xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 09cc75e2ccc3616e1cb3b17f2fb99cb3bb323b12)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/Stack.h"
48 #include "clang/Basic/TargetInfo.h"
49 #include "clang/Basic/Version.h"
50 #include "clang/CodeGen/BackendUtil.h"
51 #include "clang/CodeGen/ConstantInitBuilder.h"
52 #include "clang/Frontend/FrontendDiagnostic.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringSwitch.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/BinaryFormat/ELF.h"
58 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
59 #include "llvm/IR/AttributeMask.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/ProfileSummary.h"
66 #include "llvm/ProfileData/InstrProfReader.h"
67 #include "llvm/ProfileData/SampleProf.h"
68 #include "llvm/Support/CRC.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/ConvertUTF.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/TimeProfiler.h"
74 #include "llvm/Support/xxhash.h"
75 #include "llvm/TargetParser/RISCVISAInfo.h"
76 #include "llvm/TargetParser/Triple.h"
77 #include "llvm/TargetParser/X86TargetParser.h"
78 #include "llvm/Transforms/Utils/BuildLibCalls.h"
79 #include <optional>
80 
81 using namespace clang;
82 using namespace CodeGen;
83 
84 static llvm::cl::opt<bool> LimitedCoverage(
85     "limited-coverage-experimental", llvm::cl::Hidden,
86     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
87 
88 static const char AnnotationSection[] = "llvm.metadata";
89 
90 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
91   switch (CGM.getContext().getCXXABIKind()) {
92   case TargetCXXABI::AppleARM64:
93   case TargetCXXABI::Fuchsia:
94   case TargetCXXABI::GenericAArch64:
95   case TargetCXXABI::GenericARM:
96   case TargetCXXABI::iOS:
97   case TargetCXXABI::WatchOS:
98   case TargetCXXABI::GenericMIPS:
99   case TargetCXXABI::GenericItanium:
100   case TargetCXXABI::WebAssembly:
101   case TargetCXXABI::XL:
102     return CreateItaniumCXXABI(CGM);
103   case TargetCXXABI::Microsoft:
104     return CreateMicrosoftCXXABI(CGM);
105   }
106 
107   llvm_unreachable("invalid C++ ABI kind");
108 }
109 
110 static std::unique_ptr<TargetCodeGenInfo>
111 createTargetCodeGenInfo(CodeGenModule &CGM) {
112   const TargetInfo &Target = CGM.getTarget();
113   const llvm::Triple &Triple = Target.getTriple();
114   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
115 
116   switch (Triple.getArch()) {
117   default:
118     return createDefaultTargetCodeGenInfo(CGM);
119 
120   case llvm::Triple::m68k:
121     return createM68kTargetCodeGenInfo(CGM);
122   case llvm::Triple::mips:
123   case llvm::Triple::mipsel:
124     if (Triple.getOS() == llvm::Triple::NaCl)
125       return createPNaClTargetCodeGenInfo(CGM);
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
127 
128   case llvm::Triple::mips64:
129   case llvm::Triple::mips64el:
130     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
131 
132   case llvm::Triple::avr: {
133     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
134     // on avrtiny. For passing return value, R18~R25 are used on avr, and
135     // R22~R25 are used on avrtiny.
136     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
137     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
138     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
139   }
140 
141   case llvm::Triple::aarch64:
142   case llvm::Triple::aarch64_32:
143   case llvm::Triple::aarch64_be: {
144     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
145     if (Target.getABI() == "darwinpcs")
146       Kind = AArch64ABIKind::DarwinPCS;
147     else if (Triple.isOSWindows())
148       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
149     else if (Target.getABI() == "aapcs-soft")
150       Kind = AArch64ABIKind::AAPCSSoft;
151     else if (Target.getABI() == "pauthtest")
152       Kind = AArch64ABIKind::PAuthTest;
153 
154     return createAArch64TargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::wasm32:
158   case llvm::Triple::wasm64: {
159     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
160     if (Target.getABI() == "experimental-mv")
161       Kind = WebAssemblyABIKind::ExperimentalMV;
162     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
163   }
164 
165   case llvm::Triple::arm:
166   case llvm::Triple::armeb:
167   case llvm::Triple::thumb:
168   case llvm::Triple::thumbeb: {
169     if (Triple.getOS() == llvm::Triple::Win32)
170       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
171 
172     ARMABIKind Kind = ARMABIKind::AAPCS;
173     StringRef ABIStr = Target.getABI();
174     if (ABIStr == "apcs-gnu")
175       Kind = ARMABIKind::APCS;
176     else if (ABIStr == "aapcs16")
177       Kind = ARMABIKind::AAPCS16_VFP;
178     else if (CodeGenOpts.FloatABI == "hard" ||
179              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
180       Kind = ARMABIKind::AAPCS_VFP;
181 
182     return createARMTargetCodeGenInfo(CGM, Kind);
183   }
184 
185   case llvm::Triple::ppc: {
186     if (Triple.isOSAIX())
187       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
188 
189     bool IsSoftFloat =
190         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppcle: {
194     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppc64:
198     if (Triple.isOSAIX())
199       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
200 
201     if (Triple.isOSBinFormatELF()) {
202       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
203       if (Target.getABI() == "elfv2")
204         Kind = PPC64_SVR4_ABIKind::ELFv2;
205       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
206 
207       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
208     }
209     return createPPC64TargetCodeGenInfo(CGM);
210   case llvm::Triple::ppc64le: {
211     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
212     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
213     if (Target.getABI() == "elfv1")
214       Kind = PPC64_SVR4_ABIKind::ELFv1;
215     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
216 
217     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
218   }
219 
220   case llvm::Triple::nvptx:
221   case llvm::Triple::nvptx64:
222     return createNVPTXTargetCodeGenInfo(CGM);
223 
224   case llvm::Triple::msp430:
225     return createMSP430TargetCodeGenInfo(CGM);
226 
227   case llvm::Triple::riscv32:
228   case llvm::Triple::riscv64: {
229     StringRef ABIStr = Target.getABI();
230     unsigned XLen = Target.getPointerWidth(LangAS::Default);
231     unsigned ABIFLen = 0;
232     if (ABIStr.ends_with("f"))
233       ABIFLen = 32;
234     else if (ABIStr.ends_with("d"))
235       ABIFLen = 64;
236     bool EABI = ABIStr.ends_with("e");
237     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
238   }
239 
240   case llvm::Triple::systemz: {
241     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
242     bool HasVector = !SoftFloat && Target.getABI() == "vector";
243     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
244   }
245 
246   case llvm::Triple::tce:
247   case llvm::Triple::tcele:
248     return createTCETargetCodeGenInfo(CGM);
249 
250   case llvm::Triple::x86: {
251     bool IsDarwinVectorABI = Triple.isOSDarwin();
252     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
253 
254     if (Triple.getOS() == llvm::Triple::Win32) {
255       return createWinX86_32TargetCodeGenInfo(
256           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257           CodeGenOpts.NumRegisterParameters);
258     }
259     return createX86_32TargetCodeGenInfo(
260         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
262   }
263 
264   case llvm::Triple::x86_64: {
265     StringRef ABI = Target.getABI();
266     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
267                                : ABI == "avx"  ? X86AVXABILevel::AVX
268                                                : X86AVXABILevel::None);
269 
270     switch (Triple.getOS()) {
271     case llvm::Triple::Win32:
272       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
273     default:
274       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     }
276   }
277   case llvm::Triple::hexagon:
278     return createHexagonTargetCodeGenInfo(CGM);
279   case llvm::Triple::lanai:
280     return createLanaiTargetCodeGenInfo(CGM);
281   case llvm::Triple::r600:
282     return createAMDGPUTargetCodeGenInfo(CGM);
283   case llvm::Triple::amdgcn:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::sparc:
286     return createSparcV8TargetCodeGenInfo(CGM);
287   case llvm::Triple::sparcv9:
288     return createSparcV9TargetCodeGenInfo(CGM);
289   case llvm::Triple::xcore:
290     return createXCoreTargetCodeGenInfo(CGM);
291   case llvm::Triple::arc:
292     return createARCTargetCodeGenInfo(CGM);
293   case llvm::Triple::spir:
294   case llvm::Triple::spir64:
295     return createCommonSPIRTargetCodeGenInfo(CGM);
296   case llvm::Triple::spirv32:
297   case llvm::Triple::spirv64:
298   case llvm::Triple::spirv:
299     return createSPIRVTargetCodeGenInfo(CGM);
300   case llvm::Triple::dxil:
301     return createDirectXTargetCodeGenInfo(CGM);
302   case llvm::Triple::ve:
303     return createVETargetCodeGenInfo(CGM);
304   case llvm::Triple::csky: {
305     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
306     bool hasFP64 =
307         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
308     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
309                                             : hasFP64   ? 64
310                                                         : 32);
311   }
312   case llvm::Triple::bpfeb:
313   case llvm::Triple::bpfel:
314     return createBPFTargetCodeGenInfo(CGM);
315   case llvm::Triple::loongarch32:
316   case llvm::Triple::loongarch64: {
317     StringRef ABIStr = Target.getABI();
318     unsigned ABIFRLen = 0;
319     if (ABIStr.ends_with("f"))
320       ABIFRLen = 32;
321     else if (ABIStr.ends_with("d"))
322       ABIFRLen = 64;
323     return createLoongArchTargetCodeGenInfo(
324         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
325   }
326   }
327 }
328 
329 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
330   if (!TheTargetCodeGenInfo)
331     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
332   return *TheTargetCodeGenInfo;
333 }
334 
335 CodeGenModule::CodeGenModule(ASTContext &C,
336                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
337                              const HeaderSearchOptions &HSO,
338                              const PreprocessorOptions &PPO,
339                              const CodeGenOptions &CGO, llvm::Module &M,
340                              DiagnosticsEngine &diags,
341                              CoverageSourceInfo *CoverageInfo)
342     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
343       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
344       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
345       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
346       SanitizerMD(new SanitizerMetadata(*this)) {
347 
348   // Initialize the type cache.
349   Types.reset(new CodeGenTypes(*this));
350   llvm::LLVMContext &LLVMContext = M.getContext();
351   VoidTy = llvm::Type::getVoidTy(LLVMContext);
352   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
353   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
354   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
355   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
356   HalfTy = llvm::Type::getHalfTy(LLVMContext);
357   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
358   FloatTy = llvm::Type::getFloatTy(LLVMContext);
359   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
360   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
361   PointerAlignInBytes =
362       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
363           .getQuantity();
364   SizeSizeInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
366   IntAlignInBytes =
367     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
368   CharTy =
369     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
370   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
371   IntPtrTy = llvm::IntegerType::get(LLVMContext,
372     C.getTargetInfo().getMaxPointerWidth());
373   Int8PtrTy = llvm::PointerType::get(LLVMContext,
374                                      C.getTargetAddressSpace(LangAS::Default));
375   const llvm::DataLayout &DL = M.getDataLayout();
376   AllocaInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
378   GlobalsInt8PtrTy =
379       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
380   ConstGlobalsPtrTy = llvm::PointerType::get(
381       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
382   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
383 
384   // Build C++20 Module initializers.
385   // TODO: Add Microsoft here once we know the mangling required for the
386   // initializers.
387   CXX20ModuleInits =
388       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
389                                        ItaniumMangleContext::MK_Itanium;
390 
391   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
392 
393   if (LangOpts.ObjC)
394     createObjCRuntime();
395   if (LangOpts.OpenCL)
396     createOpenCLRuntime();
397   if (LangOpts.OpenMP)
398     createOpenMPRuntime();
399   if (LangOpts.CUDA)
400     createCUDARuntime();
401   if (LangOpts.HLSL)
402     createHLSLRuntime();
403 
404   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
405   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
406       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
407     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
408                                getLangOpts()));
409 
410   // If debug info or coverage generation is enabled, create the CGDebugInfo
411   // object.
412   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
413       CodeGenOpts.CoverageNotesFile.size() ||
414       CodeGenOpts.CoverageDataFile.size())
415     DebugInfo.reset(new CGDebugInfo(*this));
416 
417   Block.GlobalUniqueCount = 0;
418 
419   if (C.getLangOpts().ObjC)
420     ObjCData.reset(new ObjCEntrypoints());
421 
422   if (CodeGenOpts.hasProfileClangUse()) {
423     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
424         CodeGenOpts.ProfileInstrumentUsePath, *FS,
425         CodeGenOpts.ProfileRemappingFile);
426     // We're checking for profile read errors in CompilerInvocation, so if
427     // there was an error it should've already been caught. If it hasn't been
428     // somehow, trip an assertion.
429     assert(ReaderOrErr);
430     PGOReader = std::move(ReaderOrErr.get());
431   }
432 
433   // If coverage mapping generation is enabled, create the
434   // CoverageMappingModuleGen object.
435   if (CodeGenOpts.CoverageMapping)
436     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
437 
438   // Generate the module name hash here if needed.
439   if (CodeGenOpts.UniqueInternalLinkageNames &&
440       !getModule().getSourceFileName().empty()) {
441     std::string Path = getModule().getSourceFileName();
442     // Check if a path substitution is needed from the MacroPrefixMap.
443     for (const auto &Entry : LangOpts.MacroPrefixMap)
444       if (Path.rfind(Entry.first, 0) != std::string::npos) {
445         Path = Entry.second + Path.substr(Entry.first.size());
446         break;
447       }
448     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
449   }
450 
451   // Record mregparm value now so it is visible through all of codegen.
452   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
453     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
454                               CodeGenOpts.NumRegisterParameters);
455 }
456 
457 CodeGenModule::~CodeGenModule() {}
458 
459 void CodeGenModule::createObjCRuntime() {
460   // This is just isGNUFamily(), but we want to force implementors of
461   // new ABIs to decide how best to do this.
462   switch (LangOpts.ObjCRuntime.getKind()) {
463   case ObjCRuntime::GNUstep:
464   case ObjCRuntime::GCC:
465   case ObjCRuntime::ObjFW:
466     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
467     return;
468 
469   case ObjCRuntime::FragileMacOSX:
470   case ObjCRuntime::MacOSX:
471   case ObjCRuntime::iOS:
472   case ObjCRuntime::WatchOS:
473     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
474     return;
475   }
476   llvm_unreachable("bad runtime kind");
477 }
478 
479 void CodeGenModule::createOpenCLRuntime() {
480   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
481 }
482 
483 void CodeGenModule::createOpenMPRuntime() {
484   // Select a specialized code generation class based on the target, if any.
485   // If it does not exist use the default implementation.
486   switch (getTriple().getArch()) {
487   case llvm::Triple::nvptx:
488   case llvm::Triple::nvptx64:
489   case llvm::Triple::amdgcn:
490     assert(getLangOpts().OpenMPIsTargetDevice &&
491            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
492     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
493     break;
494   default:
495     if (LangOpts.OpenMPSimd)
496       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
497     else
498       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
499     break;
500   }
501 }
502 
503 void CodeGenModule::createCUDARuntime() {
504   CUDARuntime.reset(CreateNVCUDARuntime(*this));
505 }
506 
507 void CodeGenModule::createHLSLRuntime() {
508   HLSLRuntime.reset(new CGHLSLRuntime(*this));
509 }
510 
511 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
512   Replacements[Name] = C;
513 }
514 
515 void CodeGenModule::applyReplacements() {
516   for (auto &I : Replacements) {
517     StringRef MangledName = I.first;
518     llvm::Constant *Replacement = I.second;
519     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
520     if (!Entry)
521       continue;
522     auto *OldF = cast<llvm::Function>(Entry);
523     auto *NewF = dyn_cast<llvm::Function>(Replacement);
524     if (!NewF) {
525       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
526         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
527       } else {
528         auto *CE = cast<llvm::ConstantExpr>(Replacement);
529         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
530                CE->getOpcode() == llvm::Instruction::GetElementPtr);
531         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
532       }
533     }
534 
535     // Replace old with new, but keep the old order.
536     OldF->replaceAllUsesWith(Replacement);
537     if (NewF) {
538       NewF->removeFromParent();
539       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
540                                                        NewF);
541     }
542     OldF->eraseFromParent();
543   }
544 }
545 
546 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
547   GlobalValReplacements.push_back(std::make_pair(GV, C));
548 }
549 
550 void CodeGenModule::applyGlobalValReplacements() {
551   for (auto &I : GlobalValReplacements) {
552     llvm::GlobalValue *GV = I.first;
553     llvm::Constant *C = I.second;
554 
555     GV->replaceAllUsesWith(C);
556     GV->eraseFromParent();
557   }
558 }
559 
560 // This is only used in aliases that we created and we know they have a
561 // linear structure.
562 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
563   const llvm::Constant *C;
564   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
565     C = GA->getAliasee();
566   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
567     C = GI->getResolver();
568   else
569     return GV;
570 
571   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
572   if (!AliaseeGV)
573     return nullptr;
574 
575   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
576   if (FinalGV == GV)
577     return nullptr;
578 
579   return FinalGV;
580 }
581 
582 static bool checkAliasedGlobal(
583     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
584     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
585     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
586     SourceRange AliasRange) {
587   GV = getAliasedGlobal(Alias);
588   if (!GV) {
589     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
590     return false;
591   }
592 
593   if (GV->hasCommonLinkage()) {
594     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
595     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
596       Diags.Report(Location, diag::err_alias_to_common);
597       return false;
598     }
599   }
600 
601   if (GV->isDeclaration()) {
602     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
603     Diags.Report(Location, diag::note_alias_requires_mangled_name)
604         << IsIFunc << IsIFunc;
605     // Provide a note if the given function is not found and exists as a
606     // mangled name.
607     for (const auto &[Decl, Name] : MangledDeclNames) {
608       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
609         if (ND->getName() == GV->getName()) {
610           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
611               << Name
612               << FixItHint::CreateReplacement(
613                      AliasRange,
614                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
615                          .str());
616         }
617       }
618     }
619     return false;
620   }
621 
622   if (IsIFunc) {
623     // Check resolver function type.
624     const auto *F = dyn_cast<llvm::Function>(GV);
625     if (!F) {
626       Diags.Report(Location, diag::err_alias_to_undefined)
627           << IsIFunc << IsIFunc;
628       return false;
629     }
630 
631     llvm::FunctionType *FTy = F->getFunctionType();
632     if (!FTy->getReturnType()->isPointerTy()) {
633       Diags.Report(Location, diag::err_ifunc_resolver_return);
634       return false;
635     }
636   }
637 
638   return true;
639 }
640 
641 // Emit a warning if toc-data attribute is requested for global variables that
642 // have aliases and remove the toc-data attribute.
643 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
644                                  const CodeGenOptions &CodeGenOpts,
645                                  DiagnosticsEngine &Diags,
646                                  SourceLocation Location) {
647   if (GVar->hasAttribute("toc-data")) {
648     auto GVId = GVar->getName();
649     // Is this a global variable specified by the user as local?
650     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
651       Diags.Report(Location, diag::warn_toc_unsupported_type)
652           << GVId << "the variable has an alias";
653     }
654     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
655     llvm::AttributeSet NewAttributes =
656         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
657     GVar->setAttributes(NewAttributes);
658   }
659 }
660 
661 void CodeGenModule::checkAliases() {
662   // Check if the constructed aliases are well formed. It is really unfortunate
663   // that we have to do this in CodeGen, but we only construct mangled names
664   // and aliases during codegen.
665   bool Error = false;
666   DiagnosticsEngine &Diags = getDiags();
667   for (const GlobalDecl &GD : Aliases) {
668     const auto *D = cast<ValueDecl>(GD.getDecl());
669     SourceLocation Location;
670     SourceRange Range;
671     bool IsIFunc = D->hasAttr<IFuncAttr>();
672     if (const Attr *A = D->getDefiningAttr()) {
673       Location = A->getLocation();
674       Range = A->getRange();
675     } else
676       llvm_unreachable("Not an alias or ifunc?");
677 
678     StringRef MangledName = getMangledName(GD);
679     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
680     const llvm::GlobalValue *GV = nullptr;
681     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
682                             MangledDeclNames, Range)) {
683       Error = true;
684       continue;
685     }
686 
687     if (getContext().getTargetInfo().getTriple().isOSAIX())
688       if (const llvm::GlobalVariable *GVar =
689               dyn_cast<const llvm::GlobalVariable>(GV))
690         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
691                              getCodeGenOpts(), Diags, Location);
692 
693     llvm::Constant *Aliasee =
694         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
695                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
696 
697     llvm::GlobalValue *AliaseeGV;
698     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
699       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
700     else
701       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
702 
703     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
704       StringRef AliasSection = SA->getName();
705       if (AliasSection != AliaseeGV->getSection())
706         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
707             << AliasSection << IsIFunc << IsIFunc;
708     }
709 
710     // We have to handle alias to weak aliases in here. LLVM itself disallows
711     // this since the object semantics would not match the IL one. For
712     // compatibility with gcc we implement it by just pointing the alias
713     // to its aliasee's aliasee. We also warn, since the user is probably
714     // expecting the link to be weak.
715     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
716       if (GA->isInterposable()) {
717         Diags.Report(Location, diag::warn_alias_to_weak_alias)
718             << GV->getName() << GA->getName() << IsIFunc;
719         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
720             GA->getAliasee(), Alias->getType());
721 
722         if (IsIFunc)
723           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
724         else
725           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
726       }
727     }
728     // ifunc resolvers are usually implemented to run before sanitizer
729     // initialization. Disable instrumentation to prevent the ordering issue.
730     if (IsIFunc)
731       cast<llvm::Function>(Aliasee)->addFnAttr(
732           llvm::Attribute::DisableSanitizerInstrumentation);
733   }
734   if (!Error)
735     return;
736 
737   for (const GlobalDecl &GD : Aliases) {
738     StringRef MangledName = getMangledName(GD);
739     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
740     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
741     Alias->eraseFromParent();
742   }
743 }
744 
745 void CodeGenModule::clear() {
746   DeferredDeclsToEmit.clear();
747   EmittedDeferredDecls.clear();
748   DeferredAnnotations.clear();
749   if (OpenMPRuntime)
750     OpenMPRuntime->clear();
751 }
752 
753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
754                                        StringRef MainFile) {
755   if (!hasDiagnostics())
756     return;
757   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
758     if (MainFile.empty())
759       MainFile = "<stdin>";
760     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
761   } else {
762     if (Mismatched > 0)
763       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
764 
765     if (Missing > 0)
766       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
767   }
768 }
769 
770 static std::optional<llvm::GlobalValue::VisibilityTypes>
771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
772   // Map to LLVM visibility.
773   switch (K) {
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
775     return std::nullopt;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
777     return llvm::GlobalValue::DefaultVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
779     return llvm::GlobalValue::HiddenVisibility;
780   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
781     return llvm::GlobalValue::ProtectedVisibility;
782   }
783   llvm_unreachable("unknown option value!");
784 }
785 
786 static void
787 setLLVMVisibility(llvm::GlobalValue &GV,
788                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
789   if (!V)
790     return;
791 
792   // Reset DSO locality before setting the visibility. This removes
793   // any effects that visibility options and annotations may have
794   // had on the DSO locality. Setting the visibility will implicitly set
795   // appropriate globals to DSO Local; however, this will be pessimistic
796   // w.r.t. to the normal compiler IRGen.
797   GV.setDSOLocal(false);
798   GV.setVisibility(*V);
799 }
800 
801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
802                                              llvm::Module &M) {
803   if (!LO.VisibilityFromDLLStorageClass)
804     return;
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
807       getLLVMVisibility(LO.getDLLExportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       NoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
812 
813   std::optional<llvm::GlobalValue::VisibilityTypes>
814       ExternDeclDLLImportVisibility =
815           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
816 
817   std::optional<llvm::GlobalValue::VisibilityTypes>
818       ExternDeclNoDLLStorageClassVisibility =
819           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
820 
821   for (llvm::GlobalValue &GV : M.global_values()) {
822     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
823       continue;
824 
825     if (GV.isDeclarationForLinker())
826       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
827                                     llvm::GlobalValue::DLLImportStorageClass
828                                 ? ExternDeclDLLImportVisibility
829                                 : ExternDeclNoDLLStorageClassVisibility);
830     else
831       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
832                                     llvm::GlobalValue::DLLExportStorageClass
833                                 ? DLLExportVisibility
834                                 : NoDLLStorageClassVisibility);
835 
836     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
837   }
838 }
839 
840 static bool isStackProtectorOn(const LangOptions &LangOpts,
841                                const llvm::Triple &Triple,
842                                clang::LangOptions::StackProtectorMode Mode) {
843   if (Triple.isAMDGPU() || Triple.isNVPTX())
844     return false;
845   return LangOpts.getStackProtector() == Mode;
846 }
847 
848 void CodeGenModule::Release() {
849   Module *Primary = getContext().getCurrentNamedModule();
850   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
851     EmitModuleInitializers(Primary);
852   EmitDeferred();
853   DeferredDecls.insert(EmittedDeferredDecls.begin(),
854                        EmittedDeferredDecls.end());
855   EmittedDeferredDecls.clear();
856   EmitVTablesOpportunistically();
857   applyGlobalValReplacements();
858   applyReplacements();
859   emitMultiVersionFunctions();
860 
861   if (Context.getLangOpts().IncrementalExtensions &&
862       GlobalTopLevelStmtBlockInFlight.first) {
863     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
864     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
865     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
866   }
867 
868   // Module implementations are initialized the same way as a regular TU that
869   // imports one or more modules.
870   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
871     EmitCXXModuleInitFunc(Primary);
872   else
873     EmitCXXGlobalInitFunc();
874   EmitCXXGlobalCleanUpFunc();
875   registerGlobalDtorsWithAtExit();
876   EmitCXXThreadLocalInitFunc();
877   if (ObjCRuntime)
878     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
879       AddGlobalCtor(ObjCInitFunction);
880   if (Context.getLangOpts().CUDA && CUDARuntime) {
881     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
882       AddGlobalCtor(CudaCtorFunction);
883   }
884   if (OpenMPRuntime) {
885     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
886     OpenMPRuntime->clear();
887   }
888   if (PGOReader) {
889     getModule().setProfileSummary(
890         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
891         llvm::ProfileSummary::PSK_Instr);
892     if (PGOStats.hasDiagnostics())
893       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
894   }
895   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
896     return L.LexOrder < R.LexOrder;
897   });
898   EmitCtorList(GlobalCtors, "llvm.global_ctors");
899   EmitCtorList(GlobalDtors, "llvm.global_dtors");
900   EmitGlobalAnnotations();
901   EmitStaticExternCAliases();
902   checkAliases();
903   EmitDeferredUnusedCoverageMappings();
904   CodeGenPGO(*this).setValueProfilingFlag(getModule());
905   CodeGenPGO(*this).setProfileVersion(getModule());
906   if (CoverageMapping)
907     CoverageMapping->emit();
908   if (CodeGenOpts.SanitizeCfiCrossDso) {
909     CodeGenFunction(*this).EmitCfiCheckFail();
910     CodeGenFunction(*this).EmitCfiCheckStub();
911   }
912   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
913     finalizeKCFITypes();
914   emitAtAvailableLinkGuard();
915   if (Context.getTargetInfo().getTriple().isWasm())
916     EmitMainVoidAlias();
917 
918   if (getTriple().isAMDGPU() ||
919       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
920     // Emit amdhsa_code_object_version module flag, which is code object version
921     // times 100.
922     if (getTarget().getTargetOpts().CodeObjectVersion !=
923         llvm::CodeObjectVersionKind::COV_None) {
924       getModule().addModuleFlag(llvm::Module::Error,
925                                 "amdhsa_code_object_version",
926                                 getTarget().getTargetOpts().CodeObjectVersion);
927     }
928 
929     // Currently, "-mprintf-kind" option is only supported for HIP
930     if (LangOpts.HIP) {
931       auto *MDStr = llvm::MDString::get(
932           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
933                              TargetOptions::AMDGPUPrintfKind::Hostcall)
934                                 ? "hostcall"
935                                 : "buffered");
936       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
937                                 MDStr);
938     }
939   }
940 
941   // Emit a global array containing all external kernels or device variables
942   // used by host functions and mark it as used for CUDA/HIP. This is necessary
943   // to get kernels or device variables in archives linked in even if these
944   // kernels or device variables are only used in host functions.
945   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
946     SmallVector<llvm::Constant *, 8> UsedArray;
947     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
948       GlobalDecl GD;
949       if (auto *FD = dyn_cast<FunctionDecl>(D))
950         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
951       else
952         GD = GlobalDecl(D);
953       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
954           GetAddrOfGlobal(GD), Int8PtrTy));
955     }
956 
957     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
958 
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
961         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
962     addCompilerUsedGlobal(GV);
963   }
964   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
965     // Emit a unique ID so that host and device binaries from the same
966     // compilation unit can be associated.
967     auto *GV = new llvm::GlobalVariable(
968         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
969         llvm::Constant::getNullValue(Int8Ty),
970         "__hip_cuid_" + getContext().getCUIDHash());
971     addCompilerUsedGlobal(GV);
972   }
973   emitLLVMUsed();
974   if (SanStats)
975     SanStats->finish();
976 
977   if (CodeGenOpts.Autolink &&
978       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
979     EmitModuleLinkOptions();
980   }
981 
982   // On ELF we pass the dependent library specifiers directly to the linker
983   // without manipulating them. This is in contrast to other platforms where
984   // they are mapped to a specific linker option by the compiler. This
985   // difference is a result of the greater variety of ELF linkers and the fact
986   // that ELF linkers tend to handle libraries in a more complicated fashion
987   // than on other platforms. This forces us to defer handling the dependent
988   // libs to the linker.
989   //
990   // CUDA/HIP device and host libraries are different. Currently there is no
991   // way to differentiate dependent libraries for host or device. Existing
992   // usage of #pragma comment(lib, *) is intended for host libraries on
993   // Windows. Therefore emit llvm.dependent-libraries only for host.
994   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
995     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
996     for (auto *MD : ELFDependentLibraries)
997       NMD->addOperand(MD);
998   }
999 
1000   if (CodeGenOpts.DwarfVersion) {
1001     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1002                               CodeGenOpts.DwarfVersion);
1003   }
1004 
1005   if (CodeGenOpts.Dwarf64)
1006     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1007 
1008   if (Context.getLangOpts().SemanticInterposition)
1009     // Require various optimization to respect semantic interposition.
1010     getModule().setSemanticInterposition(true);
1011 
1012   if (CodeGenOpts.EmitCodeView) {
1013     // Indicate that we want CodeView in the metadata.
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1015   }
1016   if (CodeGenOpts.CodeViewGHash) {
1017     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1018   }
1019   if (CodeGenOpts.ControlFlowGuard) {
1020     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1022   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1023     // Function ID tables for Control Flow Guard (cfguard=1).
1024     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1025   }
1026   if (CodeGenOpts.EHContGuard) {
1027     // Function ID tables for EH Continuation Guard.
1028     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1029   }
1030   if (Context.getLangOpts().Kernel) {
1031     // Note if we are compiling with /kernel.
1032     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1033   }
1034   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1035     // We don't support LTO with 2 with different StrictVTablePointers
1036     // FIXME: we could support it by stripping all the information introduced
1037     // by StrictVTablePointers.
1038 
1039     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1040 
1041     llvm::Metadata *Ops[2] = {
1042               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1043               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1044                   llvm::Type::getInt32Ty(VMContext), 1))};
1045 
1046     getModule().addModuleFlag(llvm::Module::Require,
1047                               "StrictVTablePointersRequirement",
1048                               llvm::MDNode::get(VMContext, Ops));
1049   }
1050   if (getModuleDebugInfo())
1051     // We support a single version in the linked module. The LLVM
1052     // parser will drop debug info with a different version number
1053     // (and warn about it, too).
1054     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1055                               llvm::DEBUG_METADATA_VERSION);
1056 
1057   // We need to record the widths of enums and wchar_t, so that we can generate
1058   // the correct build attributes in the ARM backend. wchar_size is also used by
1059   // TargetLibraryInfo.
1060   uint64_t WCharWidth =
1061       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1062   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1063 
1064   if (getTriple().isOSzOS()) {
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_major_version",
1067                               uint32_t(CLANG_VERSION_MAJOR));
1068     getModule().addModuleFlag(llvm::Module::Warning,
1069                               "zos_product_minor_version",
1070                               uint32_t(CLANG_VERSION_MINOR));
1071     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1072                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1073     std::string ProductId = getClangVendor() + "clang";
1074     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1075                               llvm::MDString::get(VMContext, ProductId));
1076 
1077     // Record the language because we need it for the PPA2.
1078     StringRef lang_str = languageToString(
1079         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1080     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1081                               llvm::MDString::get(VMContext, lang_str));
1082 
1083     time_t TT = PreprocessorOpts.SourceDateEpoch
1084                     ? *PreprocessorOpts.SourceDateEpoch
1085                     : std::time(nullptr);
1086     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1087                               static_cast<uint64_t>(TT));
1088 
1089     // Multiple modes will be supported here.
1090     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1091                               llvm::MDString::get(VMContext, "ascii"));
1092   }
1093 
1094   llvm::Triple T = Context.getTargetInfo().getTriple();
1095   if (T.isARM() || T.isThumb()) {
1096     // The minimum width of an enum in bytes
1097     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1098     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1099   }
1100 
1101   if (T.isRISCV()) {
1102     StringRef ABIStr = Target.getABI();
1103     llvm::LLVMContext &Ctx = TheModule.getContext();
1104     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1105                               llvm::MDString::get(Ctx, ABIStr));
1106 
1107     // Add the canonical ISA string as metadata so the backend can set the ELF
1108     // attributes correctly. We use AppendUnique so LTO will keep all of the
1109     // unique ISA strings that were linked together.
1110     const std::vector<std::string> &Features =
1111         getTarget().getTargetOpts().Features;
1112     auto ParseResult =
1113         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1114     if (!errorToBool(ParseResult.takeError()))
1115       getModule().addModuleFlag(
1116           llvm::Module::AppendUnique, "riscv-isa",
1117           llvm::MDNode::get(
1118               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1119   }
1120 
1121   if (CodeGenOpts.SanitizeCfiCrossDso) {
1122     // Indicate that we want cross-DSO control flow integrity checks.
1123     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1124   }
1125 
1126   if (CodeGenOpts.WholeProgramVTables) {
1127     // Indicate whether VFE was enabled for this module, so that the
1128     // vcall_visibility metadata added under whole program vtables is handled
1129     // appropriately in the optimizer.
1130     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1131                               CodeGenOpts.VirtualFunctionElimination);
1132   }
1133 
1134   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1135     getModule().addModuleFlag(llvm::Module::Override,
1136                               "CFI Canonical Jump Tables",
1137                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1138   }
1139 
1140   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1141     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1142                               1);
1143   }
1144 
1145   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1146     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1147     // KCFI assumes patchable-function-prefix is the same for all indirectly
1148     // called functions. Store the expected offset for code generation.
1149     if (CodeGenOpts.PatchableFunctionEntryOffset)
1150       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1151                                 CodeGenOpts.PatchableFunctionEntryOffset);
1152   }
1153 
1154   if (CodeGenOpts.CFProtectionReturn &&
1155       Target.checkCFProtectionReturnSupported(getDiags())) {
1156     // Indicate that we want to instrument return control flow protection.
1157     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1158                               1);
1159   }
1160 
1161   if (CodeGenOpts.CFProtectionBranch &&
1162       Target.checkCFProtectionBranchSupported(getDiags())) {
1163     // Indicate that we want to instrument branch control flow protection.
1164     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1165                               1);
1166 
1167     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1168     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1169       if (Scheme == CFBranchLabelSchemeKind::Default)
1170         Scheme = Target.getDefaultCFBranchLabelScheme();
1171       getModule().addModuleFlag(
1172           llvm::Module::Error, "cf-branch-label-scheme",
1173           llvm::MDString::get(getLLVMContext(),
1174                               getCFBranchLabelSchemeFlagVal(Scheme)));
1175     }
1176   }
1177 
1178   if (CodeGenOpts.FunctionReturnThunks)
1179     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1180 
1181   if (CodeGenOpts.IndirectBranchCSPrefix)
1182     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1183 
1184   // Add module metadata for return address signing (ignoring
1185   // non-leaf/all) and stack tagging. These are actually turned on by function
1186   // attributes, but we use module metadata to emit build attributes. This is
1187   // needed for LTO, where the function attributes are inside bitcode
1188   // serialised into a global variable by the time build attributes are
1189   // emitted, so we can't access them. LTO objects could be compiled with
1190   // different flags therefore module flags are set to "Min" behavior to achieve
1191   // the same end result of the normal build where e.g BTI is off if any object
1192   // doesn't support it.
1193   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1194       LangOpts.getSignReturnAddressScope() !=
1195           LangOptions::SignReturnAddressScopeKind::None)
1196     getModule().addModuleFlag(llvm::Module::Override,
1197                               "sign-return-address-buildattr", 1);
1198   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1199     getModule().addModuleFlag(llvm::Module::Override,
1200                               "tag-stack-memory-buildattr", 1);
1201 
1202   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1203     if (LangOpts.BranchTargetEnforcement)
1204       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1205                                 1);
1206     if (LangOpts.BranchProtectionPAuthLR)
1207       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1208                                 1);
1209     if (LangOpts.GuardedControlStack)
1210       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1211     if (LangOpts.hasSignReturnAddress())
1212       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1213     if (LangOpts.isSignReturnAddressScopeAll())
1214       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1215                                 1);
1216     if (!LangOpts.isSignReturnAddressWithAKey())
1217       getModule().addModuleFlag(llvm::Module::Min,
1218                                 "sign-return-address-with-bkey", 1);
1219 
1220     if (getTriple().isOSLinux()) {
1221       assert(getTriple().isOSBinFormatELF());
1222       using namespace llvm::ELF;
1223       uint64_t PAuthABIVersion =
1224           (LangOpts.PointerAuthIntrinsics
1225            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1226           (LangOpts.PointerAuthCalls
1227            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1228           (LangOpts.PointerAuthReturns
1229            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1230           (LangOpts.PointerAuthAuthTraps
1231            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1232           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1233            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1234           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1235            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1236           (LangOpts.PointerAuthInitFini
1237            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1238           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1239            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1240           (LangOpts.PointerAuthELFGOT
1241            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1242           (LangOpts.PointerAuthIndirectGotos
1243            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1244           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1245            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1246           (LangOpts.PointerAuthFunctionTypeDiscrimination
1247            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1248       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1249                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1250                     "Update when new enum items are defined");
1251       if (PAuthABIVersion != 0) {
1252         getModule().addModuleFlag(llvm::Module::Error,
1253                                   "aarch64-elf-pauthabi-platform",
1254                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1255         getModule().addModuleFlag(llvm::Module::Error,
1256                                   "aarch64-elf-pauthabi-version",
1257                                   PAuthABIVersion);
1258       }
1259     }
1260   }
1261 
1262   if (CodeGenOpts.StackClashProtector)
1263     getModule().addModuleFlag(
1264         llvm::Module::Override, "probe-stack",
1265         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1266 
1267   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1268     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1269                               CodeGenOpts.StackProbeSize);
1270 
1271   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1272     llvm::LLVMContext &Ctx = TheModule.getContext();
1273     getModule().addModuleFlag(
1274         llvm::Module::Error, "MemProfProfileFilename",
1275         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1276   }
1277 
1278   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1279     // Indicate whether __nvvm_reflect should be configured to flush denormal
1280     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1281     // property.)
1282     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1283                               CodeGenOpts.FP32DenormalMode.Output !=
1284                                   llvm::DenormalMode::IEEE);
1285   }
1286 
1287   if (LangOpts.EHAsynch)
1288     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1289 
1290   // Indicate whether this Module was compiled with -fopenmp
1291   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1292     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1293   if (getLangOpts().OpenMPIsTargetDevice)
1294     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1295                               LangOpts.OpenMP);
1296 
1297   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1298   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1299     EmitOpenCLMetadata();
1300     // Emit SPIR version.
1301     if (getTriple().isSPIR()) {
1302       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1303       // opencl.spir.version named metadata.
1304       // C++ for OpenCL has a distinct mapping for version compatibility with
1305       // OpenCL.
1306       auto Version = LangOpts.getOpenCLCompatibleVersion();
1307       llvm::Metadata *SPIRVerElts[] = {
1308           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1309               Int32Ty, Version / 100)),
1310           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1311               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1312       llvm::NamedMDNode *SPIRVerMD =
1313           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1314       llvm::LLVMContext &Ctx = TheModule.getContext();
1315       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1316     }
1317   }
1318 
1319   // HLSL related end of code gen work items.
1320   if (LangOpts.HLSL)
1321     getHLSLRuntime().finishCodeGen();
1322 
1323   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1324     assert(PLevel < 3 && "Invalid PIC Level");
1325     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1326     if (Context.getLangOpts().PIE)
1327       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1328   }
1329 
1330   if (getCodeGenOpts().CodeModel.size() > 0) {
1331     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1332                   .Case("tiny", llvm::CodeModel::Tiny)
1333                   .Case("small", llvm::CodeModel::Small)
1334                   .Case("kernel", llvm::CodeModel::Kernel)
1335                   .Case("medium", llvm::CodeModel::Medium)
1336                   .Case("large", llvm::CodeModel::Large)
1337                   .Default(~0u);
1338     if (CM != ~0u) {
1339       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1340       getModule().setCodeModel(codeModel);
1341 
1342       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1343           Context.getTargetInfo().getTriple().getArch() ==
1344               llvm::Triple::x86_64) {
1345         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1346       }
1347     }
1348   }
1349 
1350   if (CodeGenOpts.NoPLT)
1351     getModule().setRtLibUseGOT();
1352   if (getTriple().isOSBinFormatELF() &&
1353       CodeGenOpts.DirectAccessExternalData !=
1354           getModule().getDirectAccessExternalData()) {
1355     getModule().setDirectAccessExternalData(
1356         CodeGenOpts.DirectAccessExternalData);
1357   }
1358   if (CodeGenOpts.UnwindTables)
1359     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1360 
1361   switch (CodeGenOpts.getFramePointer()) {
1362   case CodeGenOptions::FramePointerKind::None:
1363     // 0 ("none") is the default.
1364     break;
1365   case CodeGenOptions::FramePointerKind::Reserved:
1366     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1367     break;
1368   case CodeGenOptions::FramePointerKind::NonLeaf:
1369     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1370     break;
1371   case CodeGenOptions::FramePointerKind::All:
1372     getModule().setFramePointer(llvm::FramePointerKind::All);
1373     break;
1374   }
1375 
1376   SimplifyPersonality();
1377 
1378   if (getCodeGenOpts().EmitDeclMetadata)
1379     EmitDeclMetadata();
1380 
1381   if (getCodeGenOpts().CoverageNotesFile.size() ||
1382       getCodeGenOpts().CoverageDataFile.size())
1383     EmitCoverageFile();
1384 
1385   if (CGDebugInfo *DI = getModuleDebugInfo())
1386     DI->finalize();
1387 
1388   if (getCodeGenOpts().EmitVersionIdentMetadata)
1389     EmitVersionIdentMetadata();
1390 
1391   if (!getCodeGenOpts().RecordCommandLine.empty())
1392     EmitCommandLineMetadata();
1393 
1394   if (!getCodeGenOpts().StackProtectorGuard.empty())
1395     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1396   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1397     getModule().setStackProtectorGuardReg(
1398         getCodeGenOpts().StackProtectorGuardReg);
1399   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1400     getModule().setStackProtectorGuardSymbol(
1401         getCodeGenOpts().StackProtectorGuardSymbol);
1402   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1403     getModule().setStackProtectorGuardOffset(
1404         getCodeGenOpts().StackProtectorGuardOffset);
1405   if (getCodeGenOpts().StackAlignment)
1406     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1407   if (getCodeGenOpts().SkipRaxSetup)
1408     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1409   if (getLangOpts().RegCall4)
1410     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1411 
1412   if (getContext().getTargetInfo().getMaxTLSAlign())
1413     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1414                               getContext().getTargetInfo().getMaxTLSAlign());
1415 
1416   getTargetCodeGenInfo().emitTargetGlobals(*this);
1417 
1418   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1419 
1420   EmitBackendOptionsMetadata(getCodeGenOpts());
1421 
1422   // If there is device offloading code embed it in the host now.
1423   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1424 
1425   // Set visibility from DLL storage class
1426   // We do this at the end of LLVM IR generation; after any operation
1427   // that might affect the DLL storage class or the visibility, and
1428   // before anything that might act on these.
1429   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1430 
1431   // Check the tail call symbols are truly undefined.
1432   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1433     for (auto &I : MustTailCallUndefinedGlobals) {
1434       if (!I.first->isDefined())
1435         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1436       else {
1437         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1438         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1439         if (!Entry || Entry->isWeakForLinker() ||
1440             Entry->isDeclarationForLinker())
1441           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1442       }
1443     }
1444   }
1445 }
1446 
1447 void CodeGenModule::EmitOpenCLMetadata() {
1448   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1449   // opencl.ocl.version named metadata node.
1450   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1451   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1452 
1453   auto EmitVersion = [this](StringRef MDName, int Version) {
1454     llvm::Metadata *OCLVerElts[] = {
1455         llvm::ConstantAsMetadata::get(
1456             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1457         llvm::ConstantAsMetadata::get(
1458             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1459     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1460     llvm::LLVMContext &Ctx = TheModule.getContext();
1461     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1462   };
1463 
1464   EmitVersion("opencl.ocl.version", CLVersion);
1465   if (LangOpts.OpenCLCPlusPlus) {
1466     // In addition to the OpenCL compatible version, emit the C++ version.
1467     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1468   }
1469 }
1470 
1471 void CodeGenModule::EmitBackendOptionsMetadata(
1472     const CodeGenOptions &CodeGenOpts) {
1473   if (getTriple().isRISCV()) {
1474     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1475                               CodeGenOpts.SmallDataLimit);
1476   }
1477 }
1478 
1479 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1480   // Make sure that this type is translated.
1481   getTypes().UpdateCompletedType(TD);
1482 }
1483 
1484 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1485   // Make sure that this type is translated.
1486   getTypes().RefreshTypeCacheForClass(RD);
1487 }
1488 
1489 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1490   if (!TBAA)
1491     return nullptr;
1492   return TBAA->getTypeInfo(QTy);
1493 }
1494 
1495 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1496   if (!TBAA)
1497     return TBAAAccessInfo();
1498   if (getLangOpts().CUDAIsDevice) {
1499     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1500     // access info.
1501     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1502       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1503           nullptr)
1504         return TBAAAccessInfo();
1505     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1506       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1507           nullptr)
1508         return TBAAAccessInfo();
1509     }
1510   }
1511   return TBAA->getAccessInfo(AccessType);
1512 }
1513 
1514 TBAAAccessInfo
1515 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1519 }
1520 
1521 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1522   if (!TBAA)
1523     return nullptr;
1524   return TBAA->getTBAAStructInfo(QTy);
1525 }
1526 
1527 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1528   if (!TBAA)
1529     return nullptr;
1530   return TBAA->getBaseTypeInfo(QTy);
1531 }
1532 
1533 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1534   if (!TBAA)
1535     return nullptr;
1536   return TBAA->getAccessTagInfo(Info);
1537 }
1538 
1539 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1540                                                    TBAAAccessInfo TargetInfo) {
1541   if (!TBAA)
1542     return TBAAAccessInfo();
1543   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1544 }
1545 
1546 TBAAAccessInfo
1547 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1548                                                    TBAAAccessInfo InfoB) {
1549   if (!TBAA)
1550     return TBAAAccessInfo();
1551   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1552 }
1553 
1554 TBAAAccessInfo
1555 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1556                                               TBAAAccessInfo SrcInfo) {
1557   if (!TBAA)
1558     return TBAAAccessInfo();
1559   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1560 }
1561 
1562 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1563                                                 TBAAAccessInfo TBAAInfo) {
1564   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1565     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1566 }
1567 
1568 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1569     llvm::Instruction *I, const CXXRecordDecl *RD) {
1570   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1571                  llvm::MDNode::get(getLLVMContext(), {}));
1572 }
1573 
1574 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1575   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1576   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1577 }
1578 
1579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1580 /// specified stmt yet.
1581 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1583                                                "cannot compile this %0 yet");
1584   std::string Msg = Type;
1585   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1586       << Msg << S->getSourceRange();
1587 }
1588 
1589 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1590 /// specified decl yet.
1591 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1592   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1593                                                "cannot compile this %0 yet");
1594   std::string Msg = Type;
1595   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1596 }
1597 
1598 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1599                                                 llvm::function_ref<void()> Fn) {
1600   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1601 }
1602 
1603 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1604   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1605 }
1606 
1607 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1608                                         const NamedDecl *D) const {
1609   // Internal definitions always have default visibility.
1610   if (GV->hasLocalLinkage()) {
1611     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1612     return;
1613   }
1614   if (!D)
1615     return;
1616 
1617   // Set visibility for definitions, and for declarations if requested globally
1618   // or set explicitly.
1619   LinkageInfo LV = D->getLinkageAndVisibility();
1620 
1621   // OpenMP declare target variables must be visible to the host so they can
1622   // be registered. We require protected visibility unless the variable has
1623   // the DT_nohost modifier and does not need to be registered.
1624   if (Context.getLangOpts().OpenMP &&
1625       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1626       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1627       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1628           OMPDeclareTargetDeclAttr::DT_NoHost &&
1629       LV.getVisibility() == HiddenVisibility) {
1630     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1631     return;
1632   }
1633 
1634   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1635     // Reject incompatible dlllstorage and visibility annotations.
1636     if (!LV.isVisibilityExplicit())
1637       return;
1638     if (GV->hasDLLExportStorageClass()) {
1639       if (LV.getVisibility() == HiddenVisibility)
1640         getDiags().Report(D->getLocation(),
1641                           diag::err_hidden_visibility_dllexport);
1642     } else if (LV.getVisibility() != DefaultVisibility) {
1643       getDiags().Report(D->getLocation(),
1644                         diag::err_non_default_visibility_dllimport);
1645     }
1646     return;
1647   }
1648 
1649   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1650       !GV->isDeclarationForLinker())
1651     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1652 }
1653 
1654 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1655                                  llvm::GlobalValue *GV) {
1656   if (GV->hasLocalLinkage())
1657     return true;
1658 
1659   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1660     return true;
1661 
1662   // DLLImport explicitly marks the GV as external.
1663   if (GV->hasDLLImportStorageClass())
1664     return false;
1665 
1666   const llvm::Triple &TT = CGM.getTriple();
1667   const auto &CGOpts = CGM.getCodeGenOpts();
1668   if (TT.isWindowsGNUEnvironment()) {
1669     // In MinGW, variables without DLLImport can still be automatically
1670     // imported from a DLL by the linker; don't mark variables that
1671     // potentially could come from another DLL as DSO local.
1672 
1673     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1674     // (and this actually happens in the public interface of libstdc++), so
1675     // such variables can't be marked as DSO local. (Native TLS variables
1676     // can't be dllimported at all, though.)
1677     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1678         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1679         CGOpts.AutoImport)
1680       return false;
1681   }
1682 
1683   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1684   // remain unresolved in the link, they can be resolved to zero, which is
1685   // outside the current DSO.
1686   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1687     return false;
1688 
1689   // Every other GV is local on COFF.
1690   // Make an exception for windows OS in the triple: Some firmware builds use
1691   // *-win32-macho triples. This (accidentally?) produced windows relocations
1692   // without GOT tables in older clang versions; Keep this behaviour.
1693   // FIXME: even thread local variables?
1694   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1695     return true;
1696 
1697   // Only handle COFF and ELF for now.
1698   if (!TT.isOSBinFormatELF())
1699     return false;
1700 
1701   // If this is not an executable, don't assume anything is local.
1702   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1703   const auto &LOpts = CGM.getLangOpts();
1704   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1705     // On ELF, if -fno-semantic-interposition is specified and the target
1706     // supports local aliases, there will be neither CC1
1707     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1708     // dso_local on the function if using a local alias is preferable (can avoid
1709     // PLT indirection).
1710     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1711       return false;
1712     return !(CGM.getLangOpts().SemanticInterposition ||
1713              CGM.getLangOpts().HalfNoSemanticInterposition);
1714   }
1715 
1716   // A definition cannot be preempted from an executable.
1717   if (!GV->isDeclarationForLinker())
1718     return true;
1719 
1720   // Most PIC code sequences that assume that a symbol is local cannot produce a
1721   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1722   // depended, it seems worth it to handle it here.
1723   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1724     return false;
1725 
1726   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1727   if (TT.isPPC64())
1728     return false;
1729 
1730   if (CGOpts.DirectAccessExternalData) {
1731     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1732     // for non-thread-local variables. If the symbol is not defined in the
1733     // executable, a copy relocation will be needed at link time. dso_local is
1734     // excluded for thread-local variables because they generally don't support
1735     // copy relocations.
1736     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1737       if (!Var->isThreadLocal())
1738         return true;
1739 
1740     // -fno-pic sets dso_local on a function declaration to allow direct
1741     // accesses when taking its address (similar to a data symbol). If the
1742     // function is not defined in the executable, a canonical PLT entry will be
1743     // needed at link time. -fno-direct-access-external-data can avoid the
1744     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1745     // it could just cause trouble without providing perceptible benefits.
1746     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1747       return true;
1748   }
1749 
1750   // If we can use copy relocations we can assume it is local.
1751 
1752   // Otherwise don't assume it is local.
1753   return false;
1754 }
1755 
1756 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1757   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1758 }
1759 
1760 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1761                                           GlobalDecl GD) const {
1762   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1763   // C++ destructors have a few C++ ABI specific special cases.
1764   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1765     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1766     return;
1767   }
1768   setDLLImportDLLExport(GV, D);
1769 }
1770 
1771 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1772                                           const NamedDecl *D) const {
1773   if (D && D->isExternallyVisible()) {
1774     if (D->hasAttr<DLLImportAttr>())
1775       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1776     else if ((D->hasAttr<DLLExportAttr>() ||
1777               shouldMapVisibilityToDLLExport(D)) &&
1778              !GV->isDeclarationForLinker())
1779       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1780   }
1781 }
1782 
1783 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1784                                     GlobalDecl GD) const {
1785   setDLLImportDLLExport(GV, GD);
1786   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1787 }
1788 
1789 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1790                                     const NamedDecl *D) const {
1791   setDLLImportDLLExport(GV, D);
1792   setGVPropertiesAux(GV, D);
1793 }
1794 
1795 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1796                                        const NamedDecl *D) const {
1797   setGlobalVisibility(GV, D);
1798   setDSOLocal(GV);
1799   GV->setPartition(CodeGenOpts.SymbolPartition);
1800 }
1801 
1802 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1803   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1804       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1805       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1806       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1807       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1808 }
1809 
1810 llvm::GlobalVariable::ThreadLocalMode
1811 CodeGenModule::GetDefaultLLVMTLSModel() const {
1812   switch (CodeGenOpts.getDefaultTLSModel()) {
1813   case CodeGenOptions::GeneralDynamicTLSModel:
1814     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1815   case CodeGenOptions::LocalDynamicTLSModel:
1816     return llvm::GlobalVariable::LocalDynamicTLSModel;
1817   case CodeGenOptions::InitialExecTLSModel:
1818     return llvm::GlobalVariable::InitialExecTLSModel;
1819   case CodeGenOptions::LocalExecTLSModel:
1820     return llvm::GlobalVariable::LocalExecTLSModel;
1821   }
1822   llvm_unreachable("Invalid TLS model!");
1823 }
1824 
1825 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1826   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1827 
1828   llvm::GlobalValue::ThreadLocalMode TLM;
1829   TLM = GetDefaultLLVMTLSModel();
1830 
1831   // Override the TLS model if it is explicitly specified.
1832   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1833     TLM = GetLLVMTLSModel(Attr->getModel());
1834   }
1835 
1836   GV->setThreadLocalMode(TLM);
1837 }
1838 
1839 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1840                                           StringRef Name) {
1841   const TargetInfo &Target = CGM.getTarget();
1842   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1843 }
1844 
1845 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1846                                                  const CPUSpecificAttr *Attr,
1847                                                  unsigned CPUIndex,
1848                                                  raw_ostream &Out) {
1849   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1850   // supported.
1851   if (Attr)
1852     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1853   else if (CGM.getTarget().supportsIFunc())
1854     Out << ".resolver";
1855 }
1856 
1857 // Returns true if GD is a function decl with internal linkage and
1858 // needs a unique suffix after the mangled name.
1859 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1860                                         CodeGenModule &CGM) {
1861   const Decl *D = GD.getDecl();
1862   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1863          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1864 }
1865 
1866 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1867                                       const NamedDecl *ND,
1868                                       bool OmitMultiVersionMangling = false) {
1869   SmallString<256> Buffer;
1870   llvm::raw_svector_ostream Out(Buffer);
1871   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1872   if (!CGM.getModuleNameHash().empty())
1873     MC.needsUniqueInternalLinkageNames();
1874   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1875   if (ShouldMangle)
1876     MC.mangleName(GD.getWithDecl(ND), Out);
1877   else {
1878     IdentifierInfo *II = ND->getIdentifier();
1879     assert(II && "Attempt to mangle unnamed decl.");
1880     const auto *FD = dyn_cast<FunctionDecl>(ND);
1881 
1882     if (FD &&
1883         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1884       if (CGM.getLangOpts().RegCall4)
1885         Out << "__regcall4__" << II->getName();
1886       else
1887         Out << "__regcall3__" << II->getName();
1888     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1889                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1890       Out << "__device_stub__" << II->getName();
1891     } else {
1892       Out << II->getName();
1893     }
1894   }
1895 
1896   // Check if the module name hash should be appended for internal linkage
1897   // symbols.   This should come before multi-version target suffixes are
1898   // appended. This is to keep the name and module hash suffix of the
1899   // internal linkage function together.  The unique suffix should only be
1900   // added when name mangling is done to make sure that the final name can
1901   // be properly demangled.  For example, for C functions without prototypes,
1902   // name mangling is not done and the unique suffix should not be appeneded
1903   // then.
1904   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1905     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1906            "Hash computed when not explicitly requested");
1907     Out << CGM.getModuleNameHash();
1908   }
1909 
1910   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1911     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1912       switch (FD->getMultiVersionKind()) {
1913       case MultiVersionKind::CPUDispatch:
1914       case MultiVersionKind::CPUSpecific:
1915         AppendCPUSpecificCPUDispatchMangling(CGM,
1916                                              FD->getAttr<CPUSpecificAttr>(),
1917                                              GD.getMultiVersionIndex(), Out);
1918         break;
1919       case MultiVersionKind::Target: {
1920         auto *Attr = FD->getAttr<TargetAttr>();
1921         assert(Attr && "Expected TargetAttr to be present "
1922                        "for attribute mangling");
1923         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1924         Info.appendAttributeMangling(Attr, Out);
1925         break;
1926       }
1927       case MultiVersionKind::TargetVersion: {
1928         auto *Attr = FD->getAttr<TargetVersionAttr>();
1929         assert(Attr && "Expected TargetVersionAttr to be present "
1930                        "for attribute mangling");
1931         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1932         Info.appendAttributeMangling(Attr, Out);
1933         break;
1934       }
1935       case MultiVersionKind::TargetClones: {
1936         auto *Attr = FD->getAttr<TargetClonesAttr>();
1937         assert(Attr && "Expected TargetClonesAttr to be present "
1938                        "for attribute mangling");
1939         unsigned Index = GD.getMultiVersionIndex();
1940         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1941         Info.appendAttributeMangling(Attr, Index, Out);
1942         break;
1943       }
1944       case MultiVersionKind::None:
1945         llvm_unreachable("None multiversion type isn't valid here");
1946       }
1947     }
1948 
1949   // Make unique name for device side static file-scope variable for HIP.
1950   if (CGM.getContext().shouldExternalize(ND) &&
1951       CGM.getLangOpts().GPURelocatableDeviceCode &&
1952       CGM.getLangOpts().CUDAIsDevice)
1953     CGM.printPostfixForExternalizedDecl(Out, ND);
1954 
1955   return std::string(Out.str());
1956 }
1957 
1958 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1959                                             const FunctionDecl *FD,
1960                                             StringRef &CurName) {
1961   if (!FD->isMultiVersion())
1962     return;
1963 
1964   // Get the name of what this would be without the 'target' attribute.  This
1965   // allows us to lookup the version that was emitted when this wasn't a
1966   // multiversion function.
1967   std::string NonTargetName =
1968       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1969   GlobalDecl OtherGD;
1970   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1971     assert(OtherGD.getCanonicalDecl()
1972                .getDecl()
1973                ->getAsFunction()
1974                ->isMultiVersion() &&
1975            "Other GD should now be a multiversioned function");
1976     // OtherFD is the version of this function that was mangled BEFORE
1977     // becoming a MultiVersion function.  It potentially needs to be updated.
1978     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1979                                       .getDecl()
1980                                       ->getAsFunction()
1981                                       ->getMostRecentDecl();
1982     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1983     // This is so that if the initial version was already the 'default'
1984     // version, we don't try to update it.
1985     if (OtherName != NonTargetName) {
1986       // Remove instead of erase, since others may have stored the StringRef
1987       // to this.
1988       const auto ExistingRecord = Manglings.find(NonTargetName);
1989       if (ExistingRecord != std::end(Manglings))
1990         Manglings.remove(&(*ExistingRecord));
1991       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1992       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1993           Result.first->first();
1994       // If this is the current decl is being created, make sure we update the name.
1995       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1996         CurName = OtherNameRef;
1997       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1998         Entry->setName(OtherName);
1999     }
2000   }
2001 }
2002 
2003 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2004   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2005 
2006   // Some ABIs don't have constructor variants.  Make sure that base and
2007   // complete constructors get mangled the same.
2008   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2009     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2010       CXXCtorType OrigCtorType = GD.getCtorType();
2011       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2012       if (OrigCtorType == Ctor_Base)
2013         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2014     }
2015   }
2016 
2017   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2018   // static device variable depends on whether the variable is referenced by
2019   // a host or device host function. Therefore the mangled name cannot be
2020   // cached.
2021   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2022     auto FoundName = MangledDeclNames.find(CanonicalGD);
2023     if (FoundName != MangledDeclNames.end())
2024       return FoundName->second;
2025   }
2026 
2027   // Keep the first result in the case of a mangling collision.
2028   const auto *ND = cast<NamedDecl>(GD.getDecl());
2029   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2030 
2031   // Ensure either we have different ABIs between host and device compilations,
2032   // says host compilation following MSVC ABI but device compilation follows
2033   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2034   // mangling should be the same after name stubbing. The later checking is
2035   // very important as the device kernel name being mangled in host-compilation
2036   // is used to resolve the device binaries to be executed. Inconsistent naming
2037   // result in undefined behavior. Even though we cannot check that naming
2038   // directly between host- and device-compilations, the host- and
2039   // device-mangling in host compilation could help catching certain ones.
2040   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2041          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2042          (getContext().getAuxTargetInfo() &&
2043           (getContext().getAuxTargetInfo()->getCXXABI() !=
2044            getContext().getTargetInfo().getCXXABI())) ||
2045          getCUDARuntime().getDeviceSideName(ND) ==
2046              getMangledNameImpl(
2047                  *this,
2048                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2049                  ND));
2050 
2051   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2052   return MangledDeclNames[CanonicalGD] = Result.first->first();
2053 }
2054 
2055 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2056                                              const BlockDecl *BD) {
2057   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2058   const Decl *D = GD.getDecl();
2059 
2060   SmallString<256> Buffer;
2061   llvm::raw_svector_ostream Out(Buffer);
2062   if (!D)
2063     MangleCtx.mangleGlobalBlock(BD,
2064       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2065   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2066     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2067   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2068     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2069   else
2070     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2071 
2072   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2073   return Result.first->first();
2074 }
2075 
2076 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2077   auto it = MangledDeclNames.begin();
2078   while (it != MangledDeclNames.end()) {
2079     if (it->second == Name)
2080       return it->first;
2081     it++;
2082   }
2083   return GlobalDecl();
2084 }
2085 
2086 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2087   return getModule().getNamedValue(Name);
2088 }
2089 
2090 /// AddGlobalCtor - Add a function to the list that will be called before
2091 /// main() runs.
2092 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2093                                   unsigned LexOrder,
2094                                   llvm::Constant *AssociatedData) {
2095   // FIXME: Type coercion of void()* types.
2096   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2097 }
2098 
2099 /// AddGlobalDtor - Add a function to the list that will be called
2100 /// when the module is unloaded.
2101 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2102                                   bool IsDtorAttrFunc) {
2103   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2104       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2105     DtorsUsingAtExit[Priority].push_back(Dtor);
2106     return;
2107   }
2108 
2109   // FIXME: Type coercion of void()* types.
2110   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2111 }
2112 
2113 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2114   if (Fns.empty()) return;
2115 
2116   const PointerAuthSchema &InitFiniAuthSchema =
2117       getCodeGenOpts().PointerAuth.InitFiniPointers;
2118 
2119   // Ctor function type is ptr.
2120   llvm::PointerType *PtrTy = llvm::PointerType::get(
2121       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2122 
2123   // Get the type of a ctor entry, { i32, ptr, ptr }.
2124   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2125 
2126   // Construct the constructor and destructor arrays.
2127   ConstantInitBuilder Builder(*this);
2128   auto Ctors = Builder.beginArray(CtorStructTy);
2129   for (const auto &I : Fns) {
2130     auto Ctor = Ctors.beginStruct(CtorStructTy);
2131     Ctor.addInt(Int32Ty, I.Priority);
2132     if (InitFiniAuthSchema) {
2133       llvm::Constant *StorageAddress =
2134           (InitFiniAuthSchema.isAddressDiscriminated()
2135                ? llvm::ConstantExpr::getIntToPtr(
2136                      llvm::ConstantInt::get(
2137                          IntPtrTy,
2138                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2139                      PtrTy)
2140                : nullptr);
2141       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2142           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2143           llvm::ConstantInt::get(
2144               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2145       Ctor.add(SignedCtorPtr);
2146     } else {
2147       Ctor.add(I.Initializer);
2148     }
2149     if (I.AssociatedData)
2150       Ctor.add(I.AssociatedData);
2151     else
2152       Ctor.addNullPointer(PtrTy);
2153     Ctor.finishAndAddTo(Ctors);
2154   }
2155 
2156   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2157                                           /*constant*/ false,
2158                                           llvm::GlobalValue::AppendingLinkage);
2159 
2160   // The LTO linker doesn't seem to like it when we set an alignment
2161   // on appending variables.  Take it off as a workaround.
2162   List->setAlignment(std::nullopt);
2163 
2164   Fns.clear();
2165 }
2166 
2167 llvm::GlobalValue::LinkageTypes
2168 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2169   const auto *D = cast<FunctionDecl>(GD.getDecl());
2170 
2171   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2172 
2173   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2174     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2175 
2176   return getLLVMLinkageForDeclarator(D, Linkage);
2177 }
2178 
2179 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2180   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2181   if (!MDS) return nullptr;
2182 
2183   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2184 }
2185 
2186 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2187   if (auto *FnType = T->getAs<FunctionProtoType>())
2188     T = getContext().getFunctionType(
2189         FnType->getReturnType(), FnType->getParamTypes(),
2190         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2191 
2192   std::string OutName;
2193   llvm::raw_string_ostream Out(OutName);
2194   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2195       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2196 
2197   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2198     Out << ".normalized";
2199 
2200   return llvm::ConstantInt::get(Int32Ty,
2201                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2202 }
2203 
2204 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2205                                               const CGFunctionInfo &Info,
2206                                               llvm::Function *F, bool IsThunk) {
2207   unsigned CallingConv;
2208   llvm::AttributeList PAL;
2209   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2210                          /*AttrOnCallSite=*/false, IsThunk);
2211   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2212       getTarget().getTriple().isWindowsArm64EC()) {
2213     SourceLocation Loc;
2214     if (const Decl *D = GD.getDecl())
2215       Loc = D->getLocation();
2216 
2217     Error(Loc, "__vectorcall calling convention is not currently supported");
2218   }
2219   F->setAttributes(PAL);
2220   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2221 }
2222 
2223 static void removeImageAccessQualifier(std::string& TyName) {
2224   std::string ReadOnlyQual("__read_only");
2225   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2226   if (ReadOnlyPos != std::string::npos)
2227     // "+ 1" for the space after access qualifier.
2228     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2229   else {
2230     std::string WriteOnlyQual("__write_only");
2231     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2232     if (WriteOnlyPos != std::string::npos)
2233       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2234     else {
2235       std::string ReadWriteQual("__read_write");
2236       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2237       if (ReadWritePos != std::string::npos)
2238         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2239     }
2240   }
2241 }
2242 
2243 // Returns the address space id that should be produced to the
2244 // kernel_arg_addr_space metadata. This is always fixed to the ids
2245 // as specified in the SPIR 2.0 specification in order to differentiate
2246 // for example in clGetKernelArgInfo() implementation between the address
2247 // spaces with targets without unique mapping to the OpenCL address spaces
2248 // (basically all single AS CPUs).
2249 static unsigned ArgInfoAddressSpace(LangAS AS) {
2250   switch (AS) {
2251   case LangAS::opencl_global:
2252     return 1;
2253   case LangAS::opencl_constant:
2254     return 2;
2255   case LangAS::opencl_local:
2256     return 3;
2257   case LangAS::opencl_generic:
2258     return 4; // Not in SPIR 2.0 specs.
2259   case LangAS::opencl_global_device:
2260     return 5;
2261   case LangAS::opencl_global_host:
2262     return 6;
2263   default:
2264     return 0; // Assume private.
2265   }
2266 }
2267 
2268 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2269                                          const FunctionDecl *FD,
2270                                          CodeGenFunction *CGF) {
2271   assert(((FD && CGF) || (!FD && !CGF)) &&
2272          "Incorrect use - FD and CGF should either be both null or not!");
2273   // Create MDNodes that represent the kernel arg metadata.
2274   // Each MDNode is a list in the form of "key", N number of values which is
2275   // the same number of values as their are kernel arguments.
2276 
2277   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2278 
2279   // MDNode for the kernel argument address space qualifiers.
2280   SmallVector<llvm::Metadata *, 8> addressQuals;
2281 
2282   // MDNode for the kernel argument access qualifiers (images only).
2283   SmallVector<llvm::Metadata *, 8> accessQuals;
2284 
2285   // MDNode for the kernel argument type names.
2286   SmallVector<llvm::Metadata *, 8> argTypeNames;
2287 
2288   // MDNode for the kernel argument base type names.
2289   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2290 
2291   // MDNode for the kernel argument type qualifiers.
2292   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2293 
2294   // MDNode for the kernel argument names.
2295   SmallVector<llvm::Metadata *, 8> argNames;
2296 
2297   if (FD && CGF)
2298     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2299       const ParmVarDecl *parm = FD->getParamDecl(i);
2300       // Get argument name.
2301       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2302 
2303       if (!getLangOpts().OpenCL)
2304         continue;
2305       QualType ty = parm->getType();
2306       std::string typeQuals;
2307 
2308       // Get image and pipe access qualifier:
2309       if (ty->isImageType() || ty->isPipeType()) {
2310         const Decl *PDecl = parm;
2311         if (const auto *TD = ty->getAs<TypedefType>())
2312           PDecl = TD->getDecl();
2313         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2314         if (A && A->isWriteOnly())
2315           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2316         else if (A && A->isReadWrite())
2317           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2318         else
2319           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2320       } else
2321         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2322 
2323       auto getTypeSpelling = [&](QualType Ty) {
2324         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2325 
2326         if (Ty.isCanonical()) {
2327           StringRef typeNameRef = typeName;
2328           // Turn "unsigned type" to "utype"
2329           if (typeNameRef.consume_front("unsigned "))
2330             return std::string("u") + typeNameRef.str();
2331           if (typeNameRef.consume_front("signed "))
2332             return typeNameRef.str();
2333         }
2334 
2335         return typeName;
2336       };
2337 
2338       if (ty->isPointerType()) {
2339         QualType pointeeTy = ty->getPointeeType();
2340 
2341         // Get address qualifier.
2342         addressQuals.push_back(
2343             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2344                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2345 
2346         // Get argument type name.
2347         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2348         std::string baseTypeName =
2349             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2350         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2351         argBaseTypeNames.push_back(
2352             llvm::MDString::get(VMContext, baseTypeName));
2353 
2354         // Get argument type qualifiers:
2355         if (ty.isRestrictQualified())
2356           typeQuals = "restrict";
2357         if (pointeeTy.isConstQualified() ||
2358             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2359           typeQuals += typeQuals.empty() ? "const" : " const";
2360         if (pointeeTy.isVolatileQualified())
2361           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2362       } else {
2363         uint32_t AddrSpc = 0;
2364         bool isPipe = ty->isPipeType();
2365         if (ty->isImageType() || isPipe)
2366           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2367 
2368         addressQuals.push_back(
2369             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2370 
2371         // Get argument type name.
2372         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2373         std::string typeName = getTypeSpelling(ty);
2374         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2375 
2376         // Remove access qualifiers on images
2377         // (as they are inseparable from type in clang implementation,
2378         // but OpenCL spec provides a special query to get access qualifier
2379         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2380         if (ty->isImageType()) {
2381           removeImageAccessQualifier(typeName);
2382           removeImageAccessQualifier(baseTypeName);
2383         }
2384 
2385         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2386         argBaseTypeNames.push_back(
2387             llvm::MDString::get(VMContext, baseTypeName));
2388 
2389         if (isPipe)
2390           typeQuals = "pipe";
2391       }
2392       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2393     }
2394 
2395   if (getLangOpts().OpenCL) {
2396     Fn->setMetadata("kernel_arg_addr_space",
2397                     llvm::MDNode::get(VMContext, addressQuals));
2398     Fn->setMetadata("kernel_arg_access_qual",
2399                     llvm::MDNode::get(VMContext, accessQuals));
2400     Fn->setMetadata("kernel_arg_type",
2401                     llvm::MDNode::get(VMContext, argTypeNames));
2402     Fn->setMetadata("kernel_arg_base_type",
2403                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2404     Fn->setMetadata("kernel_arg_type_qual",
2405                     llvm::MDNode::get(VMContext, argTypeQuals));
2406   }
2407   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2408       getCodeGenOpts().HIPSaveKernelArgName)
2409     Fn->setMetadata("kernel_arg_name",
2410                     llvm::MDNode::get(VMContext, argNames));
2411 }
2412 
2413 /// Determines whether the language options require us to model
2414 /// unwind exceptions.  We treat -fexceptions as mandating this
2415 /// except under the fragile ObjC ABI with only ObjC exceptions
2416 /// enabled.  This means, for example, that C with -fexceptions
2417 /// enables this.
2418 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2419   // If exceptions are completely disabled, obviously this is false.
2420   if (!LangOpts.Exceptions) return false;
2421 
2422   // If C++ exceptions are enabled, this is true.
2423   if (LangOpts.CXXExceptions) return true;
2424 
2425   // If ObjC exceptions are enabled, this depends on the ABI.
2426   if (LangOpts.ObjCExceptions) {
2427     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2428   }
2429 
2430   return true;
2431 }
2432 
2433 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2434                                                       const CXXMethodDecl *MD) {
2435   // Check that the type metadata can ever actually be used by a call.
2436   if (!CGM.getCodeGenOpts().LTOUnit ||
2437       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2438     return false;
2439 
2440   // Only functions whose address can be taken with a member function pointer
2441   // need this sort of type metadata.
2442   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2443          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2444 }
2445 
2446 SmallVector<const CXXRecordDecl *, 0>
2447 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2448   llvm::SetVector<const CXXRecordDecl *> MostBases;
2449 
2450   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2451   CollectMostBases = [&](const CXXRecordDecl *RD) {
2452     if (RD->getNumBases() == 0)
2453       MostBases.insert(RD);
2454     for (const CXXBaseSpecifier &B : RD->bases())
2455       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2456   };
2457   CollectMostBases(RD);
2458   return MostBases.takeVector();
2459 }
2460 
2461 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2462                                                            llvm::Function *F) {
2463   llvm::AttrBuilder B(F->getContext());
2464 
2465   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2466     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2467 
2468   if (CodeGenOpts.StackClashProtector)
2469     B.addAttribute("probe-stack", "inline-asm");
2470 
2471   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2472     B.addAttribute("stack-probe-size",
2473                    std::to_string(CodeGenOpts.StackProbeSize));
2474 
2475   if (!hasUnwindExceptions(LangOpts))
2476     B.addAttribute(llvm::Attribute::NoUnwind);
2477 
2478   if (D && D->hasAttr<NoStackProtectorAttr>())
2479     ; // Do nothing.
2480   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2481            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2482     B.addAttribute(llvm::Attribute::StackProtectStrong);
2483   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2484     B.addAttribute(llvm::Attribute::StackProtect);
2485   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2486     B.addAttribute(llvm::Attribute::StackProtectStrong);
2487   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2488     B.addAttribute(llvm::Attribute::StackProtectReq);
2489 
2490   if (!D) {
2491     // Non-entry HLSL functions must always be inlined.
2492     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2493       B.addAttribute(llvm::Attribute::AlwaysInline);
2494     // If we don't have a declaration to control inlining, the function isn't
2495     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2496     // disabled, mark the function as noinline.
2497     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2498              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2499       B.addAttribute(llvm::Attribute::NoInline);
2500 
2501     F->addFnAttrs(B);
2502     return;
2503   }
2504 
2505   // Handle SME attributes that apply to function definitions,
2506   // rather than to function prototypes.
2507   if (D->hasAttr<ArmLocallyStreamingAttr>())
2508     B.addAttribute("aarch64_pstate_sm_body");
2509 
2510   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2511     if (Attr->isNewZA())
2512       B.addAttribute("aarch64_new_za");
2513     if (Attr->isNewZT0())
2514       B.addAttribute("aarch64_new_zt0");
2515   }
2516 
2517   // Track whether we need to add the optnone LLVM attribute,
2518   // starting with the default for this optimization level.
2519   bool ShouldAddOptNone =
2520       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2521   // We can't add optnone in the following cases, it won't pass the verifier.
2522   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2523   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2524 
2525   // Non-entry HLSL functions must always be inlined.
2526   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2527       !D->hasAttr<NoInlineAttr>()) {
2528     B.addAttribute(llvm::Attribute::AlwaysInline);
2529   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2530              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2531     // Add optnone, but do so only if the function isn't always_inline.
2532     B.addAttribute(llvm::Attribute::OptimizeNone);
2533 
2534     // OptimizeNone implies noinline; we should not be inlining such functions.
2535     B.addAttribute(llvm::Attribute::NoInline);
2536 
2537     // We still need to handle naked functions even though optnone subsumes
2538     // much of their semantics.
2539     if (D->hasAttr<NakedAttr>())
2540       B.addAttribute(llvm::Attribute::Naked);
2541 
2542     // OptimizeNone wins over OptimizeForSize and MinSize.
2543     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2544     F->removeFnAttr(llvm::Attribute::MinSize);
2545   } else if (D->hasAttr<NakedAttr>()) {
2546     // Naked implies noinline: we should not be inlining such functions.
2547     B.addAttribute(llvm::Attribute::Naked);
2548     B.addAttribute(llvm::Attribute::NoInline);
2549   } else if (D->hasAttr<NoDuplicateAttr>()) {
2550     B.addAttribute(llvm::Attribute::NoDuplicate);
2551   } else if (D->hasAttr<NoInlineAttr>() &&
2552              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2553     // Add noinline if the function isn't always_inline.
2554     B.addAttribute(llvm::Attribute::NoInline);
2555   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2556              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2557     // (noinline wins over always_inline, and we can't specify both in IR)
2558     B.addAttribute(llvm::Attribute::AlwaysInline);
2559   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2560     // If we're not inlining, then force everything that isn't always_inline to
2561     // carry an explicit noinline attribute.
2562     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2563       B.addAttribute(llvm::Attribute::NoInline);
2564   } else {
2565     // Otherwise, propagate the inline hint attribute and potentially use its
2566     // absence to mark things as noinline.
2567     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2568       // Search function and template pattern redeclarations for inline.
2569       auto CheckForInline = [](const FunctionDecl *FD) {
2570         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2571           return Redecl->isInlineSpecified();
2572         };
2573         if (any_of(FD->redecls(), CheckRedeclForInline))
2574           return true;
2575         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2576         if (!Pattern)
2577           return false;
2578         return any_of(Pattern->redecls(), CheckRedeclForInline);
2579       };
2580       if (CheckForInline(FD)) {
2581         B.addAttribute(llvm::Attribute::InlineHint);
2582       } else if (CodeGenOpts.getInlining() ==
2583                      CodeGenOptions::OnlyHintInlining &&
2584                  !FD->isInlined() &&
2585                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2586         B.addAttribute(llvm::Attribute::NoInline);
2587       }
2588     }
2589   }
2590 
2591   // Add other optimization related attributes if we are optimizing this
2592   // function.
2593   if (!D->hasAttr<OptimizeNoneAttr>()) {
2594     if (D->hasAttr<ColdAttr>()) {
2595       if (!ShouldAddOptNone)
2596         B.addAttribute(llvm::Attribute::OptimizeForSize);
2597       B.addAttribute(llvm::Attribute::Cold);
2598     }
2599     if (D->hasAttr<HotAttr>())
2600       B.addAttribute(llvm::Attribute::Hot);
2601     if (D->hasAttr<MinSizeAttr>())
2602       B.addAttribute(llvm::Attribute::MinSize);
2603   }
2604 
2605   F->addFnAttrs(B);
2606 
2607   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2608   if (alignment)
2609     F->setAlignment(llvm::Align(alignment));
2610 
2611   if (!D->hasAttr<AlignedAttr>())
2612     if (LangOpts.FunctionAlignment)
2613       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2614 
2615   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2616   // reserve a bit for differentiating between virtual and non-virtual member
2617   // functions. If the current target's C++ ABI requires this and this is a
2618   // member function, set its alignment accordingly.
2619   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2620     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2621       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2622   }
2623 
2624   // In the cross-dso CFI mode with canonical jump tables, we want !type
2625   // attributes on definitions only.
2626   if (CodeGenOpts.SanitizeCfiCrossDso &&
2627       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2628     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2629       // Skip available_externally functions. They won't be codegen'ed in the
2630       // current module anyway.
2631       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2632         CreateFunctionTypeMetadataForIcall(FD, F);
2633     }
2634   }
2635 
2636   // Emit type metadata on member functions for member function pointer checks.
2637   // These are only ever necessary on definitions; we're guaranteed that the
2638   // definition will be present in the LTO unit as a result of LTO visibility.
2639   auto *MD = dyn_cast<CXXMethodDecl>(D);
2640   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2641     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2642       llvm::Metadata *Id =
2643           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2644               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2645       F->addTypeMetadata(0, Id);
2646     }
2647   }
2648 }
2649 
2650 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2651   const Decl *D = GD.getDecl();
2652   if (isa_and_nonnull<NamedDecl>(D))
2653     setGVProperties(GV, GD);
2654   else
2655     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2656 
2657   if (D && D->hasAttr<UsedAttr>())
2658     addUsedOrCompilerUsedGlobal(GV);
2659 
2660   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2661       VD &&
2662       ((CodeGenOpts.KeepPersistentStorageVariables &&
2663         (VD->getStorageDuration() == SD_Static ||
2664          VD->getStorageDuration() == SD_Thread)) ||
2665        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2666         VD->getType().isConstQualified())))
2667     addUsedOrCompilerUsedGlobal(GV);
2668 }
2669 
2670 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2671                                                 llvm::AttrBuilder &Attrs,
2672                                                 bool SetTargetFeatures) {
2673   // Add target-cpu and target-features attributes to functions. If
2674   // we have a decl for the function and it has a target attribute then
2675   // parse that and add it to the feature set.
2676   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2677   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2678   std::vector<std::string> Features;
2679   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2680   FD = FD ? FD->getMostRecentDecl() : FD;
2681   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2682   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2683   assert((!TD || !TV) && "both target_version and target specified");
2684   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2685   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2686   bool AddedAttr = false;
2687   if (TD || TV || SD || TC) {
2688     llvm::StringMap<bool> FeatureMap;
2689     getContext().getFunctionFeatureMap(FeatureMap, GD);
2690 
2691     // Produce the canonical string for this set of features.
2692     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2693       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2694 
2695     // Now add the target-cpu and target-features to the function.
2696     // While we populated the feature map above, we still need to
2697     // get and parse the target attribute so we can get the cpu for
2698     // the function.
2699     if (TD) {
2700       ParsedTargetAttr ParsedAttr =
2701           Target.parseTargetAttr(TD->getFeaturesStr());
2702       if (!ParsedAttr.CPU.empty() &&
2703           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2704         TargetCPU = ParsedAttr.CPU;
2705         TuneCPU = ""; // Clear the tune CPU.
2706       }
2707       if (!ParsedAttr.Tune.empty() &&
2708           getTarget().isValidCPUName(ParsedAttr.Tune))
2709         TuneCPU = ParsedAttr.Tune;
2710     }
2711 
2712     if (SD) {
2713       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2714       // favor this processor.
2715       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2716     }
2717   } else {
2718     // Otherwise just add the existing target cpu and target features to the
2719     // function.
2720     Features = getTarget().getTargetOpts().Features;
2721   }
2722 
2723   if (!TargetCPU.empty()) {
2724     Attrs.addAttribute("target-cpu", TargetCPU);
2725     AddedAttr = true;
2726   }
2727   if (!TuneCPU.empty()) {
2728     Attrs.addAttribute("tune-cpu", TuneCPU);
2729     AddedAttr = true;
2730   }
2731   if (!Features.empty() && SetTargetFeatures) {
2732     llvm::erase_if(Features, [&](const std::string& F) {
2733        return getTarget().isReadOnlyFeature(F.substr(1));
2734     });
2735     llvm::sort(Features);
2736     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2737     AddedAttr = true;
2738   }
2739 
2740   return AddedAttr;
2741 }
2742 
2743 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2744                                           llvm::GlobalObject *GO) {
2745   const Decl *D = GD.getDecl();
2746   SetCommonAttributes(GD, GO);
2747 
2748   if (D) {
2749     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2750       if (D->hasAttr<RetainAttr>())
2751         addUsedGlobal(GV);
2752       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2753         GV->addAttribute("bss-section", SA->getName());
2754       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2755         GV->addAttribute("data-section", SA->getName());
2756       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2757         GV->addAttribute("rodata-section", SA->getName());
2758       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2759         GV->addAttribute("relro-section", SA->getName());
2760     }
2761 
2762     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2763       if (D->hasAttr<RetainAttr>())
2764         addUsedGlobal(F);
2765       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2766         if (!D->getAttr<SectionAttr>())
2767           F->setSection(SA->getName());
2768 
2769       llvm::AttrBuilder Attrs(F->getContext());
2770       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2771         // We know that GetCPUAndFeaturesAttributes will always have the
2772         // newest set, since it has the newest possible FunctionDecl, so the
2773         // new ones should replace the old.
2774         llvm::AttributeMask RemoveAttrs;
2775         RemoveAttrs.addAttribute("target-cpu");
2776         RemoveAttrs.addAttribute("target-features");
2777         RemoveAttrs.addAttribute("tune-cpu");
2778         F->removeFnAttrs(RemoveAttrs);
2779         F->addFnAttrs(Attrs);
2780       }
2781     }
2782 
2783     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2784       GO->setSection(CSA->getName());
2785     else if (const auto *SA = D->getAttr<SectionAttr>())
2786       GO->setSection(SA->getName());
2787   }
2788 
2789   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2790 }
2791 
2792 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2793                                                   llvm::Function *F,
2794                                                   const CGFunctionInfo &FI) {
2795   const Decl *D = GD.getDecl();
2796   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2797   SetLLVMFunctionAttributesForDefinition(D, F);
2798 
2799   F->setLinkage(llvm::Function::InternalLinkage);
2800 
2801   setNonAliasAttributes(GD, F);
2802 }
2803 
2804 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2805   // Set linkage and visibility in case we never see a definition.
2806   LinkageInfo LV = ND->getLinkageAndVisibility();
2807   // Don't set internal linkage on declarations.
2808   // "extern_weak" is overloaded in LLVM; we probably should have
2809   // separate linkage types for this.
2810   if (isExternallyVisible(LV.getLinkage()) &&
2811       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2812     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2813 }
2814 
2815 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2816                                                        llvm::Function *F) {
2817   // Only if we are checking indirect calls.
2818   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2819     return;
2820 
2821   // Non-static class methods are handled via vtable or member function pointer
2822   // checks elsewhere.
2823   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2824     return;
2825 
2826   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2827   F->addTypeMetadata(0, MD);
2828   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2829 
2830   // Emit a hash-based bit set entry for cross-DSO calls.
2831   if (CodeGenOpts.SanitizeCfiCrossDso)
2832     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2833       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2834 }
2835 
2836 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2837   llvm::LLVMContext &Ctx = F->getContext();
2838   llvm::MDBuilder MDB(Ctx);
2839   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2840                  llvm::MDNode::get(
2841                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2842 }
2843 
2844 static bool allowKCFIIdentifier(StringRef Name) {
2845   // KCFI type identifier constants are only necessary for external assembly
2846   // functions, which means it's safe to skip unusual names. Subset of
2847   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2848   return llvm::all_of(Name, [](const char &C) {
2849     return llvm::isAlnum(C) || C == '_' || C == '.';
2850   });
2851 }
2852 
2853 void CodeGenModule::finalizeKCFITypes() {
2854   llvm::Module &M = getModule();
2855   for (auto &F : M.functions()) {
2856     // Remove KCFI type metadata from non-address-taken local functions.
2857     bool AddressTaken = F.hasAddressTaken();
2858     if (!AddressTaken && F.hasLocalLinkage())
2859       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2860 
2861     // Generate a constant with the expected KCFI type identifier for all
2862     // address-taken function declarations to support annotating indirectly
2863     // called assembly functions.
2864     if (!AddressTaken || !F.isDeclaration())
2865       continue;
2866 
2867     const llvm::ConstantInt *Type;
2868     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2869       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2870     else
2871       continue;
2872 
2873     StringRef Name = F.getName();
2874     if (!allowKCFIIdentifier(Name))
2875       continue;
2876 
2877     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2878                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2879                           .str();
2880     M.appendModuleInlineAsm(Asm);
2881   }
2882 }
2883 
2884 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2885                                           bool IsIncompleteFunction,
2886                                           bool IsThunk) {
2887 
2888   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2889     // If this is an intrinsic function, set the function's attributes
2890     // to the intrinsic's attributes.
2891     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2892     return;
2893   }
2894 
2895   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2896 
2897   if (!IsIncompleteFunction)
2898     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2899                               IsThunk);
2900 
2901   // Add the Returned attribute for "this", except for iOS 5 and earlier
2902   // where substantial code, including the libstdc++ dylib, was compiled with
2903   // GCC and does not actually return "this".
2904   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2905       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2906     assert(!F->arg_empty() &&
2907            F->arg_begin()->getType()
2908              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2909            "unexpected this return");
2910     F->addParamAttr(0, llvm::Attribute::Returned);
2911   }
2912 
2913   // Only a few attributes are set on declarations; these may later be
2914   // overridden by a definition.
2915 
2916   setLinkageForGV(F, FD);
2917   setGVProperties(F, FD);
2918 
2919   // Setup target-specific attributes.
2920   if (!IsIncompleteFunction && F->isDeclaration())
2921     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2922 
2923   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2924     F->setSection(CSA->getName());
2925   else if (const auto *SA = FD->getAttr<SectionAttr>())
2926      F->setSection(SA->getName());
2927 
2928   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2929     if (EA->isError())
2930       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2931     else if (EA->isWarning())
2932       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2933   }
2934 
2935   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2936   if (FD->isInlineBuiltinDeclaration()) {
2937     const FunctionDecl *FDBody;
2938     bool HasBody = FD->hasBody(FDBody);
2939     (void)HasBody;
2940     assert(HasBody && "Inline builtin declarations should always have an "
2941                       "available body!");
2942     if (shouldEmitFunction(FDBody))
2943       F->addFnAttr(llvm::Attribute::NoBuiltin);
2944   }
2945 
2946   if (FD->isReplaceableGlobalAllocationFunction()) {
2947     // A replaceable global allocation function does not act like a builtin by
2948     // default, only if it is invoked by a new-expression or delete-expression.
2949     F->addFnAttr(llvm::Attribute::NoBuiltin);
2950   }
2951 
2952   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2953     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2954   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2955     if (MD->isVirtual())
2956       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2957 
2958   // Don't emit entries for function declarations in the cross-DSO mode. This
2959   // is handled with better precision by the receiving DSO. But if jump tables
2960   // are non-canonical then we need type metadata in order to produce the local
2961   // jump table.
2962   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2963       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2964     CreateFunctionTypeMetadataForIcall(FD, F);
2965 
2966   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2967     setKCFIType(FD, F);
2968 
2969   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2970     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2971 
2972   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2973     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2974 
2975   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2976     // Annotate the callback behavior as metadata:
2977     //  - The callback callee (as argument number).
2978     //  - The callback payloads (as argument numbers).
2979     llvm::LLVMContext &Ctx = F->getContext();
2980     llvm::MDBuilder MDB(Ctx);
2981 
2982     // The payload indices are all but the first one in the encoding. The first
2983     // identifies the callback callee.
2984     int CalleeIdx = *CB->encoding_begin();
2985     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2986     F->addMetadata(llvm::LLVMContext::MD_callback,
2987                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2988                                                CalleeIdx, PayloadIndices,
2989                                                /* VarArgsArePassed */ false)}));
2990   }
2991 }
2992 
2993 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2994   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2995          "Only globals with definition can force usage.");
2996   LLVMUsed.emplace_back(GV);
2997 }
2998 
2999 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3000   assert(!GV->isDeclaration() &&
3001          "Only globals with definition can force usage.");
3002   LLVMCompilerUsed.emplace_back(GV);
3003 }
3004 
3005 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3006   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3007          "Only globals with definition can force usage.");
3008   if (getTriple().isOSBinFormatELF())
3009     LLVMCompilerUsed.emplace_back(GV);
3010   else
3011     LLVMUsed.emplace_back(GV);
3012 }
3013 
3014 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3015                      std::vector<llvm::WeakTrackingVH> &List) {
3016   // Don't create llvm.used if there is no need.
3017   if (List.empty())
3018     return;
3019 
3020   // Convert List to what ConstantArray needs.
3021   SmallVector<llvm::Constant*, 8> UsedArray;
3022   UsedArray.resize(List.size());
3023   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3024     UsedArray[i] =
3025         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3026             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3027   }
3028 
3029   if (UsedArray.empty())
3030     return;
3031   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3032 
3033   auto *GV = new llvm::GlobalVariable(
3034       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3035       llvm::ConstantArray::get(ATy, UsedArray), Name);
3036 
3037   GV->setSection("llvm.metadata");
3038 }
3039 
3040 void CodeGenModule::emitLLVMUsed() {
3041   emitUsed(*this, "llvm.used", LLVMUsed);
3042   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3043 }
3044 
3045 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3046   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3047   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3048 }
3049 
3050 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3051   llvm::SmallString<32> Opt;
3052   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3053   if (Opt.empty())
3054     return;
3055   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3056   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3057 }
3058 
3059 void CodeGenModule::AddDependentLib(StringRef Lib) {
3060   auto &C = getLLVMContext();
3061   if (getTarget().getTriple().isOSBinFormatELF()) {
3062       ELFDependentLibraries.push_back(
3063         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3064     return;
3065   }
3066 
3067   llvm::SmallString<24> Opt;
3068   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3069   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3070   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3071 }
3072 
3073 /// Add link options implied by the given module, including modules
3074 /// it depends on, using a postorder walk.
3075 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3076                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3077                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3078   // Import this module's parent.
3079   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3080     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3081   }
3082 
3083   // Import this module's dependencies.
3084   for (Module *Import : llvm::reverse(Mod->Imports)) {
3085     if (Visited.insert(Import).second)
3086       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3087   }
3088 
3089   // Add linker options to link against the libraries/frameworks
3090   // described by this module.
3091   llvm::LLVMContext &Context = CGM.getLLVMContext();
3092   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3093 
3094   // For modules that use export_as for linking, use that module
3095   // name instead.
3096   if (Mod->UseExportAsModuleLinkName)
3097     return;
3098 
3099   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3100     // Link against a framework.  Frameworks are currently Darwin only, so we
3101     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3102     if (LL.IsFramework) {
3103       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3104                                  llvm::MDString::get(Context, LL.Library)};
3105 
3106       Metadata.push_back(llvm::MDNode::get(Context, Args));
3107       continue;
3108     }
3109 
3110     // Link against a library.
3111     if (IsELF) {
3112       llvm::Metadata *Args[2] = {
3113           llvm::MDString::get(Context, "lib"),
3114           llvm::MDString::get(Context, LL.Library),
3115       };
3116       Metadata.push_back(llvm::MDNode::get(Context, Args));
3117     } else {
3118       llvm::SmallString<24> Opt;
3119       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3120       auto *OptString = llvm::MDString::get(Context, Opt);
3121       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3122     }
3123   }
3124 }
3125 
3126 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3127   assert(Primary->isNamedModuleUnit() &&
3128          "We should only emit module initializers for named modules.");
3129 
3130   // Emit the initializers in the order that sub-modules appear in the
3131   // source, first Global Module Fragments, if present.
3132   if (auto GMF = Primary->getGlobalModuleFragment()) {
3133     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3134       if (isa<ImportDecl>(D))
3135         continue;
3136       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3137       EmitTopLevelDecl(D);
3138     }
3139   }
3140   // Second any associated with the module, itself.
3141   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3142     // Skip import decls, the inits for those are called explicitly.
3143     if (isa<ImportDecl>(D))
3144       continue;
3145     EmitTopLevelDecl(D);
3146   }
3147   // Third any associated with the Privat eMOdule Fragment, if present.
3148   if (auto PMF = Primary->getPrivateModuleFragment()) {
3149     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3150       // Skip import decls, the inits for those are called explicitly.
3151       if (isa<ImportDecl>(D))
3152         continue;
3153       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3154       EmitTopLevelDecl(D);
3155     }
3156   }
3157 }
3158 
3159 void CodeGenModule::EmitModuleLinkOptions() {
3160   // Collect the set of all of the modules we want to visit to emit link
3161   // options, which is essentially the imported modules and all of their
3162   // non-explicit child modules.
3163   llvm::SetVector<clang::Module *> LinkModules;
3164   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3165   SmallVector<clang::Module *, 16> Stack;
3166 
3167   // Seed the stack with imported modules.
3168   for (Module *M : ImportedModules) {
3169     // Do not add any link flags when an implementation TU of a module imports
3170     // a header of that same module.
3171     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3172         !getLangOpts().isCompilingModule())
3173       continue;
3174     if (Visited.insert(M).second)
3175       Stack.push_back(M);
3176   }
3177 
3178   // Find all of the modules to import, making a little effort to prune
3179   // non-leaf modules.
3180   while (!Stack.empty()) {
3181     clang::Module *Mod = Stack.pop_back_val();
3182 
3183     bool AnyChildren = false;
3184 
3185     // Visit the submodules of this module.
3186     for (const auto &SM : Mod->submodules()) {
3187       // Skip explicit children; they need to be explicitly imported to be
3188       // linked against.
3189       if (SM->IsExplicit)
3190         continue;
3191 
3192       if (Visited.insert(SM).second) {
3193         Stack.push_back(SM);
3194         AnyChildren = true;
3195       }
3196     }
3197 
3198     // We didn't find any children, so add this module to the list of
3199     // modules to link against.
3200     if (!AnyChildren) {
3201       LinkModules.insert(Mod);
3202     }
3203   }
3204 
3205   // Add link options for all of the imported modules in reverse topological
3206   // order.  We don't do anything to try to order import link flags with respect
3207   // to linker options inserted by things like #pragma comment().
3208   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3209   Visited.clear();
3210   for (Module *M : LinkModules)
3211     if (Visited.insert(M).second)
3212       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3213   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3214   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3215 
3216   // Add the linker options metadata flag.
3217   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3218   for (auto *MD : LinkerOptionsMetadata)
3219     NMD->addOperand(MD);
3220 }
3221 
3222 void CodeGenModule::EmitDeferred() {
3223   // Emit deferred declare target declarations.
3224   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3225     getOpenMPRuntime().emitDeferredTargetDecls();
3226 
3227   // Emit code for any potentially referenced deferred decls.  Since a
3228   // previously unused static decl may become used during the generation of code
3229   // for a static function, iterate until no changes are made.
3230 
3231   if (!DeferredVTables.empty()) {
3232     EmitDeferredVTables();
3233 
3234     // Emitting a vtable doesn't directly cause more vtables to
3235     // become deferred, although it can cause functions to be
3236     // emitted that then need those vtables.
3237     assert(DeferredVTables.empty());
3238   }
3239 
3240   // Emit CUDA/HIP static device variables referenced by host code only.
3241   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3242   // needed for further handling.
3243   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3244     llvm::append_range(DeferredDeclsToEmit,
3245                        getContext().CUDADeviceVarODRUsedByHost);
3246 
3247   // Stop if we're out of both deferred vtables and deferred declarations.
3248   if (DeferredDeclsToEmit.empty())
3249     return;
3250 
3251   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3252   // work, it will not interfere with this.
3253   std::vector<GlobalDecl> CurDeclsToEmit;
3254   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3255 
3256   for (GlobalDecl &D : CurDeclsToEmit) {
3257     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3258     // to get GlobalValue with exactly the type we need, not something that
3259     // might had been created for another decl with the same mangled name but
3260     // different type.
3261     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3262         GetAddrOfGlobal(D, ForDefinition));
3263 
3264     // In case of different address spaces, we may still get a cast, even with
3265     // IsForDefinition equal to true. Query mangled names table to get
3266     // GlobalValue.
3267     if (!GV)
3268       GV = GetGlobalValue(getMangledName(D));
3269 
3270     // Make sure GetGlobalValue returned non-null.
3271     assert(GV);
3272 
3273     // Check to see if we've already emitted this.  This is necessary
3274     // for a couple of reasons: first, decls can end up in the
3275     // deferred-decls queue multiple times, and second, decls can end
3276     // up with definitions in unusual ways (e.g. by an extern inline
3277     // function acquiring a strong function redefinition).  Just
3278     // ignore these cases.
3279     if (!GV->isDeclaration())
3280       continue;
3281 
3282     // If this is OpenMP, check if it is legal to emit this global normally.
3283     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3284       continue;
3285 
3286     // Otherwise, emit the definition and move on to the next one.
3287     EmitGlobalDefinition(D, GV);
3288 
3289     // If we found out that we need to emit more decls, do that recursively.
3290     // This has the advantage that the decls are emitted in a DFS and related
3291     // ones are close together, which is convenient for testing.
3292     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3293       EmitDeferred();
3294       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3295     }
3296   }
3297 }
3298 
3299 void CodeGenModule::EmitVTablesOpportunistically() {
3300   // Try to emit external vtables as available_externally if they have emitted
3301   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3302   // is not allowed to create new references to things that need to be emitted
3303   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3304 
3305   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3306          && "Only emit opportunistic vtables with optimizations");
3307 
3308   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3309     assert(getVTables().isVTableExternal(RD) &&
3310            "This queue should only contain external vtables");
3311     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3312       VTables.GenerateClassData(RD);
3313   }
3314   OpportunisticVTables.clear();
3315 }
3316 
3317 void CodeGenModule::EmitGlobalAnnotations() {
3318   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3319     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3320     if (GV)
3321       AddGlobalAnnotations(VD, GV);
3322   }
3323   DeferredAnnotations.clear();
3324 
3325   if (Annotations.empty())
3326     return;
3327 
3328   // Create a new global variable for the ConstantStruct in the Module.
3329   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3330     Annotations[0]->getType(), Annotations.size()), Annotations);
3331   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3332                                       llvm::GlobalValue::AppendingLinkage,
3333                                       Array, "llvm.global.annotations");
3334   gv->setSection(AnnotationSection);
3335 }
3336 
3337 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3338   llvm::Constant *&AStr = AnnotationStrings[Str];
3339   if (AStr)
3340     return AStr;
3341 
3342   // Not found yet, create a new global.
3343   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3344   auto *gv = new llvm::GlobalVariable(
3345       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3346       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3347       ConstGlobalsPtrTy->getAddressSpace());
3348   gv->setSection(AnnotationSection);
3349   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3350   AStr = gv;
3351   return gv;
3352 }
3353 
3354 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3355   SourceManager &SM = getContext().getSourceManager();
3356   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3357   if (PLoc.isValid())
3358     return EmitAnnotationString(PLoc.getFilename());
3359   return EmitAnnotationString(SM.getBufferName(Loc));
3360 }
3361 
3362 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3363   SourceManager &SM = getContext().getSourceManager();
3364   PresumedLoc PLoc = SM.getPresumedLoc(L);
3365   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3366     SM.getExpansionLineNumber(L);
3367   return llvm::ConstantInt::get(Int32Ty, LineNo);
3368 }
3369 
3370 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3371   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3372   if (Exprs.empty())
3373     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3374 
3375   llvm::FoldingSetNodeID ID;
3376   for (Expr *E : Exprs) {
3377     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3378   }
3379   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3380   if (Lookup)
3381     return Lookup;
3382 
3383   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3384   LLVMArgs.reserve(Exprs.size());
3385   ConstantEmitter ConstEmiter(*this);
3386   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3387     const auto *CE = cast<clang::ConstantExpr>(E);
3388     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3389                                     CE->getType());
3390   });
3391   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3392   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3393                                       llvm::GlobalValue::PrivateLinkage, Struct,
3394                                       ".args");
3395   GV->setSection(AnnotationSection);
3396   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3397 
3398   Lookup = GV;
3399   return GV;
3400 }
3401 
3402 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3403                                                 const AnnotateAttr *AA,
3404                                                 SourceLocation L) {
3405   // Get the globals for file name, annotation, and the line number.
3406   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3407                  *UnitGV = EmitAnnotationUnit(L),
3408                  *LineNoCst = EmitAnnotationLineNo(L),
3409                  *Args = EmitAnnotationArgs(AA);
3410 
3411   llvm::Constant *GVInGlobalsAS = GV;
3412   if (GV->getAddressSpace() !=
3413       getDataLayout().getDefaultGlobalsAddressSpace()) {
3414     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3415         GV,
3416         llvm::PointerType::get(
3417             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3418   }
3419 
3420   // Create the ConstantStruct for the global annotation.
3421   llvm::Constant *Fields[] = {
3422       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3423   };
3424   return llvm::ConstantStruct::getAnon(Fields);
3425 }
3426 
3427 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3428                                          llvm::GlobalValue *GV) {
3429   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3430   // Get the struct elements for these annotations.
3431   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3432     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3433 }
3434 
3435 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3436                                        SourceLocation Loc) const {
3437   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3438   // NoSanitize by function name.
3439   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3440     return true;
3441   // NoSanitize by location. Check "mainfile" prefix.
3442   auto &SM = Context.getSourceManager();
3443   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3444   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3445     return true;
3446 
3447   // Check "src" prefix.
3448   if (Loc.isValid())
3449     return NoSanitizeL.containsLocation(Kind, Loc);
3450   // If location is unknown, this may be a compiler-generated function. Assume
3451   // it's located in the main file.
3452   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3453 }
3454 
3455 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3456                                        llvm::GlobalVariable *GV,
3457                                        SourceLocation Loc, QualType Ty,
3458                                        StringRef Category) const {
3459   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3460   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3461     return true;
3462   auto &SM = Context.getSourceManager();
3463   if (NoSanitizeL.containsMainFile(
3464           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3465           Category))
3466     return true;
3467   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3468     return true;
3469 
3470   // Check global type.
3471   if (!Ty.isNull()) {
3472     // Drill down the array types: if global variable of a fixed type is
3473     // not sanitized, we also don't instrument arrays of them.
3474     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3475       Ty = AT->getElementType();
3476     Ty = Ty.getCanonicalType().getUnqualifiedType();
3477     // Only record types (classes, structs etc.) are ignored.
3478     if (Ty->isRecordType()) {
3479       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3480       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3481         return true;
3482     }
3483   }
3484   return false;
3485 }
3486 
3487 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3488                                    StringRef Category) const {
3489   const auto &XRayFilter = getContext().getXRayFilter();
3490   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3491   auto Attr = ImbueAttr::NONE;
3492   if (Loc.isValid())
3493     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3494   if (Attr == ImbueAttr::NONE)
3495     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3496   switch (Attr) {
3497   case ImbueAttr::NONE:
3498     return false;
3499   case ImbueAttr::ALWAYS:
3500     Fn->addFnAttr("function-instrument", "xray-always");
3501     break;
3502   case ImbueAttr::ALWAYS_ARG1:
3503     Fn->addFnAttr("function-instrument", "xray-always");
3504     Fn->addFnAttr("xray-log-args", "1");
3505     break;
3506   case ImbueAttr::NEVER:
3507     Fn->addFnAttr("function-instrument", "xray-never");
3508     break;
3509   }
3510   return true;
3511 }
3512 
3513 ProfileList::ExclusionType
3514 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3515                                               SourceLocation Loc) const {
3516   const auto &ProfileList = getContext().getProfileList();
3517   // If the profile list is empty, then instrument everything.
3518   if (ProfileList.isEmpty())
3519     return ProfileList::Allow;
3520   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3521   // First, check the function name.
3522   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3523     return *V;
3524   // Next, check the source location.
3525   if (Loc.isValid())
3526     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3527       return *V;
3528   // If location is unknown, this may be a compiler-generated function. Assume
3529   // it's located in the main file.
3530   auto &SM = Context.getSourceManager();
3531   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3532     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3533       return *V;
3534   return ProfileList.getDefault(Kind);
3535 }
3536 
3537 ProfileList::ExclusionType
3538 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3539                                                  SourceLocation Loc) const {
3540   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3541   if (V != ProfileList::Allow)
3542     return V;
3543 
3544   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3545   if (NumGroups > 1) {
3546     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3547     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3548       return ProfileList::Skip;
3549   }
3550   return ProfileList::Allow;
3551 }
3552 
3553 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3554   // Never defer when EmitAllDecls is specified.
3555   if (LangOpts.EmitAllDecls)
3556     return true;
3557 
3558   const auto *VD = dyn_cast<VarDecl>(Global);
3559   if (VD &&
3560       ((CodeGenOpts.KeepPersistentStorageVariables &&
3561         (VD->getStorageDuration() == SD_Static ||
3562          VD->getStorageDuration() == SD_Thread)) ||
3563        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3564         VD->getType().isConstQualified())))
3565     return true;
3566 
3567   return getContext().DeclMustBeEmitted(Global);
3568 }
3569 
3570 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3571   // In OpenMP 5.0 variables and function may be marked as
3572   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3573   // that they must be emitted on the host/device. To be sure we need to have
3574   // seen a declare target with an explicit mentioning of the function, we know
3575   // we have if the level of the declare target attribute is -1. Note that we
3576   // check somewhere else if we should emit this at all.
3577   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3578     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3579         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3580     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3581       return false;
3582   }
3583 
3584   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3585     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3586       // Implicit template instantiations may change linkage if they are later
3587       // explicitly instantiated, so they should not be emitted eagerly.
3588       return false;
3589     // Defer until all versions have been semantically checked.
3590     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3591       return false;
3592   }
3593   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3594     if (Context.getInlineVariableDefinitionKind(VD) ==
3595         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3596       // A definition of an inline constexpr static data member may change
3597       // linkage later if it's redeclared outside the class.
3598       return false;
3599     if (CXX20ModuleInits && VD->getOwningModule() &&
3600         !VD->getOwningModule()->isModuleMapModule()) {
3601       // For CXX20, module-owned initializers need to be deferred, since it is
3602       // not known at this point if they will be run for the current module or
3603       // as part of the initializer for an imported one.
3604       return false;
3605     }
3606   }
3607   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3608   // codegen for global variables, because they may be marked as threadprivate.
3609   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3610       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3611       !Global->getType().isConstantStorage(getContext(), false, false) &&
3612       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3613     return false;
3614 
3615   return true;
3616 }
3617 
3618 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3619   StringRef Name = getMangledName(GD);
3620 
3621   // The UUID descriptor should be pointer aligned.
3622   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3623 
3624   // Look for an existing global.
3625   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3626     return ConstantAddress(GV, GV->getValueType(), Alignment);
3627 
3628   ConstantEmitter Emitter(*this);
3629   llvm::Constant *Init;
3630 
3631   APValue &V = GD->getAsAPValue();
3632   if (!V.isAbsent()) {
3633     // If possible, emit the APValue version of the initializer. In particular,
3634     // this gets the type of the constant right.
3635     Init = Emitter.emitForInitializer(
3636         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3637   } else {
3638     // As a fallback, directly construct the constant.
3639     // FIXME: This may get padding wrong under esoteric struct layout rules.
3640     // MSVC appears to create a complete type 'struct __s_GUID' that it
3641     // presumably uses to represent these constants.
3642     MSGuidDecl::Parts Parts = GD->getParts();
3643     llvm::Constant *Fields[4] = {
3644         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3645         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3646         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3647         llvm::ConstantDataArray::getRaw(
3648             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3649             Int8Ty)};
3650     Init = llvm::ConstantStruct::getAnon(Fields);
3651   }
3652 
3653   auto *GV = new llvm::GlobalVariable(
3654       getModule(), Init->getType(),
3655       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3656   if (supportsCOMDAT())
3657     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3658   setDSOLocal(GV);
3659 
3660   if (!V.isAbsent()) {
3661     Emitter.finalize(GV);
3662     return ConstantAddress(GV, GV->getValueType(), Alignment);
3663   }
3664 
3665   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3666   return ConstantAddress(GV, Ty, Alignment);
3667 }
3668 
3669 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3670     const UnnamedGlobalConstantDecl *GCD) {
3671   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3672 
3673   llvm::GlobalVariable **Entry = nullptr;
3674   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3675   if (*Entry)
3676     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3677 
3678   ConstantEmitter Emitter(*this);
3679   llvm::Constant *Init;
3680 
3681   const APValue &V = GCD->getValue();
3682 
3683   assert(!V.isAbsent());
3684   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3685                                     GCD->getType());
3686 
3687   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3688                                       /*isConstant=*/true,
3689                                       llvm::GlobalValue::PrivateLinkage, Init,
3690                                       ".constant");
3691   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3692   GV->setAlignment(Alignment.getAsAlign());
3693 
3694   Emitter.finalize(GV);
3695 
3696   *Entry = GV;
3697   return ConstantAddress(GV, GV->getValueType(), Alignment);
3698 }
3699 
3700 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3701     const TemplateParamObjectDecl *TPO) {
3702   StringRef Name = getMangledName(TPO);
3703   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3704 
3705   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3706     return ConstantAddress(GV, GV->getValueType(), Alignment);
3707 
3708   ConstantEmitter Emitter(*this);
3709   llvm::Constant *Init = Emitter.emitForInitializer(
3710         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3711 
3712   if (!Init) {
3713     ErrorUnsupported(TPO, "template parameter object");
3714     return ConstantAddress::invalid();
3715   }
3716 
3717   llvm::GlobalValue::LinkageTypes Linkage =
3718       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3719           ? llvm::GlobalValue::LinkOnceODRLinkage
3720           : llvm::GlobalValue::InternalLinkage;
3721   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3722                                       /*isConstant=*/true, Linkage, Init, Name);
3723   setGVProperties(GV, TPO);
3724   if (supportsCOMDAT())
3725     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3726   Emitter.finalize(GV);
3727 
3728     return ConstantAddress(GV, GV->getValueType(), Alignment);
3729 }
3730 
3731 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3732   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3733   assert(AA && "No alias?");
3734 
3735   CharUnits Alignment = getContext().getDeclAlign(VD);
3736   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3737 
3738   // See if there is already something with the target's name in the module.
3739   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3740   if (Entry)
3741     return ConstantAddress(Entry, DeclTy, Alignment);
3742 
3743   llvm::Constant *Aliasee;
3744   if (isa<llvm::FunctionType>(DeclTy))
3745     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3746                                       GlobalDecl(cast<FunctionDecl>(VD)),
3747                                       /*ForVTable=*/false);
3748   else
3749     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3750                                     nullptr);
3751 
3752   auto *F = cast<llvm::GlobalValue>(Aliasee);
3753   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3754   WeakRefReferences.insert(F);
3755 
3756   return ConstantAddress(Aliasee, DeclTy, Alignment);
3757 }
3758 
3759 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3760   if (!D)
3761     return false;
3762   if (auto *A = D->getAttr<AttrT>())
3763     return A->isImplicit();
3764   return D->isImplicit();
3765 }
3766 
3767 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3768   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3769   // We need to emit host-side 'shadows' for all global
3770   // device-side variables because the CUDA runtime needs their
3771   // size and host-side address in order to provide access to
3772   // their device-side incarnations.
3773   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3774          Global->hasAttr<CUDAConstantAttr>() ||
3775          Global->hasAttr<CUDASharedAttr>() ||
3776          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3777          Global->getType()->isCUDADeviceBuiltinTextureType();
3778 }
3779 
3780 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3781   const auto *Global = cast<ValueDecl>(GD.getDecl());
3782 
3783   // Weak references don't produce any output by themselves.
3784   if (Global->hasAttr<WeakRefAttr>())
3785     return;
3786 
3787   // If this is an alias definition (which otherwise looks like a declaration)
3788   // emit it now.
3789   if (Global->hasAttr<AliasAttr>())
3790     return EmitAliasDefinition(GD);
3791 
3792   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3793   if (Global->hasAttr<IFuncAttr>())
3794     return emitIFuncDefinition(GD);
3795 
3796   // If this is a cpu_dispatch multiversion function, emit the resolver.
3797   if (Global->hasAttr<CPUDispatchAttr>())
3798     return emitCPUDispatchDefinition(GD);
3799 
3800   // If this is CUDA, be selective about which declarations we emit.
3801   // Non-constexpr non-lambda implicit host device functions are not emitted
3802   // unless they are used on device side.
3803   if (LangOpts.CUDA) {
3804     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3805            "Expected Variable or Function");
3806     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3807       if (!shouldEmitCUDAGlobalVar(VD))
3808         return;
3809     } else if (LangOpts.CUDAIsDevice) {
3810       const auto *FD = dyn_cast<FunctionDecl>(Global);
3811       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3812            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3813             hasImplicitAttr<CUDAHostAttr>(FD) &&
3814             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3815             !isLambdaCallOperator(FD) &&
3816             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3817           !Global->hasAttr<CUDAGlobalAttr>() &&
3818           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3819             !Global->hasAttr<CUDAHostAttr>()))
3820         return;
3821       // Device-only functions are the only things we skip.
3822     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3823                Global->hasAttr<CUDADeviceAttr>())
3824       return;
3825   }
3826 
3827   if (LangOpts.OpenMP) {
3828     // If this is OpenMP, check if it is legal to emit this global normally.
3829     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3830       return;
3831     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3832       if (MustBeEmitted(Global))
3833         EmitOMPDeclareReduction(DRD);
3834       return;
3835     }
3836     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3837       if (MustBeEmitted(Global))
3838         EmitOMPDeclareMapper(DMD);
3839       return;
3840     }
3841   }
3842 
3843   // Ignore declarations, they will be emitted on their first use.
3844   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3845     // Update deferred annotations with the latest declaration if the function
3846     // function was already used or defined.
3847     if (FD->hasAttr<AnnotateAttr>()) {
3848       StringRef MangledName = getMangledName(GD);
3849       if (GetGlobalValue(MangledName))
3850         DeferredAnnotations[MangledName] = FD;
3851     }
3852 
3853     // Forward declarations are emitted lazily on first use.
3854     if (!FD->doesThisDeclarationHaveABody()) {
3855       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3856           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3857         return;
3858 
3859       StringRef MangledName = getMangledName(GD);
3860 
3861       // Compute the function info and LLVM type.
3862       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3863       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3864 
3865       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3866                               /*DontDefer=*/false);
3867       return;
3868     }
3869   } else {
3870     const auto *VD = cast<VarDecl>(Global);
3871     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3872     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3873         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3874       if (LangOpts.OpenMP) {
3875         // Emit declaration of the must-be-emitted declare target variable.
3876         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3877                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3878 
3879           // If this variable has external storage and doesn't require special
3880           // link handling we defer to its canonical definition.
3881           if (VD->hasExternalStorage() &&
3882               Res != OMPDeclareTargetDeclAttr::MT_Link)
3883             return;
3884 
3885           bool UnifiedMemoryEnabled =
3886               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3887           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3888                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3889               !UnifiedMemoryEnabled) {
3890             (void)GetAddrOfGlobalVar(VD);
3891           } else {
3892             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3893                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3894                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3895                      UnifiedMemoryEnabled)) &&
3896                    "Link clause or to clause with unified memory expected.");
3897             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3898           }
3899 
3900           return;
3901         }
3902       }
3903       // If this declaration may have caused an inline variable definition to
3904       // change linkage, make sure that it's emitted.
3905       if (Context.getInlineVariableDefinitionKind(VD) ==
3906           ASTContext::InlineVariableDefinitionKind::Strong)
3907         GetAddrOfGlobalVar(VD);
3908       return;
3909     }
3910   }
3911 
3912   // Defer code generation to first use when possible, e.g. if this is an inline
3913   // function. If the global must always be emitted, do it eagerly if possible
3914   // to benefit from cache locality.
3915   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3916     // Emit the definition if it can't be deferred.
3917     EmitGlobalDefinition(GD);
3918     addEmittedDeferredDecl(GD);
3919     return;
3920   }
3921 
3922   // If we're deferring emission of a C++ variable with an
3923   // initializer, remember the order in which it appeared in the file.
3924   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3925       cast<VarDecl>(Global)->hasInit()) {
3926     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3927     CXXGlobalInits.push_back(nullptr);
3928   }
3929 
3930   StringRef MangledName = getMangledName(GD);
3931   if (GetGlobalValue(MangledName) != nullptr) {
3932     // The value has already been used and should therefore be emitted.
3933     addDeferredDeclToEmit(GD);
3934   } else if (MustBeEmitted(Global)) {
3935     // The value must be emitted, but cannot be emitted eagerly.
3936     assert(!MayBeEmittedEagerly(Global));
3937     addDeferredDeclToEmit(GD);
3938   } else {
3939     // Otherwise, remember that we saw a deferred decl with this name.  The
3940     // first use of the mangled name will cause it to move into
3941     // DeferredDeclsToEmit.
3942     DeferredDecls[MangledName] = GD;
3943   }
3944 }
3945 
3946 // Check if T is a class type with a destructor that's not dllimport.
3947 static bool HasNonDllImportDtor(QualType T) {
3948   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3949     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3950       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3951         return true;
3952 
3953   return false;
3954 }
3955 
3956 namespace {
3957   struct FunctionIsDirectlyRecursive
3958       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3959     const StringRef Name;
3960     const Builtin::Context &BI;
3961     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3962         : Name(N), BI(C) {}
3963 
3964     bool VisitCallExpr(const CallExpr *E) {
3965       const FunctionDecl *FD = E->getDirectCallee();
3966       if (!FD)
3967         return false;
3968       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3969       if (Attr && Name == Attr->getLabel())
3970         return true;
3971       unsigned BuiltinID = FD->getBuiltinID();
3972       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3973         return false;
3974       StringRef BuiltinName = BI.getName(BuiltinID);
3975       if (BuiltinName.starts_with("__builtin_") &&
3976           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3977         return true;
3978       }
3979       return false;
3980     }
3981 
3982     bool VisitStmt(const Stmt *S) {
3983       for (const Stmt *Child : S->children())
3984         if (Child && this->Visit(Child))
3985           return true;
3986       return false;
3987     }
3988   };
3989 
3990   // Make sure we're not referencing non-imported vars or functions.
3991   struct DLLImportFunctionVisitor
3992       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3993     bool SafeToInline = true;
3994 
3995     bool shouldVisitImplicitCode() const { return true; }
3996 
3997     bool VisitVarDecl(VarDecl *VD) {
3998       if (VD->getTLSKind()) {
3999         // A thread-local variable cannot be imported.
4000         SafeToInline = false;
4001         return SafeToInline;
4002       }
4003 
4004       // A variable definition might imply a destructor call.
4005       if (VD->isThisDeclarationADefinition())
4006         SafeToInline = !HasNonDllImportDtor(VD->getType());
4007 
4008       return SafeToInline;
4009     }
4010 
4011     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4012       if (const auto *D = E->getTemporary()->getDestructor())
4013         SafeToInline = D->hasAttr<DLLImportAttr>();
4014       return SafeToInline;
4015     }
4016 
4017     bool VisitDeclRefExpr(DeclRefExpr *E) {
4018       ValueDecl *VD = E->getDecl();
4019       if (isa<FunctionDecl>(VD))
4020         SafeToInline = VD->hasAttr<DLLImportAttr>();
4021       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4022         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4023       return SafeToInline;
4024     }
4025 
4026     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4027       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4028       return SafeToInline;
4029     }
4030 
4031     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4032       CXXMethodDecl *M = E->getMethodDecl();
4033       if (!M) {
4034         // Call through a pointer to member function. This is safe to inline.
4035         SafeToInline = true;
4036       } else {
4037         SafeToInline = M->hasAttr<DLLImportAttr>();
4038       }
4039       return SafeToInline;
4040     }
4041 
4042     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4043       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4044       return SafeToInline;
4045     }
4046 
4047     bool VisitCXXNewExpr(CXXNewExpr *E) {
4048       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4049       return SafeToInline;
4050     }
4051   };
4052 }
4053 
4054 // isTriviallyRecursive - Check if this function calls another
4055 // decl that, because of the asm attribute or the other decl being a builtin,
4056 // ends up pointing to itself.
4057 bool
4058 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4059   StringRef Name;
4060   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4061     // asm labels are a special kind of mangling we have to support.
4062     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4063     if (!Attr)
4064       return false;
4065     Name = Attr->getLabel();
4066   } else {
4067     Name = FD->getName();
4068   }
4069 
4070   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4071   const Stmt *Body = FD->getBody();
4072   return Body ? Walker.Visit(Body) : false;
4073 }
4074 
4075 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4076   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4077     return true;
4078 
4079   const auto *F = cast<FunctionDecl>(GD.getDecl());
4080   // Inline builtins declaration must be emitted. They often are fortified
4081   // functions.
4082   if (F->isInlineBuiltinDeclaration())
4083     return true;
4084 
4085   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4086     return false;
4087 
4088   // We don't import function bodies from other named module units since that
4089   // behavior may break ABI compatibility of the current unit.
4090   if (const Module *M = F->getOwningModule();
4091       M && M->getTopLevelModule()->isNamedModule() &&
4092       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4093     // There are practices to mark template member function as always-inline
4094     // and mark the template as extern explicit instantiation but not give
4095     // the definition for member function. So we have to emit the function
4096     // from explicitly instantiation with always-inline.
4097     //
4098     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4099     //
4100     // TODO: Maybe it is better to give it a warning if we call a non-inline
4101     // function from other module units which is marked as always-inline.
4102     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4103       return false;
4104     }
4105   }
4106 
4107   if (F->hasAttr<NoInlineAttr>())
4108     return false;
4109 
4110   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4111     // Check whether it would be safe to inline this dllimport function.
4112     DLLImportFunctionVisitor Visitor;
4113     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4114     if (!Visitor.SafeToInline)
4115       return false;
4116 
4117     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4118       // Implicit destructor invocations aren't captured in the AST, so the
4119       // check above can't see them. Check for them manually here.
4120       for (const Decl *Member : Dtor->getParent()->decls())
4121         if (isa<FieldDecl>(Member))
4122           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4123             return false;
4124       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4125         if (HasNonDllImportDtor(B.getType()))
4126           return false;
4127     }
4128   }
4129 
4130   // PR9614. Avoid cases where the source code is lying to us. An available
4131   // externally function should have an equivalent function somewhere else,
4132   // but a function that calls itself through asm label/`__builtin_` trickery is
4133   // clearly not equivalent to the real implementation.
4134   // This happens in glibc's btowc and in some configure checks.
4135   return !isTriviallyRecursive(F);
4136 }
4137 
4138 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4139   return CodeGenOpts.OptimizationLevel > 0;
4140 }
4141 
4142 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4143                                                        llvm::GlobalValue *GV) {
4144   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4145 
4146   if (FD->isCPUSpecificMultiVersion()) {
4147     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4148     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4149       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4150   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4151     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4152       // AArch64 favors the default target version over the clone if any.
4153       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4154           TC->isFirstOfVersion(I))
4155         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4156     // Ensure that the resolver function is also emitted.
4157     GetOrCreateMultiVersionResolver(GD);
4158   } else
4159     EmitGlobalFunctionDefinition(GD, GV);
4160 
4161   // Defer the resolver emission until we can reason whether the TU
4162   // contains a default target version implementation.
4163   if (FD->isTargetVersionMultiVersion())
4164     AddDeferredMultiVersionResolverToEmit(GD);
4165 }
4166 
4167 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4168   const auto *D = cast<ValueDecl>(GD.getDecl());
4169 
4170   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4171                                  Context.getSourceManager(),
4172                                  "Generating code for declaration");
4173 
4174   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4175     // At -O0, don't generate IR for functions with available_externally
4176     // linkage.
4177     if (!shouldEmitFunction(GD))
4178       return;
4179 
4180     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4181       std::string Name;
4182       llvm::raw_string_ostream OS(Name);
4183       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4184                                /*Qualified=*/true);
4185       return Name;
4186     });
4187 
4188     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4189       // Make sure to emit the definition(s) before we emit the thunks.
4190       // This is necessary for the generation of certain thunks.
4191       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4192         ABI->emitCXXStructor(GD);
4193       else if (FD->isMultiVersion())
4194         EmitMultiVersionFunctionDefinition(GD, GV);
4195       else
4196         EmitGlobalFunctionDefinition(GD, GV);
4197 
4198       if (Method->isVirtual())
4199         getVTables().EmitThunks(GD);
4200 
4201       return;
4202     }
4203 
4204     if (FD->isMultiVersion())
4205       return EmitMultiVersionFunctionDefinition(GD, GV);
4206     return EmitGlobalFunctionDefinition(GD, GV);
4207   }
4208 
4209   if (const auto *VD = dyn_cast<VarDecl>(D))
4210     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4211 
4212   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4213 }
4214 
4215 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4216                                                       llvm::Function *NewFn);
4217 
4218 static unsigned
4219 TargetMVPriority(const TargetInfo &TI,
4220                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4221   unsigned Priority = 0;
4222   unsigned NumFeatures = 0;
4223   for (StringRef Feat : RO.Conditions.Features) {
4224     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4225     NumFeatures++;
4226   }
4227 
4228   if (!RO.Conditions.Architecture.empty())
4229     Priority = std::max(
4230         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4231 
4232   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4233 
4234   return Priority;
4235 }
4236 
4237 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4238 // TU can forward declare the function without causing problems.  Particularly
4239 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4240 // work with internal linkage functions, so that the same function name can be
4241 // used with internal linkage in multiple TUs.
4242 static llvm::GlobalValue::LinkageTypes
4243 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4244   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4245   if (FD->getFormalLinkage() == Linkage::Internal)
4246     return llvm::GlobalValue::InternalLinkage;
4247   return llvm::GlobalValue::WeakODRLinkage;
4248 }
4249 
4250 void CodeGenModule::emitMultiVersionFunctions() {
4251   std::vector<GlobalDecl> MVFuncsToEmit;
4252   MultiVersionFuncs.swap(MVFuncsToEmit);
4253   for (GlobalDecl GD : MVFuncsToEmit) {
4254     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4255     assert(FD && "Expected a FunctionDecl");
4256 
4257     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4258       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4259       StringRef MangledName = getMangledName(CurGD);
4260       llvm::Constant *Func = GetGlobalValue(MangledName);
4261       if (!Func) {
4262         if (Decl->isDefined()) {
4263           EmitGlobalFunctionDefinition(CurGD, nullptr);
4264           Func = GetGlobalValue(MangledName);
4265         } else {
4266           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4267           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4268           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4269                                    /*DontDefer=*/false, ForDefinition);
4270         }
4271         assert(Func && "This should have just been created");
4272       }
4273       return cast<llvm::Function>(Func);
4274     };
4275 
4276     // For AArch64, a resolver is only emitted if a function marked with
4277     // target_version("default")) or target_clones() is present and defined
4278     // in this TU. For other architectures it is always emitted.
4279     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4280     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4281 
4282     getContext().forEachMultiversionedFunctionVersion(
4283         FD, [&](const FunctionDecl *CurFD) {
4284           llvm::SmallVector<StringRef, 8> Feats;
4285           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4286 
4287           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4288             TA->getAddedFeatures(Feats);
4289             llvm::Function *Func = createFunction(CurFD);
4290             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4291           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4292             if (TVA->isDefaultVersion() && IsDefined)
4293               ShouldEmitResolver = true;
4294             llvm::Function *Func = createFunction(CurFD);
4295             if (getTarget().getTriple().isRISCV()) {
4296               Feats.push_back(TVA->getName());
4297             } else {
4298               assert(getTarget().getTriple().isAArch64());
4299               TVA->getFeatures(Feats);
4300             }
4301             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4302           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4303             if (IsDefined)
4304               ShouldEmitResolver = true;
4305             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4306               if (!TC->isFirstOfVersion(I))
4307                 continue;
4308 
4309               llvm::Function *Func = createFunction(CurFD, I);
4310               StringRef Architecture;
4311               Feats.clear();
4312               if (getTarget().getTriple().isAArch64())
4313                 TC->getFeatures(Feats, I);
4314               else if (getTarget().getTriple().isRISCV()) {
4315                 StringRef Version = TC->getFeatureStr(I);
4316                 Feats.push_back(Version);
4317               } else {
4318                 StringRef Version = TC->getFeatureStr(I);
4319                 if (Version.starts_with("arch="))
4320                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4321                 else if (Version != "default")
4322                   Feats.push_back(Version);
4323               }
4324               Options.emplace_back(Func, Architecture, Feats);
4325             }
4326           } else
4327             llvm_unreachable("unexpected MultiVersionKind");
4328         });
4329 
4330     if (!ShouldEmitResolver)
4331       continue;
4332 
4333     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4334     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4335       ResolverConstant = IFunc->getResolver();
4336       if (FD->isTargetClonesMultiVersion() &&
4337           !getTarget().getTriple().isAArch64()) {
4338         std::string MangledName = getMangledNameImpl(
4339             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4340         if (!GetGlobalValue(MangledName + ".ifunc")) {
4341           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4342           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4343           // In prior versions of Clang, the mangling for ifuncs incorrectly
4344           // included an .ifunc suffix. This alias is generated for backward
4345           // compatibility. It is deprecated, and may be removed in the future.
4346           auto *Alias = llvm::GlobalAlias::create(
4347               DeclTy, 0, getMultiversionLinkage(*this, GD),
4348               MangledName + ".ifunc", IFunc, &getModule());
4349           SetCommonAttributes(FD, Alias);
4350         }
4351       }
4352     }
4353     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4354 
4355     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4356 
4357     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4358       ResolverFunc->setComdat(
4359           getModule().getOrInsertComdat(ResolverFunc->getName()));
4360 
4361     const TargetInfo &TI = getTarget();
4362     llvm::stable_sort(
4363         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4364                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4365           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4366         });
4367     CodeGenFunction CGF(*this);
4368     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4369   }
4370 
4371   // Ensure that any additions to the deferred decls list caused by emitting a
4372   // variant are emitted.  This can happen when the variant itself is inline and
4373   // calls a function without linkage.
4374   if (!MVFuncsToEmit.empty())
4375     EmitDeferred();
4376 
4377   // Ensure that any additions to the multiversion funcs list from either the
4378   // deferred decls or the multiversion functions themselves are emitted.
4379   if (!MultiVersionFuncs.empty())
4380     emitMultiVersionFunctions();
4381 }
4382 
4383 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4384                                    llvm::Constant *New) {
4385   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4386   New->takeName(Old);
4387   Old->replaceAllUsesWith(New);
4388   Old->eraseFromParent();
4389 }
4390 
4391 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4392   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4393   assert(FD && "Not a FunctionDecl?");
4394   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4395   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4396   assert(DD && "Not a cpu_dispatch Function?");
4397 
4398   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4399   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4400 
4401   StringRef ResolverName = getMangledName(GD);
4402   UpdateMultiVersionNames(GD, FD, ResolverName);
4403 
4404   llvm::Type *ResolverType;
4405   GlobalDecl ResolverGD;
4406   if (getTarget().supportsIFunc()) {
4407     ResolverType = llvm::FunctionType::get(
4408         llvm::PointerType::get(DeclTy,
4409                                getTypes().getTargetAddressSpace(FD->getType())),
4410         false);
4411   }
4412   else {
4413     ResolverType = DeclTy;
4414     ResolverGD = GD;
4415   }
4416 
4417   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4418       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4419   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4420   if (supportsCOMDAT())
4421     ResolverFunc->setComdat(
4422         getModule().getOrInsertComdat(ResolverFunc->getName()));
4423 
4424   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4425   const TargetInfo &Target = getTarget();
4426   unsigned Index = 0;
4427   for (const IdentifierInfo *II : DD->cpus()) {
4428     // Get the name of the target function so we can look it up/create it.
4429     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4430                               getCPUSpecificMangling(*this, II->getName());
4431 
4432     llvm::Constant *Func = GetGlobalValue(MangledName);
4433 
4434     if (!Func) {
4435       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4436       if (ExistingDecl.getDecl() &&
4437           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4438         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4439         Func = GetGlobalValue(MangledName);
4440       } else {
4441         if (!ExistingDecl.getDecl())
4442           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4443 
4444       Func = GetOrCreateLLVMFunction(
4445           MangledName, DeclTy, ExistingDecl,
4446           /*ForVTable=*/false, /*DontDefer=*/true,
4447           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4448       }
4449     }
4450 
4451     llvm::SmallVector<StringRef, 32> Features;
4452     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4453     llvm::transform(Features, Features.begin(),
4454                     [](StringRef Str) { return Str.substr(1); });
4455     llvm::erase_if(Features, [&Target](StringRef Feat) {
4456       return !Target.validateCpuSupports(Feat);
4457     });
4458     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4459     ++Index;
4460   }
4461 
4462   llvm::stable_sort(
4463       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4464                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4465         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4466                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4467       });
4468 
4469   // If the list contains multiple 'default' versions, such as when it contains
4470   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4471   // always run on at least a 'pentium'). We do this by deleting the 'least
4472   // advanced' (read, lowest mangling letter).
4473   while (Options.size() > 1 &&
4474          llvm::all_of(llvm::X86::getCpuSupportsMask(
4475                           (Options.end() - 2)->Conditions.Features),
4476                       [](auto X) { return X == 0; })) {
4477     StringRef LHSName = (Options.end() - 2)->Function->getName();
4478     StringRef RHSName = (Options.end() - 1)->Function->getName();
4479     if (LHSName.compare(RHSName) < 0)
4480       Options.erase(Options.end() - 2);
4481     else
4482       Options.erase(Options.end() - 1);
4483   }
4484 
4485   CodeGenFunction CGF(*this);
4486   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4487 
4488   if (getTarget().supportsIFunc()) {
4489     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4490     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4491     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4492 
4493     // Fix up function declarations that were created for cpu_specific before
4494     // cpu_dispatch was known
4495     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4496       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4497                                            ResolverFunc, &getModule());
4498       replaceDeclarationWith(IFunc, GI);
4499       IFunc = GI;
4500     }
4501 
4502     std::string AliasName = getMangledNameImpl(
4503         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4504     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4505     if (!AliasFunc) {
4506       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4507                                            IFunc, &getModule());
4508       SetCommonAttributes(GD, GA);
4509     }
4510   }
4511 }
4512 
4513 /// Adds a declaration to the list of multi version functions if not present.
4514 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4515   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4516   assert(FD && "Not a FunctionDecl?");
4517 
4518   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4519     std::string MangledName =
4520         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4521     if (!DeferredResolversToEmit.insert(MangledName).second)
4522       return;
4523   }
4524   MultiVersionFuncs.push_back(GD);
4525 }
4526 
4527 /// If a dispatcher for the specified mangled name is not in the module, create
4528 /// and return it. The dispatcher is either an llvm Function with the specified
4529 /// type, or a global ifunc.
4530 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4531   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4532   assert(FD && "Not a FunctionDecl?");
4533 
4534   std::string MangledName =
4535       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4536 
4537   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4538   // a separate resolver).
4539   std::string ResolverName = MangledName;
4540   if (getTarget().supportsIFunc()) {
4541     switch (FD->getMultiVersionKind()) {
4542     case MultiVersionKind::None:
4543       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4544     case MultiVersionKind::Target:
4545     case MultiVersionKind::CPUSpecific:
4546     case MultiVersionKind::CPUDispatch:
4547       ResolverName += ".ifunc";
4548       break;
4549     case MultiVersionKind::TargetClones:
4550     case MultiVersionKind::TargetVersion:
4551       break;
4552     }
4553   } else if (FD->isTargetMultiVersion()) {
4554     ResolverName += ".resolver";
4555   }
4556 
4557   // If the resolver has already been created, just return it. This lookup may
4558   // yield a function declaration instead of a resolver on AArch64. That is
4559   // because we didn't know whether a resolver will be generated when we first
4560   // encountered a use of the symbol named after this resolver. Therefore,
4561   // targets which support ifuncs should not return here unless we actually
4562   // found an ifunc.
4563   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4564   if (ResolverGV &&
4565       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4566     return ResolverGV;
4567 
4568   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4569   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4570 
4571   // The resolver needs to be created. For target and target_clones, defer
4572   // creation until the end of the TU.
4573   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4574     AddDeferredMultiVersionResolverToEmit(GD);
4575 
4576   // For cpu_specific, don't create an ifunc yet because we don't know if the
4577   // cpu_dispatch will be emitted in this translation unit.
4578   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4579     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4580     llvm::Type *ResolverType =
4581         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4582     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4583         MangledName + ".resolver", ResolverType, GlobalDecl{},
4584         /*ForVTable=*/false);
4585     llvm::GlobalIFunc *GIF =
4586         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4587                                   "", Resolver, &getModule());
4588     GIF->setName(ResolverName);
4589     SetCommonAttributes(FD, GIF);
4590     if (ResolverGV)
4591       replaceDeclarationWith(ResolverGV, GIF);
4592     return GIF;
4593   }
4594 
4595   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4596       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4597   assert(isa<llvm::GlobalValue>(Resolver) &&
4598          "Resolver should be created for the first time");
4599   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4600   if (ResolverGV)
4601     replaceDeclarationWith(ResolverGV, Resolver);
4602   return Resolver;
4603 }
4604 
4605 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4606                                            const llvm::GlobalValue *GV) const {
4607   auto SC = GV->getDLLStorageClass();
4608   if (SC == llvm::GlobalValue::DefaultStorageClass)
4609     return false;
4610   const Decl *MRD = D->getMostRecentDecl();
4611   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4612             !MRD->hasAttr<DLLImportAttr>()) ||
4613            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4614             !MRD->hasAttr<DLLExportAttr>())) &&
4615           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4616 }
4617 
4618 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4619 /// module, create and return an llvm Function with the specified type. If there
4620 /// is something in the module with the specified name, return it potentially
4621 /// bitcasted to the right type.
4622 ///
4623 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4624 /// to set the attributes on the function when it is first created.
4625 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4626     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4627     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4628     ForDefinition_t IsForDefinition) {
4629   const Decl *D = GD.getDecl();
4630 
4631   std::string NameWithoutMultiVersionMangling;
4632   // Any attempts to use a MultiVersion function should result in retrieving
4633   // the iFunc instead. Name Mangling will handle the rest of the changes.
4634   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4635     // For the device mark the function as one that should be emitted.
4636     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4637         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4638         !DontDefer && !IsForDefinition) {
4639       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4640         GlobalDecl GDDef;
4641         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4642           GDDef = GlobalDecl(CD, GD.getCtorType());
4643         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4644           GDDef = GlobalDecl(DD, GD.getDtorType());
4645         else
4646           GDDef = GlobalDecl(FDDef);
4647         EmitGlobal(GDDef);
4648       }
4649     }
4650 
4651     if (FD->isMultiVersion()) {
4652       UpdateMultiVersionNames(GD, FD, MangledName);
4653       if (!IsForDefinition) {
4654         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4655         // function is used. Instead we defer the emission until we see a
4656         // default definition. In the meantime we just reference the symbol
4657         // without FMV mangling (it may or may not be replaced later).
4658         if (getTarget().getTriple().isAArch64()) {
4659           AddDeferredMultiVersionResolverToEmit(GD);
4660           NameWithoutMultiVersionMangling = getMangledNameImpl(
4661               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4662         } else
4663           return GetOrCreateMultiVersionResolver(GD);
4664       }
4665     }
4666   }
4667 
4668   if (!NameWithoutMultiVersionMangling.empty())
4669     MangledName = NameWithoutMultiVersionMangling;
4670 
4671   // Lookup the entry, lazily creating it if necessary.
4672   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4673   if (Entry) {
4674     if (WeakRefReferences.erase(Entry)) {
4675       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4676       if (FD && !FD->hasAttr<WeakAttr>())
4677         Entry->setLinkage(llvm::Function::ExternalLinkage);
4678     }
4679 
4680     // Handle dropped DLL attributes.
4681     if (D && shouldDropDLLAttribute(D, Entry)) {
4682       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4683       setDSOLocal(Entry);
4684     }
4685 
4686     // If there are two attempts to define the same mangled name, issue an
4687     // error.
4688     if (IsForDefinition && !Entry->isDeclaration()) {
4689       GlobalDecl OtherGD;
4690       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4691       // to make sure that we issue an error only once.
4692       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4693           (GD.getCanonicalDecl().getDecl() !=
4694            OtherGD.getCanonicalDecl().getDecl()) &&
4695           DiagnosedConflictingDefinitions.insert(GD).second) {
4696         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4697             << MangledName;
4698         getDiags().Report(OtherGD.getDecl()->getLocation(),
4699                           diag::note_previous_definition);
4700       }
4701     }
4702 
4703     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4704         (Entry->getValueType() == Ty)) {
4705       return Entry;
4706     }
4707 
4708     // Make sure the result is of the correct type.
4709     // (If function is requested for a definition, we always need to create a new
4710     // function, not just return a bitcast.)
4711     if (!IsForDefinition)
4712       return Entry;
4713   }
4714 
4715   // This function doesn't have a complete type (for example, the return
4716   // type is an incomplete struct). Use a fake type instead, and make
4717   // sure not to try to set attributes.
4718   bool IsIncompleteFunction = false;
4719 
4720   llvm::FunctionType *FTy;
4721   if (isa<llvm::FunctionType>(Ty)) {
4722     FTy = cast<llvm::FunctionType>(Ty);
4723   } else {
4724     FTy = llvm::FunctionType::get(VoidTy, false);
4725     IsIncompleteFunction = true;
4726   }
4727 
4728   llvm::Function *F =
4729       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4730                              Entry ? StringRef() : MangledName, &getModule());
4731 
4732   // Store the declaration associated with this function so it is potentially
4733   // updated by further declarations or definitions and emitted at the end.
4734   if (D && D->hasAttr<AnnotateAttr>())
4735     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4736 
4737   // If we already created a function with the same mangled name (but different
4738   // type) before, take its name and add it to the list of functions to be
4739   // replaced with F at the end of CodeGen.
4740   //
4741   // This happens if there is a prototype for a function (e.g. "int f()") and
4742   // then a definition of a different type (e.g. "int f(int x)").
4743   if (Entry) {
4744     F->takeName(Entry);
4745 
4746     // This might be an implementation of a function without a prototype, in
4747     // which case, try to do special replacement of calls which match the new
4748     // prototype.  The really key thing here is that we also potentially drop
4749     // arguments from the call site so as to make a direct call, which makes the
4750     // inliner happier and suppresses a number of optimizer warnings (!) about
4751     // dropping arguments.
4752     if (!Entry->use_empty()) {
4753       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4754       Entry->removeDeadConstantUsers();
4755     }
4756 
4757     addGlobalValReplacement(Entry, F);
4758   }
4759 
4760   assert(F->getName() == MangledName && "name was uniqued!");
4761   if (D)
4762     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4763   if (ExtraAttrs.hasFnAttrs()) {
4764     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4765     F->addFnAttrs(B);
4766   }
4767 
4768   if (!DontDefer) {
4769     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4770     // each other bottoming out with the base dtor.  Therefore we emit non-base
4771     // dtors on usage, even if there is no dtor definition in the TU.
4772     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4773         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4774                                            GD.getDtorType()))
4775       addDeferredDeclToEmit(GD);
4776 
4777     // This is the first use or definition of a mangled name.  If there is a
4778     // deferred decl with this name, remember that we need to emit it at the end
4779     // of the file.
4780     auto DDI = DeferredDecls.find(MangledName);
4781     if (DDI != DeferredDecls.end()) {
4782       // Move the potentially referenced deferred decl to the
4783       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4784       // don't need it anymore).
4785       addDeferredDeclToEmit(DDI->second);
4786       DeferredDecls.erase(DDI);
4787 
4788       // Otherwise, there are cases we have to worry about where we're
4789       // using a declaration for which we must emit a definition but where
4790       // we might not find a top-level definition:
4791       //   - member functions defined inline in their classes
4792       //   - friend functions defined inline in some class
4793       //   - special member functions with implicit definitions
4794       // If we ever change our AST traversal to walk into class methods,
4795       // this will be unnecessary.
4796       //
4797       // We also don't emit a definition for a function if it's going to be an
4798       // entry in a vtable, unless it's already marked as used.
4799     } else if (getLangOpts().CPlusPlus && D) {
4800       // Look for a declaration that's lexically in a record.
4801       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4802            FD = FD->getPreviousDecl()) {
4803         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4804           if (FD->doesThisDeclarationHaveABody()) {
4805             addDeferredDeclToEmit(GD.getWithDecl(FD));
4806             break;
4807           }
4808         }
4809       }
4810     }
4811   }
4812 
4813   // Make sure the result is of the requested type.
4814   if (!IsIncompleteFunction) {
4815     assert(F->getFunctionType() == Ty);
4816     return F;
4817   }
4818 
4819   return F;
4820 }
4821 
4822 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4823 /// non-null, then this function will use the specified type if it has to
4824 /// create it (this occurs when we see a definition of the function).
4825 llvm::Constant *
4826 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4827                                  bool DontDefer,
4828                                  ForDefinition_t IsForDefinition) {
4829   // If there was no specific requested type, just convert it now.
4830   if (!Ty) {
4831     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4832     Ty = getTypes().ConvertType(FD->getType());
4833   }
4834 
4835   // Devirtualized destructor calls may come through here instead of via
4836   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4837   // of the complete destructor when necessary.
4838   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4839     if (getTarget().getCXXABI().isMicrosoft() &&
4840         GD.getDtorType() == Dtor_Complete &&
4841         DD->getParent()->getNumVBases() == 0)
4842       GD = GlobalDecl(DD, Dtor_Base);
4843   }
4844 
4845   StringRef MangledName = getMangledName(GD);
4846   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4847                                     /*IsThunk=*/false, llvm::AttributeList(),
4848                                     IsForDefinition);
4849   // Returns kernel handle for HIP kernel stub function.
4850   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4851       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4852     auto *Handle = getCUDARuntime().getKernelHandle(
4853         cast<llvm::Function>(F->stripPointerCasts()), GD);
4854     if (IsForDefinition)
4855       return F;
4856     return Handle;
4857   }
4858   return F;
4859 }
4860 
4861 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4862   llvm::GlobalValue *F =
4863       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4864 
4865   return llvm::NoCFIValue::get(F);
4866 }
4867 
4868 static const FunctionDecl *
4869 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4870   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4871   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4872 
4873   IdentifierInfo &CII = C.Idents.get(Name);
4874   for (const auto *Result : DC->lookup(&CII))
4875     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4876       return FD;
4877 
4878   if (!C.getLangOpts().CPlusPlus)
4879     return nullptr;
4880 
4881   // Demangle the premangled name from getTerminateFn()
4882   IdentifierInfo &CXXII =
4883       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4884           ? C.Idents.get("terminate")
4885           : C.Idents.get(Name);
4886 
4887   for (const auto &N : {"__cxxabiv1", "std"}) {
4888     IdentifierInfo &NS = C.Idents.get(N);
4889     for (const auto *Result : DC->lookup(&NS)) {
4890       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4891       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4892         for (const auto *Result : LSD->lookup(&NS))
4893           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4894             break;
4895 
4896       if (ND)
4897         for (const auto *Result : ND->lookup(&CXXII))
4898           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4899             return FD;
4900     }
4901   }
4902 
4903   return nullptr;
4904 }
4905 
4906 /// CreateRuntimeFunction - Create a new runtime function with the specified
4907 /// type and name.
4908 llvm::FunctionCallee
4909 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4910                                      llvm::AttributeList ExtraAttrs, bool Local,
4911                                      bool AssumeConvergent) {
4912   if (AssumeConvergent) {
4913     ExtraAttrs =
4914         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4915   }
4916 
4917   llvm::Constant *C =
4918       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4919                               /*DontDefer=*/false, /*IsThunk=*/false,
4920                               ExtraAttrs);
4921 
4922   if (auto *F = dyn_cast<llvm::Function>(C)) {
4923     if (F->empty()) {
4924       F->setCallingConv(getRuntimeCC());
4925 
4926       // In Windows Itanium environments, try to mark runtime functions
4927       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4928       // will link their standard library statically or dynamically. Marking
4929       // functions imported when they are not imported can cause linker errors
4930       // and warnings.
4931       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4932           !getCodeGenOpts().LTOVisibilityPublicStd) {
4933         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4934         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4935           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4936           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4937         }
4938       }
4939       setDSOLocal(F);
4940       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4941       // of trying to approximate the attributes using the LLVM function
4942       // signature. This requires revising the API of CreateRuntimeFunction().
4943       markRegisterParameterAttributes(F);
4944     }
4945   }
4946 
4947   return {FTy, C};
4948 }
4949 
4950 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4951 /// create and return an llvm GlobalVariable with the specified type and address
4952 /// space. If there is something in the module with the specified name, return
4953 /// it potentially bitcasted to the right type.
4954 ///
4955 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4956 /// to set the attributes on the global when it is first created.
4957 ///
4958 /// If IsForDefinition is true, it is guaranteed that an actual global with
4959 /// type Ty will be returned, not conversion of a variable with the same
4960 /// mangled name but some other type.
4961 llvm::Constant *
4962 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4963                                      LangAS AddrSpace, const VarDecl *D,
4964                                      ForDefinition_t IsForDefinition) {
4965   // Lookup the entry, lazily creating it if necessary.
4966   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4967   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4968   if (Entry) {
4969     if (WeakRefReferences.erase(Entry)) {
4970       if (D && !D->hasAttr<WeakAttr>())
4971         Entry->setLinkage(llvm::Function::ExternalLinkage);
4972     }
4973 
4974     // Handle dropped DLL attributes.
4975     if (D && shouldDropDLLAttribute(D, Entry))
4976       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4977 
4978     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4979       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4980 
4981     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4982       return Entry;
4983 
4984     // If there are two attempts to define the same mangled name, issue an
4985     // error.
4986     if (IsForDefinition && !Entry->isDeclaration()) {
4987       GlobalDecl OtherGD;
4988       const VarDecl *OtherD;
4989 
4990       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4991       // to make sure that we issue an error only once.
4992       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4993           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4994           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4995           OtherD->hasInit() &&
4996           DiagnosedConflictingDefinitions.insert(D).second) {
4997         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4998             << MangledName;
4999         getDiags().Report(OtherGD.getDecl()->getLocation(),
5000                           diag::note_previous_definition);
5001       }
5002     }
5003 
5004     // Make sure the result is of the correct type.
5005     if (Entry->getType()->getAddressSpace() != TargetAS)
5006       return llvm::ConstantExpr::getAddrSpaceCast(
5007           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5008 
5009     // (If global is requested for a definition, we always need to create a new
5010     // global, not just return a bitcast.)
5011     if (!IsForDefinition)
5012       return Entry;
5013   }
5014 
5015   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5016 
5017   auto *GV = new llvm::GlobalVariable(
5018       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5019       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5020       getContext().getTargetAddressSpace(DAddrSpace));
5021 
5022   // If we already created a global with the same mangled name (but different
5023   // type) before, take its name and remove it from its parent.
5024   if (Entry) {
5025     GV->takeName(Entry);
5026 
5027     if (!Entry->use_empty()) {
5028       Entry->replaceAllUsesWith(GV);
5029     }
5030 
5031     Entry->eraseFromParent();
5032   }
5033 
5034   // This is the first use or definition of a mangled name.  If there is a
5035   // deferred decl with this name, remember that we need to emit it at the end
5036   // of the file.
5037   auto DDI = DeferredDecls.find(MangledName);
5038   if (DDI != DeferredDecls.end()) {
5039     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5040     // list, and remove it from DeferredDecls (since we don't need it anymore).
5041     addDeferredDeclToEmit(DDI->second);
5042     DeferredDecls.erase(DDI);
5043   }
5044 
5045   // Handle things which are present even on external declarations.
5046   if (D) {
5047     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5048       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5049 
5050     // FIXME: This code is overly simple and should be merged with other global
5051     // handling.
5052     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5053 
5054     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5055 
5056     setLinkageForGV(GV, D);
5057 
5058     if (D->getTLSKind()) {
5059       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5060         CXXThreadLocals.push_back(D);
5061       setTLSMode(GV, *D);
5062     }
5063 
5064     setGVProperties(GV, D);
5065 
5066     // If required by the ABI, treat declarations of static data members with
5067     // inline initializers as definitions.
5068     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5069       EmitGlobalVarDefinition(D);
5070     }
5071 
5072     // Emit section information for extern variables.
5073     if (D->hasExternalStorage()) {
5074       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5075         GV->setSection(SA->getName());
5076     }
5077 
5078     // Handle XCore specific ABI requirements.
5079     if (getTriple().getArch() == llvm::Triple::xcore &&
5080         D->getLanguageLinkage() == CLanguageLinkage &&
5081         D->getType().isConstant(Context) &&
5082         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5083       GV->setSection(".cp.rodata");
5084 
5085     // Handle code model attribute
5086     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5087       GV->setCodeModel(CMA->getModel());
5088 
5089     // Check if we a have a const declaration with an initializer, we may be
5090     // able to emit it as available_externally to expose it's value to the
5091     // optimizer.
5092     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5093         D->getType().isConstQualified() && !GV->hasInitializer() &&
5094         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5095       const auto *Record =
5096           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5097       bool HasMutableFields = Record && Record->hasMutableFields();
5098       if (!HasMutableFields) {
5099         const VarDecl *InitDecl;
5100         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5101         if (InitExpr) {
5102           ConstantEmitter emitter(*this);
5103           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5104           if (Init) {
5105             auto *InitType = Init->getType();
5106             if (GV->getValueType() != InitType) {
5107               // The type of the initializer does not match the definition.
5108               // This happens when an initializer has a different type from
5109               // the type of the global (because of padding at the end of a
5110               // structure for instance).
5111               GV->setName(StringRef());
5112               // Make a new global with the correct type, this is now guaranteed
5113               // to work.
5114               auto *NewGV = cast<llvm::GlobalVariable>(
5115                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5116                       ->stripPointerCasts());
5117 
5118               // Erase the old global, since it is no longer used.
5119               GV->eraseFromParent();
5120               GV = NewGV;
5121             } else {
5122               GV->setInitializer(Init);
5123               GV->setConstant(true);
5124               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5125             }
5126             emitter.finalize(GV);
5127           }
5128         }
5129       }
5130     }
5131   }
5132 
5133   if (D &&
5134       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5135     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5136     // External HIP managed variables needed to be recorded for transformation
5137     // in both device and host compilations.
5138     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5139         D->hasExternalStorage())
5140       getCUDARuntime().handleVarRegistration(D, *GV);
5141   }
5142 
5143   if (D)
5144     SanitizerMD->reportGlobal(GV, *D);
5145 
5146   LangAS ExpectedAS =
5147       D ? D->getType().getAddressSpace()
5148         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5149   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5150   if (DAddrSpace != ExpectedAS) {
5151     return getTargetCodeGenInfo().performAddrSpaceCast(
5152         *this, GV, DAddrSpace, ExpectedAS,
5153         llvm::PointerType::get(getLLVMContext(), TargetAS));
5154   }
5155 
5156   return GV;
5157 }
5158 
5159 llvm::Constant *
5160 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5161   const Decl *D = GD.getDecl();
5162 
5163   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5164     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5165                                 /*DontDefer=*/false, IsForDefinition);
5166 
5167   if (isa<CXXMethodDecl>(D)) {
5168     auto FInfo =
5169         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5170     auto Ty = getTypes().GetFunctionType(*FInfo);
5171     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5172                              IsForDefinition);
5173   }
5174 
5175   if (isa<FunctionDecl>(D)) {
5176     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5177     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5178     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5179                              IsForDefinition);
5180   }
5181 
5182   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5183 }
5184 
5185 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5186     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5187     llvm::Align Alignment) {
5188   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5189   llvm::GlobalVariable *OldGV = nullptr;
5190 
5191   if (GV) {
5192     // Check if the variable has the right type.
5193     if (GV->getValueType() == Ty)
5194       return GV;
5195 
5196     // Because C++ name mangling, the only way we can end up with an already
5197     // existing global with the same name is if it has been declared extern "C".
5198     assert(GV->isDeclaration() && "Declaration has wrong type!");
5199     OldGV = GV;
5200   }
5201 
5202   // Create a new variable.
5203   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5204                                 Linkage, nullptr, Name);
5205 
5206   if (OldGV) {
5207     // Replace occurrences of the old variable if needed.
5208     GV->takeName(OldGV);
5209 
5210     if (!OldGV->use_empty()) {
5211       OldGV->replaceAllUsesWith(GV);
5212     }
5213 
5214     OldGV->eraseFromParent();
5215   }
5216 
5217   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5218       !GV->hasAvailableExternallyLinkage())
5219     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5220 
5221   GV->setAlignment(Alignment);
5222 
5223   return GV;
5224 }
5225 
5226 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5227 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5228 /// then it will be created with the specified type instead of whatever the
5229 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5230 /// that an actual global with type Ty will be returned, not conversion of a
5231 /// variable with the same mangled name but some other type.
5232 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5233                                                   llvm::Type *Ty,
5234                                            ForDefinition_t IsForDefinition) {
5235   assert(D->hasGlobalStorage() && "Not a global variable");
5236   QualType ASTTy = D->getType();
5237   if (!Ty)
5238     Ty = getTypes().ConvertTypeForMem(ASTTy);
5239 
5240   StringRef MangledName = getMangledName(D);
5241   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5242                                IsForDefinition);
5243 }
5244 
5245 /// CreateRuntimeVariable - Create a new runtime global variable with the
5246 /// specified type and name.
5247 llvm::Constant *
5248 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5249                                      StringRef Name) {
5250   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5251                                                        : LangAS::Default;
5252   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5253   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5254   return Ret;
5255 }
5256 
5257 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5258   assert(!D->getInit() && "Cannot emit definite definitions here!");
5259 
5260   StringRef MangledName = getMangledName(D);
5261   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5262 
5263   // We already have a definition, not declaration, with the same mangled name.
5264   // Emitting of declaration is not required (and actually overwrites emitted
5265   // definition).
5266   if (GV && !GV->isDeclaration())
5267     return;
5268 
5269   // If we have not seen a reference to this variable yet, place it into the
5270   // deferred declarations table to be emitted if needed later.
5271   if (!MustBeEmitted(D) && !GV) {
5272       DeferredDecls[MangledName] = D;
5273       return;
5274   }
5275 
5276   // The tentative definition is the only definition.
5277   EmitGlobalVarDefinition(D);
5278 }
5279 
5280 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5281   if (auto const *V = dyn_cast<const VarDecl>(D))
5282     EmitExternalVarDeclaration(V);
5283   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5284     EmitExternalFunctionDeclaration(FD);
5285 }
5286 
5287 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5288   return Context.toCharUnitsFromBits(
5289       getDataLayout().getTypeStoreSizeInBits(Ty));
5290 }
5291 
5292 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5293   if (LangOpts.OpenCL) {
5294     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5295     assert(AS == LangAS::opencl_global ||
5296            AS == LangAS::opencl_global_device ||
5297            AS == LangAS::opencl_global_host ||
5298            AS == LangAS::opencl_constant ||
5299            AS == LangAS::opencl_local ||
5300            AS >= LangAS::FirstTargetAddressSpace);
5301     return AS;
5302   }
5303 
5304   if (LangOpts.SYCLIsDevice &&
5305       (!D || D->getType().getAddressSpace() == LangAS::Default))
5306     return LangAS::sycl_global;
5307 
5308   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5309     if (D) {
5310       if (D->hasAttr<CUDAConstantAttr>())
5311         return LangAS::cuda_constant;
5312       if (D->hasAttr<CUDASharedAttr>())
5313         return LangAS::cuda_shared;
5314       if (D->hasAttr<CUDADeviceAttr>())
5315         return LangAS::cuda_device;
5316       if (D->getType().isConstQualified())
5317         return LangAS::cuda_constant;
5318     }
5319     return LangAS::cuda_device;
5320   }
5321 
5322   if (LangOpts.OpenMP) {
5323     LangAS AS;
5324     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5325       return AS;
5326   }
5327   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5328 }
5329 
5330 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5331   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5332   if (LangOpts.OpenCL)
5333     return LangAS::opencl_constant;
5334   if (LangOpts.SYCLIsDevice)
5335     return LangAS::sycl_global;
5336   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5337     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5338     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5339     // with OpVariable instructions with Generic storage class which is not
5340     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5341     // UniformConstant storage class is not viable as pointers to it may not be
5342     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5343     return LangAS::cuda_device;
5344   if (auto AS = getTarget().getConstantAddressSpace())
5345     return *AS;
5346   return LangAS::Default;
5347 }
5348 
5349 // In address space agnostic languages, string literals are in default address
5350 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5351 // emitted in constant address space in LLVM IR. To be consistent with other
5352 // parts of AST, string literal global variables in constant address space
5353 // need to be casted to default address space before being put into address
5354 // map and referenced by other part of CodeGen.
5355 // In OpenCL, string literals are in constant address space in AST, therefore
5356 // they should not be casted to default address space.
5357 static llvm::Constant *
5358 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5359                                        llvm::GlobalVariable *GV) {
5360   llvm::Constant *Cast = GV;
5361   if (!CGM.getLangOpts().OpenCL) {
5362     auto AS = CGM.GetGlobalConstantAddressSpace();
5363     if (AS != LangAS::Default)
5364       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5365           CGM, GV, AS, LangAS::Default,
5366           llvm::PointerType::get(
5367               CGM.getLLVMContext(),
5368               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5369   }
5370   return Cast;
5371 }
5372 
5373 template<typename SomeDecl>
5374 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5375                                                llvm::GlobalValue *GV) {
5376   if (!getLangOpts().CPlusPlus)
5377     return;
5378 
5379   // Must have 'used' attribute, or else inline assembly can't rely on
5380   // the name existing.
5381   if (!D->template hasAttr<UsedAttr>())
5382     return;
5383 
5384   // Must have internal linkage and an ordinary name.
5385   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5386     return;
5387 
5388   // Must be in an extern "C" context. Entities declared directly within
5389   // a record are not extern "C" even if the record is in such a context.
5390   const SomeDecl *First = D->getFirstDecl();
5391   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5392     return;
5393 
5394   // OK, this is an internal linkage entity inside an extern "C" linkage
5395   // specification. Make a note of that so we can give it the "expected"
5396   // mangled name if nothing else is using that name.
5397   std::pair<StaticExternCMap::iterator, bool> R =
5398       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5399 
5400   // If we have multiple internal linkage entities with the same name
5401   // in extern "C" regions, none of them gets that name.
5402   if (!R.second)
5403     R.first->second = nullptr;
5404 }
5405 
5406 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5407   if (!CGM.supportsCOMDAT())
5408     return false;
5409 
5410   if (D.hasAttr<SelectAnyAttr>())
5411     return true;
5412 
5413   GVALinkage Linkage;
5414   if (auto *VD = dyn_cast<VarDecl>(&D))
5415     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5416   else
5417     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5418 
5419   switch (Linkage) {
5420   case GVA_Internal:
5421   case GVA_AvailableExternally:
5422   case GVA_StrongExternal:
5423     return false;
5424   case GVA_DiscardableODR:
5425   case GVA_StrongODR:
5426     return true;
5427   }
5428   llvm_unreachable("No such linkage");
5429 }
5430 
5431 bool CodeGenModule::supportsCOMDAT() const {
5432   return getTriple().supportsCOMDAT();
5433 }
5434 
5435 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5436                                           llvm::GlobalObject &GO) {
5437   if (!shouldBeInCOMDAT(*this, D))
5438     return;
5439   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5440 }
5441 
5442 const ABIInfo &CodeGenModule::getABIInfo() {
5443   return getTargetCodeGenInfo().getABIInfo();
5444 }
5445 
5446 /// Pass IsTentative as true if you want to create a tentative definition.
5447 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5448                                             bool IsTentative) {
5449   // OpenCL global variables of sampler type are translated to function calls,
5450   // therefore no need to be translated.
5451   QualType ASTTy = D->getType();
5452   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5453     return;
5454 
5455   // If this is OpenMP device, check if it is legal to emit this global
5456   // normally.
5457   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5458       OpenMPRuntime->emitTargetGlobalVariable(D))
5459     return;
5460 
5461   llvm::TrackingVH<llvm::Constant> Init;
5462   bool NeedsGlobalCtor = false;
5463   // Whether the definition of the variable is available externally.
5464   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5465   // since this is the job for its original source.
5466   bool IsDefinitionAvailableExternally =
5467       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5468   bool NeedsGlobalDtor =
5469       !IsDefinitionAvailableExternally &&
5470       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5471 
5472   // It is helpless to emit the definition for an available_externally variable
5473   // which can't be marked as const.
5474   // We don't need to check if it needs global ctor or dtor. See the above
5475   // comment for ideas.
5476   if (IsDefinitionAvailableExternally &&
5477       (!D->hasConstantInitialization() ||
5478        // TODO: Update this when we have interface to check constexpr
5479        // destructor.
5480        D->needsDestruction(getContext()) ||
5481        !D->getType().isConstantStorage(getContext(), true, true)))
5482     return;
5483 
5484   const VarDecl *InitDecl;
5485   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5486 
5487   std::optional<ConstantEmitter> emitter;
5488 
5489   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5490   // as part of their declaration."  Sema has already checked for
5491   // error cases, so we just need to set Init to UndefValue.
5492   bool IsCUDASharedVar =
5493       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5494   // Shadows of initialized device-side global variables are also left
5495   // undefined.
5496   // Managed Variables should be initialized on both host side and device side.
5497   bool IsCUDAShadowVar =
5498       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5499       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5500        D->hasAttr<CUDASharedAttr>());
5501   bool IsCUDADeviceShadowVar =
5502       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5503       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5504        D->getType()->isCUDADeviceBuiltinTextureType());
5505   if (getLangOpts().CUDA &&
5506       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5507     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5508   else if (D->hasAttr<LoaderUninitializedAttr>())
5509     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5510   else if (!InitExpr) {
5511     // This is a tentative definition; tentative definitions are
5512     // implicitly initialized with { 0 }.
5513     //
5514     // Note that tentative definitions are only emitted at the end of
5515     // a translation unit, so they should never have incomplete
5516     // type. In addition, EmitTentativeDefinition makes sure that we
5517     // never attempt to emit a tentative definition if a real one
5518     // exists. A use may still exists, however, so we still may need
5519     // to do a RAUW.
5520     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5521     Init = EmitNullConstant(D->getType());
5522   } else {
5523     initializedGlobalDecl = GlobalDecl(D);
5524     emitter.emplace(*this);
5525     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5526     if (!Initializer) {
5527       QualType T = InitExpr->getType();
5528       if (D->getType()->isReferenceType())
5529         T = D->getType();
5530 
5531       if (getLangOpts().CPlusPlus) {
5532         if (InitDecl->hasFlexibleArrayInit(getContext()))
5533           ErrorUnsupported(D, "flexible array initializer");
5534         Init = EmitNullConstant(T);
5535 
5536         if (!IsDefinitionAvailableExternally)
5537           NeedsGlobalCtor = true;
5538       } else {
5539         ErrorUnsupported(D, "static initializer");
5540         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5541       }
5542     } else {
5543       Init = Initializer;
5544       // We don't need an initializer, so remove the entry for the delayed
5545       // initializer position (just in case this entry was delayed) if we
5546       // also don't need to register a destructor.
5547       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5548         DelayedCXXInitPosition.erase(D);
5549 
5550 #ifndef NDEBUG
5551       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5552                           InitDecl->getFlexibleArrayInitChars(getContext());
5553       CharUnits CstSize = CharUnits::fromQuantity(
5554           getDataLayout().getTypeAllocSize(Init->getType()));
5555       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5556 #endif
5557     }
5558   }
5559 
5560   llvm::Type* InitType = Init->getType();
5561   llvm::Constant *Entry =
5562       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5563 
5564   // Strip off pointer casts if we got them.
5565   Entry = Entry->stripPointerCasts();
5566 
5567   // Entry is now either a Function or GlobalVariable.
5568   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5569 
5570   // We have a definition after a declaration with the wrong type.
5571   // We must make a new GlobalVariable* and update everything that used OldGV
5572   // (a declaration or tentative definition) with the new GlobalVariable*
5573   // (which will be a definition).
5574   //
5575   // This happens if there is a prototype for a global (e.g.
5576   // "extern int x[];") and then a definition of a different type (e.g.
5577   // "int x[10];"). This also happens when an initializer has a different type
5578   // from the type of the global (this happens with unions).
5579   if (!GV || GV->getValueType() != InitType ||
5580       GV->getType()->getAddressSpace() !=
5581           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5582 
5583     // Move the old entry aside so that we'll create a new one.
5584     Entry->setName(StringRef());
5585 
5586     // Make a new global with the correct type, this is now guaranteed to work.
5587     GV = cast<llvm::GlobalVariable>(
5588         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5589             ->stripPointerCasts());
5590 
5591     // Replace all uses of the old global with the new global
5592     llvm::Constant *NewPtrForOldDecl =
5593         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5594                                                              Entry->getType());
5595     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5596 
5597     // Erase the old global, since it is no longer used.
5598     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5599   }
5600 
5601   MaybeHandleStaticInExternC(D, GV);
5602 
5603   if (D->hasAttr<AnnotateAttr>())
5604     AddGlobalAnnotations(D, GV);
5605 
5606   // Set the llvm linkage type as appropriate.
5607   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5608 
5609   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5610   // the device. [...]"
5611   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5612   // __device__, declares a variable that: [...]
5613   // Is accessible from all the threads within the grid and from the host
5614   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5615   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5616   if (LangOpts.CUDA) {
5617     if (LangOpts.CUDAIsDevice) {
5618       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5619           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5620            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5621            D->getType()->isCUDADeviceBuiltinTextureType()))
5622         GV->setExternallyInitialized(true);
5623     } else {
5624       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5625     }
5626     getCUDARuntime().handleVarRegistration(D, *GV);
5627   }
5628 
5629   if (LangOpts.HLSL)
5630     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5631 
5632   GV->setInitializer(Init);
5633   if (emitter)
5634     emitter->finalize(GV);
5635 
5636   // If it is safe to mark the global 'constant', do so now.
5637   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5638                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5639                    D->getType().isConstantStorage(getContext(), true, true)));
5640 
5641   // If it is in a read-only section, mark it 'constant'.
5642   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5643     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5644     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5645       GV->setConstant(true);
5646   }
5647 
5648   CharUnits AlignVal = getContext().getDeclAlign(D);
5649   // Check for alignment specifed in an 'omp allocate' directive.
5650   if (std::optional<CharUnits> AlignValFromAllocate =
5651           getOMPAllocateAlignment(D))
5652     AlignVal = *AlignValFromAllocate;
5653   GV->setAlignment(AlignVal.getAsAlign());
5654 
5655   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5656   // function is only defined alongside the variable, not also alongside
5657   // callers. Normally, all accesses to a thread_local go through the
5658   // thread-wrapper in order to ensure initialization has occurred, underlying
5659   // variable will never be used other than the thread-wrapper, so it can be
5660   // converted to internal linkage.
5661   //
5662   // However, if the variable has the 'constinit' attribute, it _can_ be
5663   // referenced directly, without calling the thread-wrapper, so the linkage
5664   // must not be changed.
5665   //
5666   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5667   // weak or linkonce, the de-duplication semantics are important to preserve,
5668   // so we don't change the linkage.
5669   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5670       Linkage == llvm::GlobalValue::ExternalLinkage &&
5671       Context.getTargetInfo().getTriple().isOSDarwin() &&
5672       !D->hasAttr<ConstInitAttr>())
5673     Linkage = llvm::GlobalValue::InternalLinkage;
5674 
5675   GV->setLinkage(Linkage);
5676   if (D->hasAttr<DLLImportAttr>())
5677     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5678   else if (D->hasAttr<DLLExportAttr>())
5679     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5680   else
5681     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5682 
5683   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5684     // common vars aren't constant even if declared const.
5685     GV->setConstant(false);
5686     // Tentative definition of global variables may be initialized with
5687     // non-zero null pointers. In this case they should have weak linkage
5688     // since common linkage must have zero initializer and must not have
5689     // explicit section therefore cannot have non-zero initial value.
5690     if (!GV->getInitializer()->isNullValue())
5691       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5692   }
5693 
5694   setNonAliasAttributes(D, GV);
5695 
5696   if (D->getTLSKind() && !GV->isThreadLocal()) {
5697     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5698       CXXThreadLocals.push_back(D);
5699     setTLSMode(GV, *D);
5700   }
5701 
5702   maybeSetTrivialComdat(*D, *GV);
5703 
5704   // Emit the initializer function if necessary.
5705   if (NeedsGlobalCtor || NeedsGlobalDtor)
5706     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5707 
5708   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5709 
5710   // Emit global variable debug information.
5711   if (CGDebugInfo *DI = getModuleDebugInfo())
5712     if (getCodeGenOpts().hasReducedDebugInfo())
5713       DI->EmitGlobalVariable(GV, D);
5714 }
5715 
5716 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5717   if (CGDebugInfo *DI = getModuleDebugInfo())
5718     if (getCodeGenOpts().hasReducedDebugInfo()) {
5719       QualType ASTTy = D->getType();
5720       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5721       llvm::Constant *GV =
5722           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5723       DI->EmitExternalVariable(
5724           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5725     }
5726 }
5727 
5728 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5729   if (CGDebugInfo *DI = getModuleDebugInfo())
5730     if (getCodeGenOpts().hasReducedDebugInfo()) {
5731       auto *Ty = getTypes().ConvertType(FD->getType());
5732       StringRef MangledName = getMangledName(FD);
5733       auto *Fn = cast<llvm::Function>(
5734           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5735       if (!Fn->getSubprogram())
5736         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5737     }
5738 }
5739 
5740 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5741                                       CodeGenModule &CGM, const VarDecl *D,
5742                                       bool NoCommon) {
5743   // Don't give variables common linkage if -fno-common was specified unless it
5744   // was overridden by a NoCommon attribute.
5745   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5746     return true;
5747 
5748   // C11 6.9.2/2:
5749   //   A declaration of an identifier for an object that has file scope without
5750   //   an initializer, and without a storage-class specifier or with the
5751   //   storage-class specifier static, constitutes a tentative definition.
5752   if (D->getInit() || D->hasExternalStorage())
5753     return true;
5754 
5755   // A variable cannot be both common and exist in a section.
5756   if (D->hasAttr<SectionAttr>())
5757     return true;
5758 
5759   // A variable cannot be both common and exist in a section.
5760   // We don't try to determine which is the right section in the front-end.
5761   // If no specialized section name is applicable, it will resort to default.
5762   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5763       D->hasAttr<PragmaClangDataSectionAttr>() ||
5764       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5765       D->hasAttr<PragmaClangRodataSectionAttr>())
5766     return true;
5767 
5768   // Thread local vars aren't considered common linkage.
5769   if (D->getTLSKind())
5770     return true;
5771 
5772   // Tentative definitions marked with WeakImportAttr are true definitions.
5773   if (D->hasAttr<WeakImportAttr>())
5774     return true;
5775 
5776   // A variable cannot be both common and exist in a comdat.
5777   if (shouldBeInCOMDAT(CGM, *D))
5778     return true;
5779 
5780   // Declarations with a required alignment do not have common linkage in MSVC
5781   // mode.
5782   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5783     if (D->hasAttr<AlignedAttr>())
5784       return true;
5785     QualType VarType = D->getType();
5786     if (Context.isAlignmentRequired(VarType))
5787       return true;
5788 
5789     if (const auto *RT = VarType->getAs<RecordType>()) {
5790       const RecordDecl *RD = RT->getDecl();
5791       for (const FieldDecl *FD : RD->fields()) {
5792         if (FD->isBitField())
5793           continue;
5794         if (FD->hasAttr<AlignedAttr>())
5795           return true;
5796         if (Context.isAlignmentRequired(FD->getType()))
5797           return true;
5798       }
5799     }
5800   }
5801 
5802   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5803   // common symbols, so symbols with greater alignment requirements cannot be
5804   // common.
5805   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5806   // alignments for common symbols via the aligncomm directive, so this
5807   // restriction only applies to MSVC environments.
5808   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5809       Context.getTypeAlignIfKnown(D->getType()) >
5810           Context.toBits(CharUnits::fromQuantity(32)))
5811     return true;
5812 
5813   return false;
5814 }
5815 
5816 llvm::GlobalValue::LinkageTypes
5817 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5818                                            GVALinkage Linkage) {
5819   if (Linkage == GVA_Internal)
5820     return llvm::Function::InternalLinkage;
5821 
5822   if (D->hasAttr<WeakAttr>())
5823     return llvm::GlobalVariable::WeakAnyLinkage;
5824 
5825   if (const auto *FD = D->getAsFunction())
5826     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5827       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5828 
5829   // We are guaranteed to have a strong definition somewhere else,
5830   // so we can use available_externally linkage.
5831   if (Linkage == GVA_AvailableExternally)
5832     return llvm::GlobalValue::AvailableExternallyLinkage;
5833 
5834   // Note that Apple's kernel linker doesn't support symbol
5835   // coalescing, so we need to avoid linkonce and weak linkages there.
5836   // Normally, this means we just map to internal, but for explicit
5837   // instantiations we'll map to external.
5838 
5839   // In C++, the compiler has to emit a definition in every translation unit
5840   // that references the function.  We should use linkonce_odr because
5841   // a) if all references in this translation unit are optimized away, we
5842   // don't need to codegen it.  b) if the function persists, it needs to be
5843   // merged with other definitions. c) C++ has the ODR, so we know the
5844   // definition is dependable.
5845   if (Linkage == GVA_DiscardableODR)
5846     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5847                                             : llvm::Function::InternalLinkage;
5848 
5849   // An explicit instantiation of a template has weak linkage, since
5850   // explicit instantiations can occur in multiple translation units
5851   // and must all be equivalent. However, we are not allowed to
5852   // throw away these explicit instantiations.
5853   //
5854   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5855   // so say that CUDA templates are either external (for kernels) or internal.
5856   // This lets llvm perform aggressive inter-procedural optimizations. For
5857   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5858   // therefore we need to follow the normal linkage paradigm.
5859   if (Linkage == GVA_StrongODR) {
5860     if (getLangOpts().AppleKext)
5861       return llvm::Function::ExternalLinkage;
5862     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5863         !getLangOpts().GPURelocatableDeviceCode)
5864       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5865                                           : llvm::Function::InternalLinkage;
5866     return llvm::Function::WeakODRLinkage;
5867   }
5868 
5869   // C++ doesn't have tentative definitions and thus cannot have common
5870   // linkage.
5871   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5872       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5873                                  CodeGenOpts.NoCommon))
5874     return llvm::GlobalVariable::CommonLinkage;
5875 
5876   // selectany symbols are externally visible, so use weak instead of
5877   // linkonce.  MSVC optimizes away references to const selectany globals, so
5878   // all definitions should be the same and ODR linkage should be used.
5879   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5880   if (D->hasAttr<SelectAnyAttr>())
5881     return llvm::GlobalVariable::WeakODRLinkage;
5882 
5883   // Otherwise, we have strong external linkage.
5884   assert(Linkage == GVA_StrongExternal);
5885   return llvm::GlobalVariable::ExternalLinkage;
5886 }
5887 
5888 llvm::GlobalValue::LinkageTypes
5889 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5890   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5891   return getLLVMLinkageForDeclarator(VD, Linkage);
5892 }
5893 
5894 /// Replace the uses of a function that was declared with a non-proto type.
5895 /// We want to silently drop extra arguments from call sites
5896 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5897                                           llvm::Function *newFn) {
5898   // Fast path.
5899   if (old->use_empty())
5900     return;
5901 
5902   llvm::Type *newRetTy = newFn->getReturnType();
5903   SmallVector<llvm::Value *, 4> newArgs;
5904 
5905   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5906 
5907   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5908        ui != ue; ui++) {
5909     llvm::User *user = ui->getUser();
5910 
5911     // Recognize and replace uses of bitcasts.  Most calls to
5912     // unprototyped functions will use bitcasts.
5913     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5914       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5915         replaceUsesOfNonProtoConstant(bitcast, newFn);
5916       continue;
5917     }
5918 
5919     // Recognize calls to the function.
5920     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5921     if (!callSite)
5922       continue;
5923     if (!callSite->isCallee(&*ui))
5924       continue;
5925 
5926     // If the return types don't match exactly, then we can't
5927     // transform this call unless it's dead.
5928     if (callSite->getType() != newRetTy && !callSite->use_empty())
5929       continue;
5930 
5931     // Get the call site's attribute list.
5932     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5933     llvm::AttributeList oldAttrs = callSite->getAttributes();
5934 
5935     // If the function was passed too few arguments, don't transform.
5936     unsigned newNumArgs = newFn->arg_size();
5937     if (callSite->arg_size() < newNumArgs)
5938       continue;
5939 
5940     // If extra arguments were passed, we silently drop them.
5941     // If any of the types mismatch, we don't transform.
5942     unsigned argNo = 0;
5943     bool dontTransform = false;
5944     for (llvm::Argument &A : newFn->args()) {
5945       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5946         dontTransform = true;
5947         break;
5948       }
5949 
5950       // Add any parameter attributes.
5951       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5952       argNo++;
5953     }
5954     if (dontTransform)
5955       continue;
5956 
5957     // Okay, we can transform this.  Create the new call instruction and copy
5958     // over the required information.
5959     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5960 
5961     // Copy over any operand bundles.
5962     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5963     callSite->getOperandBundlesAsDefs(newBundles);
5964 
5965     llvm::CallBase *newCall;
5966     if (isa<llvm::CallInst>(callSite)) {
5967       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5968                                        callSite->getIterator());
5969     } else {
5970       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5971       newCall = llvm::InvokeInst::Create(
5972           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5973           newArgs, newBundles, "", callSite->getIterator());
5974     }
5975     newArgs.clear(); // for the next iteration
5976 
5977     if (!newCall->getType()->isVoidTy())
5978       newCall->takeName(callSite);
5979     newCall->setAttributes(
5980         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5981                                  oldAttrs.getRetAttrs(), newArgAttrs));
5982     newCall->setCallingConv(callSite->getCallingConv());
5983 
5984     // Finally, remove the old call, replacing any uses with the new one.
5985     if (!callSite->use_empty())
5986       callSite->replaceAllUsesWith(newCall);
5987 
5988     // Copy debug location attached to CI.
5989     if (callSite->getDebugLoc())
5990       newCall->setDebugLoc(callSite->getDebugLoc());
5991 
5992     callSitesToBeRemovedFromParent.push_back(callSite);
5993   }
5994 
5995   for (auto *callSite : callSitesToBeRemovedFromParent) {
5996     callSite->eraseFromParent();
5997   }
5998 }
5999 
6000 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6001 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6002 /// existing call uses of the old function in the module, this adjusts them to
6003 /// call the new function directly.
6004 ///
6005 /// This is not just a cleanup: the always_inline pass requires direct calls to
6006 /// functions to be able to inline them.  If there is a bitcast in the way, it
6007 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6008 /// run at -O0.
6009 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6010                                                       llvm::Function *NewFn) {
6011   // If we're redefining a global as a function, don't transform it.
6012   if (!isa<llvm::Function>(Old)) return;
6013 
6014   replaceUsesOfNonProtoConstant(Old, NewFn);
6015 }
6016 
6017 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6018   auto DK = VD->isThisDeclarationADefinition();
6019   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6020       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6021     return;
6022 
6023   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6024   // If we have a definition, this might be a deferred decl. If the
6025   // instantiation is explicit, make sure we emit it at the end.
6026   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6027     GetAddrOfGlobalVar(VD);
6028 
6029   EmitTopLevelDecl(VD);
6030 }
6031 
6032 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6033                                                  llvm::GlobalValue *GV) {
6034   const auto *D = cast<FunctionDecl>(GD.getDecl());
6035 
6036   // Compute the function info and LLVM type.
6037   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6038   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6039 
6040   // Get or create the prototype for the function.
6041   if (!GV || (GV->getValueType() != Ty))
6042     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6043                                                    /*DontDefer=*/true,
6044                                                    ForDefinition));
6045 
6046   // Already emitted.
6047   if (!GV->isDeclaration())
6048     return;
6049 
6050   // We need to set linkage and visibility on the function before
6051   // generating code for it because various parts of IR generation
6052   // want to propagate this information down (e.g. to local static
6053   // declarations).
6054   auto *Fn = cast<llvm::Function>(GV);
6055   setFunctionLinkage(GD, Fn);
6056 
6057   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6058   setGVProperties(Fn, GD);
6059 
6060   MaybeHandleStaticInExternC(D, Fn);
6061 
6062   maybeSetTrivialComdat(*D, *Fn);
6063 
6064   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6065 
6066   setNonAliasAttributes(GD, Fn);
6067   SetLLVMFunctionAttributesForDefinition(D, Fn);
6068 
6069   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6070     AddGlobalCtor(Fn, CA->getPriority());
6071   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6072     AddGlobalDtor(Fn, DA->getPriority(), true);
6073   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6074     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6075 }
6076 
6077 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6078   const auto *D = cast<ValueDecl>(GD.getDecl());
6079   const AliasAttr *AA = D->getAttr<AliasAttr>();
6080   assert(AA && "Not an alias?");
6081 
6082   StringRef MangledName = getMangledName(GD);
6083 
6084   if (AA->getAliasee() == MangledName) {
6085     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6086     return;
6087   }
6088 
6089   // If there is a definition in the module, then it wins over the alias.
6090   // This is dubious, but allow it to be safe.  Just ignore the alias.
6091   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6092   if (Entry && !Entry->isDeclaration())
6093     return;
6094 
6095   Aliases.push_back(GD);
6096 
6097   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6098 
6099   // Create a reference to the named value.  This ensures that it is emitted
6100   // if a deferred decl.
6101   llvm::Constant *Aliasee;
6102   llvm::GlobalValue::LinkageTypes LT;
6103   if (isa<llvm::FunctionType>(DeclTy)) {
6104     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6105                                       /*ForVTable=*/false);
6106     LT = getFunctionLinkage(GD);
6107   } else {
6108     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6109                                     /*D=*/nullptr);
6110     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6111       LT = getLLVMLinkageVarDefinition(VD);
6112     else
6113       LT = getFunctionLinkage(GD);
6114   }
6115 
6116   // Create the new alias itself, but don't set a name yet.
6117   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6118   auto *GA =
6119       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6120 
6121   if (Entry) {
6122     if (GA->getAliasee() == Entry) {
6123       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6124       return;
6125     }
6126 
6127     assert(Entry->isDeclaration());
6128 
6129     // If there is a declaration in the module, then we had an extern followed
6130     // by the alias, as in:
6131     //   extern int test6();
6132     //   ...
6133     //   int test6() __attribute__((alias("test7")));
6134     //
6135     // Remove it and replace uses of it with the alias.
6136     GA->takeName(Entry);
6137 
6138     Entry->replaceAllUsesWith(GA);
6139     Entry->eraseFromParent();
6140   } else {
6141     GA->setName(MangledName);
6142   }
6143 
6144   // Set attributes which are particular to an alias; this is a
6145   // specialization of the attributes which may be set on a global
6146   // variable/function.
6147   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6148       D->isWeakImported()) {
6149     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6150   }
6151 
6152   if (const auto *VD = dyn_cast<VarDecl>(D))
6153     if (VD->getTLSKind())
6154       setTLSMode(GA, *VD);
6155 
6156   SetCommonAttributes(GD, GA);
6157 
6158   // Emit global alias debug information.
6159   if (isa<VarDecl>(D))
6160     if (CGDebugInfo *DI = getModuleDebugInfo())
6161       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6162 }
6163 
6164 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6165   const auto *D = cast<ValueDecl>(GD.getDecl());
6166   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6167   assert(IFA && "Not an ifunc?");
6168 
6169   StringRef MangledName = getMangledName(GD);
6170 
6171   if (IFA->getResolver() == MangledName) {
6172     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6173     return;
6174   }
6175 
6176   // Report an error if some definition overrides ifunc.
6177   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6178   if (Entry && !Entry->isDeclaration()) {
6179     GlobalDecl OtherGD;
6180     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6181         DiagnosedConflictingDefinitions.insert(GD).second) {
6182       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6183           << MangledName;
6184       Diags.Report(OtherGD.getDecl()->getLocation(),
6185                    diag::note_previous_definition);
6186     }
6187     return;
6188   }
6189 
6190   Aliases.push_back(GD);
6191 
6192   // The resolver might not be visited yet. Specify a dummy non-function type to
6193   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6194   // was emitted) or the whole function will be replaced (if the resolver has
6195   // not been emitted).
6196   llvm::Constant *Resolver =
6197       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6198                               /*ForVTable=*/false);
6199   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6200   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6201   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6202       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6203   if (Entry) {
6204     if (GIF->getResolver() == Entry) {
6205       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6206       return;
6207     }
6208     assert(Entry->isDeclaration());
6209 
6210     // If there is a declaration in the module, then we had an extern followed
6211     // by the ifunc, as in:
6212     //   extern int test();
6213     //   ...
6214     //   int test() __attribute__((ifunc("resolver")));
6215     //
6216     // Remove it and replace uses of it with the ifunc.
6217     GIF->takeName(Entry);
6218 
6219     Entry->replaceAllUsesWith(GIF);
6220     Entry->eraseFromParent();
6221   } else
6222     GIF->setName(MangledName);
6223   SetCommonAttributes(GD, GIF);
6224 }
6225 
6226 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6227                                             ArrayRef<llvm::Type*> Tys) {
6228   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6229                                                  (llvm::Intrinsic::ID)IID, Tys);
6230 }
6231 
6232 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6233 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6234                          const StringLiteral *Literal, bool TargetIsLSB,
6235                          bool &IsUTF16, unsigned &StringLength) {
6236   StringRef String = Literal->getString();
6237   unsigned NumBytes = String.size();
6238 
6239   // Check for simple case.
6240   if (!Literal->containsNonAsciiOrNull()) {
6241     StringLength = NumBytes;
6242     return *Map.insert(std::make_pair(String, nullptr)).first;
6243   }
6244 
6245   // Otherwise, convert the UTF8 literals into a string of shorts.
6246   IsUTF16 = true;
6247 
6248   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6249   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6250   llvm::UTF16 *ToPtr = &ToBuf[0];
6251 
6252   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6253                                  ToPtr + NumBytes, llvm::strictConversion);
6254 
6255   // ConvertUTF8toUTF16 returns the length in ToPtr.
6256   StringLength = ToPtr - &ToBuf[0];
6257 
6258   // Add an explicit null.
6259   *ToPtr = 0;
6260   return *Map.insert(std::make_pair(
6261                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6262                                    (StringLength + 1) * 2),
6263                          nullptr)).first;
6264 }
6265 
6266 ConstantAddress
6267 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6268   unsigned StringLength = 0;
6269   bool isUTF16 = false;
6270   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6271       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6272                                getDataLayout().isLittleEndian(), isUTF16,
6273                                StringLength);
6274 
6275   if (auto *C = Entry.second)
6276     return ConstantAddress(
6277         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6278 
6279   const ASTContext &Context = getContext();
6280   const llvm::Triple &Triple = getTriple();
6281 
6282   const auto CFRuntime = getLangOpts().CFRuntime;
6283   const bool IsSwiftABI =
6284       static_cast<unsigned>(CFRuntime) >=
6285       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6286   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6287 
6288   // If we don't already have it, get __CFConstantStringClassReference.
6289   if (!CFConstantStringClassRef) {
6290     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6291     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6292     Ty = llvm::ArrayType::get(Ty, 0);
6293 
6294     switch (CFRuntime) {
6295     default: break;
6296     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6297     case LangOptions::CoreFoundationABI::Swift5_0:
6298       CFConstantStringClassName =
6299           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6300                               : "$s10Foundation19_NSCFConstantStringCN";
6301       Ty = IntPtrTy;
6302       break;
6303     case LangOptions::CoreFoundationABI::Swift4_2:
6304       CFConstantStringClassName =
6305           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6306                               : "$S10Foundation19_NSCFConstantStringCN";
6307       Ty = IntPtrTy;
6308       break;
6309     case LangOptions::CoreFoundationABI::Swift4_1:
6310       CFConstantStringClassName =
6311           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6312                               : "__T010Foundation19_NSCFConstantStringCN";
6313       Ty = IntPtrTy;
6314       break;
6315     }
6316 
6317     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6318 
6319     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6320       llvm::GlobalValue *GV = nullptr;
6321 
6322       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6323         IdentifierInfo &II = Context.Idents.get(GV->getName());
6324         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6325         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6326 
6327         const VarDecl *VD = nullptr;
6328         for (const auto *Result : DC->lookup(&II))
6329           if ((VD = dyn_cast<VarDecl>(Result)))
6330             break;
6331 
6332         if (Triple.isOSBinFormatELF()) {
6333           if (!VD)
6334             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6335         } else {
6336           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6337           if (!VD || !VD->hasAttr<DLLExportAttr>())
6338             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6339           else
6340             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6341         }
6342 
6343         setDSOLocal(GV);
6344       }
6345     }
6346 
6347     // Decay array -> ptr
6348     CFConstantStringClassRef =
6349         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6350   }
6351 
6352   QualType CFTy = Context.getCFConstantStringType();
6353 
6354   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6355 
6356   ConstantInitBuilder Builder(*this);
6357   auto Fields = Builder.beginStruct(STy);
6358 
6359   // Class pointer.
6360   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6361 
6362   // Flags.
6363   if (IsSwiftABI) {
6364     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6365     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6366   } else {
6367     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6368   }
6369 
6370   // String pointer.
6371   llvm::Constant *C = nullptr;
6372   if (isUTF16) {
6373     auto Arr = llvm::ArrayRef(
6374         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6375         Entry.first().size() / 2);
6376     C = llvm::ConstantDataArray::get(VMContext, Arr);
6377   } else {
6378     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6379   }
6380 
6381   // Note: -fwritable-strings doesn't make the backing store strings of
6382   // CFStrings writable.
6383   auto *GV =
6384       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6385                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6386   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6387   // Don't enforce the target's minimum global alignment, since the only use
6388   // of the string is via this class initializer.
6389   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6390                             : Context.getTypeAlignInChars(Context.CharTy);
6391   GV->setAlignment(Align.getAsAlign());
6392 
6393   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6394   // Without it LLVM can merge the string with a non unnamed_addr one during
6395   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6396   if (Triple.isOSBinFormatMachO())
6397     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6398                            : "__TEXT,__cstring,cstring_literals");
6399   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6400   // the static linker to adjust permissions to read-only later on.
6401   else if (Triple.isOSBinFormatELF())
6402     GV->setSection(".rodata");
6403 
6404   // String.
6405   Fields.add(GV);
6406 
6407   // String length.
6408   llvm::IntegerType *LengthTy =
6409       llvm::IntegerType::get(getModule().getContext(),
6410                              Context.getTargetInfo().getLongWidth());
6411   if (IsSwiftABI) {
6412     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6413         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6414       LengthTy = Int32Ty;
6415     else
6416       LengthTy = IntPtrTy;
6417   }
6418   Fields.addInt(LengthTy, StringLength);
6419 
6420   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6421   // properly aligned on 32-bit platforms.
6422   CharUnits Alignment =
6423       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6424 
6425   // The struct.
6426   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6427                                     /*isConstant=*/false,
6428                                     llvm::GlobalVariable::PrivateLinkage);
6429   GV->addAttribute("objc_arc_inert");
6430   switch (Triple.getObjectFormat()) {
6431   case llvm::Triple::UnknownObjectFormat:
6432     llvm_unreachable("unknown file format");
6433   case llvm::Triple::DXContainer:
6434   case llvm::Triple::GOFF:
6435   case llvm::Triple::SPIRV:
6436   case llvm::Triple::XCOFF:
6437     llvm_unreachable("unimplemented");
6438   case llvm::Triple::COFF:
6439   case llvm::Triple::ELF:
6440   case llvm::Triple::Wasm:
6441     GV->setSection("cfstring");
6442     break;
6443   case llvm::Triple::MachO:
6444     GV->setSection("__DATA,__cfstring");
6445     break;
6446   }
6447   Entry.second = GV;
6448 
6449   return ConstantAddress(GV, GV->getValueType(), Alignment);
6450 }
6451 
6452 bool CodeGenModule::getExpressionLocationsEnabled() const {
6453   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6454 }
6455 
6456 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6457   if (ObjCFastEnumerationStateType.isNull()) {
6458     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6459     D->startDefinition();
6460 
6461     QualType FieldTypes[] = {
6462         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6463         Context.getPointerType(Context.UnsignedLongTy),
6464         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6465                                      nullptr, ArraySizeModifier::Normal, 0)};
6466 
6467     for (size_t i = 0; i < 4; ++i) {
6468       FieldDecl *Field = FieldDecl::Create(Context,
6469                                            D,
6470                                            SourceLocation(),
6471                                            SourceLocation(), nullptr,
6472                                            FieldTypes[i], /*TInfo=*/nullptr,
6473                                            /*BitWidth=*/nullptr,
6474                                            /*Mutable=*/false,
6475                                            ICIS_NoInit);
6476       Field->setAccess(AS_public);
6477       D->addDecl(Field);
6478     }
6479 
6480     D->completeDefinition();
6481     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6482   }
6483 
6484   return ObjCFastEnumerationStateType;
6485 }
6486 
6487 llvm::Constant *
6488 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6489   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6490 
6491   // Don't emit it as the address of the string, emit the string data itself
6492   // as an inline array.
6493   if (E->getCharByteWidth() == 1) {
6494     SmallString<64> Str(E->getString());
6495 
6496     // Resize the string to the right size, which is indicated by its type.
6497     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6498     assert(CAT && "String literal not of constant array type!");
6499     Str.resize(CAT->getZExtSize());
6500     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6501   }
6502 
6503   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6504   llvm::Type *ElemTy = AType->getElementType();
6505   unsigned NumElements = AType->getNumElements();
6506 
6507   // Wide strings have either 2-byte or 4-byte elements.
6508   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6509     SmallVector<uint16_t, 32> Elements;
6510     Elements.reserve(NumElements);
6511 
6512     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6513       Elements.push_back(E->getCodeUnit(i));
6514     Elements.resize(NumElements);
6515     return llvm::ConstantDataArray::get(VMContext, Elements);
6516   }
6517 
6518   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6519   SmallVector<uint32_t, 32> Elements;
6520   Elements.reserve(NumElements);
6521 
6522   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6523     Elements.push_back(E->getCodeUnit(i));
6524   Elements.resize(NumElements);
6525   return llvm::ConstantDataArray::get(VMContext, Elements);
6526 }
6527 
6528 static llvm::GlobalVariable *
6529 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6530                       CodeGenModule &CGM, StringRef GlobalName,
6531                       CharUnits Alignment) {
6532   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6533       CGM.GetGlobalConstantAddressSpace());
6534 
6535   llvm::Module &M = CGM.getModule();
6536   // Create a global variable for this string
6537   auto *GV = new llvm::GlobalVariable(
6538       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6539       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6540   GV->setAlignment(Alignment.getAsAlign());
6541   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6542   if (GV->isWeakForLinker()) {
6543     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6544     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6545   }
6546   CGM.setDSOLocal(GV);
6547 
6548   return GV;
6549 }
6550 
6551 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6552 /// constant array for the given string literal.
6553 ConstantAddress
6554 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6555                                                   StringRef Name) {
6556   CharUnits Alignment =
6557       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6558 
6559   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6560   llvm::GlobalVariable **Entry = nullptr;
6561   if (!LangOpts.WritableStrings) {
6562     Entry = &ConstantStringMap[C];
6563     if (auto GV = *Entry) {
6564       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6565         GV->setAlignment(Alignment.getAsAlign());
6566       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6567                              GV->getValueType(), Alignment);
6568     }
6569   }
6570 
6571   SmallString<256> MangledNameBuffer;
6572   StringRef GlobalVariableName;
6573   llvm::GlobalValue::LinkageTypes LT;
6574 
6575   // Mangle the string literal if that's how the ABI merges duplicate strings.
6576   // Don't do it if they are writable, since we don't want writes in one TU to
6577   // affect strings in another.
6578   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6579       !LangOpts.WritableStrings) {
6580     llvm::raw_svector_ostream Out(MangledNameBuffer);
6581     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6582     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6583     GlobalVariableName = MangledNameBuffer;
6584   } else {
6585     LT = llvm::GlobalValue::PrivateLinkage;
6586     GlobalVariableName = Name;
6587   }
6588 
6589   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6590 
6591   CGDebugInfo *DI = getModuleDebugInfo();
6592   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6593     DI->AddStringLiteralDebugInfo(GV, S);
6594 
6595   if (Entry)
6596     *Entry = GV;
6597 
6598   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6599 
6600   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6601                          GV->getValueType(), Alignment);
6602 }
6603 
6604 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6605 /// array for the given ObjCEncodeExpr node.
6606 ConstantAddress
6607 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6608   std::string Str;
6609   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6610 
6611   return GetAddrOfConstantCString(Str);
6612 }
6613 
6614 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6615 /// the literal and a terminating '\0' character.
6616 /// The result has pointer to array type.
6617 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6618     const std::string &Str, const char *GlobalName) {
6619   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6620   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6621       getContext().CharTy, /*VD=*/nullptr);
6622 
6623   llvm::Constant *C =
6624       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6625 
6626   // Don't share any string literals if strings aren't constant.
6627   llvm::GlobalVariable **Entry = nullptr;
6628   if (!LangOpts.WritableStrings) {
6629     Entry = &ConstantStringMap[C];
6630     if (auto GV = *Entry) {
6631       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6632         GV->setAlignment(Alignment.getAsAlign());
6633       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6634                              GV->getValueType(), Alignment);
6635     }
6636   }
6637 
6638   // Get the default prefix if a name wasn't specified.
6639   if (!GlobalName)
6640     GlobalName = ".str";
6641   // Create a global variable for this.
6642   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6643                                   GlobalName, Alignment);
6644   if (Entry)
6645     *Entry = GV;
6646 
6647   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6648                          GV->getValueType(), Alignment);
6649 }
6650 
6651 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6652     const MaterializeTemporaryExpr *E, const Expr *Init) {
6653   assert((E->getStorageDuration() == SD_Static ||
6654           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6655   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6656 
6657   // If we're not materializing a subobject of the temporary, keep the
6658   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6659   QualType MaterializedType = Init->getType();
6660   if (Init == E->getSubExpr())
6661     MaterializedType = E->getType();
6662 
6663   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6664 
6665   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6666   if (!InsertResult.second) {
6667     // We've seen this before: either we already created it or we're in the
6668     // process of doing so.
6669     if (!InsertResult.first->second) {
6670       // We recursively re-entered this function, probably during emission of
6671       // the initializer. Create a placeholder. We'll clean this up in the
6672       // outer call, at the end of this function.
6673       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6674       InsertResult.first->second = new llvm::GlobalVariable(
6675           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6676           nullptr);
6677     }
6678     return ConstantAddress(InsertResult.first->second,
6679                            llvm::cast<llvm::GlobalVariable>(
6680                                InsertResult.first->second->stripPointerCasts())
6681                                ->getValueType(),
6682                            Align);
6683   }
6684 
6685   // FIXME: If an externally-visible declaration extends multiple temporaries,
6686   // we need to give each temporary the same name in every translation unit (and
6687   // we also need to make the temporaries externally-visible).
6688   SmallString<256> Name;
6689   llvm::raw_svector_ostream Out(Name);
6690   getCXXABI().getMangleContext().mangleReferenceTemporary(
6691       VD, E->getManglingNumber(), Out);
6692 
6693   APValue *Value = nullptr;
6694   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6695     // If the initializer of the extending declaration is a constant
6696     // initializer, we should have a cached constant initializer for this
6697     // temporary. Note that this might have a different value from the value
6698     // computed by evaluating the initializer if the surrounding constant
6699     // expression modifies the temporary.
6700     Value = E->getOrCreateValue(false);
6701   }
6702 
6703   // Try evaluating it now, it might have a constant initializer.
6704   Expr::EvalResult EvalResult;
6705   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6706       !EvalResult.hasSideEffects())
6707     Value = &EvalResult.Val;
6708 
6709   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6710 
6711   std::optional<ConstantEmitter> emitter;
6712   llvm::Constant *InitialValue = nullptr;
6713   bool Constant = false;
6714   llvm::Type *Type;
6715   if (Value) {
6716     // The temporary has a constant initializer, use it.
6717     emitter.emplace(*this);
6718     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6719                                                MaterializedType);
6720     Constant =
6721         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6722                                            /*ExcludeDtor*/ false);
6723     Type = InitialValue->getType();
6724   } else {
6725     // No initializer, the initialization will be provided when we
6726     // initialize the declaration which performed lifetime extension.
6727     Type = getTypes().ConvertTypeForMem(MaterializedType);
6728   }
6729 
6730   // Create a global variable for this lifetime-extended temporary.
6731   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6732   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6733     const VarDecl *InitVD;
6734     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6735         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6736       // Temporaries defined inside a class get linkonce_odr linkage because the
6737       // class can be defined in multiple translation units.
6738       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6739     } else {
6740       // There is no need for this temporary to have external linkage if the
6741       // VarDecl has external linkage.
6742       Linkage = llvm::GlobalVariable::InternalLinkage;
6743     }
6744   }
6745   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6746   auto *GV = new llvm::GlobalVariable(
6747       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6748       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6749   if (emitter) emitter->finalize(GV);
6750   // Don't assign dllimport or dllexport to local linkage globals.
6751   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6752     setGVProperties(GV, VD);
6753     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6754       // The reference temporary should never be dllexport.
6755       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6756   }
6757   GV->setAlignment(Align.getAsAlign());
6758   if (supportsCOMDAT() && GV->isWeakForLinker())
6759     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6760   if (VD->getTLSKind())
6761     setTLSMode(GV, *VD);
6762   llvm::Constant *CV = GV;
6763   if (AddrSpace != LangAS::Default)
6764     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6765         *this, GV, AddrSpace, LangAS::Default,
6766         llvm::PointerType::get(
6767             getLLVMContext(),
6768             getContext().getTargetAddressSpace(LangAS::Default)));
6769 
6770   // Update the map with the new temporary. If we created a placeholder above,
6771   // replace it with the new global now.
6772   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6773   if (Entry) {
6774     Entry->replaceAllUsesWith(CV);
6775     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6776   }
6777   Entry = CV;
6778 
6779   return ConstantAddress(CV, Type, Align);
6780 }
6781 
6782 /// EmitObjCPropertyImplementations - Emit information for synthesized
6783 /// properties for an implementation.
6784 void CodeGenModule::EmitObjCPropertyImplementations(const
6785                                                     ObjCImplementationDecl *D) {
6786   for (const auto *PID : D->property_impls()) {
6787     // Dynamic is just for type-checking.
6788     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6789       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6790 
6791       // Determine which methods need to be implemented, some may have
6792       // been overridden. Note that ::isPropertyAccessor is not the method
6793       // we want, that just indicates if the decl came from a
6794       // property. What we want to know is if the method is defined in
6795       // this implementation.
6796       auto *Getter = PID->getGetterMethodDecl();
6797       if (!Getter || Getter->isSynthesizedAccessorStub())
6798         CodeGenFunction(*this).GenerateObjCGetter(
6799             const_cast<ObjCImplementationDecl *>(D), PID);
6800       auto *Setter = PID->getSetterMethodDecl();
6801       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6802         CodeGenFunction(*this).GenerateObjCSetter(
6803                                  const_cast<ObjCImplementationDecl *>(D), PID);
6804     }
6805   }
6806 }
6807 
6808 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6809   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6810   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6811        ivar; ivar = ivar->getNextIvar())
6812     if (ivar->getType().isDestructedType())
6813       return true;
6814 
6815   return false;
6816 }
6817 
6818 static bool AllTrivialInitializers(CodeGenModule &CGM,
6819                                    ObjCImplementationDecl *D) {
6820   CodeGenFunction CGF(CGM);
6821   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6822        E = D->init_end(); B != E; ++B) {
6823     CXXCtorInitializer *CtorInitExp = *B;
6824     Expr *Init = CtorInitExp->getInit();
6825     if (!CGF.isTrivialInitializer(Init))
6826       return false;
6827   }
6828   return true;
6829 }
6830 
6831 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6832 /// for an implementation.
6833 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6834   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6835   if (needsDestructMethod(D)) {
6836     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6837     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6838     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6839         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6840         getContext().VoidTy, nullptr, D,
6841         /*isInstance=*/true, /*isVariadic=*/false,
6842         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6843         /*isImplicitlyDeclared=*/true,
6844         /*isDefined=*/false, ObjCImplementationControl::Required);
6845     D->addInstanceMethod(DTORMethod);
6846     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6847     D->setHasDestructors(true);
6848   }
6849 
6850   // If the implementation doesn't have any ivar initializers, we don't need
6851   // a .cxx_construct.
6852   if (D->getNumIvarInitializers() == 0 ||
6853       AllTrivialInitializers(*this, D))
6854     return;
6855 
6856   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6857   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6858   // The constructor returns 'self'.
6859   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6860       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6861       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6862       /*isVariadic=*/false,
6863       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6864       /*isImplicitlyDeclared=*/true,
6865       /*isDefined=*/false, ObjCImplementationControl::Required);
6866   D->addInstanceMethod(CTORMethod);
6867   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6868   D->setHasNonZeroConstructors(true);
6869 }
6870 
6871 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6872 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6873   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6874       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6875     ErrorUnsupported(LSD, "linkage spec");
6876     return;
6877   }
6878 
6879   EmitDeclContext(LSD);
6880 }
6881 
6882 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6883   // Device code should not be at top level.
6884   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6885     return;
6886 
6887   std::unique_ptr<CodeGenFunction> &CurCGF =
6888       GlobalTopLevelStmtBlockInFlight.first;
6889 
6890   // We emitted a top-level stmt but after it there is initialization.
6891   // Stop squashing the top-level stmts into a single function.
6892   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6893     CurCGF->FinishFunction(D->getEndLoc());
6894     CurCGF = nullptr;
6895   }
6896 
6897   if (!CurCGF) {
6898     // void __stmts__N(void)
6899     // FIXME: Ask the ABI name mangler to pick a name.
6900     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6901     FunctionArgList Args;
6902     QualType RetTy = getContext().VoidTy;
6903     const CGFunctionInfo &FnInfo =
6904         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6905     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6906     llvm::Function *Fn = llvm::Function::Create(
6907         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6908 
6909     CurCGF.reset(new CodeGenFunction(*this));
6910     GlobalTopLevelStmtBlockInFlight.second = D;
6911     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6912                           D->getBeginLoc(), D->getBeginLoc());
6913     CXXGlobalInits.push_back(Fn);
6914   }
6915 
6916   CurCGF->EmitStmt(D->getStmt());
6917 }
6918 
6919 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6920   for (auto *I : DC->decls()) {
6921     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6922     // are themselves considered "top-level", so EmitTopLevelDecl on an
6923     // ObjCImplDecl does not recursively visit them. We need to do that in
6924     // case they're nested inside another construct (LinkageSpecDecl /
6925     // ExportDecl) that does stop them from being considered "top-level".
6926     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6927       for (auto *M : OID->methods())
6928         EmitTopLevelDecl(M);
6929     }
6930 
6931     EmitTopLevelDecl(I);
6932   }
6933 }
6934 
6935 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6936 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6937   // Ignore dependent declarations.
6938   if (D->isTemplated())
6939     return;
6940 
6941   // Consteval function shouldn't be emitted.
6942   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6943     return;
6944 
6945   switch (D->getKind()) {
6946   case Decl::CXXConversion:
6947   case Decl::CXXMethod:
6948   case Decl::Function:
6949     EmitGlobal(cast<FunctionDecl>(D));
6950     // Always provide some coverage mapping
6951     // even for the functions that aren't emitted.
6952     AddDeferredUnusedCoverageMapping(D);
6953     break;
6954 
6955   case Decl::CXXDeductionGuide:
6956     // Function-like, but does not result in code emission.
6957     break;
6958 
6959   case Decl::Var:
6960   case Decl::Decomposition:
6961   case Decl::VarTemplateSpecialization:
6962     EmitGlobal(cast<VarDecl>(D));
6963     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6964       for (auto *B : DD->bindings())
6965         if (auto *HD = B->getHoldingVar())
6966           EmitGlobal(HD);
6967     break;
6968 
6969   // Indirect fields from global anonymous structs and unions can be
6970   // ignored; only the actual variable requires IR gen support.
6971   case Decl::IndirectField:
6972     break;
6973 
6974   // C++ Decls
6975   case Decl::Namespace:
6976     EmitDeclContext(cast<NamespaceDecl>(D));
6977     break;
6978   case Decl::ClassTemplateSpecialization: {
6979     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6980     if (CGDebugInfo *DI = getModuleDebugInfo())
6981       if (Spec->getSpecializationKind() ==
6982               TSK_ExplicitInstantiationDefinition &&
6983           Spec->hasDefinition())
6984         DI->completeTemplateDefinition(*Spec);
6985   } [[fallthrough]];
6986   case Decl::CXXRecord: {
6987     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6988     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6989       if (CRD->hasDefinition())
6990         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6991       if (auto *ES = D->getASTContext().getExternalSource())
6992         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6993           DI->completeUnusedClass(*CRD);
6994     }
6995     // Emit any static data members, they may be definitions.
6996     for (auto *I : CRD->decls())
6997       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6998         EmitTopLevelDecl(I);
6999     break;
7000   }
7001     // No code generation needed.
7002   case Decl::UsingShadow:
7003   case Decl::ClassTemplate:
7004   case Decl::VarTemplate:
7005   case Decl::Concept:
7006   case Decl::VarTemplatePartialSpecialization:
7007   case Decl::FunctionTemplate:
7008   case Decl::TypeAliasTemplate:
7009   case Decl::Block:
7010   case Decl::Empty:
7011   case Decl::Binding:
7012     break;
7013   case Decl::Using:          // using X; [C++]
7014     if (CGDebugInfo *DI = getModuleDebugInfo())
7015         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7016     break;
7017   case Decl::UsingEnum: // using enum X; [C++]
7018     if (CGDebugInfo *DI = getModuleDebugInfo())
7019       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7020     break;
7021   case Decl::NamespaceAlias:
7022     if (CGDebugInfo *DI = getModuleDebugInfo())
7023         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7024     break;
7025   case Decl::UsingDirective: // using namespace X; [C++]
7026     if (CGDebugInfo *DI = getModuleDebugInfo())
7027       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7028     break;
7029   case Decl::CXXConstructor:
7030     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7031     break;
7032   case Decl::CXXDestructor:
7033     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7034     break;
7035 
7036   case Decl::StaticAssert:
7037     // Nothing to do.
7038     break;
7039 
7040   // Objective-C Decls
7041 
7042   // Forward declarations, no (immediate) code generation.
7043   case Decl::ObjCInterface:
7044   case Decl::ObjCCategory:
7045     break;
7046 
7047   case Decl::ObjCProtocol: {
7048     auto *Proto = cast<ObjCProtocolDecl>(D);
7049     if (Proto->isThisDeclarationADefinition())
7050       ObjCRuntime->GenerateProtocol(Proto);
7051     break;
7052   }
7053 
7054   case Decl::ObjCCategoryImpl:
7055     // Categories have properties but don't support synthesize so we
7056     // can ignore them here.
7057     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7058     break;
7059 
7060   case Decl::ObjCImplementation: {
7061     auto *OMD = cast<ObjCImplementationDecl>(D);
7062     EmitObjCPropertyImplementations(OMD);
7063     EmitObjCIvarInitializations(OMD);
7064     ObjCRuntime->GenerateClass(OMD);
7065     // Emit global variable debug information.
7066     if (CGDebugInfo *DI = getModuleDebugInfo())
7067       if (getCodeGenOpts().hasReducedDebugInfo())
7068         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7069             OMD->getClassInterface()), OMD->getLocation());
7070     break;
7071   }
7072   case Decl::ObjCMethod: {
7073     auto *OMD = cast<ObjCMethodDecl>(D);
7074     // If this is not a prototype, emit the body.
7075     if (OMD->getBody())
7076       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7077     break;
7078   }
7079   case Decl::ObjCCompatibleAlias:
7080     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7081     break;
7082 
7083   case Decl::PragmaComment: {
7084     const auto *PCD = cast<PragmaCommentDecl>(D);
7085     switch (PCD->getCommentKind()) {
7086     case PCK_Unknown:
7087       llvm_unreachable("unexpected pragma comment kind");
7088     case PCK_Linker:
7089       AppendLinkerOptions(PCD->getArg());
7090       break;
7091     case PCK_Lib:
7092         AddDependentLib(PCD->getArg());
7093       break;
7094     case PCK_Compiler:
7095     case PCK_ExeStr:
7096     case PCK_User:
7097       break; // We ignore all of these.
7098     }
7099     break;
7100   }
7101 
7102   case Decl::PragmaDetectMismatch: {
7103     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7104     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7105     break;
7106   }
7107 
7108   case Decl::LinkageSpec:
7109     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7110     break;
7111 
7112   case Decl::FileScopeAsm: {
7113     // File-scope asm is ignored during device-side CUDA compilation.
7114     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7115       break;
7116     // File-scope asm is ignored during device-side OpenMP compilation.
7117     if (LangOpts.OpenMPIsTargetDevice)
7118       break;
7119     // File-scope asm is ignored during device-side SYCL compilation.
7120     if (LangOpts.SYCLIsDevice)
7121       break;
7122     auto *AD = cast<FileScopeAsmDecl>(D);
7123     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7124     break;
7125   }
7126 
7127   case Decl::TopLevelStmt:
7128     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7129     break;
7130 
7131   case Decl::Import: {
7132     auto *Import = cast<ImportDecl>(D);
7133 
7134     // If we've already imported this module, we're done.
7135     if (!ImportedModules.insert(Import->getImportedModule()))
7136       break;
7137 
7138     // Emit debug information for direct imports.
7139     if (!Import->getImportedOwningModule()) {
7140       if (CGDebugInfo *DI = getModuleDebugInfo())
7141         DI->EmitImportDecl(*Import);
7142     }
7143 
7144     // For C++ standard modules we are done - we will call the module
7145     // initializer for imported modules, and that will likewise call those for
7146     // any imports it has.
7147     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7148         !Import->getImportedOwningModule()->isModuleMapModule())
7149       break;
7150 
7151     // For clang C++ module map modules the initializers for sub-modules are
7152     // emitted here.
7153 
7154     // Find all of the submodules and emit the module initializers.
7155     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7156     SmallVector<clang::Module *, 16> Stack;
7157     Visited.insert(Import->getImportedModule());
7158     Stack.push_back(Import->getImportedModule());
7159 
7160     while (!Stack.empty()) {
7161       clang::Module *Mod = Stack.pop_back_val();
7162       if (!EmittedModuleInitializers.insert(Mod).second)
7163         continue;
7164 
7165       for (auto *D : Context.getModuleInitializers(Mod))
7166         EmitTopLevelDecl(D);
7167 
7168       // Visit the submodules of this module.
7169       for (auto *Submodule : Mod->submodules()) {
7170         // Skip explicit children; they need to be explicitly imported to emit
7171         // the initializers.
7172         if (Submodule->IsExplicit)
7173           continue;
7174 
7175         if (Visited.insert(Submodule).second)
7176           Stack.push_back(Submodule);
7177       }
7178     }
7179     break;
7180   }
7181 
7182   case Decl::Export:
7183     EmitDeclContext(cast<ExportDecl>(D));
7184     break;
7185 
7186   case Decl::OMPThreadPrivate:
7187     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7188     break;
7189 
7190   case Decl::OMPAllocate:
7191     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7192     break;
7193 
7194   case Decl::OMPDeclareReduction:
7195     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7196     break;
7197 
7198   case Decl::OMPDeclareMapper:
7199     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7200     break;
7201 
7202   case Decl::OMPRequires:
7203     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7204     break;
7205 
7206   case Decl::Typedef:
7207   case Decl::TypeAlias: // using foo = bar; [C++11]
7208     if (CGDebugInfo *DI = getModuleDebugInfo())
7209       DI->EmitAndRetainType(
7210           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7211     break;
7212 
7213   case Decl::Record:
7214     if (CGDebugInfo *DI = getModuleDebugInfo())
7215       if (cast<RecordDecl>(D)->getDefinition())
7216         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7217     break;
7218 
7219   case Decl::Enum:
7220     if (CGDebugInfo *DI = getModuleDebugInfo())
7221       if (cast<EnumDecl>(D)->getDefinition())
7222         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7223     break;
7224 
7225   case Decl::HLSLBuffer:
7226     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7227     break;
7228 
7229   default:
7230     // Make sure we handled everything we should, every other kind is a
7231     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7232     // function. Need to recode Decl::Kind to do that easily.
7233     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7234     break;
7235   }
7236 }
7237 
7238 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7239   // Do we need to generate coverage mapping?
7240   if (!CodeGenOpts.CoverageMapping)
7241     return;
7242   switch (D->getKind()) {
7243   case Decl::CXXConversion:
7244   case Decl::CXXMethod:
7245   case Decl::Function:
7246   case Decl::ObjCMethod:
7247   case Decl::CXXConstructor:
7248   case Decl::CXXDestructor: {
7249     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7250       break;
7251     SourceManager &SM = getContext().getSourceManager();
7252     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7253       break;
7254     if (!llvm::coverage::SystemHeadersCoverage &&
7255         SM.isInSystemHeader(D->getBeginLoc()))
7256       break;
7257     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7258     break;
7259   }
7260   default:
7261     break;
7262   };
7263 }
7264 
7265 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7266   // Do we need to generate coverage mapping?
7267   if (!CodeGenOpts.CoverageMapping)
7268     return;
7269   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7270     if (Fn->isTemplateInstantiation())
7271       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7272   }
7273   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7274 }
7275 
7276 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7277   // We call takeVector() here to avoid use-after-free.
7278   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7279   // we deserialize function bodies to emit coverage info for them, and that
7280   // deserializes more declarations. How should we handle that case?
7281   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7282     if (!Entry.second)
7283       continue;
7284     const Decl *D = Entry.first;
7285     switch (D->getKind()) {
7286     case Decl::CXXConversion:
7287     case Decl::CXXMethod:
7288     case Decl::Function:
7289     case Decl::ObjCMethod: {
7290       CodeGenPGO PGO(*this);
7291       GlobalDecl GD(cast<FunctionDecl>(D));
7292       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7293                                   getFunctionLinkage(GD));
7294       break;
7295     }
7296     case Decl::CXXConstructor: {
7297       CodeGenPGO PGO(*this);
7298       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7299       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7300                                   getFunctionLinkage(GD));
7301       break;
7302     }
7303     case Decl::CXXDestructor: {
7304       CodeGenPGO PGO(*this);
7305       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7306       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7307                                   getFunctionLinkage(GD));
7308       break;
7309     }
7310     default:
7311       break;
7312     };
7313   }
7314 }
7315 
7316 void CodeGenModule::EmitMainVoidAlias() {
7317   // In order to transition away from "__original_main" gracefully, emit an
7318   // alias for "main" in the no-argument case so that libc can detect when
7319   // new-style no-argument main is in used.
7320   if (llvm::Function *F = getModule().getFunction("main")) {
7321     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7322         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7323       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7324       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7325     }
7326   }
7327 }
7328 
7329 /// Turns the given pointer into a constant.
7330 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7331                                           const void *Ptr) {
7332   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7333   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7334   return llvm::ConstantInt::get(i64, PtrInt);
7335 }
7336 
7337 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7338                                    llvm::NamedMDNode *&GlobalMetadata,
7339                                    GlobalDecl D,
7340                                    llvm::GlobalValue *Addr) {
7341   if (!GlobalMetadata)
7342     GlobalMetadata =
7343       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7344 
7345   // TODO: should we report variant information for ctors/dtors?
7346   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7347                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7348                                CGM.getLLVMContext(), D.getDecl()))};
7349   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7350 }
7351 
7352 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7353                                                  llvm::GlobalValue *CppFunc) {
7354   // Store the list of ifuncs we need to replace uses in.
7355   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7356   // List of ConstantExprs that we should be able to delete when we're done
7357   // here.
7358   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7359 
7360   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7361   if (Elem == CppFunc)
7362     return false;
7363 
7364   // First make sure that all users of this are ifuncs (or ifuncs via a
7365   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7366   // later.
7367   for (llvm::User *User : Elem->users()) {
7368     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7369     // ifunc directly. In any other case, just give up, as we don't know what we
7370     // could break by changing those.
7371     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7372       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7373         return false;
7374 
7375       for (llvm::User *CEUser : ConstExpr->users()) {
7376         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7377           IFuncs.push_back(IFunc);
7378         } else {
7379           return false;
7380         }
7381       }
7382       CEs.push_back(ConstExpr);
7383     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7384       IFuncs.push_back(IFunc);
7385     } else {
7386       // This user is one we don't know how to handle, so fail redirection. This
7387       // will result in an ifunc retaining a resolver name that will ultimately
7388       // fail to be resolved to a defined function.
7389       return false;
7390     }
7391   }
7392 
7393   // Now we know this is a valid case where we can do this alias replacement, we
7394   // need to remove all of the references to Elem (and the bitcasts!) so we can
7395   // delete it.
7396   for (llvm::GlobalIFunc *IFunc : IFuncs)
7397     IFunc->setResolver(nullptr);
7398   for (llvm::ConstantExpr *ConstExpr : CEs)
7399     ConstExpr->destroyConstant();
7400 
7401   // We should now be out of uses for the 'old' version of this function, so we
7402   // can erase it as well.
7403   Elem->eraseFromParent();
7404 
7405   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7406     // The type of the resolver is always just a function-type that returns the
7407     // type of the IFunc, so create that here. If the type of the actual
7408     // resolver doesn't match, it just gets bitcast to the right thing.
7409     auto *ResolverTy =
7410         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7411     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7412         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7413     IFunc->setResolver(Resolver);
7414   }
7415   return true;
7416 }
7417 
7418 /// For each function which is declared within an extern "C" region and marked
7419 /// as 'used', but has internal linkage, create an alias from the unmangled
7420 /// name to the mangled name if possible. People expect to be able to refer
7421 /// to such functions with an unmangled name from inline assembly within the
7422 /// same translation unit.
7423 void CodeGenModule::EmitStaticExternCAliases() {
7424   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7425     return;
7426   for (auto &I : StaticExternCValues) {
7427     const IdentifierInfo *Name = I.first;
7428     llvm::GlobalValue *Val = I.second;
7429 
7430     // If Val is null, that implies there were multiple declarations that each
7431     // had a claim to the unmangled name. In this case, generation of the alias
7432     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7433     if (!Val)
7434       break;
7435 
7436     llvm::GlobalValue *ExistingElem =
7437         getModule().getNamedValue(Name->getName());
7438 
7439     // If there is either not something already by this name, or we were able to
7440     // replace all uses from IFuncs, create the alias.
7441     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7442       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7443   }
7444 }
7445 
7446 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7447                                              GlobalDecl &Result) const {
7448   auto Res = Manglings.find(MangledName);
7449   if (Res == Manglings.end())
7450     return false;
7451   Result = Res->getValue();
7452   return true;
7453 }
7454 
7455 /// Emits metadata nodes associating all the global values in the
7456 /// current module with the Decls they came from.  This is useful for
7457 /// projects using IR gen as a subroutine.
7458 ///
7459 /// Since there's currently no way to associate an MDNode directly
7460 /// with an llvm::GlobalValue, we create a global named metadata
7461 /// with the name 'clang.global.decl.ptrs'.
7462 void CodeGenModule::EmitDeclMetadata() {
7463   llvm::NamedMDNode *GlobalMetadata = nullptr;
7464 
7465   for (auto &I : MangledDeclNames) {
7466     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7467     // Some mangled names don't necessarily have an associated GlobalValue
7468     // in this module, e.g. if we mangled it for DebugInfo.
7469     if (Addr)
7470       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7471   }
7472 }
7473 
7474 /// Emits metadata nodes for all the local variables in the current
7475 /// function.
7476 void CodeGenFunction::EmitDeclMetadata() {
7477   if (LocalDeclMap.empty()) return;
7478 
7479   llvm::LLVMContext &Context = getLLVMContext();
7480 
7481   // Find the unique metadata ID for this name.
7482   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7483 
7484   llvm::NamedMDNode *GlobalMetadata = nullptr;
7485 
7486   for (auto &I : LocalDeclMap) {
7487     const Decl *D = I.first;
7488     llvm::Value *Addr = I.second.emitRawPointer(*this);
7489     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7490       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7491       Alloca->setMetadata(
7492           DeclPtrKind, llvm::MDNode::get(
7493                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7494     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7495       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7496       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7497     }
7498   }
7499 }
7500 
7501 void CodeGenModule::EmitVersionIdentMetadata() {
7502   llvm::NamedMDNode *IdentMetadata =
7503     TheModule.getOrInsertNamedMetadata("llvm.ident");
7504   std::string Version = getClangFullVersion();
7505   llvm::LLVMContext &Ctx = TheModule.getContext();
7506 
7507   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7508   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7509 }
7510 
7511 void CodeGenModule::EmitCommandLineMetadata() {
7512   llvm::NamedMDNode *CommandLineMetadata =
7513     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7514   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7515   llvm::LLVMContext &Ctx = TheModule.getContext();
7516 
7517   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7518   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7519 }
7520 
7521 void CodeGenModule::EmitCoverageFile() {
7522   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7523   if (!CUNode)
7524     return;
7525 
7526   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7527   llvm::LLVMContext &Ctx = TheModule.getContext();
7528   auto *CoverageDataFile =
7529       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7530   auto *CoverageNotesFile =
7531       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7532   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7533     llvm::MDNode *CU = CUNode->getOperand(i);
7534     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7535     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7536   }
7537 }
7538 
7539 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7540                                                        bool ForEH) {
7541   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7542   // FIXME: should we even be calling this method if RTTI is disabled
7543   // and it's not for EH?
7544   if (!shouldEmitRTTI(ForEH))
7545     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7546 
7547   if (ForEH && Ty->isObjCObjectPointerType() &&
7548       LangOpts.ObjCRuntime.isGNUFamily())
7549     return ObjCRuntime->GetEHType(Ty);
7550 
7551   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7552 }
7553 
7554 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7555   // Do not emit threadprivates in simd-only mode.
7556   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7557     return;
7558   for (auto RefExpr : D->varlist()) {
7559     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7560     bool PerformInit =
7561         VD->getAnyInitializer() &&
7562         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7563                                                         /*ForRef=*/false);
7564 
7565     Address Addr(GetAddrOfGlobalVar(VD),
7566                  getTypes().ConvertTypeForMem(VD->getType()),
7567                  getContext().getDeclAlign(VD));
7568     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7569             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7570       CXXGlobalInits.push_back(InitFunction);
7571   }
7572 }
7573 
7574 llvm::Metadata *
7575 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7576                                             StringRef Suffix) {
7577   if (auto *FnType = T->getAs<FunctionProtoType>())
7578     T = getContext().getFunctionType(
7579         FnType->getReturnType(), FnType->getParamTypes(),
7580         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7581 
7582   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7583   if (InternalId)
7584     return InternalId;
7585 
7586   if (isExternallyVisible(T->getLinkage())) {
7587     std::string OutName;
7588     llvm::raw_string_ostream Out(OutName);
7589     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7590         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7591 
7592     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7593       Out << ".normalized";
7594 
7595     Out << Suffix;
7596 
7597     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7598   } else {
7599     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7600                                            llvm::ArrayRef<llvm::Metadata *>());
7601   }
7602 
7603   return InternalId;
7604 }
7605 
7606 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7607   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7608 }
7609 
7610 llvm::Metadata *
7611 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7612   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7613 }
7614 
7615 // Generalize pointer types to a void pointer with the qualifiers of the
7616 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7617 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7618 // 'void *'.
7619 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7620   if (!Ty->isPointerType())
7621     return Ty;
7622 
7623   return Ctx.getPointerType(
7624       QualType(Ctx.VoidTy).withCVRQualifiers(
7625           Ty->getPointeeType().getCVRQualifiers()));
7626 }
7627 
7628 // Apply type generalization to a FunctionType's return and argument types
7629 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7630   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7631     SmallVector<QualType, 8> GeneralizedParams;
7632     for (auto &Param : FnType->param_types())
7633       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7634 
7635     return Ctx.getFunctionType(
7636         GeneralizeType(Ctx, FnType->getReturnType()),
7637         GeneralizedParams, FnType->getExtProtoInfo());
7638   }
7639 
7640   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7641     return Ctx.getFunctionNoProtoType(
7642         GeneralizeType(Ctx, FnType->getReturnType()));
7643 
7644   llvm_unreachable("Encountered unknown FunctionType");
7645 }
7646 
7647 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7648   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7649                                       GeneralizedMetadataIdMap, ".generalized");
7650 }
7651 
7652 /// Returns whether this module needs the "all-vtables" type identifier.
7653 bool CodeGenModule::NeedAllVtablesTypeId() const {
7654   // Returns true if at least one of vtable-based CFI checkers is enabled and
7655   // is not in the trapping mode.
7656   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7657            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7658           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7659            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7660           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7661            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7662           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7663            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7664 }
7665 
7666 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7667                                           CharUnits Offset,
7668                                           const CXXRecordDecl *RD) {
7669   llvm::Metadata *MD =
7670       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7671   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7672 
7673   if (CodeGenOpts.SanitizeCfiCrossDso)
7674     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7675       VTable->addTypeMetadata(Offset.getQuantity(),
7676                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7677 
7678   if (NeedAllVtablesTypeId()) {
7679     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7680     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7681   }
7682 }
7683 
7684 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7685   if (!SanStats)
7686     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7687 
7688   return *SanStats;
7689 }
7690 
7691 llvm::Value *
7692 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7693                                                   CodeGenFunction &CGF) {
7694   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7695   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7696   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7697   auto *Call = CGF.EmitRuntimeCall(
7698       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7699   return Call;
7700 }
7701 
7702 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7703     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7704   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7705                                  /* forPointeeType= */ true);
7706 }
7707 
7708 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7709                                                  LValueBaseInfo *BaseInfo,
7710                                                  TBAAAccessInfo *TBAAInfo,
7711                                                  bool forPointeeType) {
7712   if (TBAAInfo)
7713     *TBAAInfo = getTBAAAccessInfo(T);
7714 
7715   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7716   // that doesn't return the information we need to compute BaseInfo.
7717 
7718   // Honor alignment typedef attributes even on incomplete types.
7719   // We also honor them straight for C++ class types, even as pointees;
7720   // there's an expressivity gap here.
7721   if (auto TT = T->getAs<TypedefType>()) {
7722     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7723       if (BaseInfo)
7724         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7725       return getContext().toCharUnitsFromBits(Align);
7726     }
7727   }
7728 
7729   bool AlignForArray = T->isArrayType();
7730 
7731   // Analyze the base element type, so we don't get confused by incomplete
7732   // array types.
7733   T = getContext().getBaseElementType(T);
7734 
7735   if (T->isIncompleteType()) {
7736     // We could try to replicate the logic from
7737     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7738     // type is incomplete, so it's impossible to test. We could try to reuse
7739     // getTypeAlignIfKnown, but that doesn't return the information we need
7740     // to set BaseInfo.  So just ignore the possibility that the alignment is
7741     // greater than one.
7742     if (BaseInfo)
7743       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7744     return CharUnits::One();
7745   }
7746 
7747   if (BaseInfo)
7748     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7749 
7750   CharUnits Alignment;
7751   const CXXRecordDecl *RD;
7752   if (T.getQualifiers().hasUnaligned()) {
7753     Alignment = CharUnits::One();
7754   } else if (forPointeeType && !AlignForArray &&
7755              (RD = T->getAsCXXRecordDecl())) {
7756     // For C++ class pointees, we don't know whether we're pointing at a
7757     // base or a complete object, so we generally need to use the
7758     // non-virtual alignment.
7759     Alignment = getClassPointerAlignment(RD);
7760   } else {
7761     Alignment = getContext().getTypeAlignInChars(T);
7762   }
7763 
7764   // Cap to the global maximum type alignment unless the alignment
7765   // was somehow explicit on the type.
7766   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7767     if (Alignment.getQuantity() > MaxAlign &&
7768         !getContext().isAlignmentRequired(T))
7769       Alignment = CharUnits::fromQuantity(MaxAlign);
7770   }
7771   return Alignment;
7772 }
7773 
7774 bool CodeGenModule::stopAutoInit() {
7775   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7776   if (StopAfter) {
7777     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7778     // used
7779     if (NumAutoVarInit >= StopAfter) {
7780       return true;
7781     }
7782     if (!NumAutoVarInit) {
7783       unsigned DiagID = getDiags().getCustomDiagID(
7784           DiagnosticsEngine::Warning,
7785           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7786           "number of times ftrivial-auto-var-init=%1 gets applied.");
7787       getDiags().Report(DiagID)
7788           << StopAfter
7789           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7790                       LangOptions::TrivialAutoVarInitKind::Zero
7791                   ? "zero"
7792                   : "pattern");
7793     }
7794     ++NumAutoVarInit;
7795   }
7796   return false;
7797 }
7798 
7799 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7800                                                     const Decl *D) const {
7801   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7802   // postfix beginning with '.' since the symbol name can be demangled.
7803   if (LangOpts.HIP)
7804     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7805   else
7806     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7807 
7808   // If the CUID is not specified we try to generate a unique postfix.
7809   if (getLangOpts().CUID.empty()) {
7810     SourceManager &SM = getContext().getSourceManager();
7811     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7812     assert(PLoc.isValid() && "Source location is expected to be valid.");
7813 
7814     // Get the hash of the user defined macros.
7815     llvm::MD5 Hash;
7816     llvm::MD5::MD5Result Result;
7817     for (const auto &Arg : PreprocessorOpts.Macros)
7818       Hash.update(Arg.first);
7819     Hash.final(Result);
7820 
7821     // Get the UniqueID for the file containing the decl.
7822     llvm::sys::fs::UniqueID ID;
7823     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7824       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7825       assert(PLoc.isValid() && "Source location is expected to be valid.");
7826       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7827         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7828             << PLoc.getFilename() << EC.message();
7829     }
7830     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7831        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7832   } else {
7833     OS << getContext().getCUIDHash();
7834   }
7835 }
7836 
7837 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7838   assert(DeferredDeclsToEmit.empty() &&
7839          "Should have emitted all decls deferred to emit.");
7840   assert(NewBuilder->DeferredDecls.empty() &&
7841          "Newly created module should not have deferred decls");
7842   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7843   assert(EmittedDeferredDecls.empty() &&
7844          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7845 
7846   assert(NewBuilder->DeferredVTables.empty() &&
7847          "Newly created module should not have deferred vtables");
7848   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7849 
7850   assert(NewBuilder->MangledDeclNames.empty() &&
7851          "Newly created module should not have mangled decl names");
7852   assert(NewBuilder->Manglings.empty() &&
7853          "Newly created module should not have manglings");
7854   NewBuilder->Manglings = std::move(Manglings);
7855 
7856   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7857 
7858   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7859 }
7860