1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (LangOpts.Sanitize.Thread || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 150 // If coverage mapping generation is enabled, create the 151 // CoverageMappingModuleGen object. 152 if (CodeGenOpts.CoverageMapping) 153 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 154 } 155 156 CodeGenModule::~CodeGenModule() { 157 delete ObjCRuntime; 158 delete OpenCLRuntime; 159 delete OpenMPRuntime; 160 delete CUDARuntime; 161 delete TheTargetCodeGenInfo; 162 delete TBAA; 163 delete DebugInfo; 164 delete ARCData; 165 delete RRData; 166 } 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime = CreateGNUObjCRuntime(*this); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 ObjCRuntime = CreateMacObjCRuntime(*this); 182 return; 183 } 184 llvm_unreachable("bad runtime kind"); 185 } 186 187 void CodeGenModule::createOpenCLRuntime() { 188 OpenCLRuntime = new CGOpenCLRuntime(*this); 189 } 190 191 void CodeGenModule::createOpenMPRuntime() { 192 OpenMPRuntime = new CGOpenMPRuntime(*this); 193 } 194 195 void CodeGenModule::createCUDARuntime() { 196 CUDARuntime = CreateNVCUDARuntime(*this); 197 } 198 199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 200 Replacements[Name] = C; 201 } 202 203 void CodeGenModule::applyReplacements() { 204 for (ReplacementsTy::iterator I = Replacements.begin(), 205 E = Replacements.end(); 206 I != E; ++I) { 207 StringRef MangledName = I->first(); 208 llvm::Constant *Replacement = I->second; 209 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 210 if (!Entry) 211 continue; 212 auto *OldF = cast<llvm::Function>(Entry); 213 auto *NewF = dyn_cast<llvm::Function>(Replacement); 214 if (!NewF) { 215 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 216 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 217 } else { 218 auto *CE = cast<llvm::ConstantExpr>(Replacement); 219 assert(CE->getOpcode() == llvm::Instruction::BitCast || 220 CE->getOpcode() == llvm::Instruction::GetElementPtr); 221 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 222 } 223 } 224 225 // Replace old with new, but keep the old order. 226 OldF->replaceAllUsesWith(Replacement); 227 if (NewF) { 228 NewF->removeFromParent(); 229 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 230 } 231 OldF->eraseFromParent(); 232 } 233 } 234 235 // This is only used in aliases that we created and we know they have a 236 // linear structure. 237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 238 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 239 const llvm::Constant *C = &GA; 240 for (;;) { 241 C = C->stripPointerCasts(); 242 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 243 return GO; 244 // stripPointerCasts will not walk over weak aliases. 245 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 246 if (!GA2) 247 return nullptr; 248 if (!Visited.insert(GA2)) 249 return nullptr; 250 C = GA2->getAliasee(); 251 } 252 } 253 254 void CodeGenModule::checkAliases() { 255 // Check if the constructed aliases are well formed. It is really unfortunate 256 // that we have to do this in CodeGen, but we only construct mangled names 257 // and aliases during codegen. 258 bool Error = false; 259 DiagnosticsEngine &Diags = getDiags(); 260 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 261 E = Aliases.end(); I != E; ++I) { 262 const GlobalDecl &GD = *I; 263 const auto *D = cast<ValueDecl>(GD.getDecl()); 264 const AliasAttr *AA = D->getAttr<AliasAttr>(); 265 StringRef MangledName = getMangledName(GD); 266 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 267 auto *Alias = cast<llvm::GlobalAlias>(Entry); 268 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 269 if (!GV) { 270 Error = true; 271 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 272 } else if (GV->isDeclaration()) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 275 } 276 277 llvm::Constant *Aliasee = Alias->getAliasee(); 278 llvm::GlobalValue *AliaseeGV; 279 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 280 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 281 else 282 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 283 284 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 285 StringRef AliasSection = SA->getName(); 286 if (AliasSection != AliaseeGV->getSection()) 287 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 288 << AliasSection; 289 } 290 291 // We have to handle alias to weak aliases in here. LLVM itself disallows 292 // this since the object semantics would not match the IL one. For 293 // compatibility with gcc we implement it by just pointing the alias 294 // to its aliasee's aliasee. We also warn, since the user is probably 295 // expecting the link to be weak. 296 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 297 if (GA->mayBeOverridden()) { 298 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 299 << GV->getName() << GA->getName(); 300 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 301 GA->getAliasee(), Alias->getType()); 302 Alias->setAliasee(Aliasee); 303 } 304 } 305 } 306 if (!Error) 307 return; 308 309 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 310 E = Aliases.end(); I != E; ++I) { 311 const GlobalDecl &GD = *I; 312 StringRef MangledName = getMangledName(GD); 313 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 314 auto *Alias = cast<llvm::GlobalAlias>(Entry); 315 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 316 Alias->eraseFromParent(); 317 } 318 } 319 320 void CodeGenModule::clear() { 321 DeferredDeclsToEmit.clear(); 322 } 323 324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 325 StringRef MainFile) { 326 if (!hasDiagnostics()) 327 return; 328 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 329 if (MainFile.empty()) 330 MainFile = "<stdin>"; 331 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 332 } else 333 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 334 << Mismatched; 335 } 336 337 void CodeGenModule::Release() { 338 EmitDeferred(); 339 applyReplacements(); 340 checkAliases(); 341 EmitCXXGlobalInitFunc(); 342 EmitCXXGlobalDtorFunc(); 343 EmitCXXThreadLocalInitFunc(); 344 if (ObjCRuntime) 345 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 346 AddGlobalCtor(ObjCInitFunction); 347 if (getCodeGenOpts().ProfileInstrGenerate) 348 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 349 AddGlobalCtor(PGOInit, 0); 350 if (PGOReader && PGOStats.hasDiagnostics()) 351 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 352 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 353 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 354 EmitGlobalAnnotations(); 355 EmitStaticExternCAliases(); 356 EmitDeferredUnusedCoverageMappings(); 357 if (CoverageMapping) 358 CoverageMapping->emit(); 359 emitLLVMUsed(); 360 361 if (CodeGenOpts.Autolink && 362 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 363 EmitModuleLinkOptions(); 364 } 365 if (CodeGenOpts.DwarfVersion) 366 // We actually want the latest version when there are conflicts. 367 // We can change from Warning to Latest if such mode is supported. 368 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 369 CodeGenOpts.DwarfVersion); 370 if (DebugInfo) 371 // We support a single version in the linked module. The LLVM 372 // parser will drop debug info with a different version number 373 // (and warn about it, too). 374 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 375 llvm::DEBUG_METADATA_VERSION); 376 377 // We need to record the widths of enums and wchar_t, so that we can generate 378 // the correct build attributes in the ARM backend. 379 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 380 if ( Arch == llvm::Triple::arm 381 || Arch == llvm::Triple::armeb 382 || Arch == llvm::Triple::thumb 383 || Arch == llvm::Triple::thumbeb) { 384 // Width of wchar_t in bytes 385 uint64_t WCharWidth = 386 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 387 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 388 389 // The minimum width of an enum in bytes 390 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 391 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 392 } 393 394 SimplifyPersonality(); 395 396 if (getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 400 EmitCoverageFile(); 401 402 if (DebugInfo) 403 DebugInfo->finalize(); 404 405 EmitVersionIdentMetadata(); 406 407 EmitTargetMetadata(); 408 } 409 410 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 411 // Make sure that this type is translated. 412 Types.UpdateCompletedType(TD); 413 } 414 415 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 416 if (!TBAA) 417 return nullptr; 418 return TBAA->getTBAAInfo(QTy); 419 } 420 421 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 422 if (!TBAA) 423 return nullptr; 424 return TBAA->getTBAAInfoForVTablePtr(); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 428 if (!TBAA) 429 return nullptr; 430 return TBAA->getTBAAStructInfo(QTy); 431 } 432 433 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 434 if (!TBAA) 435 return nullptr; 436 return TBAA->getTBAAStructTypeInfo(QTy); 437 } 438 439 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 440 llvm::MDNode *AccessN, 441 uint64_t O) { 442 if (!TBAA) 443 return nullptr; 444 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 445 } 446 447 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 448 /// and struct-path aware TBAA, the tag has the same format: 449 /// base type, access type and offset. 450 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 451 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 452 llvm::MDNode *TBAAInfo, 453 bool ConvertTypeToTag) { 454 if (ConvertTypeToTag && TBAA) 455 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 456 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 457 else 458 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 459 } 460 461 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 462 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 463 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 464 } 465 466 /// ErrorUnsupported - Print out an error that codegen doesn't support the 467 /// specified stmt yet. 468 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 469 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 470 "cannot compile this %0 yet"); 471 std::string Msg = Type; 472 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 473 << Msg << S->getSourceRange(); 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified decl yet. 478 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 483 } 484 485 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 486 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 487 } 488 489 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 490 const NamedDecl *D) const { 491 // Internal definitions always have default visibility. 492 if (GV->hasLocalLinkage()) { 493 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 494 return; 495 } 496 497 // Set visibility for definitions. 498 LinkageInfo LV = D->getLinkageAndVisibility(); 499 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 500 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 501 } 502 503 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 504 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 505 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 506 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 507 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 508 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 509 } 510 511 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 512 CodeGenOptions::TLSModel M) { 513 switch (M) { 514 case CodeGenOptions::GeneralDynamicTLSModel: 515 return llvm::GlobalVariable::GeneralDynamicTLSModel; 516 case CodeGenOptions::LocalDynamicTLSModel: 517 return llvm::GlobalVariable::LocalDynamicTLSModel; 518 case CodeGenOptions::InitialExecTLSModel: 519 return llvm::GlobalVariable::InitialExecTLSModel; 520 case CodeGenOptions::LocalExecTLSModel: 521 return llvm::GlobalVariable::LocalExecTLSModel; 522 } 523 llvm_unreachable("Invalid TLS model!"); 524 } 525 526 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 527 const VarDecl &D) const { 528 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 529 530 llvm::GlobalVariable::ThreadLocalMode TLM; 531 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 532 533 // Override the TLS model if it is explicitly specified. 534 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 535 TLM = GetLLVMTLSModel(Attr->getModel()); 536 } 537 538 GV->setThreadLocalMode(TLM); 539 } 540 541 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 542 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 543 if (!FoundStr.empty()) 544 return FoundStr; 545 546 const auto *ND = cast<NamedDecl>(GD.getDecl()); 547 SmallString<256> Buffer; 548 StringRef Str; 549 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 550 llvm::raw_svector_ostream Out(Buffer); 551 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 552 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 553 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 554 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 555 else 556 getCXXABI().getMangleContext().mangleName(ND, Out); 557 Str = Out.str(); 558 } else { 559 IdentifierInfo *II = ND->getIdentifier(); 560 assert(II && "Attempt to mangle unnamed decl."); 561 Str = II->getName(); 562 } 563 564 // Keep the first result in the case of a mangling collision. 565 auto Result = Manglings.insert(std::make_pair(Str, GD)); 566 return FoundStr = Result.first->first(); 567 } 568 569 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 570 const BlockDecl *BD) { 571 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 572 const Decl *D = GD.getDecl(); 573 574 SmallString<256> Buffer; 575 llvm::raw_svector_ostream Out(Buffer); 576 if (!D) 577 MangleCtx.mangleGlobalBlock(BD, 578 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 579 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 580 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 581 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 582 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 583 else 584 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 585 586 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 587 return Result.first->first(); 588 } 589 590 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 591 return getModule().getNamedValue(Name); 592 } 593 594 /// AddGlobalCtor - Add a function to the list that will be called before 595 /// main() runs. 596 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 597 llvm::Constant *AssociatedData) { 598 // FIXME: Type coercion of void()* types. 599 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 600 } 601 602 /// AddGlobalDtor - Add a function to the list that will be called 603 /// when the module is unloaded. 604 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 605 // FIXME: Type coercion of void()* types. 606 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 607 } 608 609 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 610 // Ctor function type is void()*. 611 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 612 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 613 614 // Get the type of a ctor entry, { i32, void ()*, i8* }. 615 llvm::StructType *CtorStructTy = llvm::StructType::get( 616 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 617 618 // Construct the constructor and destructor arrays. 619 SmallVector<llvm::Constant*, 8> Ctors; 620 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 621 llvm::Constant *S[] = { 622 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 623 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 624 (I->AssociatedData 625 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 626 : llvm::Constant::getNullValue(VoidPtrTy)) 627 }; 628 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 629 } 630 631 if (!Ctors.empty()) { 632 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 633 new llvm::GlobalVariable(TheModule, AT, false, 634 llvm::GlobalValue::AppendingLinkage, 635 llvm::ConstantArray::get(AT, Ctors), 636 GlobalName); 637 } 638 } 639 640 llvm::GlobalValue::LinkageTypes 641 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 642 const auto *D = cast<FunctionDecl>(GD.getDecl()); 643 644 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 645 646 if (isa<CXXDestructorDecl>(D) && 647 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 648 GD.getDtorType())) { 649 // Destructor variants in the Microsoft C++ ABI are always internal or 650 // linkonce_odr thunks emitted on an as-needed basis. 651 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 652 : llvm::GlobalValue::LinkOnceODRLinkage; 653 } 654 655 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 656 } 657 658 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 659 llvm::Function *F) { 660 setNonAliasAttributes(D, F); 661 } 662 663 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 664 const CGFunctionInfo &Info, 665 llvm::Function *F) { 666 unsigned CallingConv; 667 AttributeListType AttributeList; 668 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 669 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 670 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 671 } 672 673 /// Determines whether the language options require us to model 674 /// unwind exceptions. We treat -fexceptions as mandating this 675 /// except under the fragile ObjC ABI with only ObjC exceptions 676 /// enabled. This means, for example, that C with -fexceptions 677 /// enables this. 678 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 679 // If exceptions are completely disabled, obviously this is false. 680 if (!LangOpts.Exceptions) return false; 681 682 // If C++ exceptions are enabled, this is true. 683 if (LangOpts.CXXExceptions) return true; 684 685 // If ObjC exceptions are enabled, this depends on the ABI. 686 if (LangOpts.ObjCExceptions) { 687 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 688 } 689 690 return true; 691 } 692 693 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 694 llvm::Function *F) { 695 llvm::AttrBuilder B; 696 697 if (CodeGenOpts.UnwindTables) 698 B.addAttribute(llvm::Attribute::UWTable); 699 700 if (!hasUnwindExceptions(LangOpts)) 701 B.addAttribute(llvm::Attribute::NoUnwind); 702 703 if (D->hasAttr<NakedAttr>()) { 704 // Naked implies noinline: we should not be inlining such functions. 705 B.addAttribute(llvm::Attribute::Naked); 706 B.addAttribute(llvm::Attribute::NoInline); 707 } else if (D->hasAttr<OptimizeNoneAttr>()) { 708 // OptimizeNone implies noinline; we should not be inlining such functions. 709 B.addAttribute(llvm::Attribute::OptimizeNone); 710 B.addAttribute(llvm::Attribute::NoInline); 711 } else if (D->hasAttr<NoDuplicateAttr>()) { 712 B.addAttribute(llvm::Attribute::NoDuplicate); 713 } else if (D->hasAttr<NoInlineAttr>()) { 714 B.addAttribute(llvm::Attribute::NoInline); 715 } else if (D->hasAttr<AlwaysInlineAttr>() && 716 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 717 llvm::Attribute::NoInline)) { 718 // (noinline wins over always_inline, and we can't specify both in IR) 719 B.addAttribute(llvm::Attribute::AlwaysInline); 720 } 721 722 if (D->hasAttr<ColdAttr>()) { 723 B.addAttribute(llvm::Attribute::OptimizeForSize); 724 B.addAttribute(llvm::Attribute::Cold); 725 } 726 727 if (D->hasAttr<MinSizeAttr>()) 728 B.addAttribute(llvm::Attribute::MinSize); 729 730 if (D->hasAttr<OptimizeNoneAttr>()) { 731 // OptimizeNone wins over OptimizeForSize and MinSize. 732 B.removeAttribute(llvm::Attribute::OptimizeForSize); 733 B.removeAttribute(llvm::Attribute::MinSize); 734 } 735 736 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 737 B.addAttribute(llvm::Attribute::StackProtect); 738 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 739 B.addAttribute(llvm::Attribute::StackProtectStrong); 740 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 741 B.addAttribute(llvm::Attribute::StackProtectReq); 742 743 // Add sanitizer attributes if function is not blacklisted. 744 if (!getSanitizerBlacklist().isIn(*F)) { 745 // When AddressSanitizer is enabled, set SanitizeAddress attribute 746 // unless __attribute__((no_sanitize_address)) is used. 747 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 748 B.addAttribute(llvm::Attribute::SanitizeAddress); 749 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 750 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 751 B.addAttribute(llvm::Attribute::SanitizeThread); 752 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 753 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 754 B.addAttribute(llvm::Attribute::SanitizeMemory); 755 } 756 757 F->addAttributes(llvm::AttributeSet::FunctionIndex, 758 llvm::AttributeSet::get( 759 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 760 761 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 762 F->setUnnamedAddr(true); 763 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 764 if (MD->isVirtual()) 765 F->setUnnamedAddr(true); 766 767 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 768 if (alignment) 769 F->setAlignment(alignment); 770 771 // C++ ABI requires 2-byte alignment for member functions. 772 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 773 F->setAlignment(2); 774 } 775 776 void CodeGenModule::SetCommonAttributes(const Decl *D, 777 llvm::GlobalValue *GV) { 778 if (const auto *ND = dyn_cast<NamedDecl>(D)) 779 setGlobalVisibility(GV, ND); 780 else 781 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 782 783 if (D->hasAttr<UsedAttr>()) 784 addUsedGlobal(GV); 785 } 786 787 void CodeGenModule::setAliasAttributes(const Decl *D, 788 llvm::GlobalValue *GV) { 789 SetCommonAttributes(D, GV); 790 791 // Process the dllexport attribute based on whether the original definition 792 // (not necessarily the aliasee) was exported. 793 if (D->hasAttr<DLLExportAttr>()) 794 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 795 } 796 797 void CodeGenModule::setNonAliasAttributes(const Decl *D, 798 llvm::GlobalObject *GO) { 799 SetCommonAttributes(D, GO); 800 801 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 802 GO->setSection(SA->getName()); 803 804 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 805 } 806 807 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 808 llvm::Function *F, 809 const CGFunctionInfo &FI) { 810 SetLLVMFunctionAttributes(D, FI, F); 811 SetLLVMFunctionAttributesForDefinition(D, F); 812 813 F->setLinkage(llvm::Function::InternalLinkage); 814 815 setNonAliasAttributes(D, F); 816 } 817 818 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 819 const NamedDecl *ND) { 820 // Set linkage and visibility in case we never see a definition. 821 LinkageInfo LV = ND->getLinkageAndVisibility(); 822 if (LV.getLinkage() != ExternalLinkage) { 823 // Don't set internal linkage on declarations. 824 } else { 825 if (ND->hasAttr<DLLImportAttr>()) { 826 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 827 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 828 } else if (ND->hasAttr<DLLExportAttr>()) { 829 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 830 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 831 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 832 // "extern_weak" is overloaded in LLVM; we probably should have 833 // separate linkage types for this. 834 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 835 } 836 837 // Set visibility on a declaration only if it's explicit. 838 if (LV.isVisibilityExplicit()) 839 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 840 } 841 } 842 843 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 844 llvm::Function *F, 845 bool IsIncompleteFunction) { 846 if (unsigned IID = F->getIntrinsicID()) { 847 // If this is an intrinsic function, set the function's attributes 848 // to the intrinsic's attributes. 849 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 850 (llvm::Intrinsic::ID)IID)); 851 return; 852 } 853 854 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 855 856 if (!IsIncompleteFunction) 857 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 858 859 // Add the Returned attribute for "this", except for iOS 5 and earlier 860 // where substantial code, including the libstdc++ dylib, was compiled with 861 // GCC and does not actually return "this". 862 if (getCXXABI().HasThisReturn(GD) && 863 !(getTarget().getTriple().isiOS() && 864 getTarget().getTriple().isOSVersionLT(6))) { 865 assert(!F->arg_empty() && 866 F->arg_begin()->getType() 867 ->canLosslesslyBitCastTo(F->getReturnType()) && 868 "unexpected this return"); 869 F->addAttribute(1, llvm::Attribute::Returned); 870 } 871 872 // Only a few attributes are set on declarations; these may later be 873 // overridden by a definition. 874 875 setLinkageAndVisibilityForGV(F, FD); 876 877 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 878 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 879 // Don't dllexport/import destructor thunks. 880 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 881 } 882 } 883 884 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 885 F->setSection(SA->getName()); 886 887 // A replaceable global allocation function does not act like a builtin by 888 // default, only if it is invoked by a new-expression or delete-expression. 889 if (FD->isReplaceableGlobalAllocationFunction()) 890 F->addAttribute(llvm::AttributeSet::FunctionIndex, 891 llvm::Attribute::NoBuiltin); 892 } 893 894 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 895 assert(!GV->isDeclaration() && 896 "Only globals with definition can force usage."); 897 LLVMUsed.push_back(GV); 898 } 899 900 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 901 assert(!GV->isDeclaration() && 902 "Only globals with definition can force usage."); 903 LLVMCompilerUsed.push_back(GV); 904 } 905 906 static void emitUsed(CodeGenModule &CGM, StringRef Name, 907 std::vector<llvm::WeakVH> &List) { 908 // Don't create llvm.used if there is no need. 909 if (List.empty()) 910 return; 911 912 // Convert List to what ConstantArray needs. 913 SmallVector<llvm::Constant*, 8> UsedArray; 914 UsedArray.resize(List.size()); 915 for (unsigned i = 0, e = List.size(); i != e; ++i) { 916 UsedArray[i] = 917 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 918 CGM.Int8PtrTy); 919 } 920 921 if (UsedArray.empty()) 922 return; 923 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 924 925 auto *GV = new llvm::GlobalVariable( 926 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 927 llvm::ConstantArray::get(ATy, UsedArray), Name); 928 929 GV->setSection("llvm.metadata"); 930 } 931 932 void CodeGenModule::emitLLVMUsed() { 933 emitUsed(*this, "llvm.used", LLVMUsed); 934 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 935 } 936 937 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 938 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 939 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 940 } 941 942 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 943 llvm::SmallString<32> Opt; 944 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 945 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 946 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 947 } 948 949 void CodeGenModule::AddDependentLib(StringRef Lib) { 950 llvm::SmallString<24> Opt; 951 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 952 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 953 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 954 } 955 956 /// \brief Add link options implied by the given module, including modules 957 /// it depends on, using a postorder walk. 958 static void addLinkOptionsPostorder(CodeGenModule &CGM, 959 Module *Mod, 960 SmallVectorImpl<llvm::Value *> &Metadata, 961 llvm::SmallPtrSet<Module *, 16> &Visited) { 962 // Import this module's parent. 963 if (Mod->Parent && Visited.insert(Mod->Parent)) { 964 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 965 } 966 967 // Import this module's dependencies. 968 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 969 if (Visited.insert(Mod->Imports[I-1])) 970 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 971 } 972 973 // Add linker options to link against the libraries/frameworks 974 // described by this module. 975 llvm::LLVMContext &Context = CGM.getLLVMContext(); 976 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 977 // Link against a framework. Frameworks are currently Darwin only, so we 978 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 979 if (Mod->LinkLibraries[I-1].IsFramework) { 980 llvm::Value *Args[2] = { 981 llvm::MDString::get(Context, "-framework"), 982 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 983 }; 984 985 Metadata.push_back(llvm::MDNode::get(Context, Args)); 986 continue; 987 } 988 989 // Link against a library. 990 llvm::SmallString<24> Opt; 991 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 992 Mod->LinkLibraries[I-1].Library, Opt); 993 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 994 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 995 } 996 } 997 998 void CodeGenModule::EmitModuleLinkOptions() { 999 // Collect the set of all of the modules we want to visit to emit link 1000 // options, which is essentially the imported modules and all of their 1001 // non-explicit child modules. 1002 llvm::SetVector<clang::Module *> LinkModules; 1003 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1004 SmallVector<clang::Module *, 16> Stack; 1005 1006 // Seed the stack with imported modules. 1007 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1008 MEnd = ImportedModules.end(); 1009 M != MEnd; ++M) { 1010 if (Visited.insert(*M)) 1011 Stack.push_back(*M); 1012 } 1013 1014 // Find all of the modules to import, making a little effort to prune 1015 // non-leaf modules. 1016 while (!Stack.empty()) { 1017 clang::Module *Mod = Stack.pop_back_val(); 1018 1019 bool AnyChildren = false; 1020 1021 // Visit the submodules of this module. 1022 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1023 SubEnd = Mod->submodule_end(); 1024 Sub != SubEnd; ++Sub) { 1025 // Skip explicit children; they need to be explicitly imported to be 1026 // linked against. 1027 if ((*Sub)->IsExplicit) 1028 continue; 1029 1030 if (Visited.insert(*Sub)) { 1031 Stack.push_back(*Sub); 1032 AnyChildren = true; 1033 } 1034 } 1035 1036 // We didn't find any children, so add this module to the list of 1037 // modules to link against. 1038 if (!AnyChildren) { 1039 LinkModules.insert(Mod); 1040 } 1041 } 1042 1043 // Add link options for all of the imported modules in reverse topological 1044 // order. We don't do anything to try to order import link flags with respect 1045 // to linker options inserted by things like #pragma comment(). 1046 SmallVector<llvm::Value *, 16> MetadataArgs; 1047 Visited.clear(); 1048 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1049 MEnd = LinkModules.end(); 1050 M != MEnd; ++M) { 1051 if (Visited.insert(*M)) 1052 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1053 } 1054 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1055 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1056 1057 // Add the linker options metadata flag. 1058 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1059 llvm::MDNode::get(getLLVMContext(), 1060 LinkerOptionsMetadata)); 1061 } 1062 1063 void CodeGenModule::EmitDeferred() { 1064 // Emit code for any potentially referenced deferred decls. Since a 1065 // previously unused static decl may become used during the generation of code 1066 // for a static function, iterate until no changes are made. 1067 1068 while (true) { 1069 if (!DeferredVTables.empty()) { 1070 EmitDeferredVTables(); 1071 1072 // Emitting a v-table doesn't directly cause more v-tables to 1073 // become deferred, although it can cause functions to be 1074 // emitted that then need those v-tables. 1075 assert(DeferredVTables.empty()); 1076 } 1077 1078 // Stop if we're out of both deferred v-tables and deferred declarations. 1079 if (DeferredDeclsToEmit.empty()) break; 1080 1081 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1082 GlobalDecl D = G.GD; 1083 llvm::GlobalValue *GV = G.GV; 1084 DeferredDeclsToEmit.pop_back(); 1085 1086 assert(GV == GetGlobalValue(getMangledName(D))); 1087 // Check to see if we've already emitted this. This is necessary 1088 // for a couple of reasons: first, decls can end up in the 1089 // deferred-decls queue multiple times, and second, decls can end 1090 // up with definitions in unusual ways (e.g. by an extern inline 1091 // function acquiring a strong function redefinition). Just 1092 // ignore these cases. 1093 if(!GV->isDeclaration()) 1094 continue; 1095 1096 // Otherwise, emit the definition and move on to the next one. 1097 EmitGlobalDefinition(D, GV); 1098 } 1099 } 1100 1101 void CodeGenModule::EmitGlobalAnnotations() { 1102 if (Annotations.empty()) 1103 return; 1104 1105 // Create a new global variable for the ConstantStruct in the Module. 1106 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1107 Annotations[0]->getType(), Annotations.size()), Annotations); 1108 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1109 llvm::GlobalValue::AppendingLinkage, 1110 Array, "llvm.global.annotations"); 1111 gv->setSection(AnnotationSection); 1112 } 1113 1114 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1115 llvm::Constant *&AStr = AnnotationStrings[Str]; 1116 if (AStr) 1117 return AStr; 1118 1119 // Not found yet, create a new global. 1120 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1121 auto *gv = 1122 new llvm::GlobalVariable(getModule(), s->getType(), true, 1123 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1124 gv->setSection(AnnotationSection); 1125 gv->setUnnamedAddr(true); 1126 AStr = gv; 1127 return gv; 1128 } 1129 1130 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1131 SourceManager &SM = getContext().getSourceManager(); 1132 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1133 if (PLoc.isValid()) 1134 return EmitAnnotationString(PLoc.getFilename()); 1135 return EmitAnnotationString(SM.getBufferName(Loc)); 1136 } 1137 1138 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1139 SourceManager &SM = getContext().getSourceManager(); 1140 PresumedLoc PLoc = SM.getPresumedLoc(L); 1141 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1142 SM.getExpansionLineNumber(L); 1143 return llvm::ConstantInt::get(Int32Ty, LineNo); 1144 } 1145 1146 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1147 const AnnotateAttr *AA, 1148 SourceLocation L) { 1149 // Get the globals for file name, annotation, and the line number. 1150 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1151 *UnitGV = EmitAnnotationUnit(L), 1152 *LineNoCst = EmitAnnotationLineNo(L); 1153 1154 // Create the ConstantStruct for the global annotation. 1155 llvm::Constant *Fields[4] = { 1156 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1157 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1158 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1159 LineNoCst 1160 }; 1161 return llvm::ConstantStruct::getAnon(Fields); 1162 } 1163 1164 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1165 llvm::GlobalValue *GV) { 1166 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1167 // Get the struct elements for these annotations. 1168 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1169 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1170 } 1171 1172 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1173 // Never defer when EmitAllDecls is specified. 1174 if (LangOpts.EmitAllDecls) 1175 return false; 1176 1177 return !getContext().DeclMustBeEmitted(Global); 1178 } 1179 1180 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1181 const CXXUuidofExpr* E) { 1182 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1183 // well-formed. 1184 StringRef Uuid = E->getUuidAsStringRef(Context); 1185 std::string Name = "_GUID_" + Uuid.lower(); 1186 std::replace(Name.begin(), Name.end(), '-', '_'); 1187 1188 // Look for an existing global. 1189 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1190 return GV; 1191 1192 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1193 assert(Init && "failed to initialize as constant"); 1194 1195 auto *GV = new llvm::GlobalVariable( 1196 getModule(), Init->getType(), 1197 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1198 return GV; 1199 } 1200 1201 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1202 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1203 assert(AA && "No alias?"); 1204 1205 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1206 1207 // See if there is already something with the target's name in the module. 1208 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1209 if (Entry) { 1210 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1211 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1212 } 1213 1214 llvm::Constant *Aliasee; 1215 if (isa<llvm::FunctionType>(DeclTy)) 1216 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1217 GlobalDecl(cast<FunctionDecl>(VD)), 1218 /*ForVTable=*/false); 1219 else 1220 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1221 llvm::PointerType::getUnqual(DeclTy), 1222 nullptr); 1223 1224 auto *F = cast<llvm::GlobalValue>(Aliasee); 1225 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1226 WeakRefReferences.insert(F); 1227 1228 return Aliasee; 1229 } 1230 1231 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1232 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1233 1234 // Weak references don't produce any output by themselves. 1235 if (Global->hasAttr<WeakRefAttr>()) 1236 return; 1237 1238 // If this is an alias definition (which otherwise looks like a declaration) 1239 // emit it now. 1240 if (Global->hasAttr<AliasAttr>()) 1241 return EmitAliasDefinition(GD); 1242 1243 // If this is CUDA, be selective about which declarations we emit. 1244 if (LangOpts.CUDA) { 1245 if (CodeGenOpts.CUDAIsDevice) { 1246 if (!Global->hasAttr<CUDADeviceAttr>() && 1247 !Global->hasAttr<CUDAGlobalAttr>() && 1248 !Global->hasAttr<CUDAConstantAttr>() && 1249 !Global->hasAttr<CUDASharedAttr>()) 1250 return; 1251 } else { 1252 if (!Global->hasAttr<CUDAHostAttr>() && ( 1253 Global->hasAttr<CUDADeviceAttr>() || 1254 Global->hasAttr<CUDAConstantAttr>() || 1255 Global->hasAttr<CUDASharedAttr>())) 1256 return; 1257 } 1258 } 1259 1260 // Ignore declarations, they will be emitted on their first use. 1261 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1262 // Forward declarations are emitted lazily on first use. 1263 if (!FD->doesThisDeclarationHaveABody()) { 1264 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1265 return; 1266 1267 StringRef MangledName = getMangledName(GD); 1268 1269 // Compute the function info and LLVM type. 1270 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1271 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1272 1273 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1274 /*DontDefer=*/false); 1275 return; 1276 } 1277 } else { 1278 const auto *VD = cast<VarDecl>(Global); 1279 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1280 1281 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1282 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1283 return; 1284 } 1285 1286 // Defer code generation when possible if this is a static definition, inline 1287 // function etc. These we only want to emit if they are used. 1288 if (!MayDeferGeneration(Global)) { 1289 // Emit the definition if it can't be deferred. 1290 EmitGlobalDefinition(GD); 1291 return; 1292 } 1293 1294 // If we're deferring emission of a C++ variable with an 1295 // initializer, remember the order in which it appeared in the file. 1296 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1297 cast<VarDecl>(Global)->hasInit()) { 1298 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1299 CXXGlobalInits.push_back(nullptr); 1300 } 1301 1302 // If the value has already been used, add it directly to the 1303 // DeferredDeclsToEmit list. 1304 StringRef MangledName = getMangledName(GD); 1305 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1306 addDeferredDeclToEmit(GV, GD); 1307 else { 1308 // Otherwise, remember that we saw a deferred decl with this name. The 1309 // first use of the mangled name will cause it to move into 1310 // DeferredDeclsToEmit. 1311 DeferredDecls[MangledName] = GD; 1312 } 1313 } 1314 1315 namespace { 1316 struct FunctionIsDirectlyRecursive : 1317 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1318 const StringRef Name; 1319 const Builtin::Context &BI; 1320 bool Result; 1321 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1322 Name(N), BI(C), Result(false) { 1323 } 1324 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1325 1326 bool TraverseCallExpr(CallExpr *E) { 1327 const FunctionDecl *FD = E->getDirectCallee(); 1328 if (!FD) 1329 return true; 1330 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1331 if (Attr && Name == Attr->getLabel()) { 1332 Result = true; 1333 return false; 1334 } 1335 unsigned BuiltinID = FD->getBuiltinID(); 1336 if (!BuiltinID) 1337 return true; 1338 StringRef BuiltinName = BI.GetName(BuiltinID); 1339 if (BuiltinName.startswith("__builtin_") && 1340 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1341 Result = true; 1342 return false; 1343 } 1344 return true; 1345 } 1346 }; 1347 } 1348 1349 // isTriviallyRecursive - Check if this function calls another 1350 // decl that, because of the asm attribute or the other decl being a builtin, 1351 // ends up pointing to itself. 1352 bool 1353 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1354 StringRef Name; 1355 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1356 // asm labels are a special kind of mangling we have to support. 1357 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1358 if (!Attr) 1359 return false; 1360 Name = Attr->getLabel(); 1361 } else { 1362 Name = FD->getName(); 1363 } 1364 1365 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1366 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1367 return Walker.Result; 1368 } 1369 1370 bool 1371 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1372 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1373 return true; 1374 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1375 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1376 return false; 1377 // PR9614. Avoid cases where the source code is lying to us. An available 1378 // externally function should have an equivalent function somewhere else, 1379 // but a function that calls itself is clearly not equivalent to the real 1380 // implementation. 1381 // This happens in glibc's btowc and in some configure checks. 1382 return !isTriviallyRecursive(F); 1383 } 1384 1385 /// If the type for the method's class was generated by 1386 /// CGDebugInfo::createContextChain(), the cache contains only a 1387 /// limited DIType without any declarations. Since EmitFunctionStart() 1388 /// needs to find the canonical declaration for each method, we need 1389 /// to construct the complete type prior to emitting the method. 1390 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1391 if (!D->isInstance()) 1392 return; 1393 1394 if (CGDebugInfo *DI = getModuleDebugInfo()) 1395 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1396 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1397 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1398 } 1399 } 1400 1401 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1402 const auto *D = cast<ValueDecl>(GD.getDecl()); 1403 1404 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1405 Context.getSourceManager(), 1406 "Generating code for declaration"); 1407 1408 if (isa<FunctionDecl>(D)) { 1409 // At -O0, don't generate IR for functions with available_externally 1410 // linkage. 1411 if (!shouldEmitFunction(GD)) 1412 return; 1413 1414 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1415 CompleteDIClassType(Method); 1416 // Make sure to emit the definition(s) before we emit the thunks. 1417 // This is necessary for the generation of certain thunks. 1418 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1419 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1420 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1421 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1422 else 1423 EmitGlobalFunctionDefinition(GD, GV); 1424 1425 if (Method->isVirtual()) 1426 getVTables().EmitThunks(GD); 1427 1428 return; 1429 } 1430 1431 return EmitGlobalFunctionDefinition(GD, GV); 1432 } 1433 1434 if (const auto *VD = dyn_cast<VarDecl>(D)) 1435 return EmitGlobalVarDefinition(VD); 1436 1437 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1438 } 1439 1440 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1441 /// module, create and return an llvm Function with the specified type. If there 1442 /// is something in the module with the specified name, return it potentially 1443 /// bitcasted to the right type. 1444 /// 1445 /// If D is non-null, it specifies a decl that correspond to this. This is used 1446 /// to set the attributes on the function when it is first created. 1447 llvm::Constant * 1448 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1449 llvm::Type *Ty, 1450 GlobalDecl GD, bool ForVTable, 1451 bool DontDefer, 1452 llvm::AttributeSet ExtraAttrs) { 1453 const Decl *D = GD.getDecl(); 1454 1455 // Lookup the entry, lazily creating it if necessary. 1456 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1457 if (Entry) { 1458 if (WeakRefReferences.erase(Entry)) { 1459 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1460 if (FD && !FD->hasAttr<WeakAttr>()) 1461 Entry->setLinkage(llvm::Function::ExternalLinkage); 1462 } 1463 1464 // Handle dropped DLL attributes. 1465 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1466 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1467 1468 if (Entry->getType()->getElementType() == Ty) 1469 return Entry; 1470 1471 // Make sure the result is of the correct type. 1472 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1473 } 1474 1475 // This function doesn't have a complete type (for example, the return 1476 // type is an incomplete struct). Use a fake type instead, and make 1477 // sure not to try to set attributes. 1478 bool IsIncompleteFunction = false; 1479 1480 llvm::FunctionType *FTy; 1481 if (isa<llvm::FunctionType>(Ty)) { 1482 FTy = cast<llvm::FunctionType>(Ty); 1483 } else { 1484 FTy = llvm::FunctionType::get(VoidTy, false); 1485 IsIncompleteFunction = true; 1486 } 1487 1488 llvm::Function *F = llvm::Function::Create(FTy, 1489 llvm::Function::ExternalLinkage, 1490 MangledName, &getModule()); 1491 assert(F->getName() == MangledName && "name was uniqued!"); 1492 if (D) 1493 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1494 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1495 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1496 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1497 llvm::AttributeSet::get(VMContext, 1498 llvm::AttributeSet::FunctionIndex, 1499 B)); 1500 } 1501 1502 if (!DontDefer) { 1503 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1504 // each other bottoming out with the base dtor. Therefore we emit non-base 1505 // dtors on usage, even if there is no dtor definition in the TU. 1506 if (D && isa<CXXDestructorDecl>(D) && 1507 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1508 GD.getDtorType())) 1509 addDeferredDeclToEmit(F, GD); 1510 1511 // This is the first use or definition of a mangled name. If there is a 1512 // deferred decl with this name, remember that we need to emit it at the end 1513 // of the file. 1514 auto DDI = DeferredDecls.find(MangledName); 1515 if (DDI != DeferredDecls.end()) { 1516 // Move the potentially referenced deferred decl to the 1517 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1518 // don't need it anymore). 1519 addDeferredDeclToEmit(F, DDI->second); 1520 DeferredDecls.erase(DDI); 1521 1522 // Otherwise, if this is a sized deallocation function, emit a weak 1523 // definition 1524 // for it at the end of the translation unit. 1525 } else if (D && cast<FunctionDecl>(D) 1526 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1527 addDeferredDeclToEmit(F, GD); 1528 1529 // Otherwise, there are cases we have to worry about where we're 1530 // using a declaration for which we must emit a definition but where 1531 // we might not find a top-level definition: 1532 // - member functions defined inline in their classes 1533 // - friend functions defined inline in some class 1534 // - special member functions with implicit definitions 1535 // If we ever change our AST traversal to walk into class methods, 1536 // this will be unnecessary. 1537 // 1538 // We also don't emit a definition for a function if it's going to be an 1539 // entry in a vtable, unless it's already marked as used. 1540 } else if (getLangOpts().CPlusPlus && D) { 1541 // Look for a declaration that's lexically in a record. 1542 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1543 FD = FD->getPreviousDecl()) { 1544 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1545 if (FD->doesThisDeclarationHaveABody()) { 1546 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1547 break; 1548 } 1549 } 1550 } 1551 } 1552 } 1553 1554 // Make sure the result is of the requested type. 1555 if (!IsIncompleteFunction) { 1556 assert(F->getType()->getElementType() == Ty); 1557 return F; 1558 } 1559 1560 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1561 return llvm::ConstantExpr::getBitCast(F, PTy); 1562 } 1563 1564 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1565 /// non-null, then this function will use the specified type if it has to 1566 /// create it (this occurs when we see a definition of the function). 1567 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1568 llvm::Type *Ty, 1569 bool ForVTable, 1570 bool DontDefer) { 1571 // If there was no specific requested type, just convert it now. 1572 if (!Ty) 1573 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1574 1575 StringRef MangledName = getMangledName(GD); 1576 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1577 } 1578 1579 /// CreateRuntimeFunction - Create a new runtime function with the specified 1580 /// type and name. 1581 llvm::Constant * 1582 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1583 StringRef Name, 1584 llvm::AttributeSet ExtraAttrs) { 1585 llvm::Constant *C = 1586 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1587 /*DontDefer=*/false, ExtraAttrs); 1588 if (auto *F = dyn_cast<llvm::Function>(C)) 1589 if (F->empty()) 1590 F->setCallingConv(getRuntimeCC()); 1591 return C; 1592 } 1593 1594 /// isTypeConstant - Determine whether an object of this type can be emitted 1595 /// as a constant. 1596 /// 1597 /// If ExcludeCtor is true, the duration when the object's constructor runs 1598 /// will not be considered. The caller will need to verify that the object is 1599 /// not written to during its construction. 1600 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1601 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1602 return false; 1603 1604 if (Context.getLangOpts().CPlusPlus) { 1605 if (const CXXRecordDecl *Record 1606 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1607 return ExcludeCtor && !Record->hasMutableFields() && 1608 Record->hasTrivialDestructor(); 1609 } 1610 1611 return true; 1612 } 1613 1614 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1615 /// create and return an llvm GlobalVariable with the specified type. If there 1616 /// is something in the module with the specified name, return it potentially 1617 /// bitcasted to the right type. 1618 /// 1619 /// If D is non-null, it specifies a decl that correspond to this. This is used 1620 /// to set the attributes on the global when it is first created. 1621 llvm::Constant * 1622 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1623 llvm::PointerType *Ty, 1624 const VarDecl *D) { 1625 // Lookup the entry, lazily creating it if necessary. 1626 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1627 if (Entry) { 1628 if (WeakRefReferences.erase(Entry)) { 1629 if (D && !D->hasAttr<WeakAttr>()) 1630 Entry->setLinkage(llvm::Function::ExternalLinkage); 1631 } 1632 1633 // Handle dropped DLL attributes. 1634 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1635 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1636 1637 if (Entry->getType() == Ty) 1638 return Entry; 1639 1640 // Make sure the result is of the correct type. 1641 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1642 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1643 1644 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1645 } 1646 1647 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1648 auto *GV = new llvm::GlobalVariable( 1649 getModule(), Ty->getElementType(), false, 1650 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1651 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1652 1653 // This is the first use or definition of a mangled name. If there is a 1654 // deferred decl with this name, remember that we need to emit it at the end 1655 // of the file. 1656 auto DDI = DeferredDecls.find(MangledName); 1657 if (DDI != DeferredDecls.end()) { 1658 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1659 // list, and remove it from DeferredDecls (since we don't need it anymore). 1660 addDeferredDeclToEmit(GV, DDI->second); 1661 DeferredDecls.erase(DDI); 1662 } 1663 1664 // Handle things which are present even on external declarations. 1665 if (D) { 1666 // FIXME: This code is overly simple and should be merged with other global 1667 // handling. 1668 GV->setConstant(isTypeConstant(D->getType(), false)); 1669 1670 setLinkageAndVisibilityForGV(GV, D); 1671 1672 if (D->getTLSKind()) { 1673 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1674 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1675 setTLSMode(GV, *D); 1676 } 1677 1678 // If required by the ABI, treat declarations of static data members with 1679 // inline initializers as definitions. 1680 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1681 EmitGlobalVarDefinition(D); 1682 } 1683 1684 // Handle XCore specific ABI requirements. 1685 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1686 D->getLanguageLinkage() == CLanguageLinkage && 1687 D->getType().isConstant(Context) && 1688 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1689 GV->setSection(".cp.rodata"); 1690 } 1691 1692 if (AddrSpace != Ty->getAddressSpace()) 1693 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1694 1695 return GV; 1696 } 1697 1698 1699 llvm::GlobalVariable * 1700 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1701 llvm::Type *Ty, 1702 llvm::GlobalValue::LinkageTypes Linkage) { 1703 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1704 llvm::GlobalVariable *OldGV = nullptr; 1705 1706 if (GV) { 1707 // Check if the variable has the right type. 1708 if (GV->getType()->getElementType() == Ty) 1709 return GV; 1710 1711 // Because C++ name mangling, the only way we can end up with an already 1712 // existing global with the same name is if it has been declared extern "C". 1713 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1714 OldGV = GV; 1715 } 1716 1717 // Create a new variable. 1718 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1719 Linkage, nullptr, Name); 1720 1721 if (OldGV) { 1722 // Replace occurrences of the old variable if needed. 1723 GV->takeName(OldGV); 1724 1725 if (!OldGV->use_empty()) { 1726 llvm::Constant *NewPtrForOldDecl = 1727 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1728 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1729 } 1730 1731 OldGV->eraseFromParent(); 1732 } 1733 1734 return GV; 1735 } 1736 1737 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1738 /// given global variable. If Ty is non-null and if the global doesn't exist, 1739 /// then it will be created with the specified type instead of whatever the 1740 /// normal requested type would be. 1741 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1742 llvm::Type *Ty) { 1743 assert(D->hasGlobalStorage() && "Not a global variable"); 1744 QualType ASTTy = D->getType(); 1745 if (!Ty) 1746 Ty = getTypes().ConvertTypeForMem(ASTTy); 1747 1748 llvm::PointerType *PTy = 1749 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1750 1751 StringRef MangledName = getMangledName(D); 1752 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1753 } 1754 1755 /// CreateRuntimeVariable - Create a new runtime global variable with the 1756 /// specified type and name. 1757 llvm::Constant * 1758 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1759 StringRef Name) { 1760 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1761 } 1762 1763 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1764 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1765 1766 if (MayDeferGeneration(D)) { 1767 // If we have not seen a reference to this variable yet, place it 1768 // into the deferred declarations table to be emitted if needed 1769 // later. 1770 StringRef MangledName = getMangledName(D); 1771 if (!GetGlobalValue(MangledName)) { 1772 DeferredDecls[MangledName] = D; 1773 return; 1774 } 1775 } 1776 1777 // The tentative definition is the only definition. 1778 EmitGlobalVarDefinition(D); 1779 } 1780 1781 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1782 return Context.toCharUnitsFromBits( 1783 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1784 } 1785 1786 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1787 unsigned AddrSpace) { 1788 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1789 if (D->hasAttr<CUDAConstantAttr>()) 1790 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1791 else if (D->hasAttr<CUDASharedAttr>()) 1792 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1793 else 1794 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1795 } 1796 1797 return AddrSpace; 1798 } 1799 1800 template<typename SomeDecl> 1801 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1802 llvm::GlobalValue *GV) { 1803 if (!getLangOpts().CPlusPlus) 1804 return; 1805 1806 // Must have 'used' attribute, or else inline assembly can't rely on 1807 // the name existing. 1808 if (!D->template hasAttr<UsedAttr>()) 1809 return; 1810 1811 // Must have internal linkage and an ordinary name. 1812 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1813 return; 1814 1815 // Must be in an extern "C" context. Entities declared directly within 1816 // a record are not extern "C" even if the record is in such a context. 1817 const SomeDecl *First = D->getFirstDecl(); 1818 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1819 return; 1820 1821 // OK, this is an internal linkage entity inside an extern "C" linkage 1822 // specification. Make a note of that so we can give it the "expected" 1823 // mangled name if nothing else is using that name. 1824 std::pair<StaticExternCMap::iterator, bool> R = 1825 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1826 1827 // If we have multiple internal linkage entities with the same name 1828 // in extern "C" regions, none of them gets that name. 1829 if (!R.second) 1830 R.first->second = nullptr; 1831 } 1832 1833 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1834 llvm::Constant *Init = nullptr; 1835 QualType ASTTy = D->getType(); 1836 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1837 bool NeedsGlobalCtor = false; 1838 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1839 1840 const VarDecl *InitDecl; 1841 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1842 1843 if (!InitExpr) { 1844 // This is a tentative definition; tentative definitions are 1845 // implicitly initialized with { 0 }. 1846 // 1847 // Note that tentative definitions are only emitted at the end of 1848 // a translation unit, so they should never have incomplete 1849 // type. In addition, EmitTentativeDefinition makes sure that we 1850 // never attempt to emit a tentative definition if a real one 1851 // exists. A use may still exists, however, so we still may need 1852 // to do a RAUW. 1853 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1854 Init = EmitNullConstant(D->getType()); 1855 } else { 1856 initializedGlobalDecl = GlobalDecl(D); 1857 Init = EmitConstantInit(*InitDecl); 1858 1859 if (!Init) { 1860 QualType T = InitExpr->getType(); 1861 if (D->getType()->isReferenceType()) 1862 T = D->getType(); 1863 1864 if (getLangOpts().CPlusPlus) { 1865 Init = EmitNullConstant(T); 1866 NeedsGlobalCtor = true; 1867 } else { 1868 ErrorUnsupported(D, "static initializer"); 1869 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1870 } 1871 } else { 1872 // We don't need an initializer, so remove the entry for the delayed 1873 // initializer position (just in case this entry was delayed) if we 1874 // also don't need to register a destructor. 1875 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1876 DelayedCXXInitPosition.erase(D); 1877 } 1878 } 1879 1880 llvm::Type* InitType = Init->getType(); 1881 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1882 1883 // Strip off a bitcast if we got one back. 1884 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1885 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1886 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1887 // All zero index gep. 1888 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1889 Entry = CE->getOperand(0); 1890 } 1891 1892 // Entry is now either a Function or GlobalVariable. 1893 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1894 1895 // We have a definition after a declaration with the wrong type. 1896 // We must make a new GlobalVariable* and update everything that used OldGV 1897 // (a declaration or tentative definition) with the new GlobalVariable* 1898 // (which will be a definition). 1899 // 1900 // This happens if there is a prototype for a global (e.g. 1901 // "extern int x[];") and then a definition of a different type (e.g. 1902 // "int x[10];"). This also happens when an initializer has a different type 1903 // from the type of the global (this happens with unions). 1904 if (!GV || 1905 GV->getType()->getElementType() != InitType || 1906 GV->getType()->getAddressSpace() != 1907 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1908 1909 // Move the old entry aside so that we'll create a new one. 1910 Entry->setName(StringRef()); 1911 1912 // Make a new global with the correct type, this is now guaranteed to work. 1913 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1914 1915 // Replace all uses of the old global with the new global 1916 llvm::Constant *NewPtrForOldDecl = 1917 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1918 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1919 1920 // Erase the old global, since it is no longer used. 1921 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1922 } 1923 1924 MaybeHandleStaticInExternC(D, GV); 1925 1926 if (D->hasAttr<AnnotateAttr>()) 1927 AddGlobalAnnotations(D, GV); 1928 1929 GV->setInitializer(Init); 1930 1931 // If it is safe to mark the global 'constant', do so now. 1932 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1933 isTypeConstant(D->getType(), true)); 1934 1935 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1936 1937 // Set the llvm linkage type as appropriate. 1938 llvm::GlobalValue::LinkageTypes Linkage = 1939 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1940 1941 // On Darwin, the backing variable for a C++11 thread_local variable always 1942 // has internal linkage; all accesses should just be calls to the 1943 // Itanium-specified entry point, which has the normal linkage of the 1944 // variable. 1945 if (const auto *VD = dyn_cast<VarDecl>(D)) 1946 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1947 Context.getTargetInfo().getTriple().isMacOSX()) 1948 Linkage = llvm::GlobalValue::InternalLinkage; 1949 1950 GV->setLinkage(Linkage); 1951 if (D->hasAttr<DLLImportAttr>()) 1952 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1953 else if (D->hasAttr<DLLExportAttr>()) 1954 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1955 1956 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1957 // common vars aren't constant even if declared const. 1958 GV->setConstant(false); 1959 1960 setNonAliasAttributes(D, GV); 1961 1962 // Emit the initializer function if necessary. 1963 if (NeedsGlobalCtor || NeedsGlobalDtor) 1964 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1965 1966 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 1967 1968 // Emit global variable debug information. 1969 if (CGDebugInfo *DI = getModuleDebugInfo()) 1970 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1971 DI->EmitGlobalVariable(GV, D); 1972 } 1973 1974 static bool isVarDeclStrongDefinition(const ASTContext &Context, 1975 const VarDecl *D, bool NoCommon) { 1976 // Don't give variables common linkage if -fno-common was specified unless it 1977 // was overridden by a NoCommon attribute. 1978 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1979 return true; 1980 1981 // C11 6.9.2/2: 1982 // A declaration of an identifier for an object that has file scope without 1983 // an initializer, and without a storage-class specifier or with the 1984 // storage-class specifier static, constitutes a tentative definition. 1985 if (D->getInit() || D->hasExternalStorage()) 1986 return true; 1987 1988 // A variable cannot be both common and exist in a section. 1989 if (D->hasAttr<SectionAttr>()) 1990 return true; 1991 1992 // Thread local vars aren't considered common linkage. 1993 if (D->getTLSKind()) 1994 return true; 1995 1996 // Tentative definitions marked with WeakImportAttr are true definitions. 1997 if (D->hasAttr<WeakImportAttr>()) 1998 return true; 1999 2000 // Declarations with a required alignment do not have common linakge in MSVC 2001 // mode. 2002 if (Context.getLangOpts().MSVCCompat && 2003 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2004 return true; 2005 2006 return false; 2007 } 2008 2009 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2010 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2011 if (Linkage == GVA_Internal) 2012 return llvm::Function::InternalLinkage; 2013 2014 if (D->hasAttr<WeakAttr>()) { 2015 if (IsConstantVariable) 2016 return llvm::GlobalVariable::WeakODRLinkage; 2017 else 2018 return llvm::GlobalVariable::WeakAnyLinkage; 2019 } 2020 2021 // We are guaranteed to have a strong definition somewhere else, 2022 // so we can use available_externally linkage. 2023 if (Linkage == GVA_AvailableExternally) 2024 return llvm::Function::AvailableExternallyLinkage; 2025 2026 // Note that Apple's kernel linker doesn't support symbol 2027 // coalescing, so we need to avoid linkonce and weak linkages there. 2028 // Normally, this means we just map to internal, but for explicit 2029 // instantiations we'll map to external. 2030 2031 // In C++, the compiler has to emit a definition in every translation unit 2032 // that references the function. We should use linkonce_odr because 2033 // a) if all references in this translation unit are optimized away, we 2034 // don't need to codegen it. b) if the function persists, it needs to be 2035 // merged with other definitions. c) C++ has the ODR, so we know the 2036 // definition is dependable. 2037 if (Linkage == GVA_DiscardableODR) 2038 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2039 : llvm::Function::InternalLinkage; 2040 2041 // An explicit instantiation of a template has weak linkage, since 2042 // explicit instantiations can occur in multiple translation units 2043 // and must all be equivalent. However, we are not allowed to 2044 // throw away these explicit instantiations. 2045 if (Linkage == GVA_StrongODR) 2046 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2047 : llvm::Function::ExternalLinkage; 2048 2049 // C++ doesn't have tentative definitions and thus cannot have common 2050 // linkage. 2051 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2052 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2053 CodeGenOpts.NoCommon)) 2054 return llvm::GlobalVariable::CommonLinkage; 2055 2056 // selectany symbols are externally visible, so use weak instead of 2057 // linkonce. MSVC optimizes away references to const selectany globals, so 2058 // all definitions should be the same and ODR linkage should be used. 2059 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2060 if (D->hasAttr<SelectAnyAttr>()) 2061 return llvm::GlobalVariable::WeakODRLinkage; 2062 2063 // Otherwise, we have strong external linkage. 2064 assert(Linkage == GVA_StrongExternal); 2065 return llvm::GlobalVariable::ExternalLinkage; 2066 } 2067 2068 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2069 const VarDecl *VD, bool IsConstant) { 2070 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2071 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2072 } 2073 2074 /// Replace the uses of a function that was declared with a non-proto type. 2075 /// We want to silently drop extra arguments from call sites 2076 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2077 llvm::Function *newFn) { 2078 // Fast path. 2079 if (old->use_empty()) return; 2080 2081 llvm::Type *newRetTy = newFn->getReturnType(); 2082 SmallVector<llvm::Value*, 4> newArgs; 2083 2084 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2085 ui != ue; ) { 2086 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2087 llvm::User *user = use->getUser(); 2088 2089 // Recognize and replace uses of bitcasts. Most calls to 2090 // unprototyped functions will use bitcasts. 2091 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2092 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2093 replaceUsesOfNonProtoConstant(bitcast, newFn); 2094 continue; 2095 } 2096 2097 // Recognize calls to the function. 2098 llvm::CallSite callSite(user); 2099 if (!callSite) continue; 2100 if (!callSite.isCallee(&*use)) continue; 2101 2102 // If the return types don't match exactly, then we can't 2103 // transform this call unless it's dead. 2104 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2105 continue; 2106 2107 // Get the call site's attribute list. 2108 SmallVector<llvm::AttributeSet, 8> newAttrs; 2109 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2110 2111 // Collect any return attributes from the call. 2112 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2113 newAttrs.push_back( 2114 llvm::AttributeSet::get(newFn->getContext(), 2115 oldAttrs.getRetAttributes())); 2116 2117 // If the function was passed too few arguments, don't transform. 2118 unsigned newNumArgs = newFn->arg_size(); 2119 if (callSite.arg_size() < newNumArgs) continue; 2120 2121 // If extra arguments were passed, we silently drop them. 2122 // If any of the types mismatch, we don't transform. 2123 unsigned argNo = 0; 2124 bool dontTransform = false; 2125 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2126 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2127 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2128 dontTransform = true; 2129 break; 2130 } 2131 2132 // Add any parameter attributes. 2133 if (oldAttrs.hasAttributes(argNo + 1)) 2134 newAttrs. 2135 push_back(llvm:: 2136 AttributeSet::get(newFn->getContext(), 2137 oldAttrs.getParamAttributes(argNo + 1))); 2138 } 2139 if (dontTransform) 2140 continue; 2141 2142 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2143 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2144 oldAttrs.getFnAttributes())); 2145 2146 // Okay, we can transform this. Create the new call instruction and copy 2147 // over the required information. 2148 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2149 2150 llvm::CallSite newCall; 2151 if (callSite.isCall()) { 2152 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2153 callSite.getInstruction()); 2154 } else { 2155 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2156 newCall = llvm::InvokeInst::Create(newFn, 2157 oldInvoke->getNormalDest(), 2158 oldInvoke->getUnwindDest(), 2159 newArgs, "", 2160 callSite.getInstruction()); 2161 } 2162 newArgs.clear(); // for the next iteration 2163 2164 if (!newCall->getType()->isVoidTy()) 2165 newCall->takeName(callSite.getInstruction()); 2166 newCall.setAttributes( 2167 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2168 newCall.setCallingConv(callSite.getCallingConv()); 2169 2170 // Finally, remove the old call, replacing any uses with the new one. 2171 if (!callSite->use_empty()) 2172 callSite->replaceAllUsesWith(newCall.getInstruction()); 2173 2174 // Copy debug location attached to CI. 2175 if (!callSite->getDebugLoc().isUnknown()) 2176 newCall->setDebugLoc(callSite->getDebugLoc()); 2177 callSite->eraseFromParent(); 2178 } 2179 } 2180 2181 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2182 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2183 /// existing call uses of the old function in the module, this adjusts them to 2184 /// call the new function directly. 2185 /// 2186 /// This is not just a cleanup: the always_inline pass requires direct calls to 2187 /// functions to be able to inline them. If there is a bitcast in the way, it 2188 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2189 /// run at -O0. 2190 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2191 llvm::Function *NewFn) { 2192 // If we're redefining a global as a function, don't transform it. 2193 if (!isa<llvm::Function>(Old)) return; 2194 2195 replaceUsesOfNonProtoConstant(Old, NewFn); 2196 } 2197 2198 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2199 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2200 // If we have a definition, this might be a deferred decl. If the 2201 // instantiation is explicit, make sure we emit it at the end. 2202 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2203 GetAddrOfGlobalVar(VD); 2204 2205 EmitTopLevelDecl(VD); 2206 } 2207 2208 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2209 llvm::GlobalValue *GV) { 2210 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2211 2212 // Compute the function info and LLVM type. 2213 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2214 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2215 2216 // Get or create the prototype for the function. 2217 if (!GV) { 2218 llvm::Constant *C = 2219 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2220 2221 // Strip off a bitcast if we got one back. 2222 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2223 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2224 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2225 } else { 2226 GV = cast<llvm::GlobalValue>(C); 2227 } 2228 } 2229 2230 if (!GV->isDeclaration()) { 2231 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2232 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2233 if (auto *Prev = OldGD.getDecl()) 2234 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2235 return; 2236 } 2237 2238 if (GV->getType()->getElementType() != Ty) { 2239 // If the types mismatch then we have to rewrite the definition. 2240 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2241 2242 // F is the Function* for the one with the wrong type, we must make a new 2243 // Function* and update everything that used F (a declaration) with the new 2244 // Function* (which will be a definition). 2245 // 2246 // This happens if there is a prototype for a function 2247 // (e.g. "int f()") and then a definition of a different type 2248 // (e.g. "int f(int x)"). Move the old function aside so that it 2249 // doesn't interfere with GetAddrOfFunction. 2250 GV->setName(StringRef()); 2251 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2252 2253 // This might be an implementation of a function without a 2254 // prototype, in which case, try to do special replacement of 2255 // calls which match the new prototype. The really key thing here 2256 // is that we also potentially drop arguments from the call site 2257 // so as to make a direct call, which makes the inliner happier 2258 // and suppresses a number of optimizer warnings (!) about 2259 // dropping arguments. 2260 if (!GV->use_empty()) { 2261 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2262 GV->removeDeadConstantUsers(); 2263 } 2264 2265 // Replace uses of F with the Function we will endow with a body. 2266 if (!GV->use_empty()) { 2267 llvm::Constant *NewPtrForOldDecl = 2268 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2269 GV->replaceAllUsesWith(NewPtrForOldDecl); 2270 } 2271 2272 // Ok, delete the old function now, which is dead. 2273 GV->eraseFromParent(); 2274 2275 GV = NewFn; 2276 } 2277 2278 // We need to set linkage and visibility on the function before 2279 // generating code for it because various parts of IR generation 2280 // want to propagate this information down (e.g. to local static 2281 // declarations). 2282 auto *Fn = cast<llvm::Function>(GV); 2283 setFunctionLinkage(GD, Fn); 2284 2285 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2286 setGlobalVisibility(Fn, D); 2287 2288 MaybeHandleStaticInExternC(D, Fn); 2289 2290 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2291 2292 setFunctionDefinitionAttributes(D, Fn); 2293 SetLLVMFunctionAttributesForDefinition(D, Fn); 2294 2295 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2296 AddGlobalCtor(Fn, CA->getPriority()); 2297 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2298 AddGlobalDtor(Fn, DA->getPriority()); 2299 if (D->hasAttr<AnnotateAttr>()) 2300 AddGlobalAnnotations(D, Fn); 2301 } 2302 2303 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2304 const auto *D = cast<ValueDecl>(GD.getDecl()); 2305 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2306 assert(AA && "Not an alias?"); 2307 2308 StringRef MangledName = getMangledName(GD); 2309 2310 // If there is a definition in the module, then it wins over the alias. 2311 // This is dubious, but allow it to be safe. Just ignore the alias. 2312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2313 if (Entry && !Entry->isDeclaration()) 2314 return; 2315 2316 Aliases.push_back(GD); 2317 2318 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2319 2320 // Create a reference to the named value. This ensures that it is emitted 2321 // if a deferred decl. 2322 llvm::Constant *Aliasee; 2323 if (isa<llvm::FunctionType>(DeclTy)) 2324 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2325 /*ForVTable=*/false); 2326 else 2327 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2328 llvm::PointerType::getUnqual(DeclTy), 2329 nullptr); 2330 2331 // Create the new alias itself, but don't set a name yet. 2332 auto *GA = llvm::GlobalAlias::create( 2333 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2334 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2335 2336 if (Entry) { 2337 if (GA->getAliasee() == Entry) { 2338 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2339 return; 2340 } 2341 2342 assert(Entry->isDeclaration()); 2343 2344 // If there is a declaration in the module, then we had an extern followed 2345 // by the alias, as in: 2346 // extern int test6(); 2347 // ... 2348 // int test6() __attribute__((alias("test7"))); 2349 // 2350 // Remove it and replace uses of it with the alias. 2351 GA->takeName(Entry); 2352 2353 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2354 Entry->getType())); 2355 Entry->eraseFromParent(); 2356 } else { 2357 GA->setName(MangledName); 2358 } 2359 2360 // Set attributes which are particular to an alias; this is a 2361 // specialization of the attributes which may be set on a global 2362 // variable/function. 2363 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2364 D->isWeakImported()) { 2365 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2366 } 2367 2368 setAliasAttributes(D, GA); 2369 } 2370 2371 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2372 ArrayRef<llvm::Type*> Tys) { 2373 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2374 Tys); 2375 } 2376 2377 static llvm::StringMapEntry<llvm::Constant*> & 2378 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2379 const StringLiteral *Literal, 2380 bool TargetIsLSB, 2381 bool &IsUTF16, 2382 unsigned &StringLength) { 2383 StringRef String = Literal->getString(); 2384 unsigned NumBytes = String.size(); 2385 2386 // Check for simple case. 2387 if (!Literal->containsNonAsciiOrNull()) { 2388 StringLength = NumBytes; 2389 return Map.GetOrCreateValue(String); 2390 } 2391 2392 // Otherwise, convert the UTF8 literals into a string of shorts. 2393 IsUTF16 = true; 2394 2395 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2396 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2397 UTF16 *ToPtr = &ToBuf[0]; 2398 2399 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2400 &ToPtr, ToPtr + NumBytes, 2401 strictConversion); 2402 2403 // ConvertUTF8toUTF16 returns the length in ToPtr. 2404 StringLength = ToPtr - &ToBuf[0]; 2405 2406 // Add an explicit null. 2407 *ToPtr = 0; 2408 return Map. 2409 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2410 (StringLength + 1) * 2)); 2411 } 2412 2413 static llvm::StringMapEntry<llvm::Constant*> & 2414 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2415 const StringLiteral *Literal, 2416 unsigned &StringLength) { 2417 StringRef String = Literal->getString(); 2418 StringLength = String.size(); 2419 return Map.GetOrCreateValue(String); 2420 } 2421 2422 llvm::Constant * 2423 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2424 unsigned StringLength = 0; 2425 bool isUTF16 = false; 2426 llvm::StringMapEntry<llvm::Constant*> &Entry = 2427 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2428 getDataLayout().isLittleEndian(), 2429 isUTF16, StringLength); 2430 2431 if (llvm::Constant *C = Entry.getValue()) 2432 return C; 2433 2434 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2435 llvm::Constant *Zeros[] = { Zero, Zero }; 2436 llvm::Value *V; 2437 2438 // If we don't already have it, get __CFConstantStringClassReference. 2439 if (!CFConstantStringClassRef) { 2440 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2441 Ty = llvm::ArrayType::get(Ty, 0); 2442 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2443 "__CFConstantStringClassReference"); 2444 // Decay array -> ptr 2445 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2446 CFConstantStringClassRef = V; 2447 } 2448 else 2449 V = CFConstantStringClassRef; 2450 2451 QualType CFTy = getContext().getCFConstantStringType(); 2452 2453 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2454 2455 llvm::Constant *Fields[4]; 2456 2457 // Class pointer. 2458 Fields[0] = cast<llvm::ConstantExpr>(V); 2459 2460 // Flags. 2461 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2462 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2463 llvm::ConstantInt::get(Ty, 0x07C8); 2464 2465 // String pointer. 2466 llvm::Constant *C = nullptr; 2467 if (isUTF16) { 2468 ArrayRef<uint16_t> Arr = 2469 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2470 const_cast<char *>(Entry.getKey().data())), 2471 Entry.getKey().size() / 2); 2472 C = llvm::ConstantDataArray::get(VMContext, Arr); 2473 } else { 2474 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2475 } 2476 2477 // Note: -fwritable-strings doesn't make the backing store strings of 2478 // CFStrings writable. (See <rdar://problem/10657500>) 2479 auto *GV = 2480 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2481 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2482 GV->setUnnamedAddr(true); 2483 // Don't enforce the target's minimum global alignment, since the only use 2484 // of the string is via this class initializer. 2485 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2486 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2487 // that changes the section it ends in, which surprises ld64. 2488 if (isUTF16) { 2489 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2490 GV->setAlignment(Align.getQuantity()); 2491 GV->setSection("__TEXT,__ustring"); 2492 } else { 2493 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2494 GV->setAlignment(Align.getQuantity()); 2495 GV->setSection("__TEXT,__cstring,cstring_literals"); 2496 } 2497 2498 // String. 2499 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2500 2501 if (isUTF16) 2502 // Cast the UTF16 string to the correct type. 2503 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2504 2505 // String length. 2506 Ty = getTypes().ConvertType(getContext().LongTy); 2507 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2508 2509 // The struct. 2510 C = llvm::ConstantStruct::get(STy, Fields); 2511 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2512 llvm::GlobalVariable::PrivateLinkage, C, 2513 "_unnamed_cfstring_"); 2514 GV->setSection("__DATA,__cfstring"); 2515 Entry.setValue(GV); 2516 2517 return GV; 2518 } 2519 2520 llvm::Constant * 2521 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2522 unsigned StringLength = 0; 2523 llvm::StringMapEntry<llvm::Constant*> &Entry = 2524 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2525 2526 if (llvm::Constant *C = Entry.getValue()) 2527 return C; 2528 2529 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2530 llvm::Constant *Zeros[] = { Zero, Zero }; 2531 llvm::Value *V; 2532 // If we don't already have it, get _NSConstantStringClassReference. 2533 if (!ConstantStringClassRef) { 2534 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2535 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2536 llvm::Constant *GV; 2537 if (LangOpts.ObjCRuntime.isNonFragile()) { 2538 std::string str = 2539 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2540 : "OBJC_CLASS_$_" + StringClass; 2541 GV = getObjCRuntime().GetClassGlobal(str); 2542 // Make sure the result is of the correct type. 2543 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2544 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2545 ConstantStringClassRef = V; 2546 } else { 2547 std::string str = 2548 StringClass.empty() ? "_NSConstantStringClassReference" 2549 : "_" + StringClass + "ClassReference"; 2550 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2551 GV = CreateRuntimeVariable(PTy, str); 2552 // Decay array -> ptr 2553 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2554 ConstantStringClassRef = V; 2555 } 2556 } 2557 else 2558 V = ConstantStringClassRef; 2559 2560 if (!NSConstantStringType) { 2561 // Construct the type for a constant NSString. 2562 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2563 D->startDefinition(); 2564 2565 QualType FieldTypes[3]; 2566 2567 // const int *isa; 2568 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2569 // const char *str; 2570 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2571 // unsigned int length; 2572 FieldTypes[2] = Context.UnsignedIntTy; 2573 2574 // Create fields 2575 for (unsigned i = 0; i < 3; ++i) { 2576 FieldDecl *Field = FieldDecl::Create(Context, D, 2577 SourceLocation(), 2578 SourceLocation(), nullptr, 2579 FieldTypes[i], /*TInfo=*/nullptr, 2580 /*BitWidth=*/nullptr, 2581 /*Mutable=*/false, 2582 ICIS_NoInit); 2583 Field->setAccess(AS_public); 2584 D->addDecl(Field); 2585 } 2586 2587 D->completeDefinition(); 2588 QualType NSTy = Context.getTagDeclType(D); 2589 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2590 } 2591 2592 llvm::Constant *Fields[3]; 2593 2594 // Class pointer. 2595 Fields[0] = cast<llvm::ConstantExpr>(V); 2596 2597 // String pointer. 2598 llvm::Constant *C = 2599 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2600 2601 llvm::GlobalValue::LinkageTypes Linkage; 2602 bool isConstant; 2603 Linkage = llvm::GlobalValue::PrivateLinkage; 2604 isConstant = !LangOpts.WritableStrings; 2605 2606 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2607 Linkage, C, ".str"); 2608 GV->setUnnamedAddr(true); 2609 // Don't enforce the target's minimum global alignment, since the only use 2610 // of the string is via this class initializer. 2611 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2612 GV->setAlignment(Align.getQuantity()); 2613 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2614 2615 // String length. 2616 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2617 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2618 2619 // The struct. 2620 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2621 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2622 llvm::GlobalVariable::PrivateLinkage, C, 2623 "_unnamed_nsstring_"); 2624 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2625 const char *NSStringNonFragileABISection = 2626 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2627 // FIXME. Fix section. 2628 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2629 ? NSStringNonFragileABISection 2630 : NSStringSection); 2631 Entry.setValue(GV); 2632 2633 return GV; 2634 } 2635 2636 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2637 if (ObjCFastEnumerationStateType.isNull()) { 2638 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2639 D->startDefinition(); 2640 2641 QualType FieldTypes[] = { 2642 Context.UnsignedLongTy, 2643 Context.getPointerType(Context.getObjCIdType()), 2644 Context.getPointerType(Context.UnsignedLongTy), 2645 Context.getConstantArrayType(Context.UnsignedLongTy, 2646 llvm::APInt(32, 5), ArrayType::Normal, 0) 2647 }; 2648 2649 for (size_t i = 0; i < 4; ++i) { 2650 FieldDecl *Field = FieldDecl::Create(Context, 2651 D, 2652 SourceLocation(), 2653 SourceLocation(), nullptr, 2654 FieldTypes[i], /*TInfo=*/nullptr, 2655 /*BitWidth=*/nullptr, 2656 /*Mutable=*/false, 2657 ICIS_NoInit); 2658 Field->setAccess(AS_public); 2659 D->addDecl(Field); 2660 } 2661 2662 D->completeDefinition(); 2663 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2664 } 2665 2666 return ObjCFastEnumerationStateType; 2667 } 2668 2669 llvm::Constant * 2670 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2671 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2672 2673 // Don't emit it as the address of the string, emit the string data itself 2674 // as an inline array. 2675 if (E->getCharByteWidth() == 1) { 2676 SmallString<64> Str(E->getString()); 2677 2678 // Resize the string to the right size, which is indicated by its type. 2679 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2680 Str.resize(CAT->getSize().getZExtValue()); 2681 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2682 } 2683 2684 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2685 llvm::Type *ElemTy = AType->getElementType(); 2686 unsigned NumElements = AType->getNumElements(); 2687 2688 // Wide strings have either 2-byte or 4-byte elements. 2689 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2690 SmallVector<uint16_t, 32> Elements; 2691 Elements.reserve(NumElements); 2692 2693 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2694 Elements.push_back(E->getCodeUnit(i)); 2695 Elements.resize(NumElements); 2696 return llvm::ConstantDataArray::get(VMContext, Elements); 2697 } 2698 2699 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2700 SmallVector<uint32_t, 32> Elements; 2701 Elements.reserve(NumElements); 2702 2703 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2704 Elements.push_back(E->getCodeUnit(i)); 2705 Elements.resize(NumElements); 2706 return llvm::ConstantDataArray::get(VMContext, Elements); 2707 } 2708 2709 static llvm::GlobalVariable * 2710 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2711 CodeGenModule &CGM, StringRef GlobalName, 2712 unsigned Alignment) { 2713 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2714 unsigned AddrSpace = 0; 2715 if (CGM.getLangOpts().OpenCL) 2716 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2717 2718 // Create a global variable for this string 2719 auto *GV = new llvm::GlobalVariable( 2720 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2721 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2722 GV->setAlignment(Alignment); 2723 GV->setUnnamedAddr(true); 2724 return GV; 2725 } 2726 2727 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2728 /// constant array for the given string literal. 2729 llvm::GlobalVariable * 2730 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2731 StringRef Name) { 2732 auto Alignment = 2733 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2734 2735 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2736 llvm::GlobalVariable **Entry = nullptr; 2737 if (!LangOpts.WritableStrings) { 2738 Entry = &ConstantStringMap[C]; 2739 if (auto GV = *Entry) { 2740 if (Alignment > GV->getAlignment()) 2741 GV->setAlignment(Alignment); 2742 return GV; 2743 } 2744 } 2745 2746 SmallString<256> MangledNameBuffer; 2747 StringRef GlobalVariableName; 2748 llvm::GlobalValue::LinkageTypes LT; 2749 2750 // Mangle the string literal if the ABI allows for it. However, we cannot 2751 // do this if we are compiling with ASan or -fwritable-strings because they 2752 // rely on strings having normal linkage. 2753 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2754 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2755 llvm::raw_svector_ostream Out(MangledNameBuffer); 2756 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2757 Out.flush(); 2758 2759 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2760 GlobalVariableName = MangledNameBuffer; 2761 } else { 2762 LT = llvm::GlobalValue::PrivateLinkage; 2763 GlobalVariableName = Name; 2764 } 2765 2766 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2767 if (Entry) 2768 *Entry = GV; 2769 2770 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>"); 2771 return GV; 2772 } 2773 2774 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2775 /// array for the given ObjCEncodeExpr node. 2776 llvm::GlobalVariable * 2777 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2778 std::string Str; 2779 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2780 2781 return GetAddrOfConstantCString(Str); 2782 } 2783 2784 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2785 /// the literal and a terminating '\0' character. 2786 /// The result has pointer to array type. 2787 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2788 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2789 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2790 if (Alignment == 0) { 2791 Alignment = getContext() 2792 .getAlignOfGlobalVarInChars(getContext().CharTy) 2793 .getQuantity(); 2794 } 2795 2796 llvm::Constant *C = 2797 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2798 2799 // Don't share any string literals if strings aren't constant. 2800 llvm::GlobalVariable **Entry = nullptr; 2801 if (!LangOpts.WritableStrings) { 2802 Entry = &ConstantStringMap[C]; 2803 if (auto GV = *Entry) { 2804 if (Alignment > GV->getAlignment()) 2805 GV->setAlignment(Alignment); 2806 return GV; 2807 } 2808 } 2809 2810 // Get the default prefix if a name wasn't specified. 2811 if (!GlobalName) 2812 GlobalName = ".str"; 2813 // Create a global variable for this. 2814 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2815 GlobalName, Alignment); 2816 if (Entry) 2817 *Entry = GV; 2818 return GV; 2819 } 2820 2821 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2822 const MaterializeTemporaryExpr *E, const Expr *Init) { 2823 assert((E->getStorageDuration() == SD_Static || 2824 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2825 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2826 2827 // If we're not materializing a subobject of the temporary, keep the 2828 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2829 QualType MaterializedType = Init->getType(); 2830 if (Init == E->GetTemporaryExpr()) 2831 MaterializedType = E->getType(); 2832 2833 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2834 if (Slot) 2835 return Slot; 2836 2837 // FIXME: If an externally-visible declaration extends multiple temporaries, 2838 // we need to give each temporary the same name in every translation unit (and 2839 // we also need to make the temporaries externally-visible). 2840 SmallString<256> Name; 2841 llvm::raw_svector_ostream Out(Name); 2842 getCXXABI().getMangleContext().mangleReferenceTemporary( 2843 VD, E->getManglingNumber(), Out); 2844 Out.flush(); 2845 2846 APValue *Value = nullptr; 2847 if (E->getStorageDuration() == SD_Static) { 2848 // We might have a cached constant initializer for this temporary. Note 2849 // that this might have a different value from the value computed by 2850 // evaluating the initializer if the surrounding constant expression 2851 // modifies the temporary. 2852 Value = getContext().getMaterializedTemporaryValue(E, false); 2853 if (Value && Value->isUninit()) 2854 Value = nullptr; 2855 } 2856 2857 // Try evaluating it now, it might have a constant initializer. 2858 Expr::EvalResult EvalResult; 2859 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2860 !EvalResult.hasSideEffects()) 2861 Value = &EvalResult.Val; 2862 2863 llvm::Constant *InitialValue = nullptr; 2864 bool Constant = false; 2865 llvm::Type *Type; 2866 if (Value) { 2867 // The temporary has a constant initializer, use it. 2868 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2869 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2870 Type = InitialValue->getType(); 2871 } else { 2872 // No initializer, the initialization will be provided when we 2873 // initialize the declaration which performed lifetime extension. 2874 Type = getTypes().ConvertTypeForMem(MaterializedType); 2875 } 2876 2877 // Create a global variable for this lifetime-extended temporary. 2878 llvm::GlobalValue::LinkageTypes Linkage = 2879 getLLVMLinkageVarDefinition(VD, Constant); 2880 // There is no need for this temporary to have global linkage if the global 2881 // variable has external linkage. 2882 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2883 Linkage = llvm::GlobalVariable::PrivateLinkage; 2884 unsigned AddrSpace = GetGlobalVarAddressSpace( 2885 VD, getContext().getTargetAddressSpace(MaterializedType)); 2886 auto *GV = new llvm::GlobalVariable( 2887 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2888 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2889 AddrSpace); 2890 setGlobalVisibility(GV, VD); 2891 GV->setAlignment( 2892 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2893 if (VD->getTLSKind()) 2894 setTLSMode(GV, *VD); 2895 Slot = GV; 2896 return GV; 2897 } 2898 2899 /// EmitObjCPropertyImplementations - Emit information for synthesized 2900 /// properties for an implementation. 2901 void CodeGenModule::EmitObjCPropertyImplementations(const 2902 ObjCImplementationDecl *D) { 2903 for (const auto *PID : D->property_impls()) { 2904 // Dynamic is just for type-checking. 2905 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2906 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2907 2908 // Determine which methods need to be implemented, some may have 2909 // been overridden. Note that ::isPropertyAccessor is not the method 2910 // we want, that just indicates if the decl came from a 2911 // property. What we want to know is if the method is defined in 2912 // this implementation. 2913 if (!D->getInstanceMethod(PD->getGetterName())) 2914 CodeGenFunction(*this).GenerateObjCGetter( 2915 const_cast<ObjCImplementationDecl *>(D), PID); 2916 if (!PD->isReadOnly() && 2917 !D->getInstanceMethod(PD->getSetterName())) 2918 CodeGenFunction(*this).GenerateObjCSetter( 2919 const_cast<ObjCImplementationDecl *>(D), PID); 2920 } 2921 } 2922 } 2923 2924 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2925 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2926 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2927 ivar; ivar = ivar->getNextIvar()) 2928 if (ivar->getType().isDestructedType()) 2929 return true; 2930 2931 return false; 2932 } 2933 2934 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2935 /// for an implementation. 2936 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2937 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2938 if (needsDestructMethod(D)) { 2939 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2940 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2941 ObjCMethodDecl *DTORMethod = 2942 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2943 cxxSelector, getContext().VoidTy, nullptr, D, 2944 /*isInstance=*/true, /*isVariadic=*/false, 2945 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2946 /*isDefined=*/false, ObjCMethodDecl::Required); 2947 D->addInstanceMethod(DTORMethod); 2948 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2949 D->setHasDestructors(true); 2950 } 2951 2952 // If the implementation doesn't have any ivar initializers, we don't need 2953 // a .cxx_construct. 2954 if (D->getNumIvarInitializers() == 0) 2955 return; 2956 2957 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2958 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2959 // The constructor returns 'self'. 2960 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2961 D->getLocation(), 2962 D->getLocation(), 2963 cxxSelector, 2964 getContext().getObjCIdType(), 2965 nullptr, D, /*isInstance=*/true, 2966 /*isVariadic=*/false, 2967 /*isPropertyAccessor=*/true, 2968 /*isImplicitlyDeclared=*/true, 2969 /*isDefined=*/false, 2970 ObjCMethodDecl::Required); 2971 D->addInstanceMethod(CTORMethod); 2972 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2973 D->setHasNonZeroConstructors(true); 2974 } 2975 2976 /// EmitNamespace - Emit all declarations in a namespace. 2977 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2978 for (auto *I : ND->decls()) { 2979 if (const auto *VD = dyn_cast<VarDecl>(I)) 2980 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2981 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2982 continue; 2983 EmitTopLevelDecl(I); 2984 } 2985 } 2986 2987 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2988 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2989 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2990 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2991 ErrorUnsupported(LSD, "linkage spec"); 2992 return; 2993 } 2994 2995 for (auto *I : LSD->decls()) { 2996 // Meta-data for ObjC class includes references to implemented methods. 2997 // Generate class's method definitions first. 2998 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2999 for (auto *M : OID->methods()) 3000 EmitTopLevelDecl(M); 3001 } 3002 EmitTopLevelDecl(I); 3003 } 3004 } 3005 3006 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3007 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3008 // Ignore dependent declarations. 3009 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3010 return; 3011 3012 switch (D->getKind()) { 3013 case Decl::CXXConversion: 3014 case Decl::CXXMethod: 3015 case Decl::Function: 3016 // Skip function templates 3017 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3018 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3019 return; 3020 3021 EmitGlobal(cast<FunctionDecl>(D)); 3022 // Always provide some coverage mapping 3023 // even for the functions that aren't emitted. 3024 AddDeferredUnusedCoverageMapping(D); 3025 break; 3026 3027 case Decl::Var: 3028 // Skip variable templates 3029 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3030 return; 3031 case Decl::VarTemplateSpecialization: 3032 EmitGlobal(cast<VarDecl>(D)); 3033 break; 3034 3035 // Indirect fields from global anonymous structs and unions can be 3036 // ignored; only the actual variable requires IR gen support. 3037 case Decl::IndirectField: 3038 break; 3039 3040 // C++ Decls 3041 case Decl::Namespace: 3042 EmitNamespace(cast<NamespaceDecl>(D)); 3043 break; 3044 // No code generation needed. 3045 case Decl::UsingShadow: 3046 case Decl::ClassTemplate: 3047 case Decl::VarTemplate: 3048 case Decl::VarTemplatePartialSpecialization: 3049 case Decl::FunctionTemplate: 3050 case Decl::TypeAliasTemplate: 3051 case Decl::Block: 3052 case Decl::Empty: 3053 break; 3054 case Decl::Using: // using X; [C++] 3055 if (CGDebugInfo *DI = getModuleDebugInfo()) 3056 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3057 return; 3058 case Decl::NamespaceAlias: 3059 if (CGDebugInfo *DI = getModuleDebugInfo()) 3060 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3061 return; 3062 case Decl::UsingDirective: // using namespace X; [C++] 3063 if (CGDebugInfo *DI = getModuleDebugInfo()) 3064 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3065 return; 3066 case Decl::CXXConstructor: 3067 // Skip function templates 3068 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3069 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3070 return; 3071 3072 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3073 break; 3074 case Decl::CXXDestructor: 3075 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3076 return; 3077 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3078 break; 3079 3080 case Decl::StaticAssert: 3081 // Nothing to do. 3082 break; 3083 3084 // Objective-C Decls 3085 3086 // Forward declarations, no (immediate) code generation. 3087 case Decl::ObjCInterface: 3088 case Decl::ObjCCategory: 3089 break; 3090 3091 case Decl::ObjCProtocol: { 3092 auto *Proto = cast<ObjCProtocolDecl>(D); 3093 if (Proto->isThisDeclarationADefinition()) 3094 ObjCRuntime->GenerateProtocol(Proto); 3095 break; 3096 } 3097 3098 case Decl::ObjCCategoryImpl: 3099 // Categories have properties but don't support synthesize so we 3100 // can ignore them here. 3101 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3102 break; 3103 3104 case Decl::ObjCImplementation: { 3105 auto *OMD = cast<ObjCImplementationDecl>(D); 3106 EmitObjCPropertyImplementations(OMD); 3107 EmitObjCIvarInitializations(OMD); 3108 ObjCRuntime->GenerateClass(OMD); 3109 // Emit global variable debug information. 3110 if (CGDebugInfo *DI = getModuleDebugInfo()) 3111 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3112 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3113 OMD->getClassInterface()), OMD->getLocation()); 3114 break; 3115 } 3116 case Decl::ObjCMethod: { 3117 auto *OMD = cast<ObjCMethodDecl>(D); 3118 // If this is not a prototype, emit the body. 3119 if (OMD->getBody()) 3120 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3121 break; 3122 } 3123 case Decl::ObjCCompatibleAlias: 3124 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3125 break; 3126 3127 case Decl::LinkageSpec: 3128 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3129 break; 3130 3131 case Decl::FileScopeAsm: { 3132 auto *AD = cast<FileScopeAsmDecl>(D); 3133 StringRef AsmString = AD->getAsmString()->getString(); 3134 3135 const std::string &S = getModule().getModuleInlineAsm(); 3136 if (S.empty()) 3137 getModule().setModuleInlineAsm(AsmString); 3138 else if (S.end()[-1] == '\n') 3139 getModule().setModuleInlineAsm(S + AsmString.str()); 3140 else 3141 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3142 break; 3143 } 3144 3145 case Decl::Import: { 3146 auto *Import = cast<ImportDecl>(D); 3147 3148 // Ignore import declarations that come from imported modules. 3149 if (clang::Module *Owner = Import->getOwningModule()) { 3150 if (getLangOpts().CurrentModule.empty() || 3151 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3152 break; 3153 } 3154 3155 ImportedModules.insert(Import->getImportedModule()); 3156 break; 3157 } 3158 3159 case Decl::ClassTemplateSpecialization: { 3160 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3161 if (DebugInfo && 3162 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3163 DebugInfo->completeTemplateDefinition(*Spec); 3164 } 3165 3166 default: 3167 // Make sure we handled everything we should, every other kind is a 3168 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3169 // function. Need to recode Decl::Kind to do that easily. 3170 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3171 } 3172 } 3173 3174 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3175 // Do we need to generate coverage mapping? 3176 if (!CodeGenOpts.CoverageMapping) 3177 return; 3178 switch (D->getKind()) { 3179 case Decl::CXXConversion: 3180 case Decl::CXXMethod: 3181 case Decl::Function: 3182 case Decl::ObjCMethod: 3183 case Decl::CXXConstructor: 3184 case Decl::CXXDestructor: { 3185 if (!cast<FunctionDecl>(D)->hasBody()) 3186 return; 3187 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3188 if (I == DeferredEmptyCoverageMappingDecls.end()) 3189 DeferredEmptyCoverageMappingDecls[D] = true; 3190 break; 3191 } 3192 default: 3193 break; 3194 }; 3195 } 3196 3197 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3198 // Do we need to generate coverage mapping? 3199 if (!CodeGenOpts.CoverageMapping) 3200 return; 3201 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3202 if (Fn->isTemplateInstantiation()) 3203 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3204 } 3205 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3206 if (I == DeferredEmptyCoverageMappingDecls.end()) 3207 DeferredEmptyCoverageMappingDecls[D] = false; 3208 else 3209 I->second = false; 3210 } 3211 3212 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3213 std::vector<const Decl *> DeferredDecls; 3214 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3215 if (!I.second) 3216 continue; 3217 DeferredDecls.push_back(I.first); 3218 } 3219 // Sort the declarations by their location to make sure that the tests get a 3220 // predictable order for the coverage mapping for the unused declarations. 3221 if (CodeGenOpts.DumpCoverageMapping) 3222 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3223 [] (const Decl *LHS, const Decl *RHS) { 3224 return LHS->getLocStart() < RHS->getLocStart(); 3225 }); 3226 for (const auto *D : DeferredDecls) { 3227 switch (D->getKind()) { 3228 case Decl::CXXConversion: 3229 case Decl::CXXMethod: 3230 case Decl::Function: 3231 case Decl::ObjCMethod: { 3232 CodeGenPGO PGO(*this); 3233 GlobalDecl GD(cast<FunctionDecl>(D)); 3234 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3235 getFunctionLinkage(GD)); 3236 break; 3237 } 3238 case Decl::CXXConstructor: { 3239 CodeGenPGO PGO(*this); 3240 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3241 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3242 getFunctionLinkage(GD)); 3243 break; 3244 } 3245 case Decl::CXXDestructor: { 3246 CodeGenPGO PGO(*this); 3247 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3248 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3249 getFunctionLinkage(GD)); 3250 break; 3251 } 3252 default: 3253 break; 3254 }; 3255 } 3256 } 3257 3258 /// Turns the given pointer into a constant. 3259 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3260 const void *Ptr) { 3261 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3262 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3263 return llvm::ConstantInt::get(i64, PtrInt); 3264 } 3265 3266 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3267 llvm::NamedMDNode *&GlobalMetadata, 3268 GlobalDecl D, 3269 llvm::GlobalValue *Addr) { 3270 if (!GlobalMetadata) 3271 GlobalMetadata = 3272 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3273 3274 // TODO: should we report variant information for ctors/dtors? 3275 llvm::Value *Ops[] = { 3276 Addr, 3277 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3278 }; 3279 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3280 } 3281 3282 /// For each function which is declared within an extern "C" region and marked 3283 /// as 'used', but has internal linkage, create an alias from the unmangled 3284 /// name to the mangled name if possible. People expect to be able to refer 3285 /// to such functions with an unmangled name from inline assembly within the 3286 /// same translation unit. 3287 void CodeGenModule::EmitStaticExternCAliases() { 3288 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3289 E = StaticExternCValues.end(); 3290 I != E; ++I) { 3291 IdentifierInfo *Name = I->first; 3292 llvm::GlobalValue *Val = I->second; 3293 if (Val && !getModule().getNamedValue(Name->getName())) 3294 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3295 } 3296 } 3297 3298 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3299 GlobalDecl &Result) const { 3300 auto Res = Manglings.find(MangledName); 3301 if (Res == Manglings.end()) 3302 return false; 3303 Result = Res->getValue(); 3304 return true; 3305 } 3306 3307 /// Emits metadata nodes associating all the global values in the 3308 /// current module with the Decls they came from. This is useful for 3309 /// projects using IR gen as a subroutine. 3310 /// 3311 /// Since there's currently no way to associate an MDNode directly 3312 /// with an llvm::GlobalValue, we create a global named metadata 3313 /// with the name 'clang.global.decl.ptrs'. 3314 void CodeGenModule::EmitDeclMetadata() { 3315 llvm::NamedMDNode *GlobalMetadata = nullptr; 3316 3317 // StaticLocalDeclMap 3318 for (auto &I : MangledDeclNames) { 3319 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3320 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3321 } 3322 } 3323 3324 /// Emits metadata nodes for all the local variables in the current 3325 /// function. 3326 void CodeGenFunction::EmitDeclMetadata() { 3327 if (LocalDeclMap.empty()) return; 3328 3329 llvm::LLVMContext &Context = getLLVMContext(); 3330 3331 // Find the unique metadata ID for this name. 3332 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3333 3334 llvm::NamedMDNode *GlobalMetadata = nullptr; 3335 3336 for (auto &I : LocalDeclMap) { 3337 const Decl *D = I.first; 3338 llvm::Value *Addr = I.second; 3339 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3340 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3341 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3342 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3343 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3344 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3345 } 3346 } 3347 } 3348 3349 void CodeGenModule::EmitVersionIdentMetadata() { 3350 llvm::NamedMDNode *IdentMetadata = 3351 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3352 std::string Version = getClangFullVersion(); 3353 llvm::LLVMContext &Ctx = TheModule.getContext(); 3354 3355 llvm::Value *IdentNode[] = { 3356 llvm::MDString::get(Ctx, Version) 3357 }; 3358 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3359 } 3360 3361 void CodeGenModule::EmitTargetMetadata() { 3362 // Warning, new MangledDeclNames may be appended within this loop. 3363 // We rely on MapVector insertions adding new elements to the end 3364 // of the container. 3365 // FIXME: Move this loop into the one target that needs it, and only 3366 // loop over those declarations for which we couldn't emit the target 3367 // metadata when we emitted the declaration. 3368 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3369 auto Val = *(MangledDeclNames.begin() + I); 3370 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3371 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3372 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3373 } 3374 } 3375 3376 void CodeGenModule::EmitCoverageFile() { 3377 if (!getCodeGenOpts().CoverageFile.empty()) { 3378 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3379 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3380 llvm::LLVMContext &Ctx = TheModule.getContext(); 3381 llvm::MDString *CoverageFile = 3382 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3383 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3384 llvm::MDNode *CU = CUNode->getOperand(i); 3385 llvm::Value *node[] = { CoverageFile, CU }; 3386 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3387 GCov->addOperand(N); 3388 } 3389 } 3390 } 3391 } 3392 3393 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3394 // Sema has checked that all uuid strings are of the form 3395 // "12345678-1234-1234-1234-1234567890ab". 3396 assert(Uuid.size() == 36); 3397 for (unsigned i = 0; i < 36; ++i) { 3398 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3399 else assert(isHexDigit(Uuid[i])); 3400 } 3401 3402 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3403 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3404 3405 llvm::Constant *Field3[8]; 3406 for (unsigned Idx = 0; Idx < 8; ++Idx) 3407 Field3[Idx] = llvm::ConstantInt::get( 3408 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3409 3410 llvm::Constant *Fields[4] = { 3411 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3412 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3413 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3414 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3415 }; 3416 3417 return llvm::ConstantStruct::getAnon(Fields); 3418 } 3419 3420 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3421 bool ForEH) { 3422 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3423 // FIXME: should we even be calling this method if RTTI is disabled 3424 // and it's not for EH? 3425 if (!ForEH && !getLangOpts().RTTI) 3426 return llvm::Constant::getNullValue(Int8PtrTy); 3427 3428 if (ForEH && Ty->isObjCObjectPointerType() && 3429 LangOpts.ObjCRuntime.isGNUFamily()) 3430 return ObjCRuntime->GetEHType(Ty); 3431 3432 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3433 } 3434 3435