1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 VTables(*this), Runtime(0), ABI(0), 52 CFConstantStringClassRef(0), 53 NSConstantStringClassRef(0), 54 VMContext(M.getContext()) { 55 56 if (!Features.ObjC1) 57 Runtime = 0; 58 else if (!Features.NeXTRuntime) 59 Runtime = CreateGNUObjCRuntime(*this); 60 else if (Features.ObjCNonFragileABI) 61 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 62 else 63 Runtime = CreateMacObjCRuntime(*this); 64 65 if (!Features.CPlusPlus) 66 ABI = 0; 67 else createCXXABI(); 68 69 // If debug info generation is enabled, create the CGDebugInfo object. 70 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 71 } 72 73 CodeGenModule::~CodeGenModule() { 74 delete Runtime; 75 delete ABI; 76 delete DebugInfo; 77 } 78 79 void CodeGenModule::createObjCRuntime() { 80 if (!Features.NeXTRuntime) 81 Runtime = CreateGNUObjCRuntime(*this); 82 else if (Features.ObjCNonFragileABI) 83 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 84 else 85 Runtime = CreateMacObjCRuntime(*this); 86 } 87 88 void CodeGenModule::createCXXABI() { 89 if (Context.Target.getCXXABI() == "microsoft") 90 ABI = CreateMicrosoftCXXABI(*this); 91 else 92 ABI = CreateItaniumCXXABI(*this); 93 } 94 95 void CodeGenModule::Release() { 96 EmitDeferred(); 97 EmitCXXGlobalInitFunc(); 98 EmitCXXGlobalDtorFunc(); 99 if (Runtime) 100 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 101 AddGlobalCtor(ObjCInitFunction); 102 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 103 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 104 EmitAnnotations(); 105 EmitLLVMUsed(); 106 } 107 108 bool CodeGenModule::isTargetDarwin() const { 109 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 110 } 111 112 /// ErrorUnsupported - Print out an error that codegen doesn't support the 113 /// specified stmt yet. 114 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 115 bool OmitOnError) { 116 if (OmitOnError && getDiags().hasErrorOccurred()) 117 return; 118 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 119 "cannot compile this %0 yet"); 120 std::string Msg = Type; 121 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 122 << Msg << S->getSourceRange(); 123 } 124 125 /// ErrorUnsupported - Print out an error that codegen doesn't support the 126 /// specified decl yet. 127 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 128 bool OmitOnError) { 129 if (OmitOnError && getDiags().hasErrorOccurred()) 130 return; 131 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 132 "cannot compile this %0 yet"); 133 std::string Msg = Type; 134 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 135 } 136 137 LangOptions::VisibilityMode 138 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 139 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 140 if (VD->getStorageClass() == VarDecl::PrivateExtern) 141 return LangOptions::Hidden; 142 143 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 144 switch (attr->getVisibility()) { 145 default: assert(0 && "Unknown visibility!"); 146 case VisibilityAttr::DefaultVisibility: 147 return LangOptions::Default; 148 case VisibilityAttr::HiddenVisibility: 149 return LangOptions::Hidden; 150 case VisibilityAttr::ProtectedVisibility: 151 return LangOptions::Protected; 152 } 153 } 154 155 // If -fvisibility-inlines-hidden was provided, then inline C++ member 156 // functions get "hidden" visibility by default. 157 if (getLangOptions().InlineVisibilityHidden) 158 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 159 if (Method->isInlined()) 160 return LangOptions::Hidden; 161 162 // This decl should have the same visibility as its parent. 163 if (const DeclContext *DC = D->getDeclContext()) 164 return getDeclVisibilityMode(cast<Decl>(DC)); 165 166 return getLangOptions().getVisibilityMode(); 167 } 168 169 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 170 const Decl *D) const { 171 // Internal definitions always have default visibility. 172 if (GV->hasLocalLinkage()) { 173 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 174 return; 175 } 176 177 switch (getDeclVisibilityMode(D)) { 178 default: assert(0 && "Unknown visibility!"); 179 case LangOptions::Default: 180 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 181 case LangOptions::Hidden: 182 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 183 case LangOptions::Protected: 184 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 185 } 186 } 187 188 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 189 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 190 191 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 192 return getMangleContext().mangleCXXCtor(D, GD.getCtorType(), 193 Buffer.getBuffer()); 194 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 195 return getMangleContext().mangleCXXDtor(D, GD.getDtorType(), 196 Buffer.getBuffer()); 197 198 if (!getMangleContext().shouldMangleDeclName(ND)) { 199 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 200 Buffer.setString(ND->getNameAsCString()); 201 return; 202 } 203 204 getMangleContext().mangleName(ND, Buffer.getBuffer()); 205 } 206 207 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) { 208 getMangleContext().mangleBlock(BD, Buffer.getBuffer()); 209 } 210 211 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 212 return getModule().getNamedValue(Name); 213 } 214 215 /// AddGlobalCtor - Add a function to the list that will be called before 216 /// main() runs. 217 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 218 // FIXME: Type coercion of void()* types. 219 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 220 } 221 222 /// AddGlobalDtor - Add a function to the list that will be called 223 /// when the module is unloaded. 224 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 225 // FIXME: Type coercion of void()* types. 226 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 227 } 228 229 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 230 // Ctor function type is void()*. 231 llvm::FunctionType* CtorFTy = 232 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 233 std::vector<const llvm::Type*>(), 234 false); 235 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 236 237 // Get the type of a ctor entry, { i32, void ()* }. 238 llvm::StructType* CtorStructTy = 239 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 240 llvm::PointerType::getUnqual(CtorFTy), NULL); 241 242 // Construct the constructor and destructor arrays. 243 std::vector<llvm::Constant*> Ctors; 244 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 245 std::vector<llvm::Constant*> S; 246 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 247 I->second, false)); 248 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 249 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 250 } 251 252 if (!Ctors.empty()) { 253 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 254 new llvm::GlobalVariable(TheModule, AT, false, 255 llvm::GlobalValue::AppendingLinkage, 256 llvm::ConstantArray::get(AT, Ctors), 257 GlobalName); 258 } 259 } 260 261 void CodeGenModule::EmitAnnotations() { 262 if (Annotations.empty()) 263 return; 264 265 // Create a new global variable for the ConstantStruct in the Module. 266 llvm::Constant *Array = 267 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 268 Annotations.size()), 269 Annotations); 270 llvm::GlobalValue *gv = 271 new llvm::GlobalVariable(TheModule, Array->getType(), false, 272 llvm::GlobalValue::AppendingLinkage, Array, 273 "llvm.global.annotations"); 274 gv->setSection("llvm.metadata"); 275 } 276 277 static CodeGenModule::GVALinkage 278 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 279 const LangOptions &Features) { 280 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 281 282 Linkage L = FD->getLinkage(); 283 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 284 FD->getType()->getLinkage() == UniqueExternalLinkage) 285 L = UniqueExternalLinkage; 286 287 switch (L) { 288 case NoLinkage: 289 case InternalLinkage: 290 case UniqueExternalLinkage: 291 return CodeGenModule::GVA_Internal; 292 293 case ExternalLinkage: 294 switch (FD->getTemplateSpecializationKind()) { 295 case TSK_Undeclared: 296 case TSK_ExplicitSpecialization: 297 External = CodeGenModule::GVA_StrongExternal; 298 break; 299 300 case TSK_ExplicitInstantiationDefinition: 301 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 302 303 case TSK_ExplicitInstantiationDeclaration: 304 case TSK_ImplicitInstantiation: 305 External = CodeGenModule::GVA_TemplateInstantiation; 306 break; 307 } 308 } 309 310 if (!FD->isInlined()) 311 return External; 312 313 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 314 // GNU or C99 inline semantics. Determine whether this symbol should be 315 // externally visible. 316 if (FD->isInlineDefinitionExternallyVisible()) 317 return External; 318 319 // C99 inline semantics, where the symbol is not externally visible. 320 return CodeGenModule::GVA_C99Inline; 321 } 322 323 // C++0x [temp.explicit]p9: 324 // [ Note: The intent is that an inline function that is the subject of 325 // an explicit instantiation declaration will still be implicitly 326 // instantiated when used so that the body can be considered for 327 // inlining, but that no out-of-line copy of the inline function would be 328 // generated in the translation unit. -- end note ] 329 if (FD->getTemplateSpecializationKind() 330 == TSK_ExplicitInstantiationDeclaration) 331 return CodeGenModule::GVA_C99Inline; 332 333 return CodeGenModule::GVA_CXXInline; 334 } 335 336 llvm::GlobalValue::LinkageTypes 337 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 338 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 339 340 if (Linkage == GVA_Internal) { 341 return llvm::Function::InternalLinkage; 342 } else if (D->hasAttr<DLLExportAttr>()) { 343 return llvm::Function::DLLExportLinkage; 344 } else if (D->hasAttr<WeakAttr>()) { 345 return llvm::Function::WeakAnyLinkage; 346 } else if (Linkage == GVA_C99Inline) { 347 // In C99 mode, 'inline' functions are guaranteed to have a strong 348 // definition somewhere else, so we can use available_externally linkage. 349 return llvm::Function::AvailableExternallyLinkage; 350 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 351 // In C++, the compiler has to emit a definition in every translation unit 352 // that references the function. We should use linkonce_odr because 353 // a) if all references in this translation unit are optimized away, we 354 // don't need to codegen it. b) if the function persists, it needs to be 355 // merged with other definitions. c) C++ has the ODR, so we know the 356 // definition is dependable. 357 return llvm::Function::LinkOnceODRLinkage; 358 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 359 // An explicit instantiation of a template has weak linkage, since 360 // explicit instantiations can occur in multiple translation units 361 // and must all be equivalent. However, we are not allowed to 362 // throw away these explicit instantiations. 363 return llvm::Function::WeakODRLinkage; 364 } else { 365 assert(Linkage == GVA_StrongExternal); 366 // Otherwise, we have strong external linkage. 367 return llvm::Function::ExternalLinkage; 368 } 369 } 370 371 372 /// SetFunctionDefinitionAttributes - Set attributes for a global. 373 /// 374 /// FIXME: This is currently only done for aliases and functions, but not for 375 /// variables (these details are set in EmitGlobalVarDefinition for variables). 376 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 377 llvm::GlobalValue *GV) { 378 SetCommonAttributes(D, GV); 379 } 380 381 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 382 const CGFunctionInfo &Info, 383 llvm::Function *F) { 384 unsigned CallingConv; 385 AttributeListType AttributeList; 386 ConstructAttributeList(Info, D, AttributeList, CallingConv); 387 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 388 AttributeList.size())); 389 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 390 } 391 392 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 393 llvm::Function *F) { 394 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 395 F->addFnAttr(llvm::Attribute::NoUnwind); 396 397 if (D->hasAttr<AlwaysInlineAttr>()) 398 F->addFnAttr(llvm::Attribute::AlwaysInline); 399 400 if (D->hasAttr<NoInlineAttr>()) 401 F->addFnAttr(llvm::Attribute::NoInline); 402 403 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 404 F->addFnAttr(llvm::Attribute::StackProtect); 405 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 406 F->addFnAttr(llvm::Attribute::StackProtectReq); 407 408 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 409 unsigned width = Context.Target.getCharWidth(); 410 F->setAlignment(AA->getAlignment() / width); 411 while ((AA = AA->getNext<AlignedAttr>())) 412 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 413 } 414 // C++ ABI requires 2-byte alignment for member functions. 415 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 416 F->setAlignment(2); 417 } 418 419 void CodeGenModule::SetCommonAttributes(const Decl *D, 420 llvm::GlobalValue *GV) { 421 setGlobalVisibility(GV, D); 422 423 if (D->hasAttr<UsedAttr>()) 424 AddUsedGlobal(GV); 425 426 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 427 GV->setSection(SA->getName()); 428 429 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 430 } 431 432 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 433 llvm::Function *F, 434 const CGFunctionInfo &FI) { 435 SetLLVMFunctionAttributes(D, FI, F); 436 SetLLVMFunctionAttributesForDefinition(D, F); 437 438 F->setLinkage(llvm::Function::InternalLinkage); 439 440 SetCommonAttributes(D, F); 441 } 442 443 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 444 llvm::Function *F, 445 bool IsIncompleteFunction) { 446 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 447 448 if (!IsIncompleteFunction) 449 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 450 451 // Only a few attributes are set on declarations; these may later be 452 // overridden by a definition. 453 454 if (FD->hasAttr<DLLImportAttr>()) { 455 F->setLinkage(llvm::Function::DLLImportLinkage); 456 } else if (FD->hasAttr<WeakAttr>() || 457 FD->hasAttr<WeakImportAttr>()) { 458 // "extern_weak" is overloaded in LLVM; we probably should have 459 // separate linkage types for this. 460 F->setLinkage(llvm::Function::ExternalWeakLinkage); 461 } else { 462 F->setLinkage(llvm::Function::ExternalLinkage); 463 } 464 465 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 466 F->setSection(SA->getName()); 467 } 468 469 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 470 assert(!GV->isDeclaration() && 471 "Only globals with definition can force usage."); 472 LLVMUsed.push_back(GV); 473 } 474 475 void CodeGenModule::EmitLLVMUsed() { 476 // Don't create llvm.used if there is no need. 477 if (LLVMUsed.empty()) 478 return; 479 480 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 481 482 // Convert LLVMUsed to what ConstantArray needs. 483 std::vector<llvm::Constant*> UsedArray; 484 UsedArray.resize(LLVMUsed.size()); 485 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 486 UsedArray[i] = 487 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 488 i8PTy); 489 } 490 491 if (UsedArray.empty()) 492 return; 493 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 494 495 llvm::GlobalVariable *GV = 496 new llvm::GlobalVariable(getModule(), ATy, false, 497 llvm::GlobalValue::AppendingLinkage, 498 llvm::ConstantArray::get(ATy, UsedArray), 499 "llvm.used"); 500 501 GV->setSection("llvm.metadata"); 502 } 503 504 void CodeGenModule::EmitDeferred() { 505 // Emit code for any potentially referenced deferred decls. Since a 506 // previously unused static decl may become used during the generation of code 507 // for a static function, iterate until no changes are made. 508 509 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 510 if (!DeferredVTables.empty()) { 511 const CXXRecordDecl *RD = DeferredVTables.back(); 512 DeferredVTables.pop_back(); 513 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 514 continue; 515 } 516 517 GlobalDecl D = DeferredDeclsToEmit.back(); 518 DeferredDeclsToEmit.pop_back(); 519 520 // Check to see if we've already emitted this. This is necessary 521 // for a couple of reasons: first, decls can end up in the 522 // deferred-decls queue multiple times, and second, decls can end 523 // up with definitions in unusual ways (e.g. by an extern inline 524 // function acquiring a strong function redefinition). Just 525 // ignore these cases. 526 // 527 // TODO: That said, looking this up multiple times is very wasteful. 528 MangleBuffer Name; 529 getMangledName(Name, D); 530 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 531 assert(CGRef && "Deferred decl wasn't referenced?"); 532 533 if (!CGRef->isDeclaration()) 534 continue; 535 536 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 537 // purposes an alias counts as a definition. 538 if (isa<llvm::GlobalAlias>(CGRef)) 539 continue; 540 541 // Otherwise, emit the definition and move on to the next one. 542 EmitGlobalDefinition(D); 543 } 544 } 545 546 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 547 /// annotation information for a given GlobalValue. The annotation struct is 548 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 549 /// GlobalValue being annotated. The second field is the constant string 550 /// created from the AnnotateAttr's annotation. The third field is a constant 551 /// string containing the name of the translation unit. The fourth field is 552 /// the line number in the file of the annotated value declaration. 553 /// 554 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 555 /// appears to. 556 /// 557 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 558 const AnnotateAttr *AA, 559 unsigned LineNo) { 560 llvm::Module *M = &getModule(); 561 562 // get [N x i8] constants for the annotation string, and the filename string 563 // which are the 2nd and 3rd elements of the global annotation structure. 564 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 565 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 566 AA->getAnnotation(), true); 567 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 568 M->getModuleIdentifier(), 569 true); 570 571 // Get the two global values corresponding to the ConstantArrays we just 572 // created to hold the bytes of the strings. 573 llvm::GlobalValue *annoGV = 574 new llvm::GlobalVariable(*M, anno->getType(), false, 575 llvm::GlobalValue::PrivateLinkage, anno, 576 GV->getName()); 577 // translation unit name string, emitted into the llvm.metadata section. 578 llvm::GlobalValue *unitGV = 579 new llvm::GlobalVariable(*M, unit->getType(), false, 580 llvm::GlobalValue::PrivateLinkage, unit, 581 ".str"); 582 583 // Create the ConstantStruct for the global annotation. 584 llvm::Constant *Fields[4] = { 585 llvm::ConstantExpr::getBitCast(GV, SBP), 586 llvm::ConstantExpr::getBitCast(annoGV, SBP), 587 llvm::ConstantExpr::getBitCast(unitGV, SBP), 588 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 589 }; 590 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 591 } 592 593 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 594 // Never defer when EmitAllDecls is specified or the decl has 595 // attribute used. 596 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 597 return false; 598 599 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 600 // Constructors and destructors should never be deferred. 601 if (FD->hasAttr<ConstructorAttr>() || 602 FD->hasAttr<DestructorAttr>()) 603 return false; 604 605 // The key function for a class must never be deferred. 606 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 607 const CXXRecordDecl *RD = MD->getParent(); 608 if (MD->isOutOfLine() && RD->isDynamicClass()) { 609 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 610 if (KeyFunction && 611 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 612 return false; 613 } 614 } 615 616 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 617 618 // static, static inline, always_inline, and extern inline functions can 619 // always be deferred. Normal inline functions can be deferred in C99/C++. 620 // Implicit template instantiations can also be deferred in C++. 621 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 622 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 623 return true; 624 return false; 625 } 626 627 const VarDecl *VD = cast<VarDecl>(Global); 628 assert(VD->isFileVarDecl() && "Invalid decl"); 629 630 // We never want to defer structs that have non-trivial constructors or 631 // destructors. 632 633 // FIXME: Handle references. 634 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 635 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 636 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 637 return false; 638 } 639 } 640 641 // Static data may be deferred, but out-of-line static data members 642 // cannot be. 643 Linkage L = VD->getLinkage(); 644 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 645 VD->getType()->getLinkage() == UniqueExternalLinkage) 646 L = UniqueExternalLinkage; 647 648 switch (L) { 649 case NoLinkage: 650 case InternalLinkage: 651 case UniqueExternalLinkage: 652 // Initializer has side effects? 653 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 654 return false; 655 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 656 657 case ExternalLinkage: 658 break; 659 } 660 661 return false; 662 } 663 664 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 665 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 666 assert(AA && "No alias?"); 667 668 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 669 670 // See if there is already something with the target's name in the module. 671 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 672 673 llvm::Constant *Aliasee; 674 if (isa<llvm::FunctionType>(DeclTy)) 675 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 676 else 677 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 678 llvm::PointerType::getUnqual(DeclTy), 0); 679 if (!Entry) { 680 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 681 F->setLinkage(llvm::Function::ExternalWeakLinkage); 682 WeakRefReferences.insert(F); 683 } 684 685 return Aliasee; 686 } 687 688 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 689 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 690 691 // Weak references don't produce any output by themselves. 692 if (Global->hasAttr<WeakRefAttr>()) 693 return; 694 695 // If this is an alias definition (which otherwise looks like a declaration) 696 // emit it now. 697 if (Global->hasAttr<AliasAttr>()) 698 return EmitAliasDefinition(GD); 699 700 // Ignore declarations, they will be emitted on their first use. 701 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 702 // Forward declarations are emitted lazily on first use. 703 if (!FD->isThisDeclarationADefinition()) 704 return; 705 } else { 706 const VarDecl *VD = cast<VarDecl>(Global); 707 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 708 709 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 710 return; 711 } 712 713 // Defer code generation when possible if this is a static definition, inline 714 // function etc. These we only want to emit if they are used. 715 if (!MayDeferGeneration(Global)) { 716 // Emit the definition if it can't be deferred. 717 EmitGlobalDefinition(GD); 718 return; 719 } 720 721 // If the value has already been used, add it directly to the 722 // DeferredDeclsToEmit list. 723 MangleBuffer MangledName; 724 getMangledName(MangledName, GD); 725 if (GetGlobalValue(MangledName)) 726 DeferredDeclsToEmit.push_back(GD); 727 else { 728 // Otherwise, remember that we saw a deferred decl with this name. The 729 // first use of the mangled name will cause it to move into 730 // DeferredDeclsToEmit. 731 DeferredDecls[MangledName] = GD; 732 } 733 } 734 735 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 736 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 737 738 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 739 Context.getSourceManager(), 740 "Generating code for declaration"); 741 742 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 743 if (Method->isVirtual()) 744 getVTables().EmitThunks(GD); 745 746 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 747 return EmitCXXConstructor(CD, GD.getCtorType()); 748 749 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 750 return EmitCXXDestructor(DD, GD.getDtorType()); 751 752 if (isa<FunctionDecl>(D)) 753 return EmitGlobalFunctionDefinition(GD); 754 755 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 756 return EmitGlobalVarDefinition(VD); 757 758 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 759 } 760 761 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 762 /// module, create and return an llvm Function with the specified type. If there 763 /// is something in the module with the specified name, return it potentially 764 /// bitcasted to the right type. 765 /// 766 /// If D is non-null, it specifies a decl that correspond to this. This is used 767 /// to set the attributes on the function when it is first created. 768 llvm::Constant * 769 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 770 const llvm::Type *Ty, 771 GlobalDecl D) { 772 // Lookup the entry, lazily creating it if necessary. 773 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 774 if (Entry) { 775 if (WeakRefReferences.count(Entry)) { 776 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 777 if (FD && !FD->hasAttr<WeakAttr>()) 778 Entry->setLinkage(llvm::Function::ExternalLinkage); 779 780 WeakRefReferences.erase(Entry); 781 } 782 783 if (Entry->getType()->getElementType() == Ty) 784 return Entry; 785 786 // Make sure the result is of the correct type. 787 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 788 return llvm::ConstantExpr::getBitCast(Entry, PTy); 789 } 790 791 // This function doesn't have a complete type (for example, the return 792 // type is an incomplete struct). Use a fake type instead, and make 793 // sure not to try to set attributes. 794 bool IsIncompleteFunction = false; 795 796 const llvm::FunctionType *FTy; 797 if (isa<llvm::FunctionType>(Ty)) { 798 FTy = cast<llvm::FunctionType>(Ty); 799 } else { 800 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 801 std::vector<const llvm::Type*>(), false); 802 IsIncompleteFunction = true; 803 } 804 llvm::Function *F = llvm::Function::Create(FTy, 805 llvm::Function::ExternalLinkage, 806 MangledName, &getModule()); 807 assert(F->getName() == MangledName && "name was uniqued!"); 808 if (D.getDecl()) 809 SetFunctionAttributes(D, F, IsIncompleteFunction); 810 811 // This is the first use or definition of a mangled name. If there is a 812 // deferred decl with this name, remember that we need to emit it at the end 813 // of the file. 814 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 815 if (DDI != DeferredDecls.end()) { 816 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 817 // list, and remove it from DeferredDecls (since we don't need it anymore). 818 DeferredDeclsToEmit.push_back(DDI->second); 819 DeferredDecls.erase(DDI); 820 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 821 // If this the first reference to a C++ inline function in a class, queue up 822 // the deferred function body for emission. These are not seen as 823 // top-level declarations. 824 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 825 DeferredDeclsToEmit.push_back(D); 826 // A called constructor which has no definition or declaration need be 827 // synthesized. 828 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 829 if (CD->isImplicit()) { 830 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 831 DeferredDeclsToEmit.push_back(D); 832 } 833 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 834 if (DD->isImplicit()) { 835 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 836 DeferredDeclsToEmit.push_back(D); 837 } 838 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 839 if (MD->isCopyAssignment() && MD->isImplicit()) { 840 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 841 DeferredDeclsToEmit.push_back(D); 842 } 843 } 844 } 845 846 // Make sure the result is of the requested type. 847 if (!IsIncompleteFunction) { 848 assert(F->getType()->getElementType() == Ty); 849 return F; 850 } 851 852 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 853 return llvm::ConstantExpr::getBitCast(F, PTy); 854 } 855 856 /// GetAddrOfFunction - Return the address of the given function. If Ty is 857 /// non-null, then this function will use the specified type if it has to 858 /// create it (this occurs when we see a definition of the function). 859 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 860 const llvm::Type *Ty) { 861 // If there was no specific requested type, just convert it now. 862 if (!Ty) 863 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 864 MangleBuffer MangledName; 865 getMangledName(MangledName, GD); 866 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 867 } 868 869 /// CreateRuntimeFunction - Create a new runtime function with the specified 870 /// type and name. 871 llvm::Constant * 872 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 873 llvm::StringRef Name) { 874 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 875 } 876 877 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 878 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 879 return false; 880 if (Context.getLangOptions().CPlusPlus && 881 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 882 // FIXME: We should do something fancier here! 883 return false; 884 } 885 return true; 886 } 887 888 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 889 /// create and return an llvm GlobalVariable with the specified type. If there 890 /// is something in the module with the specified name, return it potentially 891 /// bitcasted to the right type. 892 /// 893 /// If D is non-null, it specifies a decl that correspond to this. This is used 894 /// to set the attributes on the global when it is first created. 895 llvm::Constant * 896 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 897 const llvm::PointerType *Ty, 898 const VarDecl *D) { 899 // Lookup the entry, lazily creating it if necessary. 900 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 901 if (Entry) { 902 if (WeakRefReferences.count(Entry)) { 903 if (D && !D->hasAttr<WeakAttr>()) 904 Entry->setLinkage(llvm::Function::ExternalLinkage); 905 906 WeakRefReferences.erase(Entry); 907 } 908 909 if (Entry->getType() == Ty) 910 return Entry; 911 912 // Make sure the result is of the correct type. 913 return llvm::ConstantExpr::getBitCast(Entry, Ty); 914 } 915 916 // This is the first use or definition of a mangled name. If there is a 917 // deferred decl with this name, remember that we need to emit it at the end 918 // of the file. 919 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 920 if (DDI != DeferredDecls.end()) { 921 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 922 // list, and remove it from DeferredDecls (since we don't need it anymore). 923 DeferredDeclsToEmit.push_back(DDI->second); 924 DeferredDecls.erase(DDI); 925 } 926 927 llvm::GlobalVariable *GV = 928 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 929 llvm::GlobalValue::ExternalLinkage, 930 0, MangledName, 0, 931 false, Ty->getAddressSpace()); 932 933 // Handle things which are present even on external declarations. 934 if (D) { 935 // FIXME: This code is overly simple and should be merged with other global 936 // handling. 937 GV->setConstant(DeclIsConstantGlobal(Context, D)); 938 939 // FIXME: Merge with other attribute handling code. 940 if (D->getStorageClass() == VarDecl::PrivateExtern) 941 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 942 943 if (D->hasAttr<WeakAttr>() || 944 D->hasAttr<WeakImportAttr>()) 945 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 946 947 GV->setThreadLocal(D->isThreadSpecified()); 948 } 949 950 return GV; 951 } 952 953 954 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 955 /// given global variable. If Ty is non-null and if the global doesn't exist, 956 /// then it will be greated with the specified type instead of whatever the 957 /// normal requested type would be. 958 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 959 const llvm::Type *Ty) { 960 assert(D->hasGlobalStorage() && "Not a global variable"); 961 QualType ASTTy = D->getType(); 962 if (Ty == 0) 963 Ty = getTypes().ConvertTypeForMem(ASTTy); 964 965 const llvm::PointerType *PTy = 966 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 967 968 MangleBuffer MangledName; 969 getMangledName(MangledName, D); 970 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 971 } 972 973 /// CreateRuntimeVariable - Create a new runtime global variable with the 974 /// specified type and name. 975 llvm::Constant * 976 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 977 llvm::StringRef Name) { 978 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 979 } 980 981 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 982 assert(!D->getInit() && "Cannot emit definite definitions here!"); 983 984 if (MayDeferGeneration(D)) { 985 // If we have not seen a reference to this variable yet, place it 986 // into the deferred declarations table to be emitted if needed 987 // later. 988 MangleBuffer MangledName; 989 getMangledName(MangledName, D); 990 if (!GetGlobalValue(MangledName)) { 991 DeferredDecls[MangledName] = D; 992 return; 993 } 994 } 995 996 // The tentative definition is the only definition. 997 EmitGlobalVarDefinition(D); 998 } 999 1000 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1001 if (DefinitionRequired) 1002 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1003 } 1004 1005 llvm::GlobalVariable::LinkageTypes 1006 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1007 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1008 return llvm::GlobalVariable::InternalLinkage; 1009 1010 if (const CXXMethodDecl *KeyFunction 1011 = RD->getASTContext().getKeyFunction(RD)) { 1012 // If this class has a key function, use that to determine the linkage of 1013 // the vtable. 1014 const FunctionDecl *Def = 0; 1015 if (KeyFunction->getBody(Def)) 1016 KeyFunction = cast<CXXMethodDecl>(Def); 1017 1018 switch (KeyFunction->getTemplateSpecializationKind()) { 1019 case TSK_Undeclared: 1020 case TSK_ExplicitSpecialization: 1021 if (KeyFunction->isInlined()) 1022 return llvm::GlobalVariable::WeakODRLinkage; 1023 1024 return llvm::GlobalVariable::ExternalLinkage; 1025 1026 case TSK_ImplicitInstantiation: 1027 case TSK_ExplicitInstantiationDefinition: 1028 return llvm::GlobalVariable::WeakODRLinkage; 1029 1030 case TSK_ExplicitInstantiationDeclaration: 1031 // FIXME: Use available_externally linkage. However, this currently 1032 // breaks LLVM's build due to undefined symbols. 1033 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1034 return llvm::GlobalVariable::WeakODRLinkage; 1035 } 1036 } 1037 1038 switch (RD->getTemplateSpecializationKind()) { 1039 case TSK_Undeclared: 1040 case TSK_ExplicitSpecialization: 1041 case TSK_ImplicitInstantiation: 1042 case TSK_ExplicitInstantiationDefinition: 1043 return llvm::GlobalVariable::WeakODRLinkage; 1044 1045 case TSK_ExplicitInstantiationDeclaration: 1046 // FIXME: Use available_externally linkage. However, this currently 1047 // breaks LLVM's build due to undefined symbols. 1048 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1049 return llvm::GlobalVariable::WeakODRLinkage; 1050 } 1051 1052 // Silence GCC warning. 1053 return llvm::GlobalVariable::WeakODRLinkage; 1054 } 1055 1056 static CodeGenModule::GVALinkage 1057 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1058 // If this is a static data member, compute the kind of template 1059 // specialization. Otherwise, this variable is not part of a 1060 // template. 1061 TemplateSpecializationKind TSK = TSK_Undeclared; 1062 if (VD->isStaticDataMember()) 1063 TSK = VD->getTemplateSpecializationKind(); 1064 1065 Linkage L = VD->getLinkage(); 1066 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1067 VD->getType()->getLinkage() == UniqueExternalLinkage) 1068 L = UniqueExternalLinkage; 1069 1070 switch (L) { 1071 case NoLinkage: 1072 case InternalLinkage: 1073 case UniqueExternalLinkage: 1074 return CodeGenModule::GVA_Internal; 1075 1076 case ExternalLinkage: 1077 switch (TSK) { 1078 case TSK_Undeclared: 1079 case TSK_ExplicitSpecialization: 1080 return CodeGenModule::GVA_StrongExternal; 1081 1082 case TSK_ExplicitInstantiationDeclaration: 1083 llvm_unreachable("Variable should not be instantiated"); 1084 // Fall through to treat this like any other instantiation. 1085 1086 case TSK_ExplicitInstantiationDefinition: 1087 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1088 1089 case TSK_ImplicitInstantiation: 1090 return CodeGenModule::GVA_TemplateInstantiation; 1091 } 1092 } 1093 1094 return CodeGenModule::GVA_StrongExternal; 1095 } 1096 1097 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1098 return CharUnits::fromQuantity( 1099 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1100 } 1101 1102 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1103 llvm::Constant *Init = 0; 1104 QualType ASTTy = D->getType(); 1105 bool NonConstInit = false; 1106 1107 const Expr *InitExpr = D->getAnyInitializer(); 1108 1109 if (!InitExpr) { 1110 // This is a tentative definition; tentative definitions are 1111 // implicitly initialized with { 0 }. 1112 // 1113 // Note that tentative definitions are only emitted at the end of 1114 // a translation unit, so they should never have incomplete 1115 // type. In addition, EmitTentativeDefinition makes sure that we 1116 // never attempt to emit a tentative definition if a real one 1117 // exists. A use may still exists, however, so we still may need 1118 // to do a RAUW. 1119 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1120 Init = EmitNullConstant(D->getType()); 1121 } else { 1122 Init = EmitConstantExpr(InitExpr, D->getType()); 1123 if (!Init) { 1124 QualType T = InitExpr->getType(); 1125 if (D->getType()->isReferenceType()) 1126 T = D->getType(); 1127 1128 if (getLangOptions().CPlusPlus) { 1129 EmitCXXGlobalVarDeclInitFunc(D); 1130 Init = EmitNullConstant(T); 1131 NonConstInit = true; 1132 } else { 1133 ErrorUnsupported(D, "static initializer"); 1134 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1135 } 1136 } 1137 } 1138 1139 const llvm::Type* InitType = Init->getType(); 1140 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1141 1142 // Strip off a bitcast if we got one back. 1143 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1144 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1145 // all zero index gep. 1146 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1147 Entry = CE->getOperand(0); 1148 } 1149 1150 // Entry is now either a Function or GlobalVariable. 1151 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1152 1153 // We have a definition after a declaration with the wrong type. 1154 // We must make a new GlobalVariable* and update everything that used OldGV 1155 // (a declaration or tentative definition) with the new GlobalVariable* 1156 // (which will be a definition). 1157 // 1158 // This happens if there is a prototype for a global (e.g. 1159 // "extern int x[];") and then a definition of a different type (e.g. 1160 // "int x[10];"). This also happens when an initializer has a different type 1161 // from the type of the global (this happens with unions). 1162 if (GV == 0 || 1163 GV->getType()->getElementType() != InitType || 1164 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1165 1166 // Move the old entry aside so that we'll create a new one. 1167 Entry->setName(llvm::StringRef()); 1168 1169 // Make a new global with the correct type, this is now guaranteed to work. 1170 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1171 1172 // Replace all uses of the old global with the new global 1173 llvm::Constant *NewPtrForOldDecl = 1174 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1175 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1176 1177 // Erase the old global, since it is no longer used. 1178 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1179 } 1180 1181 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1182 SourceManager &SM = Context.getSourceManager(); 1183 AddAnnotation(EmitAnnotateAttr(GV, AA, 1184 SM.getInstantiationLineNumber(D->getLocation()))); 1185 } 1186 1187 GV->setInitializer(Init); 1188 1189 // If it is safe to mark the global 'constant', do so now. 1190 GV->setConstant(false); 1191 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1192 GV->setConstant(true); 1193 1194 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1195 1196 // Set the llvm linkage type as appropriate. 1197 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1198 if (Linkage == GVA_Internal) 1199 GV->setLinkage(llvm::Function::InternalLinkage); 1200 else if (D->hasAttr<DLLImportAttr>()) 1201 GV->setLinkage(llvm::Function::DLLImportLinkage); 1202 else if (D->hasAttr<DLLExportAttr>()) 1203 GV->setLinkage(llvm::Function::DLLExportLinkage); 1204 else if (D->hasAttr<WeakAttr>()) { 1205 if (GV->isConstant()) 1206 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1207 else 1208 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1209 } else if (Linkage == GVA_TemplateInstantiation || 1210 Linkage == GVA_ExplicitTemplateInstantiation) 1211 // FIXME: It seems like we can provide more specific linkage here 1212 // (LinkOnceODR, WeakODR). 1213 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1214 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1215 !D->hasExternalStorage() && !D->getInit() && 1216 !D->getAttr<SectionAttr>()) { 1217 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1218 // common vars aren't constant even if declared const. 1219 GV->setConstant(false); 1220 } else 1221 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1222 1223 SetCommonAttributes(D, GV); 1224 1225 // Emit global variable debug information. 1226 if (CGDebugInfo *DI = getDebugInfo()) { 1227 DI->setLocation(D->getLocation()); 1228 DI->EmitGlobalVariable(GV, D); 1229 } 1230 } 1231 1232 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1233 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1234 /// existing call uses of the old function in the module, this adjusts them to 1235 /// call the new function directly. 1236 /// 1237 /// This is not just a cleanup: the always_inline pass requires direct calls to 1238 /// functions to be able to inline them. If there is a bitcast in the way, it 1239 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1240 /// run at -O0. 1241 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1242 llvm::Function *NewFn) { 1243 // If we're redefining a global as a function, don't transform it. 1244 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1245 if (OldFn == 0) return; 1246 1247 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1248 llvm::SmallVector<llvm::Value*, 4> ArgList; 1249 1250 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1251 UI != E; ) { 1252 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1253 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1254 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1255 llvm::CallSite CS(CI); 1256 if (!CI || !CS.isCallee(I)) continue; 1257 1258 // If the return types don't match exactly, and if the call isn't dead, then 1259 // we can't transform this call. 1260 if (CI->getType() != NewRetTy && !CI->use_empty()) 1261 continue; 1262 1263 // If the function was passed too few arguments, don't transform. If extra 1264 // arguments were passed, we silently drop them. If any of the types 1265 // mismatch, we don't transform. 1266 unsigned ArgNo = 0; 1267 bool DontTransform = false; 1268 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1269 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1270 if (CS.arg_size() == ArgNo || 1271 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1272 DontTransform = true; 1273 break; 1274 } 1275 } 1276 if (DontTransform) 1277 continue; 1278 1279 // Okay, we can transform this. Create the new call instruction and copy 1280 // over the required information. 1281 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1282 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1283 ArgList.end(), "", CI); 1284 ArgList.clear(); 1285 if (!NewCall->getType()->isVoidTy()) 1286 NewCall->takeName(CI); 1287 NewCall->setAttributes(CI->getAttributes()); 1288 NewCall->setCallingConv(CI->getCallingConv()); 1289 1290 // Finally, remove the old call, replacing any uses with the new one. 1291 if (!CI->use_empty()) 1292 CI->replaceAllUsesWith(NewCall); 1293 1294 // Copy debug location attached to CI. 1295 if (!CI->getDebugLoc().isUnknown()) 1296 NewCall->setDebugLoc(CI->getDebugLoc()); 1297 CI->eraseFromParent(); 1298 } 1299 } 1300 1301 1302 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1303 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1304 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1305 getMangleContext().mangleInitDiscriminator(); 1306 // Get or create the prototype for the function. 1307 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1308 1309 // Strip off a bitcast if we got one back. 1310 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1311 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1312 Entry = CE->getOperand(0); 1313 } 1314 1315 1316 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1317 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1318 1319 // If the types mismatch then we have to rewrite the definition. 1320 assert(OldFn->isDeclaration() && 1321 "Shouldn't replace non-declaration"); 1322 1323 // F is the Function* for the one with the wrong type, we must make a new 1324 // Function* and update everything that used F (a declaration) with the new 1325 // Function* (which will be a definition). 1326 // 1327 // This happens if there is a prototype for a function 1328 // (e.g. "int f()") and then a definition of a different type 1329 // (e.g. "int f(int x)"). Move the old function aside so that it 1330 // doesn't interfere with GetAddrOfFunction. 1331 OldFn->setName(llvm::StringRef()); 1332 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1333 1334 // If this is an implementation of a function without a prototype, try to 1335 // replace any existing uses of the function (which may be calls) with uses 1336 // of the new function 1337 if (D->getType()->isFunctionNoProtoType()) { 1338 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1339 OldFn->removeDeadConstantUsers(); 1340 } 1341 1342 // Replace uses of F with the Function we will endow with a body. 1343 if (!Entry->use_empty()) { 1344 llvm::Constant *NewPtrForOldDecl = 1345 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1346 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1347 } 1348 1349 // Ok, delete the old function now, which is dead. 1350 OldFn->eraseFromParent(); 1351 1352 Entry = NewFn; 1353 } 1354 1355 llvm::Function *Fn = cast<llvm::Function>(Entry); 1356 setFunctionLinkage(D, Fn); 1357 1358 CodeGenFunction(*this).GenerateCode(D, Fn); 1359 1360 SetFunctionDefinitionAttributes(D, Fn); 1361 SetLLVMFunctionAttributesForDefinition(D, Fn); 1362 1363 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1364 AddGlobalCtor(Fn, CA->getPriority()); 1365 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1366 AddGlobalDtor(Fn, DA->getPriority()); 1367 } 1368 1369 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1370 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1371 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1372 assert(AA && "Not an alias?"); 1373 1374 MangleBuffer MangledName; 1375 getMangledName(MangledName, GD); 1376 1377 // If there is a definition in the module, then it wins over the alias. 1378 // This is dubious, but allow it to be safe. Just ignore the alias. 1379 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1380 if (Entry && !Entry->isDeclaration()) 1381 return; 1382 1383 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1384 1385 // Create a reference to the named value. This ensures that it is emitted 1386 // if a deferred decl. 1387 llvm::Constant *Aliasee; 1388 if (isa<llvm::FunctionType>(DeclTy)) 1389 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1390 else 1391 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1392 llvm::PointerType::getUnqual(DeclTy), 0); 1393 1394 // Create the new alias itself, but don't set a name yet. 1395 llvm::GlobalValue *GA = 1396 new llvm::GlobalAlias(Aliasee->getType(), 1397 llvm::Function::ExternalLinkage, 1398 "", Aliasee, &getModule()); 1399 1400 if (Entry) { 1401 assert(Entry->isDeclaration()); 1402 1403 // If there is a declaration in the module, then we had an extern followed 1404 // by the alias, as in: 1405 // extern int test6(); 1406 // ... 1407 // int test6() __attribute__((alias("test7"))); 1408 // 1409 // Remove it and replace uses of it with the alias. 1410 GA->takeName(Entry); 1411 1412 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1413 Entry->getType())); 1414 Entry->eraseFromParent(); 1415 } else { 1416 GA->setName(MangledName.getString()); 1417 } 1418 1419 // Set attributes which are particular to an alias; this is a 1420 // specialization of the attributes which may be set on a global 1421 // variable/function. 1422 if (D->hasAttr<DLLExportAttr>()) { 1423 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1424 // The dllexport attribute is ignored for undefined symbols. 1425 if (FD->getBody()) 1426 GA->setLinkage(llvm::Function::DLLExportLinkage); 1427 } else { 1428 GA->setLinkage(llvm::Function::DLLExportLinkage); 1429 } 1430 } else if (D->hasAttr<WeakAttr>() || 1431 D->hasAttr<WeakRefAttr>() || 1432 D->hasAttr<WeakImportAttr>()) { 1433 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1434 } 1435 1436 SetCommonAttributes(D, GA); 1437 } 1438 1439 /// getBuiltinLibFunction - Given a builtin id for a function like 1440 /// "__builtin_fabsf", return a Function* for "fabsf". 1441 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1442 unsigned BuiltinID) { 1443 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1444 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1445 "isn't a lib fn"); 1446 1447 // Get the name, skip over the __builtin_ prefix (if necessary). 1448 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1449 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1450 Name += 10; 1451 1452 const llvm::FunctionType *Ty = 1453 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1454 1455 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1456 } 1457 1458 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1459 unsigned NumTys) { 1460 return llvm::Intrinsic::getDeclaration(&getModule(), 1461 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1462 } 1463 1464 1465 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1466 const llvm::Type *SrcType, 1467 const llvm::Type *SizeType) { 1468 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1469 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1470 } 1471 1472 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1473 const llvm::Type *SrcType, 1474 const llvm::Type *SizeType) { 1475 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1476 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1477 } 1478 1479 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1480 const llvm::Type *SizeType) { 1481 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1482 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1483 } 1484 1485 static llvm::StringMapEntry<llvm::Constant*> & 1486 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1487 const StringLiteral *Literal, 1488 bool TargetIsLSB, 1489 bool &IsUTF16, 1490 unsigned &StringLength) { 1491 unsigned NumBytes = Literal->getByteLength(); 1492 1493 // Check for simple case. 1494 if (!Literal->containsNonAsciiOrNull()) { 1495 StringLength = NumBytes; 1496 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1497 StringLength)); 1498 } 1499 1500 // Otherwise, convert the UTF8 literals into a byte string. 1501 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1502 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1503 UTF16 *ToPtr = &ToBuf[0]; 1504 1505 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1506 &ToPtr, ToPtr + NumBytes, 1507 strictConversion); 1508 1509 // Check for conversion failure. 1510 if (Result != conversionOK) { 1511 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1512 // this duplicate code. 1513 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1514 StringLength = NumBytes; 1515 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1516 StringLength)); 1517 } 1518 1519 // ConvertUTF8toUTF16 returns the length in ToPtr. 1520 StringLength = ToPtr - &ToBuf[0]; 1521 1522 // Render the UTF-16 string into a byte array and convert to the target byte 1523 // order. 1524 // 1525 // FIXME: This isn't something we should need to do here. 1526 llvm::SmallString<128> AsBytes; 1527 AsBytes.reserve(StringLength * 2); 1528 for (unsigned i = 0; i != StringLength; ++i) { 1529 unsigned short Val = ToBuf[i]; 1530 if (TargetIsLSB) { 1531 AsBytes.push_back(Val & 0xFF); 1532 AsBytes.push_back(Val >> 8); 1533 } else { 1534 AsBytes.push_back(Val >> 8); 1535 AsBytes.push_back(Val & 0xFF); 1536 } 1537 } 1538 // Append one extra null character, the second is automatically added by our 1539 // caller. 1540 AsBytes.push_back(0); 1541 1542 IsUTF16 = true; 1543 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1544 } 1545 1546 llvm::Constant * 1547 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1548 unsigned StringLength = 0; 1549 bool isUTF16 = false; 1550 llvm::StringMapEntry<llvm::Constant*> &Entry = 1551 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1552 getTargetData().isLittleEndian(), 1553 isUTF16, StringLength); 1554 1555 if (llvm::Constant *C = Entry.getValue()) 1556 return C; 1557 1558 llvm::Constant *Zero = 1559 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1560 llvm::Constant *Zeros[] = { Zero, Zero }; 1561 1562 // If we don't already have it, get __CFConstantStringClassReference. 1563 if (!CFConstantStringClassRef) { 1564 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1565 Ty = llvm::ArrayType::get(Ty, 0); 1566 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1567 "__CFConstantStringClassReference"); 1568 // Decay array -> ptr 1569 CFConstantStringClassRef = 1570 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1571 } 1572 1573 QualType CFTy = getContext().getCFConstantStringType(); 1574 1575 const llvm::StructType *STy = 1576 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1577 1578 std::vector<llvm::Constant*> Fields(4); 1579 1580 // Class pointer. 1581 Fields[0] = CFConstantStringClassRef; 1582 1583 // Flags. 1584 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1585 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1586 llvm::ConstantInt::get(Ty, 0x07C8); 1587 1588 // String pointer. 1589 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1590 1591 llvm::GlobalValue::LinkageTypes Linkage; 1592 bool isConstant; 1593 if (isUTF16) { 1594 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1595 Linkage = llvm::GlobalValue::InternalLinkage; 1596 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1597 // does make plain ascii ones writable. 1598 isConstant = true; 1599 } else { 1600 Linkage = llvm::GlobalValue::PrivateLinkage; 1601 isConstant = !Features.WritableStrings; 1602 } 1603 1604 llvm::GlobalVariable *GV = 1605 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1606 ".str"); 1607 if (isUTF16) { 1608 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1609 GV->setAlignment(Align.getQuantity()); 1610 } 1611 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1612 1613 // String length. 1614 Ty = getTypes().ConvertType(getContext().LongTy); 1615 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1616 1617 // The struct. 1618 C = llvm::ConstantStruct::get(STy, Fields); 1619 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1620 llvm::GlobalVariable::PrivateLinkage, C, 1621 "_unnamed_cfstring_"); 1622 if (const char *Sect = getContext().Target.getCFStringSection()) 1623 GV->setSection(Sect); 1624 Entry.setValue(GV); 1625 1626 return GV; 1627 } 1628 1629 llvm::Constant * 1630 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1631 unsigned StringLength = 0; 1632 bool isUTF16 = false; 1633 llvm::StringMapEntry<llvm::Constant*> &Entry = 1634 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1635 getTargetData().isLittleEndian(), 1636 isUTF16, StringLength); 1637 1638 if (llvm::Constant *C = Entry.getValue()) 1639 return C; 1640 1641 llvm::Constant *Zero = 1642 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1643 llvm::Constant *Zeros[] = { Zero, Zero }; 1644 1645 // If we don't already have it, get _NSConstantStringClassReference. 1646 if (!NSConstantStringClassRef) { 1647 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1648 Ty = llvm::ArrayType::get(Ty, 0); 1649 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1650 Features.ObjCNonFragileABI ? 1651 "OBJC_CLASS_$_NSConstantString" : 1652 "_NSConstantStringClassReference"); 1653 // Decay array -> ptr 1654 NSConstantStringClassRef = 1655 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1656 } 1657 1658 QualType NSTy = getContext().getNSConstantStringType(); 1659 1660 const llvm::StructType *STy = 1661 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1662 1663 std::vector<llvm::Constant*> Fields(3); 1664 1665 // Class pointer. 1666 Fields[0] = NSConstantStringClassRef; 1667 1668 // String pointer. 1669 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1670 1671 llvm::GlobalValue::LinkageTypes Linkage; 1672 bool isConstant; 1673 if (isUTF16) { 1674 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1675 Linkage = llvm::GlobalValue::InternalLinkage; 1676 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1677 // does make plain ascii ones writable. 1678 isConstant = true; 1679 } else { 1680 Linkage = llvm::GlobalValue::PrivateLinkage; 1681 isConstant = !Features.WritableStrings; 1682 } 1683 1684 llvm::GlobalVariable *GV = 1685 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1686 ".str"); 1687 if (isUTF16) { 1688 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1689 GV->setAlignment(Align.getQuantity()); 1690 } 1691 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1692 1693 // String length. 1694 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1695 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1696 1697 // The struct. 1698 C = llvm::ConstantStruct::get(STy, Fields); 1699 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1700 llvm::GlobalVariable::PrivateLinkage, C, 1701 "_unnamed_nsstring_"); 1702 // FIXME. Fix section. 1703 if (const char *Sect = 1704 Features.ObjCNonFragileABI 1705 ? getContext().Target.getNSStringNonFragileABISection() 1706 : getContext().Target.getNSStringSection()) 1707 GV->setSection(Sect); 1708 Entry.setValue(GV); 1709 1710 return GV; 1711 } 1712 1713 /// GetStringForStringLiteral - Return the appropriate bytes for a 1714 /// string literal, properly padded to match the literal type. 1715 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1716 const char *StrData = E->getStrData(); 1717 unsigned Len = E->getByteLength(); 1718 1719 const ConstantArrayType *CAT = 1720 getContext().getAsConstantArrayType(E->getType()); 1721 assert(CAT && "String isn't pointer or array!"); 1722 1723 // Resize the string to the right size. 1724 std::string Str(StrData, StrData+Len); 1725 uint64_t RealLen = CAT->getSize().getZExtValue(); 1726 1727 if (E->isWide()) 1728 RealLen *= getContext().Target.getWCharWidth()/8; 1729 1730 Str.resize(RealLen, '\0'); 1731 1732 return Str; 1733 } 1734 1735 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1736 /// constant array for the given string literal. 1737 llvm::Constant * 1738 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1739 // FIXME: This can be more efficient. 1740 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1741 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1742 if (S->isWide()) { 1743 llvm::Type *DestTy = 1744 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1745 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1746 } 1747 return C; 1748 } 1749 1750 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1751 /// array for the given ObjCEncodeExpr node. 1752 llvm::Constant * 1753 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1754 std::string Str; 1755 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1756 1757 return GetAddrOfConstantCString(Str); 1758 } 1759 1760 1761 /// GenerateWritableString -- Creates storage for a string literal. 1762 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1763 bool constant, 1764 CodeGenModule &CGM, 1765 const char *GlobalName) { 1766 // Create Constant for this string literal. Don't add a '\0'. 1767 llvm::Constant *C = 1768 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1769 1770 // Create a global variable for this string 1771 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1772 llvm::GlobalValue::PrivateLinkage, 1773 C, GlobalName); 1774 } 1775 1776 /// GetAddrOfConstantString - Returns a pointer to a character array 1777 /// containing the literal. This contents are exactly that of the 1778 /// given string, i.e. it will not be null terminated automatically; 1779 /// see GetAddrOfConstantCString. Note that whether the result is 1780 /// actually a pointer to an LLVM constant depends on 1781 /// Feature.WriteableStrings. 1782 /// 1783 /// The result has pointer to array type. 1784 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1785 const char *GlobalName) { 1786 bool IsConstant = !Features.WritableStrings; 1787 1788 // Get the default prefix if a name wasn't specified. 1789 if (!GlobalName) 1790 GlobalName = ".str"; 1791 1792 // Don't share any string literals if strings aren't constant. 1793 if (!IsConstant) 1794 return GenerateStringLiteral(str, false, *this, GlobalName); 1795 1796 llvm::StringMapEntry<llvm::Constant *> &Entry = 1797 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1798 1799 if (Entry.getValue()) 1800 return Entry.getValue(); 1801 1802 // Create a global variable for this. 1803 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1804 Entry.setValue(C); 1805 return C; 1806 } 1807 1808 /// GetAddrOfConstantCString - Returns a pointer to a character 1809 /// array containing the literal and a terminating '\-' 1810 /// character. The result has pointer to array type. 1811 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1812 const char *GlobalName){ 1813 return GetAddrOfConstantString(str + '\0', GlobalName); 1814 } 1815 1816 /// EmitObjCPropertyImplementations - Emit information for synthesized 1817 /// properties for an implementation. 1818 void CodeGenModule::EmitObjCPropertyImplementations(const 1819 ObjCImplementationDecl *D) { 1820 for (ObjCImplementationDecl::propimpl_iterator 1821 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1822 ObjCPropertyImplDecl *PID = *i; 1823 1824 // Dynamic is just for type-checking. 1825 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1826 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1827 1828 // Determine which methods need to be implemented, some may have 1829 // been overridden. Note that ::isSynthesized is not the method 1830 // we want, that just indicates if the decl came from a 1831 // property. What we want to know is if the method is defined in 1832 // this implementation. 1833 if (!D->getInstanceMethod(PD->getGetterName())) 1834 CodeGenFunction(*this).GenerateObjCGetter( 1835 const_cast<ObjCImplementationDecl *>(D), PID); 1836 if (!PD->isReadOnly() && 1837 !D->getInstanceMethod(PD->getSetterName())) 1838 CodeGenFunction(*this).GenerateObjCSetter( 1839 const_cast<ObjCImplementationDecl *>(D), PID); 1840 } 1841 } 1842 } 1843 1844 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1845 /// for an implementation. 1846 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1847 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1848 return; 1849 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1850 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1851 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1852 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1853 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1854 D->getLocation(), 1855 D->getLocation(), cxxSelector, 1856 getContext().VoidTy, 0, 1857 DC, true, false, true, 1858 ObjCMethodDecl::Required); 1859 D->addInstanceMethod(DTORMethod); 1860 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1861 1862 II = &getContext().Idents.get(".cxx_construct"); 1863 cxxSelector = getContext().Selectors.getSelector(0, &II); 1864 // The constructor returns 'self'. 1865 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1866 D->getLocation(), 1867 D->getLocation(), cxxSelector, 1868 getContext().getObjCIdType(), 0, 1869 DC, true, false, true, 1870 ObjCMethodDecl::Required); 1871 D->addInstanceMethod(CTORMethod); 1872 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1873 1874 1875 } 1876 1877 /// EmitNamespace - Emit all declarations in a namespace. 1878 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1879 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1880 I != E; ++I) 1881 EmitTopLevelDecl(*I); 1882 } 1883 1884 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1885 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1886 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1887 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1888 ErrorUnsupported(LSD, "linkage spec"); 1889 return; 1890 } 1891 1892 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1893 I != E; ++I) 1894 EmitTopLevelDecl(*I); 1895 } 1896 1897 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1898 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1899 // If an error has occurred, stop code generation, but continue 1900 // parsing and semantic analysis (to ensure all warnings and errors 1901 // are emitted). 1902 if (Diags.hasErrorOccurred()) 1903 return; 1904 1905 // Ignore dependent declarations. 1906 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1907 return; 1908 1909 switch (D->getKind()) { 1910 case Decl::CXXConversion: 1911 case Decl::CXXMethod: 1912 case Decl::Function: 1913 // Skip function templates 1914 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1915 return; 1916 1917 EmitGlobal(cast<FunctionDecl>(D)); 1918 break; 1919 1920 case Decl::Var: 1921 EmitGlobal(cast<VarDecl>(D)); 1922 break; 1923 1924 // C++ Decls 1925 case Decl::Namespace: 1926 EmitNamespace(cast<NamespaceDecl>(D)); 1927 break; 1928 // No code generation needed. 1929 case Decl::UsingShadow: 1930 case Decl::Using: 1931 case Decl::UsingDirective: 1932 case Decl::ClassTemplate: 1933 case Decl::FunctionTemplate: 1934 case Decl::NamespaceAlias: 1935 break; 1936 case Decl::CXXConstructor: 1937 // Skip function templates 1938 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1939 return; 1940 1941 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1942 break; 1943 case Decl::CXXDestructor: 1944 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1945 break; 1946 1947 case Decl::StaticAssert: 1948 // Nothing to do. 1949 break; 1950 1951 // Objective-C Decls 1952 1953 // Forward declarations, no (immediate) code generation. 1954 case Decl::ObjCClass: 1955 case Decl::ObjCForwardProtocol: 1956 case Decl::ObjCCategory: 1957 case Decl::ObjCInterface: 1958 break; 1959 1960 case Decl::ObjCProtocol: 1961 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1962 break; 1963 1964 case Decl::ObjCCategoryImpl: 1965 // Categories have properties but don't support synthesize so we 1966 // can ignore them here. 1967 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1968 break; 1969 1970 case Decl::ObjCImplementation: { 1971 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1972 EmitObjCPropertyImplementations(OMD); 1973 EmitObjCIvarInitializations(OMD); 1974 Runtime->GenerateClass(OMD); 1975 break; 1976 } 1977 case Decl::ObjCMethod: { 1978 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1979 // If this is not a prototype, emit the body. 1980 if (OMD->getBody()) 1981 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1982 break; 1983 } 1984 case Decl::ObjCCompatibleAlias: 1985 // compatibility-alias is a directive and has no code gen. 1986 break; 1987 1988 case Decl::LinkageSpec: 1989 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1990 break; 1991 1992 case Decl::FileScopeAsm: { 1993 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1994 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1995 1996 const std::string &S = getModule().getModuleInlineAsm(); 1997 if (S.empty()) 1998 getModule().setModuleInlineAsm(AsmString); 1999 else 2000 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2001 break; 2002 } 2003 2004 default: 2005 // Make sure we handled everything we should, every other kind is a 2006 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2007 // function. Need to recode Decl::Kind to do that easily. 2008 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2009 } 2010 } 2011