xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0949f96dc6521be80ebb8ebc1e1c506165c22aac)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
594       Arch == llvm::Triple::aarch64_be) {
595     getModule().addModuleFlag(llvm::Module::Error,
596                               "branch-target-enforcement",
597                               LangOpts.BranchTargetEnforcement);
598 
599     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
600                               LangOpts.hasSignReturnAddress());
601 
602     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
603                               LangOpts.isSignReturnAddressScopeAll());
604 
605     getModule().addModuleFlag(llvm::Module::Error,
606                               "sign-return-address-with-bkey",
607                               !LangOpts.isSignReturnAddressWithAKey());
608   }
609 
610   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
611     llvm::LLVMContext &Ctx = TheModule.getContext();
612     getModule().addModuleFlag(
613         llvm::Module::Error, "MemProfProfileFilename",
614         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
615   }
616 
617   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
618     // Indicate whether __nvvm_reflect should be configured to flush denormal
619     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
620     // property.)
621     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
622                               CodeGenOpts.FP32DenormalMode.Output !=
623                                   llvm::DenormalMode::IEEE);
624   }
625 
626   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
627   if (LangOpts.OpenCL) {
628     EmitOpenCLMetadata();
629     // Emit SPIR version.
630     if (getTriple().isSPIR()) {
631       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
632       // opencl.spir.version named metadata.
633       // C++ is backwards compatible with OpenCL v2.0.
634       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
635       llvm::Metadata *SPIRVerElts[] = {
636           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
637               Int32Ty, Version / 100)),
638           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
640       llvm::NamedMDNode *SPIRVerMD =
641           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
642       llvm::LLVMContext &Ctx = TheModule.getContext();
643       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
644     }
645   }
646 
647   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
648     assert(PLevel < 3 && "Invalid PIC Level");
649     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
650     if (Context.getLangOpts().PIE)
651       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
652   }
653 
654   if (getCodeGenOpts().CodeModel.size() > 0) {
655     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
656                   .Case("tiny", llvm::CodeModel::Tiny)
657                   .Case("small", llvm::CodeModel::Small)
658                   .Case("kernel", llvm::CodeModel::Kernel)
659                   .Case("medium", llvm::CodeModel::Medium)
660                   .Case("large", llvm::CodeModel::Large)
661                   .Default(~0u);
662     if (CM != ~0u) {
663       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
664       getModule().setCodeModel(codeModel);
665     }
666   }
667 
668   if (CodeGenOpts.NoPLT)
669     getModule().setRtLibUseGOT();
670 
671   SimplifyPersonality();
672 
673   if (getCodeGenOpts().EmitDeclMetadata)
674     EmitDeclMetadata();
675 
676   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
677     EmitCoverageFile();
678 
679   if (CGDebugInfo *DI = getModuleDebugInfo())
680     DI->finalize();
681 
682   if (getCodeGenOpts().EmitVersionIdentMetadata)
683     EmitVersionIdentMetadata();
684 
685   if (!getCodeGenOpts().RecordCommandLine.empty())
686     EmitCommandLineMetadata();
687 
688   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
689 
690   EmitBackendOptionsMetadata(getCodeGenOpts());
691 }
692 
693 void CodeGenModule::EmitOpenCLMetadata() {
694   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
695   // opencl.ocl.version named metadata node.
696   // C++ is backwards compatible with OpenCL v2.0.
697   // FIXME: We might need to add CXX version at some point too?
698   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
699   llvm::Metadata *OCLVerElts[] = {
700       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
701           Int32Ty, Version / 100)),
702       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
703           Int32Ty, (Version % 100) / 10))};
704   llvm::NamedMDNode *OCLVerMD =
705       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
706   llvm::LLVMContext &Ctx = TheModule.getContext();
707   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
708 }
709 
710 void CodeGenModule::EmitBackendOptionsMetadata(
711     const CodeGenOptions CodeGenOpts) {
712   switch (getTriple().getArch()) {
713   default:
714     break;
715   case llvm::Triple::riscv32:
716   case llvm::Triple::riscv64:
717     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
718                               CodeGenOpts.SmallDataLimit);
719     break;
720   }
721 }
722 
723 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
724   // Make sure that this type is translated.
725   Types.UpdateCompletedType(TD);
726 }
727 
728 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
729   // Make sure that this type is translated.
730   Types.RefreshTypeCacheForClass(RD);
731 }
732 
733 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
734   if (!TBAA)
735     return nullptr;
736   return TBAA->getTypeInfo(QTy);
737 }
738 
739 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
740   if (!TBAA)
741     return TBAAAccessInfo();
742   if (getLangOpts().CUDAIsDevice) {
743     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
744     // access info.
745     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
746       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
747           nullptr)
748         return TBAAAccessInfo();
749     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
750       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
751           nullptr)
752         return TBAAAccessInfo();
753     }
754   }
755   return TBAA->getAccessInfo(AccessType);
756 }
757 
758 TBAAAccessInfo
759 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
760   if (!TBAA)
761     return TBAAAccessInfo();
762   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
763 }
764 
765 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
766   if (!TBAA)
767     return nullptr;
768   return TBAA->getTBAAStructInfo(QTy);
769 }
770 
771 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
772   if (!TBAA)
773     return nullptr;
774   return TBAA->getBaseTypeInfo(QTy);
775 }
776 
777 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
778   if (!TBAA)
779     return nullptr;
780   return TBAA->getAccessTagInfo(Info);
781 }
782 
783 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
784                                                    TBAAAccessInfo TargetInfo) {
785   if (!TBAA)
786     return TBAAAccessInfo();
787   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
788 }
789 
790 TBAAAccessInfo
791 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
792                                                    TBAAAccessInfo InfoB) {
793   if (!TBAA)
794     return TBAAAccessInfo();
795   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
796 }
797 
798 TBAAAccessInfo
799 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
800                                               TBAAAccessInfo SrcInfo) {
801   if (!TBAA)
802     return TBAAAccessInfo();
803   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
804 }
805 
806 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
807                                                 TBAAAccessInfo TBAAInfo) {
808   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
809     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
810 }
811 
812 void CodeGenModule::DecorateInstructionWithInvariantGroup(
813     llvm::Instruction *I, const CXXRecordDecl *RD) {
814   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
815                  llvm::MDNode::get(getLLVMContext(), {}));
816 }
817 
818 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
819   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
820   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
821 }
822 
823 /// ErrorUnsupported - Print out an error that codegen doesn't support the
824 /// specified stmt yet.
825 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
826   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
827                                                "cannot compile this %0 yet");
828   std::string Msg = Type;
829   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
830       << Msg << S->getSourceRange();
831 }
832 
833 /// ErrorUnsupported - Print out an error that codegen doesn't support the
834 /// specified decl yet.
835 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
836   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
837                                                "cannot compile this %0 yet");
838   std::string Msg = Type;
839   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
840 }
841 
842 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
843   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
844 }
845 
846 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
847                                         const NamedDecl *D) const {
848   if (GV->hasDLLImportStorageClass())
849     return;
850   // Internal definitions always have default visibility.
851   if (GV->hasLocalLinkage()) {
852     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
853     return;
854   }
855   if (!D)
856     return;
857   // Set visibility for definitions, and for declarations if requested globally
858   // or set explicitly.
859   LinkageInfo LV = D->getLinkageAndVisibility();
860   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
861       !GV->isDeclarationForLinker())
862     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
863 }
864 
865 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
866                                  llvm::GlobalValue *GV) {
867   if (GV->hasLocalLinkage())
868     return true;
869 
870   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
871     return true;
872 
873   // DLLImport explicitly marks the GV as external.
874   if (GV->hasDLLImportStorageClass())
875     return false;
876 
877   const llvm::Triple &TT = CGM.getTriple();
878   if (TT.isWindowsGNUEnvironment()) {
879     // In MinGW, variables without DLLImport can still be automatically
880     // imported from a DLL by the linker; don't mark variables that
881     // potentially could come from another DLL as DSO local.
882     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
883         !GV->isThreadLocal())
884       return false;
885   }
886 
887   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
888   // remain unresolved in the link, they can be resolved to zero, which is
889   // outside the current DSO.
890   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
891     return false;
892 
893   // Every other GV is local on COFF.
894   // Make an exception for windows OS in the triple: Some firmware builds use
895   // *-win32-macho triples. This (accidentally?) produced windows relocations
896   // without GOT tables in older clang versions; Keep this behaviour.
897   // FIXME: even thread local variables?
898   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
899     return true;
900 
901   // Only handle COFF and ELF for now.
902   if (!TT.isOSBinFormatELF())
903     return false;
904 
905   // If this is not an executable, don't assume anything is local.
906   const auto &CGOpts = CGM.getCodeGenOpts();
907   llvm::Reloc::Model RM = CGOpts.RelocationModel;
908   const auto &LOpts = CGM.getLangOpts();
909   if (RM != llvm::Reloc::Static && !LOpts.PIE)
910     return false;
911 
912   // A definition cannot be preempted from an executable.
913   if (!GV->isDeclarationForLinker())
914     return true;
915 
916   // Most PIC code sequences that assume that a symbol is local cannot produce a
917   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
918   // depended, it seems worth it to handle it here.
919   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
920     return false;
921 
922   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
923   llvm::Triple::ArchType Arch = TT.getArch();
924   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
925       Arch == llvm::Triple::ppc64le)
926     return false;
927 
928   // If we can use copy relocations we can assume it is local.
929   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
930     if (!Var->isThreadLocal() &&
931         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
932       return true;
933 
934   // If we can use a plt entry as the symbol address we can assume it
935   // is local.
936   // FIXME: This should work for PIE, but the gold linker doesn't support it.
937   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
938     return true;
939 
940   // Otherwise don't assume it is local.
941   return false;
942 }
943 
944 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
945   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
946 }
947 
948 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
949                                           GlobalDecl GD) const {
950   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
951   // C++ destructors have a few C++ ABI specific special cases.
952   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
953     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
954     return;
955   }
956   setDLLImportDLLExport(GV, D);
957 }
958 
959 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
960                                           const NamedDecl *D) const {
961   if (D && D->isExternallyVisible()) {
962     if (D->hasAttr<DLLImportAttr>())
963       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
964     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
965       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
966   }
967 }
968 
969 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
970                                     GlobalDecl GD) const {
971   setDLLImportDLLExport(GV, GD);
972   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
973 }
974 
975 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
976                                     const NamedDecl *D) const {
977   setDLLImportDLLExport(GV, D);
978   setGVPropertiesAux(GV, D);
979 }
980 
981 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
982                                        const NamedDecl *D) const {
983   setGlobalVisibility(GV, D);
984   setDSOLocal(GV);
985   GV->setPartition(CodeGenOpts.SymbolPartition);
986 }
987 
988 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
989   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
990       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
991       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
992       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
993       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
994 }
995 
996 llvm::GlobalVariable::ThreadLocalMode
997 CodeGenModule::GetDefaultLLVMTLSModel() const {
998   switch (CodeGenOpts.getDefaultTLSModel()) {
999   case CodeGenOptions::GeneralDynamicTLSModel:
1000     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1001   case CodeGenOptions::LocalDynamicTLSModel:
1002     return llvm::GlobalVariable::LocalDynamicTLSModel;
1003   case CodeGenOptions::InitialExecTLSModel:
1004     return llvm::GlobalVariable::InitialExecTLSModel;
1005   case CodeGenOptions::LocalExecTLSModel:
1006     return llvm::GlobalVariable::LocalExecTLSModel;
1007   }
1008   llvm_unreachable("Invalid TLS model!");
1009 }
1010 
1011 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1012   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1013 
1014   llvm::GlobalValue::ThreadLocalMode TLM;
1015   TLM = GetDefaultLLVMTLSModel();
1016 
1017   // Override the TLS model if it is explicitly specified.
1018   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1019     TLM = GetLLVMTLSModel(Attr->getModel());
1020   }
1021 
1022   GV->setThreadLocalMode(TLM);
1023 }
1024 
1025 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1026                                           StringRef Name) {
1027   const TargetInfo &Target = CGM.getTarget();
1028   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1029 }
1030 
1031 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1032                                                  const CPUSpecificAttr *Attr,
1033                                                  unsigned CPUIndex,
1034                                                  raw_ostream &Out) {
1035   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1036   // supported.
1037   if (Attr)
1038     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1039   else if (CGM.getTarget().supportsIFunc())
1040     Out << ".resolver";
1041 }
1042 
1043 static void AppendTargetMangling(const CodeGenModule &CGM,
1044                                  const TargetAttr *Attr, raw_ostream &Out) {
1045   if (Attr->isDefaultVersion())
1046     return;
1047 
1048   Out << '.';
1049   const TargetInfo &Target = CGM.getTarget();
1050   ParsedTargetAttr Info =
1051       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1052         // Multiversioning doesn't allow "no-${feature}", so we can
1053         // only have "+" prefixes here.
1054         assert(LHS.startswith("+") && RHS.startswith("+") &&
1055                "Features should always have a prefix.");
1056         return Target.multiVersionSortPriority(LHS.substr(1)) >
1057                Target.multiVersionSortPriority(RHS.substr(1));
1058       });
1059 
1060   bool IsFirst = true;
1061 
1062   if (!Info.Architecture.empty()) {
1063     IsFirst = false;
1064     Out << "arch_" << Info.Architecture;
1065   }
1066 
1067   for (StringRef Feat : Info.Features) {
1068     if (!IsFirst)
1069       Out << '_';
1070     IsFirst = false;
1071     Out << Feat.substr(1);
1072   }
1073 }
1074 
1075 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1076                                       const NamedDecl *ND,
1077                                       bool OmitMultiVersionMangling = false) {
1078   SmallString<256> Buffer;
1079   llvm::raw_svector_ostream Out(Buffer);
1080   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1081   if (MC.shouldMangleDeclName(ND))
1082     MC.mangleName(GD.getWithDecl(ND), Out);
1083   else {
1084     IdentifierInfo *II = ND->getIdentifier();
1085     assert(II && "Attempt to mangle unnamed decl.");
1086     const auto *FD = dyn_cast<FunctionDecl>(ND);
1087 
1088     if (FD &&
1089         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1090       Out << "__regcall3__" << II->getName();
1091     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1092                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1093       Out << "__device_stub__" << II->getName();
1094     } else {
1095       Out << II->getName();
1096     }
1097   }
1098 
1099   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1100     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1101       switch (FD->getMultiVersionKind()) {
1102       case MultiVersionKind::CPUDispatch:
1103       case MultiVersionKind::CPUSpecific:
1104         AppendCPUSpecificCPUDispatchMangling(CGM,
1105                                              FD->getAttr<CPUSpecificAttr>(),
1106                                              GD.getMultiVersionIndex(), Out);
1107         break;
1108       case MultiVersionKind::Target:
1109         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1110         break;
1111       case MultiVersionKind::None:
1112         llvm_unreachable("None multiversion type isn't valid here");
1113       }
1114     }
1115 
1116   return std::string(Out.str());
1117 }
1118 
1119 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1120                                             const FunctionDecl *FD) {
1121   if (!FD->isMultiVersion())
1122     return;
1123 
1124   // Get the name of what this would be without the 'target' attribute.  This
1125   // allows us to lookup the version that was emitted when this wasn't a
1126   // multiversion function.
1127   std::string NonTargetName =
1128       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1129   GlobalDecl OtherGD;
1130   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1131     assert(OtherGD.getCanonicalDecl()
1132                .getDecl()
1133                ->getAsFunction()
1134                ->isMultiVersion() &&
1135            "Other GD should now be a multiversioned function");
1136     // OtherFD is the version of this function that was mangled BEFORE
1137     // becoming a MultiVersion function.  It potentially needs to be updated.
1138     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1139                                       .getDecl()
1140                                       ->getAsFunction()
1141                                       ->getMostRecentDecl();
1142     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1143     // This is so that if the initial version was already the 'default'
1144     // version, we don't try to update it.
1145     if (OtherName != NonTargetName) {
1146       // Remove instead of erase, since others may have stored the StringRef
1147       // to this.
1148       const auto ExistingRecord = Manglings.find(NonTargetName);
1149       if (ExistingRecord != std::end(Manglings))
1150         Manglings.remove(&(*ExistingRecord));
1151       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1152       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1153       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1154         Entry->setName(OtherName);
1155     }
1156   }
1157 }
1158 
1159 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1160   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1161 
1162   // Some ABIs don't have constructor variants.  Make sure that base and
1163   // complete constructors get mangled the same.
1164   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1165     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1166       CXXCtorType OrigCtorType = GD.getCtorType();
1167       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1168       if (OrigCtorType == Ctor_Base)
1169         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1170     }
1171   }
1172 
1173   auto FoundName = MangledDeclNames.find(CanonicalGD);
1174   if (FoundName != MangledDeclNames.end())
1175     return FoundName->second;
1176 
1177   // Keep the first result in the case of a mangling collision.
1178   const auto *ND = cast<NamedDecl>(GD.getDecl());
1179   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1180 
1181   // Ensure either we have different ABIs between host and device compilations,
1182   // says host compilation following MSVC ABI but device compilation follows
1183   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1184   // mangling should be the same after name stubbing. The later checking is
1185   // very important as the device kernel name being mangled in host-compilation
1186   // is used to resolve the device binaries to be executed. Inconsistent naming
1187   // result in undefined behavior. Even though we cannot check that naming
1188   // directly between host- and device-compilations, the host- and
1189   // device-mangling in host compilation could help catching certain ones.
1190   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1191          getLangOpts().CUDAIsDevice ||
1192          (getContext().getAuxTargetInfo() &&
1193           (getContext().getAuxTargetInfo()->getCXXABI() !=
1194            getContext().getTargetInfo().getCXXABI())) ||
1195          getCUDARuntime().getDeviceSideName(ND) ==
1196              getMangledNameImpl(
1197                  *this,
1198                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1199                  ND));
1200 
1201   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1202   return MangledDeclNames[CanonicalGD] = Result.first->first();
1203 }
1204 
1205 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1206                                              const BlockDecl *BD) {
1207   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1208   const Decl *D = GD.getDecl();
1209 
1210   SmallString<256> Buffer;
1211   llvm::raw_svector_ostream Out(Buffer);
1212   if (!D)
1213     MangleCtx.mangleGlobalBlock(BD,
1214       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1215   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1216     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1217   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1218     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1219   else
1220     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1221 
1222   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1223   return Result.first->first();
1224 }
1225 
1226 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1227   return getModule().getNamedValue(Name);
1228 }
1229 
1230 /// AddGlobalCtor - Add a function to the list that will be called before
1231 /// main() runs.
1232 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1233                                   llvm::Constant *AssociatedData) {
1234   // FIXME: Type coercion of void()* types.
1235   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1236 }
1237 
1238 /// AddGlobalDtor - Add a function to the list that will be called
1239 /// when the module is unloaded.
1240 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1241   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1242     if (getCXXABI().useSinitAndSterm())
1243       llvm::report_fatal_error(
1244           "register global dtors with atexit() is not supported yet");
1245     DtorsUsingAtExit[Priority].push_back(Dtor);
1246     return;
1247   }
1248 
1249   // FIXME: Type coercion of void()* types.
1250   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1251 }
1252 
1253 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1254   if (Fns.empty()) return;
1255 
1256   // Ctor function type is void()*.
1257   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1258   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1259       TheModule.getDataLayout().getProgramAddressSpace());
1260 
1261   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1262   llvm::StructType *CtorStructTy = llvm::StructType::get(
1263       Int32Ty, CtorPFTy, VoidPtrTy);
1264 
1265   // Construct the constructor and destructor arrays.
1266   ConstantInitBuilder builder(*this);
1267   auto ctors = builder.beginArray(CtorStructTy);
1268   for (const auto &I : Fns) {
1269     auto ctor = ctors.beginStruct(CtorStructTy);
1270     ctor.addInt(Int32Ty, I.Priority);
1271     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1272     if (I.AssociatedData)
1273       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1274     else
1275       ctor.addNullPointer(VoidPtrTy);
1276     ctor.finishAndAddTo(ctors);
1277   }
1278 
1279   auto list =
1280     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1281                                 /*constant*/ false,
1282                                 llvm::GlobalValue::AppendingLinkage);
1283 
1284   // The LTO linker doesn't seem to like it when we set an alignment
1285   // on appending variables.  Take it off as a workaround.
1286   list->setAlignment(llvm::None);
1287 
1288   Fns.clear();
1289 }
1290 
1291 llvm::GlobalValue::LinkageTypes
1292 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1293   const auto *D = cast<FunctionDecl>(GD.getDecl());
1294 
1295   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1296 
1297   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1298     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1299 
1300   if (isa<CXXConstructorDecl>(D) &&
1301       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1302       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1303     // Our approach to inheriting constructors is fundamentally different from
1304     // that used by the MS ABI, so keep our inheriting constructor thunks
1305     // internal rather than trying to pick an unambiguous mangling for them.
1306     return llvm::GlobalValue::InternalLinkage;
1307   }
1308 
1309   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1310 }
1311 
1312 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1313   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1314   if (!MDS) return nullptr;
1315 
1316   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1317 }
1318 
1319 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1320                                               const CGFunctionInfo &Info,
1321                                               llvm::Function *F) {
1322   unsigned CallingConv;
1323   llvm::AttributeList PAL;
1324   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1325   F->setAttributes(PAL);
1326   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1327 }
1328 
1329 static void removeImageAccessQualifier(std::string& TyName) {
1330   std::string ReadOnlyQual("__read_only");
1331   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1332   if (ReadOnlyPos != std::string::npos)
1333     // "+ 1" for the space after access qualifier.
1334     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1335   else {
1336     std::string WriteOnlyQual("__write_only");
1337     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1338     if (WriteOnlyPos != std::string::npos)
1339       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1340     else {
1341       std::string ReadWriteQual("__read_write");
1342       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1343       if (ReadWritePos != std::string::npos)
1344         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1345     }
1346   }
1347 }
1348 
1349 // Returns the address space id that should be produced to the
1350 // kernel_arg_addr_space metadata. This is always fixed to the ids
1351 // as specified in the SPIR 2.0 specification in order to differentiate
1352 // for example in clGetKernelArgInfo() implementation between the address
1353 // spaces with targets without unique mapping to the OpenCL address spaces
1354 // (basically all single AS CPUs).
1355 static unsigned ArgInfoAddressSpace(LangAS AS) {
1356   switch (AS) {
1357   case LangAS::opencl_global:
1358     return 1;
1359   case LangAS::opencl_constant:
1360     return 2;
1361   case LangAS::opencl_local:
1362     return 3;
1363   case LangAS::opencl_generic:
1364     return 4; // Not in SPIR 2.0 specs.
1365   case LangAS::opencl_global_device:
1366     return 5;
1367   case LangAS::opencl_global_host:
1368     return 6;
1369   default:
1370     return 0; // Assume private.
1371   }
1372 }
1373 
1374 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1375                                          const FunctionDecl *FD,
1376                                          CodeGenFunction *CGF) {
1377   assert(((FD && CGF) || (!FD && !CGF)) &&
1378          "Incorrect use - FD and CGF should either be both null or not!");
1379   // Create MDNodes that represent the kernel arg metadata.
1380   // Each MDNode is a list in the form of "key", N number of values which is
1381   // the same number of values as their are kernel arguments.
1382 
1383   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1384 
1385   // MDNode for the kernel argument address space qualifiers.
1386   SmallVector<llvm::Metadata *, 8> addressQuals;
1387 
1388   // MDNode for the kernel argument access qualifiers (images only).
1389   SmallVector<llvm::Metadata *, 8> accessQuals;
1390 
1391   // MDNode for the kernel argument type names.
1392   SmallVector<llvm::Metadata *, 8> argTypeNames;
1393 
1394   // MDNode for the kernel argument base type names.
1395   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1396 
1397   // MDNode for the kernel argument type qualifiers.
1398   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1399 
1400   // MDNode for the kernel argument names.
1401   SmallVector<llvm::Metadata *, 8> argNames;
1402 
1403   if (FD && CGF)
1404     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1405       const ParmVarDecl *parm = FD->getParamDecl(i);
1406       QualType ty = parm->getType();
1407       std::string typeQuals;
1408 
1409       if (ty->isPointerType()) {
1410         QualType pointeeTy = ty->getPointeeType();
1411 
1412         // Get address qualifier.
1413         addressQuals.push_back(
1414             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1415                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1416 
1417         // Get argument type name.
1418         std::string typeName =
1419             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1420 
1421         // Turn "unsigned type" to "utype"
1422         std::string::size_type pos = typeName.find("unsigned");
1423         if (pointeeTy.isCanonical() && pos != std::string::npos)
1424           typeName.erase(pos + 1, 8);
1425 
1426         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1427 
1428         std::string baseTypeName =
1429             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1430                 Policy) +
1431             "*";
1432 
1433         // Turn "unsigned type" to "utype"
1434         pos = baseTypeName.find("unsigned");
1435         if (pos != std::string::npos)
1436           baseTypeName.erase(pos + 1, 8);
1437 
1438         argBaseTypeNames.push_back(
1439             llvm::MDString::get(VMContext, baseTypeName));
1440 
1441         // Get argument type qualifiers:
1442         if (ty.isRestrictQualified())
1443           typeQuals = "restrict";
1444         if (pointeeTy.isConstQualified() ||
1445             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1446           typeQuals += typeQuals.empty() ? "const" : " const";
1447         if (pointeeTy.isVolatileQualified())
1448           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1449       } else {
1450         uint32_t AddrSpc = 0;
1451         bool isPipe = ty->isPipeType();
1452         if (ty->isImageType() || isPipe)
1453           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1454 
1455         addressQuals.push_back(
1456             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1457 
1458         // Get argument type name.
1459         std::string typeName;
1460         if (isPipe)
1461           typeName = ty.getCanonicalType()
1462                          ->castAs<PipeType>()
1463                          ->getElementType()
1464                          .getAsString(Policy);
1465         else
1466           typeName = ty.getUnqualifiedType().getAsString(Policy);
1467 
1468         // Turn "unsigned type" to "utype"
1469         std::string::size_type pos = typeName.find("unsigned");
1470         if (ty.isCanonical() && pos != std::string::npos)
1471           typeName.erase(pos + 1, 8);
1472 
1473         std::string baseTypeName;
1474         if (isPipe)
1475           baseTypeName = ty.getCanonicalType()
1476                              ->castAs<PipeType>()
1477                              ->getElementType()
1478                              .getCanonicalType()
1479                              .getAsString(Policy);
1480         else
1481           baseTypeName =
1482               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1483 
1484         // Remove access qualifiers on images
1485         // (as they are inseparable from type in clang implementation,
1486         // but OpenCL spec provides a special query to get access qualifier
1487         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1488         if (ty->isImageType()) {
1489           removeImageAccessQualifier(typeName);
1490           removeImageAccessQualifier(baseTypeName);
1491         }
1492 
1493         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1494 
1495         // Turn "unsigned type" to "utype"
1496         pos = baseTypeName.find("unsigned");
1497         if (pos != std::string::npos)
1498           baseTypeName.erase(pos + 1, 8);
1499 
1500         argBaseTypeNames.push_back(
1501             llvm::MDString::get(VMContext, baseTypeName));
1502 
1503         if (isPipe)
1504           typeQuals = "pipe";
1505       }
1506 
1507       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1508 
1509       // Get image and pipe access qualifier:
1510       if (ty->isImageType() || ty->isPipeType()) {
1511         const Decl *PDecl = parm;
1512         if (auto *TD = dyn_cast<TypedefType>(ty))
1513           PDecl = TD->getDecl();
1514         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1515         if (A && A->isWriteOnly())
1516           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1517         else if (A && A->isReadWrite())
1518           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1519         else
1520           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1521       } else
1522         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1523 
1524       // Get argument name.
1525       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1526     }
1527 
1528   Fn->setMetadata("kernel_arg_addr_space",
1529                   llvm::MDNode::get(VMContext, addressQuals));
1530   Fn->setMetadata("kernel_arg_access_qual",
1531                   llvm::MDNode::get(VMContext, accessQuals));
1532   Fn->setMetadata("kernel_arg_type",
1533                   llvm::MDNode::get(VMContext, argTypeNames));
1534   Fn->setMetadata("kernel_arg_base_type",
1535                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1536   Fn->setMetadata("kernel_arg_type_qual",
1537                   llvm::MDNode::get(VMContext, argTypeQuals));
1538   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1539     Fn->setMetadata("kernel_arg_name",
1540                     llvm::MDNode::get(VMContext, argNames));
1541 }
1542 
1543 /// Determines whether the language options require us to model
1544 /// unwind exceptions.  We treat -fexceptions as mandating this
1545 /// except under the fragile ObjC ABI with only ObjC exceptions
1546 /// enabled.  This means, for example, that C with -fexceptions
1547 /// enables this.
1548 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1549   // If exceptions are completely disabled, obviously this is false.
1550   if (!LangOpts.Exceptions) return false;
1551 
1552   // If C++ exceptions are enabled, this is true.
1553   if (LangOpts.CXXExceptions) return true;
1554 
1555   // If ObjC exceptions are enabled, this depends on the ABI.
1556   if (LangOpts.ObjCExceptions) {
1557     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1558   }
1559 
1560   return true;
1561 }
1562 
1563 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1564                                                       const CXXMethodDecl *MD) {
1565   // Check that the type metadata can ever actually be used by a call.
1566   if (!CGM.getCodeGenOpts().LTOUnit ||
1567       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1568     return false;
1569 
1570   // Only functions whose address can be taken with a member function pointer
1571   // need this sort of type metadata.
1572   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1573          !isa<CXXDestructorDecl>(MD);
1574 }
1575 
1576 std::vector<const CXXRecordDecl *>
1577 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1578   llvm::SetVector<const CXXRecordDecl *> MostBases;
1579 
1580   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1581   CollectMostBases = [&](const CXXRecordDecl *RD) {
1582     if (RD->getNumBases() == 0)
1583       MostBases.insert(RD);
1584     for (const CXXBaseSpecifier &B : RD->bases())
1585       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1586   };
1587   CollectMostBases(RD);
1588   return MostBases.takeVector();
1589 }
1590 
1591 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1592                                                            llvm::Function *F) {
1593   llvm::AttrBuilder B;
1594 
1595   if (CodeGenOpts.UnwindTables)
1596     B.addAttribute(llvm::Attribute::UWTable);
1597 
1598   if (CodeGenOpts.StackClashProtector)
1599     B.addAttribute("probe-stack", "inline-asm");
1600 
1601   if (!hasUnwindExceptions(LangOpts))
1602     B.addAttribute(llvm::Attribute::NoUnwind);
1603 
1604   if (D && D->hasAttr<NoStackProtectorAttr>())
1605     B.addAttribute(llvm::Attribute::NoStackProtect);
1606   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1607     B.addAttribute(llvm::Attribute::StackProtect);
1608   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1609     B.addAttribute(llvm::Attribute::StackProtectStrong);
1610   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1611     B.addAttribute(llvm::Attribute::StackProtectReq);
1612 
1613   if (!D) {
1614     // If we don't have a declaration to control inlining, the function isn't
1615     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1616     // disabled, mark the function as noinline.
1617     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1618         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1619       B.addAttribute(llvm::Attribute::NoInline);
1620 
1621     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1622     return;
1623   }
1624 
1625   // Track whether we need to add the optnone LLVM attribute,
1626   // starting with the default for this optimization level.
1627   bool ShouldAddOptNone =
1628       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1629   // We can't add optnone in the following cases, it won't pass the verifier.
1630   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1631   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1632 
1633   // Add optnone, but do so only if the function isn't always_inline.
1634   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1635       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1636     B.addAttribute(llvm::Attribute::OptimizeNone);
1637 
1638     // OptimizeNone implies noinline; we should not be inlining such functions.
1639     B.addAttribute(llvm::Attribute::NoInline);
1640 
1641     // We still need to handle naked functions even though optnone subsumes
1642     // much of their semantics.
1643     if (D->hasAttr<NakedAttr>())
1644       B.addAttribute(llvm::Attribute::Naked);
1645 
1646     // OptimizeNone wins over OptimizeForSize and MinSize.
1647     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1648     F->removeFnAttr(llvm::Attribute::MinSize);
1649   } else if (D->hasAttr<NakedAttr>()) {
1650     // Naked implies noinline: we should not be inlining such functions.
1651     B.addAttribute(llvm::Attribute::Naked);
1652     B.addAttribute(llvm::Attribute::NoInline);
1653   } else if (D->hasAttr<NoDuplicateAttr>()) {
1654     B.addAttribute(llvm::Attribute::NoDuplicate);
1655   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1656     // Add noinline if the function isn't always_inline.
1657     B.addAttribute(llvm::Attribute::NoInline);
1658   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1659              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1660     // (noinline wins over always_inline, and we can't specify both in IR)
1661     B.addAttribute(llvm::Attribute::AlwaysInline);
1662   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1663     // If we're not inlining, then force everything that isn't always_inline to
1664     // carry an explicit noinline attribute.
1665     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1666       B.addAttribute(llvm::Attribute::NoInline);
1667   } else {
1668     // Otherwise, propagate the inline hint attribute and potentially use its
1669     // absence to mark things as noinline.
1670     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1671       // Search function and template pattern redeclarations for inline.
1672       auto CheckForInline = [](const FunctionDecl *FD) {
1673         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1674           return Redecl->isInlineSpecified();
1675         };
1676         if (any_of(FD->redecls(), CheckRedeclForInline))
1677           return true;
1678         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1679         if (!Pattern)
1680           return false;
1681         return any_of(Pattern->redecls(), CheckRedeclForInline);
1682       };
1683       if (CheckForInline(FD)) {
1684         B.addAttribute(llvm::Attribute::InlineHint);
1685       } else if (CodeGenOpts.getInlining() ==
1686                      CodeGenOptions::OnlyHintInlining &&
1687                  !FD->isInlined() &&
1688                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1689         B.addAttribute(llvm::Attribute::NoInline);
1690       }
1691     }
1692   }
1693 
1694   // Add other optimization related attributes if we are optimizing this
1695   // function.
1696   if (!D->hasAttr<OptimizeNoneAttr>()) {
1697     if (D->hasAttr<ColdAttr>()) {
1698       if (!ShouldAddOptNone)
1699         B.addAttribute(llvm::Attribute::OptimizeForSize);
1700       B.addAttribute(llvm::Attribute::Cold);
1701     }
1702 
1703     if (D->hasAttr<MinSizeAttr>())
1704       B.addAttribute(llvm::Attribute::MinSize);
1705   }
1706 
1707   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1708 
1709   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1710   if (alignment)
1711     F->setAlignment(llvm::Align(alignment));
1712 
1713   if (!D->hasAttr<AlignedAttr>())
1714     if (LangOpts.FunctionAlignment)
1715       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1716 
1717   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1718   // reserve a bit for differentiating between virtual and non-virtual member
1719   // functions. If the current target's C++ ABI requires this and this is a
1720   // member function, set its alignment accordingly.
1721   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1722     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1723       F->setAlignment(llvm::Align(2));
1724   }
1725 
1726   // In the cross-dso CFI mode with canonical jump tables, we want !type
1727   // attributes on definitions only.
1728   if (CodeGenOpts.SanitizeCfiCrossDso &&
1729       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1730     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1731       // Skip available_externally functions. They won't be codegen'ed in the
1732       // current module anyway.
1733       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1734         CreateFunctionTypeMetadataForIcall(FD, F);
1735     }
1736   }
1737 
1738   // Emit type metadata on member functions for member function pointer checks.
1739   // These are only ever necessary on definitions; we're guaranteed that the
1740   // definition will be present in the LTO unit as a result of LTO visibility.
1741   auto *MD = dyn_cast<CXXMethodDecl>(D);
1742   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1743     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1744       llvm::Metadata *Id =
1745           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1746               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1747       F->addTypeMetadata(0, Id);
1748     }
1749   }
1750 }
1751 
1752 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1753                                                   llvm::Function *F) {
1754   if (D->hasAttr<StrictFPAttr>()) {
1755     llvm::AttrBuilder FuncAttrs;
1756     FuncAttrs.addAttribute("strictfp");
1757     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1758   }
1759 }
1760 
1761 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1762   const Decl *D = GD.getDecl();
1763   if (dyn_cast_or_null<NamedDecl>(D))
1764     setGVProperties(GV, GD);
1765   else
1766     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1767 
1768   if (D && D->hasAttr<UsedAttr>())
1769     addUsedGlobal(GV);
1770 
1771   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1772     const auto *VD = cast<VarDecl>(D);
1773     if (VD->getType().isConstQualified() &&
1774         VD->getStorageDuration() == SD_Static)
1775       addUsedGlobal(GV);
1776   }
1777 }
1778 
1779 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1780                                                 llvm::AttrBuilder &Attrs) {
1781   // Add target-cpu and target-features attributes to functions. If
1782   // we have a decl for the function and it has a target attribute then
1783   // parse that and add it to the feature set.
1784   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1785   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1786   std::vector<std::string> Features;
1787   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1788   FD = FD ? FD->getMostRecentDecl() : FD;
1789   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1790   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1791   bool AddedAttr = false;
1792   if (TD || SD) {
1793     llvm::StringMap<bool> FeatureMap;
1794     getContext().getFunctionFeatureMap(FeatureMap, GD);
1795 
1796     // Produce the canonical string for this set of features.
1797     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1798       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1799 
1800     // Now add the target-cpu and target-features to the function.
1801     // While we populated the feature map above, we still need to
1802     // get and parse the target attribute so we can get the cpu for
1803     // the function.
1804     if (TD) {
1805       ParsedTargetAttr ParsedAttr = TD->parse();
1806       if (!ParsedAttr.Architecture.empty() &&
1807           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1808         TargetCPU = ParsedAttr.Architecture;
1809         TuneCPU = ""; // Clear the tune CPU.
1810       }
1811       if (!ParsedAttr.Tune.empty() &&
1812           getTarget().isValidCPUName(ParsedAttr.Tune))
1813         TuneCPU = ParsedAttr.Tune;
1814     }
1815   } else {
1816     // Otherwise just add the existing target cpu and target features to the
1817     // function.
1818     Features = getTarget().getTargetOpts().Features;
1819   }
1820 
1821   if (!TargetCPU.empty()) {
1822     Attrs.addAttribute("target-cpu", TargetCPU);
1823     AddedAttr = true;
1824   }
1825   if (!TuneCPU.empty()) {
1826     Attrs.addAttribute("tune-cpu", TuneCPU);
1827     AddedAttr = true;
1828   }
1829   if (!Features.empty()) {
1830     llvm::sort(Features);
1831     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1832     AddedAttr = true;
1833   }
1834 
1835   return AddedAttr;
1836 }
1837 
1838 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1839                                           llvm::GlobalObject *GO) {
1840   const Decl *D = GD.getDecl();
1841   SetCommonAttributes(GD, GO);
1842 
1843   if (D) {
1844     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1845       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1846         GV->addAttribute("bss-section", SA->getName());
1847       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1848         GV->addAttribute("data-section", SA->getName());
1849       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1850         GV->addAttribute("rodata-section", SA->getName());
1851       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1852         GV->addAttribute("relro-section", SA->getName());
1853     }
1854 
1855     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1856       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1857         if (!D->getAttr<SectionAttr>())
1858           F->addFnAttr("implicit-section-name", SA->getName());
1859 
1860       llvm::AttrBuilder Attrs;
1861       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1862         // We know that GetCPUAndFeaturesAttributes will always have the
1863         // newest set, since it has the newest possible FunctionDecl, so the
1864         // new ones should replace the old.
1865         llvm::AttrBuilder RemoveAttrs;
1866         RemoveAttrs.addAttribute("target-cpu");
1867         RemoveAttrs.addAttribute("target-features");
1868         RemoveAttrs.addAttribute("tune-cpu");
1869         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1870         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1871       }
1872     }
1873 
1874     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1875       GO->setSection(CSA->getName());
1876     else if (const auto *SA = D->getAttr<SectionAttr>())
1877       GO->setSection(SA->getName());
1878   }
1879 
1880   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1881 }
1882 
1883 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1884                                                   llvm::Function *F,
1885                                                   const CGFunctionInfo &FI) {
1886   const Decl *D = GD.getDecl();
1887   SetLLVMFunctionAttributes(GD, FI, F);
1888   SetLLVMFunctionAttributesForDefinition(D, F);
1889 
1890   F->setLinkage(llvm::Function::InternalLinkage);
1891 
1892   setNonAliasAttributes(GD, F);
1893 }
1894 
1895 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1896   // Set linkage and visibility in case we never see a definition.
1897   LinkageInfo LV = ND->getLinkageAndVisibility();
1898   // Don't set internal linkage on declarations.
1899   // "extern_weak" is overloaded in LLVM; we probably should have
1900   // separate linkage types for this.
1901   if (isExternallyVisible(LV.getLinkage()) &&
1902       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1903     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1904 }
1905 
1906 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1907                                                        llvm::Function *F) {
1908   // Only if we are checking indirect calls.
1909   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1910     return;
1911 
1912   // Non-static class methods are handled via vtable or member function pointer
1913   // checks elsewhere.
1914   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1915     return;
1916 
1917   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1918   F->addTypeMetadata(0, MD);
1919   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1920 
1921   // Emit a hash-based bit set entry for cross-DSO calls.
1922   if (CodeGenOpts.SanitizeCfiCrossDso)
1923     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1924       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1925 }
1926 
1927 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1928                                           bool IsIncompleteFunction,
1929                                           bool IsThunk) {
1930 
1931   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1932     // If this is an intrinsic function, set the function's attributes
1933     // to the intrinsic's attributes.
1934     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1935     return;
1936   }
1937 
1938   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1939 
1940   if (!IsIncompleteFunction)
1941     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1942 
1943   // Add the Returned attribute for "this", except for iOS 5 and earlier
1944   // where substantial code, including the libstdc++ dylib, was compiled with
1945   // GCC and does not actually return "this".
1946   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1947       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1948     assert(!F->arg_empty() &&
1949            F->arg_begin()->getType()
1950              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1951            "unexpected this return");
1952     F->addAttribute(1, llvm::Attribute::Returned);
1953   }
1954 
1955   // Only a few attributes are set on declarations; these may later be
1956   // overridden by a definition.
1957 
1958   setLinkageForGV(F, FD);
1959   setGVProperties(F, FD);
1960 
1961   // Setup target-specific attributes.
1962   if (!IsIncompleteFunction && F->isDeclaration())
1963     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1964 
1965   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1966     F->setSection(CSA->getName());
1967   else if (const auto *SA = FD->getAttr<SectionAttr>())
1968      F->setSection(SA->getName());
1969 
1970   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1971   if (FD->isInlineBuiltinDeclaration()) {
1972     const FunctionDecl *FDBody;
1973     bool HasBody = FD->hasBody(FDBody);
1974     (void)HasBody;
1975     assert(HasBody && "Inline builtin declarations should always have an "
1976                       "available body!");
1977     if (shouldEmitFunction(FDBody))
1978       F->addAttribute(llvm::AttributeList::FunctionIndex,
1979                       llvm::Attribute::NoBuiltin);
1980   }
1981 
1982   if (FD->isReplaceableGlobalAllocationFunction()) {
1983     // A replaceable global allocation function does not act like a builtin by
1984     // default, only if it is invoked by a new-expression or delete-expression.
1985     F->addAttribute(llvm::AttributeList::FunctionIndex,
1986                     llvm::Attribute::NoBuiltin);
1987   }
1988 
1989   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1990     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1991   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1992     if (MD->isVirtual())
1993       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1994 
1995   // Don't emit entries for function declarations in the cross-DSO mode. This
1996   // is handled with better precision by the receiving DSO. But if jump tables
1997   // are non-canonical then we need type metadata in order to produce the local
1998   // jump table.
1999   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2000       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2001     CreateFunctionTypeMetadataForIcall(FD, F);
2002 
2003   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2004     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2005 
2006   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2007     // Annotate the callback behavior as metadata:
2008     //  - The callback callee (as argument number).
2009     //  - The callback payloads (as argument numbers).
2010     llvm::LLVMContext &Ctx = F->getContext();
2011     llvm::MDBuilder MDB(Ctx);
2012 
2013     // The payload indices are all but the first one in the encoding. The first
2014     // identifies the callback callee.
2015     int CalleeIdx = *CB->encoding_begin();
2016     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2017     F->addMetadata(llvm::LLVMContext::MD_callback,
2018                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2019                                                CalleeIdx, PayloadIndices,
2020                                                /* VarArgsArePassed */ false)}));
2021   }
2022 }
2023 
2024 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2025   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2026          "Only globals with definition can force usage.");
2027   LLVMUsed.emplace_back(GV);
2028 }
2029 
2030 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2031   assert(!GV->isDeclaration() &&
2032          "Only globals with definition can force usage.");
2033   LLVMCompilerUsed.emplace_back(GV);
2034 }
2035 
2036 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2037                      std::vector<llvm::WeakTrackingVH> &List) {
2038   // Don't create llvm.used if there is no need.
2039   if (List.empty())
2040     return;
2041 
2042   // Convert List to what ConstantArray needs.
2043   SmallVector<llvm::Constant*, 8> UsedArray;
2044   UsedArray.resize(List.size());
2045   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2046     UsedArray[i] =
2047         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2048             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2049   }
2050 
2051   if (UsedArray.empty())
2052     return;
2053   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2054 
2055   auto *GV = new llvm::GlobalVariable(
2056       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2057       llvm::ConstantArray::get(ATy, UsedArray), Name);
2058 
2059   GV->setSection("llvm.metadata");
2060 }
2061 
2062 void CodeGenModule::emitLLVMUsed() {
2063   emitUsed(*this, "llvm.used", LLVMUsed);
2064   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2065 }
2066 
2067 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2068   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2069   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2070 }
2071 
2072 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2073   llvm::SmallString<32> Opt;
2074   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2075   if (Opt.empty())
2076     return;
2077   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2078   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2079 }
2080 
2081 void CodeGenModule::AddDependentLib(StringRef Lib) {
2082   auto &C = getLLVMContext();
2083   if (getTarget().getTriple().isOSBinFormatELF()) {
2084       ELFDependentLibraries.push_back(
2085         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2086     return;
2087   }
2088 
2089   llvm::SmallString<24> Opt;
2090   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2091   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2092   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2093 }
2094 
2095 /// Add link options implied by the given module, including modules
2096 /// it depends on, using a postorder walk.
2097 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2098                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2099                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2100   // Import this module's parent.
2101   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2102     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2103   }
2104 
2105   // Import this module's dependencies.
2106   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2107     if (Visited.insert(Mod->Imports[I - 1]).second)
2108       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2109   }
2110 
2111   // Add linker options to link against the libraries/frameworks
2112   // described by this module.
2113   llvm::LLVMContext &Context = CGM.getLLVMContext();
2114   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2115 
2116   // For modules that use export_as for linking, use that module
2117   // name instead.
2118   if (Mod->UseExportAsModuleLinkName)
2119     return;
2120 
2121   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2122     // Link against a framework.  Frameworks are currently Darwin only, so we
2123     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2124     if (Mod->LinkLibraries[I-1].IsFramework) {
2125       llvm::Metadata *Args[2] = {
2126           llvm::MDString::get(Context, "-framework"),
2127           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2128 
2129       Metadata.push_back(llvm::MDNode::get(Context, Args));
2130       continue;
2131     }
2132 
2133     // Link against a library.
2134     if (IsELF) {
2135       llvm::Metadata *Args[2] = {
2136           llvm::MDString::get(Context, "lib"),
2137           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2138       };
2139       Metadata.push_back(llvm::MDNode::get(Context, Args));
2140     } else {
2141       llvm::SmallString<24> Opt;
2142       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2143           Mod->LinkLibraries[I - 1].Library, Opt);
2144       auto *OptString = llvm::MDString::get(Context, Opt);
2145       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2146     }
2147   }
2148 }
2149 
2150 void CodeGenModule::EmitModuleLinkOptions() {
2151   // Collect the set of all of the modules we want to visit to emit link
2152   // options, which is essentially the imported modules and all of their
2153   // non-explicit child modules.
2154   llvm::SetVector<clang::Module *> LinkModules;
2155   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2156   SmallVector<clang::Module *, 16> Stack;
2157 
2158   // Seed the stack with imported modules.
2159   for (Module *M : ImportedModules) {
2160     // Do not add any link flags when an implementation TU of a module imports
2161     // a header of that same module.
2162     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2163         !getLangOpts().isCompilingModule())
2164       continue;
2165     if (Visited.insert(M).second)
2166       Stack.push_back(M);
2167   }
2168 
2169   // Find all of the modules to import, making a little effort to prune
2170   // non-leaf modules.
2171   while (!Stack.empty()) {
2172     clang::Module *Mod = Stack.pop_back_val();
2173 
2174     bool AnyChildren = false;
2175 
2176     // Visit the submodules of this module.
2177     for (const auto &SM : Mod->submodules()) {
2178       // Skip explicit children; they need to be explicitly imported to be
2179       // linked against.
2180       if (SM->IsExplicit)
2181         continue;
2182 
2183       if (Visited.insert(SM).second) {
2184         Stack.push_back(SM);
2185         AnyChildren = true;
2186       }
2187     }
2188 
2189     // We didn't find any children, so add this module to the list of
2190     // modules to link against.
2191     if (!AnyChildren) {
2192       LinkModules.insert(Mod);
2193     }
2194   }
2195 
2196   // Add link options for all of the imported modules in reverse topological
2197   // order.  We don't do anything to try to order import link flags with respect
2198   // to linker options inserted by things like #pragma comment().
2199   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2200   Visited.clear();
2201   for (Module *M : LinkModules)
2202     if (Visited.insert(M).second)
2203       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2204   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2205   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2206 
2207   // Add the linker options metadata flag.
2208   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2209   for (auto *MD : LinkerOptionsMetadata)
2210     NMD->addOperand(MD);
2211 }
2212 
2213 void CodeGenModule::EmitDeferred() {
2214   // Emit deferred declare target declarations.
2215   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2216     getOpenMPRuntime().emitDeferredTargetDecls();
2217 
2218   // Emit code for any potentially referenced deferred decls.  Since a
2219   // previously unused static decl may become used during the generation of code
2220   // for a static function, iterate until no changes are made.
2221 
2222   if (!DeferredVTables.empty()) {
2223     EmitDeferredVTables();
2224 
2225     // Emitting a vtable doesn't directly cause more vtables to
2226     // become deferred, although it can cause functions to be
2227     // emitted that then need those vtables.
2228     assert(DeferredVTables.empty());
2229   }
2230 
2231   // Emit CUDA/HIP static device variables referenced by host code only.
2232   if (getLangOpts().CUDA)
2233     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2234       DeferredDeclsToEmit.push_back(V);
2235 
2236   // Stop if we're out of both deferred vtables and deferred declarations.
2237   if (DeferredDeclsToEmit.empty())
2238     return;
2239 
2240   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2241   // work, it will not interfere with this.
2242   std::vector<GlobalDecl> CurDeclsToEmit;
2243   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2244 
2245   for (GlobalDecl &D : CurDeclsToEmit) {
2246     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2247     // to get GlobalValue with exactly the type we need, not something that
2248     // might had been created for another decl with the same mangled name but
2249     // different type.
2250     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2251         GetAddrOfGlobal(D, ForDefinition));
2252 
2253     // In case of different address spaces, we may still get a cast, even with
2254     // IsForDefinition equal to true. Query mangled names table to get
2255     // GlobalValue.
2256     if (!GV)
2257       GV = GetGlobalValue(getMangledName(D));
2258 
2259     // Make sure GetGlobalValue returned non-null.
2260     assert(GV);
2261 
2262     // Check to see if we've already emitted this.  This is necessary
2263     // for a couple of reasons: first, decls can end up in the
2264     // deferred-decls queue multiple times, and second, decls can end
2265     // up with definitions in unusual ways (e.g. by an extern inline
2266     // function acquiring a strong function redefinition).  Just
2267     // ignore these cases.
2268     if (!GV->isDeclaration())
2269       continue;
2270 
2271     // If this is OpenMP, check if it is legal to emit this global normally.
2272     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2273       continue;
2274 
2275     // Otherwise, emit the definition and move on to the next one.
2276     EmitGlobalDefinition(D, GV);
2277 
2278     // If we found out that we need to emit more decls, do that recursively.
2279     // This has the advantage that the decls are emitted in a DFS and related
2280     // ones are close together, which is convenient for testing.
2281     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2282       EmitDeferred();
2283       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2284     }
2285   }
2286 }
2287 
2288 void CodeGenModule::EmitVTablesOpportunistically() {
2289   // Try to emit external vtables as available_externally if they have emitted
2290   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2291   // is not allowed to create new references to things that need to be emitted
2292   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2293 
2294   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2295          && "Only emit opportunistic vtables with optimizations");
2296 
2297   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2298     assert(getVTables().isVTableExternal(RD) &&
2299            "This queue should only contain external vtables");
2300     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2301       VTables.GenerateClassData(RD);
2302   }
2303   OpportunisticVTables.clear();
2304 }
2305 
2306 void CodeGenModule::EmitGlobalAnnotations() {
2307   if (Annotations.empty())
2308     return;
2309 
2310   // Create a new global variable for the ConstantStruct in the Module.
2311   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2312     Annotations[0]->getType(), Annotations.size()), Annotations);
2313   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2314                                       llvm::GlobalValue::AppendingLinkage,
2315                                       Array, "llvm.global.annotations");
2316   gv->setSection(AnnotationSection);
2317 }
2318 
2319 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2320   llvm::Constant *&AStr = AnnotationStrings[Str];
2321   if (AStr)
2322     return AStr;
2323 
2324   // Not found yet, create a new global.
2325   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2326   auto *gv =
2327       new llvm::GlobalVariable(getModule(), s->getType(), true,
2328                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2329   gv->setSection(AnnotationSection);
2330   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2331   AStr = gv;
2332   return gv;
2333 }
2334 
2335 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2336   SourceManager &SM = getContext().getSourceManager();
2337   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2338   if (PLoc.isValid())
2339     return EmitAnnotationString(PLoc.getFilename());
2340   return EmitAnnotationString(SM.getBufferName(Loc));
2341 }
2342 
2343 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2344   SourceManager &SM = getContext().getSourceManager();
2345   PresumedLoc PLoc = SM.getPresumedLoc(L);
2346   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2347     SM.getExpansionLineNumber(L);
2348   return llvm::ConstantInt::get(Int32Ty, LineNo);
2349 }
2350 
2351 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2352   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2353   Exprs = Exprs.drop_front();
2354   if (Exprs.empty())
2355     return llvm::ConstantPointerNull::get(Int8PtrTy);
2356 
2357   llvm::FoldingSetNodeID ID;
2358   for (Expr *E : Exprs) {
2359     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2360   }
2361   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2362   if (Lookup)
2363     return Lookup;
2364 
2365   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2366   LLVMArgs.reserve(Exprs.size());
2367   ConstantEmitter ConstEmiter(*this);
2368   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2369     const auto *CE = cast<clang::ConstantExpr>(E);
2370     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2371                                     CE->getType());
2372   });
2373   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2374   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2375                                       llvm::GlobalValue::PrivateLinkage, Struct,
2376                                       ".args");
2377   GV->setSection(AnnotationSection);
2378   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2379   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2380 
2381   Lookup = Bitcasted;
2382   return Bitcasted;
2383 }
2384 
2385 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2386                                                 const AnnotateAttr *AA,
2387                                                 SourceLocation L) {
2388   // Get the globals for file name, annotation, and the line number.
2389   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2390                  *UnitGV = EmitAnnotationUnit(L),
2391                  *LineNoCst = EmitAnnotationLineNo(L),
2392                  *Args = EmitAnnotationArgs(AA);
2393 
2394   llvm::Constant *ASZeroGV = GV;
2395   if (GV->getAddressSpace() != 0) {
2396     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2397                    GV, GV->getValueType()->getPointerTo(0));
2398   }
2399 
2400   // Create the ConstantStruct for the global annotation.
2401   llvm::Constant *Fields[] = {
2402       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2403       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2404       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2405       LineNoCst,
2406       Args,
2407   };
2408   return llvm::ConstantStruct::getAnon(Fields);
2409 }
2410 
2411 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2412                                          llvm::GlobalValue *GV) {
2413   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2414   // Get the struct elements for these annotations.
2415   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2416     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2417 }
2418 
2419 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2420                                            llvm::Function *Fn,
2421                                            SourceLocation Loc) const {
2422   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2423   // Blacklist by function name.
2424   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2425     return true;
2426   // Blacklist by location.
2427   if (Loc.isValid())
2428     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2429   // If location is unknown, this may be a compiler-generated function. Assume
2430   // it's located in the main file.
2431   auto &SM = Context.getSourceManager();
2432   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2433     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2434   }
2435   return false;
2436 }
2437 
2438 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2439                                            SourceLocation Loc, QualType Ty,
2440                                            StringRef Category) const {
2441   // For now globals can be blacklisted only in ASan and KASan.
2442   const SanitizerMask EnabledAsanMask =
2443       LangOpts.Sanitize.Mask &
2444       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2445        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2446        SanitizerKind::MemTag);
2447   if (!EnabledAsanMask)
2448     return false;
2449   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2450   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2451     return true;
2452   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2453     return true;
2454   // Check global type.
2455   if (!Ty.isNull()) {
2456     // Drill down the array types: if global variable of a fixed type is
2457     // blacklisted, we also don't instrument arrays of them.
2458     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2459       Ty = AT->getElementType();
2460     Ty = Ty.getCanonicalType().getUnqualifiedType();
2461     // We allow to blacklist only record types (classes, structs etc.)
2462     if (Ty->isRecordType()) {
2463       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2464       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2465         return true;
2466     }
2467   }
2468   return false;
2469 }
2470 
2471 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2472                                    StringRef Category) const {
2473   const auto &XRayFilter = getContext().getXRayFilter();
2474   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2475   auto Attr = ImbueAttr::NONE;
2476   if (Loc.isValid())
2477     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2478   if (Attr == ImbueAttr::NONE)
2479     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2480   switch (Attr) {
2481   case ImbueAttr::NONE:
2482     return false;
2483   case ImbueAttr::ALWAYS:
2484     Fn->addFnAttr("function-instrument", "xray-always");
2485     break;
2486   case ImbueAttr::ALWAYS_ARG1:
2487     Fn->addFnAttr("function-instrument", "xray-always");
2488     Fn->addFnAttr("xray-log-args", "1");
2489     break;
2490   case ImbueAttr::NEVER:
2491     Fn->addFnAttr("function-instrument", "xray-never");
2492     break;
2493   }
2494   return true;
2495 }
2496 
2497 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2498   // Never defer when EmitAllDecls is specified.
2499   if (LangOpts.EmitAllDecls)
2500     return true;
2501 
2502   if (CodeGenOpts.KeepStaticConsts) {
2503     const auto *VD = dyn_cast<VarDecl>(Global);
2504     if (VD && VD->getType().isConstQualified() &&
2505         VD->getStorageDuration() == SD_Static)
2506       return true;
2507   }
2508 
2509   return getContext().DeclMustBeEmitted(Global);
2510 }
2511 
2512 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2513   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2514     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2515       // Implicit template instantiations may change linkage if they are later
2516       // explicitly instantiated, so they should not be emitted eagerly.
2517       return false;
2518     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2519     // not emit them eagerly unless we sure that the function must be emitted on
2520     // the host.
2521     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2522         !LangOpts.OpenMPIsDevice &&
2523         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2524         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2525       return false;
2526   }
2527   if (const auto *VD = dyn_cast<VarDecl>(Global))
2528     if (Context.getInlineVariableDefinitionKind(VD) ==
2529         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2530       // A definition of an inline constexpr static data member may change
2531       // linkage later if it's redeclared outside the class.
2532       return false;
2533   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2534   // codegen for global variables, because they may be marked as threadprivate.
2535   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2536       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2537       !isTypeConstant(Global->getType(), false) &&
2538       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2539     return false;
2540 
2541   return true;
2542 }
2543 
2544 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2545   StringRef Name = getMangledName(GD);
2546 
2547   // The UUID descriptor should be pointer aligned.
2548   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2549 
2550   // Look for an existing global.
2551   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2552     return ConstantAddress(GV, Alignment);
2553 
2554   ConstantEmitter Emitter(*this);
2555   llvm::Constant *Init;
2556 
2557   APValue &V = GD->getAsAPValue();
2558   if (!V.isAbsent()) {
2559     // If possible, emit the APValue version of the initializer. In particular,
2560     // this gets the type of the constant right.
2561     Init = Emitter.emitForInitializer(
2562         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2563   } else {
2564     // As a fallback, directly construct the constant.
2565     // FIXME: This may get padding wrong under esoteric struct layout rules.
2566     // MSVC appears to create a complete type 'struct __s_GUID' that it
2567     // presumably uses to represent these constants.
2568     MSGuidDecl::Parts Parts = GD->getParts();
2569     llvm::Constant *Fields[4] = {
2570         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2571         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2572         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2573         llvm::ConstantDataArray::getRaw(
2574             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2575             Int8Ty)};
2576     Init = llvm::ConstantStruct::getAnon(Fields);
2577   }
2578 
2579   auto *GV = new llvm::GlobalVariable(
2580       getModule(), Init->getType(),
2581       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2582   if (supportsCOMDAT())
2583     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2584   setDSOLocal(GV);
2585 
2586   llvm::Constant *Addr = GV;
2587   if (!V.isAbsent()) {
2588     Emitter.finalize(GV);
2589   } else {
2590     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2591     Addr = llvm::ConstantExpr::getBitCast(
2592         GV, Ty->getPointerTo(GV->getAddressSpace()));
2593   }
2594   return ConstantAddress(Addr, Alignment);
2595 }
2596 
2597 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2598     const TemplateParamObjectDecl *TPO) {
2599   ErrorUnsupported(TPO, "template parameter object");
2600   return ConstantAddress::invalid();
2601 }
2602 
2603 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2604   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2605   assert(AA && "No alias?");
2606 
2607   CharUnits Alignment = getContext().getDeclAlign(VD);
2608   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2609 
2610   // See if there is already something with the target's name in the module.
2611   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2612   if (Entry) {
2613     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2614     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2615     return ConstantAddress(Ptr, Alignment);
2616   }
2617 
2618   llvm::Constant *Aliasee;
2619   if (isa<llvm::FunctionType>(DeclTy))
2620     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2621                                       GlobalDecl(cast<FunctionDecl>(VD)),
2622                                       /*ForVTable=*/false);
2623   else
2624     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2625                                     llvm::PointerType::getUnqual(DeclTy),
2626                                     nullptr);
2627 
2628   auto *F = cast<llvm::GlobalValue>(Aliasee);
2629   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2630   WeakRefReferences.insert(F);
2631 
2632   return ConstantAddress(Aliasee, Alignment);
2633 }
2634 
2635 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2636   const auto *Global = cast<ValueDecl>(GD.getDecl());
2637 
2638   // Weak references don't produce any output by themselves.
2639   if (Global->hasAttr<WeakRefAttr>())
2640     return;
2641 
2642   // If this is an alias definition (which otherwise looks like a declaration)
2643   // emit it now.
2644   if (Global->hasAttr<AliasAttr>())
2645     return EmitAliasDefinition(GD);
2646 
2647   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2648   if (Global->hasAttr<IFuncAttr>())
2649     return emitIFuncDefinition(GD);
2650 
2651   // If this is a cpu_dispatch multiversion function, emit the resolver.
2652   if (Global->hasAttr<CPUDispatchAttr>())
2653     return emitCPUDispatchDefinition(GD);
2654 
2655   // If this is CUDA, be selective about which declarations we emit.
2656   if (LangOpts.CUDA) {
2657     if (LangOpts.CUDAIsDevice) {
2658       if (!Global->hasAttr<CUDADeviceAttr>() &&
2659           !Global->hasAttr<CUDAGlobalAttr>() &&
2660           !Global->hasAttr<CUDAConstantAttr>() &&
2661           !Global->hasAttr<CUDASharedAttr>() &&
2662           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2663           !Global->getType()->isCUDADeviceBuiltinTextureType())
2664         return;
2665     } else {
2666       // We need to emit host-side 'shadows' for all global
2667       // device-side variables because the CUDA runtime needs their
2668       // size and host-side address in order to provide access to
2669       // their device-side incarnations.
2670 
2671       // So device-only functions are the only things we skip.
2672       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2673           Global->hasAttr<CUDADeviceAttr>())
2674         return;
2675 
2676       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2677              "Expected Variable or Function");
2678     }
2679   }
2680 
2681   if (LangOpts.OpenMP) {
2682     // If this is OpenMP, check if it is legal to emit this global normally.
2683     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2684       return;
2685     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2686       if (MustBeEmitted(Global))
2687         EmitOMPDeclareReduction(DRD);
2688       return;
2689     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2690       if (MustBeEmitted(Global))
2691         EmitOMPDeclareMapper(DMD);
2692       return;
2693     }
2694   }
2695 
2696   // Ignore declarations, they will be emitted on their first use.
2697   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2698     // Forward declarations are emitted lazily on first use.
2699     if (!FD->doesThisDeclarationHaveABody()) {
2700       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2701         return;
2702 
2703       StringRef MangledName = getMangledName(GD);
2704 
2705       // Compute the function info and LLVM type.
2706       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2707       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2708 
2709       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2710                               /*DontDefer=*/false);
2711       return;
2712     }
2713   } else {
2714     const auto *VD = cast<VarDecl>(Global);
2715     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2716     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2717         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2718       if (LangOpts.OpenMP) {
2719         // Emit declaration of the must-be-emitted declare target variable.
2720         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2721                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2722           bool UnifiedMemoryEnabled =
2723               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2724           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2725               !UnifiedMemoryEnabled) {
2726             (void)GetAddrOfGlobalVar(VD);
2727           } else {
2728             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2729                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2730                      UnifiedMemoryEnabled)) &&
2731                    "Link clause or to clause with unified memory expected.");
2732             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2733           }
2734 
2735           return;
2736         }
2737       }
2738       // If this declaration may have caused an inline variable definition to
2739       // change linkage, make sure that it's emitted.
2740       if (Context.getInlineVariableDefinitionKind(VD) ==
2741           ASTContext::InlineVariableDefinitionKind::Strong)
2742         GetAddrOfGlobalVar(VD);
2743       return;
2744     }
2745   }
2746 
2747   // Defer code generation to first use when possible, e.g. if this is an inline
2748   // function. If the global must always be emitted, do it eagerly if possible
2749   // to benefit from cache locality.
2750   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2751     // Emit the definition if it can't be deferred.
2752     EmitGlobalDefinition(GD);
2753     return;
2754   }
2755 
2756   // If we're deferring emission of a C++ variable with an
2757   // initializer, remember the order in which it appeared in the file.
2758   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2759       cast<VarDecl>(Global)->hasInit()) {
2760     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2761     CXXGlobalInits.push_back(nullptr);
2762   }
2763 
2764   StringRef MangledName = getMangledName(GD);
2765   if (GetGlobalValue(MangledName) != nullptr) {
2766     // The value has already been used and should therefore be emitted.
2767     addDeferredDeclToEmit(GD);
2768   } else if (MustBeEmitted(Global)) {
2769     // The value must be emitted, but cannot be emitted eagerly.
2770     assert(!MayBeEmittedEagerly(Global));
2771     addDeferredDeclToEmit(GD);
2772   } else {
2773     // Otherwise, remember that we saw a deferred decl with this name.  The
2774     // first use of the mangled name will cause it to move into
2775     // DeferredDeclsToEmit.
2776     DeferredDecls[MangledName] = GD;
2777   }
2778 }
2779 
2780 // Check if T is a class type with a destructor that's not dllimport.
2781 static bool HasNonDllImportDtor(QualType T) {
2782   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2783     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2784       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2785         return true;
2786 
2787   return false;
2788 }
2789 
2790 namespace {
2791   struct FunctionIsDirectlyRecursive
2792       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2793     const StringRef Name;
2794     const Builtin::Context &BI;
2795     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2796         : Name(N), BI(C) {}
2797 
2798     bool VisitCallExpr(const CallExpr *E) {
2799       const FunctionDecl *FD = E->getDirectCallee();
2800       if (!FD)
2801         return false;
2802       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2803       if (Attr && Name == Attr->getLabel())
2804         return true;
2805       unsigned BuiltinID = FD->getBuiltinID();
2806       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2807         return false;
2808       StringRef BuiltinName = BI.getName(BuiltinID);
2809       if (BuiltinName.startswith("__builtin_") &&
2810           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2811         return true;
2812       }
2813       return false;
2814     }
2815 
2816     bool VisitStmt(const Stmt *S) {
2817       for (const Stmt *Child : S->children())
2818         if (Child && this->Visit(Child))
2819           return true;
2820       return false;
2821     }
2822   };
2823 
2824   // Make sure we're not referencing non-imported vars or functions.
2825   struct DLLImportFunctionVisitor
2826       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2827     bool SafeToInline = true;
2828 
2829     bool shouldVisitImplicitCode() const { return true; }
2830 
2831     bool VisitVarDecl(VarDecl *VD) {
2832       if (VD->getTLSKind()) {
2833         // A thread-local variable cannot be imported.
2834         SafeToInline = false;
2835         return SafeToInline;
2836       }
2837 
2838       // A variable definition might imply a destructor call.
2839       if (VD->isThisDeclarationADefinition())
2840         SafeToInline = !HasNonDllImportDtor(VD->getType());
2841 
2842       return SafeToInline;
2843     }
2844 
2845     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2846       if (const auto *D = E->getTemporary()->getDestructor())
2847         SafeToInline = D->hasAttr<DLLImportAttr>();
2848       return SafeToInline;
2849     }
2850 
2851     bool VisitDeclRefExpr(DeclRefExpr *E) {
2852       ValueDecl *VD = E->getDecl();
2853       if (isa<FunctionDecl>(VD))
2854         SafeToInline = VD->hasAttr<DLLImportAttr>();
2855       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2856         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2857       return SafeToInline;
2858     }
2859 
2860     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2861       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2862       return SafeToInline;
2863     }
2864 
2865     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2866       CXXMethodDecl *M = E->getMethodDecl();
2867       if (!M) {
2868         // Call through a pointer to member function. This is safe to inline.
2869         SafeToInline = true;
2870       } else {
2871         SafeToInline = M->hasAttr<DLLImportAttr>();
2872       }
2873       return SafeToInline;
2874     }
2875 
2876     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2877       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2878       return SafeToInline;
2879     }
2880 
2881     bool VisitCXXNewExpr(CXXNewExpr *E) {
2882       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2883       return SafeToInline;
2884     }
2885   };
2886 }
2887 
2888 // isTriviallyRecursive - Check if this function calls another
2889 // decl that, because of the asm attribute or the other decl being a builtin,
2890 // ends up pointing to itself.
2891 bool
2892 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2893   StringRef Name;
2894   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2895     // asm labels are a special kind of mangling we have to support.
2896     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2897     if (!Attr)
2898       return false;
2899     Name = Attr->getLabel();
2900   } else {
2901     Name = FD->getName();
2902   }
2903 
2904   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2905   const Stmt *Body = FD->getBody();
2906   return Body ? Walker.Visit(Body) : false;
2907 }
2908 
2909 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2910   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2911     return true;
2912   const auto *F = cast<FunctionDecl>(GD.getDecl());
2913   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2914     return false;
2915 
2916   if (F->hasAttr<DLLImportAttr>()) {
2917     // Check whether it would be safe to inline this dllimport function.
2918     DLLImportFunctionVisitor Visitor;
2919     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2920     if (!Visitor.SafeToInline)
2921       return false;
2922 
2923     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2924       // Implicit destructor invocations aren't captured in the AST, so the
2925       // check above can't see them. Check for them manually here.
2926       for (const Decl *Member : Dtor->getParent()->decls())
2927         if (isa<FieldDecl>(Member))
2928           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2929             return false;
2930       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2931         if (HasNonDllImportDtor(B.getType()))
2932           return false;
2933     }
2934   }
2935 
2936   // PR9614. Avoid cases where the source code is lying to us. An available
2937   // externally function should have an equivalent function somewhere else,
2938   // but a function that calls itself through asm label/`__builtin_` trickery is
2939   // clearly not equivalent to the real implementation.
2940   // This happens in glibc's btowc and in some configure checks.
2941   return !isTriviallyRecursive(F);
2942 }
2943 
2944 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2945   return CodeGenOpts.OptimizationLevel > 0;
2946 }
2947 
2948 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2949                                                        llvm::GlobalValue *GV) {
2950   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2951 
2952   if (FD->isCPUSpecificMultiVersion()) {
2953     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2954     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2955       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2956     // Requires multiple emits.
2957   } else
2958     EmitGlobalFunctionDefinition(GD, GV);
2959 }
2960 
2961 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2962   const auto *D = cast<ValueDecl>(GD.getDecl());
2963 
2964   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2965                                  Context.getSourceManager(),
2966                                  "Generating code for declaration");
2967 
2968   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2969     // At -O0, don't generate IR for functions with available_externally
2970     // linkage.
2971     if (!shouldEmitFunction(GD))
2972       return;
2973 
2974     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2975       std::string Name;
2976       llvm::raw_string_ostream OS(Name);
2977       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2978                                /*Qualified=*/true);
2979       return Name;
2980     });
2981 
2982     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2983       // Make sure to emit the definition(s) before we emit the thunks.
2984       // This is necessary for the generation of certain thunks.
2985       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2986         ABI->emitCXXStructor(GD);
2987       else if (FD->isMultiVersion())
2988         EmitMultiVersionFunctionDefinition(GD, GV);
2989       else
2990         EmitGlobalFunctionDefinition(GD, GV);
2991 
2992       if (Method->isVirtual())
2993         getVTables().EmitThunks(GD);
2994 
2995       return;
2996     }
2997 
2998     if (FD->isMultiVersion())
2999       return EmitMultiVersionFunctionDefinition(GD, GV);
3000     return EmitGlobalFunctionDefinition(GD, GV);
3001   }
3002 
3003   if (const auto *VD = dyn_cast<VarDecl>(D))
3004     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3005 
3006   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3007 }
3008 
3009 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3010                                                       llvm::Function *NewFn);
3011 
3012 static unsigned
3013 TargetMVPriority(const TargetInfo &TI,
3014                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3015   unsigned Priority = 0;
3016   for (StringRef Feat : RO.Conditions.Features)
3017     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3018 
3019   if (!RO.Conditions.Architecture.empty())
3020     Priority = std::max(
3021         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3022   return Priority;
3023 }
3024 
3025 void CodeGenModule::emitMultiVersionFunctions() {
3026   for (GlobalDecl GD : MultiVersionFuncs) {
3027     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3028     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3029     getContext().forEachMultiversionedFunctionVersion(
3030         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3031           GlobalDecl CurGD{
3032               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3033           StringRef MangledName = getMangledName(CurGD);
3034           llvm::Constant *Func = GetGlobalValue(MangledName);
3035           if (!Func) {
3036             if (CurFD->isDefined()) {
3037               EmitGlobalFunctionDefinition(CurGD, nullptr);
3038               Func = GetGlobalValue(MangledName);
3039             } else {
3040               const CGFunctionInfo &FI =
3041                   getTypes().arrangeGlobalDeclaration(GD);
3042               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3043               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3044                                        /*DontDefer=*/false, ForDefinition);
3045             }
3046             assert(Func && "This should have just been created");
3047           }
3048 
3049           const auto *TA = CurFD->getAttr<TargetAttr>();
3050           llvm::SmallVector<StringRef, 8> Feats;
3051           TA->getAddedFeatures(Feats);
3052 
3053           Options.emplace_back(cast<llvm::Function>(Func),
3054                                TA->getArchitecture(), Feats);
3055         });
3056 
3057     llvm::Function *ResolverFunc;
3058     const TargetInfo &TI = getTarget();
3059 
3060     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3061       ResolverFunc = cast<llvm::Function>(
3062           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3063       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3064     } else {
3065       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3066     }
3067 
3068     if (supportsCOMDAT())
3069       ResolverFunc->setComdat(
3070           getModule().getOrInsertComdat(ResolverFunc->getName()));
3071 
3072     llvm::stable_sort(
3073         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3074                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3075           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3076         });
3077     CodeGenFunction CGF(*this);
3078     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3079   }
3080 }
3081 
3082 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3083   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3084   assert(FD && "Not a FunctionDecl?");
3085   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3086   assert(DD && "Not a cpu_dispatch Function?");
3087   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3088 
3089   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3090     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3091     DeclTy = getTypes().GetFunctionType(FInfo);
3092   }
3093 
3094   StringRef ResolverName = getMangledName(GD);
3095 
3096   llvm::Type *ResolverType;
3097   GlobalDecl ResolverGD;
3098   if (getTarget().supportsIFunc())
3099     ResolverType = llvm::FunctionType::get(
3100         llvm::PointerType::get(DeclTy,
3101                                Context.getTargetAddressSpace(FD->getType())),
3102         false);
3103   else {
3104     ResolverType = DeclTy;
3105     ResolverGD = GD;
3106   }
3107 
3108   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3109       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3110   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3111   if (supportsCOMDAT())
3112     ResolverFunc->setComdat(
3113         getModule().getOrInsertComdat(ResolverFunc->getName()));
3114 
3115   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3116   const TargetInfo &Target = getTarget();
3117   unsigned Index = 0;
3118   for (const IdentifierInfo *II : DD->cpus()) {
3119     // Get the name of the target function so we can look it up/create it.
3120     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3121                               getCPUSpecificMangling(*this, II->getName());
3122 
3123     llvm::Constant *Func = GetGlobalValue(MangledName);
3124 
3125     if (!Func) {
3126       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3127       if (ExistingDecl.getDecl() &&
3128           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3129         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3130         Func = GetGlobalValue(MangledName);
3131       } else {
3132         if (!ExistingDecl.getDecl())
3133           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3134 
3135       Func = GetOrCreateLLVMFunction(
3136           MangledName, DeclTy, ExistingDecl,
3137           /*ForVTable=*/false, /*DontDefer=*/true,
3138           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3139       }
3140     }
3141 
3142     llvm::SmallVector<StringRef, 32> Features;
3143     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3144     llvm::transform(Features, Features.begin(),
3145                     [](StringRef Str) { return Str.substr(1); });
3146     Features.erase(std::remove_if(
3147         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3148           return !Target.validateCpuSupports(Feat);
3149         }), Features.end());
3150     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3151     ++Index;
3152   }
3153 
3154   llvm::sort(
3155       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3156                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3157         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3158                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3159       });
3160 
3161   // If the list contains multiple 'default' versions, such as when it contains
3162   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3163   // always run on at least a 'pentium'). We do this by deleting the 'least
3164   // advanced' (read, lowest mangling letter).
3165   while (Options.size() > 1 &&
3166          CodeGenFunction::GetX86CpuSupportsMask(
3167              (Options.end() - 2)->Conditions.Features) == 0) {
3168     StringRef LHSName = (Options.end() - 2)->Function->getName();
3169     StringRef RHSName = (Options.end() - 1)->Function->getName();
3170     if (LHSName.compare(RHSName) < 0)
3171       Options.erase(Options.end() - 2);
3172     else
3173       Options.erase(Options.end() - 1);
3174   }
3175 
3176   CodeGenFunction CGF(*this);
3177   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3178 
3179   if (getTarget().supportsIFunc()) {
3180     std::string AliasName = getMangledNameImpl(
3181         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3182     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3183     if (!AliasFunc) {
3184       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3185           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3186           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3187       auto *GA = llvm::GlobalAlias::create(
3188          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3189       GA->setLinkage(llvm::Function::WeakODRLinkage);
3190       SetCommonAttributes(GD, GA);
3191     }
3192   }
3193 }
3194 
3195 /// If a dispatcher for the specified mangled name is not in the module, create
3196 /// and return an llvm Function with the specified type.
3197 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3198     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3199   std::string MangledName =
3200       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3201 
3202   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3203   // a separate resolver).
3204   std::string ResolverName = MangledName;
3205   if (getTarget().supportsIFunc())
3206     ResolverName += ".ifunc";
3207   else if (FD->isTargetMultiVersion())
3208     ResolverName += ".resolver";
3209 
3210   // If this already exists, just return that one.
3211   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3212     return ResolverGV;
3213 
3214   // Since this is the first time we've created this IFunc, make sure
3215   // that we put this multiversioned function into the list to be
3216   // replaced later if necessary (target multiversioning only).
3217   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3218     MultiVersionFuncs.push_back(GD);
3219 
3220   if (getTarget().supportsIFunc()) {
3221     llvm::Type *ResolverType = llvm::FunctionType::get(
3222         llvm::PointerType::get(
3223             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3224         false);
3225     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3226         MangledName + ".resolver", ResolverType, GlobalDecl{},
3227         /*ForVTable=*/false);
3228     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3229         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3230     GIF->setName(ResolverName);
3231     SetCommonAttributes(FD, GIF);
3232 
3233     return GIF;
3234   }
3235 
3236   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3237       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3238   assert(isa<llvm::GlobalValue>(Resolver) &&
3239          "Resolver should be created for the first time");
3240   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3241   return Resolver;
3242 }
3243 
3244 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3245 /// module, create and return an llvm Function with the specified type. If there
3246 /// is something in the module with the specified name, return it potentially
3247 /// bitcasted to the right type.
3248 ///
3249 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3250 /// to set the attributes on the function when it is first created.
3251 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3252     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3253     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3254     ForDefinition_t IsForDefinition) {
3255   const Decl *D = GD.getDecl();
3256 
3257   // Any attempts to use a MultiVersion function should result in retrieving
3258   // the iFunc instead. Name Mangling will handle the rest of the changes.
3259   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3260     // For the device mark the function as one that should be emitted.
3261     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3262         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3263         !DontDefer && !IsForDefinition) {
3264       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3265         GlobalDecl GDDef;
3266         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3267           GDDef = GlobalDecl(CD, GD.getCtorType());
3268         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3269           GDDef = GlobalDecl(DD, GD.getDtorType());
3270         else
3271           GDDef = GlobalDecl(FDDef);
3272         EmitGlobal(GDDef);
3273       }
3274     }
3275 
3276     if (FD->isMultiVersion()) {
3277       if (FD->hasAttr<TargetAttr>())
3278         UpdateMultiVersionNames(GD, FD);
3279       if (!IsForDefinition)
3280         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3281     }
3282   }
3283 
3284   // Lookup the entry, lazily creating it if necessary.
3285   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3286   if (Entry) {
3287     if (WeakRefReferences.erase(Entry)) {
3288       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3289       if (FD && !FD->hasAttr<WeakAttr>())
3290         Entry->setLinkage(llvm::Function::ExternalLinkage);
3291     }
3292 
3293     // Handle dropped DLL attributes.
3294     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3295       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3296       setDSOLocal(Entry);
3297     }
3298 
3299     // If there are two attempts to define the same mangled name, issue an
3300     // error.
3301     if (IsForDefinition && !Entry->isDeclaration()) {
3302       GlobalDecl OtherGD;
3303       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3304       // to make sure that we issue an error only once.
3305       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3306           (GD.getCanonicalDecl().getDecl() !=
3307            OtherGD.getCanonicalDecl().getDecl()) &&
3308           DiagnosedConflictingDefinitions.insert(GD).second) {
3309         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3310             << MangledName;
3311         getDiags().Report(OtherGD.getDecl()->getLocation(),
3312                           diag::note_previous_definition);
3313       }
3314     }
3315 
3316     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3317         (Entry->getValueType() == Ty)) {
3318       return Entry;
3319     }
3320 
3321     // Make sure the result is of the correct type.
3322     // (If function is requested for a definition, we always need to create a new
3323     // function, not just return a bitcast.)
3324     if (!IsForDefinition)
3325       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3326   }
3327 
3328   // This function doesn't have a complete type (for example, the return
3329   // type is an incomplete struct). Use a fake type instead, and make
3330   // sure not to try to set attributes.
3331   bool IsIncompleteFunction = false;
3332 
3333   llvm::FunctionType *FTy;
3334   if (isa<llvm::FunctionType>(Ty)) {
3335     FTy = cast<llvm::FunctionType>(Ty);
3336   } else {
3337     FTy = llvm::FunctionType::get(VoidTy, false);
3338     IsIncompleteFunction = true;
3339   }
3340 
3341   llvm::Function *F =
3342       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3343                              Entry ? StringRef() : MangledName, &getModule());
3344 
3345   // If we already created a function with the same mangled name (but different
3346   // type) before, take its name and add it to the list of functions to be
3347   // replaced with F at the end of CodeGen.
3348   //
3349   // This happens if there is a prototype for a function (e.g. "int f()") and
3350   // then a definition of a different type (e.g. "int f(int x)").
3351   if (Entry) {
3352     F->takeName(Entry);
3353 
3354     // This might be an implementation of a function without a prototype, in
3355     // which case, try to do special replacement of calls which match the new
3356     // prototype.  The really key thing here is that we also potentially drop
3357     // arguments from the call site so as to make a direct call, which makes the
3358     // inliner happier and suppresses a number of optimizer warnings (!) about
3359     // dropping arguments.
3360     if (!Entry->use_empty()) {
3361       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3362       Entry->removeDeadConstantUsers();
3363     }
3364 
3365     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3366         F, Entry->getValueType()->getPointerTo());
3367     addGlobalValReplacement(Entry, BC);
3368   }
3369 
3370   assert(F->getName() == MangledName && "name was uniqued!");
3371   if (D)
3372     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3373   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3374     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3375     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3376   }
3377 
3378   if (!DontDefer) {
3379     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3380     // each other bottoming out with the base dtor.  Therefore we emit non-base
3381     // dtors on usage, even if there is no dtor definition in the TU.
3382     if (D && isa<CXXDestructorDecl>(D) &&
3383         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3384                                            GD.getDtorType()))
3385       addDeferredDeclToEmit(GD);
3386 
3387     // This is the first use or definition of a mangled name.  If there is a
3388     // deferred decl with this name, remember that we need to emit it at the end
3389     // of the file.
3390     auto DDI = DeferredDecls.find(MangledName);
3391     if (DDI != DeferredDecls.end()) {
3392       // Move the potentially referenced deferred decl to the
3393       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3394       // don't need it anymore).
3395       addDeferredDeclToEmit(DDI->second);
3396       DeferredDecls.erase(DDI);
3397 
3398       // Otherwise, there are cases we have to worry about where we're
3399       // using a declaration for which we must emit a definition but where
3400       // we might not find a top-level definition:
3401       //   - member functions defined inline in their classes
3402       //   - friend functions defined inline in some class
3403       //   - special member functions with implicit definitions
3404       // If we ever change our AST traversal to walk into class methods,
3405       // this will be unnecessary.
3406       //
3407       // We also don't emit a definition for a function if it's going to be an
3408       // entry in a vtable, unless it's already marked as used.
3409     } else if (getLangOpts().CPlusPlus && D) {
3410       // Look for a declaration that's lexically in a record.
3411       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3412            FD = FD->getPreviousDecl()) {
3413         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3414           if (FD->doesThisDeclarationHaveABody()) {
3415             addDeferredDeclToEmit(GD.getWithDecl(FD));
3416             break;
3417           }
3418         }
3419       }
3420     }
3421   }
3422 
3423   // Make sure the result is of the requested type.
3424   if (!IsIncompleteFunction) {
3425     assert(F->getFunctionType() == Ty);
3426     return F;
3427   }
3428 
3429   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3430   return llvm::ConstantExpr::getBitCast(F, PTy);
3431 }
3432 
3433 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3434 /// non-null, then this function will use the specified type if it has to
3435 /// create it (this occurs when we see a definition of the function).
3436 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3437                                                  llvm::Type *Ty,
3438                                                  bool ForVTable,
3439                                                  bool DontDefer,
3440                                               ForDefinition_t IsForDefinition) {
3441   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3442          "consteval function should never be emitted");
3443   // If there was no specific requested type, just convert it now.
3444   if (!Ty) {
3445     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3446     Ty = getTypes().ConvertType(FD->getType());
3447   }
3448 
3449   // Devirtualized destructor calls may come through here instead of via
3450   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3451   // of the complete destructor when necessary.
3452   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3453     if (getTarget().getCXXABI().isMicrosoft() &&
3454         GD.getDtorType() == Dtor_Complete &&
3455         DD->getParent()->getNumVBases() == 0)
3456       GD = GlobalDecl(DD, Dtor_Base);
3457   }
3458 
3459   StringRef MangledName = getMangledName(GD);
3460   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3461                                  /*IsThunk=*/false, llvm::AttributeList(),
3462                                  IsForDefinition);
3463 }
3464 
3465 static const FunctionDecl *
3466 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3467   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3468   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3469 
3470   IdentifierInfo &CII = C.Idents.get(Name);
3471   for (const auto &Result : DC->lookup(&CII))
3472     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3473       return FD;
3474 
3475   if (!C.getLangOpts().CPlusPlus)
3476     return nullptr;
3477 
3478   // Demangle the premangled name from getTerminateFn()
3479   IdentifierInfo &CXXII =
3480       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3481           ? C.Idents.get("terminate")
3482           : C.Idents.get(Name);
3483 
3484   for (const auto &N : {"__cxxabiv1", "std"}) {
3485     IdentifierInfo &NS = C.Idents.get(N);
3486     for (const auto &Result : DC->lookup(&NS)) {
3487       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3488       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3489         for (const auto &Result : LSD->lookup(&NS))
3490           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3491             break;
3492 
3493       if (ND)
3494         for (const auto &Result : ND->lookup(&CXXII))
3495           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3496             return FD;
3497     }
3498   }
3499 
3500   return nullptr;
3501 }
3502 
3503 /// CreateRuntimeFunction - Create a new runtime function with the specified
3504 /// type and name.
3505 llvm::FunctionCallee
3506 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3507                                      llvm::AttributeList ExtraAttrs, bool Local,
3508                                      bool AssumeConvergent) {
3509   if (AssumeConvergent) {
3510     ExtraAttrs =
3511         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3512                                 llvm::Attribute::Convergent);
3513   }
3514 
3515   llvm::Constant *C =
3516       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3517                               /*DontDefer=*/false, /*IsThunk=*/false,
3518                               ExtraAttrs);
3519 
3520   if (auto *F = dyn_cast<llvm::Function>(C)) {
3521     if (F->empty()) {
3522       F->setCallingConv(getRuntimeCC());
3523 
3524       // In Windows Itanium environments, try to mark runtime functions
3525       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3526       // will link their standard library statically or dynamically. Marking
3527       // functions imported when they are not imported can cause linker errors
3528       // and warnings.
3529       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3530           !getCodeGenOpts().LTOVisibilityPublicStd) {
3531         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3532         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3533           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3534           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3535         }
3536       }
3537       setDSOLocal(F);
3538     }
3539   }
3540 
3541   return {FTy, C};
3542 }
3543 
3544 /// isTypeConstant - Determine whether an object of this type can be emitted
3545 /// as a constant.
3546 ///
3547 /// If ExcludeCtor is true, the duration when the object's constructor runs
3548 /// will not be considered. The caller will need to verify that the object is
3549 /// not written to during its construction.
3550 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3551   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3552     return false;
3553 
3554   if (Context.getLangOpts().CPlusPlus) {
3555     if (const CXXRecordDecl *Record
3556           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3557       return ExcludeCtor && !Record->hasMutableFields() &&
3558              Record->hasTrivialDestructor();
3559   }
3560 
3561   return true;
3562 }
3563 
3564 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3565 /// create and return an llvm GlobalVariable with the specified type.  If there
3566 /// is something in the module with the specified name, return it potentially
3567 /// bitcasted to the right type.
3568 ///
3569 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3570 /// to set the attributes on the global when it is first created.
3571 ///
3572 /// If IsForDefinition is true, it is guaranteed that an actual global with
3573 /// type Ty will be returned, not conversion of a variable with the same
3574 /// mangled name but some other type.
3575 llvm::Constant *
3576 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3577                                      llvm::PointerType *Ty,
3578                                      const VarDecl *D,
3579                                      ForDefinition_t IsForDefinition) {
3580   // Lookup the entry, lazily creating it if necessary.
3581   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3582   if (Entry) {
3583     if (WeakRefReferences.erase(Entry)) {
3584       if (D && !D->hasAttr<WeakAttr>())
3585         Entry->setLinkage(llvm::Function::ExternalLinkage);
3586     }
3587 
3588     // Handle dropped DLL attributes.
3589     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3590       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3591 
3592     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3593       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3594 
3595     if (Entry->getType() == Ty)
3596       return Entry;
3597 
3598     // If there are two attempts to define the same mangled name, issue an
3599     // error.
3600     if (IsForDefinition && !Entry->isDeclaration()) {
3601       GlobalDecl OtherGD;
3602       const VarDecl *OtherD;
3603 
3604       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3605       // to make sure that we issue an error only once.
3606       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3607           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3608           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3609           OtherD->hasInit() &&
3610           DiagnosedConflictingDefinitions.insert(D).second) {
3611         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3612             << MangledName;
3613         getDiags().Report(OtherGD.getDecl()->getLocation(),
3614                           diag::note_previous_definition);
3615       }
3616     }
3617 
3618     // Make sure the result is of the correct type.
3619     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3620       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3621 
3622     // (If global is requested for a definition, we always need to create a new
3623     // global, not just return a bitcast.)
3624     if (!IsForDefinition)
3625       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3626   }
3627 
3628   auto AddrSpace = GetGlobalVarAddressSpace(D);
3629   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3630 
3631   auto *GV = new llvm::GlobalVariable(
3632       getModule(), Ty->getElementType(), false,
3633       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3634       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3635 
3636   // If we already created a global with the same mangled name (but different
3637   // type) before, take its name and remove it from its parent.
3638   if (Entry) {
3639     GV->takeName(Entry);
3640 
3641     if (!Entry->use_empty()) {
3642       llvm::Constant *NewPtrForOldDecl =
3643           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3644       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3645     }
3646 
3647     Entry->eraseFromParent();
3648   }
3649 
3650   // This is the first use or definition of a mangled name.  If there is a
3651   // deferred decl with this name, remember that we need to emit it at the end
3652   // of the file.
3653   auto DDI = DeferredDecls.find(MangledName);
3654   if (DDI != DeferredDecls.end()) {
3655     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3656     // list, and remove it from DeferredDecls (since we don't need it anymore).
3657     addDeferredDeclToEmit(DDI->second);
3658     DeferredDecls.erase(DDI);
3659   }
3660 
3661   // Handle things which are present even on external declarations.
3662   if (D) {
3663     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3664       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3665 
3666     // FIXME: This code is overly simple and should be merged with other global
3667     // handling.
3668     GV->setConstant(isTypeConstant(D->getType(), false));
3669 
3670     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3671 
3672     setLinkageForGV(GV, D);
3673 
3674     if (D->getTLSKind()) {
3675       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3676         CXXThreadLocals.push_back(D);
3677       setTLSMode(GV, *D);
3678     }
3679 
3680     setGVProperties(GV, D);
3681 
3682     // If required by the ABI, treat declarations of static data members with
3683     // inline initializers as definitions.
3684     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3685       EmitGlobalVarDefinition(D);
3686     }
3687 
3688     // Emit section information for extern variables.
3689     if (D->hasExternalStorage()) {
3690       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3691         GV->setSection(SA->getName());
3692     }
3693 
3694     // Handle XCore specific ABI requirements.
3695     if (getTriple().getArch() == llvm::Triple::xcore &&
3696         D->getLanguageLinkage() == CLanguageLinkage &&
3697         D->getType().isConstant(Context) &&
3698         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3699       GV->setSection(".cp.rodata");
3700 
3701     // Check if we a have a const declaration with an initializer, we may be
3702     // able to emit it as available_externally to expose it's value to the
3703     // optimizer.
3704     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3705         D->getType().isConstQualified() && !GV->hasInitializer() &&
3706         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3707       const auto *Record =
3708           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3709       bool HasMutableFields = Record && Record->hasMutableFields();
3710       if (!HasMutableFields) {
3711         const VarDecl *InitDecl;
3712         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3713         if (InitExpr) {
3714           ConstantEmitter emitter(*this);
3715           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3716           if (Init) {
3717             auto *InitType = Init->getType();
3718             if (GV->getValueType() != InitType) {
3719               // The type of the initializer does not match the definition.
3720               // This happens when an initializer has a different type from
3721               // the type of the global (because of padding at the end of a
3722               // structure for instance).
3723               GV->setName(StringRef());
3724               // Make a new global with the correct type, this is now guaranteed
3725               // to work.
3726               auto *NewGV = cast<llvm::GlobalVariable>(
3727                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3728                       ->stripPointerCasts());
3729 
3730               // Erase the old global, since it is no longer used.
3731               GV->eraseFromParent();
3732               GV = NewGV;
3733             } else {
3734               GV->setInitializer(Init);
3735               GV->setConstant(true);
3736               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3737             }
3738             emitter.finalize(GV);
3739           }
3740         }
3741       }
3742     }
3743   }
3744 
3745   if (GV->isDeclaration())
3746     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3747 
3748   LangAS ExpectedAS =
3749       D ? D->getType().getAddressSpace()
3750         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3751   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3752          Ty->getPointerAddressSpace());
3753   if (AddrSpace != ExpectedAS)
3754     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3755                                                        ExpectedAS, Ty);
3756 
3757   return GV;
3758 }
3759 
3760 llvm::Constant *
3761 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3762   const Decl *D = GD.getDecl();
3763 
3764   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3765     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3766                                 /*DontDefer=*/false, IsForDefinition);
3767 
3768   if (isa<CXXMethodDecl>(D)) {
3769     auto FInfo =
3770         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3771     auto Ty = getTypes().GetFunctionType(*FInfo);
3772     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3773                              IsForDefinition);
3774   }
3775 
3776   if (isa<FunctionDecl>(D)) {
3777     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3778     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3779     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3780                              IsForDefinition);
3781   }
3782 
3783   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3784 }
3785 
3786 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3787     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3788     unsigned Alignment) {
3789   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3790   llvm::GlobalVariable *OldGV = nullptr;
3791 
3792   if (GV) {
3793     // Check if the variable has the right type.
3794     if (GV->getValueType() == Ty)
3795       return GV;
3796 
3797     // Because C++ name mangling, the only way we can end up with an already
3798     // existing global with the same name is if it has been declared extern "C".
3799     assert(GV->isDeclaration() && "Declaration has wrong type!");
3800     OldGV = GV;
3801   }
3802 
3803   // Create a new variable.
3804   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3805                                 Linkage, nullptr, Name);
3806 
3807   if (OldGV) {
3808     // Replace occurrences of the old variable if needed.
3809     GV->takeName(OldGV);
3810 
3811     if (!OldGV->use_empty()) {
3812       llvm::Constant *NewPtrForOldDecl =
3813       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3814       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3815     }
3816 
3817     OldGV->eraseFromParent();
3818   }
3819 
3820   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3821       !GV->hasAvailableExternallyLinkage())
3822     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3823 
3824   GV->setAlignment(llvm::MaybeAlign(Alignment));
3825 
3826   return GV;
3827 }
3828 
3829 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3830 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3831 /// then it will be created with the specified type instead of whatever the
3832 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3833 /// that an actual global with type Ty will be returned, not conversion of a
3834 /// variable with the same mangled name but some other type.
3835 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3836                                                   llvm::Type *Ty,
3837                                            ForDefinition_t IsForDefinition) {
3838   assert(D->hasGlobalStorage() && "Not a global variable");
3839   QualType ASTTy = D->getType();
3840   if (!Ty)
3841     Ty = getTypes().ConvertTypeForMem(ASTTy);
3842 
3843   llvm::PointerType *PTy =
3844     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3845 
3846   StringRef MangledName = getMangledName(D);
3847   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3848 }
3849 
3850 /// CreateRuntimeVariable - Create a new runtime global variable with the
3851 /// specified type and name.
3852 llvm::Constant *
3853 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3854                                      StringRef Name) {
3855   auto PtrTy =
3856       getContext().getLangOpts().OpenCL
3857           ? llvm::PointerType::get(
3858                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3859           : llvm::PointerType::getUnqual(Ty);
3860   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3861   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3862   return Ret;
3863 }
3864 
3865 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3866   assert(!D->getInit() && "Cannot emit definite definitions here!");
3867 
3868   StringRef MangledName = getMangledName(D);
3869   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3870 
3871   // We already have a definition, not declaration, with the same mangled name.
3872   // Emitting of declaration is not required (and actually overwrites emitted
3873   // definition).
3874   if (GV && !GV->isDeclaration())
3875     return;
3876 
3877   // If we have not seen a reference to this variable yet, place it into the
3878   // deferred declarations table to be emitted if needed later.
3879   if (!MustBeEmitted(D) && !GV) {
3880       DeferredDecls[MangledName] = D;
3881       return;
3882   }
3883 
3884   // The tentative definition is the only definition.
3885   EmitGlobalVarDefinition(D);
3886 }
3887 
3888 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3889   EmitExternalVarDeclaration(D);
3890 }
3891 
3892 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3893   return Context.toCharUnitsFromBits(
3894       getDataLayout().getTypeStoreSizeInBits(Ty));
3895 }
3896 
3897 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3898   LangAS AddrSpace = LangAS::Default;
3899   if (LangOpts.OpenCL) {
3900     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3901     assert(AddrSpace == LangAS::opencl_global ||
3902            AddrSpace == LangAS::opencl_global_device ||
3903            AddrSpace == LangAS::opencl_global_host ||
3904            AddrSpace == LangAS::opencl_constant ||
3905            AddrSpace == LangAS::opencl_local ||
3906            AddrSpace >= LangAS::FirstTargetAddressSpace);
3907     return AddrSpace;
3908   }
3909 
3910   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3911     if (D && D->hasAttr<CUDAConstantAttr>())
3912       return LangAS::cuda_constant;
3913     else if (D && D->hasAttr<CUDASharedAttr>())
3914       return LangAS::cuda_shared;
3915     else if (D && D->hasAttr<CUDADeviceAttr>())
3916       return LangAS::cuda_device;
3917     else if (D && D->getType().isConstQualified())
3918       return LangAS::cuda_constant;
3919     else
3920       return LangAS::cuda_device;
3921   }
3922 
3923   if (LangOpts.OpenMP) {
3924     LangAS AS;
3925     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3926       return AS;
3927   }
3928   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3929 }
3930 
3931 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3932   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3933   if (LangOpts.OpenCL)
3934     return LangAS::opencl_constant;
3935   if (auto AS = getTarget().getConstantAddressSpace())
3936     return AS.getValue();
3937   return LangAS::Default;
3938 }
3939 
3940 // In address space agnostic languages, string literals are in default address
3941 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3942 // emitted in constant address space in LLVM IR. To be consistent with other
3943 // parts of AST, string literal global variables in constant address space
3944 // need to be casted to default address space before being put into address
3945 // map and referenced by other part of CodeGen.
3946 // In OpenCL, string literals are in constant address space in AST, therefore
3947 // they should not be casted to default address space.
3948 static llvm::Constant *
3949 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3950                                        llvm::GlobalVariable *GV) {
3951   llvm::Constant *Cast = GV;
3952   if (!CGM.getLangOpts().OpenCL) {
3953     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3954       if (AS != LangAS::Default)
3955         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3956             CGM, GV, AS.getValue(), LangAS::Default,
3957             GV->getValueType()->getPointerTo(
3958                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3959     }
3960   }
3961   return Cast;
3962 }
3963 
3964 template<typename SomeDecl>
3965 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3966                                                llvm::GlobalValue *GV) {
3967   if (!getLangOpts().CPlusPlus)
3968     return;
3969 
3970   // Must have 'used' attribute, or else inline assembly can't rely on
3971   // the name existing.
3972   if (!D->template hasAttr<UsedAttr>())
3973     return;
3974 
3975   // Must have internal linkage and an ordinary name.
3976   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3977     return;
3978 
3979   // Must be in an extern "C" context. Entities declared directly within
3980   // a record are not extern "C" even if the record is in such a context.
3981   const SomeDecl *First = D->getFirstDecl();
3982   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3983     return;
3984 
3985   // OK, this is an internal linkage entity inside an extern "C" linkage
3986   // specification. Make a note of that so we can give it the "expected"
3987   // mangled name if nothing else is using that name.
3988   std::pair<StaticExternCMap::iterator, bool> R =
3989       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3990 
3991   // If we have multiple internal linkage entities with the same name
3992   // in extern "C" regions, none of them gets that name.
3993   if (!R.second)
3994     R.first->second = nullptr;
3995 }
3996 
3997 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3998   if (!CGM.supportsCOMDAT())
3999     return false;
4000 
4001   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4002   // them being "merged" by the COMDAT Folding linker optimization.
4003   if (D.hasAttr<CUDAGlobalAttr>())
4004     return false;
4005 
4006   if (D.hasAttr<SelectAnyAttr>())
4007     return true;
4008 
4009   GVALinkage Linkage;
4010   if (auto *VD = dyn_cast<VarDecl>(&D))
4011     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4012   else
4013     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4014 
4015   switch (Linkage) {
4016   case GVA_Internal:
4017   case GVA_AvailableExternally:
4018   case GVA_StrongExternal:
4019     return false;
4020   case GVA_DiscardableODR:
4021   case GVA_StrongODR:
4022     return true;
4023   }
4024   llvm_unreachable("No such linkage");
4025 }
4026 
4027 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4028                                           llvm::GlobalObject &GO) {
4029   if (!shouldBeInCOMDAT(*this, D))
4030     return;
4031   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4032 }
4033 
4034 /// Pass IsTentative as true if you want to create a tentative definition.
4035 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4036                                             bool IsTentative) {
4037   // OpenCL global variables of sampler type are translated to function calls,
4038   // therefore no need to be translated.
4039   QualType ASTTy = D->getType();
4040   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4041     return;
4042 
4043   // If this is OpenMP device, check if it is legal to emit this global
4044   // normally.
4045   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4046       OpenMPRuntime->emitTargetGlobalVariable(D))
4047     return;
4048 
4049   llvm::Constant *Init = nullptr;
4050   bool NeedsGlobalCtor = false;
4051   bool NeedsGlobalDtor =
4052       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4053 
4054   const VarDecl *InitDecl;
4055   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4056 
4057   Optional<ConstantEmitter> emitter;
4058 
4059   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4060   // as part of their declaration."  Sema has already checked for
4061   // error cases, so we just need to set Init to UndefValue.
4062   bool IsCUDASharedVar =
4063       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4064   // Shadows of initialized device-side global variables are also left
4065   // undefined.
4066   bool IsCUDAShadowVar =
4067       !getLangOpts().CUDAIsDevice &&
4068       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4069        D->hasAttr<CUDASharedAttr>());
4070   bool IsCUDADeviceShadowVar =
4071       getLangOpts().CUDAIsDevice &&
4072       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4073        D->getType()->isCUDADeviceBuiltinTextureType());
4074   // HIP pinned shadow of initialized host-side global variables are also
4075   // left undefined.
4076   if (getLangOpts().CUDA &&
4077       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4078     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4079   else if (D->hasAttr<LoaderUninitializedAttr>())
4080     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4081   else if (!InitExpr) {
4082     // This is a tentative definition; tentative definitions are
4083     // implicitly initialized with { 0 }.
4084     //
4085     // Note that tentative definitions are only emitted at the end of
4086     // a translation unit, so they should never have incomplete
4087     // type. In addition, EmitTentativeDefinition makes sure that we
4088     // never attempt to emit a tentative definition if a real one
4089     // exists. A use may still exists, however, so we still may need
4090     // to do a RAUW.
4091     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4092     Init = EmitNullConstant(D->getType());
4093   } else {
4094     initializedGlobalDecl = GlobalDecl(D);
4095     emitter.emplace(*this);
4096     Init = emitter->tryEmitForInitializer(*InitDecl);
4097 
4098     if (!Init) {
4099       QualType T = InitExpr->getType();
4100       if (D->getType()->isReferenceType())
4101         T = D->getType();
4102 
4103       if (getLangOpts().CPlusPlus) {
4104         Init = EmitNullConstant(T);
4105         NeedsGlobalCtor = true;
4106       } else {
4107         ErrorUnsupported(D, "static initializer");
4108         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4109       }
4110     } else {
4111       // We don't need an initializer, so remove the entry for the delayed
4112       // initializer position (just in case this entry was delayed) if we
4113       // also don't need to register a destructor.
4114       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4115         DelayedCXXInitPosition.erase(D);
4116     }
4117   }
4118 
4119   llvm::Type* InitType = Init->getType();
4120   llvm::Constant *Entry =
4121       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4122 
4123   // Strip off pointer casts if we got them.
4124   Entry = Entry->stripPointerCasts();
4125 
4126   // Entry is now either a Function or GlobalVariable.
4127   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4128 
4129   // We have a definition after a declaration with the wrong type.
4130   // We must make a new GlobalVariable* and update everything that used OldGV
4131   // (a declaration or tentative definition) with the new GlobalVariable*
4132   // (which will be a definition).
4133   //
4134   // This happens if there is a prototype for a global (e.g.
4135   // "extern int x[];") and then a definition of a different type (e.g.
4136   // "int x[10];"). This also happens when an initializer has a different type
4137   // from the type of the global (this happens with unions).
4138   if (!GV || GV->getValueType() != InitType ||
4139       GV->getType()->getAddressSpace() !=
4140           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4141 
4142     // Move the old entry aside so that we'll create a new one.
4143     Entry->setName(StringRef());
4144 
4145     // Make a new global with the correct type, this is now guaranteed to work.
4146     GV = cast<llvm::GlobalVariable>(
4147         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4148             ->stripPointerCasts());
4149 
4150     // Replace all uses of the old global with the new global
4151     llvm::Constant *NewPtrForOldDecl =
4152         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4153     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4154 
4155     // Erase the old global, since it is no longer used.
4156     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4157   }
4158 
4159   MaybeHandleStaticInExternC(D, GV);
4160 
4161   if (D->hasAttr<AnnotateAttr>())
4162     AddGlobalAnnotations(D, GV);
4163 
4164   // Set the llvm linkage type as appropriate.
4165   llvm::GlobalValue::LinkageTypes Linkage =
4166       getLLVMLinkageVarDefinition(D, GV->isConstant());
4167 
4168   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4169   // the device. [...]"
4170   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4171   // __device__, declares a variable that: [...]
4172   // Is accessible from all the threads within the grid and from the host
4173   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4174   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4175   if (GV && LangOpts.CUDA) {
4176     if (LangOpts.CUDAIsDevice) {
4177       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4178           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4179         GV->setExternallyInitialized(true);
4180     } else {
4181       // Host-side shadows of external declarations of device-side
4182       // global variables become internal definitions. These have to
4183       // be internal in order to prevent name conflicts with global
4184       // host variables with the same name in a different TUs.
4185       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4186         Linkage = llvm::GlobalValue::InternalLinkage;
4187         // Shadow variables and their properties must be registered with CUDA
4188         // runtime. Skip Extern global variables, which will be registered in
4189         // the TU where they are defined.
4190         //
4191         // Don't register a C++17 inline variable. The local symbol can be
4192         // discarded and referencing a discarded local symbol from outside the
4193         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4194         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4195         if (!D->hasExternalStorage() && !D->isInline())
4196           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4197                                              D->hasAttr<CUDAConstantAttr>());
4198       } else if (D->hasAttr<CUDASharedAttr>()) {
4199         // __shared__ variables are odd. Shadows do get created, but
4200         // they are not registered with the CUDA runtime, so they
4201         // can't really be used to access their device-side
4202         // counterparts. It's not clear yet whether it's nvcc's bug or
4203         // a feature, but we've got to do the same for compatibility.
4204         Linkage = llvm::GlobalValue::InternalLinkage;
4205       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4206                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4207         // Builtin surfaces and textures and their template arguments are
4208         // also registered with CUDA runtime.
4209         Linkage = llvm::GlobalValue::InternalLinkage;
4210         const ClassTemplateSpecializationDecl *TD =
4211             cast<ClassTemplateSpecializationDecl>(
4212                 D->getType()->getAs<RecordType>()->getDecl());
4213         const TemplateArgumentList &Args = TD->getTemplateArgs();
4214         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4215           assert(Args.size() == 2 &&
4216                  "Unexpected number of template arguments of CUDA device "
4217                  "builtin surface type.");
4218           auto SurfType = Args[1].getAsIntegral();
4219           if (!D->hasExternalStorage())
4220             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4221                                                 SurfType.getSExtValue());
4222         } else {
4223           assert(Args.size() == 3 &&
4224                  "Unexpected number of template arguments of CUDA device "
4225                  "builtin texture type.");
4226           auto TexType = Args[1].getAsIntegral();
4227           auto Normalized = Args[2].getAsIntegral();
4228           if (!D->hasExternalStorage())
4229             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4230                                                TexType.getSExtValue(),
4231                                                Normalized.getZExtValue());
4232         }
4233       }
4234     }
4235   }
4236 
4237   GV->setInitializer(Init);
4238   if (emitter)
4239     emitter->finalize(GV);
4240 
4241   // If it is safe to mark the global 'constant', do so now.
4242   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4243                   isTypeConstant(D->getType(), true));
4244 
4245   // If it is in a read-only section, mark it 'constant'.
4246   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4247     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4248     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4249       GV->setConstant(true);
4250   }
4251 
4252   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4253 
4254   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4255   // function is only defined alongside the variable, not also alongside
4256   // callers. Normally, all accesses to a thread_local go through the
4257   // thread-wrapper in order to ensure initialization has occurred, underlying
4258   // variable will never be used other than the thread-wrapper, so it can be
4259   // converted to internal linkage.
4260   //
4261   // However, if the variable has the 'constinit' attribute, it _can_ be
4262   // referenced directly, without calling the thread-wrapper, so the linkage
4263   // must not be changed.
4264   //
4265   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4266   // weak or linkonce, the de-duplication semantics are important to preserve,
4267   // so we don't change the linkage.
4268   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4269       Linkage == llvm::GlobalValue::ExternalLinkage &&
4270       Context.getTargetInfo().getTriple().isOSDarwin() &&
4271       !D->hasAttr<ConstInitAttr>())
4272     Linkage = llvm::GlobalValue::InternalLinkage;
4273 
4274   GV->setLinkage(Linkage);
4275   if (D->hasAttr<DLLImportAttr>())
4276     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4277   else if (D->hasAttr<DLLExportAttr>())
4278     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4279   else
4280     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4281 
4282   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4283     // common vars aren't constant even if declared const.
4284     GV->setConstant(false);
4285     // Tentative definition of global variables may be initialized with
4286     // non-zero null pointers. In this case they should have weak linkage
4287     // since common linkage must have zero initializer and must not have
4288     // explicit section therefore cannot have non-zero initial value.
4289     if (!GV->getInitializer()->isNullValue())
4290       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4291   }
4292 
4293   setNonAliasAttributes(D, GV);
4294 
4295   if (D->getTLSKind() && !GV->isThreadLocal()) {
4296     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4297       CXXThreadLocals.push_back(D);
4298     setTLSMode(GV, *D);
4299   }
4300 
4301   maybeSetTrivialComdat(*D, *GV);
4302 
4303   // Emit the initializer function if necessary.
4304   if (NeedsGlobalCtor || NeedsGlobalDtor)
4305     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4306 
4307   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4308 
4309   // Emit global variable debug information.
4310   if (CGDebugInfo *DI = getModuleDebugInfo())
4311     if (getCodeGenOpts().hasReducedDebugInfo())
4312       DI->EmitGlobalVariable(GV, D);
4313 }
4314 
4315 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4316   if (CGDebugInfo *DI = getModuleDebugInfo())
4317     if (getCodeGenOpts().hasReducedDebugInfo()) {
4318       QualType ASTTy = D->getType();
4319       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4320       llvm::PointerType *PTy =
4321           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4322       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4323       DI->EmitExternalVariable(
4324           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4325     }
4326 }
4327 
4328 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4329                                       CodeGenModule &CGM, const VarDecl *D,
4330                                       bool NoCommon) {
4331   // Don't give variables common linkage if -fno-common was specified unless it
4332   // was overridden by a NoCommon attribute.
4333   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4334     return true;
4335 
4336   // C11 6.9.2/2:
4337   //   A declaration of an identifier for an object that has file scope without
4338   //   an initializer, and without a storage-class specifier or with the
4339   //   storage-class specifier static, constitutes a tentative definition.
4340   if (D->getInit() || D->hasExternalStorage())
4341     return true;
4342 
4343   // A variable cannot be both common and exist in a section.
4344   if (D->hasAttr<SectionAttr>())
4345     return true;
4346 
4347   // A variable cannot be both common and exist in a section.
4348   // We don't try to determine which is the right section in the front-end.
4349   // If no specialized section name is applicable, it will resort to default.
4350   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4351       D->hasAttr<PragmaClangDataSectionAttr>() ||
4352       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4353       D->hasAttr<PragmaClangRodataSectionAttr>())
4354     return true;
4355 
4356   // Thread local vars aren't considered common linkage.
4357   if (D->getTLSKind())
4358     return true;
4359 
4360   // Tentative definitions marked with WeakImportAttr are true definitions.
4361   if (D->hasAttr<WeakImportAttr>())
4362     return true;
4363 
4364   // A variable cannot be both common and exist in a comdat.
4365   if (shouldBeInCOMDAT(CGM, *D))
4366     return true;
4367 
4368   // Declarations with a required alignment do not have common linkage in MSVC
4369   // mode.
4370   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4371     if (D->hasAttr<AlignedAttr>())
4372       return true;
4373     QualType VarType = D->getType();
4374     if (Context.isAlignmentRequired(VarType))
4375       return true;
4376 
4377     if (const auto *RT = VarType->getAs<RecordType>()) {
4378       const RecordDecl *RD = RT->getDecl();
4379       for (const FieldDecl *FD : RD->fields()) {
4380         if (FD->isBitField())
4381           continue;
4382         if (FD->hasAttr<AlignedAttr>())
4383           return true;
4384         if (Context.isAlignmentRequired(FD->getType()))
4385           return true;
4386       }
4387     }
4388   }
4389 
4390   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4391   // common symbols, so symbols with greater alignment requirements cannot be
4392   // common.
4393   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4394   // alignments for common symbols via the aligncomm directive, so this
4395   // restriction only applies to MSVC environments.
4396   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4397       Context.getTypeAlignIfKnown(D->getType()) >
4398           Context.toBits(CharUnits::fromQuantity(32)))
4399     return true;
4400 
4401   return false;
4402 }
4403 
4404 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4405     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4406   if (Linkage == GVA_Internal)
4407     return llvm::Function::InternalLinkage;
4408 
4409   if (D->hasAttr<WeakAttr>()) {
4410     if (IsConstantVariable)
4411       return llvm::GlobalVariable::WeakODRLinkage;
4412     else
4413       return llvm::GlobalVariable::WeakAnyLinkage;
4414   }
4415 
4416   if (const auto *FD = D->getAsFunction())
4417     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4418       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4419 
4420   // We are guaranteed to have a strong definition somewhere else,
4421   // so we can use available_externally linkage.
4422   if (Linkage == GVA_AvailableExternally)
4423     return llvm::GlobalValue::AvailableExternallyLinkage;
4424 
4425   // Note that Apple's kernel linker doesn't support symbol
4426   // coalescing, so we need to avoid linkonce and weak linkages there.
4427   // Normally, this means we just map to internal, but for explicit
4428   // instantiations we'll map to external.
4429 
4430   // In C++, the compiler has to emit a definition in every translation unit
4431   // that references the function.  We should use linkonce_odr because
4432   // a) if all references in this translation unit are optimized away, we
4433   // don't need to codegen it.  b) if the function persists, it needs to be
4434   // merged with other definitions. c) C++ has the ODR, so we know the
4435   // definition is dependable.
4436   if (Linkage == GVA_DiscardableODR)
4437     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4438                                             : llvm::Function::InternalLinkage;
4439 
4440   // An explicit instantiation of a template has weak linkage, since
4441   // explicit instantiations can occur in multiple translation units
4442   // and must all be equivalent. However, we are not allowed to
4443   // throw away these explicit instantiations.
4444   //
4445   // We don't currently support CUDA device code spread out across multiple TUs,
4446   // so say that CUDA templates are either external (for kernels) or internal.
4447   // This lets llvm perform aggressive inter-procedural optimizations.
4448   if (Linkage == GVA_StrongODR) {
4449     if (Context.getLangOpts().AppleKext)
4450       return llvm::Function::ExternalLinkage;
4451     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4452       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4453                                           : llvm::Function::InternalLinkage;
4454     return llvm::Function::WeakODRLinkage;
4455   }
4456 
4457   // C++ doesn't have tentative definitions and thus cannot have common
4458   // linkage.
4459   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4460       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4461                                  CodeGenOpts.NoCommon))
4462     return llvm::GlobalVariable::CommonLinkage;
4463 
4464   // selectany symbols are externally visible, so use weak instead of
4465   // linkonce.  MSVC optimizes away references to const selectany globals, so
4466   // all definitions should be the same and ODR linkage should be used.
4467   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4468   if (D->hasAttr<SelectAnyAttr>())
4469     return llvm::GlobalVariable::WeakODRLinkage;
4470 
4471   // Otherwise, we have strong external linkage.
4472   assert(Linkage == GVA_StrongExternal);
4473   return llvm::GlobalVariable::ExternalLinkage;
4474 }
4475 
4476 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4477     const VarDecl *VD, bool IsConstant) {
4478   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4479   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4480 }
4481 
4482 /// Replace the uses of a function that was declared with a non-proto type.
4483 /// We want to silently drop extra arguments from call sites
4484 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4485                                           llvm::Function *newFn) {
4486   // Fast path.
4487   if (old->use_empty()) return;
4488 
4489   llvm::Type *newRetTy = newFn->getReturnType();
4490   SmallVector<llvm::Value*, 4> newArgs;
4491   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4492 
4493   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4494          ui != ue; ) {
4495     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4496     llvm::User *user = use->getUser();
4497 
4498     // Recognize and replace uses of bitcasts.  Most calls to
4499     // unprototyped functions will use bitcasts.
4500     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4501       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4502         replaceUsesOfNonProtoConstant(bitcast, newFn);
4503       continue;
4504     }
4505 
4506     // Recognize calls to the function.
4507     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4508     if (!callSite) continue;
4509     if (!callSite->isCallee(&*use))
4510       continue;
4511 
4512     // If the return types don't match exactly, then we can't
4513     // transform this call unless it's dead.
4514     if (callSite->getType() != newRetTy && !callSite->use_empty())
4515       continue;
4516 
4517     // Get the call site's attribute list.
4518     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4519     llvm::AttributeList oldAttrs = callSite->getAttributes();
4520 
4521     // If the function was passed too few arguments, don't transform.
4522     unsigned newNumArgs = newFn->arg_size();
4523     if (callSite->arg_size() < newNumArgs)
4524       continue;
4525 
4526     // If extra arguments were passed, we silently drop them.
4527     // If any of the types mismatch, we don't transform.
4528     unsigned argNo = 0;
4529     bool dontTransform = false;
4530     for (llvm::Argument &A : newFn->args()) {
4531       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4532         dontTransform = true;
4533         break;
4534       }
4535 
4536       // Add any parameter attributes.
4537       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4538       argNo++;
4539     }
4540     if (dontTransform)
4541       continue;
4542 
4543     // Okay, we can transform this.  Create the new call instruction and copy
4544     // over the required information.
4545     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4546 
4547     // Copy over any operand bundles.
4548     callSite->getOperandBundlesAsDefs(newBundles);
4549 
4550     llvm::CallBase *newCall;
4551     if (dyn_cast<llvm::CallInst>(callSite)) {
4552       newCall =
4553           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4554     } else {
4555       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4556       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4557                                          oldInvoke->getUnwindDest(), newArgs,
4558                                          newBundles, "", callSite);
4559     }
4560     newArgs.clear(); // for the next iteration
4561 
4562     if (!newCall->getType()->isVoidTy())
4563       newCall->takeName(callSite);
4564     newCall->setAttributes(llvm::AttributeList::get(
4565         newFn->getContext(), oldAttrs.getFnAttributes(),
4566         oldAttrs.getRetAttributes(), newArgAttrs));
4567     newCall->setCallingConv(callSite->getCallingConv());
4568 
4569     // Finally, remove the old call, replacing any uses with the new one.
4570     if (!callSite->use_empty())
4571       callSite->replaceAllUsesWith(newCall);
4572 
4573     // Copy debug location attached to CI.
4574     if (callSite->getDebugLoc())
4575       newCall->setDebugLoc(callSite->getDebugLoc());
4576 
4577     callSite->eraseFromParent();
4578   }
4579 }
4580 
4581 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4582 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4583 /// existing call uses of the old function in the module, this adjusts them to
4584 /// call the new function directly.
4585 ///
4586 /// This is not just a cleanup: the always_inline pass requires direct calls to
4587 /// functions to be able to inline them.  If there is a bitcast in the way, it
4588 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4589 /// run at -O0.
4590 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4591                                                       llvm::Function *NewFn) {
4592   // If we're redefining a global as a function, don't transform it.
4593   if (!isa<llvm::Function>(Old)) return;
4594 
4595   replaceUsesOfNonProtoConstant(Old, NewFn);
4596 }
4597 
4598 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4599   auto DK = VD->isThisDeclarationADefinition();
4600   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4601     return;
4602 
4603   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4604   // If we have a definition, this might be a deferred decl. If the
4605   // instantiation is explicit, make sure we emit it at the end.
4606   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4607     GetAddrOfGlobalVar(VD);
4608 
4609   EmitTopLevelDecl(VD);
4610 }
4611 
4612 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4613                                                  llvm::GlobalValue *GV) {
4614   const auto *D = cast<FunctionDecl>(GD.getDecl());
4615 
4616   // Compute the function info and LLVM type.
4617   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4618   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4619 
4620   // Get or create the prototype for the function.
4621   if (!GV || (GV->getValueType() != Ty))
4622     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4623                                                    /*DontDefer=*/true,
4624                                                    ForDefinition));
4625 
4626   // Already emitted.
4627   if (!GV->isDeclaration())
4628     return;
4629 
4630   // We need to set linkage and visibility on the function before
4631   // generating code for it because various parts of IR generation
4632   // want to propagate this information down (e.g. to local static
4633   // declarations).
4634   auto *Fn = cast<llvm::Function>(GV);
4635   setFunctionLinkage(GD, Fn);
4636 
4637   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4638   setGVProperties(Fn, GD);
4639 
4640   MaybeHandleStaticInExternC(D, Fn);
4641 
4642   maybeSetTrivialComdat(*D, *Fn);
4643 
4644   // Set CodeGen attributes that represent floating point environment.
4645   setLLVMFunctionFEnvAttributes(D, Fn);
4646 
4647   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4648 
4649   setNonAliasAttributes(GD, Fn);
4650   SetLLVMFunctionAttributesForDefinition(D, Fn);
4651 
4652   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4653     AddGlobalCtor(Fn, CA->getPriority());
4654   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4655     AddGlobalDtor(Fn, DA->getPriority());
4656   if (D->hasAttr<AnnotateAttr>())
4657     AddGlobalAnnotations(D, Fn);
4658 }
4659 
4660 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4661   const auto *D = cast<ValueDecl>(GD.getDecl());
4662   const AliasAttr *AA = D->getAttr<AliasAttr>();
4663   assert(AA && "Not an alias?");
4664 
4665   StringRef MangledName = getMangledName(GD);
4666 
4667   if (AA->getAliasee() == MangledName) {
4668     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4669     return;
4670   }
4671 
4672   // If there is a definition in the module, then it wins over the alias.
4673   // This is dubious, but allow it to be safe.  Just ignore the alias.
4674   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4675   if (Entry && !Entry->isDeclaration())
4676     return;
4677 
4678   Aliases.push_back(GD);
4679 
4680   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4681 
4682   // Create a reference to the named value.  This ensures that it is emitted
4683   // if a deferred decl.
4684   llvm::Constant *Aliasee;
4685   llvm::GlobalValue::LinkageTypes LT;
4686   if (isa<llvm::FunctionType>(DeclTy)) {
4687     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4688                                       /*ForVTable=*/false);
4689     LT = getFunctionLinkage(GD);
4690   } else {
4691     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4692                                     llvm::PointerType::getUnqual(DeclTy),
4693                                     /*D=*/nullptr);
4694     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4695       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4696     else
4697       LT = getFunctionLinkage(GD);
4698   }
4699 
4700   // Create the new alias itself, but don't set a name yet.
4701   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4702   auto *GA =
4703       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4704 
4705   if (Entry) {
4706     if (GA->getAliasee() == Entry) {
4707       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4708       return;
4709     }
4710 
4711     assert(Entry->isDeclaration());
4712 
4713     // If there is a declaration in the module, then we had an extern followed
4714     // by the alias, as in:
4715     //   extern int test6();
4716     //   ...
4717     //   int test6() __attribute__((alias("test7")));
4718     //
4719     // Remove it and replace uses of it with the alias.
4720     GA->takeName(Entry);
4721 
4722     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4723                                                           Entry->getType()));
4724     Entry->eraseFromParent();
4725   } else {
4726     GA->setName(MangledName);
4727   }
4728 
4729   // Set attributes which are particular to an alias; this is a
4730   // specialization of the attributes which may be set on a global
4731   // variable/function.
4732   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4733       D->isWeakImported()) {
4734     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4735   }
4736 
4737   if (const auto *VD = dyn_cast<VarDecl>(D))
4738     if (VD->getTLSKind())
4739       setTLSMode(GA, *VD);
4740 
4741   SetCommonAttributes(GD, GA);
4742 }
4743 
4744 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4745   const auto *D = cast<ValueDecl>(GD.getDecl());
4746   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4747   assert(IFA && "Not an ifunc?");
4748 
4749   StringRef MangledName = getMangledName(GD);
4750 
4751   if (IFA->getResolver() == MangledName) {
4752     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4753     return;
4754   }
4755 
4756   // Report an error if some definition overrides ifunc.
4757   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4758   if (Entry && !Entry->isDeclaration()) {
4759     GlobalDecl OtherGD;
4760     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4761         DiagnosedConflictingDefinitions.insert(GD).second) {
4762       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4763           << MangledName;
4764       Diags.Report(OtherGD.getDecl()->getLocation(),
4765                    diag::note_previous_definition);
4766     }
4767     return;
4768   }
4769 
4770   Aliases.push_back(GD);
4771 
4772   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4773   llvm::Constant *Resolver =
4774       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4775                               /*ForVTable=*/false);
4776   llvm::GlobalIFunc *GIF =
4777       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4778                                 "", Resolver, &getModule());
4779   if (Entry) {
4780     if (GIF->getResolver() == Entry) {
4781       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4782       return;
4783     }
4784     assert(Entry->isDeclaration());
4785 
4786     // If there is a declaration in the module, then we had an extern followed
4787     // by the ifunc, as in:
4788     //   extern int test();
4789     //   ...
4790     //   int test() __attribute__((ifunc("resolver")));
4791     //
4792     // Remove it and replace uses of it with the ifunc.
4793     GIF->takeName(Entry);
4794 
4795     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4796                                                           Entry->getType()));
4797     Entry->eraseFromParent();
4798   } else
4799     GIF->setName(MangledName);
4800 
4801   SetCommonAttributes(GD, GIF);
4802 }
4803 
4804 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4805                                             ArrayRef<llvm::Type*> Tys) {
4806   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4807                                          Tys);
4808 }
4809 
4810 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4811 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4812                          const StringLiteral *Literal, bool TargetIsLSB,
4813                          bool &IsUTF16, unsigned &StringLength) {
4814   StringRef String = Literal->getString();
4815   unsigned NumBytes = String.size();
4816 
4817   // Check for simple case.
4818   if (!Literal->containsNonAsciiOrNull()) {
4819     StringLength = NumBytes;
4820     return *Map.insert(std::make_pair(String, nullptr)).first;
4821   }
4822 
4823   // Otherwise, convert the UTF8 literals into a string of shorts.
4824   IsUTF16 = true;
4825 
4826   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4827   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4828   llvm::UTF16 *ToPtr = &ToBuf[0];
4829 
4830   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4831                                  ToPtr + NumBytes, llvm::strictConversion);
4832 
4833   // ConvertUTF8toUTF16 returns the length in ToPtr.
4834   StringLength = ToPtr - &ToBuf[0];
4835 
4836   // Add an explicit null.
4837   *ToPtr = 0;
4838   return *Map.insert(std::make_pair(
4839                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4840                                    (StringLength + 1) * 2),
4841                          nullptr)).first;
4842 }
4843 
4844 ConstantAddress
4845 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4846   unsigned StringLength = 0;
4847   bool isUTF16 = false;
4848   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4849       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4850                                getDataLayout().isLittleEndian(), isUTF16,
4851                                StringLength);
4852 
4853   if (auto *C = Entry.second)
4854     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4855 
4856   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4857   llvm::Constant *Zeros[] = { Zero, Zero };
4858 
4859   const ASTContext &Context = getContext();
4860   const llvm::Triple &Triple = getTriple();
4861 
4862   const auto CFRuntime = getLangOpts().CFRuntime;
4863   const bool IsSwiftABI =
4864       static_cast<unsigned>(CFRuntime) >=
4865       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4866   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4867 
4868   // If we don't already have it, get __CFConstantStringClassReference.
4869   if (!CFConstantStringClassRef) {
4870     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4871     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4872     Ty = llvm::ArrayType::get(Ty, 0);
4873 
4874     switch (CFRuntime) {
4875     default: break;
4876     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4877     case LangOptions::CoreFoundationABI::Swift5_0:
4878       CFConstantStringClassName =
4879           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4880                               : "$s10Foundation19_NSCFConstantStringCN";
4881       Ty = IntPtrTy;
4882       break;
4883     case LangOptions::CoreFoundationABI::Swift4_2:
4884       CFConstantStringClassName =
4885           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4886                               : "$S10Foundation19_NSCFConstantStringCN";
4887       Ty = IntPtrTy;
4888       break;
4889     case LangOptions::CoreFoundationABI::Swift4_1:
4890       CFConstantStringClassName =
4891           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4892                               : "__T010Foundation19_NSCFConstantStringCN";
4893       Ty = IntPtrTy;
4894       break;
4895     }
4896 
4897     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4898 
4899     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4900       llvm::GlobalValue *GV = nullptr;
4901 
4902       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4903         IdentifierInfo &II = Context.Idents.get(GV->getName());
4904         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4905         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4906 
4907         const VarDecl *VD = nullptr;
4908         for (const auto &Result : DC->lookup(&II))
4909           if ((VD = dyn_cast<VarDecl>(Result)))
4910             break;
4911 
4912         if (Triple.isOSBinFormatELF()) {
4913           if (!VD)
4914             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4915         } else {
4916           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4917           if (!VD || !VD->hasAttr<DLLExportAttr>())
4918             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4919           else
4920             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4921         }
4922 
4923         setDSOLocal(GV);
4924       }
4925     }
4926 
4927     // Decay array -> ptr
4928     CFConstantStringClassRef =
4929         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4930                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4931   }
4932 
4933   QualType CFTy = Context.getCFConstantStringType();
4934 
4935   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4936 
4937   ConstantInitBuilder Builder(*this);
4938   auto Fields = Builder.beginStruct(STy);
4939 
4940   // Class pointer.
4941   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4942 
4943   // Flags.
4944   if (IsSwiftABI) {
4945     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4946     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4947   } else {
4948     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4949   }
4950 
4951   // String pointer.
4952   llvm::Constant *C = nullptr;
4953   if (isUTF16) {
4954     auto Arr = llvm::makeArrayRef(
4955         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4956         Entry.first().size() / 2);
4957     C = llvm::ConstantDataArray::get(VMContext, Arr);
4958   } else {
4959     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4960   }
4961 
4962   // Note: -fwritable-strings doesn't make the backing store strings of
4963   // CFStrings writable. (See <rdar://problem/10657500>)
4964   auto *GV =
4965       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4966                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4967   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4968   // Don't enforce the target's minimum global alignment, since the only use
4969   // of the string is via this class initializer.
4970   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4971                             : Context.getTypeAlignInChars(Context.CharTy);
4972   GV->setAlignment(Align.getAsAlign());
4973 
4974   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4975   // Without it LLVM can merge the string with a non unnamed_addr one during
4976   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4977   if (Triple.isOSBinFormatMachO())
4978     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4979                            : "__TEXT,__cstring,cstring_literals");
4980   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4981   // the static linker to adjust permissions to read-only later on.
4982   else if (Triple.isOSBinFormatELF())
4983     GV->setSection(".rodata");
4984 
4985   // String.
4986   llvm::Constant *Str =
4987       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4988 
4989   if (isUTF16)
4990     // Cast the UTF16 string to the correct type.
4991     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4992   Fields.add(Str);
4993 
4994   // String length.
4995   llvm::IntegerType *LengthTy =
4996       llvm::IntegerType::get(getModule().getContext(),
4997                              Context.getTargetInfo().getLongWidth());
4998   if (IsSwiftABI) {
4999     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5000         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5001       LengthTy = Int32Ty;
5002     else
5003       LengthTy = IntPtrTy;
5004   }
5005   Fields.addInt(LengthTy, StringLength);
5006 
5007   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5008   // properly aligned on 32-bit platforms.
5009   CharUnits Alignment =
5010       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5011 
5012   // The struct.
5013   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5014                                     /*isConstant=*/false,
5015                                     llvm::GlobalVariable::PrivateLinkage);
5016   GV->addAttribute("objc_arc_inert");
5017   switch (Triple.getObjectFormat()) {
5018   case llvm::Triple::UnknownObjectFormat:
5019     llvm_unreachable("unknown file format");
5020   case llvm::Triple::GOFF:
5021     llvm_unreachable("GOFF is not yet implemented");
5022   case llvm::Triple::XCOFF:
5023     llvm_unreachable("XCOFF is not yet implemented");
5024   case llvm::Triple::COFF:
5025   case llvm::Triple::ELF:
5026   case llvm::Triple::Wasm:
5027     GV->setSection("cfstring");
5028     break;
5029   case llvm::Triple::MachO:
5030     GV->setSection("__DATA,__cfstring");
5031     break;
5032   }
5033   Entry.second = GV;
5034 
5035   return ConstantAddress(GV, Alignment);
5036 }
5037 
5038 bool CodeGenModule::getExpressionLocationsEnabled() const {
5039   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5040 }
5041 
5042 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5043   if (ObjCFastEnumerationStateType.isNull()) {
5044     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5045     D->startDefinition();
5046 
5047     QualType FieldTypes[] = {
5048       Context.UnsignedLongTy,
5049       Context.getPointerType(Context.getObjCIdType()),
5050       Context.getPointerType(Context.UnsignedLongTy),
5051       Context.getConstantArrayType(Context.UnsignedLongTy,
5052                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5053     };
5054 
5055     for (size_t i = 0; i < 4; ++i) {
5056       FieldDecl *Field = FieldDecl::Create(Context,
5057                                            D,
5058                                            SourceLocation(),
5059                                            SourceLocation(), nullptr,
5060                                            FieldTypes[i], /*TInfo=*/nullptr,
5061                                            /*BitWidth=*/nullptr,
5062                                            /*Mutable=*/false,
5063                                            ICIS_NoInit);
5064       Field->setAccess(AS_public);
5065       D->addDecl(Field);
5066     }
5067 
5068     D->completeDefinition();
5069     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5070   }
5071 
5072   return ObjCFastEnumerationStateType;
5073 }
5074 
5075 llvm::Constant *
5076 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5077   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5078 
5079   // Don't emit it as the address of the string, emit the string data itself
5080   // as an inline array.
5081   if (E->getCharByteWidth() == 1) {
5082     SmallString<64> Str(E->getString());
5083 
5084     // Resize the string to the right size, which is indicated by its type.
5085     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5086     Str.resize(CAT->getSize().getZExtValue());
5087     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5088   }
5089 
5090   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5091   llvm::Type *ElemTy = AType->getElementType();
5092   unsigned NumElements = AType->getNumElements();
5093 
5094   // Wide strings have either 2-byte or 4-byte elements.
5095   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5096     SmallVector<uint16_t, 32> Elements;
5097     Elements.reserve(NumElements);
5098 
5099     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5100       Elements.push_back(E->getCodeUnit(i));
5101     Elements.resize(NumElements);
5102     return llvm::ConstantDataArray::get(VMContext, Elements);
5103   }
5104 
5105   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5106   SmallVector<uint32_t, 32> Elements;
5107   Elements.reserve(NumElements);
5108 
5109   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5110     Elements.push_back(E->getCodeUnit(i));
5111   Elements.resize(NumElements);
5112   return llvm::ConstantDataArray::get(VMContext, Elements);
5113 }
5114 
5115 static llvm::GlobalVariable *
5116 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5117                       CodeGenModule &CGM, StringRef GlobalName,
5118                       CharUnits Alignment) {
5119   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5120       CGM.getStringLiteralAddressSpace());
5121 
5122   llvm::Module &M = CGM.getModule();
5123   // Create a global variable for this string
5124   auto *GV = new llvm::GlobalVariable(
5125       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5126       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5127   GV->setAlignment(Alignment.getAsAlign());
5128   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5129   if (GV->isWeakForLinker()) {
5130     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5131     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5132   }
5133   CGM.setDSOLocal(GV);
5134 
5135   return GV;
5136 }
5137 
5138 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5139 /// constant array for the given string literal.
5140 ConstantAddress
5141 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5142                                                   StringRef Name) {
5143   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5144 
5145   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5146   llvm::GlobalVariable **Entry = nullptr;
5147   if (!LangOpts.WritableStrings) {
5148     Entry = &ConstantStringMap[C];
5149     if (auto GV = *Entry) {
5150       if (Alignment.getQuantity() > GV->getAlignment())
5151         GV->setAlignment(Alignment.getAsAlign());
5152       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5153                              Alignment);
5154     }
5155   }
5156 
5157   SmallString<256> MangledNameBuffer;
5158   StringRef GlobalVariableName;
5159   llvm::GlobalValue::LinkageTypes LT;
5160 
5161   // Mangle the string literal if that's how the ABI merges duplicate strings.
5162   // Don't do it if they are writable, since we don't want writes in one TU to
5163   // affect strings in another.
5164   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5165       !LangOpts.WritableStrings) {
5166     llvm::raw_svector_ostream Out(MangledNameBuffer);
5167     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5168     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5169     GlobalVariableName = MangledNameBuffer;
5170   } else {
5171     LT = llvm::GlobalValue::PrivateLinkage;
5172     GlobalVariableName = Name;
5173   }
5174 
5175   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5176   if (Entry)
5177     *Entry = GV;
5178 
5179   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5180                                   QualType());
5181 
5182   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5183                          Alignment);
5184 }
5185 
5186 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5187 /// array for the given ObjCEncodeExpr node.
5188 ConstantAddress
5189 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5190   std::string Str;
5191   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5192 
5193   return GetAddrOfConstantCString(Str);
5194 }
5195 
5196 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5197 /// the literal and a terminating '\0' character.
5198 /// The result has pointer to array type.
5199 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5200     const std::string &Str, const char *GlobalName) {
5201   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5202   CharUnits Alignment =
5203     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5204 
5205   llvm::Constant *C =
5206       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5207 
5208   // Don't share any string literals if strings aren't constant.
5209   llvm::GlobalVariable **Entry = nullptr;
5210   if (!LangOpts.WritableStrings) {
5211     Entry = &ConstantStringMap[C];
5212     if (auto GV = *Entry) {
5213       if (Alignment.getQuantity() > GV->getAlignment())
5214         GV->setAlignment(Alignment.getAsAlign());
5215       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5216                              Alignment);
5217     }
5218   }
5219 
5220   // Get the default prefix if a name wasn't specified.
5221   if (!GlobalName)
5222     GlobalName = ".str";
5223   // Create a global variable for this.
5224   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5225                                   GlobalName, Alignment);
5226   if (Entry)
5227     *Entry = GV;
5228 
5229   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5230                          Alignment);
5231 }
5232 
5233 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5234     const MaterializeTemporaryExpr *E, const Expr *Init) {
5235   assert((E->getStorageDuration() == SD_Static ||
5236           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5237   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5238 
5239   // If we're not materializing a subobject of the temporary, keep the
5240   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5241   QualType MaterializedType = Init->getType();
5242   if (Init == E->getSubExpr())
5243     MaterializedType = E->getType();
5244 
5245   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5246 
5247   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5248     return ConstantAddress(Slot, Align);
5249 
5250   // FIXME: If an externally-visible declaration extends multiple temporaries,
5251   // we need to give each temporary the same name in every translation unit (and
5252   // we also need to make the temporaries externally-visible).
5253   SmallString<256> Name;
5254   llvm::raw_svector_ostream Out(Name);
5255   getCXXABI().getMangleContext().mangleReferenceTemporary(
5256       VD, E->getManglingNumber(), Out);
5257 
5258   APValue *Value = nullptr;
5259   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5260     // If the initializer of the extending declaration is a constant
5261     // initializer, we should have a cached constant initializer for this
5262     // temporary. Note that this might have a different value from the value
5263     // computed by evaluating the initializer if the surrounding constant
5264     // expression modifies the temporary.
5265     Value = E->getOrCreateValue(false);
5266   }
5267 
5268   // Try evaluating it now, it might have a constant initializer.
5269   Expr::EvalResult EvalResult;
5270   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5271       !EvalResult.hasSideEffects())
5272     Value = &EvalResult.Val;
5273 
5274   LangAS AddrSpace =
5275       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5276 
5277   Optional<ConstantEmitter> emitter;
5278   llvm::Constant *InitialValue = nullptr;
5279   bool Constant = false;
5280   llvm::Type *Type;
5281   if (Value) {
5282     // The temporary has a constant initializer, use it.
5283     emitter.emplace(*this);
5284     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5285                                                MaterializedType);
5286     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5287     Type = InitialValue->getType();
5288   } else {
5289     // No initializer, the initialization will be provided when we
5290     // initialize the declaration which performed lifetime extension.
5291     Type = getTypes().ConvertTypeForMem(MaterializedType);
5292   }
5293 
5294   // Create a global variable for this lifetime-extended temporary.
5295   llvm::GlobalValue::LinkageTypes Linkage =
5296       getLLVMLinkageVarDefinition(VD, Constant);
5297   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5298     const VarDecl *InitVD;
5299     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5300         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5301       // Temporaries defined inside a class get linkonce_odr linkage because the
5302       // class can be defined in multiple translation units.
5303       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5304     } else {
5305       // There is no need for this temporary to have external linkage if the
5306       // VarDecl has external linkage.
5307       Linkage = llvm::GlobalVariable::InternalLinkage;
5308     }
5309   }
5310   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5311   auto *GV = new llvm::GlobalVariable(
5312       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5313       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5314   if (emitter) emitter->finalize(GV);
5315   setGVProperties(GV, VD);
5316   GV->setAlignment(Align.getAsAlign());
5317   if (supportsCOMDAT() && GV->isWeakForLinker())
5318     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5319   if (VD->getTLSKind())
5320     setTLSMode(GV, *VD);
5321   llvm::Constant *CV = GV;
5322   if (AddrSpace != LangAS::Default)
5323     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5324         *this, GV, AddrSpace, LangAS::Default,
5325         Type->getPointerTo(
5326             getContext().getTargetAddressSpace(LangAS::Default)));
5327   MaterializedGlobalTemporaryMap[E] = CV;
5328   return ConstantAddress(CV, Align);
5329 }
5330 
5331 /// EmitObjCPropertyImplementations - Emit information for synthesized
5332 /// properties for an implementation.
5333 void CodeGenModule::EmitObjCPropertyImplementations(const
5334                                                     ObjCImplementationDecl *D) {
5335   for (const auto *PID : D->property_impls()) {
5336     // Dynamic is just for type-checking.
5337     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5338       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5339 
5340       // Determine which methods need to be implemented, some may have
5341       // been overridden. Note that ::isPropertyAccessor is not the method
5342       // we want, that just indicates if the decl came from a
5343       // property. What we want to know is if the method is defined in
5344       // this implementation.
5345       auto *Getter = PID->getGetterMethodDecl();
5346       if (!Getter || Getter->isSynthesizedAccessorStub())
5347         CodeGenFunction(*this).GenerateObjCGetter(
5348             const_cast<ObjCImplementationDecl *>(D), PID);
5349       auto *Setter = PID->getSetterMethodDecl();
5350       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5351         CodeGenFunction(*this).GenerateObjCSetter(
5352                                  const_cast<ObjCImplementationDecl *>(D), PID);
5353     }
5354   }
5355 }
5356 
5357 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5358   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5359   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5360        ivar; ivar = ivar->getNextIvar())
5361     if (ivar->getType().isDestructedType())
5362       return true;
5363 
5364   return false;
5365 }
5366 
5367 static bool AllTrivialInitializers(CodeGenModule &CGM,
5368                                    ObjCImplementationDecl *D) {
5369   CodeGenFunction CGF(CGM);
5370   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5371        E = D->init_end(); B != E; ++B) {
5372     CXXCtorInitializer *CtorInitExp = *B;
5373     Expr *Init = CtorInitExp->getInit();
5374     if (!CGF.isTrivialInitializer(Init))
5375       return false;
5376   }
5377   return true;
5378 }
5379 
5380 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5381 /// for an implementation.
5382 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5383   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5384   if (needsDestructMethod(D)) {
5385     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5386     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5387     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5388         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5389         getContext().VoidTy, nullptr, D,
5390         /*isInstance=*/true, /*isVariadic=*/false,
5391         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5392         /*isImplicitlyDeclared=*/true,
5393         /*isDefined=*/false, ObjCMethodDecl::Required);
5394     D->addInstanceMethod(DTORMethod);
5395     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5396     D->setHasDestructors(true);
5397   }
5398 
5399   // If the implementation doesn't have any ivar initializers, we don't need
5400   // a .cxx_construct.
5401   if (D->getNumIvarInitializers() == 0 ||
5402       AllTrivialInitializers(*this, D))
5403     return;
5404 
5405   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5406   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5407   // The constructor returns 'self'.
5408   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5409       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5410       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5411       /*isVariadic=*/false,
5412       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5413       /*isImplicitlyDeclared=*/true,
5414       /*isDefined=*/false, ObjCMethodDecl::Required);
5415   D->addInstanceMethod(CTORMethod);
5416   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5417   D->setHasNonZeroConstructors(true);
5418 }
5419 
5420 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5421 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5422   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5423       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5424     ErrorUnsupported(LSD, "linkage spec");
5425     return;
5426   }
5427 
5428   EmitDeclContext(LSD);
5429 }
5430 
5431 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5432   for (auto *I : DC->decls()) {
5433     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5434     // are themselves considered "top-level", so EmitTopLevelDecl on an
5435     // ObjCImplDecl does not recursively visit them. We need to do that in
5436     // case they're nested inside another construct (LinkageSpecDecl /
5437     // ExportDecl) that does stop them from being considered "top-level".
5438     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5439       for (auto *M : OID->methods())
5440         EmitTopLevelDecl(M);
5441     }
5442 
5443     EmitTopLevelDecl(I);
5444   }
5445 }
5446 
5447 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5448 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5449   // Ignore dependent declarations.
5450   if (D->isTemplated())
5451     return;
5452 
5453   // Consteval function shouldn't be emitted.
5454   if (auto *FD = dyn_cast<FunctionDecl>(D))
5455     if (FD->isConsteval())
5456       return;
5457 
5458   switch (D->getKind()) {
5459   case Decl::CXXConversion:
5460   case Decl::CXXMethod:
5461   case Decl::Function:
5462     EmitGlobal(cast<FunctionDecl>(D));
5463     // Always provide some coverage mapping
5464     // even for the functions that aren't emitted.
5465     AddDeferredUnusedCoverageMapping(D);
5466     break;
5467 
5468   case Decl::CXXDeductionGuide:
5469     // Function-like, but does not result in code emission.
5470     break;
5471 
5472   case Decl::Var:
5473   case Decl::Decomposition:
5474   case Decl::VarTemplateSpecialization:
5475     EmitGlobal(cast<VarDecl>(D));
5476     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5477       for (auto *B : DD->bindings())
5478         if (auto *HD = B->getHoldingVar())
5479           EmitGlobal(HD);
5480     break;
5481 
5482   // Indirect fields from global anonymous structs and unions can be
5483   // ignored; only the actual variable requires IR gen support.
5484   case Decl::IndirectField:
5485     break;
5486 
5487   // C++ Decls
5488   case Decl::Namespace:
5489     EmitDeclContext(cast<NamespaceDecl>(D));
5490     break;
5491   case Decl::ClassTemplateSpecialization: {
5492     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5493     if (CGDebugInfo *DI = getModuleDebugInfo())
5494       if (Spec->getSpecializationKind() ==
5495               TSK_ExplicitInstantiationDefinition &&
5496           Spec->hasDefinition())
5497         DI->completeTemplateDefinition(*Spec);
5498   } LLVM_FALLTHROUGH;
5499   case Decl::CXXRecord: {
5500     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5501     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5502       if (CRD->hasDefinition())
5503         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5504       if (auto *ES = D->getASTContext().getExternalSource())
5505         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5506           DI->completeUnusedClass(*CRD);
5507     }
5508     // Emit any static data members, they may be definitions.
5509     for (auto *I : CRD->decls())
5510       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5511         EmitTopLevelDecl(I);
5512     break;
5513   }
5514     // No code generation needed.
5515   case Decl::UsingShadow:
5516   case Decl::ClassTemplate:
5517   case Decl::VarTemplate:
5518   case Decl::Concept:
5519   case Decl::VarTemplatePartialSpecialization:
5520   case Decl::FunctionTemplate:
5521   case Decl::TypeAliasTemplate:
5522   case Decl::Block:
5523   case Decl::Empty:
5524   case Decl::Binding:
5525     break;
5526   case Decl::Using:          // using X; [C++]
5527     if (CGDebugInfo *DI = getModuleDebugInfo())
5528         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5529     break;
5530   case Decl::NamespaceAlias:
5531     if (CGDebugInfo *DI = getModuleDebugInfo())
5532         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5533     break;
5534   case Decl::UsingDirective: // using namespace X; [C++]
5535     if (CGDebugInfo *DI = getModuleDebugInfo())
5536       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5537     break;
5538   case Decl::CXXConstructor:
5539     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5540     break;
5541   case Decl::CXXDestructor:
5542     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5543     break;
5544 
5545   case Decl::StaticAssert:
5546     // Nothing to do.
5547     break;
5548 
5549   // Objective-C Decls
5550 
5551   // Forward declarations, no (immediate) code generation.
5552   case Decl::ObjCInterface:
5553   case Decl::ObjCCategory:
5554     break;
5555 
5556   case Decl::ObjCProtocol: {
5557     auto *Proto = cast<ObjCProtocolDecl>(D);
5558     if (Proto->isThisDeclarationADefinition())
5559       ObjCRuntime->GenerateProtocol(Proto);
5560     break;
5561   }
5562 
5563   case Decl::ObjCCategoryImpl:
5564     // Categories have properties but don't support synthesize so we
5565     // can ignore them here.
5566     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5567     break;
5568 
5569   case Decl::ObjCImplementation: {
5570     auto *OMD = cast<ObjCImplementationDecl>(D);
5571     EmitObjCPropertyImplementations(OMD);
5572     EmitObjCIvarInitializations(OMD);
5573     ObjCRuntime->GenerateClass(OMD);
5574     // Emit global variable debug information.
5575     if (CGDebugInfo *DI = getModuleDebugInfo())
5576       if (getCodeGenOpts().hasReducedDebugInfo())
5577         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5578             OMD->getClassInterface()), OMD->getLocation());
5579     break;
5580   }
5581   case Decl::ObjCMethod: {
5582     auto *OMD = cast<ObjCMethodDecl>(D);
5583     // If this is not a prototype, emit the body.
5584     if (OMD->getBody())
5585       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5586     break;
5587   }
5588   case Decl::ObjCCompatibleAlias:
5589     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5590     break;
5591 
5592   case Decl::PragmaComment: {
5593     const auto *PCD = cast<PragmaCommentDecl>(D);
5594     switch (PCD->getCommentKind()) {
5595     case PCK_Unknown:
5596       llvm_unreachable("unexpected pragma comment kind");
5597     case PCK_Linker:
5598       AppendLinkerOptions(PCD->getArg());
5599       break;
5600     case PCK_Lib:
5601         AddDependentLib(PCD->getArg());
5602       break;
5603     case PCK_Compiler:
5604     case PCK_ExeStr:
5605     case PCK_User:
5606       break; // We ignore all of these.
5607     }
5608     break;
5609   }
5610 
5611   case Decl::PragmaDetectMismatch: {
5612     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5613     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5614     break;
5615   }
5616 
5617   case Decl::LinkageSpec:
5618     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5619     break;
5620 
5621   case Decl::FileScopeAsm: {
5622     // File-scope asm is ignored during device-side CUDA compilation.
5623     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5624       break;
5625     // File-scope asm is ignored during device-side OpenMP compilation.
5626     if (LangOpts.OpenMPIsDevice)
5627       break;
5628     auto *AD = cast<FileScopeAsmDecl>(D);
5629     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5630     break;
5631   }
5632 
5633   case Decl::Import: {
5634     auto *Import = cast<ImportDecl>(D);
5635 
5636     // If we've already imported this module, we're done.
5637     if (!ImportedModules.insert(Import->getImportedModule()))
5638       break;
5639 
5640     // Emit debug information for direct imports.
5641     if (!Import->getImportedOwningModule()) {
5642       if (CGDebugInfo *DI = getModuleDebugInfo())
5643         DI->EmitImportDecl(*Import);
5644     }
5645 
5646     // Find all of the submodules and emit the module initializers.
5647     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5648     SmallVector<clang::Module *, 16> Stack;
5649     Visited.insert(Import->getImportedModule());
5650     Stack.push_back(Import->getImportedModule());
5651 
5652     while (!Stack.empty()) {
5653       clang::Module *Mod = Stack.pop_back_val();
5654       if (!EmittedModuleInitializers.insert(Mod).second)
5655         continue;
5656 
5657       for (auto *D : Context.getModuleInitializers(Mod))
5658         EmitTopLevelDecl(D);
5659 
5660       // Visit the submodules of this module.
5661       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5662                                              SubEnd = Mod->submodule_end();
5663            Sub != SubEnd; ++Sub) {
5664         // Skip explicit children; they need to be explicitly imported to emit
5665         // the initializers.
5666         if ((*Sub)->IsExplicit)
5667           continue;
5668 
5669         if (Visited.insert(*Sub).second)
5670           Stack.push_back(*Sub);
5671       }
5672     }
5673     break;
5674   }
5675 
5676   case Decl::Export:
5677     EmitDeclContext(cast<ExportDecl>(D));
5678     break;
5679 
5680   case Decl::OMPThreadPrivate:
5681     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5682     break;
5683 
5684   case Decl::OMPAllocate:
5685     break;
5686 
5687   case Decl::OMPDeclareReduction:
5688     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5689     break;
5690 
5691   case Decl::OMPDeclareMapper:
5692     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5693     break;
5694 
5695   case Decl::OMPRequires:
5696     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5697     break;
5698 
5699   case Decl::Typedef:
5700   case Decl::TypeAlias: // using foo = bar; [C++11]
5701     if (CGDebugInfo *DI = getModuleDebugInfo())
5702       DI->EmitAndRetainType(
5703           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5704     break;
5705 
5706   case Decl::Record:
5707     if (CGDebugInfo *DI = getModuleDebugInfo())
5708       if (cast<RecordDecl>(D)->getDefinition())
5709         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5710     break;
5711 
5712   case Decl::Enum:
5713     if (CGDebugInfo *DI = getModuleDebugInfo())
5714       if (cast<EnumDecl>(D)->getDefinition())
5715         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5716     break;
5717 
5718   default:
5719     // Make sure we handled everything we should, every other kind is a
5720     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5721     // function. Need to recode Decl::Kind to do that easily.
5722     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5723     break;
5724   }
5725 }
5726 
5727 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5728   // Do we need to generate coverage mapping?
5729   if (!CodeGenOpts.CoverageMapping)
5730     return;
5731   switch (D->getKind()) {
5732   case Decl::CXXConversion:
5733   case Decl::CXXMethod:
5734   case Decl::Function:
5735   case Decl::ObjCMethod:
5736   case Decl::CXXConstructor:
5737   case Decl::CXXDestructor: {
5738     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5739       break;
5740     SourceManager &SM = getContext().getSourceManager();
5741     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5742       break;
5743     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5744     if (I == DeferredEmptyCoverageMappingDecls.end())
5745       DeferredEmptyCoverageMappingDecls[D] = true;
5746     break;
5747   }
5748   default:
5749     break;
5750   };
5751 }
5752 
5753 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5754   // Do we need to generate coverage mapping?
5755   if (!CodeGenOpts.CoverageMapping)
5756     return;
5757   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5758     if (Fn->isTemplateInstantiation())
5759       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5760   }
5761   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5762   if (I == DeferredEmptyCoverageMappingDecls.end())
5763     DeferredEmptyCoverageMappingDecls[D] = false;
5764   else
5765     I->second = false;
5766 }
5767 
5768 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5769   // We call takeVector() here to avoid use-after-free.
5770   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5771   // we deserialize function bodies to emit coverage info for them, and that
5772   // deserializes more declarations. How should we handle that case?
5773   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5774     if (!Entry.second)
5775       continue;
5776     const Decl *D = Entry.first;
5777     switch (D->getKind()) {
5778     case Decl::CXXConversion:
5779     case Decl::CXXMethod:
5780     case Decl::Function:
5781     case Decl::ObjCMethod: {
5782       CodeGenPGO PGO(*this);
5783       GlobalDecl GD(cast<FunctionDecl>(D));
5784       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5785                                   getFunctionLinkage(GD));
5786       break;
5787     }
5788     case Decl::CXXConstructor: {
5789       CodeGenPGO PGO(*this);
5790       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5791       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5792                                   getFunctionLinkage(GD));
5793       break;
5794     }
5795     case Decl::CXXDestructor: {
5796       CodeGenPGO PGO(*this);
5797       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5798       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5799                                   getFunctionLinkage(GD));
5800       break;
5801     }
5802     default:
5803       break;
5804     };
5805   }
5806 }
5807 
5808 void CodeGenModule::EmitMainVoidAlias() {
5809   // In order to transition away from "__original_main" gracefully, emit an
5810   // alias for "main" in the no-argument case so that libc can detect when
5811   // new-style no-argument main is in used.
5812   if (llvm::Function *F = getModule().getFunction("main")) {
5813     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5814         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5815       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5816   }
5817 }
5818 
5819 /// Turns the given pointer into a constant.
5820 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5821                                           const void *Ptr) {
5822   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5823   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5824   return llvm::ConstantInt::get(i64, PtrInt);
5825 }
5826 
5827 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5828                                    llvm::NamedMDNode *&GlobalMetadata,
5829                                    GlobalDecl D,
5830                                    llvm::GlobalValue *Addr) {
5831   if (!GlobalMetadata)
5832     GlobalMetadata =
5833       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5834 
5835   // TODO: should we report variant information for ctors/dtors?
5836   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5837                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5838                                CGM.getLLVMContext(), D.getDecl()))};
5839   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5840 }
5841 
5842 /// For each function which is declared within an extern "C" region and marked
5843 /// as 'used', but has internal linkage, create an alias from the unmangled
5844 /// name to the mangled name if possible. People expect to be able to refer
5845 /// to such functions with an unmangled name from inline assembly within the
5846 /// same translation unit.
5847 void CodeGenModule::EmitStaticExternCAliases() {
5848   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5849     return;
5850   for (auto &I : StaticExternCValues) {
5851     IdentifierInfo *Name = I.first;
5852     llvm::GlobalValue *Val = I.second;
5853     if (Val && !getModule().getNamedValue(Name->getName()))
5854       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5855   }
5856 }
5857 
5858 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5859                                              GlobalDecl &Result) const {
5860   auto Res = Manglings.find(MangledName);
5861   if (Res == Manglings.end())
5862     return false;
5863   Result = Res->getValue();
5864   return true;
5865 }
5866 
5867 /// Emits metadata nodes associating all the global values in the
5868 /// current module with the Decls they came from.  This is useful for
5869 /// projects using IR gen as a subroutine.
5870 ///
5871 /// Since there's currently no way to associate an MDNode directly
5872 /// with an llvm::GlobalValue, we create a global named metadata
5873 /// with the name 'clang.global.decl.ptrs'.
5874 void CodeGenModule::EmitDeclMetadata() {
5875   llvm::NamedMDNode *GlobalMetadata = nullptr;
5876 
5877   for (auto &I : MangledDeclNames) {
5878     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5879     // Some mangled names don't necessarily have an associated GlobalValue
5880     // in this module, e.g. if we mangled it for DebugInfo.
5881     if (Addr)
5882       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5883   }
5884 }
5885 
5886 /// Emits metadata nodes for all the local variables in the current
5887 /// function.
5888 void CodeGenFunction::EmitDeclMetadata() {
5889   if (LocalDeclMap.empty()) return;
5890 
5891   llvm::LLVMContext &Context = getLLVMContext();
5892 
5893   // Find the unique metadata ID for this name.
5894   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5895 
5896   llvm::NamedMDNode *GlobalMetadata = nullptr;
5897 
5898   for (auto &I : LocalDeclMap) {
5899     const Decl *D = I.first;
5900     llvm::Value *Addr = I.second.getPointer();
5901     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5902       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5903       Alloca->setMetadata(
5904           DeclPtrKind, llvm::MDNode::get(
5905                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5906     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5907       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5908       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5909     }
5910   }
5911 }
5912 
5913 void CodeGenModule::EmitVersionIdentMetadata() {
5914   llvm::NamedMDNode *IdentMetadata =
5915     TheModule.getOrInsertNamedMetadata("llvm.ident");
5916   std::string Version = getClangFullVersion();
5917   llvm::LLVMContext &Ctx = TheModule.getContext();
5918 
5919   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5920   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5921 }
5922 
5923 void CodeGenModule::EmitCommandLineMetadata() {
5924   llvm::NamedMDNode *CommandLineMetadata =
5925     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5926   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5927   llvm::LLVMContext &Ctx = TheModule.getContext();
5928 
5929   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5930   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5931 }
5932 
5933 void CodeGenModule::EmitCoverageFile() {
5934   if (getCodeGenOpts().CoverageDataFile.empty() &&
5935       getCodeGenOpts().CoverageNotesFile.empty())
5936     return;
5937 
5938   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5939   if (!CUNode)
5940     return;
5941 
5942   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5943   llvm::LLVMContext &Ctx = TheModule.getContext();
5944   auto *CoverageDataFile =
5945       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5946   auto *CoverageNotesFile =
5947       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5948   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5949     llvm::MDNode *CU = CUNode->getOperand(i);
5950     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5951     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5952   }
5953 }
5954 
5955 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5956                                                        bool ForEH) {
5957   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5958   // FIXME: should we even be calling this method if RTTI is disabled
5959   // and it's not for EH?
5960   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5961       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5962        getTriple().isNVPTX()))
5963     return llvm::Constant::getNullValue(Int8PtrTy);
5964 
5965   if (ForEH && Ty->isObjCObjectPointerType() &&
5966       LangOpts.ObjCRuntime.isGNUFamily())
5967     return ObjCRuntime->GetEHType(Ty);
5968 
5969   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5970 }
5971 
5972 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5973   // Do not emit threadprivates in simd-only mode.
5974   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5975     return;
5976   for (auto RefExpr : D->varlists()) {
5977     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5978     bool PerformInit =
5979         VD->getAnyInitializer() &&
5980         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5981                                                         /*ForRef=*/false);
5982 
5983     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5984     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5985             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5986       CXXGlobalInits.push_back(InitFunction);
5987   }
5988 }
5989 
5990 llvm::Metadata *
5991 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5992                                             StringRef Suffix) {
5993   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5994   if (InternalId)
5995     return InternalId;
5996 
5997   if (isExternallyVisible(T->getLinkage())) {
5998     std::string OutName;
5999     llvm::raw_string_ostream Out(OutName);
6000     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6001     Out << Suffix;
6002 
6003     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6004   } else {
6005     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6006                                            llvm::ArrayRef<llvm::Metadata *>());
6007   }
6008 
6009   return InternalId;
6010 }
6011 
6012 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6013   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6014 }
6015 
6016 llvm::Metadata *
6017 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6018   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6019 }
6020 
6021 // Generalize pointer types to a void pointer with the qualifiers of the
6022 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6023 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6024 // 'void *'.
6025 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6026   if (!Ty->isPointerType())
6027     return Ty;
6028 
6029   return Ctx.getPointerType(
6030       QualType(Ctx.VoidTy).withCVRQualifiers(
6031           Ty->getPointeeType().getCVRQualifiers()));
6032 }
6033 
6034 // Apply type generalization to a FunctionType's return and argument types
6035 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6036   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6037     SmallVector<QualType, 8> GeneralizedParams;
6038     for (auto &Param : FnType->param_types())
6039       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6040 
6041     return Ctx.getFunctionType(
6042         GeneralizeType(Ctx, FnType->getReturnType()),
6043         GeneralizedParams, FnType->getExtProtoInfo());
6044   }
6045 
6046   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6047     return Ctx.getFunctionNoProtoType(
6048         GeneralizeType(Ctx, FnType->getReturnType()));
6049 
6050   llvm_unreachable("Encountered unknown FunctionType");
6051 }
6052 
6053 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6054   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6055                                       GeneralizedMetadataIdMap, ".generalized");
6056 }
6057 
6058 /// Returns whether this module needs the "all-vtables" type identifier.
6059 bool CodeGenModule::NeedAllVtablesTypeId() const {
6060   // Returns true if at least one of vtable-based CFI checkers is enabled and
6061   // is not in the trapping mode.
6062   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6063            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6064           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6065            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6066           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6067            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6068           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6069            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6070 }
6071 
6072 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6073                                           CharUnits Offset,
6074                                           const CXXRecordDecl *RD) {
6075   llvm::Metadata *MD =
6076       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6077   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6078 
6079   if (CodeGenOpts.SanitizeCfiCrossDso)
6080     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6081       VTable->addTypeMetadata(Offset.getQuantity(),
6082                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6083 
6084   if (NeedAllVtablesTypeId()) {
6085     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6086     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6087   }
6088 }
6089 
6090 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6091   if (!SanStats)
6092     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6093 
6094   return *SanStats;
6095 }
6096 llvm::Value *
6097 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6098                                                   CodeGenFunction &CGF) {
6099   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6100   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6101   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6102   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6103                                 "__translate_sampler_initializer"),
6104                                 {C});
6105 }
6106 
6107 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6108     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6109   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6110                                  /* forPointeeType= */ true);
6111 }
6112 
6113 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6114                                                  LValueBaseInfo *BaseInfo,
6115                                                  TBAAAccessInfo *TBAAInfo,
6116                                                  bool forPointeeType) {
6117   if (TBAAInfo)
6118     *TBAAInfo = getTBAAAccessInfo(T);
6119 
6120   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6121   // that doesn't return the information we need to compute BaseInfo.
6122 
6123   // Honor alignment typedef attributes even on incomplete types.
6124   // We also honor them straight for C++ class types, even as pointees;
6125   // there's an expressivity gap here.
6126   if (auto TT = T->getAs<TypedefType>()) {
6127     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6128       if (BaseInfo)
6129         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6130       return getContext().toCharUnitsFromBits(Align);
6131     }
6132   }
6133 
6134   bool AlignForArray = T->isArrayType();
6135 
6136   // Analyze the base element type, so we don't get confused by incomplete
6137   // array types.
6138   T = getContext().getBaseElementType(T);
6139 
6140   if (T->isIncompleteType()) {
6141     // We could try to replicate the logic from
6142     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6143     // type is incomplete, so it's impossible to test. We could try to reuse
6144     // getTypeAlignIfKnown, but that doesn't return the information we need
6145     // to set BaseInfo.  So just ignore the possibility that the alignment is
6146     // greater than one.
6147     if (BaseInfo)
6148       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6149     return CharUnits::One();
6150   }
6151 
6152   if (BaseInfo)
6153     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6154 
6155   CharUnits Alignment;
6156   // For C++ class pointees, we don't know whether we're pointing at a
6157   // base or a complete object, so we generally need to use the
6158   // non-virtual alignment.
6159   const CXXRecordDecl *RD;
6160   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6161     Alignment = getClassPointerAlignment(RD);
6162   } else {
6163     Alignment = getContext().getTypeAlignInChars(T);
6164     if (T.getQualifiers().hasUnaligned())
6165       Alignment = CharUnits::One();
6166   }
6167 
6168   // Cap to the global maximum type alignment unless the alignment
6169   // was somehow explicit on the type.
6170   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6171     if (Alignment.getQuantity() > MaxAlign &&
6172         !getContext().isAlignmentRequired(T))
6173       Alignment = CharUnits::fromQuantity(MaxAlign);
6174   }
6175   return Alignment;
6176 }
6177 
6178 bool CodeGenModule::stopAutoInit() {
6179   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6180   if (StopAfter) {
6181     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6182     // used
6183     if (NumAutoVarInit >= StopAfter) {
6184       return true;
6185     }
6186     if (!NumAutoVarInit) {
6187       unsigned DiagID = getDiags().getCustomDiagID(
6188           DiagnosticsEngine::Warning,
6189           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6190           "number of times ftrivial-auto-var-init=%1 gets applied.");
6191       getDiags().Report(DiagID)
6192           << StopAfter
6193           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6194                       LangOptions::TrivialAutoVarInitKind::Zero
6195                   ? "zero"
6196                   : "pattern");
6197     }
6198     ++NumAutoVarInit;
6199   }
6200   return false;
6201 }
6202