1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/CallingConv.h" 28 #include "llvm/Module.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/Target/TargetData.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 35 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 36 llvm::Module &M, const llvm::TargetData &TD, 37 Diagnostic &diags) 38 : BlockModule(C, M, TD, Types, *this), Context(C), 39 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 40 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 41 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 42 43 if (!Features.ObjC1) 44 Runtime = 0; 45 else if (!Features.NeXTRuntime) 46 Runtime = CreateGNUObjCRuntime(*this); 47 else if (Features.ObjCNonFragileABI) 48 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 49 else 50 Runtime = CreateMacObjCRuntime(*this); 51 52 // If debug info generation is enabled, create the CGDebugInfo object. 53 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 54 } 55 56 CodeGenModule::~CodeGenModule() { 57 delete Runtime; 58 delete DebugInfo; 59 } 60 61 void CodeGenModule::Release() { 62 EmitDeferred(); 63 if (Runtime) 64 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 65 AddGlobalCtor(ObjCInitFunction); 66 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 67 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 68 EmitAnnotations(); 69 EmitLLVMUsed(); 70 } 71 72 /// ErrorUnsupported - Print out an error that codegen doesn't support the 73 /// specified stmt yet. 74 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 75 bool OmitOnError) { 76 if (OmitOnError && getDiags().hasErrorOccurred()) 77 return; 78 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 79 "cannot compile this %0 yet"); 80 std::string Msg = Type; 81 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 82 << Msg << S->getSourceRange(); 83 } 84 85 /// ErrorUnsupported - Print out an error that codegen doesn't support the 86 /// specified decl yet. 87 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 88 bool OmitOnError) { 89 if (OmitOnError && getDiags().hasErrorOccurred()) 90 return; 91 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 92 "cannot compile this %0 yet"); 93 std::string Msg = Type; 94 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 95 } 96 97 /// setGlobalVisibility - Set the visibility for the given LLVM 98 /// GlobalValue according to the given clang AST visibility value. 99 static void setGlobalVisibility(llvm::GlobalValue *GV, 100 VisibilityAttr::VisibilityTypes Vis) { 101 switch (Vis) { 102 default: assert(0 && "Unknown visibility!"); 103 case VisibilityAttr::DefaultVisibility: 104 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 105 break; 106 case VisibilityAttr::HiddenVisibility: 107 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 108 break; 109 case VisibilityAttr::ProtectedVisibility: 110 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 111 break; 112 } 113 } 114 115 /// \brief Retrieves the mangled name for the given declaration. 116 /// 117 /// If the given declaration requires a mangled name, returns an 118 /// const char* containing the mangled name. Otherwise, returns 119 /// the unmangled name. 120 /// 121 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 122 // In C, functions with no attributes never need to be mangled. Fastpath them. 123 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 124 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 125 return ND->getNameAsCString(); 126 } 127 128 llvm::SmallString<256> Name; 129 llvm::raw_svector_ostream Out(Name); 130 if (!mangleName(ND, Context, Out)) { 131 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 132 return ND->getNameAsCString(); 133 } 134 135 Name += '\0'; 136 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 137 } 138 139 /// AddGlobalCtor - Add a function to the list that will be called before 140 /// main() runs. 141 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 142 // FIXME: Type coercion of void()* types. 143 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 144 } 145 146 /// AddGlobalDtor - Add a function to the list that will be called 147 /// when the module is unloaded. 148 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 149 // FIXME: Type coercion of void()* types. 150 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 151 } 152 153 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 154 // Ctor function type is void()*. 155 llvm::FunctionType* CtorFTy = 156 llvm::FunctionType::get(llvm::Type::VoidTy, 157 std::vector<const llvm::Type*>(), 158 false); 159 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 160 161 // Get the type of a ctor entry, { i32, void ()* }. 162 llvm::StructType* CtorStructTy = 163 llvm::StructType::get(llvm::Type::Int32Ty, 164 llvm::PointerType::getUnqual(CtorFTy), NULL); 165 166 // Construct the constructor and destructor arrays. 167 std::vector<llvm::Constant*> Ctors; 168 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 169 std::vector<llvm::Constant*> S; 170 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 171 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 172 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 173 } 174 175 if (!Ctors.empty()) { 176 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 177 new llvm::GlobalVariable(AT, false, 178 llvm::GlobalValue::AppendingLinkage, 179 llvm::ConstantArray::get(AT, Ctors), 180 GlobalName, 181 &TheModule); 182 } 183 } 184 185 void CodeGenModule::EmitAnnotations() { 186 if (Annotations.empty()) 187 return; 188 189 // Create a new global variable for the ConstantStruct in the Module. 190 llvm::Constant *Array = 191 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 192 Annotations.size()), 193 Annotations); 194 llvm::GlobalValue *gv = 195 new llvm::GlobalVariable(Array->getType(), false, 196 llvm::GlobalValue::AppendingLinkage, Array, 197 "llvm.global.annotations", &TheModule); 198 gv->setSection("llvm.metadata"); 199 } 200 201 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 202 bool IsInternal, 203 bool IsInline, 204 llvm::GlobalValue *GV, 205 bool ForDefinition) { 206 // FIXME: Set up linkage and many other things. Note, this is a simple 207 // approximation of what we really want. 208 if (!ForDefinition) { 209 // Only a few attributes are set on declarations. 210 if (D->getAttr<DLLImportAttr>()) { 211 // The dllimport attribute is overridden by a subsequent declaration as 212 // dllexport. 213 if (!D->getAttr<DLLExportAttr>()) { 214 // dllimport attribute can be applied only to function decls, not to 215 // definitions. 216 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 217 if (!FD->getBody()) 218 GV->setLinkage(llvm::Function::DLLImportLinkage); 219 } else 220 GV->setLinkage(llvm::Function::DLLImportLinkage); 221 } 222 } else if (D->getAttr<WeakAttr>() || 223 D->getAttr<WeakImportAttr>()) { 224 // "extern_weak" is overloaded in LLVM; we probably should have 225 // separate linkage types for this. 226 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 227 } 228 } else { 229 if (IsInternal) { 230 GV->setLinkage(llvm::Function::InternalLinkage); 231 } else { 232 if (D->getAttr<DLLExportAttr>()) { 233 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 234 // The dllexport attribute is ignored for undefined symbols. 235 if (FD->getBody()) 236 GV->setLinkage(llvm::Function::DLLExportLinkage); 237 } else 238 GV->setLinkage(llvm::Function::DLLExportLinkage); 239 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 240 IsInline) 241 GV->setLinkage(llvm::Function::WeakAnyLinkage); 242 } 243 } 244 245 // FIXME: Figure out the relative priority of the attribute, 246 // -fvisibility, and private_extern. 247 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 248 setGlobalVisibility(GV, attr->getVisibility()); 249 // FIXME: else handle -fvisibility 250 251 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 252 GV->setSection(SA->getName()); 253 254 // Only add to llvm.used when we see a definition, otherwise we 255 // might add multiple times or risk the value being replaced by a 256 // subsequent RAUW. 257 if (ForDefinition) { 258 if (D->getAttr<UsedAttr>()) 259 AddUsedGlobal(GV); 260 } 261 } 262 263 void CodeGenModule::SetFunctionAttributes(const Decl *D, 264 const CGFunctionInfo &Info, 265 llvm::Function *F) { 266 AttributeListType AttributeList; 267 ConstructAttributeList(Info, D, AttributeList); 268 269 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 270 AttributeList.size())); 271 272 // Set the appropriate calling convention for the Function. 273 if (D->getAttr<FastCallAttr>()) 274 F->setCallingConv(llvm::CallingConv::X86_FastCall); 275 276 if (D->getAttr<StdCallAttr>()) 277 F->setCallingConv(llvm::CallingConv::X86_StdCall); 278 279 if (D->getAttr<RegparmAttr>()) 280 ErrorUnsupported(D, "regparm attribute"); 281 } 282 283 /// SetFunctionAttributesForDefinition - Set function attributes 284 /// specific to a function definition. 285 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 286 llvm::Function *F) { 287 if (isa<ObjCMethodDecl>(D)) { 288 SetGlobalValueAttributes(D, true, false, F, true); 289 } else { 290 const FunctionDecl *FD = cast<FunctionDecl>(D); 291 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 292 FD->isInline(), F, true); 293 } 294 295 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 296 F->addFnAttr(llvm::Attribute::NoUnwind); 297 298 if (D->getAttr<AlwaysInlineAttr>()) 299 F->addFnAttr(llvm::Attribute::AlwaysInline); 300 301 if (D->getAttr<NoinlineAttr>()) 302 F->addFnAttr(llvm::Attribute::NoInline); 303 } 304 305 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 306 llvm::Function *F) { 307 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 308 309 SetFunctionAttributesForDefinition(MD, F); 310 } 311 312 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 313 llvm::Function *F) { 314 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 315 316 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 317 FD->isInline(), F, false); 318 } 319 320 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 321 assert(!GV->isDeclaration() && 322 "Only globals with definition can force usage."); 323 LLVMUsed.push_back(GV); 324 } 325 326 void CodeGenModule::EmitLLVMUsed() { 327 // Don't create llvm.used if there is no need. 328 if (LLVMUsed.empty()) 329 return; 330 331 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 332 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 333 334 // Convert LLVMUsed to what ConstantArray needs. 335 std::vector<llvm::Constant*> UsedArray; 336 UsedArray.resize(LLVMUsed.size()); 337 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 338 UsedArray[i] = 339 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 340 } 341 342 llvm::GlobalVariable *GV = 343 new llvm::GlobalVariable(ATy, false, 344 llvm::GlobalValue::AppendingLinkage, 345 llvm::ConstantArray::get(ATy, UsedArray), 346 "llvm.used", &getModule()); 347 348 GV->setSection("llvm.metadata"); 349 } 350 351 void CodeGenModule::EmitDeferred() { 352 // Emit code for any potentially referenced deferred decls. Since a 353 // previously unused static decl may become used during the generation of code 354 // for a static function, iterate until no changes are made. 355 while (!DeferredDeclsToEmit.empty()) { 356 const ValueDecl *D = DeferredDeclsToEmit.back(); 357 DeferredDeclsToEmit.pop_back(); 358 359 // The mangled name for the decl must have been emitted in GlobalDeclMap. 360 // Look it up to see if it was defined with a stronger definition (e.g. an 361 // extern inline function with a strong function redefinition). If so, 362 // just ignore the deferred decl. 363 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 364 assert(CGRef && "Deferred decl wasn't referenced?"); 365 366 if (!CGRef->isDeclaration()) 367 continue; 368 369 // Otherwise, emit the definition and move on to the next one. 370 EmitGlobalDefinition(D); 371 } 372 } 373 374 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 375 /// annotation information for a given GlobalValue. The annotation struct is 376 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 377 /// GlobalValue being annotated. The second field is the constant string 378 /// created from the AnnotateAttr's annotation. The third field is a constant 379 /// string containing the name of the translation unit. The fourth field is 380 /// the line number in the file of the annotated value declaration. 381 /// 382 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 383 /// appears to. 384 /// 385 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 386 const AnnotateAttr *AA, 387 unsigned LineNo) { 388 llvm::Module *M = &getModule(); 389 390 // get [N x i8] constants for the annotation string, and the filename string 391 // which are the 2nd and 3rd elements of the global annotation structure. 392 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 393 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 394 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 395 true); 396 397 // Get the two global values corresponding to the ConstantArrays we just 398 // created to hold the bytes of the strings. 399 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 400 llvm::GlobalValue *annoGV = 401 new llvm::GlobalVariable(anno->getType(), false, 402 llvm::GlobalValue::InternalLinkage, anno, 403 GV->getName() + StringPrefix, M); 404 // translation unit name string, emitted into the llvm.metadata section. 405 llvm::GlobalValue *unitGV = 406 new llvm::GlobalVariable(unit->getType(), false, 407 llvm::GlobalValue::InternalLinkage, unit, 408 StringPrefix, M); 409 410 // Create the ConstantStruct that is the global annotion. 411 llvm::Constant *Fields[4] = { 412 llvm::ConstantExpr::getBitCast(GV, SBP), 413 llvm::ConstantExpr::getBitCast(annoGV, SBP), 414 llvm::ConstantExpr::getBitCast(unitGV, SBP), 415 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 416 }; 417 return llvm::ConstantStruct::get(Fields, 4, false); 418 } 419 420 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 421 // Never defer when EmitAllDecls is specified or the decl has 422 // attribute used. 423 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 424 return false; 425 426 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 427 // Constructors and destructors should never be deferred. 428 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 429 return false; 430 431 // FIXME: What about inline, and/or extern inline? 432 if (FD->getStorageClass() != FunctionDecl::Static) 433 return false; 434 } else { 435 const VarDecl *VD = cast<VarDecl>(Global); 436 assert(VD->isFileVarDecl() && "Invalid decl"); 437 438 if (VD->getStorageClass() != VarDecl::Static) 439 return false; 440 } 441 442 return true; 443 } 444 445 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 446 // If this is an alias definition (which otherwise looks like a declaration) 447 // emit it now. 448 if (Global->getAttr<AliasAttr>()) 449 return EmitAliasDefinition(Global); 450 451 // Ignore declarations, they will be emitted on their first use. 452 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 453 // Forward declarations are emitted lazily on first use. 454 if (!FD->isThisDeclarationADefinition()) 455 return; 456 } else { 457 const VarDecl *VD = cast<VarDecl>(Global); 458 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 459 460 // Forward declarations are emitted lazily on first use. 461 if (!VD->getInit() && VD->hasExternalStorage()) 462 return; 463 } 464 465 // Defer code generation when possible if this is a static definition, inline 466 // function etc. These we only want to emit if they are used. 467 if (MayDeferGeneration(Global)) { 468 // If the value has already been used, add it directly to the 469 // DeferredDeclsToEmit list. 470 const char *MangledName = getMangledName(Global); 471 if (GlobalDeclMap.count(MangledName)) 472 DeferredDeclsToEmit.push_back(Global); 473 else { 474 // Otherwise, remember that we saw a deferred decl with this name. The 475 // first use of the mangled name will cause it to move into 476 // DeferredDeclsToEmit. 477 DeferredDecls[MangledName] = Global; 478 } 479 return; 480 } 481 482 // Otherwise emit the definition. 483 EmitGlobalDefinition(Global); 484 } 485 486 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 487 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 488 EmitGlobalFunctionDefinition(FD); 489 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 490 EmitGlobalVarDefinition(VD); 491 } else { 492 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 493 } 494 } 495 496 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 497 /// module, create and return an llvm Function with the specified type. If there 498 /// is something in the module with the specified name, return it potentially 499 /// bitcasted to the right type. 500 /// 501 /// If D is non-null, it specifies a decl that correspond to this. This is used 502 /// to set the attributes on the function when it is first created. 503 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 504 const llvm::Type *Ty, 505 const FunctionDecl *D) { 506 // Lookup the entry, lazily creating it if necessary. 507 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 508 if (Entry) { 509 if (Entry->getType()->getElementType() == Ty) 510 return Entry; 511 512 // Make sure the result is of the correct type. 513 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 514 return llvm::ConstantExpr::getBitCast(Entry, PTy); 515 } 516 517 // This is the first use or definition of a mangled name. If there is a 518 // deferred decl with this name, remember that we need to emit it at the end 519 // of the file. 520 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 521 DeferredDecls.find(MangledName); 522 if (DDI != DeferredDecls.end()) { 523 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 524 // list, and remove it from DeferredDecls (since we don't need it anymore). 525 DeferredDeclsToEmit.push_back(DDI->second); 526 DeferredDecls.erase(DDI); 527 } 528 529 // This function doesn't have a complete type (for example, the return 530 // type is an incomplete struct). Use a fake type instead, and make 531 // sure not to try to set attributes. 532 bool ShouldSetAttributes = true; 533 if (!isa<llvm::FunctionType>(Ty)) { 534 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 535 std::vector<const llvm::Type*>(), false); 536 ShouldSetAttributes = false; 537 } 538 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 539 llvm::Function::ExternalLinkage, 540 "", &getModule()); 541 F->setName(MangledName); 542 if (D && ShouldSetAttributes) 543 SetFunctionAttributes(D, F); 544 Entry = F; 545 return F; 546 } 547 548 /// GetAddrOfFunction - Return the address of the given function. If Ty is 549 /// non-null, then this function will use the specified type if it has to 550 /// create it (this occurs when we see a definition of the function). 551 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 552 const llvm::Type *Ty) { 553 // If there was no specific requested type, just convert it now. 554 if (!Ty) 555 Ty = getTypes().ConvertType(D->getType()); 556 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 557 } 558 559 /// CreateRuntimeFunction - Create a new runtime function with the specified 560 /// type and name. 561 llvm::Constant * 562 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 563 const char *Name) { 564 // Convert Name to be a uniqued string from the IdentifierInfo table. 565 Name = getContext().Idents.get(Name).getName(); 566 return GetOrCreateLLVMFunction(Name, FTy, 0); 567 } 568 569 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 570 /// create and return an llvm GlobalVariable with the specified type. If there 571 /// is something in the module with the specified name, return it potentially 572 /// bitcasted to the right type. 573 /// 574 /// If D is non-null, it specifies a decl that correspond to this. This is used 575 /// to set the attributes on the global when it is first created. 576 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 577 const llvm::PointerType*Ty, 578 const VarDecl *D) { 579 // Lookup the entry, lazily creating it if necessary. 580 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 581 if (Entry) { 582 if (Entry->getType() == Ty) 583 return Entry; 584 585 // Make sure the result is of the correct type. 586 return llvm::ConstantExpr::getBitCast(Entry, Ty); 587 } 588 589 // This is the first use or definition of a mangled name. If there is a 590 // deferred decl with this name, remember that we need to emit it at the end 591 // of the file. 592 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 593 DeferredDecls.find(MangledName); 594 if (DDI != DeferredDecls.end()) { 595 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 596 // list, and remove it from DeferredDecls (since we don't need it anymore). 597 DeferredDeclsToEmit.push_back(DDI->second); 598 DeferredDecls.erase(DDI); 599 } 600 601 llvm::GlobalVariable *GV = 602 new llvm::GlobalVariable(Ty->getElementType(), false, 603 llvm::GlobalValue::ExternalLinkage, 604 0, "", &getModule(), 605 0, Ty->getAddressSpace()); 606 GV->setName(MangledName); 607 608 // Handle things which are present even on external declarations. 609 if (D) { 610 // FIXME: This code is overly simple and should be merged with 611 // other global handling. 612 GV->setConstant(D->getType().isConstant(Context)); 613 614 // FIXME: Merge with other attribute handling code. 615 if (D->getStorageClass() == VarDecl::PrivateExtern) 616 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 617 618 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 619 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 620 } 621 622 return Entry = GV; 623 } 624 625 626 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 627 /// given global variable. If Ty is non-null and if the global doesn't exist, 628 /// then it will be greated with the specified type instead of whatever the 629 /// normal requested type would be. 630 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 631 const llvm::Type *Ty) { 632 assert(D->hasGlobalStorage() && "Not a global variable"); 633 QualType ASTTy = D->getType(); 634 if (Ty == 0) 635 Ty = getTypes().ConvertTypeForMem(ASTTy); 636 637 const llvm::PointerType *PTy = 638 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 639 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 640 } 641 642 /// CreateRuntimeVariable - Create a new runtime global variable with the 643 /// specified type and name. 644 llvm::Constant * 645 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 646 const char *Name) { 647 // Convert Name to be a uniqued string from the IdentifierInfo table. 648 Name = getContext().Idents.get(Name).getName(); 649 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 650 } 651 652 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 653 llvm::Constant *Init = 0; 654 QualType ASTTy = D->getType(); 655 656 if (D->getInit() == 0) { 657 // This is a tentative definition; tentative definitions are 658 // implicitly initialized with { 0 } 659 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 660 if (ASTTy->isIncompleteArrayType()) { 661 // An incomplete array is normally [ TYPE x 0 ], but we need 662 // to fix it to [ TYPE x 1 ]. 663 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 664 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 665 } 666 Init = llvm::Constant::getNullValue(InitTy); 667 } else { 668 Init = EmitConstantExpr(D->getInit()); 669 if (!Init) { 670 ErrorUnsupported(D, "static initializer"); 671 QualType T = D->getInit()->getType(); 672 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 673 } 674 } 675 676 const llvm::Type* InitType = Init->getType(); 677 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 678 679 // Strip off a bitcast if we got one back. 680 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 681 assert(CE->getOpcode() == llvm::Instruction::BitCast); 682 Entry = CE->getOperand(0); 683 } 684 685 // Entry is now either a Function or GlobalVariable. 686 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 687 688 // If we already have this global and it has an initializer, then 689 // we are in the rare situation where we emitted the defining 690 // declaration of the global and are now being asked to emit a 691 // definition which would be common. This occurs, for example, in 692 // the following situation because statics can be emitted out of 693 // order: 694 // 695 // static int x; 696 // static int *y = &x; 697 // static int x = 10; 698 // int **z = &y; 699 // 700 // Bail here so we don't blow away the definition. Note that if we 701 // can't distinguish here if we emitted a definition with a null 702 // initializer, but this case is safe. 703 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 704 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 705 return; 706 } 707 708 // We have a definition after a declaration with the wrong type. 709 // We must make a new GlobalVariable* and update everything that used OldGV 710 // (a declaration or tentative definition) with the new GlobalVariable* 711 // (which will be a definition). 712 // 713 // This happens if there is a prototype for a global (e.g. 714 // "extern int x[];") and then a definition of a different type (e.g. 715 // "int x[10];"). This also happens when an initializer has a different type 716 // from the type of the global (this happens with unions). 717 // 718 // FIXME: This also ends up happening if there's a definition followed by 719 // a tentative definition! (Although Sema rejects that construct 720 // at the moment.) 721 if (GV == 0 || 722 GV->getType()->getElementType() != InitType || 723 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 724 725 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 726 GlobalDeclMap.erase(getMangledName(D)); 727 728 // Make a new global with the correct type, this is now guaranteed to work. 729 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 730 GV->takeName(cast<llvm::GlobalValue>(Entry)); 731 732 // Replace all uses of the old global with the new global 733 llvm::Constant *NewPtrForOldDecl = 734 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 735 Entry->replaceAllUsesWith(NewPtrForOldDecl); 736 737 // Erase the old global, since it is no longer used. 738 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 739 } 740 741 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 742 SourceManager &SM = Context.getSourceManager(); 743 AddAnnotation(EmitAnnotateAttr(GV, AA, 744 SM.getInstantiationLineNumber(D->getLocation()))); 745 } 746 747 GV->setInitializer(Init); 748 GV->setConstant(D->getType().isConstant(Context)); 749 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 750 751 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 752 setGlobalVisibility(GV, attr->getVisibility()); 753 // FIXME: else handle -fvisibility 754 755 // Set the llvm linkage type as appropriate. 756 if (D->getStorageClass() == VarDecl::Static) 757 GV->setLinkage(llvm::Function::InternalLinkage); 758 else if (D->getAttr<DLLImportAttr>()) 759 GV->setLinkage(llvm::Function::DLLImportLinkage); 760 else if (D->getAttr<DLLExportAttr>()) 761 GV->setLinkage(llvm::Function::DLLExportLinkage); 762 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 763 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 764 else { 765 // FIXME: This isn't right. This should handle common linkage and other 766 // stuff. 767 switch (D->getStorageClass()) { 768 case VarDecl::Static: assert(0 && "This case handled above"); 769 case VarDecl::Auto: 770 case VarDecl::Register: 771 assert(0 && "Can't have auto or register globals"); 772 case VarDecl::None: 773 if (!D->getInit() && !CompileOpts.NoCommon) 774 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 775 else 776 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 777 break; 778 case VarDecl::Extern: 779 // FIXME: common 780 break; 781 782 case VarDecl::PrivateExtern: 783 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 784 // FIXME: common 785 break; 786 } 787 } 788 789 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 790 GV->setSection(SA->getName()); 791 792 if (D->getAttr<UsedAttr>()) 793 AddUsedGlobal(GV); 794 795 // Emit global variable debug information. 796 if (CGDebugInfo *DI = getDebugInfo()) { 797 DI->setLocation(D->getLocation()); 798 DI->EmitGlobalVariable(GV, D); 799 } 800 } 801 802 803 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 804 const llvm::FunctionType *Ty = 805 cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 806 807 // As a special case, make sure that definitions of K&R function 808 // "type foo()" aren't declared as varargs (which forces the backend 809 // to do unnecessary work). 810 if (D->getType()->isFunctionNoProtoType()) { 811 assert(Ty->isVarArg() && "Didn't lower type as expected"); 812 // Due to stret, the lowered function could have arguments. Just create the 813 // same type as was lowered by ConvertType but strip off the varargs bit. 814 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 815 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 816 } 817 818 // Get or create the prototype for teh function. 819 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 820 821 // Strip off a bitcast if we got one back. 822 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 823 assert(CE->getOpcode() == llvm::Instruction::BitCast); 824 Entry = CE->getOperand(0); 825 } 826 827 828 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 829 // If the types mismatch then we have to rewrite the definition. 830 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 831 "Shouldn't replace non-declaration"); 832 833 // F is the Function* for the one with the wrong type, we must make a new 834 // Function* and update everything that used F (a declaration) with the new 835 // Function* (which will be a definition). 836 // 837 // This happens if there is a prototype for a function 838 // (e.g. "int f()") and then a definition of a different type 839 // (e.g. "int f(int x)"). Start by making a new function of the 840 // correct type, RAUW, then steal the name. 841 GlobalDeclMap.erase(getMangledName(D)); 842 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 843 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 844 845 // Replace uses of F with the Function we will endow with a body. 846 llvm::Constant *NewPtrForOldDecl = 847 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 848 Entry->replaceAllUsesWith(NewPtrForOldDecl); 849 850 // Ok, delete the old function now, which is dead. 851 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 852 853 Entry = NewFn; 854 } 855 856 llvm::Function *Fn = cast<llvm::Function>(Entry); 857 858 CodeGenFunction(*this).GenerateCode(D, Fn); 859 860 SetFunctionAttributesForDefinition(D, Fn); 861 862 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 863 AddGlobalCtor(Fn, CA->getPriority()); 864 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 865 AddGlobalDtor(Fn, DA->getPriority()); 866 } 867 868 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 869 const AliasAttr *AA = D->getAttr<AliasAttr>(); 870 assert(AA && "Not an alias?"); 871 872 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 873 874 // Unique the name through the identifier table. 875 const char *AliaseeName = AA->getAliasee().c_str(); 876 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 877 878 // Create a reference to the named value. This ensures that it is emitted 879 // if a deferred decl. 880 llvm::Constant *Aliasee; 881 if (isa<llvm::FunctionType>(DeclTy)) 882 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 883 else 884 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 885 llvm::PointerType::getUnqual(DeclTy), 0); 886 887 // Create the new alias itself, but don't set a name yet. 888 llvm::GlobalValue *GA = 889 new llvm::GlobalAlias(Aliasee->getType(), 890 llvm::Function::ExternalLinkage, 891 "", Aliasee, &getModule()); 892 893 // See if there is already something with the alias' name in the module. 894 const char *MangledName = getMangledName(D); 895 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 896 897 if (Entry && !Entry->isDeclaration()) { 898 // If there is a definition in the module, then it wins over the alias. 899 // This is dubious, but allow it to be safe. Just ignore the alias. 900 GA->eraseFromParent(); 901 return; 902 } 903 904 if (Entry) { 905 // If there is a declaration in the module, then we had an extern followed 906 // by the alias, as in: 907 // extern int test6(); 908 // ... 909 // int test6() __attribute__((alias("test7"))); 910 // 911 // Remove it and replace uses of it with the alias. 912 913 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 914 Entry->getType())); 915 Entry->eraseFromParent(); 916 } 917 918 // Now we know that there is no conflict, set the name. 919 Entry = GA; 920 GA->setName(MangledName); 921 922 // Alias should never be internal or inline. 923 SetGlobalValueAttributes(D, false, false, GA, true); 924 } 925 926 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 927 // Make sure that this type is translated. 928 Types.UpdateCompletedType(TD); 929 } 930 931 932 /// getBuiltinLibFunction - Given a builtin id for a function like 933 /// "__builtin_fabsf", return a Function* for "fabsf". 934 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 935 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 936 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 937 "isn't a lib fn"); 938 939 // Get the name, skip over the __builtin_ prefix (if necessary). 940 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 941 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 942 Name += 10; 943 944 // Get the type for the builtin. 945 Builtin::Context::GetBuiltinTypeError Error; 946 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 947 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 948 949 const llvm::FunctionType *Ty = 950 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 951 952 // Unique the name through the identifier table. 953 Name = getContext().Idents.get(Name).getName(); 954 // FIXME: param attributes for sext/zext etc. 955 return GetOrCreateLLVMFunction(Name, Ty, 0); 956 } 957 958 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 959 unsigned NumTys) { 960 return llvm::Intrinsic::getDeclaration(&getModule(), 961 (llvm::Intrinsic::ID)IID, Tys, NumTys); 962 } 963 964 llvm::Function *CodeGenModule::getMemCpyFn() { 965 if (MemCpyFn) return MemCpyFn; 966 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 967 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 968 } 969 970 llvm::Function *CodeGenModule::getMemMoveFn() { 971 if (MemMoveFn) return MemMoveFn; 972 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 973 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 974 } 975 976 llvm::Function *CodeGenModule::getMemSetFn() { 977 if (MemSetFn) return MemSetFn; 978 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 979 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 980 } 981 982 static void appendFieldAndPadding(CodeGenModule &CGM, 983 std::vector<llvm::Constant*>& Fields, 984 FieldDecl *FieldD, FieldDecl *NextFieldD, 985 llvm::Constant* Field, 986 RecordDecl* RD, const llvm::StructType *STy) { 987 // Append the field. 988 Fields.push_back(Field); 989 990 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 991 992 int NextStructFieldNo; 993 if (!NextFieldD) { 994 NextStructFieldNo = STy->getNumElements(); 995 } else { 996 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 997 } 998 999 // Append padding 1000 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1001 llvm::Constant *C = 1002 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1003 1004 Fields.push_back(C); 1005 } 1006 } 1007 1008 // We still need to work out the details of handling UTF-16. 1009 // See: <rdr://2996215> 1010 llvm::Constant *CodeGenModule:: 1011 GetAddrOfConstantCFString(const std::string &str) { 1012 llvm::StringMapEntry<llvm::Constant *> &Entry = 1013 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1014 1015 if (llvm::Constant *C = Entry.getValue()) 1016 return C; 1017 1018 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1019 llvm::Constant *Zeros[] = { Zero, Zero }; 1020 1021 if (!CFConstantStringClassRef) { 1022 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1023 Ty = llvm::ArrayType::get(Ty, 0); 1024 1025 // FIXME: This is fairly broken if 1026 // __CFConstantStringClassReference is already defined, in that it 1027 // will get renamed and the user will most likely see an opaque 1028 // error message. This is a general issue with relying on 1029 // particular names. 1030 llvm::GlobalVariable *GV = 1031 new llvm::GlobalVariable(Ty, false, 1032 llvm::GlobalVariable::ExternalLinkage, 0, 1033 "__CFConstantStringClassReference", 1034 &getModule()); 1035 1036 // Decay array -> ptr 1037 CFConstantStringClassRef = 1038 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1039 } 1040 1041 QualType CFTy = getContext().getCFConstantStringType(); 1042 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1043 1044 const llvm::StructType *STy = 1045 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1046 1047 std::vector<llvm::Constant*> Fields; 1048 RecordDecl::field_iterator Field = CFRD->field_begin(); 1049 1050 // Class pointer. 1051 FieldDecl *CurField = *Field++; 1052 FieldDecl *NextField = *Field++; 1053 appendFieldAndPadding(*this, Fields, CurField, NextField, 1054 CFConstantStringClassRef, CFRD, STy); 1055 1056 // Flags. 1057 CurField = NextField; 1058 NextField = *Field++; 1059 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1060 appendFieldAndPadding(*this, Fields, CurField, NextField, 1061 llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy); 1062 1063 // String pointer. 1064 CurField = NextField; 1065 NextField = *Field++; 1066 llvm::Constant *C = llvm::ConstantArray::get(str); 1067 llvm::GlobalVariable *GV = 1068 new llvm::GlobalVariable(C->getType(), true, 1069 llvm::GlobalValue::InternalLinkage, 1070 C, getContext().Target.getStringSymbolPrefix(true), 1071 &getModule()); 1072 if (const char *Sect = getContext().Target.getCFStringDataSection()) 1073 GV->setSection(Sect); 1074 appendFieldAndPadding(*this, Fields, CurField, NextField, 1075 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1076 CFRD, STy); 1077 1078 // String length. 1079 CurField = NextField; 1080 NextField = 0; 1081 Ty = getTypes().ConvertType(getContext().LongTy); 1082 appendFieldAndPadding(*this, Fields, CurField, NextField, 1083 llvm::ConstantInt::get(Ty, str.length()), CFRD, STy); 1084 1085 // The struct. 1086 C = llvm::ConstantStruct::get(STy, Fields); 1087 GV = new llvm::GlobalVariable(C->getType(), true, 1088 llvm::GlobalVariable::InternalLinkage, C, 1089 getContext().Target.getCFStringSymbolPrefix(), 1090 &getModule()); 1091 if (const char *Sect = getContext().Target.getCFStringSection()) 1092 GV->setSection(Sect); 1093 Entry.setValue(GV); 1094 1095 return GV; 1096 } 1097 1098 /// GetStringForStringLiteral - Return the appropriate bytes for a 1099 /// string literal, properly padded to match the literal type. 1100 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1101 const char *StrData = E->getStrData(); 1102 unsigned Len = E->getByteLength(); 1103 1104 const ConstantArrayType *CAT = 1105 getContext().getAsConstantArrayType(E->getType()); 1106 assert(CAT && "String isn't pointer or array!"); 1107 1108 // Resize the string to the right size. 1109 std::string Str(StrData, StrData+Len); 1110 uint64_t RealLen = CAT->getSize().getZExtValue(); 1111 1112 if (E->isWide()) 1113 RealLen *= getContext().Target.getWCharWidth()/8; 1114 1115 Str.resize(RealLen, '\0'); 1116 1117 return Str; 1118 } 1119 1120 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1121 /// constant array for the given string literal. 1122 llvm::Constant * 1123 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1124 // FIXME: This can be more efficient. 1125 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1126 } 1127 1128 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1129 /// array for the given ObjCEncodeExpr node. 1130 llvm::Constant * 1131 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1132 std::string Str; 1133 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1134 1135 return GetAddrOfConstantCString(Str); 1136 } 1137 1138 1139 /// GenerateWritableString -- Creates storage for a string literal. 1140 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1141 bool constant, 1142 CodeGenModule &CGM, 1143 const char *GlobalName) { 1144 // Create Constant for this string literal. Don't add a '\0'. 1145 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1146 1147 // Create a global variable for this string 1148 return new llvm::GlobalVariable(C->getType(), constant, 1149 llvm::GlobalValue::InternalLinkage, 1150 C, GlobalName, &CGM.getModule()); 1151 } 1152 1153 /// GetAddrOfConstantString - Returns a pointer to a character array 1154 /// containing the literal. This contents are exactly that of the 1155 /// given string, i.e. it will not be null terminated automatically; 1156 /// see GetAddrOfConstantCString. Note that whether the result is 1157 /// actually a pointer to an LLVM constant depends on 1158 /// Feature.WriteableStrings. 1159 /// 1160 /// The result has pointer to array type. 1161 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1162 const char *GlobalName) { 1163 bool IsConstant = !Features.WritableStrings; 1164 1165 // Get the default prefix if a name wasn't specified. 1166 if (!GlobalName) 1167 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1168 1169 // Don't share any string literals if strings aren't constant. 1170 if (!IsConstant) 1171 return GenerateStringLiteral(str, false, *this, GlobalName); 1172 1173 llvm::StringMapEntry<llvm::Constant *> &Entry = 1174 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1175 1176 if (Entry.getValue()) 1177 return Entry.getValue(); 1178 1179 // Create a global variable for this. 1180 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1181 Entry.setValue(C); 1182 return C; 1183 } 1184 1185 /// GetAddrOfConstantCString - Returns a pointer to a character 1186 /// array containing the literal and a terminating '\-' 1187 /// character. The result has pointer to array type. 1188 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1189 const char *GlobalName){ 1190 return GetAddrOfConstantString(str + '\0', GlobalName); 1191 } 1192 1193 /// EmitObjCPropertyImplementations - Emit information for synthesized 1194 /// properties for an implementation. 1195 void CodeGenModule::EmitObjCPropertyImplementations(const 1196 ObjCImplementationDecl *D) { 1197 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1198 e = D->propimpl_end(); i != e; ++i) { 1199 ObjCPropertyImplDecl *PID = *i; 1200 1201 // Dynamic is just for type-checking. 1202 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1203 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1204 1205 // Determine which methods need to be implemented, some may have 1206 // been overridden. Note that ::isSynthesized is not the method 1207 // we want, that just indicates if the decl came from a 1208 // property. What we want to know is if the method is defined in 1209 // this implementation. 1210 if (!D->getInstanceMethod(PD->getGetterName())) 1211 CodeGenFunction(*this).GenerateObjCGetter( 1212 const_cast<ObjCImplementationDecl *>(D), PID); 1213 if (!PD->isReadOnly() && 1214 !D->getInstanceMethod(PD->getSetterName())) 1215 CodeGenFunction(*this).GenerateObjCSetter( 1216 const_cast<ObjCImplementationDecl *>(D), PID); 1217 } 1218 } 1219 } 1220 1221 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1222 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1223 // If an error has occurred, stop code generation, but continue 1224 // parsing and semantic analysis (to ensure all warnings and errors 1225 // are emitted). 1226 if (Diags.hasErrorOccurred()) 1227 return; 1228 1229 switch (D->getKind()) { 1230 case Decl::Function: 1231 case Decl::Var: 1232 EmitGlobal(cast<ValueDecl>(D)); 1233 break; 1234 1235 case Decl::Namespace: 1236 ErrorUnsupported(D, "namespace"); 1237 break; 1238 1239 // Objective-C Decls 1240 1241 // Forward declarations, no (immediate) code generation. 1242 case Decl::ObjCClass: 1243 case Decl::ObjCForwardProtocol: 1244 case Decl::ObjCCategory: 1245 case Decl::ObjCInterface: 1246 break; 1247 1248 case Decl::ObjCProtocol: 1249 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1250 break; 1251 1252 case Decl::ObjCCategoryImpl: 1253 // Categories have properties but don't support synthesize so we 1254 // can ignore them here. 1255 1256 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1257 break; 1258 1259 case Decl::ObjCImplementation: { 1260 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1261 EmitObjCPropertyImplementations(OMD); 1262 Runtime->GenerateClass(OMD); 1263 break; 1264 } 1265 case Decl::ObjCMethod: { 1266 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1267 // If this is not a prototype, emit the body. 1268 if (OMD->getBody()) 1269 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1270 break; 1271 } 1272 case Decl::ObjCCompatibleAlias: 1273 // compatibility-alias is a directive and has no code gen. 1274 break; 1275 1276 case Decl::LinkageSpec: { 1277 LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D); 1278 if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) 1279 ErrorUnsupported(LSD, "linkage spec"); 1280 // FIXME: implement C++ linkage, C linkage works mostly by C 1281 // language reuse already. 1282 break; 1283 } 1284 1285 case Decl::FileScopeAsm: { 1286 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1287 std::string AsmString(AD->getAsmString()->getStrData(), 1288 AD->getAsmString()->getByteLength()); 1289 1290 const std::string &S = getModule().getModuleInlineAsm(); 1291 if (S.empty()) 1292 getModule().setModuleInlineAsm(AsmString); 1293 else 1294 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1295 break; 1296 } 1297 1298 default: 1299 // Make sure we handled everything we should, every other kind is 1300 // a non-top-level decl. FIXME: Would be nice to have an 1301 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1302 // that easily. 1303 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1304 } 1305 } 1306