1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/CodeGenOptions.h" 47 #include "clang/Sema/SemaDiagnostic.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/ConvertUTF.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MD5.h" 60 61 using namespace clang; 62 using namespace CodeGen; 63 64 static llvm::cl::opt<bool> LimitedCoverage( 65 "limited-coverage-experimental", llvm::cl::ZeroOrMore, 66 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 67 llvm::cl::init(false)); 68 69 static const char AnnotationSection[] = "llvm.metadata"; 70 71 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 72 switch (CGM.getTarget().getCXXABI().getKind()) { 73 case TargetCXXABI::GenericAArch64: 74 case TargetCXXABI::GenericARM: 75 case TargetCXXABI::iOS: 76 case TargetCXXABI::iOS64: 77 case TargetCXXABI::WatchOS: 78 case TargetCXXABI::GenericMIPS: 79 case TargetCXXABI::GenericItanium: 80 case TargetCXXABI::WebAssembly: 81 return CreateItaniumCXXABI(CGM); 82 case TargetCXXABI::Microsoft: 83 return CreateMicrosoftCXXABI(CGM); 84 } 85 86 llvm_unreachable("invalid C++ ABI kind"); 87 } 88 89 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 90 const PreprocessorOptions &PPO, 91 const CodeGenOptions &CGO, llvm::Module &M, 92 DiagnosticsEngine &diags, 93 CoverageSourceInfo *CoverageInfo) 94 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 95 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 96 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 97 VMContext(M.getContext()), Types(*this), VTables(*this), 98 SanitizerMD(new SanitizerMetadata(*this)) { 99 100 // Initialize the type cache. 101 llvm::LLVMContext &LLVMContext = M.getContext(); 102 VoidTy = llvm::Type::getVoidTy(LLVMContext); 103 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 104 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 212 break; 213 } 214 } 215 216 void CodeGenModule::createCUDARuntime() { 217 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 218 } 219 220 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 221 Replacements[Name] = C; 222 } 223 224 void CodeGenModule::applyReplacements() { 225 for (auto &I : Replacements) { 226 StringRef MangledName = I.first(); 227 llvm::Constant *Replacement = I.second; 228 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 229 if (!Entry) 230 continue; 231 auto *OldF = cast<llvm::Function>(Entry); 232 auto *NewF = dyn_cast<llvm::Function>(Replacement); 233 if (!NewF) { 234 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 235 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 236 } else { 237 auto *CE = cast<llvm::ConstantExpr>(Replacement); 238 assert(CE->getOpcode() == llvm::Instruction::BitCast || 239 CE->getOpcode() == llvm::Instruction::GetElementPtr); 240 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 241 } 242 } 243 244 // Replace old with new, but keep the old order. 245 OldF->replaceAllUsesWith(Replacement); 246 if (NewF) { 247 NewF->removeFromParent(); 248 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 249 NewF); 250 } 251 OldF->eraseFromParent(); 252 } 253 } 254 255 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 256 GlobalValReplacements.push_back(std::make_pair(GV, C)); 257 } 258 259 void CodeGenModule::applyGlobalValReplacements() { 260 for (auto &I : GlobalValReplacements) { 261 llvm::GlobalValue *GV = I.first; 262 llvm::Constant *C = I.second; 263 264 GV->replaceAllUsesWith(C); 265 GV->eraseFromParent(); 266 } 267 } 268 269 // This is only used in aliases that we created and we know they have a 270 // linear structure. 271 static const llvm::GlobalObject *getAliasedGlobal( 272 const llvm::GlobalIndirectSymbol &GIS) { 273 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 274 const llvm::Constant *C = &GIS; 275 for (;;) { 276 C = C->stripPointerCasts(); 277 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 278 return GO; 279 // stripPointerCasts will not walk over weak aliases. 280 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 281 if (!GIS2) 282 return nullptr; 283 if (!Visited.insert(GIS2).second) 284 return nullptr; 285 C = GIS2->getIndirectSymbol(); 286 } 287 } 288 289 void CodeGenModule::checkAliases() { 290 // Check if the constructed aliases are well formed. It is really unfortunate 291 // that we have to do this in CodeGen, but we only construct mangled names 292 // and aliases during codegen. 293 bool Error = false; 294 DiagnosticsEngine &Diags = getDiags(); 295 for (const GlobalDecl &GD : Aliases) { 296 const auto *D = cast<ValueDecl>(GD.getDecl()); 297 SourceLocation Location; 298 bool IsIFunc = D->hasAttr<IFuncAttr>(); 299 if (const Attr *A = D->getDefiningAttr()) 300 Location = A->getLocation(); 301 else 302 llvm_unreachable("Not an alias or ifunc?"); 303 StringRef MangledName = getMangledName(GD); 304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 305 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 306 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 307 if (!GV) { 308 Error = true; 309 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 310 } else if (GV->isDeclaration()) { 311 Error = true; 312 Diags.Report(Location, diag::err_alias_to_undefined) 313 << IsIFunc << IsIFunc; 314 } else if (IsIFunc) { 315 // Check resolver function type. 316 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 317 GV->getType()->getPointerElementType()); 318 assert(FTy); 319 if (!FTy->getReturnType()->isPointerTy()) 320 Diags.Report(Location, diag::err_ifunc_resolver_return); 321 if (FTy->getNumParams()) 322 Diags.Report(Location, diag::err_ifunc_resolver_params); 323 } 324 325 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 326 llvm::GlobalValue *AliaseeGV; 327 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 328 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 329 else 330 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 331 332 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 333 StringRef AliasSection = SA->getName(); 334 if (AliasSection != AliaseeGV->getSection()) 335 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 336 << AliasSection << IsIFunc << IsIFunc; 337 } 338 339 // We have to handle alias to weak aliases in here. LLVM itself disallows 340 // this since the object semantics would not match the IL one. For 341 // compatibility with gcc we implement it by just pointing the alias 342 // to its aliasee's aliasee. We also warn, since the user is probably 343 // expecting the link to be weak. 344 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 345 if (GA->isInterposable()) { 346 Diags.Report(Location, diag::warn_alias_to_weak_alias) 347 << GV->getName() << GA->getName() << IsIFunc; 348 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 349 GA->getIndirectSymbol(), Alias->getType()); 350 Alias->setIndirectSymbol(Aliasee); 351 } 352 } 353 } 354 if (!Error) 355 return; 356 357 for (const GlobalDecl &GD : Aliases) { 358 StringRef MangledName = getMangledName(GD); 359 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 360 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 361 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 362 Alias->eraseFromParent(); 363 } 364 } 365 366 void CodeGenModule::clear() { 367 DeferredDeclsToEmit.clear(); 368 if (OpenMPRuntime) 369 OpenMPRuntime->clear(); 370 } 371 372 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 373 StringRef MainFile) { 374 if (!hasDiagnostics()) 375 return; 376 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 377 if (MainFile.empty()) 378 MainFile = "<stdin>"; 379 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 380 } else { 381 if (Mismatched > 0) 382 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 383 384 if (Missing > 0) 385 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 386 } 387 } 388 389 void CodeGenModule::Release() { 390 EmitDeferred(); 391 EmitVTablesOpportunistically(); 392 applyGlobalValReplacements(); 393 applyReplacements(); 394 checkAliases(); 395 EmitCXXGlobalInitFunc(); 396 EmitCXXGlobalDtorFunc(); 397 EmitCXXThreadLocalInitFunc(); 398 if (ObjCRuntime) 399 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 400 AddGlobalCtor(ObjCInitFunction); 401 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 402 CUDARuntime) { 403 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 404 AddGlobalCtor(CudaCtorFunction); 405 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 406 AddGlobalDtor(CudaDtorFunction); 407 } 408 if (OpenMPRuntime) 409 if (llvm::Function *OpenMPRegistrationFunction = 410 OpenMPRuntime->emitRegistrationFunction()) { 411 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 412 OpenMPRegistrationFunction : nullptr; 413 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 414 } 415 if (PGOReader) { 416 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 417 if (PGOStats.hasDiagnostics()) 418 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 419 } 420 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 421 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 422 EmitGlobalAnnotations(); 423 EmitStaticExternCAliases(); 424 EmitDeferredUnusedCoverageMappings(); 425 if (CoverageMapping) 426 CoverageMapping->emit(); 427 if (CodeGenOpts.SanitizeCfiCrossDso) { 428 CodeGenFunction(*this).EmitCfiCheckFail(); 429 CodeGenFunction(*this).EmitCfiCheckStub(); 430 } 431 emitAtAvailableLinkGuard(); 432 emitLLVMUsed(); 433 if (SanStats) 434 SanStats->finish(); 435 436 if (CodeGenOpts.Autolink && 437 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 438 EmitModuleLinkOptions(); 439 } 440 441 // Record mregparm value now so it is visible through rest of codegen. 442 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 443 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 444 CodeGenOpts.NumRegisterParameters); 445 446 if (CodeGenOpts.DwarfVersion) { 447 // We actually want the latest version when there are conflicts. 448 // We can change from Warning to Latest if such mode is supported. 449 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 450 CodeGenOpts.DwarfVersion); 451 } 452 if (CodeGenOpts.EmitCodeView) { 453 // Indicate that we want CodeView in the metadata. 454 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 455 } 456 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 457 // We don't support LTO with 2 with different StrictVTablePointers 458 // FIXME: we could support it by stripping all the information introduced 459 // by StrictVTablePointers. 460 461 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 462 463 llvm::Metadata *Ops[2] = { 464 llvm::MDString::get(VMContext, "StrictVTablePointers"), 465 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 466 llvm::Type::getInt32Ty(VMContext), 1))}; 467 468 getModule().addModuleFlag(llvm::Module::Require, 469 "StrictVTablePointersRequirement", 470 llvm::MDNode::get(VMContext, Ops)); 471 } 472 if (DebugInfo) 473 // We support a single version in the linked module. The LLVM 474 // parser will drop debug info with a different version number 475 // (and warn about it, too). 476 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 477 llvm::DEBUG_METADATA_VERSION); 478 479 // Width of wchar_t in bytes 480 uint64_t WCharWidth = 481 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 482 assert((LangOpts.ShortWChar || 483 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 484 Target.getWCharWidth() / 8) && 485 "LLVM wchar_t size out of sync"); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 491 492 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 493 if ( Arch == llvm::Triple::arm 494 || Arch == llvm::Triple::armeb 495 || Arch == llvm::Triple::thumb 496 || Arch == llvm::Triple::thumbeb) { 497 // The minimum width of an enum in bytes 498 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 499 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 500 } 501 502 if (CodeGenOpts.SanitizeCfiCrossDso) { 503 // Indicate that we want cross-DSO control flow integrity checks. 504 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 505 } 506 507 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 508 // Indicate whether __nvvm_reflect should be configured to flush denormal 509 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 510 // property.) 511 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 512 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 513 } 514 515 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 516 if (LangOpts.OpenCL) { 517 EmitOpenCLMetadata(); 518 // Emit SPIR version. 519 if (getTriple().getArch() == llvm::Triple::spir || 520 getTriple().getArch() == llvm::Triple::spir64) { 521 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 522 // opencl.spir.version named metadata. 523 llvm::Metadata *SPIRVerElts[] = { 524 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 525 Int32Ty, LangOpts.OpenCLVersion / 100)), 526 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 527 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 528 llvm::NamedMDNode *SPIRVerMD = 529 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 530 llvm::LLVMContext &Ctx = TheModule.getContext(); 531 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 532 } 533 } 534 535 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 536 assert(PLevel < 3 && "Invalid PIC Level"); 537 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 538 if (Context.getLangOpts().PIE) 539 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 540 } 541 542 SimplifyPersonality(); 543 544 if (getCodeGenOpts().EmitDeclMetadata) 545 EmitDeclMetadata(); 546 547 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 548 EmitCoverageFile(); 549 550 if (DebugInfo) 551 DebugInfo->finalize(); 552 553 EmitVersionIdentMetadata(); 554 555 EmitTargetMetadata(); 556 } 557 558 void CodeGenModule::EmitOpenCLMetadata() { 559 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 560 // opencl.ocl.version named metadata node. 561 llvm::Metadata *OCLVerElts[] = { 562 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 563 Int32Ty, LangOpts.OpenCLVersion / 100)), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 566 llvm::NamedMDNode *OCLVerMD = 567 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 568 llvm::LLVMContext &Ctx = TheModule.getContext(); 569 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 570 } 571 572 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 573 // Make sure that this type is translated. 574 Types.UpdateCompletedType(TD); 575 } 576 577 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 578 // Make sure that this type is translated. 579 Types.RefreshTypeCacheForClass(RD); 580 } 581 582 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 583 if (!TBAA) 584 return nullptr; 585 return TBAA->getTBAAInfo(QTy); 586 } 587 588 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 589 if (!TBAA) 590 return nullptr; 591 return TBAA->getTBAAInfoForVTablePtr(); 592 } 593 594 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 595 if (!TBAA) 596 return nullptr; 597 return TBAA->getTBAAStructInfo(QTy); 598 } 599 600 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 601 llvm::MDNode *AccessN, 602 uint64_t O) { 603 if (!TBAA) 604 return nullptr; 605 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 606 } 607 608 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 609 /// and struct-path aware TBAA, the tag has the same format: 610 /// base type, access type and offset. 611 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 612 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 613 llvm::MDNode *TBAAInfo, 614 bool ConvertTypeToTag) { 615 if (ConvertTypeToTag && TBAA) 616 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 617 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 618 else 619 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 620 } 621 622 void CodeGenModule::DecorateInstructionWithInvariantGroup( 623 llvm::Instruction *I, const CXXRecordDecl *RD) { 624 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 625 llvm::MDNode::get(getLLVMContext(), {})); 626 } 627 628 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 629 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 630 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 631 } 632 633 /// ErrorUnsupported - Print out an error that codegen doesn't support the 634 /// specified stmt yet. 635 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 636 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 637 "cannot compile this %0 yet"); 638 std::string Msg = Type; 639 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 640 << Msg << S->getSourceRange(); 641 } 642 643 /// ErrorUnsupported - Print out an error that codegen doesn't support the 644 /// specified decl yet. 645 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 646 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 647 "cannot compile this %0 yet"); 648 std::string Msg = Type; 649 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 650 } 651 652 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 653 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 654 } 655 656 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 657 const NamedDecl *D) const { 658 // Internal definitions always have default visibility. 659 if (GV->hasLocalLinkage()) { 660 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 661 return; 662 } 663 664 // Set visibility for definitions. 665 LinkageInfo LV = D->getLinkageAndVisibility(); 666 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 667 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 668 } 669 670 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 671 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 672 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 673 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 674 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 675 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 676 } 677 678 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 679 CodeGenOptions::TLSModel M) { 680 switch (M) { 681 case CodeGenOptions::GeneralDynamicTLSModel: 682 return llvm::GlobalVariable::GeneralDynamicTLSModel; 683 case CodeGenOptions::LocalDynamicTLSModel: 684 return llvm::GlobalVariable::LocalDynamicTLSModel; 685 case CodeGenOptions::InitialExecTLSModel: 686 return llvm::GlobalVariable::InitialExecTLSModel; 687 case CodeGenOptions::LocalExecTLSModel: 688 return llvm::GlobalVariable::LocalExecTLSModel; 689 } 690 llvm_unreachable("Invalid TLS model!"); 691 } 692 693 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 694 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 695 696 llvm::GlobalValue::ThreadLocalMode TLM; 697 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 698 699 // Override the TLS model if it is explicitly specified. 700 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 701 TLM = GetLLVMTLSModel(Attr->getModel()); 702 } 703 704 GV->setThreadLocalMode(TLM); 705 } 706 707 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 708 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 709 710 // Some ABIs don't have constructor variants. Make sure that base and 711 // complete constructors get mangled the same. 712 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 713 if (!getTarget().getCXXABI().hasConstructorVariants()) { 714 CXXCtorType OrigCtorType = GD.getCtorType(); 715 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 716 if (OrigCtorType == Ctor_Base) 717 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 718 } 719 } 720 721 auto FoundName = MangledDeclNames.find(CanonicalGD); 722 if (FoundName != MangledDeclNames.end()) 723 return FoundName->second; 724 725 const auto *ND = cast<NamedDecl>(GD.getDecl()); 726 SmallString<256> Buffer; 727 StringRef Str; 728 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 729 llvm::raw_svector_ostream Out(Buffer); 730 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 731 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 732 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 733 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 734 else 735 getCXXABI().getMangleContext().mangleName(ND, Out); 736 Str = Out.str(); 737 } else { 738 IdentifierInfo *II = ND->getIdentifier(); 739 assert(II && "Attempt to mangle unnamed decl."); 740 const auto *FD = dyn_cast<FunctionDecl>(ND); 741 742 if (FD && 743 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 744 llvm::raw_svector_ostream Out(Buffer); 745 Out << "__regcall3__" << II->getName(); 746 Str = Out.str(); 747 } else { 748 Str = II->getName(); 749 } 750 } 751 752 // Keep the first result in the case of a mangling collision. 753 auto Result = Manglings.insert(std::make_pair(Str, GD)); 754 return MangledDeclNames[CanonicalGD] = Result.first->first(); 755 } 756 757 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 758 const BlockDecl *BD) { 759 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 760 const Decl *D = GD.getDecl(); 761 762 SmallString<256> Buffer; 763 llvm::raw_svector_ostream Out(Buffer); 764 if (!D) 765 MangleCtx.mangleGlobalBlock(BD, 766 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 767 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 768 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 769 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 770 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 771 else 772 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 773 774 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 775 return Result.first->first(); 776 } 777 778 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 779 return getModule().getNamedValue(Name); 780 } 781 782 /// AddGlobalCtor - Add a function to the list that will be called before 783 /// main() runs. 784 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 785 llvm::Constant *AssociatedData) { 786 // FIXME: Type coercion of void()* types. 787 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 788 } 789 790 /// AddGlobalDtor - Add a function to the list that will be called 791 /// when the module is unloaded. 792 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 793 // FIXME: Type coercion of void()* types. 794 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 795 } 796 797 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 798 if (Fns.empty()) return; 799 800 // Ctor function type is void()*. 801 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 802 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 803 804 // Get the type of a ctor entry, { i32, void ()*, i8* }. 805 llvm::StructType *CtorStructTy = llvm::StructType::get( 806 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 807 808 // Construct the constructor and destructor arrays. 809 ConstantInitBuilder builder(*this); 810 auto ctors = builder.beginArray(CtorStructTy); 811 for (const auto &I : Fns) { 812 auto ctor = ctors.beginStruct(CtorStructTy); 813 ctor.addInt(Int32Ty, I.Priority); 814 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 815 if (I.AssociatedData) 816 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 817 else 818 ctor.addNullPointer(VoidPtrTy); 819 ctor.finishAndAddTo(ctors); 820 } 821 822 auto list = 823 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 824 /*constant*/ false, 825 llvm::GlobalValue::AppendingLinkage); 826 827 // The LTO linker doesn't seem to like it when we set an alignment 828 // on appending variables. Take it off as a workaround. 829 list->setAlignment(0); 830 831 Fns.clear(); 832 } 833 834 llvm::GlobalValue::LinkageTypes 835 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 836 const auto *D = cast<FunctionDecl>(GD.getDecl()); 837 838 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 839 840 if (isa<CXXDestructorDecl>(D) && 841 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 842 GD.getDtorType())) { 843 // Destructor variants in the Microsoft C++ ABI are always internal or 844 // linkonce_odr thunks emitted on an as-needed basis. 845 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 846 : llvm::GlobalValue::LinkOnceODRLinkage; 847 } 848 849 if (isa<CXXConstructorDecl>(D) && 850 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 851 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 852 // Our approach to inheriting constructors is fundamentally different from 853 // that used by the MS ABI, so keep our inheriting constructor thunks 854 // internal rather than trying to pick an unambiguous mangling for them. 855 return llvm::GlobalValue::InternalLinkage; 856 } 857 858 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 859 } 860 861 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 862 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 863 864 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 865 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 866 // Don't dllexport/import destructor thunks. 867 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 868 return; 869 } 870 } 871 872 if (FD->hasAttr<DLLImportAttr>()) 873 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 874 else if (FD->hasAttr<DLLExportAttr>()) 875 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 876 else 877 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 878 } 879 880 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 881 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 882 if (!MDS) return nullptr; 883 884 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 885 } 886 887 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 888 llvm::Function *F) { 889 setNonAliasAttributes(D, F); 890 } 891 892 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 893 const CGFunctionInfo &Info, 894 llvm::Function *F) { 895 unsigned CallingConv; 896 llvm::AttributeList PAL; 897 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 898 F->setAttributes(PAL); 899 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 900 } 901 902 /// Determines whether the language options require us to model 903 /// unwind exceptions. We treat -fexceptions as mandating this 904 /// except under the fragile ObjC ABI with only ObjC exceptions 905 /// enabled. This means, for example, that C with -fexceptions 906 /// enables this. 907 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 908 // If exceptions are completely disabled, obviously this is false. 909 if (!LangOpts.Exceptions) return false; 910 911 // If C++ exceptions are enabled, this is true. 912 if (LangOpts.CXXExceptions) return true; 913 914 // If ObjC exceptions are enabled, this depends on the ABI. 915 if (LangOpts.ObjCExceptions) { 916 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 917 } 918 919 return true; 920 } 921 922 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 923 llvm::Function *F) { 924 llvm::AttrBuilder B; 925 926 if (CodeGenOpts.UnwindTables) 927 B.addAttribute(llvm::Attribute::UWTable); 928 929 if (!hasUnwindExceptions(LangOpts)) 930 B.addAttribute(llvm::Attribute::NoUnwind); 931 932 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 933 B.addAttribute(llvm::Attribute::StackProtect); 934 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 935 B.addAttribute(llvm::Attribute::StackProtectStrong); 936 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 937 B.addAttribute(llvm::Attribute::StackProtectReq); 938 939 if (!D) { 940 // If we don't have a declaration to control inlining, the function isn't 941 // explicitly marked as alwaysinline for semantic reasons, and inlining is 942 // disabled, mark the function as noinline. 943 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 944 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 945 B.addAttribute(llvm::Attribute::NoInline); 946 947 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 948 return; 949 } 950 951 // Track whether we need to add the optnone LLVM attribute, 952 // starting with the default for this optimization level. 953 bool ShouldAddOptNone = 954 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 955 // We can't add optnone in the following cases, it won't pass the verifier. 956 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 957 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 958 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 959 960 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 961 B.addAttribute(llvm::Attribute::OptimizeNone); 962 963 // OptimizeNone implies noinline; we should not be inlining such functions. 964 B.addAttribute(llvm::Attribute::NoInline); 965 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 966 "OptimizeNone and AlwaysInline on same function!"); 967 968 // We still need to handle naked functions even though optnone subsumes 969 // much of their semantics. 970 if (D->hasAttr<NakedAttr>()) 971 B.addAttribute(llvm::Attribute::Naked); 972 973 // OptimizeNone wins over OptimizeForSize and MinSize. 974 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 975 F->removeFnAttr(llvm::Attribute::MinSize); 976 } else if (D->hasAttr<NakedAttr>()) { 977 // Naked implies noinline: we should not be inlining such functions. 978 B.addAttribute(llvm::Attribute::Naked); 979 B.addAttribute(llvm::Attribute::NoInline); 980 } else if (D->hasAttr<NoDuplicateAttr>()) { 981 B.addAttribute(llvm::Attribute::NoDuplicate); 982 } else if (D->hasAttr<NoInlineAttr>()) { 983 B.addAttribute(llvm::Attribute::NoInline); 984 } else if (D->hasAttr<AlwaysInlineAttr>() && 985 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 986 // (noinline wins over always_inline, and we can't specify both in IR) 987 B.addAttribute(llvm::Attribute::AlwaysInline); 988 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 989 // If we're not inlining, then force everything that isn't always_inline to 990 // carry an explicit noinline attribute. 991 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 992 B.addAttribute(llvm::Attribute::NoInline); 993 } else { 994 // Otherwise, propagate the inline hint attribute and potentially use its 995 // absence to mark things as noinline. 996 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 997 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 998 return Redecl->isInlineSpecified(); 999 })) { 1000 B.addAttribute(llvm::Attribute::InlineHint); 1001 } else if (CodeGenOpts.getInlining() == 1002 CodeGenOptions::OnlyHintInlining && 1003 !FD->isInlined() && 1004 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1005 B.addAttribute(llvm::Attribute::NoInline); 1006 } 1007 } 1008 } 1009 1010 // Add other optimization related attributes if we are optimizing this 1011 // function. 1012 if (!D->hasAttr<OptimizeNoneAttr>()) { 1013 if (D->hasAttr<ColdAttr>()) { 1014 if (!ShouldAddOptNone) 1015 B.addAttribute(llvm::Attribute::OptimizeForSize); 1016 B.addAttribute(llvm::Attribute::Cold); 1017 } 1018 1019 if (D->hasAttr<MinSizeAttr>()) 1020 B.addAttribute(llvm::Attribute::MinSize); 1021 } 1022 1023 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1024 1025 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1026 if (alignment) 1027 F->setAlignment(alignment); 1028 1029 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1030 // reserve a bit for differentiating between virtual and non-virtual member 1031 // functions. If the current target's C++ ABI requires this and this is a 1032 // member function, set its alignment accordingly. 1033 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1034 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1035 F->setAlignment(2); 1036 } 1037 1038 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1039 if (CodeGenOpts.SanitizeCfiCrossDso) 1040 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1041 CreateFunctionTypeMetadata(FD, F); 1042 } 1043 1044 void CodeGenModule::SetCommonAttributes(const Decl *D, 1045 llvm::GlobalValue *GV) { 1046 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1047 setGlobalVisibility(GV, ND); 1048 else 1049 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1050 1051 if (D && D->hasAttr<UsedAttr>()) 1052 addUsedGlobal(GV); 1053 } 1054 1055 void CodeGenModule::setAliasAttributes(const Decl *D, 1056 llvm::GlobalValue *GV) { 1057 SetCommonAttributes(D, GV); 1058 1059 // Process the dllexport attribute based on whether the original definition 1060 // (not necessarily the aliasee) was exported. 1061 if (D->hasAttr<DLLExportAttr>()) 1062 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1063 } 1064 1065 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1066 llvm::GlobalObject *GO) { 1067 SetCommonAttributes(D, GO); 1068 1069 if (D) { 1070 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1071 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1072 GV->addAttribute("bss-section", SA->getName()); 1073 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1074 GV->addAttribute("data-section", SA->getName()); 1075 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1076 GV->addAttribute("rodata-section", SA->getName()); 1077 } 1078 1079 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1080 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1081 if (!D->getAttr<SectionAttr>()) 1082 F->addFnAttr("implicit-section-name", SA->getName()); 1083 } 1084 1085 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1086 GO->setSection(SA->getName()); 1087 } 1088 1089 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1090 } 1091 1092 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1093 llvm::Function *F, 1094 const CGFunctionInfo &FI) { 1095 SetLLVMFunctionAttributes(D, FI, F); 1096 SetLLVMFunctionAttributesForDefinition(D, F); 1097 1098 F->setLinkage(llvm::Function::InternalLinkage); 1099 1100 setNonAliasAttributes(D, F); 1101 } 1102 1103 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1104 const NamedDecl *ND) { 1105 // Set linkage and visibility in case we never see a definition. 1106 LinkageInfo LV = ND->getLinkageAndVisibility(); 1107 if (!isExternallyVisible(LV.getLinkage())) { 1108 // Don't set internal linkage on declarations. 1109 } else { 1110 if (ND->hasAttr<DLLImportAttr>()) { 1111 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1112 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1113 } else if (ND->hasAttr<DLLExportAttr>()) { 1114 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1115 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1116 // "extern_weak" is overloaded in LLVM; we probably should have 1117 // separate linkage types for this. 1118 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1119 } 1120 1121 // Set visibility on a declaration only if it's explicit. 1122 if (LV.isVisibilityExplicit()) 1123 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1124 } 1125 } 1126 1127 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1128 llvm::Function *F) { 1129 // Only if we are checking indirect calls. 1130 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1131 return; 1132 1133 // Non-static class methods are handled via vtable pointer checks elsewhere. 1134 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1135 return; 1136 1137 // Additionally, if building with cross-DSO support... 1138 if (CodeGenOpts.SanitizeCfiCrossDso) { 1139 // Skip available_externally functions. They won't be codegen'ed in the 1140 // current module anyway. 1141 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1142 return; 1143 } 1144 1145 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1146 F->addTypeMetadata(0, MD); 1147 1148 // Emit a hash-based bit set entry for cross-DSO calls. 1149 if (CodeGenOpts.SanitizeCfiCrossDso) 1150 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1151 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1152 } 1153 1154 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1155 bool IsIncompleteFunction, 1156 bool IsThunk, 1157 ForDefinition_t IsForDefinition) { 1158 1159 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1160 // If this is an intrinsic function, set the function's attributes 1161 // to the intrinsic's attributes. 1162 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1163 return; 1164 } 1165 1166 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1167 1168 if (!IsIncompleteFunction) { 1169 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1170 // Setup target-specific attributes. 1171 if (!IsForDefinition) 1172 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1173 NotForDefinition); 1174 } 1175 1176 // Add the Returned attribute for "this", except for iOS 5 and earlier 1177 // where substantial code, including the libstdc++ dylib, was compiled with 1178 // GCC and does not actually return "this". 1179 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1180 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1181 assert(!F->arg_empty() && 1182 F->arg_begin()->getType() 1183 ->canLosslesslyBitCastTo(F->getReturnType()) && 1184 "unexpected this return"); 1185 F->addAttribute(1, llvm::Attribute::Returned); 1186 } 1187 1188 // Only a few attributes are set on declarations; these may later be 1189 // overridden by a definition. 1190 1191 setLinkageAndVisibilityForGV(F, FD); 1192 1193 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1194 F->addFnAttr("implicit-section-name"); 1195 } 1196 1197 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1198 F->setSection(SA->getName()); 1199 1200 if (FD->isReplaceableGlobalAllocationFunction()) { 1201 // A replaceable global allocation function does not act like a builtin by 1202 // default, only if it is invoked by a new-expression or delete-expression. 1203 F->addAttribute(llvm::AttributeList::FunctionIndex, 1204 llvm::Attribute::NoBuiltin); 1205 1206 // A sane operator new returns a non-aliasing pointer. 1207 // FIXME: Also add NonNull attribute to the return value 1208 // for the non-nothrow forms? 1209 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1210 if (getCodeGenOpts().AssumeSaneOperatorNew && 1211 (Kind == OO_New || Kind == OO_Array_New)) 1212 F->addAttribute(llvm::AttributeList::ReturnIndex, 1213 llvm::Attribute::NoAlias); 1214 } 1215 1216 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1217 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1218 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1219 if (MD->isVirtual()) 1220 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1221 1222 // Don't emit entries for function declarations in the cross-DSO mode. This 1223 // is handled with better precision by the receiving DSO. 1224 if (!CodeGenOpts.SanitizeCfiCrossDso) 1225 CreateFunctionTypeMetadata(FD, F); 1226 } 1227 1228 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1229 assert(!GV->isDeclaration() && 1230 "Only globals with definition can force usage."); 1231 LLVMUsed.emplace_back(GV); 1232 } 1233 1234 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1235 assert(!GV->isDeclaration() && 1236 "Only globals with definition can force usage."); 1237 LLVMCompilerUsed.emplace_back(GV); 1238 } 1239 1240 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1241 std::vector<llvm::WeakTrackingVH> &List) { 1242 // Don't create llvm.used if there is no need. 1243 if (List.empty()) 1244 return; 1245 1246 // Convert List to what ConstantArray needs. 1247 SmallVector<llvm::Constant*, 8> UsedArray; 1248 UsedArray.resize(List.size()); 1249 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1250 UsedArray[i] = 1251 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1252 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1253 } 1254 1255 if (UsedArray.empty()) 1256 return; 1257 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1258 1259 auto *GV = new llvm::GlobalVariable( 1260 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1261 llvm::ConstantArray::get(ATy, UsedArray), Name); 1262 1263 GV->setSection("llvm.metadata"); 1264 } 1265 1266 void CodeGenModule::emitLLVMUsed() { 1267 emitUsed(*this, "llvm.used", LLVMUsed); 1268 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1269 } 1270 1271 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1272 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1273 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1274 } 1275 1276 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1277 llvm::SmallString<32> Opt; 1278 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1279 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1280 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1281 } 1282 1283 void CodeGenModule::AddDependentLib(StringRef Lib) { 1284 llvm::SmallString<24> Opt; 1285 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1286 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1287 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1288 } 1289 1290 /// \brief Add link options implied by the given module, including modules 1291 /// it depends on, using a postorder walk. 1292 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1293 SmallVectorImpl<llvm::MDNode *> &Metadata, 1294 llvm::SmallPtrSet<Module *, 16> &Visited) { 1295 // Import this module's parent. 1296 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1297 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1298 } 1299 1300 // Import this module's dependencies. 1301 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1302 if (Visited.insert(Mod->Imports[I - 1]).second) 1303 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1304 } 1305 1306 // Add linker options to link against the libraries/frameworks 1307 // described by this module. 1308 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1309 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1310 // Link against a framework. Frameworks are currently Darwin only, so we 1311 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1312 if (Mod->LinkLibraries[I-1].IsFramework) { 1313 llvm::Metadata *Args[2] = { 1314 llvm::MDString::get(Context, "-framework"), 1315 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1316 1317 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1318 continue; 1319 } 1320 1321 // Link against a library. 1322 llvm::SmallString<24> Opt; 1323 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1324 Mod->LinkLibraries[I-1].Library, Opt); 1325 auto *OptString = llvm::MDString::get(Context, Opt); 1326 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1327 } 1328 } 1329 1330 void CodeGenModule::EmitModuleLinkOptions() { 1331 // Collect the set of all of the modules we want to visit to emit link 1332 // options, which is essentially the imported modules and all of their 1333 // non-explicit child modules. 1334 llvm::SetVector<clang::Module *> LinkModules; 1335 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1336 SmallVector<clang::Module *, 16> Stack; 1337 1338 // Seed the stack with imported modules. 1339 for (Module *M : ImportedModules) { 1340 // Do not add any link flags when an implementation TU of a module imports 1341 // a header of that same module. 1342 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1343 !getLangOpts().isCompilingModule()) 1344 continue; 1345 if (Visited.insert(M).second) 1346 Stack.push_back(M); 1347 } 1348 1349 // Find all of the modules to import, making a little effort to prune 1350 // non-leaf modules. 1351 while (!Stack.empty()) { 1352 clang::Module *Mod = Stack.pop_back_val(); 1353 1354 bool AnyChildren = false; 1355 1356 // Visit the submodules of this module. 1357 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1358 SubEnd = Mod->submodule_end(); 1359 Sub != SubEnd; ++Sub) { 1360 // Skip explicit children; they need to be explicitly imported to be 1361 // linked against. 1362 if ((*Sub)->IsExplicit) 1363 continue; 1364 1365 if (Visited.insert(*Sub).second) { 1366 Stack.push_back(*Sub); 1367 AnyChildren = true; 1368 } 1369 } 1370 1371 // We didn't find any children, so add this module to the list of 1372 // modules to link against. 1373 if (!AnyChildren) { 1374 LinkModules.insert(Mod); 1375 } 1376 } 1377 1378 // Add link options for all of the imported modules in reverse topological 1379 // order. We don't do anything to try to order import link flags with respect 1380 // to linker options inserted by things like #pragma comment(). 1381 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1382 Visited.clear(); 1383 for (Module *M : LinkModules) 1384 if (Visited.insert(M).second) 1385 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1386 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1387 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1388 1389 // Add the linker options metadata flag. 1390 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1391 for (auto *MD : LinkerOptionsMetadata) 1392 NMD->addOperand(MD); 1393 } 1394 1395 void CodeGenModule::EmitDeferred() { 1396 // Emit code for any potentially referenced deferred decls. Since a 1397 // previously unused static decl may become used during the generation of code 1398 // for a static function, iterate until no changes are made. 1399 1400 if (!DeferredVTables.empty()) { 1401 EmitDeferredVTables(); 1402 1403 // Emitting a vtable doesn't directly cause more vtables to 1404 // become deferred, although it can cause functions to be 1405 // emitted that then need those vtables. 1406 assert(DeferredVTables.empty()); 1407 } 1408 1409 // Stop if we're out of both deferred vtables and deferred declarations. 1410 if (DeferredDeclsToEmit.empty()) 1411 return; 1412 1413 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1414 // work, it will not interfere with this. 1415 std::vector<GlobalDecl> CurDeclsToEmit; 1416 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1417 1418 for (GlobalDecl &D : CurDeclsToEmit) { 1419 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1420 // to get GlobalValue with exactly the type we need, not something that 1421 // might had been created for another decl with the same mangled name but 1422 // different type. 1423 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1424 GetAddrOfGlobal(D, ForDefinition)); 1425 1426 // In case of different address spaces, we may still get a cast, even with 1427 // IsForDefinition equal to true. Query mangled names table to get 1428 // GlobalValue. 1429 if (!GV) 1430 GV = GetGlobalValue(getMangledName(D)); 1431 1432 // Make sure GetGlobalValue returned non-null. 1433 assert(GV); 1434 1435 // Check to see if we've already emitted this. This is necessary 1436 // for a couple of reasons: first, decls can end up in the 1437 // deferred-decls queue multiple times, and second, decls can end 1438 // up with definitions in unusual ways (e.g. by an extern inline 1439 // function acquiring a strong function redefinition). Just 1440 // ignore these cases. 1441 if (!GV->isDeclaration()) 1442 continue; 1443 1444 // Otherwise, emit the definition and move on to the next one. 1445 EmitGlobalDefinition(D, GV); 1446 1447 // If we found out that we need to emit more decls, do that recursively. 1448 // This has the advantage that the decls are emitted in a DFS and related 1449 // ones are close together, which is convenient for testing. 1450 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1451 EmitDeferred(); 1452 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1453 } 1454 } 1455 } 1456 1457 void CodeGenModule::EmitVTablesOpportunistically() { 1458 // Try to emit external vtables as available_externally if they have emitted 1459 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1460 // is not allowed to create new references to things that need to be emitted 1461 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1462 1463 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1464 && "Only emit opportunistic vtables with optimizations"); 1465 1466 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1467 assert(getVTables().isVTableExternal(RD) && 1468 "This queue should only contain external vtables"); 1469 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1470 VTables.GenerateClassData(RD); 1471 } 1472 OpportunisticVTables.clear(); 1473 } 1474 1475 void CodeGenModule::EmitGlobalAnnotations() { 1476 if (Annotations.empty()) 1477 return; 1478 1479 // Create a new global variable for the ConstantStruct in the Module. 1480 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1481 Annotations[0]->getType(), Annotations.size()), Annotations); 1482 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1483 llvm::GlobalValue::AppendingLinkage, 1484 Array, "llvm.global.annotations"); 1485 gv->setSection(AnnotationSection); 1486 } 1487 1488 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1489 llvm::Constant *&AStr = AnnotationStrings[Str]; 1490 if (AStr) 1491 return AStr; 1492 1493 // Not found yet, create a new global. 1494 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1495 auto *gv = 1496 new llvm::GlobalVariable(getModule(), s->getType(), true, 1497 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1498 gv->setSection(AnnotationSection); 1499 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1500 AStr = gv; 1501 return gv; 1502 } 1503 1504 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1505 SourceManager &SM = getContext().getSourceManager(); 1506 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1507 if (PLoc.isValid()) 1508 return EmitAnnotationString(PLoc.getFilename()); 1509 return EmitAnnotationString(SM.getBufferName(Loc)); 1510 } 1511 1512 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1513 SourceManager &SM = getContext().getSourceManager(); 1514 PresumedLoc PLoc = SM.getPresumedLoc(L); 1515 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1516 SM.getExpansionLineNumber(L); 1517 return llvm::ConstantInt::get(Int32Ty, LineNo); 1518 } 1519 1520 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1521 const AnnotateAttr *AA, 1522 SourceLocation L) { 1523 // Get the globals for file name, annotation, and the line number. 1524 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1525 *UnitGV = EmitAnnotationUnit(L), 1526 *LineNoCst = EmitAnnotationLineNo(L); 1527 1528 // Create the ConstantStruct for the global annotation. 1529 llvm::Constant *Fields[4] = { 1530 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1531 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1532 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1533 LineNoCst 1534 }; 1535 return llvm::ConstantStruct::getAnon(Fields); 1536 } 1537 1538 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1539 llvm::GlobalValue *GV) { 1540 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1541 // Get the struct elements for these annotations. 1542 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1543 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1544 } 1545 1546 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1547 SourceLocation Loc) const { 1548 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1549 // Blacklist by function name. 1550 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1551 return true; 1552 // Blacklist by location. 1553 if (Loc.isValid()) 1554 return SanitizerBL.isBlacklistedLocation(Loc); 1555 // If location is unknown, this may be a compiler-generated function. Assume 1556 // it's located in the main file. 1557 auto &SM = Context.getSourceManager(); 1558 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1559 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1560 } 1561 return false; 1562 } 1563 1564 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1565 SourceLocation Loc, QualType Ty, 1566 StringRef Category) const { 1567 // For now globals can be blacklisted only in ASan and KASan. 1568 if (!LangOpts.Sanitize.hasOneOf( 1569 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1570 return false; 1571 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1572 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1573 return true; 1574 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1575 return true; 1576 // Check global type. 1577 if (!Ty.isNull()) { 1578 // Drill down the array types: if global variable of a fixed type is 1579 // blacklisted, we also don't instrument arrays of them. 1580 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1581 Ty = AT->getElementType(); 1582 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1583 // We allow to blacklist only record types (classes, structs etc.) 1584 if (Ty->isRecordType()) { 1585 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1586 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1587 return true; 1588 } 1589 } 1590 return false; 1591 } 1592 1593 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1594 StringRef Category) const { 1595 if (!LangOpts.XRayInstrument) 1596 return false; 1597 const auto &XRayFilter = getContext().getXRayFilter(); 1598 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1599 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1600 if (Loc.isValid()) 1601 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1602 if (Attr == ImbueAttr::NONE) 1603 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1604 switch (Attr) { 1605 case ImbueAttr::NONE: 1606 return false; 1607 case ImbueAttr::ALWAYS: 1608 Fn->addFnAttr("function-instrument", "xray-always"); 1609 break; 1610 case ImbueAttr::ALWAYS_ARG1: 1611 Fn->addFnAttr("function-instrument", "xray-always"); 1612 Fn->addFnAttr("xray-log-args", "1"); 1613 break; 1614 case ImbueAttr::NEVER: 1615 Fn->addFnAttr("function-instrument", "xray-never"); 1616 break; 1617 } 1618 return true; 1619 } 1620 1621 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1622 // Never defer when EmitAllDecls is specified. 1623 if (LangOpts.EmitAllDecls) 1624 return true; 1625 1626 return getContext().DeclMustBeEmitted(Global); 1627 } 1628 1629 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1630 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1631 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1632 // Implicit template instantiations may change linkage if they are later 1633 // explicitly instantiated, so they should not be emitted eagerly. 1634 return false; 1635 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1636 if (Context.getInlineVariableDefinitionKind(VD) == 1637 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1638 // A definition of an inline constexpr static data member may change 1639 // linkage later if it's redeclared outside the class. 1640 return false; 1641 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1642 // codegen for global variables, because they may be marked as threadprivate. 1643 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1644 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1645 return false; 1646 1647 return true; 1648 } 1649 1650 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1651 const CXXUuidofExpr* E) { 1652 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1653 // well-formed. 1654 StringRef Uuid = E->getUuidStr(); 1655 std::string Name = "_GUID_" + Uuid.lower(); 1656 std::replace(Name.begin(), Name.end(), '-', '_'); 1657 1658 // The UUID descriptor should be pointer aligned. 1659 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1660 1661 // Look for an existing global. 1662 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1663 return ConstantAddress(GV, Alignment); 1664 1665 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1666 assert(Init && "failed to initialize as constant"); 1667 1668 auto *GV = new llvm::GlobalVariable( 1669 getModule(), Init->getType(), 1670 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1671 if (supportsCOMDAT()) 1672 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1673 return ConstantAddress(GV, Alignment); 1674 } 1675 1676 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1677 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1678 assert(AA && "No alias?"); 1679 1680 CharUnits Alignment = getContext().getDeclAlign(VD); 1681 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1682 1683 // See if there is already something with the target's name in the module. 1684 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1685 if (Entry) { 1686 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1687 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1688 return ConstantAddress(Ptr, Alignment); 1689 } 1690 1691 llvm::Constant *Aliasee; 1692 if (isa<llvm::FunctionType>(DeclTy)) 1693 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1694 GlobalDecl(cast<FunctionDecl>(VD)), 1695 /*ForVTable=*/false); 1696 else 1697 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1698 llvm::PointerType::getUnqual(DeclTy), 1699 nullptr); 1700 1701 auto *F = cast<llvm::GlobalValue>(Aliasee); 1702 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1703 WeakRefReferences.insert(F); 1704 1705 return ConstantAddress(Aliasee, Alignment); 1706 } 1707 1708 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1709 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1710 1711 // Weak references don't produce any output by themselves. 1712 if (Global->hasAttr<WeakRefAttr>()) 1713 return; 1714 1715 // If this is an alias definition (which otherwise looks like a declaration) 1716 // emit it now. 1717 if (Global->hasAttr<AliasAttr>()) 1718 return EmitAliasDefinition(GD); 1719 1720 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1721 if (Global->hasAttr<IFuncAttr>()) 1722 return emitIFuncDefinition(GD); 1723 1724 // If this is CUDA, be selective about which declarations we emit. 1725 if (LangOpts.CUDA) { 1726 if (LangOpts.CUDAIsDevice) { 1727 if (!Global->hasAttr<CUDADeviceAttr>() && 1728 !Global->hasAttr<CUDAGlobalAttr>() && 1729 !Global->hasAttr<CUDAConstantAttr>() && 1730 !Global->hasAttr<CUDASharedAttr>()) 1731 return; 1732 } else { 1733 // We need to emit host-side 'shadows' for all global 1734 // device-side variables because the CUDA runtime needs their 1735 // size and host-side address in order to provide access to 1736 // their device-side incarnations. 1737 1738 // So device-only functions are the only things we skip. 1739 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1740 Global->hasAttr<CUDADeviceAttr>()) 1741 return; 1742 1743 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1744 "Expected Variable or Function"); 1745 } 1746 } 1747 1748 if (LangOpts.OpenMP) { 1749 // If this is OpenMP device, check if it is legal to emit this global 1750 // normally. 1751 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1752 return; 1753 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1754 if (MustBeEmitted(Global)) 1755 EmitOMPDeclareReduction(DRD); 1756 return; 1757 } 1758 } 1759 1760 // Ignore declarations, they will be emitted on their first use. 1761 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1762 // Forward declarations are emitted lazily on first use. 1763 if (!FD->doesThisDeclarationHaveABody()) { 1764 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1765 return; 1766 1767 StringRef MangledName = getMangledName(GD); 1768 1769 // Compute the function info and LLVM type. 1770 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1771 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1772 1773 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1774 /*DontDefer=*/false); 1775 return; 1776 } 1777 } else { 1778 const auto *VD = cast<VarDecl>(Global); 1779 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1780 // We need to emit device-side global CUDA variables even if a 1781 // variable does not have a definition -- we still need to define 1782 // host-side shadow for it. 1783 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1784 !VD->hasDefinition() && 1785 (VD->hasAttr<CUDAConstantAttr>() || 1786 VD->hasAttr<CUDADeviceAttr>()); 1787 if (!MustEmitForCuda && 1788 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1789 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1790 // If this declaration may have caused an inline variable definition to 1791 // change linkage, make sure that it's emitted. 1792 if (Context.getInlineVariableDefinitionKind(VD) == 1793 ASTContext::InlineVariableDefinitionKind::Strong) 1794 GetAddrOfGlobalVar(VD); 1795 return; 1796 } 1797 } 1798 1799 // Defer code generation to first use when possible, e.g. if this is an inline 1800 // function. If the global must always be emitted, do it eagerly if possible 1801 // to benefit from cache locality. 1802 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1803 // Emit the definition if it can't be deferred. 1804 EmitGlobalDefinition(GD); 1805 return; 1806 } 1807 1808 // If we're deferring emission of a C++ variable with an 1809 // initializer, remember the order in which it appeared in the file. 1810 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1811 cast<VarDecl>(Global)->hasInit()) { 1812 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1813 CXXGlobalInits.push_back(nullptr); 1814 } 1815 1816 StringRef MangledName = getMangledName(GD); 1817 if (GetGlobalValue(MangledName) != nullptr) { 1818 // The value has already been used and should therefore be emitted. 1819 addDeferredDeclToEmit(GD); 1820 } else if (MustBeEmitted(Global)) { 1821 // The value must be emitted, but cannot be emitted eagerly. 1822 assert(!MayBeEmittedEagerly(Global)); 1823 addDeferredDeclToEmit(GD); 1824 } else { 1825 // Otherwise, remember that we saw a deferred decl with this name. The 1826 // first use of the mangled name will cause it to move into 1827 // DeferredDeclsToEmit. 1828 DeferredDecls[MangledName] = GD; 1829 } 1830 } 1831 1832 // Check if T is a class type with a destructor that's not dllimport. 1833 static bool HasNonDllImportDtor(QualType T) { 1834 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1835 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1836 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1837 return true; 1838 1839 return false; 1840 } 1841 1842 namespace { 1843 struct FunctionIsDirectlyRecursive : 1844 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1845 const StringRef Name; 1846 const Builtin::Context &BI; 1847 bool Result; 1848 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1849 Name(N), BI(C), Result(false) { 1850 } 1851 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1852 1853 bool TraverseCallExpr(CallExpr *E) { 1854 const FunctionDecl *FD = E->getDirectCallee(); 1855 if (!FD) 1856 return true; 1857 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1858 if (Attr && Name == Attr->getLabel()) { 1859 Result = true; 1860 return false; 1861 } 1862 unsigned BuiltinID = FD->getBuiltinID(); 1863 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1864 return true; 1865 StringRef BuiltinName = BI.getName(BuiltinID); 1866 if (BuiltinName.startswith("__builtin_") && 1867 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1868 Result = true; 1869 return false; 1870 } 1871 return true; 1872 } 1873 }; 1874 1875 // Make sure we're not referencing non-imported vars or functions. 1876 struct DLLImportFunctionVisitor 1877 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1878 bool SafeToInline = true; 1879 1880 bool shouldVisitImplicitCode() const { return true; } 1881 1882 bool VisitVarDecl(VarDecl *VD) { 1883 if (VD->getTLSKind()) { 1884 // A thread-local variable cannot be imported. 1885 SafeToInline = false; 1886 return SafeToInline; 1887 } 1888 1889 // A variable definition might imply a destructor call. 1890 if (VD->isThisDeclarationADefinition()) 1891 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1892 1893 return SafeToInline; 1894 } 1895 1896 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1897 if (const auto *D = E->getTemporary()->getDestructor()) 1898 SafeToInline = D->hasAttr<DLLImportAttr>(); 1899 return SafeToInline; 1900 } 1901 1902 bool VisitDeclRefExpr(DeclRefExpr *E) { 1903 ValueDecl *VD = E->getDecl(); 1904 if (isa<FunctionDecl>(VD)) 1905 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1906 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1907 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1908 return SafeToInline; 1909 } 1910 1911 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1912 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1913 return SafeToInline; 1914 } 1915 1916 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1917 CXXMethodDecl *M = E->getMethodDecl(); 1918 if (!M) { 1919 // Call through a pointer to member function. This is safe to inline. 1920 SafeToInline = true; 1921 } else { 1922 SafeToInline = M->hasAttr<DLLImportAttr>(); 1923 } 1924 return SafeToInline; 1925 } 1926 1927 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1928 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1929 return SafeToInline; 1930 } 1931 1932 bool VisitCXXNewExpr(CXXNewExpr *E) { 1933 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1934 return SafeToInline; 1935 } 1936 }; 1937 } 1938 1939 // isTriviallyRecursive - Check if this function calls another 1940 // decl that, because of the asm attribute or the other decl being a builtin, 1941 // ends up pointing to itself. 1942 bool 1943 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1944 StringRef Name; 1945 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1946 // asm labels are a special kind of mangling we have to support. 1947 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1948 if (!Attr) 1949 return false; 1950 Name = Attr->getLabel(); 1951 } else { 1952 Name = FD->getName(); 1953 } 1954 1955 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1956 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1957 return Walker.Result; 1958 } 1959 1960 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1961 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1962 return true; 1963 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1964 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1965 return false; 1966 1967 if (F->hasAttr<DLLImportAttr>()) { 1968 // Check whether it would be safe to inline this dllimport function. 1969 DLLImportFunctionVisitor Visitor; 1970 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1971 if (!Visitor.SafeToInline) 1972 return false; 1973 1974 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1975 // Implicit destructor invocations aren't captured in the AST, so the 1976 // check above can't see them. Check for them manually here. 1977 for (const Decl *Member : Dtor->getParent()->decls()) 1978 if (isa<FieldDecl>(Member)) 1979 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1980 return false; 1981 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1982 if (HasNonDllImportDtor(B.getType())) 1983 return false; 1984 } 1985 } 1986 1987 // PR9614. Avoid cases where the source code is lying to us. An available 1988 // externally function should have an equivalent function somewhere else, 1989 // but a function that calls itself is clearly not equivalent to the real 1990 // implementation. 1991 // This happens in glibc's btowc and in some configure checks. 1992 return !isTriviallyRecursive(F); 1993 } 1994 1995 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1996 return CodeGenOpts.OptimizationLevel > 0; 1997 } 1998 1999 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2000 const auto *D = cast<ValueDecl>(GD.getDecl()); 2001 2002 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2003 Context.getSourceManager(), 2004 "Generating code for declaration"); 2005 2006 if (isa<FunctionDecl>(D)) { 2007 // At -O0, don't generate IR for functions with available_externally 2008 // linkage. 2009 if (!shouldEmitFunction(GD)) 2010 return; 2011 2012 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2013 // Make sure to emit the definition(s) before we emit the thunks. 2014 // This is necessary for the generation of certain thunks. 2015 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2016 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2017 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2018 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2019 else 2020 EmitGlobalFunctionDefinition(GD, GV); 2021 2022 if (Method->isVirtual()) 2023 getVTables().EmitThunks(GD); 2024 2025 return; 2026 } 2027 2028 return EmitGlobalFunctionDefinition(GD, GV); 2029 } 2030 2031 if (const auto *VD = dyn_cast<VarDecl>(D)) 2032 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2033 2034 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2035 } 2036 2037 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2038 llvm::Function *NewFn); 2039 2040 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2041 /// module, create and return an llvm Function with the specified type. If there 2042 /// is something in the module with the specified name, return it potentially 2043 /// bitcasted to the right type. 2044 /// 2045 /// If D is non-null, it specifies a decl that correspond to this. This is used 2046 /// to set the attributes on the function when it is first created. 2047 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2048 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2049 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2050 ForDefinition_t IsForDefinition) { 2051 const Decl *D = GD.getDecl(); 2052 2053 // Lookup the entry, lazily creating it if necessary. 2054 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2055 if (Entry) { 2056 if (WeakRefReferences.erase(Entry)) { 2057 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2058 if (FD && !FD->hasAttr<WeakAttr>()) 2059 Entry->setLinkage(llvm::Function::ExternalLinkage); 2060 } 2061 2062 // Handle dropped DLL attributes. 2063 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2064 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2065 2066 // If there are two attempts to define the same mangled name, issue an 2067 // error. 2068 if (IsForDefinition && !Entry->isDeclaration()) { 2069 GlobalDecl OtherGD; 2070 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2071 // to make sure that we issue an error only once. 2072 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2073 (GD.getCanonicalDecl().getDecl() != 2074 OtherGD.getCanonicalDecl().getDecl()) && 2075 DiagnosedConflictingDefinitions.insert(GD).second) { 2076 getDiags().Report(D->getLocation(), 2077 diag::err_duplicate_mangled_name); 2078 getDiags().Report(OtherGD.getDecl()->getLocation(), 2079 diag::note_previous_definition); 2080 } 2081 } 2082 2083 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2084 (Entry->getType()->getElementType() == Ty)) { 2085 return Entry; 2086 } 2087 2088 // Make sure the result is of the correct type. 2089 // (If function is requested for a definition, we always need to create a new 2090 // function, not just return a bitcast.) 2091 if (!IsForDefinition) 2092 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2093 } 2094 2095 // This function doesn't have a complete type (for example, the return 2096 // type is an incomplete struct). Use a fake type instead, and make 2097 // sure not to try to set attributes. 2098 bool IsIncompleteFunction = false; 2099 2100 llvm::FunctionType *FTy; 2101 if (isa<llvm::FunctionType>(Ty)) { 2102 FTy = cast<llvm::FunctionType>(Ty); 2103 } else { 2104 FTy = llvm::FunctionType::get(VoidTy, false); 2105 IsIncompleteFunction = true; 2106 } 2107 2108 llvm::Function *F = 2109 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2110 Entry ? StringRef() : MangledName, &getModule()); 2111 2112 // If we already created a function with the same mangled name (but different 2113 // type) before, take its name and add it to the list of functions to be 2114 // replaced with F at the end of CodeGen. 2115 // 2116 // This happens if there is a prototype for a function (e.g. "int f()") and 2117 // then a definition of a different type (e.g. "int f(int x)"). 2118 if (Entry) { 2119 F->takeName(Entry); 2120 2121 // This might be an implementation of a function without a prototype, in 2122 // which case, try to do special replacement of calls which match the new 2123 // prototype. The really key thing here is that we also potentially drop 2124 // arguments from the call site so as to make a direct call, which makes the 2125 // inliner happier and suppresses a number of optimizer warnings (!) about 2126 // dropping arguments. 2127 if (!Entry->use_empty()) { 2128 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2129 Entry->removeDeadConstantUsers(); 2130 } 2131 2132 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2133 F, Entry->getType()->getElementType()->getPointerTo()); 2134 addGlobalValReplacement(Entry, BC); 2135 } 2136 2137 assert(F->getName() == MangledName && "name was uniqued!"); 2138 if (D) 2139 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2140 IsForDefinition); 2141 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2142 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2143 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2144 } 2145 2146 if (!DontDefer) { 2147 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2148 // each other bottoming out with the base dtor. Therefore we emit non-base 2149 // dtors on usage, even if there is no dtor definition in the TU. 2150 if (D && isa<CXXDestructorDecl>(D) && 2151 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2152 GD.getDtorType())) 2153 addDeferredDeclToEmit(GD); 2154 2155 // This is the first use or definition of a mangled name. If there is a 2156 // deferred decl with this name, remember that we need to emit it at the end 2157 // of the file. 2158 auto DDI = DeferredDecls.find(MangledName); 2159 if (DDI != DeferredDecls.end()) { 2160 // Move the potentially referenced deferred decl to the 2161 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2162 // don't need it anymore). 2163 addDeferredDeclToEmit(DDI->second); 2164 DeferredDecls.erase(DDI); 2165 2166 // Otherwise, there are cases we have to worry about where we're 2167 // using a declaration for which we must emit a definition but where 2168 // we might not find a top-level definition: 2169 // - member functions defined inline in their classes 2170 // - friend functions defined inline in some class 2171 // - special member functions with implicit definitions 2172 // If we ever change our AST traversal to walk into class methods, 2173 // this will be unnecessary. 2174 // 2175 // We also don't emit a definition for a function if it's going to be an 2176 // entry in a vtable, unless it's already marked as used. 2177 } else if (getLangOpts().CPlusPlus && D) { 2178 // Look for a declaration that's lexically in a record. 2179 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2180 FD = FD->getPreviousDecl()) { 2181 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2182 if (FD->doesThisDeclarationHaveABody()) { 2183 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2184 break; 2185 } 2186 } 2187 } 2188 } 2189 } 2190 2191 // Make sure the result is of the requested type. 2192 if (!IsIncompleteFunction) { 2193 assert(F->getType()->getElementType() == Ty); 2194 return F; 2195 } 2196 2197 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2198 return llvm::ConstantExpr::getBitCast(F, PTy); 2199 } 2200 2201 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2202 /// non-null, then this function will use the specified type if it has to 2203 /// create it (this occurs when we see a definition of the function). 2204 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2205 llvm::Type *Ty, 2206 bool ForVTable, 2207 bool DontDefer, 2208 ForDefinition_t IsForDefinition) { 2209 // If there was no specific requested type, just convert it now. 2210 if (!Ty) { 2211 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2212 auto CanonTy = Context.getCanonicalType(FD->getType()); 2213 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2214 } 2215 2216 StringRef MangledName = getMangledName(GD); 2217 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2218 /*IsThunk=*/false, llvm::AttributeList(), 2219 IsForDefinition); 2220 } 2221 2222 static const FunctionDecl * 2223 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2224 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2225 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2226 2227 IdentifierInfo &CII = C.Idents.get(Name); 2228 for (const auto &Result : DC->lookup(&CII)) 2229 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2230 return FD; 2231 2232 if (!C.getLangOpts().CPlusPlus) 2233 return nullptr; 2234 2235 // Demangle the premangled name from getTerminateFn() 2236 IdentifierInfo &CXXII = 2237 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2238 ? C.Idents.get("terminate") 2239 : C.Idents.get(Name); 2240 2241 for (const auto &N : {"__cxxabiv1", "std"}) { 2242 IdentifierInfo &NS = C.Idents.get(N); 2243 for (const auto &Result : DC->lookup(&NS)) { 2244 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2245 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2246 for (const auto &Result : LSD->lookup(&NS)) 2247 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2248 break; 2249 2250 if (ND) 2251 for (const auto &Result : ND->lookup(&CXXII)) 2252 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2253 return FD; 2254 } 2255 } 2256 2257 return nullptr; 2258 } 2259 2260 /// CreateRuntimeFunction - Create a new runtime function with the specified 2261 /// type and name. 2262 llvm::Constant * 2263 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2264 llvm::AttributeList ExtraAttrs, 2265 bool Local) { 2266 llvm::Constant *C = 2267 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2268 /*DontDefer=*/false, /*IsThunk=*/false, 2269 ExtraAttrs); 2270 2271 if (auto *F = dyn_cast<llvm::Function>(C)) { 2272 if (F->empty()) { 2273 F->setCallingConv(getRuntimeCC()); 2274 2275 if (!Local && getTriple().isOSBinFormatCOFF() && 2276 !getCodeGenOpts().LTOVisibilityPublicStd) { 2277 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2278 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2279 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2280 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2281 } 2282 } 2283 } 2284 } 2285 2286 return C; 2287 } 2288 2289 /// CreateBuiltinFunction - Create a new builtin function with the specified 2290 /// type and name. 2291 llvm::Constant * 2292 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2293 llvm::AttributeList ExtraAttrs) { 2294 llvm::Constant *C = 2295 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2296 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2297 if (auto *F = dyn_cast<llvm::Function>(C)) 2298 if (F->empty()) 2299 F->setCallingConv(getBuiltinCC()); 2300 return C; 2301 } 2302 2303 /// isTypeConstant - Determine whether an object of this type can be emitted 2304 /// as a constant. 2305 /// 2306 /// If ExcludeCtor is true, the duration when the object's constructor runs 2307 /// will not be considered. The caller will need to verify that the object is 2308 /// not written to during its construction. 2309 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2310 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2311 return false; 2312 2313 if (Context.getLangOpts().CPlusPlus) { 2314 if (const CXXRecordDecl *Record 2315 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2316 return ExcludeCtor && !Record->hasMutableFields() && 2317 Record->hasTrivialDestructor(); 2318 } 2319 2320 return true; 2321 } 2322 2323 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2324 /// create and return an llvm GlobalVariable with the specified type. If there 2325 /// is something in the module with the specified name, return it potentially 2326 /// bitcasted to the right type. 2327 /// 2328 /// If D is non-null, it specifies a decl that correspond to this. This is used 2329 /// to set the attributes on the global when it is first created. 2330 /// 2331 /// If IsForDefinition is true, it is guranteed that an actual global with 2332 /// type Ty will be returned, not conversion of a variable with the same 2333 /// mangled name but some other type. 2334 llvm::Constant * 2335 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2336 llvm::PointerType *Ty, 2337 const VarDecl *D, 2338 ForDefinition_t IsForDefinition) { 2339 // Lookup the entry, lazily creating it if necessary. 2340 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2341 if (Entry) { 2342 if (WeakRefReferences.erase(Entry)) { 2343 if (D && !D->hasAttr<WeakAttr>()) 2344 Entry->setLinkage(llvm::Function::ExternalLinkage); 2345 } 2346 2347 // Handle dropped DLL attributes. 2348 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2349 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2350 2351 if (Entry->getType() == Ty) 2352 return Entry; 2353 2354 // If there are two attempts to define the same mangled name, issue an 2355 // error. 2356 if (IsForDefinition && !Entry->isDeclaration()) { 2357 GlobalDecl OtherGD; 2358 const VarDecl *OtherD; 2359 2360 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2361 // to make sure that we issue an error only once. 2362 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2363 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2364 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2365 OtherD->hasInit() && 2366 DiagnosedConflictingDefinitions.insert(D).second) { 2367 getDiags().Report(D->getLocation(), 2368 diag::err_duplicate_mangled_name); 2369 getDiags().Report(OtherGD.getDecl()->getLocation(), 2370 diag::note_previous_definition); 2371 } 2372 } 2373 2374 // Make sure the result is of the correct type. 2375 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2376 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2377 2378 // (If global is requested for a definition, we always need to create a new 2379 // global, not just return a bitcast.) 2380 if (!IsForDefinition) 2381 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2382 } 2383 2384 auto AddrSpace = GetGlobalVarAddressSpace(D); 2385 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2386 2387 auto *GV = new llvm::GlobalVariable( 2388 getModule(), Ty->getElementType(), false, 2389 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2390 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2391 2392 // If we already created a global with the same mangled name (but different 2393 // type) before, take its name and remove it from its parent. 2394 if (Entry) { 2395 GV->takeName(Entry); 2396 2397 if (!Entry->use_empty()) { 2398 llvm::Constant *NewPtrForOldDecl = 2399 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2400 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2401 } 2402 2403 Entry->eraseFromParent(); 2404 } 2405 2406 // This is the first use or definition of a mangled name. If there is a 2407 // deferred decl with this name, remember that we need to emit it at the end 2408 // of the file. 2409 auto DDI = DeferredDecls.find(MangledName); 2410 if (DDI != DeferredDecls.end()) { 2411 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2412 // list, and remove it from DeferredDecls (since we don't need it anymore). 2413 addDeferredDeclToEmit(DDI->second); 2414 DeferredDecls.erase(DDI); 2415 } 2416 2417 // Handle things which are present even on external declarations. 2418 if (D) { 2419 // FIXME: This code is overly simple and should be merged with other global 2420 // handling. 2421 GV->setConstant(isTypeConstant(D->getType(), false)); 2422 2423 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2424 2425 setLinkageAndVisibilityForGV(GV, D); 2426 2427 if (D->getTLSKind()) { 2428 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2429 CXXThreadLocals.push_back(D); 2430 setTLSMode(GV, *D); 2431 } 2432 2433 // If required by the ABI, treat declarations of static data members with 2434 // inline initializers as definitions. 2435 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2436 EmitGlobalVarDefinition(D); 2437 } 2438 2439 // Handle XCore specific ABI requirements. 2440 if (getTriple().getArch() == llvm::Triple::xcore && 2441 D->getLanguageLinkage() == CLanguageLinkage && 2442 D->getType().isConstant(Context) && 2443 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2444 GV->setSection(".cp.rodata"); 2445 2446 // Check if we a have a const declaration with an initializer, we may be 2447 // able to emit it as available_externally to expose it's value to the 2448 // optimizer. 2449 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2450 D->getType().isConstQualified() && !GV->hasInitializer() && 2451 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2452 const auto *Record = 2453 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2454 bool HasMutableFields = Record && Record->hasMutableFields(); 2455 if (!HasMutableFields) { 2456 const VarDecl *InitDecl; 2457 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2458 if (InitExpr) { 2459 ConstantEmitter emitter(*this); 2460 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2461 if (Init) { 2462 auto *InitType = Init->getType(); 2463 if (GV->getType()->getElementType() != InitType) { 2464 // The type of the initializer does not match the definition. 2465 // This happens when an initializer has a different type from 2466 // the type of the global (because of padding at the end of a 2467 // structure for instance). 2468 GV->setName(StringRef()); 2469 // Make a new global with the correct type, this is now guaranteed 2470 // to work. 2471 auto *NewGV = cast<llvm::GlobalVariable>( 2472 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2473 2474 // Erase the old global, since it is no longer used. 2475 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2476 GV = NewGV; 2477 } else { 2478 GV->setInitializer(Init); 2479 GV->setConstant(true); 2480 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2481 } 2482 emitter.finalize(GV); 2483 } 2484 } 2485 } 2486 } 2487 } 2488 2489 auto ExpectedAS = 2490 D ? D->getType().getAddressSpace() 2491 : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global 2492 : LangAS::Default); 2493 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2494 Ty->getPointerAddressSpace()); 2495 if (AddrSpace != ExpectedAS) 2496 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2497 ExpectedAS, Ty); 2498 2499 return GV; 2500 } 2501 2502 llvm::Constant * 2503 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2504 ForDefinition_t IsForDefinition) { 2505 const Decl *D = GD.getDecl(); 2506 if (isa<CXXConstructorDecl>(D)) 2507 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2508 getFromCtorType(GD.getCtorType()), 2509 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2510 /*DontDefer=*/false, IsForDefinition); 2511 else if (isa<CXXDestructorDecl>(D)) 2512 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2513 getFromDtorType(GD.getDtorType()), 2514 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2515 /*DontDefer=*/false, IsForDefinition); 2516 else if (isa<CXXMethodDecl>(D)) { 2517 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2518 cast<CXXMethodDecl>(D)); 2519 auto Ty = getTypes().GetFunctionType(*FInfo); 2520 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2521 IsForDefinition); 2522 } else if (isa<FunctionDecl>(D)) { 2523 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2524 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2525 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2526 IsForDefinition); 2527 } else 2528 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2529 IsForDefinition); 2530 } 2531 2532 llvm::GlobalVariable * 2533 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2534 llvm::Type *Ty, 2535 llvm::GlobalValue::LinkageTypes Linkage) { 2536 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2537 llvm::GlobalVariable *OldGV = nullptr; 2538 2539 if (GV) { 2540 // Check if the variable has the right type. 2541 if (GV->getType()->getElementType() == Ty) 2542 return GV; 2543 2544 // Because C++ name mangling, the only way we can end up with an already 2545 // existing global with the same name is if it has been declared extern "C". 2546 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2547 OldGV = GV; 2548 } 2549 2550 // Create a new variable. 2551 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2552 Linkage, nullptr, Name); 2553 2554 if (OldGV) { 2555 // Replace occurrences of the old variable if needed. 2556 GV->takeName(OldGV); 2557 2558 if (!OldGV->use_empty()) { 2559 llvm::Constant *NewPtrForOldDecl = 2560 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2561 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2562 } 2563 2564 OldGV->eraseFromParent(); 2565 } 2566 2567 if (supportsCOMDAT() && GV->isWeakForLinker() && 2568 !GV->hasAvailableExternallyLinkage()) 2569 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2570 2571 return GV; 2572 } 2573 2574 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2575 /// given global variable. If Ty is non-null and if the global doesn't exist, 2576 /// then it will be created with the specified type instead of whatever the 2577 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2578 /// that an actual global with type Ty will be returned, not conversion of a 2579 /// variable with the same mangled name but some other type. 2580 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2581 llvm::Type *Ty, 2582 ForDefinition_t IsForDefinition) { 2583 assert(D->hasGlobalStorage() && "Not a global variable"); 2584 QualType ASTTy = D->getType(); 2585 if (!Ty) 2586 Ty = getTypes().ConvertTypeForMem(ASTTy); 2587 2588 llvm::PointerType *PTy = 2589 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2590 2591 StringRef MangledName = getMangledName(D); 2592 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2593 } 2594 2595 /// CreateRuntimeVariable - Create a new runtime global variable with the 2596 /// specified type and name. 2597 llvm::Constant * 2598 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2599 StringRef Name) { 2600 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2601 } 2602 2603 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2604 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2605 2606 StringRef MangledName = getMangledName(D); 2607 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2608 2609 // We already have a definition, not declaration, with the same mangled name. 2610 // Emitting of declaration is not required (and actually overwrites emitted 2611 // definition). 2612 if (GV && !GV->isDeclaration()) 2613 return; 2614 2615 // If we have not seen a reference to this variable yet, place it into the 2616 // deferred declarations table to be emitted if needed later. 2617 if (!MustBeEmitted(D) && !GV) { 2618 DeferredDecls[MangledName] = D; 2619 return; 2620 } 2621 2622 // The tentative definition is the only definition. 2623 EmitGlobalVarDefinition(D); 2624 } 2625 2626 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2627 return Context.toCharUnitsFromBits( 2628 getDataLayout().getTypeStoreSizeInBits(Ty)); 2629 } 2630 2631 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2632 unsigned AddrSpace; 2633 if (LangOpts.OpenCL) { 2634 AddrSpace = D ? D->getType().getAddressSpace() 2635 : static_cast<unsigned>(LangAS::opencl_global); 2636 assert(AddrSpace == LangAS::opencl_global || 2637 AddrSpace == LangAS::opencl_constant || 2638 AddrSpace == LangAS::opencl_local || 2639 AddrSpace >= LangAS::FirstTargetAddressSpace); 2640 return AddrSpace; 2641 } 2642 2643 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2644 if (D && D->hasAttr<CUDAConstantAttr>()) 2645 return LangAS::cuda_constant; 2646 else if (D && D->hasAttr<CUDASharedAttr>()) 2647 return LangAS::cuda_shared; 2648 else 2649 return LangAS::cuda_device; 2650 } 2651 2652 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2653 } 2654 2655 template<typename SomeDecl> 2656 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2657 llvm::GlobalValue *GV) { 2658 if (!getLangOpts().CPlusPlus) 2659 return; 2660 2661 // Must have 'used' attribute, or else inline assembly can't rely on 2662 // the name existing. 2663 if (!D->template hasAttr<UsedAttr>()) 2664 return; 2665 2666 // Must have internal linkage and an ordinary name. 2667 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2668 return; 2669 2670 // Must be in an extern "C" context. Entities declared directly within 2671 // a record are not extern "C" even if the record is in such a context. 2672 const SomeDecl *First = D->getFirstDecl(); 2673 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2674 return; 2675 2676 // OK, this is an internal linkage entity inside an extern "C" linkage 2677 // specification. Make a note of that so we can give it the "expected" 2678 // mangled name if nothing else is using that name. 2679 std::pair<StaticExternCMap::iterator, bool> R = 2680 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2681 2682 // If we have multiple internal linkage entities with the same name 2683 // in extern "C" regions, none of them gets that name. 2684 if (!R.second) 2685 R.first->second = nullptr; 2686 } 2687 2688 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2689 if (!CGM.supportsCOMDAT()) 2690 return false; 2691 2692 if (D.hasAttr<SelectAnyAttr>()) 2693 return true; 2694 2695 GVALinkage Linkage; 2696 if (auto *VD = dyn_cast<VarDecl>(&D)) 2697 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2698 else 2699 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2700 2701 switch (Linkage) { 2702 case GVA_Internal: 2703 case GVA_AvailableExternally: 2704 case GVA_StrongExternal: 2705 return false; 2706 case GVA_DiscardableODR: 2707 case GVA_StrongODR: 2708 return true; 2709 } 2710 llvm_unreachable("No such linkage"); 2711 } 2712 2713 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2714 llvm::GlobalObject &GO) { 2715 if (!shouldBeInCOMDAT(*this, D)) 2716 return; 2717 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2718 } 2719 2720 /// Pass IsTentative as true if you want to create a tentative definition. 2721 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2722 bool IsTentative) { 2723 // OpenCL global variables of sampler type are translated to function calls, 2724 // therefore no need to be translated. 2725 QualType ASTTy = D->getType(); 2726 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2727 return; 2728 2729 llvm::Constant *Init = nullptr; 2730 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2731 bool NeedsGlobalCtor = false; 2732 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2733 2734 const VarDecl *InitDecl; 2735 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2736 2737 Optional<ConstantEmitter> emitter; 2738 2739 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2740 // as part of their declaration." Sema has already checked for 2741 // error cases, so we just need to set Init to UndefValue. 2742 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2743 D->hasAttr<CUDASharedAttr>()) 2744 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2745 else if (!InitExpr) { 2746 // This is a tentative definition; tentative definitions are 2747 // implicitly initialized with { 0 }. 2748 // 2749 // Note that tentative definitions are only emitted at the end of 2750 // a translation unit, so they should never have incomplete 2751 // type. In addition, EmitTentativeDefinition makes sure that we 2752 // never attempt to emit a tentative definition if a real one 2753 // exists. A use may still exists, however, so we still may need 2754 // to do a RAUW. 2755 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2756 Init = EmitNullConstant(D->getType()); 2757 } else { 2758 initializedGlobalDecl = GlobalDecl(D); 2759 emitter.emplace(*this); 2760 Init = emitter->tryEmitForInitializer(*InitDecl); 2761 2762 if (!Init) { 2763 QualType T = InitExpr->getType(); 2764 if (D->getType()->isReferenceType()) 2765 T = D->getType(); 2766 2767 if (getLangOpts().CPlusPlus) { 2768 Init = EmitNullConstant(T); 2769 NeedsGlobalCtor = true; 2770 } else { 2771 ErrorUnsupported(D, "static initializer"); 2772 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2773 } 2774 } else { 2775 // We don't need an initializer, so remove the entry for the delayed 2776 // initializer position (just in case this entry was delayed) if we 2777 // also don't need to register a destructor. 2778 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2779 DelayedCXXInitPosition.erase(D); 2780 } 2781 } 2782 2783 llvm::Type* InitType = Init->getType(); 2784 llvm::Constant *Entry = 2785 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2786 2787 // Strip off a bitcast if we got one back. 2788 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2789 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2790 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2791 // All zero index gep. 2792 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2793 Entry = CE->getOperand(0); 2794 } 2795 2796 // Entry is now either a Function or GlobalVariable. 2797 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2798 2799 // We have a definition after a declaration with the wrong type. 2800 // We must make a new GlobalVariable* and update everything that used OldGV 2801 // (a declaration or tentative definition) with the new GlobalVariable* 2802 // (which will be a definition). 2803 // 2804 // This happens if there is a prototype for a global (e.g. 2805 // "extern int x[];") and then a definition of a different type (e.g. 2806 // "int x[10];"). This also happens when an initializer has a different type 2807 // from the type of the global (this happens with unions). 2808 if (!GV || GV->getType()->getElementType() != InitType || 2809 GV->getType()->getAddressSpace() != 2810 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2811 2812 // Move the old entry aside so that we'll create a new one. 2813 Entry->setName(StringRef()); 2814 2815 // Make a new global with the correct type, this is now guaranteed to work. 2816 GV = cast<llvm::GlobalVariable>( 2817 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2818 2819 // Replace all uses of the old global with the new global 2820 llvm::Constant *NewPtrForOldDecl = 2821 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2822 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2823 2824 // Erase the old global, since it is no longer used. 2825 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2826 } 2827 2828 MaybeHandleStaticInExternC(D, GV); 2829 2830 if (D->hasAttr<AnnotateAttr>()) 2831 AddGlobalAnnotations(D, GV); 2832 2833 // Set the llvm linkage type as appropriate. 2834 llvm::GlobalValue::LinkageTypes Linkage = 2835 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2836 2837 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2838 // the device. [...]" 2839 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2840 // __device__, declares a variable that: [...] 2841 // Is accessible from all the threads within the grid and from the host 2842 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2843 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2844 if (GV && LangOpts.CUDA) { 2845 if (LangOpts.CUDAIsDevice) { 2846 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2847 GV->setExternallyInitialized(true); 2848 } else { 2849 // Host-side shadows of external declarations of device-side 2850 // global variables become internal definitions. These have to 2851 // be internal in order to prevent name conflicts with global 2852 // host variables with the same name in a different TUs. 2853 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2854 Linkage = llvm::GlobalValue::InternalLinkage; 2855 2856 // Shadow variables and their properties must be registered 2857 // with CUDA runtime. 2858 unsigned Flags = 0; 2859 if (!D->hasDefinition()) 2860 Flags |= CGCUDARuntime::ExternDeviceVar; 2861 if (D->hasAttr<CUDAConstantAttr>()) 2862 Flags |= CGCUDARuntime::ConstantDeviceVar; 2863 getCUDARuntime().registerDeviceVar(*GV, Flags); 2864 } else if (D->hasAttr<CUDASharedAttr>()) 2865 // __shared__ variables are odd. Shadows do get created, but 2866 // they are not registered with the CUDA runtime, so they 2867 // can't really be used to access their device-side 2868 // counterparts. It's not clear yet whether it's nvcc's bug or 2869 // a feature, but we've got to do the same for compatibility. 2870 Linkage = llvm::GlobalValue::InternalLinkage; 2871 } 2872 } 2873 2874 GV->setInitializer(Init); 2875 if (emitter) emitter->finalize(GV); 2876 2877 // If it is safe to mark the global 'constant', do so now. 2878 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2879 isTypeConstant(D->getType(), true)); 2880 2881 // If it is in a read-only section, mark it 'constant'. 2882 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2883 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2884 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2885 GV->setConstant(true); 2886 } 2887 2888 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2889 2890 2891 // On Darwin, if the normal linkage of a C++ thread_local variable is 2892 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2893 // copies within a linkage unit; otherwise, the backing variable has 2894 // internal linkage and all accesses should just be calls to the 2895 // Itanium-specified entry point, which has the normal linkage of the 2896 // variable. This is to preserve the ability to change the implementation 2897 // behind the scenes. 2898 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2899 Context.getTargetInfo().getTriple().isOSDarwin() && 2900 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2901 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2902 Linkage = llvm::GlobalValue::InternalLinkage; 2903 2904 GV->setLinkage(Linkage); 2905 if (D->hasAttr<DLLImportAttr>()) 2906 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2907 else if (D->hasAttr<DLLExportAttr>()) 2908 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2909 else 2910 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2911 2912 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2913 // common vars aren't constant even if declared const. 2914 GV->setConstant(false); 2915 // Tentative definition of global variables may be initialized with 2916 // non-zero null pointers. In this case they should have weak linkage 2917 // since common linkage must have zero initializer and must not have 2918 // explicit section therefore cannot have non-zero initial value. 2919 if (!GV->getInitializer()->isNullValue()) 2920 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2921 } 2922 2923 setNonAliasAttributes(D, GV); 2924 2925 if (D->getTLSKind() && !GV->isThreadLocal()) { 2926 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2927 CXXThreadLocals.push_back(D); 2928 setTLSMode(GV, *D); 2929 } 2930 2931 maybeSetTrivialComdat(*D, *GV); 2932 2933 // Emit the initializer function if necessary. 2934 if (NeedsGlobalCtor || NeedsGlobalDtor) 2935 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2936 2937 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2938 2939 // Emit global variable debug information. 2940 if (CGDebugInfo *DI = getModuleDebugInfo()) 2941 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2942 DI->EmitGlobalVariable(GV, D); 2943 } 2944 2945 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2946 CodeGenModule &CGM, const VarDecl *D, 2947 bool NoCommon) { 2948 // Don't give variables common linkage if -fno-common was specified unless it 2949 // was overridden by a NoCommon attribute. 2950 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2951 return true; 2952 2953 // C11 6.9.2/2: 2954 // A declaration of an identifier for an object that has file scope without 2955 // an initializer, and without a storage-class specifier or with the 2956 // storage-class specifier static, constitutes a tentative definition. 2957 if (D->getInit() || D->hasExternalStorage()) 2958 return true; 2959 2960 // A variable cannot be both common and exist in a section. 2961 if (D->hasAttr<SectionAttr>()) 2962 return true; 2963 2964 // A variable cannot be both common and exist in a section. 2965 // We dont try to determine which is the right section in the front-end. 2966 // If no specialized section name is applicable, it will resort to default. 2967 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2968 D->hasAttr<PragmaClangDataSectionAttr>() || 2969 D->hasAttr<PragmaClangRodataSectionAttr>()) 2970 return true; 2971 2972 // Thread local vars aren't considered common linkage. 2973 if (D->getTLSKind()) 2974 return true; 2975 2976 // Tentative definitions marked with WeakImportAttr are true definitions. 2977 if (D->hasAttr<WeakImportAttr>()) 2978 return true; 2979 2980 // A variable cannot be both common and exist in a comdat. 2981 if (shouldBeInCOMDAT(CGM, *D)) 2982 return true; 2983 2984 // Declarations with a required alignment do not have common linkage in MSVC 2985 // mode. 2986 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2987 if (D->hasAttr<AlignedAttr>()) 2988 return true; 2989 QualType VarType = D->getType(); 2990 if (Context.isAlignmentRequired(VarType)) 2991 return true; 2992 2993 if (const auto *RT = VarType->getAs<RecordType>()) { 2994 const RecordDecl *RD = RT->getDecl(); 2995 for (const FieldDecl *FD : RD->fields()) { 2996 if (FD->isBitField()) 2997 continue; 2998 if (FD->hasAttr<AlignedAttr>()) 2999 return true; 3000 if (Context.isAlignmentRequired(FD->getType())) 3001 return true; 3002 } 3003 } 3004 } 3005 3006 return false; 3007 } 3008 3009 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3010 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3011 if (Linkage == GVA_Internal) 3012 return llvm::Function::InternalLinkage; 3013 3014 if (D->hasAttr<WeakAttr>()) { 3015 if (IsConstantVariable) 3016 return llvm::GlobalVariable::WeakODRLinkage; 3017 else 3018 return llvm::GlobalVariable::WeakAnyLinkage; 3019 } 3020 3021 // We are guaranteed to have a strong definition somewhere else, 3022 // so we can use available_externally linkage. 3023 if (Linkage == GVA_AvailableExternally) 3024 return llvm::GlobalValue::AvailableExternallyLinkage; 3025 3026 // Note that Apple's kernel linker doesn't support symbol 3027 // coalescing, so we need to avoid linkonce and weak linkages there. 3028 // Normally, this means we just map to internal, but for explicit 3029 // instantiations we'll map to external. 3030 3031 // In C++, the compiler has to emit a definition in every translation unit 3032 // that references the function. We should use linkonce_odr because 3033 // a) if all references in this translation unit are optimized away, we 3034 // don't need to codegen it. b) if the function persists, it needs to be 3035 // merged with other definitions. c) C++ has the ODR, so we know the 3036 // definition is dependable. 3037 if (Linkage == GVA_DiscardableODR) 3038 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3039 : llvm::Function::InternalLinkage; 3040 3041 // An explicit instantiation of a template has weak linkage, since 3042 // explicit instantiations can occur in multiple translation units 3043 // and must all be equivalent. However, we are not allowed to 3044 // throw away these explicit instantiations. 3045 // 3046 // We don't currently support CUDA device code spread out across multiple TUs, 3047 // so say that CUDA templates are either external (for kernels) or internal. 3048 // This lets llvm perform aggressive inter-procedural optimizations. 3049 if (Linkage == GVA_StrongODR) { 3050 if (Context.getLangOpts().AppleKext) 3051 return llvm::Function::ExternalLinkage; 3052 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3053 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3054 : llvm::Function::InternalLinkage; 3055 return llvm::Function::WeakODRLinkage; 3056 } 3057 3058 // C++ doesn't have tentative definitions and thus cannot have common 3059 // linkage. 3060 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3061 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3062 CodeGenOpts.NoCommon)) 3063 return llvm::GlobalVariable::CommonLinkage; 3064 3065 // selectany symbols are externally visible, so use weak instead of 3066 // linkonce. MSVC optimizes away references to const selectany globals, so 3067 // all definitions should be the same and ODR linkage should be used. 3068 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3069 if (D->hasAttr<SelectAnyAttr>()) 3070 return llvm::GlobalVariable::WeakODRLinkage; 3071 3072 // Otherwise, we have strong external linkage. 3073 assert(Linkage == GVA_StrongExternal); 3074 return llvm::GlobalVariable::ExternalLinkage; 3075 } 3076 3077 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3078 const VarDecl *VD, bool IsConstant) { 3079 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3080 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3081 } 3082 3083 /// Replace the uses of a function that was declared with a non-proto type. 3084 /// We want to silently drop extra arguments from call sites 3085 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3086 llvm::Function *newFn) { 3087 // Fast path. 3088 if (old->use_empty()) return; 3089 3090 llvm::Type *newRetTy = newFn->getReturnType(); 3091 SmallVector<llvm::Value*, 4> newArgs; 3092 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3093 3094 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3095 ui != ue; ) { 3096 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3097 llvm::User *user = use->getUser(); 3098 3099 // Recognize and replace uses of bitcasts. Most calls to 3100 // unprototyped functions will use bitcasts. 3101 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3102 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3103 replaceUsesOfNonProtoConstant(bitcast, newFn); 3104 continue; 3105 } 3106 3107 // Recognize calls to the function. 3108 llvm::CallSite callSite(user); 3109 if (!callSite) continue; 3110 if (!callSite.isCallee(&*use)) continue; 3111 3112 // If the return types don't match exactly, then we can't 3113 // transform this call unless it's dead. 3114 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3115 continue; 3116 3117 // Get the call site's attribute list. 3118 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3119 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3120 3121 // If the function was passed too few arguments, don't transform. 3122 unsigned newNumArgs = newFn->arg_size(); 3123 if (callSite.arg_size() < newNumArgs) continue; 3124 3125 // If extra arguments were passed, we silently drop them. 3126 // If any of the types mismatch, we don't transform. 3127 unsigned argNo = 0; 3128 bool dontTransform = false; 3129 for (llvm::Argument &A : newFn->args()) { 3130 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3131 dontTransform = true; 3132 break; 3133 } 3134 3135 // Add any parameter attributes. 3136 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3137 argNo++; 3138 } 3139 if (dontTransform) 3140 continue; 3141 3142 // Okay, we can transform this. Create the new call instruction and copy 3143 // over the required information. 3144 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3145 3146 // Copy over any operand bundles. 3147 callSite.getOperandBundlesAsDefs(newBundles); 3148 3149 llvm::CallSite newCall; 3150 if (callSite.isCall()) { 3151 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3152 callSite.getInstruction()); 3153 } else { 3154 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3155 newCall = llvm::InvokeInst::Create(newFn, 3156 oldInvoke->getNormalDest(), 3157 oldInvoke->getUnwindDest(), 3158 newArgs, newBundles, "", 3159 callSite.getInstruction()); 3160 } 3161 newArgs.clear(); // for the next iteration 3162 3163 if (!newCall->getType()->isVoidTy()) 3164 newCall->takeName(callSite.getInstruction()); 3165 newCall.setAttributes(llvm::AttributeList::get( 3166 newFn->getContext(), oldAttrs.getFnAttributes(), 3167 oldAttrs.getRetAttributes(), newArgAttrs)); 3168 newCall.setCallingConv(callSite.getCallingConv()); 3169 3170 // Finally, remove the old call, replacing any uses with the new one. 3171 if (!callSite->use_empty()) 3172 callSite->replaceAllUsesWith(newCall.getInstruction()); 3173 3174 // Copy debug location attached to CI. 3175 if (callSite->getDebugLoc()) 3176 newCall->setDebugLoc(callSite->getDebugLoc()); 3177 3178 callSite->eraseFromParent(); 3179 } 3180 } 3181 3182 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3183 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3184 /// existing call uses of the old function in the module, this adjusts them to 3185 /// call the new function directly. 3186 /// 3187 /// This is not just a cleanup: the always_inline pass requires direct calls to 3188 /// functions to be able to inline them. If there is a bitcast in the way, it 3189 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3190 /// run at -O0. 3191 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3192 llvm::Function *NewFn) { 3193 // If we're redefining a global as a function, don't transform it. 3194 if (!isa<llvm::Function>(Old)) return; 3195 3196 replaceUsesOfNonProtoConstant(Old, NewFn); 3197 } 3198 3199 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3200 auto DK = VD->isThisDeclarationADefinition(); 3201 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3202 return; 3203 3204 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3205 // If we have a definition, this might be a deferred decl. If the 3206 // instantiation is explicit, make sure we emit it at the end. 3207 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3208 GetAddrOfGlobalVar(VD); 3209 3210 EmitTopLevelDecl(VD); 3211 } 3212 3213 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3214 llvm::GlobalValue *GV) { 3215 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3216 3217 // Compute the function info and LLVM type. 3218 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3219 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3220 3221 // Get or create the prototype for the function. 3222 if (!GV || (GV->getType()->getElementType() != Ty)) 3223 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3224 /*DontDefer=*/true, 3225 ForDefinition)); 3226 3227 // Already emitted. 3228 if (!GV->isDeclaration()) 3229 return; 3230 3231 // We need to set linkage and visibility on the function before 3232 // generating code for it because various parts of IR generation 3233 // want to propagate this information down (e.g. to local static 3234 // declarations). 3235 auto *Fn = cast<llvm::Function>(GV); 3236 setFunctionLinkage(GD, Fn); 3237 setFunctionDLLStorageClass(GD, Fn); 3238 3239 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3240 setGlobalVisibility(Fn, D); 3241 3242 MaybeHandleStaticInExternC(D, Fn); 3243 3244 maybeSetTrivialComdat(*D, *Fn); 3245 3246 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3247 3248 setFunctionDefinitionAttributes(D, Fn); 3249 SetLLVMFunctionAttributesForDefinition(D, Fn); 3250 3251 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3252 AddGlobalCtor(Fn, CA->getPriority()); 3253 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3254 AddGlobalDtor(Fn, DA->getPriority()); 3255 if (D->hasAttr<AnnotateAttr>()) 3256 AddGlobalAnnotations(D, Fn); 3257 } 3258 3259 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3260 const auto *D = cast<ValueDecl>(GD.getDecl()); 3261 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3262 assert(AA && "Not an alias?"); 3263 3264 StringRef MangledName = getMangledName(GD); 3265 3266 if (AA->getAliasee() == MangledName) { 3267 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3268 return; 3269 } 3270 3271 // If there is a definition in the module, then it wins over the alias. 3272 // This is dubious, but allow it to be safe. Just ignore the alias. 3273 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3274 if (Entry && !Entry->isDeclaration()) 3275 return; 3276 3277 Aliases.push_back(GD); 3278 3279 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3280 3281 // Create a reference to the named value. This ensures that it is emitted 3282 // if a deferred decl. 3283 llvm::Constant *Aliasee; 3284 if (isa<llvm::FunctionType>(DeclTy)) 3285 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3286 /*ForVTable=*/false); 3287 else 3288 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3289 llvm::PointerType::getUnqual(DeclTy), 3290 /*D=*/nullptr); 3291 3292 // Create the new alias itself, but don't set a name yet. 3293 auto *GA = llvm::GlobalAlias::create( 3294 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3295 3296 if (Entry) { 3297 if (GA->getAliasee() == Entry) { 3298 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3299 return; 3300 } 3301 3302 assert(Entry->isDeclaration()); 3303 3304 // If there is a declaration in the module, then we had an extern followed 3305 // by the alias, as in: 3306 // extern int test6(); 3307 // ... 3308 // int test6() __attribute__((alias("test7"))); 3309 // 3310 // Remove it and replace uses of it with the alias. 3311 GA->takeName(Entry); 3312 3313 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3314 Entry->getType())); 3315 Entry->eraseFromParent(); 3316 } else { 3317 GA->setName(MangledName); 3318 } 3319 3320 // Set attributes which are particular to an alias; this is a 3321 // specialization of the attributes which may be set on a global 3322 // variable/function. 3323 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3324 D->isWeakImported()) { 3325 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3326 } 3327 3328 if (const auto *VD = dyn_cast<VarDecl>(D)) 3329 if (VD->getTLSKind()) 3330 setTLSMode(GA, *VD); 3331 3332 setAliasAttributes(D, GA); 3333 } 3334 3335 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3336 const auto *D = cast<ValueDecl>(GD.getDecl()); 3337 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3338 assert(IFA && "Not an ifunc?"); 3339 3340 StringRef MangledName = getMangledName(GD); 3341 3342 if (IFA->getResolver() == MangledName) { 3343 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3344 return; 3345 } 3346 3347 // Report an error if some definition overrides ifunc. 3348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3349 if (Entry && !Entry->isDeclaration()) { 3350 GlobalDecl OtherGD; 3351 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3352 DiagnosedConflictingDefinitions.insert(GD).second) { 3353 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3354 Diags.Report(OtherGD.getDecl()->getLocation(), 3355 diag::note_previous_definition); 3356 } 3357 return; 3358 } 3359 3360 Aliases.push_back(GD); 3361 3362 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3363 llvm::Constant *Resolver = 3364 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3365 /*ForVTable=*/false); 3366 llvm::GlobalIFunc *GIF = 3367 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3368 "", Resolver, &getModule()); 3369 if (Entry) { 3370 if (GIF->getResolver() == Entry) { 3371 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3372 return; 3373 } 3374 assert(Entry->isDeclaration()); 3375 3376 // If there is a declaration in the module, then we had an extern followed 3377 // by the ifunc, as in: 3378 // extern int test(); 3379 // ... 3380 // int test() __attribute__((ifunc("resolver"))); 3381 // 3382 // Remove it and replace uses of it with the ifunc. 3383 GIF->takeName(Entry); 3384 3385 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3386 Entry->getType())); 3387 Entry->eraseFromParent(); 3388 } else 3389 GIF->setName(MangledName); 3390 3391 SetCommonAttributes(D, GIF); 3392 } 3393 3394 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3395 ArrayRef<llvm::Type*> Tys) { 3396 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3397 Tys); 3398 } 3399 3400 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3401 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3402 const StringLiteral *Literal, bool TargetIsLSB, 3403 bool &IsUTF16, unsigned &StringLength) { 3404 StringRef String = Literal->getString(); 3405 unsigned NumBytes = String.size(); 3406 3407 // Check for simple case. 3408 if (!Literal->containsNonAsciiOrNull()) { 3409 StringLength = NumBytes; 3410 return *Map.insert(std::make_pair(String, nullptr)).first; 3411 } 3412 3413 // Otherwise, convert the UTF8 literals into a string of shorts. 3414 IsUTF16 = true; 3415 3416 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3417 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3418 llvm::UTF16 *ToPtr = &ToBuf[0]; 3419 3420 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3421 ToPtr + NumBytes, llvm::strictConversion); 3422 3423 // ConvertUTF8toUTF16 returns the length in ToPtr. 3424 StringLength = ToPtr - &ToBuf[0]; 3425 3426 // Add an explicit null. 3427 *ToPtr = 0; 3428 return *Map.insert(std::make_pair( 3429 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3430 (StringLength + 1) * 2), 3431 nullptr)).first; 3432 } 3433 3434 ConstantAddress 3435 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3436 unsigned StringLength = 0; 3437 bool isUTF16 = false; 3438 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3439 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3440 getDataLayout().isLittleEndian(), isUTF16, 3441 StringLength); 3442 3443 if (auto *C = Entry.second) 3444 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3445 3446 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3447 llvm::Constant *Zeros[] = { Zero, Zero }; 3448 3449 // If we don't already have it, get __CFConstantStringClassReference. 3450 if (!CFConstantStringClassRef) { 3451 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3452 Ty = llvm::ArrayType::get(Ty, 0); 3453 llvm::Constant *GV = 3454 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3455 3456 if (getTriple().isOSBinFormatCOFF()) { 3457 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3458 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3459 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3460 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3461 3462 const VarDecl *VD = nullptr; 3463 for (const auto &Result : DC->lookup(&II)) 3464 if ((VD = dyn_cast<VarDecl>(Result))) 3465 break; 3466 3467 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3468 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3469 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3470 } else { 3471 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3472 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3473 } 3474 } 3475 3476 // Decay array -> ptr 3477 CFConstantStringClassRef = 3478 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3479 } 3480 3481 QualType CFTy = getContext().getCFConstantStringType(); 3482 3483 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3484 3485 ConstantInitBuilder Builder(*this); 3486 auto Fields = Builder.beginStruct(STy); 3487 3488 // Class pointer. 3489 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3490 3491 // Flags. 3492 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3493 3494 // String pointer. 3495 llvm::Constant *C = nullptr; 3496 if (isUTF16) { 3497 auto Arr = llvm::makeArrayRef( 3498 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3499 Entry.first().size() / 2); 3500 C = llvm::ConstantDataArray::get(VMContext, Arr); 3501 } else { 3502 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3503 } 3504 3505 // Note: -fwritable-strings doesn't make the backing store strings of 3506 // CFStrings writable. (See <rdar://problem/10657500>) 3507 auto *GV = 3508 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3509 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3510 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3511 // Don't enforce the target's minimum global alignment, since the only use 3512 // of the string is via this class initializer. 3513 CharUnits Align = isUTF16 3514 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3515 : getContext().getTypeAlignInChars(getContext().CharTy); 3516 GV->setAlignment(Align.getQuantity()); 3517 3518 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3519 // Without it LLVM can merge the string with a non unnamed_addr one during 3520 // LTO. Doing that changes the section it ends in, which surprises ld64. 3521 if (getTriple().isOSBinFormatMachO()) 3522 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3523 : "__TEXT,__cstring,cstring_literals"); 3524 3525 // String. 3526 llvm::Constant *Str = 3527 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3528 3529 if (isUTF16) 3530 // Cast the UTF16 string to the correct type. 3531 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3532 Fields.add(Str); 3533 3534 // String length. 3535 auto Ty = getTypes().ConvertType(getContext().LongTy); 3536 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3537 3538 CharUnits Alignment = getPointerAlign(); 3539 3540 // The struct. 3541 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3542 /*isConstant=*/false, 3543 llvm::GlobalVariable::PrivateLinkage); 3544 switch (getTriple().getObjectFormat()) { 3545 case llvm::Triple::UnknownObjectFormat: 3546 llvm_unreachable("unknown file format"); 3547 case llvm::Triple::COFF: 3548 case llvm::Triple::ELF: 3549 case llvm::Triple::Wasm: 3550 GV->setSection("cfstring"); 3551 break; 3552 case llvm::Triple::MachO: 3553 GV->setSection("__DATA,__cfstring"); 3554 break; 3555 } 3556 Entry.second = GV; 3557 3558 return ConstantAddress(GV, Alignment); 3559 } 3560 3561 bool CodeGenModule::getExpressionLocationsEnabled() const { 3562 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3563 } 3564 3565 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3566 if (ObjCFastEnumerationStateType.isNull()) { 3567 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3568 D->startDefinition(); 3569 3570 QualType FieldTypes[] = { 3571 Context.UnsignedLongTy, 3572 Context.getPointerType(Context.getObjCIdType()), 3573 Context.getPointerType(Context.UnsignedLongTy), 3574 Context.getConstantArrayType(Context.UnsignedLongTy, 3575 llvm::APInt(32, 5), ArrayType::Normal, 0) 3576 }; 3577 3578 for (size_t i = 0; i < 4; ++i) { 3579 FieldDecl *Field = FieldDecl::Create(Context, 3580 D, 3581 SourceLocation(), 3582 SourceLocation(), nullptr, 3583 FieldTypes[i], /*TInfo=*/nullptr, 3584 /*BitWidth=*/nullptr, 3585 /*Mutable=*/false, 3586 ICIS_NoInit); 3587 Field->setAccess(AS_public); 3588 D->addDecl(Field); 3589 } 3590 3591 D->completeDefinition(); 3592 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3593 } 3594 3595 return ObjCFastEnumerationStateType; 3596 } 3597 3598 llvm::Constant * 3599 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3600 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3601 3602 // Don't emit it as the address of the string, emit the string data itself 3603 // as an inline array. 3604 if (E->getCharByteWidth() == 1) { 3605 SmallString<64> Str(E->getString()); 3606 3607 // Resize the string to the right size, which is indicated by its type. 3608 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3609 Str.resize(CAT->getSize().getZExtValue()); 3610 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3611 } 3612 3613 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3614 llvm::Type *ElemTy = AType->getElementType(); 3615 unsigned NumElements = AType->getNumElements(); 3616 3617 // Wide strings have either 2-byte or 4-byte elements. 3618 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3619 SmallVector<uint16_t, 32> Elements; 3620 Elements.reserve(NumElements); 3621 3622 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3623 Elements.push_back(E->getCodeUnit(i)); 3624 Elements.resize(NumElements); 3625 return llvm::ConstantDataArray::get(VMContext, Elements); 3626 } 3627 3628 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3629 SmallVector<uint32_t, 32> Elements; 3630 Elements.reserve(NumElements); 3631 3632 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3633 Elements.push_back(E->getCodeUnit(i)); 3634 Elements.resize(NumElements); 3635 return llvm::ConstantDataArray::get(VMContext, Elements); 3636 } 3637 3638 static llvm::GlobalVariable * 3639 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3640 CodeGenModule &CGM, StringRef GlobalName, 3641 CharUnits Alignment) { 3642 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3643 unsigned AddrSpace = 0; 3644 if (CGM.getLangOpts().OpenCL) 3645 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3646 3647 llvm::Module &M = CGM.getModule(); 3648 // Create a global variable for this string 3649 auto *GV = new llvm::GlobalVariable( 3650 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3651 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3652 GV->setAlignment(Alignment.getQuantity()); 3653 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3654 if (GV->isWeakForLinker()) { 3655 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3656 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3657 } 3658 3659 return GV; 3660 } 3661 3662 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3663 /// constant array for the given string literal. 3664 ConstantAddress 3665 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3666 StringRef Name) { 3667 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3668 3669 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3670 llvm::GlobalVariable **Entry = nullptr; 3671 if (!LangOpts.WritableStrings) { 3672 Entry = &ConstantStringMap[C]; 3673 if (auto GV = *Entry) { 3674 if (Alignment.getQuantity() > GV->getAlignment()) 3675 GV->setAlignment(Alignment.getQuantity()); 3676 return ConstantAddress(GV, Alignment); 3677 } 3678 } 3679 3680 SmallString<256> MangledNameBuffer; 3681 StringRef GlobalVariableName; 3682 llvm::GlobalValue::LinkageTypes LT; 3683 3684 // Mangle the string literal if the ABI allows for it. However, we cannot 3685 // do this if we are compiling with ASan or -fwritable-strings because they 3686 // rely on strings having normal linkage. 3687 if (!LangOpts.WritableStrings && 3688 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3689 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3690 llvm::raw_svector_ostream Out(MangledNameBuffer); 3691 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3692 3693 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3694 GlobalVariableName = MangledNameBuffer; 3695 } else { 3696 LT = llvm::GlobalValue::PrivateLinkage; 3697 GlobalVariableName = Name; 3698 } 3699 3700 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3701 if (Entry) 3702 *Entry = GV; 3703 3704 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3705 QualType()); 3706 return ConstantAddress(GV, Alignment); 3707 } 3708 3709 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3710 /// array for the given ObjCEncodeExpr node. 3711 ConstantAddress 3712 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3713 std::string Str; 3714 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3715 3716 return GetAddrOfConstantCString(Str); 3717 } 3718 3719 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3720 /// the literal and a terminating '\0' character. 3721 /// The result has pointer to array type. 3722 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3723 const std::string &Str, const char *GlobalName) { 3724 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3725 CharUnits Alignment = 3726 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3727 3728 llvm::Constant *C = 3729 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3730 3731 // Don't share any string literals if strings aren't constant. 3732 llvm::GlobalVariable **Entry = nullptr; 3733 if (!LangOpts.WritableStrings) { 3734 Entry = &ConstantStringMap[C]; 3735 if (auto GV = *Entry) { 3736 if (Alignment.getQuantity() > GV->getAlignment()) 3737 GV->setAlignment(Alignment.getQuantity()); 3738 return ConstantAddress(GV, Alignment); 3739 } 3740 } 3741 3742 // Get the default prefix if a name wasn't specified. 3743 if (!GlobalName) 3744 GlobalName = ".str"; 3745 // Create a global variable for this. 3746 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3747 GlobalName, Alignment); 3748 if (Entry) 3749 *Entry = GV; 3750 return ConstantAddress(GV, Alignment); 3751 } 3752 3753 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3754 const MaterializeTemporaryExpr *E, const Expr *Init) { 3755 assert((E->getStorageDuration() == SD_Static || 3756 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3757 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3758 3759 // If we're not materializing a subobject of the temporary, keep the 3760 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3761 QualType MaterializedType = Init->getType(); 3762 if (Init == E->GetTemporaryExpr()) 3763 MaterializedType = E->getType(); 3764 3765 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3766 3767 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3768 return ConstantAddress(Slot, Align); 3769 3770 // FIXME: If an externally-visible declaration extends multiple temporaries, 3771 // we need to give each temporary the same name in every translation unit (and 3772 // we also need to make the temporaries externally-visible). 3773 SmallString<256> Name; 3774 llvm::raw_svector_ostream Out(Name); 3775 getCXXABI().getMangleContext().mangleReferenceTemporary( 3776 VD, E->getManglingNumber(), Out); 3777 3778 APValue *Value = nullptr; 3779 if (E->getStorageDuration() == SD_Static) { 3780 // We might have a cached constant initializer for this temporary. Note 3781 // that this might have a different value from the value computed by 3782 // evaluating the initializer if the surrounding constant expression 3783 // modifies the temporary. 3784 Value = getContext().getMaterializedTemporaryValue(E, false); 3785 if (Value && Value->isUninit()) 3786 Value = nullptr; 3787 } 3788 3789 // Try evaluating it now, it might have a constant initializer. 3790 Expr::EvalResult EvalResult; 3791 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3792 !EvalResult.hasSideEffects()) 3793 Value = &EvalResult.Val; 3794 3795 unsigned AddrSpace = 3796 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3797 3798 Optional<ConstantEmitter> emitter; 3799 llvm::Constant *InitialValue = nullptr; 3800 bool Constant = false; 3801 llvm::Type *Type; 3802 if (Value) { 3803 // The temporary has a constant initializer, use it. 3804 emitter.emplace(*this); 3805 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3806 MaterializedType); 3807 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3808 Type = InitialValue->getType(); 3809 } else { 3810 // No initializer, the initialization will be provided when we 3811 // initialize the declaration which performed lifetime extension. 3812 Type = getTypes().ConvertTypeForMem(MaterializedType); 3813 } 3814 3815 // Create a global variable for this lifetime-extended temporary. 3816 llvm::GlobalValue::LinkageTypes Linkage = 3817 getLLVMLinkageVarDefinition(VD, Constant); 3818 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3819 const VarDecl *InitVD; 3820 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3821 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3822 // Temporaries defined inside a class get linkonce_odr linkage because the 3823 // class can be defined in multipe translation units. 3824 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3825 } else { 3826 // There is no need for this temporary to have external linkage if the 3827 // VarDecl has external linkage. 3828 Linkage = llvm::GlobalVariable::InternalLinkage; 3829 } 3830 } 3831 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3832 auto *GV = new llvm::GlobalVariable( 3833 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3834 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3835 if (emitter) emitter->finalize(GV); 3836 setGlobalVisibility(GV, VD); 3837 GV->setAlignment(Align.getQuantity()); 3838 if (supportsCOMDAT() && GV->isWeakForLinker()) 3839 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3840 if (VD->getTLSKind()) 3841 setTLSMode(GV, *VD); 3842 llvm::Constant *CV = GV; 3843 if (AddrSpace != LangAS::Default) 3844 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3845 *this, GV, AddrSpace, LangAS::Default, 3846 Type->getPointerTo( 3847 getContext().getTargetAddressSpace(LangAS::Default))); 3848 MaterializedGlobalTemporaryMap[E] = CV; 3849 return ConstantAddress(CV, Align); 3850 } 3851 3852 /// EmitObjCPropertyImplementations - Emit information for synthesized 3853 /// properties for an implementation. 3854 void CodeGenModule::EmitObjCPropertyImplementations(const 3855 ObjCImplementationDecl *D) { 3856 for (const auto *PID : D->property_impls()) { 3857 // Dynamic is just for type-checking. 3858 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3859 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3860 3861 // Determine which methods need to be implemented, some may have 3862 // been overridden. Note that ::isPropertyAccessor is not the method 3863 // we want, that just indicates if the decl came from a 3864 // property. What we want to know is if the method is defined in 3865 // this implementation. 3866 if (!D->getInstanceMethod(PD->getGetterName())) 3867 CodeGenFunction(*this).GenerateObjCGetter( 3868 const_cast<ObjCImplementationDecl *>(D), PID); 3869 if (!PD->isReadOnly() && 3870 !D->getInstanceMethod(PD->getSetterName())) 3871 CodeGenFunction(*this).GenerateObjCSetter( 3872 const_cast<ObjCImplementationDecl *>(D), PID); 3873 } 3874 } 3875 } 3876 3877 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3878 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3879 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3880 ivar; ivar = ivar->getNextIvar()) 3881 if (ivar->getType().isDestructedType()) 3882 return true; 3883 3884 return false; 3885 } 3886 3887 static bool AllTrivialInitializers(CodeGenModule &CGM, 3888 ObjCImplementationDecl *D) { 3889 CodeGenFunction CGF(CGM); 3890 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3891 E = D->init_end(); B != E; ++B) { 3892 CXXCtorInitializer *CtorInitExp = *B; 3893 Expr *Init = CtorInitExp->getInit(); 3894 if (!CGF.isTrivialInitializer(Init)) 3895 return false; 3896 } 3897 return true; 3898 } 3899 3900 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3901 /// for an implementation. 3902 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3903 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3904 if (needsDestructMethod(D)) { 3905 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3906 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3907 ObjCMethodDecl *DTORMethod = 3908 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3909 cxxSelector, getContext().VoidTy, nullptr, D, 3910 /*isInstance=*/true, /*isVariadic=*/false, 3911 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3912 /*isDefined=*/false, ObjCMethodDecl::Required); 3913 D->addInstanceMethod(DTORMethod); 3914 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3915 D->setHasDestructors(true); 3916 } 3917 3918 // If the implementation doesn't have any ivar initializers, we don't need 3919 // a .cxx_construct. 3920 if (D->getNumIvarInitializers() == 0 || 3921 AllTrivialInitializers(*this, D)) 3922 return; 3923 3924 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3925 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3926 // The constructor returns 'self'. 3927 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3928 D->getLocation(), 3929 D->getLocation(), 3930 cxxSelector, 3931 getContext().getObjCIdType(), 3932 nullptr, D, /*isInstance=*/true, 3933 /*isVariadic=*/false, 3934 /*isPropertyAccessor=*/true, 3935 /*isImplicitlyDeclared=*/true, 3936 /*isDefined=*/false, 3937 ObjCMethodDecl::Required); 3938 D->addInstanceMethod(CTORMethod); 3939 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3940 D->setHasNonZeroConstructors(true); 3941 } 3942 3943 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3944 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3945 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3946 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3947 ErrorUnsupported(LSD, "linkage spec"); 3948 return; 3949 } 3950 3951 EmitDeclContext(LSD); 3952 } 3953 3954 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3955 for (auto *I : DC->decls()) { 3956 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3957 // are themselves considered "top-level", so EmitTopLevelDecl on an 3958 // ObjCImplDecl does not recursively visit them. We need to do that in 3959 // case they're nested inside another construct (LinkageSpecDecl / 3960 // ExportDecl) that does stop them from being considered "top-level". 3961 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3962 for (auto *M : OID->methods()) 3963 EmitTopLevelDecl(M); 3964 } 3965 3966 EmitTopLevelDecl(I); 3967 } 3968 } 3969 3970 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3971 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3972 // Ignore dependent declarations. 3973 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3974 return; 3975 3976 switch (D->getKind()) { 3977 case Decl::CXXConversion: 3978 case Decl::CXXMethod: 3979 case Decl::Function: 3980 // Skip function templates 3981 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3982 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3983 return; 3984 3985 EmitGlobal(cast<FunctionDecl>(D)); 3986 // Always provide some coverage mapping 3987 // even for the functions that aren't emitted. 3988 AddDeferredUnusedCoverageMapping(D); 3989 break; 3990 3991 case Decl::CXXDeductionGuide: 3992 // Function-like, but does not result in code emission. 3993 break; 3994 3995 case Decl::Var: 3996 case Decl::Decomposition: 3997 // Skip variable templates 3998 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3999 return; 4000 LLVM_FALLTHROUGH; 4001 case Decl::VarTemplateSpecialization: 4002 EmitGlobal(cast<VarDecl>(D)); 4003 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4004 for (auto *B : DD->bindings()) 4005 if (auto *HD = B->getHoldingVar()) 4006 EmitGlobal(HD); 4007 break; 4008 4009 // Indirect fields from global anonymous structs and unions can be 4010 // ignored; only the actual variable requires IR gen support. 4011 case Decl::IndirectField: 4012 break; 4013 4014 // C++ Decls 4015 case Decl::Namespace: 4016 EmitDeclContext(cast<NamespaceDecl>(D)); 4017 break; 4018 case Decl::CXXRecord: 4019 if (DebugInfo) { 4020 if (auto *ES = D->getASTContext().getExternalSource()) 4021 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4022 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4023 } 4024 // Emit any static data members, they may be definitions. 4025 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4026 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4027 EmitTopLevelDecl(I); 4028 break; 4029 // No code generation needed. 4030 case Decl::UsingShadow: 4031 case Decl::ClassTemplate: 4032 case Decl::VarTemplate: 4033 case Decl::VarTemplatePartialSpecialization: 4034 case Decl::FunctionTemplate: 4035 case Decl::TypeAliasTemplate: 4036 case Decl::Block: 4037 case Decl::Empty: 4038 break; 4039 case Decl::Using: // using X; [C++] 4040 if (CGDebugInfo *DI = getModuleDebugInfo()) 4041 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4042 return; 4043 case Decl::NamespaceAlias: 4044 if (CGDebugInfo *DI = getModuleDebugInfo()) 4045 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4046 return; 4047 case Decl::UsingDirective: // using namespace X; [C++] 4048 if (CGDebugInfo *DI = getModuleDebugInfo()) 4049 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4050 return; 4051 case Decl::CXXConstructor: 4052 // Skip function templates 4053 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4054 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4055 return; 4056 4057 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4058 break; 4059 case Decl::CXXDestructor: 4060 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4061 return; 4062 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4063 break; 4064 4065 case Decl::StaticAssert: 4066 // Nothing to do. 4067 break; 4068 4069 // Objective-C Decls 4070 4071 // Forward declarations, no (immediate) code generation. 4072 case Decl::ObjCInterface: 4073 case Decl::ObjCCategory: 4074 break; 4075 4076 case Decl::ObjCProtocol: { 4077 auto *Proto = cast<ObjCProtocolDecl>(D); 4078 if (Proto->isThisDeclarationADefinition()) 4079 ObjCRuntime->GenerateProtocol(Proto); 4080 break; 4081 } 4082 4083 case Decl::ObjCCategoryImpl: 4084 // Categories have properties but don't support synthesize so we 4085 // can ignore them here. 4086 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4087 break; 4088 4089 case Decl::ObjCImplementation: { 4090 auto *OMD = cast<ObjCImplementationDecl>(D); 4091 EmitObjCPropertyImplementations(OMD); 4092 EmitObjCIvarInitializations(OMD); 4093 ObjCRuntime->GenerateClass(OMD); 4094 // Emit global variable debug information. 4095 if (CGDebugInfo *DI = getModuleDebugInfo()) 4096 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4097 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4098 OMD->getClassInterface()), OMD->getLocation()); 4099 break; 4100 } 4101 case Decl::ObjCMethod: { 4102 auto *OMD = cast<ObjCMethodDecl>(D); 4103 // If this is not a prototype, emit the body. 4104 if (OMD->getBody()) 4105 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4106 break; 4107 } 4108 case Decl::ObjCCompatibleAlias: 4109 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4110 break; 4111 4112 case Decl::PragmaComment: { 4113 const auto *PCD = cast<PragmaCommentDecl>(D); 4114 switch (PCD->getCommentKind()) { 4115 case PCK_Unknown: 4116 llvm_unreachable("unexpected pragma comment kind"); 4117 case PCK_Linker: 4118 AppendLinkerOptions(PCD->getArg()); 4119 break; 4120 case PCK_Lib: 4121 AddDependentLib(PCD->getArg()); 4122 break; 4123 case PCK_Compiler: 4124 case PCK_ExeStr: 4125 case PCK_User: 4126 break; // We ignore all of these. 4127 } 4128 break; 4129 } 4130 4131 case Decl::PragmaDetectMismatch: { 4132 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4133 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4134 break; 4135 } 4136 4137 case Decl::LinkageSpec: 4138 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4139 break; 4140 4141 case Decl::FileScopeAsm: { 4142 // File-scope asm is ignored during device-side CUDA compilation. 4143 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4144 break; 4145 // File-scope asm is ignored during device-side OpenMP compilation. 4146 if (LangOpts.OpenMPIsDevice) 4147 break; 4148 auto *AD = cast<FileScopeAsmDecl>(D); 4149 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4150 break; 4151 } 4152 4153 case Decl::Import: { 4154 auto *Import = cast<ImportDecl>(D); 4155 4156 // If we've already imported this module, we're done. 4157 if (!ImportedModules.insert(Import->getImportedModule())) 4158 break; 4159 4160 // Emit debug information for direct imports. 4161 if (!Import->getImportedOwningModule()) { 4162 if (CGDebugInfo *DI = getModuleDebugInfo()) 4163 DI->EmitImportDecl(*Import); 4164 } 4165 4166 // Find all of the submodules and emit the module initializers. 4167 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4168 SmallVector<clang::Module *, 16> Stack; 4169 Visited.insert(Import->getImportedModule()); 4170 Stack.push_back(Import->getImportedModule()); 4171 4172 while (!Stack.empty()) { 4173 clang::Module *Mod = Stack.pop_back_val(); 4174 if (!EmittedModuleInitializers.insert(Mod).second) 4175 continue; 4176 4177 for (auto *D : Context.getModuleInitializers(Mod)) 4178 EmitTopLevelDecl(D); 4179 4180 // Visit the submodules of this module. 4181 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4182 SubEnd = Mod->submodule_end(); 4183 Sub != SubEnd; ++Sub) { 4184 // Skip explicit children; they need to be explicitly imported to emit 4185 // the initializers. 4186 if ((*Sub)->IsExplicit) 4187 continue; 4188 4189 if (Visited.insert(*Sub).second) 4190 Stack.push_back(*Sub); 4191 } 4192 } 4193 break; 4194 } 4195 4196 case Decl::Export: 4197 EmitDeclContext(cast<ExportDecl>(D)); 4198 break; 4199 4200 case Decl::OMPThreadPrivate: 4201 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4202 break; 4203 4204 case Decl::ClassTemplateSpecialization: { 4205 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4206 if (DebugInfo && 4207 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4208 Spec->hasDefinition()) 4209 DebugInfo->completeTemplateDefinition(*Spec); 4210 break; 4211 } 4212 4213 case Decl::OMPDeclareReduction: 4214 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4215 break; 4216 4217 default: 4218 // Make sure we handled everything we should, every other kind is a 4219 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4220 // function. Need to recode Decl::Kind to do that easily. 4221 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4222 break; 4223 } 4224 } 4225 4226 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4227 // Do we need to generate coverage mapping? 4228 if (!CodeGenOpts.CoverageMapping) 4229 return; 4230 switch (D->getKind()) { 4231 case Decl::CXXConversion: 4232 case Decl::CXXMethod: 4233 case Decl::Function: 4234 case Decl::ObjCMethod: 4235 case Decl::CXXConstructor: 4236 case Decl::CXXDestructor: { 4237 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4238 return; 4239 SourceManager &SM = getContext().getSourceManager(); 4240 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4241 return; 4242 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4243 if (I == DeferredEmptyCoverageMappingDecls.end()) 4244 DeferredEmptyCoverageMappingDecls[D] = true; 4245 break; 4246 } 4247 default: 4248 break; 4249 }; 4250 } 4251 4252 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4253 // Do we need to generate coverage mapping? 4254 if (!CodeGenOpts.CoverageMapping) 4255 return; 4256 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4257 if (Fn->isTemplateInstantiation()) 4258 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4259 } 4260 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4261 if (I == DeferredEmptyCoverageMappingDecls.end()) 4262 DeferredEmptyCoverageMappingDecls[D] = false; 4263 else 4264 I->second = false; 4265 } 4266 4267 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4268 std::vector<const Decl *> DeferredDecls; 4269 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4270 if (!I.second) 4271 continue; 4272 DeferredDecls.push_back(I.first); 4273 } 4274 // Sort the declarations by their location to make sure that the tests get a 4275 // predictable order for the coverage mapping for the unused declarations. 4276 if (CodeGenOpts.DumpCoverageMapping) 4277 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4278 [] (const Decl *LHS, const Decl *RHS) { 4279 return LHS->getLocStart() < RHS->getLocStart(); 4280 }); 4281 for (const auto *D : DeferredDecls) { 4282 switch (D->getKind()) { 4283 case Decl::CXXConversion: 4284 case Decl::CXXMethod: 4285 case Decl::Function: 4286 case Decl::ObjCMethod: { 4287 CodeGenPGO PGO(*this); 4288 GlobalDecl GD(cast<FunctionDecl>(D)); 4289 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4290 getFunctionLinkage(GD)); 4291 break; 4292 } 4293 case Decl::CXXConstructor: { 4294 CodeGenPGO PGO(*this); 4295 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4296 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4297 getFunctionLinkage(GD)); 4298 break; 4299 } 4300 case Decl::CXXDestructor: { 4301 CodeGenPGO PGO(*this); 4302 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4303 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4304 getFunctionLinkage(GD)); 4305 break; 4306 } 4307 default: 4308 break; 4309 }; 4310 } 4311 } 4312 4313 /// Turns the given pointer into a constant. 4314 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4315 const void *Ptr) { 4316 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4317 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4318 return llvm::ConstantInt::get(i64, PtrInt); 4319 } 4320 4321 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4322 llvm::NamedMDNode *&GlobalMetadata, 4323 GlobalDecl D, 4324 llvm::GlobalValue *Addr) { 4325 if (!GlobalMetadata) 4326 GlobalMetadata = 4327 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4328 4329 // TODO: should we report variant information for ctors/dtors? 4330 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4331 llvm::ConstantAsMetadata::get(GetPointerConstant( 4332 CGM.getLLVMContext(), D.getDecl()))}; 4333 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4334 } 4335 4336 /// For each function which is declared within an extern "C" region and marked 4337 /// as 'used', but has internal linkage, create an alias from the unmangled 4338 /// name to the mangled name if possible. People expect to be able to refer 4339 /// to such functions with an unmangled name from inline assembly within the 4340 /// same translation unit. 4341 void CodeGenModule::EmitStaticExternCAliases() { 4342 // Don't do anything if we're generating CUDA device code -- the NVPTX 4343 // assembly target doesn't support aliases. 4344 if (Context.getTargetInfo().getTriple().isNVPTX()) 4345 return; 4346 for (auto &I : StaticExternCValues) { 4347 IdentifierInfo *Name = I.first; 4348 llvm::GlobalValue *Val = I.second; 4349 if (Val && !getModule().getNamedValue(Name->getName())) 4350 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4351 } 4352 } 4353 4354 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4355 GlobalDecl &Result) const { 4356 auto Res = Manglings.find(MangledName); 4357 if (Res == Manglings.end()) 4358 return false; 4359 Result = Res->getValue(); 4360 return true; 4361 } 4362 4363 /// Emits metadata nodes associating all the global values in the 4364 /// current module with the Decls they came from. This is useful for 4365 /// projects using IR gen as a subroutine. 4366 /// 4367 /// Since there's currently no way to associate an MDNode directly 4368 /// with an llvm::GlobalValue, we create a global named metadata 4369 /// with the name 'clang.global.decl.ptrs'. 4370 void CodeGenModule::EmitDeclMetadata() { 4371 llvm::NamedMDNode *GlobalMetadata = nullptr; 4372 4373 for (auto &I : MangledDeclNames) { 4374 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4375 // Some mangled names don't necessarily have an associated GlobalValue 4376 // in this module, e.g. if we mangled it for DebugInfo. 4377 if (Addr) 4378 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4379 } 4380 } 4381 4382 /// Emits metadata nodes for all the local variables in the current 4383 /// function. 4384 void CodeGenFunction::EmitDeclMetadata() { 4385 if (LocalDeclMap.empty()) return; 4386 4387 llvm::LLVMContext &Context = getLLVMContext(); 4388 4389 // Find the unique metadata ID for this name. 4390 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4391 4392 llvm::NamedMDNode *GlobalMetadata = nullptr; 4393 4394 for (auto &I : LocalDeclMap) { 4395 const Decl *D = I.first; 4396 llvm::Value *Addr = I.second.getPointer(); 4397 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4398 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4399 Alloca->setMetadata( 4400 DeclPtrKind, llvm::MDNode::get( 4401 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4402 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4403 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4404 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4405 } 4406 } 4407 } 4408 4409 void CodeGenModule::EmitVersionIdentMetadata() { 4410 llvm::NamedMDNode *IdentMetadata = 4411 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4412 std::string Version = getClangFullVersion(); 4413 llvm::LLVMContext &Ctx = TheModule.getContext(); 4414 4415 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4416 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4417 } 4418 4419 void CodeGenModule::EmitTargetMetadata() { 4420 // Warning, new MangledDeclNames may be appended within this loop. 4421 // We rely on MapVector insertions adding new elements to the end 4422 // of the container. 4423 // FIXME: Move this loop into the one target that needs it, and only 4424 // loop over those declarations for which we couldn't emit the target 4425 // metadata when we emitted the declaration. 4426 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4427 auto Val = *(MangledDeclNames.begin() + I); 4428 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4429 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4430 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4431 } 4432 } 4433 4434 void CodeGenModule::EmitCoverageFile() { 4435 if (getCodeGenOpts().CoverageDataFile.empty() && 4436 getCodeGenOpts().CoverageNotesFile.empty()) 4437 return; 4438 4439 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4440 if (!CUNode) 4441 return; 4442 4443 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4444 llvm::LLVMContext &Ctx = TheModule.getContext(); 4445 auto *CoverageDataFile = 4446 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4447 auto *CoverageNotesFile = 4448 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4449 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4450 llvm::MDNode *CU = CUNode->getOperand(i); 4451 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4452 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4453 } 4454 } 4455 4456 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4457 // Sema has checked that all uuid strings are of the form 4458 // "12345678-1234-1234-1234-1234567890ab". 4459 assert(Uuid.size() == 36); 4460 for (unsigned i = 0; i < 36; ++i) { 4461 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4462 else assert(isHexDigit(Uuid[i])); 4463 } 4464 4465 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4466 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4467 4468 llvm::Constant *Field3[8]; 4469 for (unsigned Idx = 0; Idx < 8; ++Idx) 4470 Field3[Idx] = llvm::ConstantInt::get( 4471 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4472 4473 llvm::Constant *Fields[4] = { 4474 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4475 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4476 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4477 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4478 }; 4479 4480 return llvm::ConstantStruct::getAnon(Fields); 4481 } 4482 4483 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4484 bool ForEH) { 4485 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4486 // FIXME: should we even be calling this method if RTTI is disabled 4487 // and it's not for EH? 4488 if (!ForEH && !getLangOpts().RTTI) 4489 return llvm::Constant::getNullValue(Int8PtrTy); 4490 4491 if (ForEH && Ty->isObjCObjectPointerType() && 4492 LangOpts.ObjCRuntime.isGNUFamily()) 4493 return ObjCRuntime->GetEHType(Ty); 4494 4495 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4496 } 4497 4498 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4499 for (auto RefExpr : D->varlists()) { 4500 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4501 bool PerformInit = 4502 VD->getAnyInitializer() && 4503 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4504 /*ForRef=*/false); 4505 4506 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4507 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4508 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4509 CXXGlobalInits.push_back(InitFunction); 4510 } 4511 } 4512 4513 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4514 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4515 if (InternalId) 4516 return InternalId; 4517 4518 if (isExternallyVisible(T->getLinkage())) { 4519 std::string OutName; 4520 llvm::raw_string_ostream Out(OutName); 4521 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4522 4523 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4524 } else { 4525 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4526 llvm::ArrayRef<llvm::Metadata *>()); 4527 } 4528 4529 return InternalId; 4530 } 4531 4532 /// Returns whether this module needs the "all-vtables" type identifier. 4533 bool CodeGenModule::NeedAllVtablesTypeId() const { 4534 // Returns true if at least one of vtable-based CFI checkers is enabled and 4535 // is not in the trapping mode. 4536 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4537 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4538 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4539 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4540 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4541 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4542 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4543 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4544 } 4545 4546 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4547 CharUnits Offset, 4548 const CXXRecordDecl *RD) { 4549 llvm::Metadata *MD = 4550 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4551 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4552 4553 if (CodeGenOpts.SanitizeCfiCrossDso) 4554 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4555 VTable->addTypeMetadata(Offset.getQuantity(), 4556 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4557 4558 if (NeedAllVtablesTypeId()) { 4559 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4560 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4561 } 4562 } 4563 4564 // Fills in the supplied string map with the set of target features for the 4565 // passed in function. 4566 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4567 const FunctionDecl *FD) { 4568 StringRef TargetCPU = Target.getTargetOpts().CPU; 4569 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4570 // If we have a TargetAttr build up the feature map based on that. 4571 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4572 4573 // Make a copy of the features as passed on the command line into the 4574 // beginning of the additional features from the function to override. 4575 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4576 Target.getTargetOpts().FeaturesAsWritten.begin(), 4577 Target.getTargetOpts().FeaturesAsWritten.end()); 4578 4579 if (ParsedAttr.Architecture != "") 4580 TargetCPU = ParsedAttr.Architecture ; 4581 4582 // Now populate the feature map, first with the TargetCPU which is either 4583 // the default or a new one from the target attribute string. Then we'll use 4584 // the passed in features (FeaturesAsWritten) along with the new ones from 4585 // the attribute. 4586 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4587 ParsedAttr.Features); 4588 } else { 4589 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4590 Target.getTargetOpts().Features); 4591 } 4592 } 4593 4594 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4595 if (!SanStats) 4596 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4597 4598 return *SanStats; 4599 } 4600 llvm::Value * 4601 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4602 CodeGenFunction &CGF) { 4603 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4604 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4605 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4606 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4607 "__translate_sampler_initializer"), 4608 {C}); 4609 } 4610