // never attempt to emit a tentative definition if a real one 2213 // exists. A use may still exists, however, so we still may need 2214 // to do a RAUW. 2215 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2216 Init = EmitNullConstant(D->getType()); 2217 } else { 2218 initializedGlobalDecl = GlobalDecl(D); 2219 Init = EmitConstantInit(*InitDecl); 2220 2221 if (!Init) { 2222 QualType T = InitExpr->getType(); 2223 if (D->getType()->isReferenceType()) 2224 T = D->getType(); 2225 2226 if (getLangOpts().CPlusPlus) { 2227 Init = EmitNullConstant(T); 2228 NeedsGlobalCtor = true; 2229 } else { 2230 ErrorUnsupported(D, "static initializer"); 2231 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2232 } 2233 } else { 2234 // We don't need an initializer, so remove the entry for the delayed 2235 // initializer position (just in case this entry was delayed) if we 2236 // also don't need to register a destructor. 2237 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2238 DelayedCXXInitPosition.erase(D); 2239 } 2240 } 2241 2242 llvm::Type* InitType = Init->getType(); 2243 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2244 2245 // Strip off a bitcast if we got one back. 2246 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2247 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2248 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2249 // All zero index gep. 2250 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2251 Entry = CE->getOperand(0); 2252 } 2253 2254 // Entry is now either a Function or GlobalVariable. 2255 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2256 2257 // We have a definition after a declaration with the wrong type. 2258 // We must make a new GlobalVariable* and update everything that used OldGV 2259 // (a declaration or tentative definition) with the new GlobalVariable* 2260 // (which will be a definition). 2261 // 2262 // This happens if there is a prototype for a global (e.g. 2263 // "extern int x[];") and then a definition of a different type (e.g. 2264 // "int x[10];"). This also happens when an initializer has a different type 2265 // from the type of the global (this happens with unions). 2266 if (!GV || 2267 GV->getType()->getElementType() != InitType || 2268 GV->getType()->getAddressSpace() != 2269 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2270 2271 // Move the old entry aside so that we'll create a new one. 2272 Entry->setName(StringRef()); 2273 2274 // Make a new global with the correct type, this is now guaranteed to work. 2275 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2276 2277 // Replace all uses of the old global with the new global 2278 llvm::Constant *NewPtrForOldDecl = 2279 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2280 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2281 2282 // Erase the old global, since it is no longer used. 2283 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2284 } 2285 2286 MaybeHandleStaticInExternC(D, GV); 2287 2288 if (D->hasAttr<AnnotateAttr>()) 2289 AddGlobalAnnotations(D, GV); 2290 2291 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2292 // the device. [...]" 2293 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2294 // __device__, declares a variable that: [...] 2295 // Is accessible from all the threads within the grid and from the host 2296 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2297 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2298 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2299 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2300 GV->setExternallyInitialized(true); 2301 } 2302 GV->setInitializer(Init); 2303 2304 // If it is safe to mark the global 'constant', do so now. 2305 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2306 isTypeConstant(D->getType(), true)); 2307 2308 // If it is in a read-only section, mark it 'constant'. 2309 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2310 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2311 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2312 GV->setConstant(true); 2313 } 2314 2315 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2316 2317 // Set the llvm linkage type as appropriate. 2318 llvm::GlobalValue::LinkageTypes Linkage = 2319 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2320 2321 // On Darwin, if the normal linkage of a C++ thread_local variable is 2322 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2323 // copies within a linkage unit; otherwise, the backing variable has 2324 // internal linkage and all accesses should just be calls to the 2325 // Itanium-specified entry point, which has the normal linkage of the 2326 // variable. This is to preserve the ability to change the implementation 2327 // behind the scenes. 2328 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2329 Context.getTargetInfo().getTriple().isOSDarwin() && 2330 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2331 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2332 Linkage = llvm::GlobalValue::InternalLinkage; 2333 2334 GV->setLinkage(Linkage); 2335 if (D->hasAttr<DLLImportAttr>()) 2336 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2337 else if (D->hasAttr<DLLExportAttr>()) 2338 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2339 else 2340 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2341 2342 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2343 // common vars aren't constant even if declared const. 2344 GV->setConstant(false); 2345 2346 setNonAliasAttributes(D, GV); 2347 2348 if (D->getTLSKind() && !GV->isThreadLocal()) { 2349 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2350 CXXThreadLocals.push_back(D); 2351 setTLSMode(GV, *D); 2352 } 2353 2354 maybeSetTrivialComdat(*D, *GV); 2355 2356 // Emit the initializer function if necessary. 2357 if (NeedsGlobalCtor || NeedsGlobalDtor) 2358 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2359 2360 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2361 2362 // Emit global variable debug information. 2363 if (CGDebugInfo *DI = getModuleDebugInfo()) 2364 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2365 DI->EmitGlobalVariable(GV, D); 2366 } 2367 2368 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2369 CodeGenModule &CGM, const VarDecl *D, 2370 bool NoCommon) { 2371 // Don't give variables common linkage if -fno-common was specified unless it 2372 // was overridden by a NoCommon attribute. 2373 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2374 return true; 2375 2376 // C11 6.9.2/2: 2377 // A declaration of an identifier for an object that has file scope without 2378 // an initializer, and without a storage-class specifier or with the 2379 // storage-class specifier static, constitutes a tentative definition. 2380 if (D->getInit() || D->hasExternalStorage()) 2381 return true; 2382 2383 // A variable cannot be both common and exist in a section. 2384 if (D->hasAttr<SectionAttr>()) 2385 return true; 2386 2387 // Thread local vars aren't considered common linkage. 2388 if (D->getTLSKind()) 2389 return true; 2390 2391 // Tentative definitions marked with WeakImportAttr are true definitions. 2392 if (D->hasAttr<WeakImportAttr>()) 2393 return true; 2394 2395 // A variable cannot be both common and exist in a comdat. 2396 if (shouldBeInCOMDAT(CGM, *D)) 2397 return true; 2398 2399 // Declarations with a required alignment do not have common linakge in MSVC 2400 // mode. 2401 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2402 if (D->hasAttr<AlignedAttr>()) 2403 return true; 2404 QualType VarType = D->getType(); 2405 if (Context.isAlignmentRequired(VarType)) 2406 return true; 2407 2408 if (const auto *RT = VarType->getAs<RecordType>()) { 2409 const RecordDecl *RD = RT->getDecl(); 2410 for (const FieldDecl *FD : RD->fields()) { 2411 if (FD->isBitField()) 2412 continue; 2413 if (FD->hasAttr<AlignedAttr>()) 2414 return true; 2415 if (Context.isAlignmentRequired(FD->getType())) 2416 return true; 2417 } 2418 } 2419 } 2420 2421 return false; 2422 } 2423 2424 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2425 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2426 if (Linkage == GVA_Internal) 2427 return llvm::Function::InternalLinkage; 2428 2429 if (D->hasAttr<WeakAttr>()) { 2430 if (IsConstantVariable) 2431 return llvm::GlobalVariable::WeakODRLinkage; 2432 else 2433 return llvm::GlobalVariable::WeakAnyLinkage; 2434 } 2435 2436 // We are guaranteed to have a strong definition somewhere else, 2437 // so we can use available_externally linkage. 2438 if (Linkage == GVA_AvailableExternally) 2439 return llvm::Function::AvailableExternallyLinkage; 2440 2441 // Note that Apple's kernel linker doesn't support symbol 2442 // coalescing, so we need to avoid linkonce and weak linkages there. 2443 // Normally, this means we just map to internal, but for explicit 2444 // instantiations we'll map to external. 2445 2446 // In C++, the compiler has to emit a definition in every translation unit 2447 // that references the function. We should use linkonce_odr because 2448 // a) if all references in this translation unit are optimized away, we 2449 // don't need to codegen it. b) if the function persists, it needs to be 2450 // merged with other definitions. c) C++ has the ODR, so we know the 2451 // definition is dependable. 2452 if (Linkage == GVA_DiscardableODR) 2453 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2454 : llvm::Function::InternalLinkage; 2455 2456 // An explicit instantiation of a template has weak linkage, since 2457 // explicit instantiations can occur in multiple translation units 2458 // and must all be equivalent. However, we are not allowed to 2459 // throw away these explicit instantiations. 2460 if (Linkage == GVA_StrongODR) 2461 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2462 : llvm::Function::ExternalLinkage; 2463 2464 // C++ doesn't have tentative definitions and thus cannot have common 2465 // linkage. 2466 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2467 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2468 CodeGenOpts.NoCommon)) 2469 return llvm::GlobalVariable::CommonLinkage; 2470 2471 // selectany symbols are externally visible, so use weak instead of 2472 // linkonce. MSVC optimizes away references to const selectany globals, so 2473 // all definitions should be the same and ODR linkage should be used. 2474 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2475 if (D->hasAttr<SelectAnyAttr>()) 2476 return llvm::GlobalVariable::WeakODRLinkage; 2477 2478 // Otherwise, we have strong external linkage. 2479 assert(Linkage == GVA_StrongExternal); 2480 return llvm::GlobalVariable::ExternalLinkage; 2481 } 2482 2483 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2484 const VarDecl *VD, bool IsConstant) { 2485 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2486 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2487 } 2488 2489 /// Replace the uses of a function that was declared with a non-proto type. 2490 /// We want to silently drop extra arguments from call sites 2491 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2492 llvm::Function *newFn) { 2493 // Fast path. 2494 if (old->use_empty()) return; 2495 2496 llvm::Type *newRetTy = newFn->getReturnType(); 2497 SmallVector<llvm::Value*, 4> newArgs; 2498 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2499 2500 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2501 ui != ue; ) { 2502 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2503 llvm::User *user = use->getUser(); 2504 2505 // Recognize and replace uses of bitcasts. Most calls to 2506 // unprototyped functions will use bitcasts. 2507 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2508 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2509 replaceUsesOfNonProtoConstant(bitcast, newFn); 2510 continue; 2511 } 2512 2513 // Recognize calls to the function. 2514 llvm::CallSite callSite(user); 2515 if (!callSite) continue; 2516 if (!callSite.isCallee(&*use)) continue; 2517 2518 // If the return types don't match exactly, then we can't 2519 // transform this call unless it's dead. 2520 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2521 continue; 2522 2523 // Get the call site's attribute list. 2524 SmallVector<llvm::AttributeSet, 8> newAttrs; 2525 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2526 2527 // Collect any return attributes from the call. 2528 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2529 newAttrs.push_back( 2530 llvm::AttributeSet::get(newFn->getContext(), 2531 oldAttrs.getRetAttributes())); 2532 2533 // If the function was passed too few arguments, don't transform. 2534 unsigned newNumArgs = newFn->arg_size(); 2535 if (callSite.arg_size() < newNumArgs) continue; 2536 2537 // If extra arguments were passed, we silently drop them. 2538 // If any of the types mismatch, we don't transform. 2539 unsigned argNo = 0; 2540 bool dontTransform = false; 2541 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2542 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2543 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2544 dontTransform = true; 2545 break; 2546 } 2547 2548 // Add any parameter attributes. 2549 if (oldAttrs.hasAttributes(argNo + 1)) 2550 newAttrs. 2551 push_back(llvm:: 2552 AttributeSet::get(newFn->getContext(), 2553 oldAttrs.getParamAttributes(argNo + 1))); 2554 } 2555 if (dontTransform) 2556 continue; 2557 2558 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2559 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2560 oldAttrs.getFnAttributes())); 2561 2562 // Okay, we can transform this. Create the new call instruction and copy 2563 // over the required information. 2564 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2565 2566 // Copy over any operand bundles. 2567 callSite.getOperandBundlesAsDefs(newBundles); 2568 2569 llvm::CallSite newCall; 2570 if (callSite.isCall()) { 2571 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2572 callSite.getInstruction()); 2573 } else { 2574 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2575 newCall = llvm::InvokeInst::Create(newFn, 2576 oldInvoke->getNormalDest(), 2577 oldInvoke->getUnwindDest(), 2578 newArgs, newBundles, "", 2579 callSite.getInstruction()); 2580 } 2581 newArgs.clear(); // for the next iteration 2582 2583 if (!newCall->getType()->isVoidTy()) 2584 newCall->takeName(callSite.getInstruction()); 2585 newCall.setAttributes( 2586 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2587 newCall.setCallingConv(callSite.getCallingConv()); 2588 2589 // Finally, remove the old call, replacing any uses with the new one. 2590 if (!callSite->use_empty()) 2591 callSite->replaceAllUsesWith(newCall.getInstruction()); 2592 2593 // Copy debug location attached to CI. 2594 if (callSite->getDebugLoc()) 2595 newCall->setDebugLoc(callSite->getDebugLoc()); 2596 2597 callSite->eraseFromParent(); 2598 } 2599 } 2600 2601 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2602 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2603 /// existing call uses of the old function in the module, this adjusts them to 2604 /// call the new function directly. 2605 /// 2606 /// This is not just a cleanup: the always_inline pass requires direct calls to 2607 /// functions to be able to inline them. If there is a bitcast in the way, it 2608 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2609 /// run at -O0. 2610 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2611 llvm::Function *NewFn) { 2612 // If we're redefining a global as a function, don't transform it. 2613 if (!isa<llvm::Function>(Old)) return; 2614 2615 replaceUsesOfNonProtoConstant(Old, NewFn); 2616 } 2617 2618 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2619 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2620 // If we have a definition, this might be a deferred decl. If the 2621 // instantiation is explicit, make sure we emit it at the end. 2622 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2623 GetAddrOfGlobalVar(VD); 2624 2625 EmitTopLevelDecl(VD); 2626 } 2627 2628 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2629 llvm::GlobalValue *GV) { 2630 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2631 2632 // Compute the function info and LLVM type. 2633 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2634 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2635 2636 // Get or create the prototype for the function. 2637 if (!GV || (GV->getType()->getElementType() != Ty)) 2638 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2639 /*DontDefer=*/true, 2640 /*IsForDefinition=*/true)); 2641 2642 // Already emitted. 2643 if (!GV->isDeclaration()) 2644 return; 2645 2646 // We need to set linkage and visibility on the function before 2647 // generating code for it because various parts of IR generation 2648 // want to propagate this information down (e.g. to local static 2649 // declarations). 2650 auto *Fn = cast<llvm::Function>(GV); 2651 setFunctionLinkage(GD, Fn); 2652 setFunctionDLLStorageClass(GD, Fn); 2653 2654 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2655 setGlobalVisibility(Fn, D); 2656 2657 MaybeHandleStaticInExternC(D, Fn); 2658 2659 maybeSetTrivialComdat(*D, *Fn); 2660 2661 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2662 2663 setFunctionDefinitionAttributes(D, Fn); 2664 SetLLVMFunctionAttributesForDefinition(D, Fn); 2665 2666 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2667 AddGlobalCtor(Fn, CA->getPriority()); 2668 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2669 AddGlobalDtor(Fn, DA->getPriority()); 2670 if (D->hasAttr<AnnotateAttr>()) 2671 AddGlobalAnnotations(D, Fn); 2672 } 2673 2674 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2675 const auto *D = cast<ValueDecl>(GD.getDecl()); 2676 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2677 assert(AA && "Not an alias?"); 2678 2679 StringRef MangledName = getMangledName(GD); 2680 2681 if (AA->getAliasee() == MangledName) { 2682 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2683 return; 2684 } 2685 2686 // If there is a definition in the module, then it wins over the alias. 2687 // This is dubious, but allow it to be safe. Just ignore the alias. 2688 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2689 if (Entry && !Entry->isDeclaration()) 2690 return; 2691 2692 Aliases.push_back(GD); 2693 2694 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2695 2696 // Create a reference to the named value. This ensures that it is emitted 2697 // if a deferred decl. 2698 llvm::Constant *Aliasee; 2699 if (isa<llvm::FunctionType>(DeclTy)) 2700 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2701 /*ForVTable=*/false); 2702 else 2703 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2704 llvm::PointerType::getUnqual(DeclTy), 2705 /*D=*/nullptr); 2706 2707 // Create the new alias itself, but don't set a name yet. 2708 auto *GA = llvm::GlobalAlias::create( 2709 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2710 2711 if (Entry) { 2712 if (GA->getAliasee() == Entry) { 2713 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2714 return; 2715 } 2716 2717 assert(Entry->isDeclaration()); 2718 2719 // If there is a declaration in the module, then we had an extern followed 2720 // by the alias, as in: 2721 // extern int test6(); 2722 // ... 2723 // int test6() __attribute__((alias("test7"))); 2724 // 2725 // Remove it and replace uses of it with the alias. 2726 GA->takeName(Entry); 2727 2728 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2729 Entry->getType())); 2730 Entry->eraseFromParent(); 2731 } else { 2732 GA->setName(MangledName); 2733 } 2734 2735 // Set attributes which are particular to an alias; this is a 2736 // specialization of the attributes which may be set on a global 2737 // variable/function. 2738 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2739 D->isWeakImported()) { 2740 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2741 } 2742 2743 if (const auto *VD = dyn_cast<VarDecl>(D)) 2744 if (VD->getTLSKind()) 2745 setTLSMode(GA, *VD); 2746 2747 setAliasAttributes(D, GA); 2748 } 2749 2750 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2751 ArrayRef<llvm::Type*> Tys) { 2752 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2753 Tys); 2754 } 2755 2756 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2757 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2758 const StringLiteral *Literal, bool TargetIsLSB, 2759 bool &IsUTF16, unsigned &StringLength) { 2760 StringRef String = Literal->getString(); 2761 unsigned NumBytes = String.size(); 2762 2763 // Check for simple case. 2764 if (!Literal->containsNonAsciiOrNull()) { 2765 StringLength = NumBytes; 2766 return *Map.insert(std::make_pair(String, nullptr)).first; 2767 } 2768 2769 // Otherwise, convert the UTF8 literals into a string of shorts. 2770 IsUTF16 = true; 2771 2772 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2773 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2774 UTF16 *ToPtr = &ToBuf[0]; 2775 2776 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2777 &ToPtr, ToPtr + NumBytes, 2778 strictConversion); 2779 2780 // ConvertUTF8toUTF16 returns the length in ToPtr. 2781 StringLength = ToPtr - &ToBuf[0]; 2782 2783 // Add an explicit null. 2784 *ToPtr = 0; 2785 return *Map.insert(std::make_pair( 2786 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2787 (StringLength + 1) * 2), 2788 nullptr)).first; 2789 } 2790 2791 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2792 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2793 const StringLiteral *Literal, unsigned &StringLength) { 2794 StringRef String = Literal->getString(); 2795 StringLength = String.size(); 2796 return *Map.insert(std::make_pair(String, nullptr)).first; 2797 } 2798 2799 ConstantAddress 2800 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2801 unsigned StringLength = 0; 2802 bool isUTF16 = false; 2803 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2804 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2805 getDataLayout().isLittleEndian(), isUTF16, 2806 StringLength); 2807 2808 if (auto *C = Entry.second) 2809 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2810 2811 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2812 llvm::Constant *Zeros[] = { Zero, Zero }; 2813 llvm::Value *V; 2814 2815 // If we don't already have it, get __CFConstantStringClassReference. 2816 if (!CFConstantStringClassRef) { 2817 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2818 Ty = llvm::ArrayType::get(Ty, 0); 2819 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2820 "__CFConstantStringClassReference"); 2821 // Decay array -> ptr 2822 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2823 CFConstantStringClassRef = V; 2824 } 2825 else 2826 V = CFConstantStringClassRef; 2827 2828 QualType CFTy = getContext().getCFConstantStringType(); 2829 2830 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2831 2832 llvm::Constant *Fields[4]; 2833 2834 // Class pointer. 2835 Fields[0] = cast<llvm::ConstantExpr>(V); 2836 2837 // Flags. 2838 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2839 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2840 llvm::ConstantInt::get(Ty, 0x07C8); 2841 2842 // String pointer. 2843 llvm::Constant *C = nullptr; 2844 if (isUTF16) { 2845 auto Arr = llvm::makeArrayRef( 2846 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2847 Entry.first().size() / 2); 2848 C = llvm::ConstantDataArray::get(VMContext, Arr); 2849 } else { 2850 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2851 } 2852 2853 // Note: -fwritable-strings doesn't make the backing store strings of 2854 // CFStrings writable. (See <rdar://problem/10657500>) 2855 auto *GV = 2856 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2857 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2858 GV->setUnnamedAddr(true); 2859 // Don't enforce the target's minimum global alignment, since the only use 2860 // of the string is via this class initializer. 2861 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2862 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2863 // that changes the section it ends in, which surprises ld64. 2864 if (isUTF16) { 2865 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2866 GV->setAlignment(Align.getQuantity()); 2867 GV->setSection("__TEXT,__ustring"); 2868 } else { 2869 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2870 GV->setAlignment(Align.getQuantity()); 2871 GV->setSection("__TEXT,__cstring,cstring_literals"); 2872 } 2873 2874 // String. 2875 Fields[2] = 2876 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2877 2878 if (isUTF16) 2879 // Cast the UTF16 string to the correct type. 2880 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2881 2882 // String length. 2883 Ty = getTypes().ConvertType(getContext().LongTy); 2884 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2885 2886 CharUnits Alignment = getPointerAlign(); 2887 2888 // The struct. 2889 C = llvm::ConstantStruct::get(STy, Fields); 2890 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2891 llvm::GlobalVariable::PrivateLinkage, C, 2892 "_unnamed_cfstring_"); 2893 GV->setSection("__DATA,__cfstring"); 2894 GV->setAlignment(Alignment.getQuantity()); 2895 Entry.second = GV; 2896 2897 return ConstantAddress(GV, Alignment); 2898 } 2899 2900 ConstantAddress 2901 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2902 unsigned StringLength = 0; 2903 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2904 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2905 2906 if (auto *C = Entry.second) 2907 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2908 2909 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2910 llvm::Constant *Zeros[] = { Zero, Zero }; 2911 llvm::Value *V; 2912 // If we don't already have it, get _NSConstantStringClassReference. 2913 if (!ConstantStringClassRef) { 2914 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2915 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2916 llvm::Constant *GV; 2917 if (LangOpts.ObjCRuntime.isNonFragile()) { 2918 std::string str = 2919 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2920 : "OBJC_CLASS_$_" + StringClass; 2921 GV = getObjCRuntime().GetClassGlobal(str); 2922 // Make sure the result is of the correct type. 2923 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2924 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2925 ConstantStringClassRef = V; 2926 } else { 2927 std::string str = 2928 StringClass.empty() ? "_NSConstantStringClassReference" 2929 : "_" + StringClass + "ClassReference"; 2930 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2931 GV = CreateRuntimeVariable(PTy, str); 2932 // Decay array -> ptr 2933 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2934 ConstantStringClassRef = V; 2935 } 2936 } else 2937 V = ConstantStringClassRef; 2938 2939 if (!NSConstantStringType) { 2940 // Construct the type for a constant NSString. 2941 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2942 D->startDefinition(); 2943 2944 QualType FieldTypes[3]; 2945 2946 // const int *isa; 2947 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2948 // const char *str; 2949 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2950 // unsigned int length; 2951 FieldTypes[2] = Context.UnsignedIntTy; 2952 2953 // Create fields 2954 for (unsigned i = 0; i < 3; ++i) { 2955 FieldDecl *Field = FieldDecl::Create(Context, D, 2956 SourceLocation(), 2957 SourceLocation(), nullptr, 2958 FieldTypes[i], /*TInfo=*/nullptr, 2959 /*BitWidth=*/nullptr, 2960 /*Mutable=*/false, 2961 ICIS_NoInit); 2962 Field->setAccess(AS_public); 2963 D->addDecl(Field); 2964 } 2965 2966 D->completeDefinition(); 2967 QualType NSTy = Context.getTagDeclType(D); 2968 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2969 } 2970 2971 llvm::Constant *Fields[3]; 2972 2973 // Class pointer. 2974 Fields[0] = cast<llvm::ConstantExpr>(V); 2975 2976 // String pointer. 2977 llvm::Constant *C = 2978 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2979 2980 llvm::GlobalValue::LinkageTypes Linkage; 2981 bool isConstant; 2982 Linkage = llvm::GlobalValue::PrivateLinkage; 2983 isConstant = !LangOpts.WritableStrings; 2984 2985 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2986 Linkage, C, ".str"); 2987 GV->setUnnamedAddr(true); 2988 // Don't enforce the target's minimum global alignment, since the only use 2989 // of the string is via this class initializer. 2990 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2991 GV->setAlignment(Align.getQuantity()); 2992 Fields[1] = 2993 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2994 2995 // String length. 2996 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2997 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2998 2999 // The struct. 3000 CharUnits Alignment = getPointerAlign(); 3001 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3002 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3003 llvm::GlobalVariable::PrivateLinkage, C, 3004 "_unnamed_nsstring_"); 3005 GV->setAlignment(Alignment.getQuantity()); 3006 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3007 const char *NSStringNonFragileABISection = 3008 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3009 // FIXME. Fix section. 3010 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3011 ? NSStringNonFragileABISection 3012 : NSStringSection); 3013 Entry.second = GV; 3014 3015 return ConstantAddress(GV, Alignment); 3016 } 3017 3018 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3019 if (ObjCFastEnumerationStateType.isNull()) { 3020 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3021 D->startDefinition(); 3022 3023 QualType FieldTypes[] = { 3024 Context.UnsignedLongTy, 3025 Context.getPointerType(Context.getObjCIdType()), 3026 Context.getPointerType(Context.UnsignedLongTy), 3027 Context.getConstantArrayType(Context.UnsignedLongTy, 3028 llvm::APInt(32, 5), ArrayType::Normal, 0) 3029 }; 3030 3031 for (size_t i = 0; i < 4; ++i) { 3032 FieldDecl *Field = FieldDecl::Create(Context, 3033 D, 3034 SourceLocation(), 3035 SourceLocation(), nullptr, 3036 FieldTypes[i], /*TInfo=*/nullptr, 3037 /*BitWidth=*/nullptr, 3038 /*Mutable=*/false, 3039 ICIS_NoInit); 3040 Field->setAccess(AS_public); 3041 D->addDecl(Field); 3042 } 3043 3044 D->completeDefinition(); 3045 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3046 } 3047 3048 return ObjCFastEnumerationStateType; 3049 } 3050 3051 llvm::Constant * 3052 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3053 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3054 3055 // Don't emit it as the address of the string, emit the string data itself 3056 // as an inline array. 3057 if (E->getCharByteWidth() == 1) { 3058 SmallString<64> Str(E->getString()); 3059 3060 // Resize the string to the right size, which is indicated by its type. 3061 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3062 Str.resize(CAT->getSize().getZExtValue()); 3063 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3064 } 3065 3066 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3067 llvm::Type *ElemTy = AType->getElementType(); 3068 unsigned NumElements = AType->getNumElements(); 3069 3070 // Wide strings have either 2-byte or 4-byte elements. 3071 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3072 SmallVector<uint16_t, 32> Elements; 3073 Elements.reserve(NumElements); 3074 3075 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3076 Elements.push_back(E->getCodeUnit(i)); 3077 Elements.resize(NumElements); 3078 return llvm::ConstantDataArray::get(VMContext, Elements); 3079 } 3080 3081 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3082 SmallVector<uint32_t, 32> Elements; 3083 Elements.reserve(NumElements); 3084 3085 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3086 Elements.push_back(E->getCodeUnit(i)); 3087 Elements.resize(NumElements); 3088 return llvm::ConstantDataArray::get(VMContext, Elements); 3089 } 3090 3091 static llvm::GlobalVariable * 3092 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3093 CodeGenModule &CGM, StringRef GlobalName, 3094 CharUnits Alignment) { 3095 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3096 unsigned AddrSpace = 0; 3097 if (CGM.getLangOpts().OpenCL) 3098 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3099 3100 llvm::Module &M = CGM.getModule(); 3101 // Create a global variable for this string 3102 auto *GV = new llvm::GlobalVariable( 3103 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3104 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3105 GV->setAlignment(Alignment.getQuantity()); 3106 GV->setUnnamedAddr(true); 3107 if (GV->isWeakForLinker()) { 3108 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3109 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3110 } 3111 3112 return GV; 3113 } 3114 3115 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3116 /// constant array for the given string literal. 3117 ConstantAddress 3118 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3119 StringRef Name) { 3120 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3121 3122 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3123 llvm::GlobalVariable **Entry = nullptr; 3124 if (!LangOpts.WritableStrings) { 3125 Entry = &ConstantStringMap[C]; 3126 if (auto GV = *Entry) { 3127 if (Alignment.getQuantity() > GV->getAlignment()) 3128 GV->setAlignment(Alignment.getQuantity()); 3129 return ConstantAddress(GV, Alignment); 3130 } 3131 } 3132 3133 SmallString<256> MangledNameBuffer; 3134 StringRef GlobalVariableName; 3135 llvm::GlobalValue::LinkageTypes LT; 3136 3137 // Mangle the string literal if the ABI allows for it. However, we cannot 3138 // do this if we are compiling with ASan or -fwritable-strings because they 3139 // rely on strings having normal linkage. 3140 if (!LangOpts.WritableStrings && 3141 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3142 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3143 llvm::raw_svector_ostream Out(MangledNameBuffer); 3144 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3145 3146 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3147 GlobalVariableName = MangledNameBuffer; 3148 } else { 3149 LT = llvm::GlobalValue::PrivateLinkage; 3150 GlobalVariableName = Name; 3151 } 3152 3153 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3154 if (Entry) 3155 *Entry = GV; 3156 3157 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3158 QualType()); 3159 return ConstantAddress(GV, Alignment); 3160 } 3161 3162 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3163 /// array for the given ObjCEncodeExpr node. 3164 ConstantAddress 3165 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3166 std::string Str; 3167 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3168 3169 return GetAddrOfConstantCString(Str); 3170 } 3171 3172 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3173 /// the literal and a terminating '\0' character. 3174 /// The result has pointer to array type. 3175 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3176 const std::string &Str, const char *GlobalName) { 3177 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3178 CharUnits Alignment = 3179 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3180 3181 llvm::Constant *C = 3182 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3183 3184 // Don't share any string literals if strings aren't constant. 3185 llvm::GlobalVariable **Entry = nullptr; 3186 if (!LangOpts.WritableStrings) { 3187 Entry = &ConstantStringMap[C]; 3188 if (auto GV = *Entry) { 3189 if (Alignment.getQuantity() > GV->getAlignment()) 3190 GV->setAlignment(Alignment.getQuantity()); 3191 return ConstantAddress(GV, Alignment); 3192 } 3193 } 3194 3195 // Get the default prefix if a name wasn't specified. 3196 if (!GlobalName) 3197 GlobalName = ".str"; 3198 // Create a global variable for this. 3199 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3200 GlobalName, Alignment); 3201 if (Entry) 3202 *Entry = GV; 3203 return ConstantAddress(GV, Alignment); 3204 } 3205 3206 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3207 const MaterializeTemporaryExpr *E, const Expr *Init) { 3208 assert((E->getStorageDuration() == SD_Static || 3209 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3210 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3211 3212 // If we're not materializing a subobject of the temporary, keep the 3213 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3214 QualType MaterializedType = Init->getType(); 3215 if (Init == E->GetTemporaryExpr()) 3216 MaterializedType = E->getType(); 3217 3218 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3219 3220 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3221 return ConstantAddress(Slot, Align); 3222 3223 // FIXME: If an externally-visible declaration extends multiple temporaries, 3224 // we need to give each temporary the same name in every translation unit (and 3225 // we also need to make the temporaries externally-visible). 3226 SmallString<256> Name; 3227 llvm::raw_svector_ostream Out(Name); 3228 getCXXABI().getMangleContext().mangleReferenceTemporary( 3229 VD, E->getManglingNumber(), Out); 3230 3231 APValue *Value = nullptr; 3232 if (E->getStorageDuration() == SD_Static) { 3233 // We might have a cached constant initializer for this temporary. Note 3234 // that this might have a different value from the value computed by 3235 // evaluating the initializer if the surrounding constant expression 3236 // modifies the temporary. 3237 Value = getContext().getMaterializedTemporaryValue(E, false); 3238 if (Value && Value->isUninit()) 3239 Value = nullptr; 3240 } 3241 3242 // Try evaluating it now, it might have a constant initializer. 3243 Expr::EvalResult EvalResult; 3244 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3245 !EvalResult.hasSideEffects()) 3246 Value = &EvalResult.Val; 3247 3248 llvm::Constant *InitialValue = nullptr; 3249 bool Constant = false; 3250 llvm::Type *Type; 3251 if (Value) { 3252 // The temporary has a constant initializer, use it. 3253 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3254 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3255 Type = InitialValue->getType(); 3256 } else { 3257 // No initializer, the initialization will be provided when we 3258 // initialize the declaration which performed lifetime extension. 3259 Type = getTypes().ConvertTypeForMem(MaterializedType); 3260 } 3261 3262 // Create a global variable for this lifetime-extended temporary. 3263 llvm::GlobalValue::LinkageTypes Linkage = 3264 getLLVMLinkageVarDefinition(VD, Constant); 3265 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3266 const VarDecl *InitVD; 3267 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3268 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3269 // Temporaries defined inside a class get linkonce_odr linkage because the 3270 // class can be defined in multipe translation units. 3271 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3272 } else { 3273 // There is no need for this temporary to have external linkage if the 3274 // VarDecl has external linkage. 3275 Linkage = llvm::GlobalVariable::InternalLinkage; 3276 } 3277 } 3278 unsigned AddrSpace = GetGlobalVarAddressSpace( 3279 VD, getContext().getTargetAddressSpace(MaterializedType)); 3280 auto *GV = new llvm::GlobalVariable( 3281 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3282 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3283 AddrSpace); 3284 setGlobalVisibility(GV, VD); 3285 GV->setAlignment(Align.getQuantity()); 3286 if (supportsCOMDAT() && GV->isWeakForLinker()) 3287 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3288 if (VD->getTLSKind()) 3289 setTLSMode(GV, *VD); 3290 MaterializedGlobalTemporaryMap[E] = GV; 3291 return ConstantAddress(GV, Align); 3292 } 3293 3294 /// EmitObjCPropertyImplementations - Emit information for synthesized 3295 /// properties for an implementation. 3296 void CodeGenModule::EmitObjCPropertyImplementations(const 3297 ObjCImplementationDecl *D) { 3298 for (const auto *PID : D->property_impls()) { 3299 // Dynamic is just for type-checking. 3300 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3301 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3302 3303 // Determine which methods need to be implemented, some may have 3304 // been overridden. Note that ::isPropertyAccessor is not the method 3305 // we want, that just indicates if the decl came from a 3306 // property. What we want to know is if the method is defined in 3307 // this implementation. 3308 if (!D->getInstanceMethod(PD->getGetterName())) 3309 CodeGenFunction(*this).GenerateObjCGetter( 3310 const_cast<ObjCImplementationDecl *>(D), PID); 3311 if (!PD->isReadOnly() && 3312 !D->getInstanceMethod(PD->getSetterName())) 3313 CodeGenFunction(*this).GenerateObjCSetter( 3314 const_cast<ObjCImplementationDecl *>(D), PID); 3315 } 3316 } 3317 } 3318 3319 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3320 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3321 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3322 ivar; ivar = ivar->getNextIvar()) 3323 if (ivar->getType().isDestructedType()) 3324 return true; 3325 3326 return false; 3327 } 3328 3329 static bool AllTrivialInitializers(CodeGenModule &CGM, 3330 ObjCImplementationDecl *D) { 3331 CodeGenFunction CGF(CGM); 3332 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3333 E = D->init_end(); B != E; ++B) { 3334 CXXCtorInitializer *CtorInitExp = *B; 3335 Expr *Init = CtorInitExp->getInit(); 3336 if (!CGF.isTrivialInitializer(Init)) 3337 return false; 3338 } 3339 return true; 3340 } 3341 3342 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3343 /// for an implementation. 3344 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3345 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3346 if (needsDestructMethod(D)) { 3347 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3348 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3349 ObjCMethodDecl *DTORMethod = 3350 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3351 cxxSelector, getContext().VoidTy, nullptr, D, 3352 /*isInstance=*/true, /*isVariadic=*/false, 3353 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3354 /*isDefined=*/false, ObjCMethodDecl::Required); 3355 D->addInstanceMethod(DTORMethod); 3356 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3357 D->setHasDestructors(true); 3358 } 3359 3360 // If the implementation doesn't have any ivar initializers, we don't need 3361 // a .cxx_construct. 3362 if (D->getNumIvarInitializers() == 0 || 3363 AllTrivialInitializers(*this, D)) 3364 return; 3365 3366 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3367 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3368 // The constructor returns 'self'. 3369 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3370 D->getLocation(), 3371 D->getLocation(), 3372 cxxSelector, 3373 getContext().getObjCIdType(), 3374 nullptr, D, /*isInstance=*/true, 3375 /*isVariadic=*/false, 3376 /*isPropertyAccessor=*/true, 3377 /*isImplicitlyDeclared=*/true, 3378 /*isDefined=*/false, 3379 ObjCMethodDecl::Required); 3380 D->addInstanceMethod(CTORMethod); 3381 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3382 D->setHasNonZeroConstructors(true); 3383 } 3384 3385 /// EmitNamespace - Emit all declarations in a namespace. 3386 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3387 for (auto *I : ND->decls()) { 3388 if (const auto *VD = dyn_cast<VarDecl>(I)) 3389 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3390 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3391 continue; 3392 EmitTopLevelDecl(I); 3393 } 3394 } 3395 3396 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3397 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3398 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3399 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3400 ErrorUnsupported(LSD, "linkage spec"); 3401 return; 3402 } 3403 3404 for (auto *I : LSD->decls()) { 3405 // Meta-data for ObjC class includes references to implemented methods. 3406 // Generate class's method definitions first. 3407 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3408 for (auto *M : OID->methods()) 3409 EmitTopLevelDecl(M); 3410 } 3411 EmitTopLevelDecl(I); 3412 } 3413 } 3414 3415 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3416 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3417 // Ignore dependent declarations. 3418 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3419 return; 3420 3421 switch (D->getKind()) { 3422 case Decl::CXXConversion: 3423 case Decl::CXXMethod: 3424 case Decl::Function: 3425 // Skip function templates 3426 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3427 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3428 return; 3429 3430 EmitGlobal(cast<FunctionDecl>(D)); 3431 // Always provide some coverage mapping 3432 // even for the functions that aren't emitted. 3433 AddDeferredUnusedCoverageMapping(D); 3434 break; 3435 3436 case Decl::Var: 3437 // Skip variable templates 3438 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3439 return; 3440 case Decl::VarTemplateSpecialization: 3441 EmitGlobal(cast<VarDecl>(D)); 3442 break; 3443 3444 // Indirect fields from global anonymous structs and unions can be 3445 // ignored; only the actual variable requires IR gen support. 3446 case Decl::IndirectField: 3447 break; 3448 3449 // C++ Decls 3450 case Decl::Namespace: 3451 EmitNamespace(cast<NamespaceDecl>(D)); 3452 break; 3453 // No code generation needed. 3454 case Decl::UsingShadow: 3455 case Decl::ClassTemplate: 3456 case Decl::VarTemplate: 3457 case Decl::VarTemplatePartialSpecialization: 3458 case Decl::FunctionTemplate: 3459 case Decl::TypeAliasTemplate: 3460 case Decl::Block: 3461 case Decl::Empty: 3462 break; 3463 case Decl::Using: // using X; [C++] 3464 if (CGDebugInfo *DI = getModuleDebugInfo()) 3465 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3466 return; 3467 case Decl::NamespaceAlias: 3468 if (CGDebugInfo *DI = getModuleDebugInfo()) 3469 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3470 return; 3471 case Decl::UsingDirective: // using namespace X; [C++] 3472 if (CGDebugInfo *DI = getModuleDebugInfo()) 3473 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3474 return; 3475 case Decl::CXXConstructor: 3476 // Skip function templates 3477 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3478 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3479 return; 3480 3481 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3482 break; 3483 case Decl::CXXDestructor: 3484 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3485 return; 3486 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3487 break; 3488 3489 case Decl::StaticAssert: 3490 // Nothing to do. 3491 break; 3492 3493 // Objective-C Decls 3494 3495 // Forward declarations, no (immediate) code generation. 3496 case Decl::ObjCInterface: 3497 case Decl::ObjCCategory: 3498 break; 3499 3500 case Decl::ObjCProtocol: { 3501 auto *Proto = cast<ObjCProtocolDecl>(D); 3502 if (Proto->isThisDeclarationADefinition()) 3503 ObjCRuntime->GenerateProtocol(Proto); 3504 break; 3505 } 3506 3507 case Decl::ObjCCategoryImpl: 3508 // Categories have properties but don't support synthesize so we 3509 // can ignore them here. 3510 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3511 break; 3512 3513 case Decl::ObjCImplementation: { 3514 auto *OMD = cast<ObjCImplementationDecl>(D); 3515 EmitObjCPropertyImplementations(OMD); 3516 EmitObjCIvarInitializations(OMD); 3517 ObjCRuntime->GenerateClass(OMD); 3518 // Emit global variable debug information. 3519 if (CGDebugInfo *DI = getModuleDebugInfo()) 3520 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3521 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3522 OMD->getClassInterface()), OMD->getLocation()); 3523 break; 3524 } 3525 case Decl::ObjCMethod: { 3526 auto *OMD = cast<ObjCMethodDecl>(D); 3527 // If this is not a prototype, emit the body. 3528 if (OMD->getBody()) 3529 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3530 break; 3531 } 3532 case Decl::ObjCCompatibleAlias: 3533 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3534 break; 3535 3536 case Decl::LinkageSpec: 3537 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3538 break; 3539 3540 case Decl::FileScopeAsm: { 3541 // File-scope asm is ignored during device-side CUDA compilation. 3542 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3543 break; 3544 auto *AD = cast<FileScopeAsmDecl>(D); 3545 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3546 break; 3547 } 3548 3549 case Decl::Import: { 3550 auto *Import = cast<ImportDecl>(D); 3551 3552 // Ignore import declarations that come from imported modules. 3553 if (Import->getImportedOwningModule()) 3554 break; 3555 if (CGDebugInfo *DI = getModuleDebugInfo()) 3556 DI->EmitImportDecl(*Import); 3557 3558 ImportedModules.insert(Import->getImportedModule()); 3559 break; 3560 } 3561 3562 case Decl::OMPThreadPrivate: 3563 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3564 break; 3565 3566 case Decl::ClassTemplateSpecialization: { 3567 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3568 if (DebugInfo && 3569 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3570 Spec->hasDefinition()) 3571 DebugInfo->completeTemplateDefinition(*Spec); 3572 break; 3573 } 3574 3575 default: 3576 // Make sure we handled everything we should, every other kind is a 3577 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3578 // function. Need to recode Decl::Kind to do that easily. 3579 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3580 break; 3581 } 3582 } 3583 3584 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3585 // Do we need to generate coverage mapping? 3586 if (!CodeGenOpts.CoverageMapping) 3587 return; 3588 switch (D->getKind()) { 3589 case Decl::CXXConversion: 3590 case Decl::CXXMethod: 3591 case Decl::Function: 3592 case Decl::ObjCMethod: 3593 case Decl::CXXConstructor: 3594 case Decl::CXXDestructor: { 3595 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3596 return; 3597 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3598 if (I == DeferredEmptyCoverageMappingDecls.end()) 3599 DeferredEmptyCoverageMappingDecls[D] = true; 3600 break; 3601 } 3602 default: 3603 break; 3604 }; 3605 } 3606 3607 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3608 // Do we need to generate coverage mapping? 3609 if (!CodeGenOpts.CoverageMapping) 3610 return; 3611 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3612 if (Fn->isTemplateInstantiation()) 3613 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3614 } 3615 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3616 if (I == DeferredEmptyCoverageMappingDecls.end()) 3617 DeferredEmptyCoverageMappingDecls[D] = false; 3618 else 3619 I->second = false; 3620 } 3621 3622 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3623 std::vector<const Decl *> DeferredDecls; 3624 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3625 if (!I.second) 3626 continue; 3627 DeferredDecls.push_back(I.first); 3628 } 3629 // Sort the declarations by their location to make sure that the tests get a 3630 // predictable order for the coverage mapping for the unused declarations. 3631 if (CodeGenOpts.DumpCoverageMapping) 3632 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3633 [] (const Decl *LHS, const Decl *RHS) { 3634 return LHS->getLocStart() < RHS->getLocStart(); 3635 }); 3636 for (const auto *D : DeferredDecls) { 3637 switch (D->getKind()) { 3638 case Decl::CXXConversion: 3639 case Decl::CXXMethod: 3640 case Decl::Function: 3641 case Decl::ObjCMethod: { 3642 CodeGenPGO PGO(*this); 3643 GlobalDecl GD(cast<FunctionDecl>(D)); 3644 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3645 getFunctionLinkage(GD)); 3646 break; 3647 } 3648 case Decl::CXXConstructor: { 3649 CodeGenPGO PGO(*this); 3650 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3651 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3652 getFunctionLinkage(GD)); 3653 break; 3654 } 3655 case Decl::CXXDestructor: { 3656 CodeGenPGO PGO(*this); 3657 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3658 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3659 getFunctionLinkage(GD)); 3660 break; 3661 } 3662 default: 3663 break; 3664 }; 3665 } 3666 } 3667 3668 /// Turns the given pointer into a constant. 3669 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3670 const void *Ptr) { 3671 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3672 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3673 return llvm::ConstantInt::get(i64, PtrInt); 3674 } 3675 3676 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3677 llvm::NamedMDNode *&GlobalMetadata, 3678 GlobalDecl D, 3679 llvm::GlobalValue *Addr) { 3680 if (!GlobalMetadata) 3681 GlobalMetadata = 3682 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3683 3684 // TODO: should we report variant information for ctors/dtors? 3685 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3686 llvm::ConstantAsMetadata::get(GetPointerConstant( 3687 CGM.getLLVMContext(), D.getDecl()))}; 3688 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3689 } 3690 3691 /// For each function which is declared within an extern "C" region and marked 3692 /// as 'used', but has internal linkage, create an alias from the unmangled 3693 /// name to the mangled name if possible. People expect to be able to refer 3694 /// to such functions with an unmangled name from inline assembly within the 3695 /// same translation unit. 3696 void CodeGenModule::EmitStaticExternCAliases() { 3697 for (auto &I : StaticExternCValues) { 3698 IdentifierInfo *Name = I.first; 3699 llvm::GlobalValue *Val = I.second; 3700 if (Val && !getModule().getNamedValue(Name->getName())) 3701 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3702 } 3703 } 3704 3705 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3706 GlobalDecl &Result) const { 3707 auto Res = Manglings.find(MangledName); 3708 if (Res == Manglings.end()) 3709 return false; 3710 Result = Res->getValue(); 3711 return true; 3712 } 3713 3714 /// Emits metadata nodes associating all the global values in the 3715 /// current module with the Decls they came from. This is useful for 3716 /// projects using IR gen as a subroutine. 3717 /// 3718 /// Since there's currently no way to associate an MDNode directly 3719 /// with an llvm::GlobalValue, we create a global named metadata 3720 /// with the name 'clang.global.decl.ptrs'. 3721 void CodeGenModule::EmitDeclMetadata() { 3722 llvm::NamedMDNode *GlobalMetadata = nullptr; 3723 3724 for (auto &I : MangledDeclNames) { 3725 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3726 // Some mangled names don't necessarily have an associated GlobalValue 3727 // in this module, e.g. if we mangled it for DebugInfo. 3728 if (Addr) 3729 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3730 } 3731 } 3732 3733 /// Emits metadata nodes for all the local variables in the current 3734 /// function. 3735 void CodeGenFunction::EmitDeclMetadata() { 3736 if (LocalDeclMap.empty()) return; 3737 3738 llvm::LLVMContext &Context = getLLVMContext(); 3739 3740 // Find the unique metadata ID for this name. 3741 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3742 3743 llvm::NamedMDNode *GlobalMetadata = nullptr; 3744 3745 for (auto &I : LocalDeclMap) { 3746 const Decl *D = I.first; 3747 llvm::Value *Addr = I.second.getPointer(); 3748 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3749 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3750 Alloca->setMetadata( 3751 DeclPtrKind, llvm::MDNode::get( 3752 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3753 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3754 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3755 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3756 } 3757 } 3758 } 3759 3760 void CodeGenModule::EmitVersionIdentMetadata() { 3761 llvm::NamedMDNode *IdentMetadata = 3762 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3763 std::string Version = getClangFullVersion(); 3764 llvm::LLVMContext &Ctx = TheModule.getContext(); 3765 3766 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3767 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3768 } 3769 3770 void CodeGenModule::EmitTargetMetadata() { 3771 // Warning, new MangledDeclNames may be appended within this loop. 3772 // We rely on MapVector insertions adding new elements to the end 3773 // of the container. 3774 // FIXME: Move this loop into the one target that needs it, and only 3775 // loop over those declarations for which we couldn't emit the target 3776 // metadata when we emitted the declaration. 3777 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3778 auto Val = *(MangledDeclNames.begin() + I); 3779 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3780 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3781 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3782 } 3783 } 3784 3785 void CodeGenModule::EmitCoverageFile() { 3786 if (!getCodeGenOpts().CoverageFile.empty()) { 3787 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3788 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3789 llvm::LLVMContext &Ctx = TheModule.getContext(); 3790 llvm::MDString *CoverageFile = 3791 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3792 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3793 llvm::MDNode *CU = CUNode->getOperand(i); 3794 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3795 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3796 } 3797 } 3798 } 3799 } 3800 3801 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3802 // Sema has checked that all uuid strings are of the form 3803 // "12345678-1234-1234-1234-1234567890ab". 3804 assert(Uuid.size() == 36); 3805 for (unsigned i = 0; i < 36; ++i) { 3806 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3807 else assert(isHexDigit(Uuid[i])); 3808 } 3809 3810 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3811 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3812 3813 llvm::Constant *Field3[8]; 3814 for (unsigned Idx = 0; Idx < 8; ++Idx) 3815 Field3[Idx] = llvm::ConstantInt::get( 3816 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3817 3818 llvm::Constant *Fields[4] = { 3819 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3820 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3821 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3822 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3823 }; 3824 3825 return llvm::ConstantStruct::getAnon(Fields); 3826 } 3827 3828 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3829 bool ForEH) { 3830 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3831 // FIXME: should we even be calling this method if RTTI is disabled 3832 // and it's not for EH? 3833 if (!ForEH && !getLangOpts().RTTI) 3834 return llvm::Constant::getNullValue(Int8PtrTy); 3835 3836 if (ForEH && Ty->isObjCObjectPointerType() && 3837 LangOpts.ObjCRuntime.isGNUFamily()) 3838 return ObjCRuntime->GetEHType(Ty); 3839 3840 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3841 } 3842 3843 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3844 for (auto RefExpr : D->varlists()) { 3845 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3846 bool PerformInit = 3847 VD->getAnyInitializer() && 3848 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3849 /*ForRef=*/false); 3850 3851 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3852 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3853 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3854 CXXGlobalInits.push_back(InitFunction); 3855 } 3856 } 3857 3858 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3859 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3860 if (InternalId) 3861 return InternalId; 3862 3863 if (isExternallyVisible(T->getLinkage())) { 3864 std::string OutName; 3865 llvm::raw_string_ostream Out(OutName); 3866 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3867 3868 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3869 } else { 3870 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3871 llvm::ArrayRef<llvm::Metadata *>()); 3872 } 3873 3874 return InternalId; 3875 } 3876 3877 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3878 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3879 llvm::Metadata *BitsetOps[] = { 3880 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3881 llvm::ConstantAsMetadata::get(VTable), 3882 llvm::ConstantAsMetadata::get( 3883 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3884 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3885 } 3886 3887 // Fills in the supplied string map with the set of target features for the 3888 // passed in function. 3889 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 3890 const FunctionDecl *FD) { 3891 StringRef TargetCPU = Target.getTargetOpts().CPU; 3892 if (const auto *TD = FD->getAttr<TargetAttr>()) { 3893 // If we have a TargetAttr build up the feature map based on that. 3894 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 3895 3896 // Make a copy of the features as passed on the command line into the 3897 // beginning of the additional features from the function to override. 3898 ParsedAttr.first.insert(ParsedAttr.first.begin(), 3899 Target.getTargetOpts().FeaturesAsWritten.begin(), 3900 Target.getTargetOpts().FeaturesAsWritten.end()); 3901 3902 if (ParsedAttr.second != "") 3903 TargetCPU = ParsedAttr.second; 3904 3905 // Now populate the feature map, first with the TargetCPU which is either 3906 // the default or a new one from the target attribute string. Then we'll use 3907 // the passed in features (FeaturesAsWritten) along with the new ones from 3908 // the attribute. 3909 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 3910 } else { 3911 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 3912 Target.getTargetOpts().Features); 3913 } 3914 } 3915