xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 092d9e8f3bfbd2c8be47ce8651c647e02d63f10f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TargetOptions.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/Triple.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Target/Mangler.h"
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 static const char AnnotationSection[] = "llvm.metadata";
56 
57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58   switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
59   case TargetCXXABI::GenericAArch64:
60   case TargetCXXABI::GenericARM:
61   case TargetCXXABI::iOS:
62   case TargetCXXABI::GenericItanium:
63     return *CreateItaniumCXXABI(CGM);
64   case TargetCXXABI::Microsoft:
65     return *CreateMicrosoftCXXABI(CGM);
66   }
67 
68   llvm_unreachable("invalid C++ ABI kind");
69 }
70 
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              const TargetOptions &TO, llvm::Module &M,
74                              const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO),
77     TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
78     ABI(createCXXABI(*this)),
79     Types(*this),
80     TBAA(0),
81     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
82     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
83     RRData(0), CFConstantStringClassRef(0),
84     ConstantStringClassRef(0), NSConstantStringType(0),
85     VMContext(M.getContext()),
86     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
87     BlockObjectAssign(0), BlockObjectDispose(0),
88     BlockDescriptorType(0), GenericBlockLiteralType(0),
89     LifetimeStartFn(0), LifetimeEndFn(0),
90     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
91     SanOpts(SanitizerBlacklist.isIn(M) ?
92             SanitizerOptions::Disabled : LangOpts.Sanitize) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.CUDA)
118     createCUDARuntime();
119 
120   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
121   if (SanOpts.Thread ||
122       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
123     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
124                            ABI.getMangleContext());
125 
126   // If debug info or coverage generation is enabled, create the CGDebugInfo
127   // object.
128   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
129       CodeGenOpts.EmitGcovArcs ||
130       CodeGenOpts.EmitGcovNotes)
131     DebugInfo = new CGDebugInfo(*this);
132 
133   Block.GlobalUniqueCount = 0;
134 
135   if (C.getLangOpts().ObjCAutoRefCount)
136     ARCData = new ARCEntrypoints();
137   RRData = new RREntrypoints();
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete &ABI;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::Release() {
180   EmitDeferred();
181   EmitCXXGlobalInitFunc();
182   EmitCXXGlobalDtorFunc();
183   if (ObjCRuntime)
184     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
185       AddGlobalCtor(ObjCInitFunction);
186   EmitCtorList(GlobalCtors, "llvm.global_ctors");
187   EmitCtorList(GlobalDtors, "llvm.global_dtors");
188   EmitGlobalAnnotations();
189   EmitLLVMUsed();
190 
191   if (CodeGenOpts.ModulesAutolink) {
192     EmitModuleLinkOptions();
193   }
194 
195   SimplifyPersonality();
196 
197   if (getCodeGenOpts().EmitDeclMetadata)
198     EmitDeclMetadata();
199 
200   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
201     EmitCoverageFile();
202 
203   if (DebugInfo)
204     DebugInfo->finalize();
205 }
206 
207 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
208   // Make sure that this type is translated.
209   Types.UpdateCompletedType(TD);
210 }
211 
212 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
213   if (!TBAA)
214     return 0;
215   return TBAA->getTBAAInfo(QTy);
216 }
217 
218 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
219   if (!TBAA)
220     return 0;
221   return TBAA->getTBAAInfoForVTablePtr();
222 }
223 
224 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
225   if (!TBAA)
226     return 0;
227   return TBAA->getTBAAStructInfo(QTy);
228 }
229 
230 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
231                                         llvm::MDNode *TBAAInfo) {
232   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
233 }
234 
235 bool CodeGenModule::isTargetDarwin() const {
236   return getContext().getTargetInfo().getTriple().isOSDarwin();
237 }
238 
239 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
240   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
241   getDiags().Report(Context.getFullLoc(loc), diagID);
242 }
243 
244 /// ErrorUnsupported - Print out an error that codegen doesn't support the
245 /// specified stmt yet.
246 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
247                                      bool OmitOnError) {
248   if (OmitOnError && getDiags().hasErrorOccurred())
249     return;
250   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
251                                                "cannot compile this %0 yet");
252   std::string Msg = Type;
253   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
254     << Msg << S->getSourceRange();
255 }
256 
257 /// ErrorUnsupported - Print out an error that codegen doesn't support the
258 /// specified decl yet.
259 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
260                                      bool OmitOnError) {
261   if (OmitOnError && getDiags().hasErrorOccurred())
262     return;
263   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
264                                                "cannot compile this %0 yet");
265   std::string Msg = Type;
266   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
267 }
268 
269 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
270   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
271 }
272 
273 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
274                                         const NamedDecl *D) const {
275   // Internal definitions always have default visibility.
276   if (GV->hasLocalLinkage()) {
277     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
278     return;
279   }
280 
281   // Set visibility for definitions.
282   LinkageInfo LV = D->getLinkageAndVisibility();
283   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
284     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
285 }
286 
287 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
288   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
289       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
290       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
291       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
292       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
293 }
294 
295 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
296     CodeGenOptions::TLSModel M) {
297   switch (M) {
298   case CodeGenOptions::GeneralDynamicTLSModel:
299     return llvm::GlobalVariable::GeneralDynamicTLSModel;
300   case CodeGenOptions::LocalDynamicTLSModel:
301     return llvm::GlobalVariable::LocalDynamicTLSModel;
302   case CodeGenOptions::InitialExecTLSModel:
303     return llvm::GlobalVariable::InitialExecTLSModel;
304   case CodeGenOptions::LocalExecTLSModel:
305     return llvm::GlobalVariable::LocalExecTLSModel;
306   }
307   llvm_unreachable("Invalid TLS model!");
308 }
309 
310 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
311                                const VarDecl &D) const {
312   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
313 
314   llvm::GlobalVariable::ThreadLocalMode TLM;
315   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
316 
317   // Override the TLS model if it is explicitly specified.
318   if (D.hasAttr<TLSModelAttr>()) {
319     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
320     TLM = GetLLVMTLSModel(Attr->getModel());
321   }
322 
323   GV->setThreadLocalMode(TLM);
324 }
325 
326 /// Set the symbol visibility of type information (vtable and RTTI)
327 /// associated with the given type.
328 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
329                                       const CXXRecordDecl *RD,
330                                       TypeVisibilityKind TVK) const {
331   setGlobalVisibility(GV, RD);
332 
333   if (!CodeGenOpts.HiddenWeakVTables)
334     return;
335 
336   // We never want to drop the visibility for RTTI names.
337   if (TVK == TVK_ForRTTIName)
338     return;
339 
340   // We want to drop the visibility to hidden for weak type symbols.
341   // This isn't possible if there might be unresolved references
342   // elsewhere that rely on this symbol being visible.
343 
344   // This should be kept roughly in sync with setThunkVisibility
345   // in CGVTables.cpp.
346 
347   // Preconditions.
348   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
349       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
350     return;
351 
352   // Don't override an explicit visibility attribute.
353   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
354     return;
355 
356   switch (RD->getTemplateSpecializationKind()) {
357   // We have to disable the optimization if this is an EI definition
358   // because there might be EI declarations in other shared objects.
359   case TSK_ExplicitInstantiationDefinition:
360   case TSK_ExplicitInstantiationDeclaration:
361     return;
362 
363   // Every use of a non-template class's type information has to emit it.
364   case TSK_Undeclared:
365     break;
366 
367   // In theory, implicit instantiations can ignore the possibility of
368   // an explicit instantiation declaration because there necessarily
369   // must be an EI definition somewhere with default visibility.  In
370   // practice, it's possible to have an explicit instantiation for
371   // an arbitrary template class, and linkers aren't necessarily able
372   // to deal with mixed-visibility symbols.
373   case TSK_ExplicitSpecialization:
374   case TSK_ImplicitInstantiation:
375     return;
376   }
377 
378   // If there's a key function, there may be translation units
379   // that don't have the key function's definition.  But ignore
380   // this if we're emitting RTTI under -fno-rtti.
381   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
382     // FIXME: what should we do if we "lose" the key function during
383     // the emission of the file?
384     if (Context.getCurrentKeyFunction(RD))
385       return;
386   }
387 
388   // Otherwise, drop the visibility to hidden.
389   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
390   GV->setUnnamedAddr(true);
391 }
392 
393 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
394   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
395 
396   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
397   if (!Str.empty())
398     return Str;
399 
400   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
401     IdentifierInfo *II = ND->getIdentifier();
402     assert(II && "Attempt to mangle unnamed decl.");
403 
404     Str = II->getName();
405     return Str;
406   }
407 
408   SmallString<256> Buffer;
409   llvm::raw_svector_ostream Out(Buffer);
410   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
411     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
412   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
413     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
414   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
415     getCXXABI().getMangleContext().mangleBlock(BD, Out,
416       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
417   else
418     getCXXABI().getMangleContext().mangleName(ND, Out);
419 
420   // Allocate space for the mangled name.
421   Out.flush();
422   size_t Length = Buffer.size();
423   char *Name = MangledNamesAllocator.Allocate<char>(Length);
424   std::copy(Buffer.begin(), Buffer.end(), Name);
425 
426   Str = StringRef(Name, Length);
427 
428   return Str;
429 }
430 
431 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
432                                         const BlockDecl *BD) {
433   MangleContext &MangleCtx = getCXXABI().getMangleContext();
434   const Decl *D = GD.getDecl();
435   llvm::raw_svector_ostream Out(Buffer.getBuffer());
436   if (D == 0)
437     MangleCtx.mangleGlobalBlock(BD,
438       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
439   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
440     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
441   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
442     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
443   else
444     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
445 }
446 
447 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
448   return getModule().getNamedValue(Name);
449 }
450 
451 /// AddGlobalCtor - Add a function to the list that will be called before
452 /// main() runs.
453 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
454   // FIXME: Type coercion of void()* types.
455   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
456 }
457 
458 /// AddGlobalDtor - Add a function to the list that will be called
459 /// when the module is unloaded.
460 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
461   // FIXME: Type coercion of void()* types.
462   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
463 }
464 
465 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
466   // Ctor function type is void()*.
467   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
468   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
469 
470   // Get the type of a ctor entry, { i32, void ()* }.
471   llvm::StructType *CtorStructTy =
472     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
473 
474   // Construct the constructor and destructor arrays.
475   SmallVector<llvm::Constant*, 8> Ctors;
476   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
477     llvm::Constant *S[] = {
478       llvm::ConstantInt::get(Int32Ty, I->second, false),
479       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
480     };
481     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
482   }
483 
484   if (!Ctors.empty()) {
485     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
486     new llvm::GlobalVariable(TheModule, AT, false,
487                              llvm::GlobalValue::AppendingLinkage,
488                              llvm::ConstantArray::get(AT, Ctors),
489                              GlobalName);
490   }
491 }
492 
493 llvm::GlobalValue::LinkageTypes
494 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
495   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
496 
497   if (Linkage == GVA_Internal)
498     return llvm::Function::InternalLinkage;
499 
500   if (D->hasAttr<DLLExportAttr>())
501     return llvm::Function::DLLExportLinkage;
502 
503   if (D->hasAttr<WeakAttr>())
504     return llvm::Function::WeakAnyLinkage;
505 
506   // In C99 mode, 'inline' functions are guaranteed to have a strong
507   // definition somewhere else, so we can use available_externally linkage.
508   if (Linkage == GVA_C99Inline)
509     return llvm::Function::AvailableExternallyLinkage;
510 
511   // Note that Apple's kernel linker doesn't support symbol
512   // coalescing, so we need to avoid linkonce and weak linkages there.
513   // Normally, this means we just map to internal, but for explicit
514   // instantiations we'll map to external.
515 
516   // In C++, the compiler has to emit a definition in every translation unit
517   // that references the function.  We should use linkonce_odr because
518   // a) if all references in this translation unit are optimized away, we
519   // don't need to codegen it.  b) if the function persists, it needs to be
520   // merged with other definitions. c) C++ has the ODR, so we know the
521   // definition is dependable.
522   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
523     return !Context.getLangOpts().AppleKext
524              ? llvm::Function::LinkOnceODRLinkage
525              : llvm::Function::InternalLinkage;
526 
527   // An explicit instantiation of a template has weak linkage, since
528   // explicit instantiations can occur in multiple translation units
529   // and must all be equivalent. However, we are not allowed to
530   // throw away these explicit instantiations.
531   if (Linkage == GVA_ExplicitTemplateInstantiation)
532     return !Context.getLangOpts().AppleKext
533              ? llvm::Function::WeakODRLinkage
534              : llvm::Function::ExternalLinkage;
535 
536   // Otherwise, we have strong external linkage.
537   assert(Linkage == GVA_StrongExternal);
538   return llvm::Function::ExternalLinkage;
539 }
540 
541 
542 /// SetFunctionDefinitionAttributes - Set attributes for a global.
543 ///
544 /// FIXME: This is currently only done for aliases and functions, but not for
545 /// variables (these details are set in EmitGlobalVarDefinition for variables).
546 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
547                                                     llvm::GlobalValue *GV) {
548   SetCommonAttributes(D, GV);
549 }
550 
551 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
552                                               const CGFunctionInfo &Info,
553                                               llvm::Function *F) {
554   unsigned CallingConv;
555   AttributeListType AttributeList;
556   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
557   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
558   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
559 }
560 
561 /// Determines whether the language options require us to model
562 /// unwind exceptions.  We treat -fexceptions as mandating this
563 /// except under the fragile ObjC ABI with only ObjC exceptions
564 /// enabled.  This means, for example, that C with -fexceptions
565 /// enables this.
566 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
567   // If exceptions are completely disabled, obviously this is false.
568   if (!LangOpts.Exceptions) return false;
569 
570   // If C++ exceptions are enabled, this is true.
571   if (LangOpts.CXXExceptions) return true;
572 
573   // If ObjC exceptions are enabled, this depends on the ABI.
574   if (LangOpts.ObjCExceptions) {
575     return LangOpts.ObjCRuntime.hasUnwindExceptions();
576   }
577 
578   return true;
579 }
580 
581 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
582                                                            llvm::Function *F) {
583   if (CodeGenOpts.UnwindTables)
584     F->setHasUWTable();
585 
586   if (!hasUnwindExceptions(LangOpts))
587     F->addFnAttr(llvm::Attribute::NoUnwind);
588 
589   if (D->hasAttr<NakedAttr>()) {
590     // Naked implies noinline: we should not be inlining such functions.
591     F->addFnAttr(llvm::Attribute::Naked);
592     F->addFnAttr(llvm::Attribute::NoInline);
593   }
594 
595   if (D->hasAttr<NoInlineAttr>())
596     F->addFnAttr(llvm::Attribute::NoInline);
597 
598   // (noinline wins over always_inline, and we can't specify both in IR)
599   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
600       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
601                                        llvm::Attribute::NoInline))
602     F->addFnAttr(llvm::Attribute::AlwaysInline);
603 
604   // FIXME: Communicate hot and cold attributes to LLVM more directly.
605   if (D->hasAttr<ColdAttr>())
606     F->addFnAttr(llvm::Attribute::OptimizeForSize);
607 
608   if (D->hasAttr<MinSizeAttr>())
609     F->addFnAttr(llvm::Attribute::MinSize);
610 
611   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
612     F->setUnnamedAddr(true);
613 
614   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
615     if (MD->isVirtual())
616       F->setUnnamedAddr(true);
617 
618   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
619     F->addFnAttr(llvm::Attribute::StackProtect);
620   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
621     F->addFnAttr(llvm::Attribute::StackProtectReq);
622 
623   // Add sanitizer attributes if function is not blacklisted.
624   if (!SanitizerBlacklist.isIn(*F)) {
625     // When AddressSanitizer is enabled, set SanitizeAddress attribute
626     // unless __attribute__((no_sanitize_address)) is used.
627     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
628       F->addFnAttr(llvm::Attribute::SanitizeAddress);
629     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
630     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
631       F->addFnAttr(llvm::Attribute::SanitizeThread);
632     }
633     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
634     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
635       F->addFnAttr(llvm::Attribute::SanitizeMemory);
636   }
637 
638   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
639   if (alignment)
640     F->setAlignment(alignment);
641 
642   // C++ ABI requires 2-byte alignment for member functions.
643   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
644     F->setAlignment(2);
645 }
646 
647 void CodeGenModule::SetCommonAttributes(const Decl *D,
648                                         llvm::GlobalValue *GV) {
649   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
650     setGlobalVisibility(GV, ND);
651   else
652     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
653 
654   if (D->hasAttr<UsedAttr>())
655     AddUsedGlobal(GV);
656 
657   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
658     GV->setSection(SA->getName());
659 
660   // Alias cannot have attributes. Filter them here.
661   if (!isa<llvm::GlobalAlias>(GV))
662     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
663 }
664 
665 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
666                                                   llvm::Function *F,
667                                                   const CGFunctionInfo &FI) {
668   SetLLVMFunctionAttributes(D, FI, F);
669   SetLLVMFunctionAttributesForDefinition(D, F);
670 
671   F->setLinkage(llvm::Function::InternalLinkage);
672 
673   SetCommonAttributes(D, F);
674 }
675 
676 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
677                                           llvm::Function *F,
678                                           bool IsIncompleteFunction) {
679   if (unsigned IID = F->getIntrinsicID()) {
680     // If this is an intrinsic function, set the function's attributes
681     // to the intrinsic's attributes.
682     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
683                                                     (llvm::Intrinsic::ID)IID));
684     return;
685   }
686 
687   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
688 
689   if (!IsIncompleteFunction)
690     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
691 
692   // Only a few attributes are set on declarations; these may later be
693   // overridden by a definition.
694 
695   if (FD->hasAttr<DLLImportAttr>()) {
696     F->setLinkage(llvm::Function::DLLImportLinkage);
697   } else if (FD->hasAttr<WeakAttr>() ||
698              FD->isWeakImported()) {
699     // "extern_weak" is overloaded in LLVM; we probably should have
700     // separate linkage types for this.
701     F->setLinkage(llvm::Function::ExternalWeakLinkage);
702   } else {
703     F->setLinkage(llvm::Function::ExternalLinkage);
704 
705     LinkageInfo LV = FD->getLinkageAndVisibility();
706     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
707       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
708     }
709   }
710 
711   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
712     F->setSection(SA->getName());
713 }
714 
715 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
716   assert(!GV->isDeclaration() &&
717          "Only globals with definition can force usage.");
718   LLVMUsed.push_back(GV);
719 }
720 
721 void CodeGenModule::EmitLLVMUsed() {
722   // Don't create llvm.used if there is no need.
723   if (LLVMUsed.empty())
724     return;
725 
726   // Convert LLVMUsed to what ConstantArray needs.
727   SmallVector<llvm::Constant*, 8> UsedArray;
728   UsedArray.resize(LLVMUsed.size());
729   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
730     UsedArray[i] =
731      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
732                                     Int8PtrTy);
733   }
734 
735   if (UsedArray.empty())
736     return;
737   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
738 
739   llvm::GlobalVariable *GV =
740     new llvm::GlobalVariable(getModule(), ATy, false,
741                              llvm::GlobalValue::AppendingLinkage,
742                              llvm::ConstantArray::get(ATy, UsedArray),
743                              "llvm.used");
744 
745   GV->setSection("llvm.metadata");
746 }
747 
748 /// \brief Add link options implied by the given module, including modules
749 /// it depends on, using a postorder walk.
750 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
751                                     Module *Mod,
752                                     SmallVectorImpl<llvm::Value *> &Metadata,
753                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
754   // Import this module's parent.
755   if (Mod->Parent && Visited.insert(Mod->Parent)) {
756     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
757   }
758 
759   // Import this module's dependencies.
760   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
761     if (Visited.insert(Mod->Imports[I-1]))
762       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
763   }
764 
765   // Add linker options to link against the libraries/frameworks
766   // described by this module.
767   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
768     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
769     // We need to know more about the linker to know how to encode these
770     // options propertly.
771 
772     // Link against a framework.
773     if (Mod->LinkLibraries[I-1].IsFramework) {
774       llvm::Value *Args[2] = {
775         llvm::MDString::get(Context, "-framework"),
776         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
777       };
778 
779       Metadata.push_back(llvm::MDNode::get(Context, Args));
780       continue;
781     }
782 
783     // Link against a library.
784     llvm::Value *OptString
785     = llvm::MDString::get(Context,
786                           "-l" + Mod->LinkLibraries[I-1].Library);
787     Metadata.push_back(llvm::MDNode::get(Context, OptString));
788   }
789 }
790 
791 void CodeGenModule::EmitModuleLinkOptions() {
792   // Collect the set of all of the modules we want to visit to emit link
793   // options, which is essentially the imported modules and all of their
794   // non-explicit child modules.
795   llvm::SetVector<clang::Module *> LinkModules;
796   llvm::SmallPtrSet<clang::Module *, 16> Visited;
797   SmallVector<clang::Module *, 16> Stack;
798 
799   // Seed the stack with imported modules.
800   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
801                                                MEnd = ImportedModules.end();
802        M != MEnd; ++M) {
803     if (Visited.insert(*M))
804       Stack.push_back(*M);
805   }
806 
807   // Find all of the modules to import, making a little effort to prune
808   // non-leaf modules.
809   while (!Stack.empty()) {
810     clang::Module *Mod = Stack.back();
811     Stack.pop_back();
812 
813     bool AnyChildren = false;
814 
815     // Visit the submodules of this module.
816     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
817                                         SubEnd = Mod->submodule_end();
818          Sub != SubEnd; ++Sub) {
819       // Skip explicit children; they need to be explicitly imported to be
820       // linked against.
821       if ((*Sub)->IsExplicit)
822         continue;
823 
824       if (Visited.insert(*Sub)) {
825         Stack.push_back(*Sub);
826         AnyChildren = true;
827       }
828     }
829 
830     // We didn't find any children, so add this module to the list of
831     // modules to link against.
832     if (!AnyChildren) {
833       LinkModules.insert(Mod);
834     }
835   }
836 
837   // Add link options for all of the imported modules in reverse topological
838   // order.
839   SmallVector<llvm::Value *, 16> MetadataArgs;
840   Visited.clear();
841   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
842                                                MEnd = LinkModules.end();
843        M != MEnd; ++M) {
844     if (Visited.insert(*M))
845       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
846   }
847   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
848 
849   // Add the linker options metadata flag.
850   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
851                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
852 }
853 
854 void CodeGenModule::EmitDeferred() {
855   // Emit code for any potentially referenced deferred decls.  Since a
856   // previously unused static decl may become used during the generation of code
857   // for a static function, iterate until no changes are made.
858 
859   while (true) {
860     if (!DeferredVTables.empty()) {
861       EmitDeferredVTables();
862 
863       // Emitting a v-table doesn't directly cause more v-tables to
864       // become deferred, although it can cause functions to be
865       // emitted that then need those v-tables.
866       assert(DeferredVTables.empty());
867     }
868 
869     // Stop if we're out of both deferred v-tables and deferred declarations.
870     if (DeferredDeclsToEmit.empty()) break;
871 
872     GlobalDecl D = DeferredDeclsToEmit.back();
873     DeferredDeclsToEmit.pop_back();
874 
875     // Check to see if we've already emitted this.  This is necessary
876     // for a couple of reasons: first, decls can end up in the
877     // deferred-decls queue multiple times, and second, decls can end
878     // up with definitions in unusual ways (e.g. by an extern inline
879     // function acquiring a strong function redefinition).  Just
880     // ignore these cases.
881     //
882     // TODO: That said, looking this up multiple times is very wasteful.
883     StringRef Name = getMangledName(D);
884     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
885     assert(CGRef && "Deferred decl wasn't referenced?");
886 
887     if (!CGRef->isDeclaration())
888       continue;
889 
890     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
891     // purposes an alias counts as a definition.
892     if (isa<llvm::GlobalAlias>(CGRef))
893       continue;
894 
895     // Otherwise, emit the definition and move on to the next one.
896     EmitGlobalDefinition(D);
897   }
898 }
899 
900 void CodeGenModule::EmitGlobalAnnotations() {
901   if (Annotations.empty())
902     return;
903 
904   // Create a new global variable for the ConstantStruct in the Module.
905   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
906     Annotations[0]->getType(), Annotations.size()), Annotations);
907   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
908     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
909     "llvm.global.annotations");
910   gv->setSection(AnnotationSection);
911 }
912 
913 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
914   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
915   if (i != AnnotationStrings.end())
916     return i->second;
917 
918   // Not found yet, create a new global.
919   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
920   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
921     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
922   gv->setSection(AnnotationSection);
923   gv->setUnnamedAddr(true);
924   AnnotationStrings[Str] = gv;
925   return gv;
926 }
927 
928 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
929   SourceManager &SM = getContext().getSourceManager();
930   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
931   if (PLoc.isValid())
932     return EmitAnnotationString(PLoc.getFilename());
933   return EmitAnnotationString(SM.getBufferName(Loc));
934 }
935 
936 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
937   SourceManager &SM = getContext().getSourceManager();
938   PresumedLoc PLoc = SM.getPresumedLoc(L);
939   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
940     SM.getExpansionLineNumber(L);
941   return llvm::ConstantInt::get(Int32Ty, LineNo);
942 }
943 
944 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
945                                                 const AnnotateAttr *AA,
946                                                 SourceLocation L) {
947   // Get the globals for file name, annotation, and the line number.
948   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
949                  *UnitGV = EmitAnnotationUnit(L),
950                  *LineNoCst = EmitAnnotationLineNo(L);
951 
952   // Create the ConstantStruct for the global annotation.
953   llvm::Constant *Fields[4] = {
954     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
955     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
956     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
957     LineNoCst
958   };
959   return llvm::ConstantStruct::getAnon(Fields);
960 }
961 
962 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
963                                          llvm::GlobalValue *GV) {
964   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
965   // Get the struct elements for these annotations.
966   for (specific_attr_iterator<AnnotateAttr>
967        ai = D->specific_attr_begin<AnnotateAttr>(),
968        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
969     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
970 }
971 
972 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
973   // Never defer when EmitAllDecls is specified.
974   if (LangOpts.EmitAllDecls)
975     return false;
976 
977   return !getContext().DeclMustBeEmitted(Global);
978 }
979 
980 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
981     const CXXUuidofExpr* E) {
982   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
983   // well-formed.
984   StringRef Uuid;
985   if (E->isTypeOperand())
986     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
987   else {
988     // Special case: __uuidof(0) means an all-zero GUID.
989     Expr *Op = E->getExprOperand();
990     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
991       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
992     else
993       Uuid = "00000000-0000-0000-0000-000000000000";
994   }
995   std::string Name = "__uuid_" + Uuid.str();
996 
997   // Look for an existing global.
998   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
999     return GV;
1000 
1001   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1002   assert(Init && "failed to initialize as constant");
1003 
1004   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1005   // first field is declared as "long", which for many targets is 8 bytes.
1006   // Those architectures are not supported. (With the MS abi, long is always 4
1007   // bytes.)
1008   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1009   if (Init->getType() != GuidType) {
1010     DiagnosticsEngine &Diags = getDiags();
1011     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1012         "__uuidof codegen is not supported on this architecture");
1013     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1014     Init = llvm::UndefValue::get(GuidType);
1015   }
1016 
1017   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1018       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1019   GV->setUnnamedAddr(true);
1020   return GV;
1021 }
1022 
1023 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1024   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1025   assert(AA && "No alias?");
1026 
1027   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1028 
1029   // See if there is already something with the target's name in the module.
1030   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1031   if (Entry) {
1032     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1033     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1034   }
1035 
1036   llvm::Constant *Aliasee;
1037   if (isa<llvm::FunctionType>(DeclTy))
1038     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1039                                       GlobalDecl(cast<FunctionDecl>(VD)),
1040                                       /*ForVTable=*/false);
1041   else
1042     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1043                                     llvm::PointerType::getUnqual(DeclTy), 0);
1044 
1045   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1046   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1047   WeakRefReferences.insert(F);
1048 
1049   return Aliasee;
1050 }
1051 
1052 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1053   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1054 
1055   // Weak references don't produce any output by themselves.
1056   if (Global->hasAttr<WeakRefAttr>())
1057     return;
1058 
1059   // If this is an alias definition (which otherwise looks like a declaration)
1060   // emit it now.
1061   if (Global->hasAttr<AliasAttr>())
1062     return EmitAliasDefinition(GD);
1063 
1064   // If this is CUDA, be selective about which declarations we emit.
1065   if (LangOpts.CUDA) {
1066     if (CodeGenOpts.CUDAIsDevice) {
1067       if (!Global->hasAttr<CUDADeviceAttr>() &&
1068           !Global->hasAttr<CUDAGlobalAttr>() &&
1069           !Global->hasAttr<CUDAConstantAttr>() &&
1070           !Global->hasAttr<CUDASharedAttr>())
1071         return;
1072     } else {
1073       if (!Global->hasAttr<CUDAHostAttr>() && (
1074             Global->hasAttr<CUDADeviceAttr>() ||
1075             Global->hasAttr<CUDAConstantAttr>() ||
1076             Global->hasAttr<CUDASharedAttr>()))
1077         return;
1078     }
1079   }
1080 
1081   // Ignore declarations, they will be emitted on their first use.
1082   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1083     // Forward declarations are emitted lazily on first use.
1084     if (!FD->doesThisDeclarationHaveABody()) {
1085       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1086         return;
1087 
1088       const FunctionDecl *InlineDefinition = 0;
1089       FD->getBody(InlineDefinition);
1090 
1091       StringRef MangledName = getMangledName(GD);
1092       DeferredDecls.erase(MangledName);
1093       EmitGlobalDefinition(InlineDefinition);
1094       return;
1095     }
1096   } else {
1097     const VarDecl *VD = cast<VarDecl>(Global);
1098     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1099 
1100     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1101       return;
1102   }
1103 
1104   // Defer code generation when possible if this is a static definition, inline
1105   // function etc.  These we only want to emit if they are used.
1106   if (!MayDeferGeneration(Global)) {
1107     // Emit the definition if it can't be deferred.
1108     EmitGlobalDefinition(GD);
1109     return;
1110   }
1111 
1112   // If we're deferring emission of a C++ variable with an
1113   // initializer, remember the order in which it appeared in the file.
1114   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1115       cast<VarDecl>(Global)->hasInit()) {
1116     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1117     CXXGlobalInits.push_back(0);
1118   }
1119 
1120   // If the value has already been used, add it directly to the
1121   // DeferredDeclsToEmit list.
1122   StringRef MangledName = getMangledName(GD);
1123   if (GetGlobalValue(MangledName))
1124     DeferredDeclsToEmit.push_back(GD);
1125   else {
1126     // Otherwise, remember that we saw a deferred decl with this name.  The
1127     // first use of the mangled name will cause it to move into
1128     // DeferredDeclsToEmit.
1129     DeferredDecls[MangledName] = GD;
1130   }
1131 }
1132 
1133 namespace {
1134   struct FunctionIsDirectlyRecursive :
1135     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1136     const StringRef Name;
1137     const Builtin::Context &BI;
1138     bool Result;
1139     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1140       Name(N), BI(C), Result(false) {
1141     }
1142     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1143 
1144     bool TraverseCallExpr(CallExpr *E) {
1145       const FunctionDecl *FD = E->getDirectCallee();
1146       if (!FD)
1147         return true;
1148       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1149       if (Attr && Name == Attr->getLabel()) {
1150         Result = true;
1151         return false;
1152       }
1153       unsigned BuiltinID = FD->getBuiltinID();
1154       if (!BuiltinID)
1155         return true;
1156       StringRef BuiltinName = BI.GetName(BuiltinID);
1157       if (BuiltinName.startswith("__builtin_") &&
1158           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1159         Result = true;
1160         return false;
1161       }
1162       return true;
1163     }
1164   };
1165 }
1166 
1167 // isTriviallyRecursive - Check if this function calls another
1168 // decl that, because of the asm attribute or the other decl being a builtin,
1169 // ends up pointing to itself.
1170 bool
1171 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1172   StringRef Name;
1173   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1174     // asm labels are a special kind of mangling we have to support.
1175     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1176     if (!Attr)
1177       return false;
1178     Name = Attr->getLabel();
1179   } else {
1180     Name = FD->getName();
1181   }
1182 
1183   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1184   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1185   return Walker.Result;
1186 }
1187 
1188 bool
1189 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1190   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1191     return true;
1192   if (CodeGenOpts.OptimizationLevel == 0 &&
1193       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1194     return false;
1195   // PR9614. Avoid cases where the source code is lying to us. An available
1196   // externally function should have an equivalent function somewhere else,
1197   // but a function that calls itself is clearly not equivalent to the real
1198   // implementation.
1199   // This happens in glibc's btowc and in some configure checks.
1200   return !isTriviallyRecursive(F);
1201 }
1202 
1203 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1204   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1205 
1206   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1207                                  Context.getSourceManager(),
1208                                  "Generating code for declaration");
1209 
1210   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1211     // At -O0, don't generate IR for functions with available_externally
1212     // linkage.
1213     if (!shouldEmitFunction(Function))
1214       return;
1215 
1216     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1217       // Make sure to emit the definition(s) before we emit the thunks.
1218       // This is necessary for the generation of certain thunks.
1219       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1220         EmitCXXConstructor(CD, GD.getCtorType());
1221       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1222         EmitCXXDestructor(DD, GD.getDtorType());
1223       else
1224         EmitGlobalFunctionDefinition(GD);
1225 
1226       if (Method->isVirtual())
1227         getVTables().EmitThunks(GD);
1228 
1229       return;
1230     }
1231 
1232     return EmitGlobalFunctionDefinition(GD);
1233   }
1234 
1235   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1236     return EmitGlobalVarDefinition(VD);
1237 
1238   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1239 }
1240 
1241 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1242 /// module, create and return an llvm Function with the specified type. If there
1243 /// is something in the module with the specified name, return it potentially
1244 /// bitcasted to the right type.
1245 ///
1246 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1247 /// to set the attributes on the function when it is first created.
1248 llvm::Constant *
1249 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1250                                        llvm::Type *Ty,
1251                                        GlobalDecl D, bool ForVTable,
1252                                        llvm::AttributeSet ExtraAttrs) {
1253   // Lookup the entry, lazily creating it if necessary.
1254   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1255   if (Entry) {
1256     if (WeakRefReferences.erase(Entry)) {
1257       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1258       if (FD && !FD->hasAttr<WeakAttr>())
1259         Entry->setLinkage(llvm::Function::ExternalLinkage);
1260     }
1261 
1262     if (Entry->getType()->getElementType() == Ty)
1263       return Entry;
1264 
1265     // Make sure the result is of the correct type.
1266     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1267   }
1268 
1269   // This function doesn't have a complete type (for example, the return
1270   // type is an incomplete struct). Use a fake type instead, and make
1271   // sure not to try to set attributes.
1272   bool IsIncompleteFunction = false;
1273 
1274   llvm::FunctionType *FTy;
1275   if (isa<llvm::FunctionType>(Ty)) {
1276     FTy = cast<llvm::FunctionType>(Ty);
1277   } else {
1278     FTy = llvm::FunctionType::get(VoidTy, false);
1279     IsIncompleteFunction = true;
1280   }
1281 
1282   llvm::Function *F = llvm::Function::Create(FTy,
1283                                              llvm::Function::ExternalLinkage,
1284                                              MangledName, &getModule());
1285   assert(F->getName() == MangledName && "name was uniqued!");
1286   if (D.getDecl())
1287     SetFunctionAttributes(D, F, IsIncompleteFunction);
1288   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1289     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1290     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1291                      llvm::AttributeSet::get(VMContext,
1292                                              llvm::AttributeSet::FunctionIndex,
1293                                              B));
1294   }
1295 
1296   // This is the first use or definition of a mangled name.  If there is a
1297   // deferred decl with this name, remember that we need to emit it at the end
1298   // of the file.
1299   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1300   if (DDI != DeferredDecls.end()) {
1301     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1302     // list, and remove it from DeferredDecls (since we don't need it anymore).
1303     DeferredDeclsToEmit.push_back(DDI->second);
1304     DeferredDecls.erase(DDI);
1305 
1306   // Otherwise, there are cases we have to worry about where we're
1307   // using a declaration for which we must emit a definition but where
1308   // we might not find a top-level definition:
1309   //   - member functions defined inline in their classes
1310   //   - friend functions defined inline in some class
1311   //   - special member functions with implicit definitions
1312   // If we ever change our AST traversal to walk into class methods,
1313   // this will be unnecessary.
1314   //
1315   // We also don't emit a definition for a function if it's going to be an entry
1316   // in a vtable, unless it's already marked as used.
1317   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1318     // Look for a declaration that's lexically in a record.
1319     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1320     FD = FD->getMostRecentDecl();
1321     do {
1322       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1323         if (FD->isImplicit() && !ForVTable) {
1324           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1325           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1326           break;
1327         } else if (FD->doesThisDeclarationHaveABody()) {
1328           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1329           break;
1330         }
1331       }
1332       FD = FD->getPreviousDecl();
1333     } while (FD);
1334   }
1335 
1336   // Make sure the result is of the requested type.
1337   if (!IsIncompleteFunction) {
1338     assert(F->getType()->getElementType() == Ty);
1339     return F;
1340   }
1341 
1342   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1343   return llvm::ConstantExpr::getBitCast(F, PTy);
1344 }
1345 
1346 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1347 /// non-null, then this function will use the specified type if it has to
1348 /// create it (this occurs when we see a definition of the function).
1349 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1350                                                  llvm::Type *Ty,
1351                                                  bool ForVTable) {
1352   // If there was no specific requested type, just convert it now.
1353   if (!Ty)
1354     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1355 
1356   StringRef MangledName = getMangledName(GD);
1357   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1358 }
1359 
1360 /// CreateRuntimeFunction - Create a new runtime function with the specified
1361 /// type and name.
1362 llvm::Constant *
1363 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1364                                      StringRef Name,
1365                                      llvm::AttributeSet ExtraAttrs) {
1366   llvm::Constant *C
1367     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1368                               ExtraAttrs);
1369   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1370     if (F->empty())
1371       F->setCallingConv(getRuntimeCC());
1372   return C;
1373 }
1374 
1375 /// isTypeConstant - Determine whether an object of this type can be emitted
1376 /// as a constant.
1377 ///
1378 /// If ExcludeCtor is true, the duration when the object's constructor runs
1379 /// will not be considered. The caller will need to verify that the object is
1380 /// not written to during its construction.
1381 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1382   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1383     return false;
1384 
1385   if (Context.getLangOpts().CPlusPlus) {
1386     if (const CXXRecordDecl *Record
1387           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1388       return ExcludeCtor && !Record->hasMutableFields() &&
1389              Record->hasTrivialDestructor();
1390   }
1391 
1392   return true;
1393 }
1394 
1395 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1396 /// create and return an llvm GlobalVariable with the specified type.  If there
1397 /// is something in the module with the specified name, return it potentially
1398 /// bitcasted to the right type.
1399 ///
1400 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1401 /// to set the attributes on the global when it is first created.
1402 llvm::Constant *
1403 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1404                                      llvm::PointerType *Ty,
1405                                      const VarDecl *D,
1406                                      bool UnnamedAddr) {
1407   // Lookup the entry, lazily creating it if necessary.
1408   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1409   if (Entry) {
1410     if (WeakRefReferences.erase(Entry)) {
1411       if (D && !D->hasAttr<WeakAttr>())
1412         Entry->setLinkage(llvm::Function::ExternalLinkage);
1413     }
1414 
1415     if (UnnamedAddr)
1416       Entry->setUnnamedAddr(true);
1417 
1418     if (Entry->getType() == Ty)
1419       return Entry;
1420 
1421     // Make sure the result is of the correct type.
1422     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1423   }
1424 
1425   // This is the first use or definition of a mangled name.  If there is a
1426   // deferred decl with this name, remember that we need to emit it at the end
1427   // of the file.
1428   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1429   if (DDI != DeferredDecls.end()) {
1430     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1431     // list, and remove it from DeferredDecls (since we don't need it anymore).
1432     DeferredDeclsToEmit.push_back(DDI->second);
1433     DeferredDecls.erase(DDI);
1434   }
1435 
1436   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1437   llvm::GlobalVariable *GV =
1438     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1439                              llvm::GlobalValue::ExternalLinkage,
1440                              0, MangledName, 0,
1441                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1442 
1443   // Handle things which are present even on external declarations.
1444   if (D) {
1445     // FIXME: This code is overly simple and should be merged with other global
1446     // handling.
1447     GV->setConstant(isTypeConstant(D->getType(), false));
1448 
1449     // Set linkage and visibility in case we never see a definition.
1450     LinkageInfo LV = D->getLinkageAndVisibility();
1451     if (LV.getLinkage() != ExternalLinkage) {
1452       // Don't set internal linkage on declarations.
1453     } else {
1454       if (D->hasAttr<DLLImportAttr>())
1455         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1456       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1457         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1458 
1459       // Set visibility on a declaration only if it's explicit.
1460       if (LV.isVisibilityExplicit())
1461         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1462     }
1463 
1464     if (D->isThreadSpecified())
1465       setTLSMode(GV, *D);
1466   }
1467 
1468   if (AddrSpace != Ty->getAddressSpace())
1469     return llvm::ConstantExpr::getBitCast(GV, Ty);
1470   else
1471     return GV;
1472 }
1473 
1474 
1475 llvm::GlobalVariable *
1476 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1477                                       llvm::Type *Ty,
1478                                       llvm::GlobalValue::LinkageTypes Linkage) {
1479   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1480   llvm::GlobalVariable *OldGV = 0;
1481 
1482 
1483   if (GV) {
1484     // Check if the variable has the right type.
1485     if (GV->getType()->getElementType() == Ty)
1486       return GV;
1487 
1488     // Because C++ name mangling, the only way we can end up with an already
1489     // existing global with the same name is if it has been declared extern "C".
1490     assert(GV->isDeclaration() && "Declaration has wrong type!");
1491     OldGV = GV;
1492   }
1493 
1494   // Create a new variable.
1495   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1496                                 Linkage, 0, Name);
1497 
1498   if (OldGV) {
1499     // Replace occurrences of the old variable if needed.
1500     GV->takeName(OldGV);
1501 
1502     if (!OldGV->use_empty()) {
1503       llvm::Constant *NewPtrForOldDecl =
1504       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1505       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1506     }
1507 
1508     OldGV->eraseFromParent();
1509   }
1510 
1511   return GV;
1512 }
1513 
1514 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1515 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1516 /// then it will be created with the specified type instead of whatever the
1517 /// normal requested type would be.
1518 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1519                                                   llvm::Type *Ty) {
1520   assert(D->hasGlobalStorage() && "Not a global variable");
1521   QualType ASTTy = D->getType();
1522   if (Ty == 0)
1523     Ty = getTypes().ConvertTypeForMem(ASTTy);
1524 
1525   llvm::PointerType *PTy =
1526     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1527 
1528   StringRef MangledName = getMangledName(D);
1529   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1530 }
1531 
1532 /// CreateRuntimeVariable - Create a new runtime global variable with the
1533 /// specified type and name.
1534 llvm::Constant *
1535 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1536                                      StringRef Name) {
1537   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1538                                true);
1539 }
1540 
1541 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1542   assert(!D->getInit() && "Cannot emit definite definitions here!");
1543 
1544   if (MayDeferGeneration(D)) {
1545     // If we have not seen a reference to this variable yet, place it
1546     // into the deferred declarations table to be emitted if needed
1547     // later.
1548     StringRef MangledName = getMangledName(D);
1549     if (!GetGlobalValue(MangledName)) {
1550       DeferredDecls[MangledName] = D;
1551       return;
1552     }
1553   }
1554 
1555   // The tentative definition is the only definition.
1556   EmitGlobalVarDefinition(D);
1557 }
1558 
1559 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1560     return Context.toCharUnitsFromBits(
1561       TheDataLayout.getTypeStoreSizeInBits(Ty));
1562 }
1563 
1564 llvm::Constant *
1565 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1566                                                        const Expr *rawInit) {
1567   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1568   if (const ExprWithCleanups *withCleanups =
1569           dyn_cast<ExprWithCleanups>(rawInit)) {
1570     cleanups = withCleanups->getObjects();
1571     rawInit = withCleanups->getSubExpr();
1572   }
1573 
1574   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1575   if (!init || !init->initializesStdInitializerList() ||
1576       init->getNumInits() == 0)
1577     return 0;
1578 
1579   ASTContext &ctx = getContext();
1580   unsigned numInits = init->getNumInits();
1581   // FIXME: This check is here because we would otherwise silently miscompile
1582   // nested global std::initializer_lists. Better would be to have a real
1583   // implementation.
1584   for (unsigned i = 0; i < numInits; ++i) {
1585     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1586     if (inner && inner->initializesStdInitializerList()) {
1587       ErrorUnsupported(inner, "nested global std::initializer_list");
1588       return 0;
1589     }
1590   }
1591 
1592   // Synthesize a fake VarDecl for the array and initialize that.
1593   QualType elementType = init->getInit(0)->getType();
1594   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1595   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1596                                                 ArrayType::Normal, 0);
1597 
1598   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1599   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1600                                               arrayType, D->getLocation());
1601   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1602                                                           D->getDeclContext()),
1603                                           D->getLocStart(), D->getLocation(),
1604                                           name, arrayType, sourceInfo,
1605                                           SC_Static);
1606 
1607   // Now clone the InitListExpr to initialize the array instead.
1608   // Incredible hack: we want to use the existing InitListExpr here, so we need
1609   // to tell it that it no longer initializes a std::initializer_list.
1610   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1611                         init->getNumInits());
1612   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1613                                            init->getRBraceLoc());
1614   arrayInit->setType(arrayType);
1615 
1616   if (!cleanups.empty())
1617     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1618 
1619   backingArray->setInit(arrayInit);
1620 
1621   // Emit the definition of the array.
1622   EmitGlobalVarDefinition(backingArray);
1623 
1624   // Inspect the initializer list to validate it and determine its type.
1625   // FIXME: doing this every time is probably inefficient; caching would be nice
1626   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1627   RecordDecl::field_iterator field = record->field_begin();
1628   if (field == record->field_end()) {
1629     ErrorUnsupported(D, "weird std::initializer_list");
1630     return 0;
1631   }
1632   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1633   // Start pointer.
1634   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1635     ErrorUnsupported(D, "weird std::initializer_list");
1636     return 0;
1637   }
1638   ++field;
1639   if (field == record->field_end()) {
1640     ErrorUnsupported(D, "weird std::initializer_list");
1641     return 0;
1642   }
1643   bool isStartEnd = false;
1644   if (ctx.hasSameType(field->getType(), elementPtr)) {
1645     // End pointer.
1646     isStartEnd = true;
1647   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1648     ErrorUnsupported(D, "weird std::initializer_list");
1649     return 0;
1650   }
1651 
1652   // Now build an APValue representing the std::initializer_list.
1653   APValue initListValue(APValue::UninitStruct(), 0, 2);
1654   APValue &startField = initListValue.getStructField(0);
1655   APValue::LValuePathEntry startOffsetPathEntry;
1656   startOffsetPathEntry.ArrayIndex = 0;
1657   startField = APValue(APValue::LValueBase(backingArray),
1658                        CharUnits::fromQuantity(0),
1659                        llvm::makeArrayRef(startOffsetPathEntry),
1660                        /*IsOnePastTheEnd=*/false, 0);
1661 
1662   if (isStartEnd) {
1663     APValue &endField = initListValue.getStructField(1);
1664     APValue::LValuePathEntry endOffsetPathEntry;
1665     endOffsetPathEntry.ArrayIndex = numInits;
1666     endField = APValue(APValue::LValueBase(backingArray),
1667                        ctx.getTypeSizeInChars(elementType) * numInits,
1668                        llvm::makeArrayRef(endOffsetPathEntry),
1669                        /*IsOnePastTheEnd=*/true, 0);
1670   } else {
1671     APValue &sizeField = initListValue.getStructField(1);
1672     sizeField = APValue(llvm::APSInt(numElements));
1673   }
1674 
1675   // Emit the constant for the initializer_list.
1676   llvm::Constant *llvmInit =
1677       EmitConstantValueForMemory(initListValue, D->getType());
1678   assert(llvmInit && "failed to initialize as constant");
1679   return llvmInit;
1680 }
1681 
1682 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1683                                                  unsigned AddrSpace) {
1684   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1685     if (D->hasAttr<CUDAConstantAttr>())
1686       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1687     else if (D->hasAttr<CUDASharedAttr>())
1688       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1689     else
1690       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1691   }
1692 
1693   return AddrSpace;
1694 }
1695 
1696 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1697   llvm::Constant *Init = 0;
1698   QualType ASTTy = D->getType();
1699   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1700   bool NeedsGlobalCtor = false;
1701   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1702 
1703   const VarDecl *InitDecl;
1704   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1705 
1706   if (!InitExpr) {
1707     // This is a tentative definition; tentative definitions are
1708     // implicitly initialized with { 0 }.
1709     //
1710     // Note that tentative definitions are only emitted at the end of
1711     // a translation unit, so they should never have incomplete
1712     // type. In addition, EmitTentativeDefinition makes sure that we
1713     // never attempt to emit a tentative definition if a real one
1714     // exists. A use may still exists, however, so we still may need
1715     // to do a RAUW.
1716     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1717     Init = EmitNullConstant(D->getType());
1718   } else {
1719     // If this is a std::initializer_list, emit the special initializer.
1720     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1721     // An empty init list will perform zero-initialization, which happens
1722     // to be exactly what we want.
1723     // FIXME: It does so in a global constructor, which is *not* what we
1724     // want.
1725 
1726     if (!Init) {
1727       initializedGlobalDecl = GlobalDecl(D);
1728       Init = EmitConstantInit(*InitDecl);
1729     }
1730     if (!Init) {
1731       QualType T = InitExpr->getType();
1732       if (D->getType()->isReferenceType())
1733         T = D->getType();
1734 
1735       if (getLangOpts().CPlusPlus) {
1736         Init = EmitNullConstant(T);
1737         NeedsGlobalCtor = true;
1738       } else {
1739         ErrorUnsupported(D, "static initializer");
1740         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1741       }
1742     } else {
1743       // We don't need an initializer, so remove the entry for the delayed
1744       // initializer position (just in case this entry was delayed) if we
1745       // also don't need to register a destructor.
1746       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1747         DelayedCXXInitPosition.erase(D);
1748     }
1749   }
1750 
1751   llvm::Type* InitType = Init->getType();
1752   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1753 
1754   // Strip off a bitcast if we got one back.
1755   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1756     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1757            // all zero index gep.
1758            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1759     Entry = CE->getOperand(0);
1760   }
1761 
1762   // Entry is now either a Function or GlobalVariable.
1763   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1764 
1765   // We have a definition after a declaration with the wrong type.
1766   // We must make a new GlobalVariable* and update everything that used OldGV
1767   // (a declaration or tentative definition) with the new GlobalVariable*
1768   // (which will be a definition).
1769   //
1770   // This happens if there is a prototype for a global (e.g.
1771   // "extern int x[];") and then a definition of a different type (e.g.
1772   // "int x[10];"). This also happens when an initializer has a different type
1773   // from the type of the global (this happens with unions).
1774   if (GV == 0 ||
1775       GV->getType()->getElementType() != InitType ||
1776       GV->getType()->getAddressSpace() !=
1777        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1778 
1779     // Move the old entry aside so that we'll create a new one.
1780     Entry->setName(StringRef());
1781 
1782     // Make a new global with the correct type, this is now guaranteed to work.
1783     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1784 
1785     // Replace all uses of the old global with the new global
1786     llvm::Constant *NewPtrForOldDecl =
1787         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1788     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1789 
1790     // Erase the old global, since it is no longer used.
1791     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1792   }
1793 
1794   if (D->hasAttr<AnnotateAttr>())
1795     AddGlobalAnnotations(D, GV);
1796 
1797   GV->setInitializer(Init);
1798 
1799   // If it is safe to mark the global 'constant', do so now.
1800   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1801                   isTypeConstant(D->getType(), true));
1802 
1803   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1804 
1805   // Set the llvm linkage type as appropriate.
1806   llvm::GlobalValue::LinkageTypes Linkage =
1807     GetLLVMLinkageVarDefinition(D, GV);
1808   GV->setLinkage(Linkage);
1809   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1810     // common vars aren't constant even if declared const.
1811     GV->setConstant(false);
1812 
1813   SetCommonAttributes(D, GV);
1814 
1815   // Emit the initializer function if necessary.
1816   if (NeedsGlobalCtor || NeedsGlobalDtor)
1817     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1818 
1819   // If we are compiling with ASan, add metadata indicating dynamically
1820   // initialized globals.
1821   if (SanOpts.Address && NeedsGlobalCtor) {
1822     llvm::Module &M = getModule();
1823 
1824     llvm::NamedMDNode *DynamicInitializers =
1825         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1826     llvm::Value *GlobalToAdd[] = { GV };
1827     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1828     DynamicInitializers->addOperand(ThisGlobal);
1829   }
1830 
1831   // Emit global variable debug information.
1832   if (CGDebugInfo *DI = getModuleDebugInfo())
1833     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1834       DI->EmitGlobalVariable(GV, D);
1835 }
1836 
1837 llvm::GlobalValue::LinkageTypes
1838 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1839                                            llvm::GlobalVariable *GV) {
1840   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1841   if (Linkage == GVA_Internal)
1842     return llvm::Function::InternalLinkage;
1843   else if (D->hasAttr<DLLImportAttr>())
1844     return llvm::Function::DLLImportLinkage;
1845   else if (D->hasAttr<DLLExportAttr>())
1846     return llvm::Function::DLLExportLinkage;
1847   else if (D->hasAttr<WeakAttr>()) {
1848     if (GV->isConstant())
1849       return llvm::GlobalVariable::WeakODRLinkage;
1850     else
1851       return llvm::GlobalVariable::WeakAnyLinkage;
1852   } else if (Linkage == GVA_TemplateInstantiation ||
1853              Linkage == GVA_ExplicitTemplateInstantiation)
1854     return llvm::GlobalVariable::WeakODRLinkage;
1855   else if (!getLangOpts().CPlusPlus &&
1856            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1857              D->getAttr<CommonAttr>()) &&
1858            !D->hasExternalStorage() && !D->getInit() &&
1859            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1860            !D->getAttr<WeakImportAttr>()) {
1861     // Thread local vars aren't considered common linkage.
1862     return llvm::GlobalVariable::CommonLinkage;
1863   }
1864   return llvm::GlobalVariable::ExternalLinkage;
1865 }
1866 
1867 /// Replace the uses of a function that was declared with a non-proto type.
1868 /// We want to silently drop extra arguments from call sites
1869 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1870                                           llvm::Function *newFn) {
1871   // Fast path.
1872   if (old->use_empty()) return;
1873 
1874   llvm::Type *newRetTy = newFn->getReturnType();
1875   SmallVector<llvm::Value*, 4> newArgs;
1876 
1877   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1878          ui != ue; ) {
1879     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1880     llvm::User *user = *use;
1881 
1882     // Recognize and replace uses of bitcasts.  Most calls to
1883     // unprototyped functions will use bitcasts.
1884     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1885       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1886         replaceUsesOfNonProtoConstant(bitcast, newFn);
1887       continue;
1888     }
1889 
1890     // Recognize calls to the function.
1891     llvm::CallSite callSite(user);
1892     if (!callSite) continue;
1893     if (!callSite.isCallee(use)) continue;
1894 
1895     // If the return types don't match exactly, then we can't
1896     // transform this call unless it's dead.
1897     if (callSite->getType() != newRetTy && !callSite->use_empty())
1898       continue;
1899 
1900     // Get the call site's attribute list.
1901     SmallVector<llvm::AttributeSet, 8> newAttrs;
1902     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1903 
1904     // Collect any return attributes from the call.
1905     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1906       newAttrs.push_back(
1907         llvm::AttributeSet::get(newFn->getContext(),
1908                                 oldAttrs.getRetAttributes()));
1909 
1910     // If the function was passed too few arguments, don't transform.
1911     unsigned newNumArgs = newFn->arg_size();
1912     if (callSite.arg_size() < newNumArgs) continue;
1913 
1914     // If extra arguments were passed, we silently drop them.
1915     // If any of the types mismatch, we don't transform.
1916     unsigned argNo = 0;
1917     bool dontTransform = false;
1918     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1919            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1920       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1921         dontTransform = true;
1922         break;
1923       }
1924 
1925       // Add any parameter attributes.
1926       if (oldAttrs.hasAttributes(argNo + 1))
1927         newAttrs.
1928           push_back(llvm::
1929                     AttributeSet::get(newFn->getContext(),
1930                                       oldAttrs.getParamAttributes(argNo + 1)));
1931     }
1932     if (dontTransform)
1933       continue;
1934 
1935     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1936       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1937                                                  oldAttrs.getFnAttributes()));
1938 
1939     // Okay, we can transform this.  Create the new call instruction and copy
1940     // over the required information.
1941     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1942 
1943     llvm::CallSite newCall;
1944     if (callSite.isCall()) {
1945       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1946                                        callSite.getInstruction());
1947     } else {
1948       llvm::InvokeInst *oldInvoke =
1949         cast<llvm::InvokeInst>(callSite.getInstruction());
1950       newCall = llvm::InvokeInst::Create(newFn,
1951                                          oldInvoke->getNormalDest(),
1952                                          oldInvoke->getUnwindDest(),
1953                                          newArgs, "",
1954                                          callSite.getInstruction());
1955     }
1956     newArgs.clear(); // for the next iteration
1957 
1958     if (!newCall->getType()->isVoidTy())
1959       newCall->takeName(callSite.getInstruction());
1960     newCall.setAttributes(
1961                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1962     newCall.setCallingConv(callSite.getCallingConv());
1963 
1964     // Finally, remove the old call, replacing any uses with the new one.
1965     if (!callSite->use_empty())
1966       callSite->replaceAllUsesWith(newCall.getInstruction());
1967 
1968     // Copy debug location attached to CI.
1969     if (!callSite->getDebugLoc().isUnknown())
1970       newCall->setDebugLoc(callSite->getDebugLoc());
1971     callSite->eraseFromParent();
1972   }
1973 }
1974 
1975 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1976 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1977 /// existing call uses of the old function in the module, this adjusts them to
1978 /// call the new function directly.
1979 ///
1980 /// This is not just a cleanup: the always_inline pass requires direct calls to
1981 /// functions to be able to inline them.  If there is a bitcast in the way, it
1982 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1983 /// run at -O0.
1984 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1985                                                       llvm::Function *NewFn) {
1986   // If we're redefining a global as a function, don't transform it.
1987   if (!isa<llvm::Function>(Old)) return;
1988 
1989   replaceUsesOfNonProtoConstant(Old, NewFn);
1990 }
1991 
1992 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1993   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1994   // If we have a definition, this might be a deferred decl. If the
1995   // instantiation is explicit, make sure we emit it at the end.
1996   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1997     GetAddrOfGlobalVar(VD);
1998 
1999   EmitTopLevelDecl(VD);
2000 }
2001 
2002 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2003   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2004 
2005   // Compute the function info and LLVM type.
2006   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2007   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2008 
2009   // Get or create the prototype for the function.
2010   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2011 
2012   // Strip off a bitcast if we got one back.
2013   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2014     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2015     Entry = CE->getOperand(0);
2016   }
2017 
2018 
2019   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2020     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2021 
2022     // If the types mismatch then we have to rewrite the definition.
2023     assert(OldFn->isDeclaration() &&
2024            "Shouldn't replace non-declaration");
2025 
2026     // F is the Function* for the one with the wrong type, we must make a new
2027     // Function* and update everything that used F (a declaration) with the new
2028     // Function* (which will be a definition).
2029     //
2030     // This happens if there is a prototype for a function
2031     // (e.g. "int f()") and then a definition of a different type
2032     // (e.g. "int f(int x)").  Move the old function aside so that it
2033     // doesn't interfere with GetAddrOfFunction.
2034     OldFn->setName(StringRef());
2035     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2036 
2037     // This might be an implementation of a function without a
2038     // prototype, in which case, try to do special replacement of
2039     // calls which match the new prototype.  The really key thing here
2040     // is that we also potentially drop arguments from the call site
2041     // so as to make a direct call, which makes the inliner happier
2042     // and suppresses a number of optimizer warnings (!) about
2043     // dropping arguments.
2044     if (!OldFn->use_empty()) {
2045       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2046       OldFn->removeDeadConstantUsers();
2047     }
2048 
2049     // Replace uses of F with the Function we will endow with a body.
2050     if (!Entry->use_empty()) {
2051       llvm::Constant *NewPtrForOldDecl =
2052         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2053       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2054     }
2055 
2056     // Ok, delete the old function now, which is dead.
2057     OldFn->eraseFromParent();
2058 
2059     Entry = NewFn;
2060   }
2061 
2062   // We need to set linkage and visibility on the function before
2063   // generating code for it because various parts of IR generation
2064   // want to propagate this information down (e.g. to local static
2065   // declarations).
2066   llvm::Function *Fn = cast<llvm::Function>(Entry);
2067   setFunctionLinkage(D, Fn);
2068 
2069   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2070   setGlobalVisibility(Fn, D);
2071 
2072   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2073 
2074   SetFunctionDefinitionAttributes(D, Fn);
2075   SetLLVMFunctionAttributesForDefinition(D, Fn);
2076 
2077   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2078     AddGlobalCtor(Fn, CA->getPriority());
2079   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2080     AddGlobalDtor(Fn, DA->getPriority());
2081   if (D->hasAttr<AnnotateAttr>())
2082     AddGlobalAnnotations(D, Fn);
2083 }
2084 
2085 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2086   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2087   const AliasAttr *AA = D->getAttr<AliasAttr>();
2088   assert(AA && "Not an alias?");
2089 
2090   StringRef MangledName = getMangledName(GD);
2091 
2092   // If there is a definition in the module, then it wins over the alias.
2093   // This is dubious, but allow it to be safe.  Just ignore the alias.
2094   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2095   if (Entry && !Entry->isDeclaration())
2096     return;
2097 
2098   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2099 
2100   // Create a reference to the named value.  This ensures that it is emitted
2101   // if a deferred decl.
2102   llvm::Constant *Aliasee;
2103   if (isa<llvm::FunctionType>(DeclTy))
2104     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2105                                       /*ForVTable=*/false);
2106   else
2107     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2108                                     llvm::PointerType::getUnqual(DeclTy), 0);
2109 
2110   // Create the new alias itself, but don't set a name yet.
2111   llvm::GlobalValue *GA =
2112     new llvm::GlobalAlias(Aliasee->getType(),
2113                           llvm::Function::ExternalLinkage,
2114                           "", Aliasee, &getModule());
2115 
2116   if (Entry) {
2117     assert(Entry->isDeclaration());
2118 
2119     // If there is a declaration in the module, then we had an extern followed
2120     // by the alias, as in:
2121     //   extern int test6();
2122     //   ...
2123     //   int test6() __attribute__((alias("test7")));
2124     //
2125     // Remove it and replace uses of it with the alias.
2126     GA->takeName(Entry);
2127 
2128     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2129                                                           Entry->getType()));
2130     Entry->eraseFromParent();
2131   } else {
2132     GA->setName(MangledName);
2133   }
2134 
2135   // Set attributes which are particular to an alias; this is a
2136   // specialization of the attributes which may be set on a global
2137   // variable/function.
2138   if (D->hasAttr<DLLExportAttr>()) {
2139     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2140       // The dllexport attribute is ignored for undefined symbols.
2141       if (FD->hasBody())
2142         GA->setLinkage(llvm::Function::DLLExportLinkage);
2143     } else {
2144       GA->setLinkage(llvm::Function::DLLExportLinkage);
2145     }
2146   } else if (D->hasAttr<WeakAttr>() ||
2147              D->hasAttr<WeakRefAttr>() ||
2148              D->isWeakImported()) {
2149     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2150   }
2151 
2152   SetCommonAttributes(D, GA);
2153 }
2154 
2155 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2156                                             ArrayRef<llvm::Type*> Tys) {
2157   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2158                                          Tys);
2159 }
2160 
2161 static llvm::StringMapEntry<llvm::Constant*> &
2162 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2163                          const StringLiteral *Literal,
2164                          bool TargetIsLSB,
2165                          bool &IsUTF16,
2166                          unsigned &StringLength) {
2167   StringRef String = Literal->getString();
2168   unsigned NumBytes = String.size();
2169 
2170   // Check for simple case.
2171   if (!Literal->containsNonAsciiOrNull()) {
2172     StringLength = NumBytes;
2173     return Map.GetOrCreateValue(String);
2174   }
2175 
2176   // Otherwise, convert the UTF8 literals into a string of shorts.
2177   IsUTF16 = true;
2178 
2179   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2180   const UTF8 *FromPtr = (const UTF8 *)String.data();
2181   UTF16 *ToPtr = &ToBuf[0];
2182 
2183   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2184                            &ToPtr, ToPtr + NumBytes,
2185                            strictConversion);
2186 
2187   // ConvertUTF8toUTF16 returns the length in ToPtr.
2188   StringLength = ToPtr - &ToBuf[0];
2189 
2190   // Add an explicit null.
2191   *ToPtr = 0;
2192   return Map.
2193     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2194                                (StringLength + 1) * 2));
2195 }
2196 
2197 static llvm::StringMapEntry<llvm::Constant*> &
2198 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2199                        const StringLiteral *Literal,
2200                        unsigned &StringLength) {
2201   StringRef String = Literal->getString();
2202   StringLength = String.size();
2203   return Map.GetOrCreateValue(String);
2204 }
2205 
2206 llvm::Constant *
2207 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2208   unsigned StringLength = 0;
2209   bool isUTF16 = false;
2210   llvm::StringMapEntry<llvm::Constant*> &Entry =
2211     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2212                              getDataLayout().isLittleEndian(),
2213                              isUTF16, StringLength);
2214 
2215   if (llvm::Constant *C = Entry.getValue())
2216     return C;
2217 
2218   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2219   llvm::Constant *Zeros[] = { Zero, Zero };
2220 
2221   // If we don't already have it, get __CFConstantStringClassReference.
2222   if (!CFConstantStringClassRef) {
2223     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2224     Ty = llvm::ArrayType::get(Ty, 0);
2225     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2226                                            "__CFConstantStringClassReference");
2227     // Decay array -> ptr
2228     CFConstantStringClassRef =
2229       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2230   }
2231 
2232   QualType CFTy = getContext().getCFConstantStringType();
2233 
2234   llvm::StructType *STy =
2235     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2236 
2237   llvm::Constant *Fields[4];
2238 
2239   // Class pointer.
2240   Fields[0] = CFConstantStringClassRef;
2241 
2242   // Flags.
2243   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2244   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2245     llvm::ConstantInt::get(Ty, 0x07C8);
2246 
2247   // String pointer.
2248   llvm::Constant *C = 0;
2249   if (isUTF16) {
2250     ArrayRef<uint16_t> Arr =
2251       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2252                                      const_cast<char *>(Entry.getKey().data())),
2253                                    Entry.getKey().size() / 2);
2254     C = llvm::ConstantDataArray::get(VMContext, Arr);
2255   } else {
2256     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2257   }
2258 
2259   llvm::GlobalValue::LinkageTypes Linkage;
2260   if (isUTF16)
2261     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2262     Linkage = llvm::GlobalValue::InternalLinkage;
2263   else
2264     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2265     // when using private linkage. It is not clear if this is a bug in ld
2266     // or a reasonable new restriction.
2267     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2268 
2269   // Note: -fwritable-strings doesn't make the backing store strings of
2270   // CFStrings writable. (See <rdar://problem/10657500>)
2271   llvm::GlobalVariable *GV =
2272     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2273                              Linkage, C, ".str");
2274   GV->setUnnamedAddr(true);
2275   if (isUTF16) {
2276     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2277     GV->setAlignment(Align.getQuantity());
2278   } else {
2279     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2280     GV->setAlignment(Align.getQuantity());
2281   }
2282 
2283   // String.
2284   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2285 
2286   if (isUTF16)
2287     // Cast the UTF16 string to the correct type.
2288     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2289 
2290   // String length.
2291   Ty = getTypes().ConvertType(getContext().LongTy);
2292   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2293 
2294   // The struct.
2295   C = llvm::ConstantStruct::get(STy, Fields);
2296   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2297                                 llvm::GlobalVariable::PrivateLinkage, C,
2298                                 "_unnamed_cfstring_");
2299   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2300     GV->setSection(Sect);
2301   Entry.setValue(GV);
2302 
2303   return GV;
2304 }
2305 
2306 static RecordDecl *
2307 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2308                  DeclContext *DC, IdentifierInfo *Id) {
2309   SourceLocation Loc;
2310   if (Ctx.getLangOpts().CPlusPlus)
2311     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2312   else
2313     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2314 }
2315 
2316 llvm::Constant *
2317 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2318   unsigned StringLength = 0;
2319   llvm::StringMapEntry<llvm::Constant*> &Entry =
2320     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2321 
2322   if (llvm::Constant *C = Entry.getValue())
2323     return C;
2324 
2325   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2326   llvm::Constant *Zeros[] = { Zero, Zero };
2327 
2328   // If we don't already have it, get _NSConstantStringClassReference.
2329   if (!ConstantStringClassRef) {
2330     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2331     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2332     llvm::Constant *GV;
2333     if (LangOpts.ObjCRuntime.isNonFragile()) {
2334       std::string str =
2335         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2336                             : "OBJC_CLASS_$_" + StringClass;
2337       GV = getObjCRuntime().GetClassGlobal(str);
2338       // Make sure the result is of the correct type.
2339       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2340       ConstantStringClassRef =
2341         llvm::ConstantExpr::getBitCast(GV, PTy);
2342     } else {
2343       std::string str =
2344         StringClass.empty() ? "_NSConstantStringClassReference"
2345                             : "_" + StringClass + "ClassReference";
2346       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2347       GV = CreateRuntimeVariable(PTy, str);
2348       // Decay array -> ptr
2349       ConstantStringClassRef =
2350         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2351     }
2352   }
2353 
2354   if (!NSConstantStringType) {
2355     // Construct the type for a constant NSString.
2356     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2357                                      Context.getTranslationUnitDecl(),
2358                                    &Context.Idents.get("__builtin_NSString"));
2359     D->startDefinition();
2360 
2361     QualType FieldTypes[3];
2362 
2363     // const int *isa;
2364     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2365     // const char *str;
2366     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2367     // unsigned int length;
2368     FieldTypes[2] = Context.UnsignedIntTy;
2369 
2370     // Create fields
2371     for (unsigned i = 0; i < 3; ++i) {
2372       FieldDecl *Field = FieldDecl::Create(Context, D,
2373                                            SourceLocation(),
2374                                            SourceLocation(), 0,
2375                                            FieldTypes[i], /*TInfo=*/0,
2376                                            /*BitWidth=*/0,
2377                                            /*Mutable=*/false,
2378                                            ICIS_NoInit);
2379       Field->setAccess(AS_public);
2380       D->addDecl(Field);
2381     }
2382 
2383     D->completeDefinition();
2384     QualType NSTy = Context.getTagDeclType(D);
2385     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2386   }
2387 
2388   llvm::Constant *Fields[3];
2389 
2390   // Class pointer.
2391   Fields[0] = ConstantStringClassRef;
2392 
2393   // String pointer.
2394   llvm::Constant *C =
2395     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2396 
2397   llvm::GlobalValue::LinkageTypes Linkage;
2398   bool isConstant;
2399   Linkage = llvm::GlobalValue::PrivateLinkage;
2400   isConstant = !LangOpts.WritableStrings;
2401 
2402   llvm::GlobalVariable *GV =
2403   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2404                            ".str");
2405   GV->setUnnamedAddr(true);
2406   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2407   GV->setAlignment(Align.getQuantity());
2408   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2409 
2410   // String length.
2411   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2412   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2413 
2414   // The struct.
2415   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2416   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2417                                 llvm::GlobalVariable::PrivateLinkage, C,
2418                                 "_unnamed_nsstring_");
2419   // FIXME. Fix section.
2420   if (const char *Sect =
2421         LangOpts.ObjCRuntime.isNonFragile()
2422           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2423           : getContext().getTargetInfo().getNSStringSection())
2424     GV->setSection(Sect);
2425   Entry.setValue(GV);
2426 
2427   return GV;
2428 }
2429 
2430 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2431   if (ObjCFastEnumerationStateType.isNull()) {
2432     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2433                                      Context.getTranslationUnitDecl(),
2434                       &Context.Idents.get("__objcFastEnumerationState"));
2435     D->startDefinition();
2436 
2437     QualType FieldTypes[] = {
2438       Context.UnsignedLongTy,
2439       Context.getPointerType(Context.getObjCIdType()),
2440       Context.getPointerType(Context.UnsignedLongTy),
2441       Context.getConstantArrayType(Context.UnsignedLongTy,
2442                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2443     };
2444 
2445     for (size_t i = 0; i < 4; ++i) {
2446       FieldDecl *Field = FieldDecl::Create(Context,
2447                                            D,
2448                                            SourceLocation(),
2449                                            SourceLocation(), 0,
2450                                            FieldTypes[i], /*TInfo=*/0,
2451                                            /*BitWidth=*/0,
2452                                            /*Mutable=*/false,
2453                                            ICIS_NoInit);
2454       Field->setAccess(AS_public);
2455       D->addDecl(Field);
2456     }
2457 
2458     D->completeDefinition();
2459     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2460   }
2461 
2462   return ObjCFastEnumerationStateType;
2463 }
2464 
2465 llvm::Constant *
2466 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2467   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2468 
2469   // Don't emit it as the address of the string, emit the string data itself
2470   // as an inline array.
2471   if (E->getCharByteWidth() == 1) {
2472     SmallString<64> Str(E->getString());
2473 
2474     // Resize the string to the right size, which is indicated by its type.
2475     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2476     Str.resize(CAT->getSize().getZExtValue());
2477     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2478   }
2479 
2480   llvm::ArrayType *AType =
2481     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2482   llvm::Type *ElemTy = AType->getElementType();
2483   unsigned NumElements = AType->getNumElements();
2484 
2485   // Wide strings have either 2-byte or 4-byte elements.
2486   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2487     SmallVector<uint16_t, 32> Elements;
2488     Elements.reserve(NumElements);
2489 
2490     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2491       Elements.push_back(E->getCodeUnit(i));
2492     Elements.resize(NumElements);
2493     return llvm::ConstantDataArray::get(VMContext, Elements);
2494   }
2495 
2496   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2497   SmallVector<uint32_t, 32> Elements;
2498   Elements.reserve(NumElements);
2499 
2500   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2501     Elements.push_back(E->getCodeUnit(i));
2502   Elements.resize(NumElements);
2503   return llvm::ConstantDataArray::get(VMContext, Elements);
2504 }
2505 
2506 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2507 /// constant array for the given string literal.
2508 llvm::Constant *
2509 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2510   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2511   if (S->isAscii() || S->isUTF8()) {
2512     SmallString<64> Str(S->getString());
2513 
2514     // Resize the string to the right size, which is indicated by its type.
2515     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2516     Str.resize(CAT->getSize().getZExtValue());
2517     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2518   }
2519 
2520   // FIXME: the following does not memoize wide strings.
2521   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2522   llvm::GlobalVariable *GV =
2523     new llvm::GlobalVariable(getModule(),C->getType(),
2524                              !LangOpts.WritableStrings,
2525                              llvm::GlobalValue::PrivateLinkage,
2526                              C,".str");
2527 
2528   GV->setAlignment(Align.getQuantity());
2529   GV->setUnnamedAddr(true);
2530   return GV;
2531 }
2532 
2533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2534 /// array for the given ObjCEncodeExpr node.
2535 llvm::Constant *
2536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2537   std::string Str;
2538   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2539 
2540   return GetAddrOfConstantCString(Str);
2541 }
2542 
2543 
2544 /// GenerateWritableString -- Creates storage for a string literal.
2545 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2546                                              bool constant,
2547                                              CodeGenModule &CGM,
2548                                              const char *GlobalName,
2549                                              unsigned Alignment) {
2550   // Create Constant for this string literal. Don't add a '\0'.
2551   llvm::Constant *C =
2552       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2553 
2554   // Create a global variable for this string
2555   llvm::GlobalVariable *GV =
2556     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2557                              llvm::GlobalValue::PrivateLinkage,
2558                              C, GlobalName);
2559   GV->setAlignment(Alignment);
2560   GV->setUnnamedAddr(true);
2561   return GV;
2562 }
2563 
2564 /// GetAddrOfConstantString - Returns a pointer to a character array
2565 /// containing the literal. This contents are exactly that of the
2566 /// given string, i.e. it will not be null terminated automatically;
2567 /// see GetAddrOfConstantCString. Note that whether the result is
2568 /// actually a pointer to an LLVM constant depends on
2569 /// Feature.WriteableStrings.
2570 ///
2571 /// The result has pointer to array type.
2572 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2573                                                        const char *GlobalName,
2574                                                        unsigned Alignment) {
2575   // Get the default prefix if a name wasn't specified.
2576   if (!GlobalName)
2577     GlobalName = ".str";
2578 
2579   // Don't share any string literals if strings aren't constant.
2580   if (LangOpts.WritableStrings)
2581     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2582 
2583   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2584     ConstantStringMap.GetOrCreateValue(Str);
2585 
2586   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2587     if (Alignment > GV->getAlignment()) {
2588       GV->setAlignment(Alignment);
2589     }
2590     return GV;
2591   }
2592 
2593   // Create a global variable for this.
2594   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2595                                                    Alignment);
2596   Entry.setValue(GV);
2597   return GV;
2598 }
2599 
2600 /// GetAddrOfConstantCString - Returns a pointer to a character
2601 /// array containing the literal and a terminating '\0'
2602 /// character. The result has pointer to array type.
2603 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2604                                                         const char *GlobalName,
2605                                                         unsigned Alignment) {
2606   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2607   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2608 }
2609 
2610 /// EmitObjCPropertyImplementations - Emit information for synthesized
2611 /// properties for an implementation.
2612 void CodeGenModule::EmitObjCPropertyImplementations(const
2613                                                     ObjCImplementationDecl *D) {
2614   for (ObjCImplementationDecl::propimpl_iterator
2615          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2616     ObjCPropertyImplDecl *PID = *i;
2617 
2618     // Dynamic is just for type-checking.
2619     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2620       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2621 
2622       // Determine which methods need to be implemented, some may have
2623       // been overridden. Note that ::isPropertyAccessor is not the method
2624       // we want, that just indicates if the decl came from a
2625       // property. What we want to know is if the method is defined in
2626       // this implementation.
2627       if (!D->getInstanceMethod(PD->getGetterName()))
2628         CodeGenFunction(*this).GenerateObjCGetter(
2629                                  const_cast<ObjCImplementationDecl *>(D), PID);
2630       if (!PD->isReadOnly() &&
2631           !D->getInstanceMethod(PD->getSetterName()))
2632         CodeGenFunction(*this).GenerateObjCSetter(
2633                                  const_cast<ObjCImplementationDecl *>(D), PID);
2634     }
2635   }
2636 }
2637 
2638 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2639   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2640   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2641        ivar; ivar = ivar->getNextIvar())
2642     if (ivar->getType().isDestructedType())
2643       return true;
2644 
2645   return false;
2646 }
2647 
2648 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2649 /// for an implementation.
2650 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2651   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2652   if (needsDestructMethod(D)) {
2653     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2654     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2655     ObjCMethodDecl *DTORMethod =
2656       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2657                              cxxSelector, getContext().VoidTy, 0, D,
2658                              /*isInstance=*/true, /*isVariadic=*/false,
2659                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2660                              /*isDefined=*/false, ObjCMethodDecl::Required);
2661     D->addInstanceMethod(DTORMethod);
2662     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2663     D->setHasDestructors(true);
2664   }
2665 
2666   // If the implementation doesn't have any ivar initializers, we don't need
2667   // a .cxx_construct.
2668   if (D->getNumIvarInitializers() == 0)
2669     return;
2670 
2671   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2672   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2673   // The constructor returns 'self'.
2674   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2675                                                 D->getLocation(),
2676                                                 D->getLocation(),
2677                                                 cxxSelector,
2678                                                 getContext().getObjCIdType(), 0,
2679                                                 D, /*isInstance=*/true,
2680                                                 /*isVariadic=*/false,
2681                                                 /*isPropertyAccessor=*/true,
2682                                                 /*isImplicitlyDeclared=*/true,
2683                                                 /*isDefined=*/false,
2684                                                 ObjCMethodDecl::Required);
2685   D->addInstanceMethod(CTORMethod);
2686   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2687   D->setHasNonZeroConstructors(true);
2688 }
2689 
2690 /// EmitNamespace - Emit all declarations in a namespace.
2691 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2692   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2693        I != E; ++I)
2694     EmitTopLevelDecl(*I);
2695 }
2696 
2697 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2698 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2699   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2700       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2701     ErrorUnsupported(LSD, "linkage spec");
2702     return;
2703   }
2704 
2705   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2706        I != E; ++I) {
2707     // Meta-data for ObjC class includes references to implemented methods.
2708     // Generate class's method definitions first.
2709     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2710       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2711            MEnd = OID->meth_end();
2712            M != MEnd; ++M)
2713         EmitTopLevelDecl(*M);
2714     }
2715     EmitTopLevelDecl(*I);
2716   }
2717 }
2718 
2719 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2720 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2721   // If an error has occurred, stop code generation, but continue
2722   // parsing and semantic analysis (to ensure all warnings and errors
2723   // are emitted).
2724   if (Diags.hasErrorOccurred())
2725     return;
2726 
2727   // Ignore dependent declarations.
2728   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2729     return;
2730 
2731   switch (D->getKind()) {
2732   case Decl::CXXConversion:
2733   case Decl::CXXMethod:
2734   case Decl::Function:
2735     // Skip function templates
2736     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2737         cast<FunctionDecl>(D)->isLateTemplateParsed())
2738       return;
2739 
2740     EmitGlobal(cast<FunctionDecl>(D));
2741     break;
2742 
2743   case Decl::Var:
2744     EmitGlobal(cast<VarDecl>(D));
2745     break;
2746 
2747   // Indirect fields from global anonymous structs and unions can be
2748   // ignored; only the actual variable requires IR gen support.
2749   case Decl::IndirectField:
2750     break;
2751 
2752   // C++ Decls
2753   case Decl::Namespace:
2754     EmitNamespace(cast<NamespaceDecl>(D));
2755     break;
2756     // No code generation needed.
2757   case Decl::UsingShadow:
2758   case Decl::Using:
2759   case Decl::UsingDirective:
2760   case Decl::ClassTemplate:
2761   case Decl::FunctionTemplate:
2762   case Decl::TypeAliasTemplate:
2763   case Decl::NamespaceAlias:
2764   case Decl::Block:
2765   case Decl::Empty:
2766     break;
2767   case Decl::CXXConstructor:
2768     // Skip function templates
2769     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2770         cast<FunctionDecl>(D)->isLateTemplateParsed())
2771       return;
2772 
2773     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2774     break;
2775   case Decl::CXXDestructor:
2776     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2777       return;
2778     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2779     break;
2780 
2781   case Decl::StaticAssert:
2782     // Nothing to do.
2783     break;
2784 
2785   // Objective-C Decls
2786 
2787   // Forward declarations, no (immediate) code generation.
2788   case Decl::ObjCInterface:
2789   case Decl::ObjCCategory:
2790     break;
2791 
2792   case Decl::ObjCProtocol: {
2793     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2794     if (Proto->isThisDeclarationADefinition())
2795       ObjCRuntime->GenerateProtocol(Proto);
2796     break;
2797   }
2798 
2799   case Decl::ObjCCategoryImpl:
2800     // Categories have properties but don't support synthesize so we
2801     // can ignore them here.
2802     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2803     break;
2804 
2805   case Decl::ObjCImplementation: {
2806     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2807     EmitObjCPropertyImplementations(OMD);
2808     EmitObjCIvarInitializations(OMD);
2809     ObjCRuntime->GenerateClass(OMD);
2810     // Emit global variable debug information.
2811     if (CGDebugInfo *DI = getModuleDebugInfo())
2812       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2813         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2814             OMD->getClassInterface()), OMD->getLocation());
2815     break;
2816   }
2817   case Decl::ObjCMethod: {
2818     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2819     // If this is not a prototype, emit the body.
2820     if (OMD->getBody())
2821       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2822     break;
2823   }
2824   case Decl::ObjCCompatibleAlias:
2825     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2826     break;
2827 
2828   case Decl::LinkageSpec:
2829     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2830     break;
2831 
2832   case Decl::FileScopeAsm: {
2833     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2834     StringRef AsmString = AD->getAsmString()->getString();
2835 
2836     const std::string &S = getModule().getModuleInlineAsm();
2837     if (S.empty())
2838       getModule().setModuleInlineAsm(AsmString);
2839     else if (S.end()[-1] == '\n')
2840       getModule().setModuleInlineAsm(S + AsmString.str());
2841     else
2842       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2843     break;
2844   }
2845 
2846   case Decl::Import: {
2847     ImportDecl *Import = cast<ImportDecl>(D);
2848 
2849     // Ignore import declarations that come from imported modules.
2850     if (clang::Module *Owner = Import->getOwningModule()) {
2851       if (getLangOpts().CurrentModule.empty() ||
2852           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2853         break;
2854     }
2855 
2856     ImportedModules.insert(Import->getImportedModule());
2857     break;
2858  }
2859 
2860   default:
2861     // Make sure we handled everything we should, every other kind is a
2862     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2863     // function. Need to recode Decl::Kind to do that easily.
2864     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2865   }
2866 }
2867 
2868 /// Turns the given pointer into a constant.
2869 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2870                                           const void *Ptr) {
2871   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2872   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2873   return llvm::ConstantInt::get(i64, PtrInt);
2874 }
2875 
2876 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2877                                    llvm::NamedMDNode *&GlobalMetadata,
2878                                    GlobalDecl D,
2879                                    llvm::GlobalValue *Addr) {
2880   if (!GlobalMetadata)
2881     GlobalMetadata =
2882       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2883 
2884   // TODO: should we report variant information for ctors/dtors?
2885   llvm::Value *Ops[] = {
2886     Addr,
2887     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2888   };
2889   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2890 }
2891 
2892 /// Emits metadata nodes associating all the global values in the
2893 /// current module with the Decls they came from.  This is useful for
2894 /// projects using IR gen as a subroutine.
2895 ///
2896 /// Since there's currently no way to associate an MDNode directly
2897 /// with an llvm::GlobalValue, we create a global named metadata
2898 /// with the name 'clang.global.decl.ptrs'.
2899 void CodeGenModule::EmitDeclMetadata() {
2900   llvm::NamedMDNode *GlobalMetadata = 0;
2901 
2902   // StaticLocalDeclMap
2903   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2904          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2905        I != E; ++I) {
2906     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2907     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2908   }
2909 }
2910 
2911 /// Emits metadata nodes for all the local variables in the current
2912 /// function.
2913 void CodeGenFunction::EmitDeclMetadata() {
2914   if (LocalDeclMap.empty()) return;
2915 
2916   llvm::LLVMContext &Context = getLLVMContext();
2917 
2918   // Find the unique metadata ID for this name.
2919   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2920 
2921   llvm::NamedMDNode *GlobalMetadata = 0;
2922 
2923   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2924          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2925     const Decl *D = I->first;
2926     llvm::Value *Addr = I->second;
2927 
2928     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2929       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2930       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2931     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2932       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2933       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2934     }
2935   }
2936 }
2937 
2938 void CodeGenModule::EmitCoverageFile() {
2939   if (!getCodeGenOpts().CoverageFile.empty()) {
2940     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2941       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2942       llvm::LLVMContext &Ctx = TheModule.getContext();
2943       llvm::MDString *CoverageFile =
2944           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2945       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2946         llvm::MDNode *CU = CUNode->getOperand(i);
2947         llvm::Value *node[] = { CoverageFile, CU };
2948         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2949         GCov->addOperand(N);
2950       }
2951     }
2952   }
2953 }
2954 
2955 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2956                                                      QualType GuidType) {
2957   // Sema has checked that all uuid strings are of the form
2958   // "12345678-1234-1234-1234-1234567890ab".
2959   assert(Uuid.size() == 36);
2960   const char *Uuidstr = Uuid.data();
2961   for (int i = 0; i < 36; ++i) {
2962     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2963     else                                         assert(isHexDigit(Uuidstr[i]));
2964   }
2965 
2966   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2967   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2968   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2969   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2970 
2971   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2972   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2973   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2974   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2975   APValue& Arr = InitStruct.getStructField(3);
2976   Arr = APValue(APValue::UninitArray(), 8, 8);
2977   for (int t = 0; t < 8; ++t)
2978     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2979           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2980 
2981   return EmitConstantValue(InitStruct, GuidType);
2982 }
2983