xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 072e83500e1f4291692753fa19840b17c694244e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 
57 using namespace clang;
58 using namespace CodeGen;
59 
60 static const char AnnotationSection[] = "llvm.metadata";
61 
62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
63   switch (CGM.getTarget().getCXXABI().getKind()) {
64   case TargetCXXABI::GenericAArch64:
65   case TargetCXXABI::GenericARM:
66   case TargetCXXABI::iOS:
67   case TargetCXXABI::iOS64:
68   case TargetCXXABI::GenericMIPS:
69   case TargetCXXABI::GenericItanium:
70   case TargetCXXABI::WebAssembly:
71     return CreateItaniumCXXABI(CGM);
72   case TargetCXXABI::Microsoft:
73     return CreateMicrosoftCXXABI(CGM);
74   }
75 
76   llvm_unreachable("invalid C++ ABI kind");
77 }
78 
79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
80                              const PreprocessorOptions &PPO,
81                              const CodeGenOptions &CGO, llvm::Module &M,
82                              DiagnosticsEngine &diags,
83                              CoverageSourceInfo *CoverageInfo)
84     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
85       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
86       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
87       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
88       Types(*this), VTables(*this), ObjCRuntime(nullptr),
89       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
90       DebugInfo(nullptr), ARCData(nullptr),
91       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
92       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
93       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
94       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
95       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
96       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
97       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   FloatTy = llvm::Type::getFloatTy(LLVMContext);
107   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   IntAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
113   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
114   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
115   Int8PtrTy = Int8Ty->getPointerTo(0);
116   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
117 
118   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
119   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
120 
121   if (LangOpts.ObjC1)
122     createObjCRuntime();
123   if (LangOpts.OpenCL)
124     createOpenCLRuntime();
125   if (LangOpts.OpenMP)
126     createOpenMPRuntime();
127   if (LangOpts.CUDA)
128     createCUDARuntime();
129 
130   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
131   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
132       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
133     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
134                            getCXXABI().getMangleContext());
135 
136   // If debug info or coverage generation is enabled, create the CGDebugInfo
137   // object.
138   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
139       CodeGenOpts.EmitGcovArcs ||
140       CodeGenOpts.EmitGcovNotes)
141     DebugInfo = new CGDebugInfo(*this);
142 
143   Block.GlobalUniqueCount = 0;
144 
145   if (C.getLangOpts().ObjCAutoRefCount)
146     ARCData = new ARCEntrypoints();
147   RRData = new RREntrypoints();
148 
149   if (!CodeGenOpts.InstrProfileInput.empty()) {
150     auto ReaderOrErr =
151         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
152     if (std::error_code EC = ReaderOrErr.getError()) {
153       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
154                                               "Could not read profile %0: %1");
155       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
156                                 << EC.message();
157     } else
158       PGOReader = std::move(ReaderOrErr.get());
159   }
160 
161   // If coverage mapping generation is enabled, create the
162   // CoverageMappingModuleGen object.
163   if (CodeGenOpts.CoverageMapping)
164     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
165 }
166 
167 CodeGenModule::~CodeGenModule() {
168   delete ObjCRuntime;
169   delete OpenCLRuntime;
170   delete OpenMPRuntime;
171   delete CUDARuntime;
172   delete TheTargetCodeGenInfo;
173   delete TBAA;
174   delete DebugInfo;
175   delete ARCData;
176   delete RRData;
177 }
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192     ObjCRuntime = CreateMacObjCRuntime(*this);
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime = new CGOpenCLRuntime(*this);
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   OpenMPRuntime = new CGOpenMPRuntime(*this);
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime = CreateNVCUDARuntime(*this);
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
239     }
240     OldF->eraseFromParent();
241   }
242 }
243 
244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
245   GlobalValReplacements.push_back(std::make_pair(GV, C));
246 }
247 
248 void CodeGenModule::applyGlobalValReplacements() {
249   for (auto &I : GlobalValReplacements) {
250     llvm::GlobalValue *GV = I.first;
251     llvm::Constant *C = I.second;
252 
253     GV->replaceAllUsesWith(C);
254     GV->eraseFromParent();
255   }
256 }
257 
258 // This is only used in aliases that we created and we know they have a
259 // linear structure.
260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
261   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
262   const llvm::Constant *C = &GA;
263   for (;;) {
264     C = C->stripPointerCasts();
265     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266       return GO;
267     // stripPointerCasts will not walk over weak aliases.
268     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
269     if (!GA2)
270       return nullptr;
271     if (!Visited.insert(GA2).second)
272       return nullptr;
273     C = GA2->getAliasee();
274   }
275 }
276 
277 void CodeGenModule::checkAliases() {
278   // Check if the constructed aliases are well formed. It is really unfortunate
279   // that we have to do this in CodeGen, but we only construct mangled names
280   // and aliases during codegen.
281   bool Error = false;
282   DiagnosticsEngine &Diags = getDiags();
283   for (const GlobalDecl &GD : Aliases) {
284     const auto *D = cast<ValueDecl>(GD.getDecl());
285     const AliasAttr *AA = D->getAttr<AliasAttr>();
286     StringRef MangledName = getMangledName(GD);
287     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
288     auto *Alias = cast<llvm::GlobalAlias>(Entry);
289     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
290     if (!GV) {
291       Error = true;
292       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
293     } else if (GV->isDeclaration()) {
294       Error = true;
295       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
296     }
297 
298     llvm::Constant *Aliasee = Alias->getAliasee();
299     llvm::GlobalValue *AliaseeGV;
300     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
301       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
302     else
303       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
304 
305     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
306       StringRef AliasSection = SA->getName();
307       if (AliasSection != AliaseeGV->getSection())
308         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
309             << AliasSection;
310     }
311 
312     // We have to handle alias to weak aliases in here. LLVM itself disallows
313     // this since the object semantics would not match the IL one. For
314     // compatibility with gcc we implement it by just pointing the alias
315     // to its aliasee's aliasee. We also warn, since the user is probably
316     // expecting the link to be weak.
317     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
318       if (GA->mayBeOverridden()) {
319         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
320             << GV->getName() << GA->getName();
321         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
322             GA->getAliasee(), Alias->getType());
323         Alias->setAliasee(Aliasee);
324       }
325     }
326   }
327   if (!Error)
328     return;
329 
330   for (const GlobalDecl &GD : Aliases) {
331     StringRef MangledName = getMangledName(GD);
332     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
333     auto *Alias = cast<llvm::GlobalAlias>(Entry);
334     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
335     Alias->eraseFromParent();
336   }
337 }
338 
339 void CodeGenModule::clear() {
340   DeferredDeclsToEmit.clear();
341   if (OpenMPRuntime)
342     OpenMPRuntime->clear();
343 }
344 
345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
346                                        StringRef MainFile) {
347   if (!hasDiagnostics())
348     return;
349   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
350     if (MainFile.empty())
351       MainFile = "<stdin>";
352     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
353   } else
354     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
355                                                       << Mismatched;
356 }
357 
358 void CodeGenModule::Release() {
359   EmitDeferred();
360   applyGlobalValReplacements();
361   applyReplacements();
362   checkAliases();
363   EmitCXXGlobalInitFunc();
364   EmitCXXGlobalDtorFunc();
365   EmitCXXThreadLocalInitFunc();
366   if (ObjCRuntime)
367     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
368       AddGlobalCtor(ObjCInitFunction);
369   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
370       CUDARuntime) {
371     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
372       AddGlobalCtor(CudaCtorFunction);
373     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
374       AddGlobalDtor(CudaDtorFunction);
375   }
376   if (PGOReader && PGOStats.hasDiagnostics())
377     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
378   EmitCtorList(GlobalCtors, "llvm.global_ctors");
379   EmitCtorList(GlobalDtors, "llvm.global_dtors");
380   EmitGlobalAnnotations();
381   EmitStaticExternCAliases();
382   EmitDeferredUnusedCoverageMappings();
383   if (CoverageMapping)
384     CoverageMapping->emit();
385   emitLLVMUsed();
386 
387   if (CodeGenOpts.Autolink &&
388       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
389     EmitModuleLinkOptions();
390   }
391   if (CodeGenOpts.DwarfVersion) {
392     // We actually want the latest version when there are conflicts.
393     // We can change from Warning to Latest if such mode is supported.
394     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
395                               CodeGenOpts.DwarfVersion);
396   }
397   if (CodeGenOpts.EmitCodeView) {
398     // Indicate that we want CodeView in the metadata.
399     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
400   }
401   if (DebugInfo)
402     // We support a single version in the linked module. The LLVM
403     // parser will drop debug info with a different version number
404     // (and warn about it, too).
405     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
406                               llvm::DEBUG_METADATA_VERSION);
407 
408   // We need to record the widths of enums and wchar_t, so that we can generate
409   // the correct build attributes in the ARM backend.
410   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
411   if (   Arch == llvm::Triple::arm
412       || Arch == llvm::Triple::armeb
413       || Arch == llvm::Triple::thumb
414       || Arch == llvm::Triple::thumbeb) {
415     // Width of wchar_t in bytes
416     uint64_t WCharWidth =
417         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
418     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
419 
420     // The minimum width of an enum in bytes
421     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
422     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
423   }
424 
425   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
426     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
427     switch (PLevel) {
428     case 0: break;
429     case 1: PL = llvm::PICLevel::Small; break;
430     case 2: PL = llvm::PICLevel::Large; break;
431     default: llvm_unreachable("Invalid PIC Level");
432     }
433 
434     getModule().setPICLevel(PL);
435   }
436 
437   SimplifyPersonality();
438 
439   if (getCodeGenOpts().EmitDeclMetadata)
440     EmitDeclMetadata();
441 
442   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
443     EmitCoverageFile();
444 
445   if (DebugInfo)
446     DebugInfo->finalize();
447 
448   EmitVersionIdentMetadata();
449 
450   EmitTargetMetadata();
451 
452   RewriteAlwaysInlineFunctions();
453 }
454 
455 void CodeGenModule::AddAlwaysInlineFunction(llvm::Function *Fn) {
456   AlwaysInlineFunctions.push_back(Fn);
457 }
458 
459 /// Find all uses of GV that are not direct calls or invokes.
460 static void FindNonDirectCallUses(llvm::GlobalValue *GV,
461                                   llvm::SmallVectorImpl<llvm::Use *> *Uses) {
462   llvm::GlobalValue::use_iterator UI = GV->use_begin(), E = GV->use_end();
463   for (; UI != E;) {
464     llvm::Use &U = *UI;
465     ++UI;
466 
467     llvm::CallSite CS(U.getUser());
468     bool isDirectCall = (CS.isCall() || CS.isInvoke()) && CS.isCallee(&U);
469     if (!isDirectCall)
470       Uses->push_back(&U);
471   }
472 }
473 
474 /// Replace a list of uses.
475 static void ReplaceUsesWith(const llvm::SmallVectorImpl<llvm::Use *> &Uses,
476                             llvm::GlobalValue *V,
477                             llvm::GlobalValue *Replacement) {
478   for (llvm::Use *U : Uses) {
479     auto *C = dyn_cast<llvm::Constant>(U->getUser());
480     if (C && !isa<llvm::GlobalValue>(C))
481       C->handleOperandChange(V, Replacement, U);
482     else
483       U->set(Replacement);
484   }
485 }
486 
487 void CodeGenModule::RewriteAlwaysInlineFunction(llvm::Function *Fn) {
488   std::string Name = Fn->getName();
489   std::string InlineName = Name + ".alwaysinline";
490   Fn->setName(InlineName);
491 
492   llvm::SmallVector<llvm::Use *, 8> NonDirectCallUses;
493   Fn->removeDeadConstantUsers();
494   FindNonDirectCallUses(Fn, &NonDirectCallUses);
495   // Do not create the wrapper if there are no non-direct call uses, and we are
496   // not required to emit an external definition.
497   if (NonDirectCallUses.empty() && Fn->isDiscardableIfUnused())
498     return;
499 
500   llvm::FunctionType *FT = Fn->getFunctionType();
501   llvm::LLVMContext &Ctx = getModule().getContext();
502   llvm::Function *StubFn =
503       llvm::Function::Create(FT, Fn->getLinkage(), Name, &getModule());
504   assert(StubFn->getName() == Name && "name was uniqued!");
505 
506   // Insert the stub immediately after the original function. Helps with the
507   // fragile tests, among other things.
508   StubFn->removeFromParent();
509   TheModule.getFunctionList().insertAfter(Fn, StubFn);
510 
511   StubFn->copyAttributesFrom(Fn);
512   StubFn->setPersonalityFn(nullptr);
513 
514   // AvailableExternally functions are replaced with a declaration.
515   // Everyone else gets a wrapper that musttail-calls the original function.
516   if (Fn->hasAvailableExternallyLinkage()) {
517     StubFn->setLinkage(llvm::GlobalValue::ExternalLinkage);
518   } else {
519     llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", StubFn);
520     std::vector<llvm::Value *> Args;
521     for (llvm::Function::arg_iterator ai = StubFn->arg_begin();
522          ai != StubFn->arg_end(); ++ai)
523       Args.push_back(&*ai);
524     llvm::CallInst *CI = llvm::CallInst::Create(Fn, Args, "", BB);
525     CI->setCallingConv(Fn->getCallingConv());
526     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
527     CI->setAttributes(Fn->getAttributes());
528     if (FT->getReturnType()->isVoidTy())
529       llvm::ReturnInst::Create(Ctx, BB);
530     else
531       llvm::ReturnInst::Create(Ctx, CI, BB);
532   }
533 
534   if (Fn->hasComdat())
535     StubFn->setComdat(Fn->getComdat());
536 
537   ReplaceUsesWith(NonDirectCallUses, Fn, StubFn);
538 }
539 
540 void CodeGenModule::RewriteAlwaysInlineFunctions() {
541   for (llvm::Function *Fn : AlwaysInlineFunctions) {
542     RewriteAlwaysInlineFunction(Fn);
543     Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
544     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
545     Fn->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
546     Fn->setVisibility(llvm::GlobalValue::DefaultVisibility);
547   }
548 }
549 
550 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
551   // Make sure that this type is translated.
552   Types.UpdateCompletedType(TD);
553 }
554 
555 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
556   if (!TBAA)
557     return nullptr;
558   return TBAA->getTBAAInfo(QTy);
559 }
560 
561 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
562   if (!TBAA)
563     return nullptr;
564   return TBAA->getTBAAInfoForVTablePtr();
565 }
566 
567 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
568   if (!TBAA)
569     return nullptr;
570   return TBAA->getTBAAStructInfo(QTy);
571 }
572 
573 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
574   if (!TBAA)
575     return nullptr;
576   return TBAA->getTBAAStructTypeInfo(QTy);
577 }
578 
579 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
580                                                   llvm::MDNode *AccessN,
581                                                   uint64_t O) {
582   if (!TBAA)
583     return nullptr;
584   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
585 }
586 
587 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
588 /// and struct-path aware TBAA, the tag has the same format:
589 /// base type, access type and offset.
590 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
591 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
592                                         llvm::MDNode *TBAAInfo,
593                                         bool ConvertTypeToTag) {
594   if (ConvertTypeToTag && TBAA)
595     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
596                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
597   else
598     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
599 }
600 
601 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
602   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
603   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
604 }
605 
606 /// ErrorUnsupported - Print out an error that codegen doesn't support the
607 /// specified stmt yet.
608 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
609   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
610                                                "cannot compile this %0 yet");
611   std::string Msg = Type;
612   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
613     << Msg << S->getSourceRange();
614 }
615 
616 /// ErrorUnsupported - Print out an error that codegen doesn't support the
617 /// specified decl yet.
618 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
619   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
620                                                "cannot compile this %0 yet");
621   std::string Msg = Type;
622   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
623 }
624 
625 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
626   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
627 }
628 
629 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
630                                         const NamedDecl *D) const {
631   // Internal definitions always have default visibility.
632   if (GV->hasLocalLinkage()) {
633     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
634     return;
635   }
636 
637   // Set visibility for definitions.
638   LinkageInfo LV = D->getLinkageAndVisibility();
639   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
640     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
641 }
642 
643 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
644   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
645       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
646       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
647       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
648       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
649 }
650 
651 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
652     CodeGenOptions::TLSModel M) {
653   switch (M) {
654   case CodeGenOptions::GeneralDynamicTLSModel:
655     return llvm::GlobalVariable::GeneralDynamicTLSModel;
656   case CodeGenOptions::LocalDynamicTLSModel:
657     return llvm::GlobalVariable::LocalDynamicTLSModel;
658   case CodeGenOptions::InitialExecTLSModel:
659     return llvm::GlobalVariable::InitialExecTLSModel;
660   case CodeGenOptions::LocalExecTLSModel:
661     return llvm::GlobalVariable::LocalExecTLSModel;
662   }
663   llvm_unreachable("Invalid TLS model!");
664 }
665 
666 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
667   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
668 
669   llvm::GlobalValue::ThreadLocalMode TLM;
670   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
671 
672   // Override the TLS model if it is explicitly specified.
673   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
674     TLM = GetLLVMTLSModel(Attr->getModel());
675   }
676 
677   GV->setThreadLocalMode(TLM);
678 }
679 
680 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
681   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
682   if (!FoundStr.empty())
683     return FoundStr;
684 
685   const auto *ND = cast<NamedDecl>(GD.getDecl());
686   SmallString<256> Buffer;
687   StringRef Str;
688   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
689     llvm::raw_svector_ostream Out(Buffer);
690     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
691       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
692     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
693       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
694     else
695       getCXXABI().getMangleContext().mangleName(ND, Out);
696     Str = Out.str();
697   } else {
698     IdentifierInfo *II = ND->getIdentifier();
699     assert(II && "Attempt to mangle unnamed decl.");
700     Str = II->getName();
701   }
702 
703   // Keep the first result in the case of a mangling collision.
704   auto Result = Manglings.insert(std::make_pair(Str, GD));
705   return FoundStr = Result.first->first();
706 }
707 
708 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
709                                              const BlockDecl *BD) {
710   MangleContext &MangleCtx = getCXXABI().getMangleContext();
711   const Decl *D = GD.getDecl();
712 
713   SmallString<256> Buffer;
714   llvm::raw_svector_ostream Out(Buffer);
715   if (!D)
716     MangleCtx.mangleGlobalBlock(BD,
717       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
718   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
719     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
720   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
721     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
722   else
723     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
724 
725   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
726   return Result.first->first();
727 }
728 
729 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
730   return getModule().getNamedValue(Name);
731 }
732 
733 /// AddGlobalCtor - Add a function to the list that will be called before
734 /// main() runs.
735 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
736                                   llvm::Constant *AssociatedData) {
737   // FIXME: Type coercion of void()* types.
738   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
739 }
740 
741 /// AddGlobalDtor - Add a function to the list that will be called
742 /// when the module is unloaded.
743 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
744   // FIXME: Type coercion of void()* types.
745   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
746 }
747 
748 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
749   // Ctor function type is void()*.
750   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
751   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
752 
753   // Get the type of a ctor entry, { i32, void ()*, i8* }.
754   llvm::StructType *CtorStructTy = llvm::StructType::get(
755       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
756 
757   // Construct the constructor and destructor arrays.
758   SmallVector<llvm::Constant *, 8> Ctors;
759   for (const auto &I : Fns) {
760     llvm::Constant *S[] = {
761         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
762         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
763         (I.AssociatedData
764              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
765              : llvm::Constant::getNullValue(VoidPtrTy))};
766     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
767   }
768 
769   if (!Ctors.empty()) {
770     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
771     new llvm::GlobalVariable(TheModule, AT, false,
772                              llvm::GlobalValue::AppendingLinkage,
773                              llvm::ConstantArray::get(AT, Ctors),
774                              GlobalName);
775   }
776 }
777 
778 llvm::GlobalValue::LinkageTypes
779 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
780   const auto *D = cast<FunctionDecl>(GD.getDecl());
781 
782   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
783 
784   if (isa<CXXDestructorDecl>(D) &&
785       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
786                                          GD.getDtorType())) {
787     // Destructor variants in the Microsoft C++ ABI are always internal or
788     // linkonce_odr thunks emitted on an as-needed basis.
789     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
790                                    : llvm::GlobalValue::LinkOnceODRLinkage;
791   }
792 
793   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
794 }
795 
796 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
797   const auto *FD = cast<FunctionDecl>(GD.getDecl());
798 
799   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
800     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
801       // Don't dllexport/import destructor thunks.
802       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
803       return;
804     }
805   }
806 
807   if (FD->hasAttr<DLLImportAttr>())
808     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
809   else if (FD->hasAttr<DLLExportAttr>())
810     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
811   else
812     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
813 }
814 
815 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
816                                                     llvm::Function *F) {
817   setNonAliasAttributes(D, F);
818 }
819 
820 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
821                                               const CGFunctionInfo &Info,
822                                               llvm::Function *F) {
823   unsigned CallingConv;
824   AttributeListType AttributeList;
825   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
826   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
827   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
828 }
829 
830 /// Determines whether the language options require us to model
831 /// unwind exceptions.  We treat -fexceptions as mandating this
832 /// except under the fragile ObjC ABI with only ObjC exceptions
833 /// enabled.  This means, for example, that C with -fexceptions
834 /// enables this.
835 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
836   // If exceptions are completely disabled, obviously this is false.
837   if (!LangOpts.Exceptions) return false;
838 
839   // If C++ exceptions are enabled, this is true.
840   if (LangOpts.CXXExceptions) return true;
841 
842   // If ObjC exceptions are enabled, this depends on the ABI.
843   if (LangOpts.ObjCExceptions) {
844     return LangOpts.ObjCRuntime.hasUnwindExceptions();
845   }
846 
847   return true;
848 }
849 
850 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
851                                                            llvm::Function *F) {
852   llvm::AttrBuilder B;
853 
854   if (CodeGenOpts.UnwindTables)
855     B.addAttribute(llvm::Attribute::UWTable);
856 
857   if (!hasUnwindExceptions(LangOpts))
858     B.addAttribute(llvm::Attribute::NoUnwind);
859 
860   if (D->hasAttr<NakedAttr>()) {
861     // Naked implies noinline: we should not be inlining such functions.
862     B.addAttribute(llvm::Attribute::Naked);
863     B.addAttribute(llvm::Attribute::NoInline);
864   } else if (D->hasAttr<NoDuplicateAttr>()) {
865     B.addAttribute(llvm::Attribute::NoDuplicate);
866   } else if (D->hasAttr<NoInlineAttr>()) {
867     B.addAttribute(llvm::Attribute::NoInline);
868   } else if (D->hasAttr<AlwaysInlineAttr>() &&
869              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
870                                               llvm::Attribute::NoInline)) {
871     // (noinline wins over always_inline, and we can't specify both in IR)
872     AddAlwaysInlineFunction(F);
873   }
874 
875   if (D->hasAttr<ColdAttr>()) {
876     if (!D->hasAttr<OptimizeNoneAttr>())
877       B.addAttribute(llvm::Attribute::OptimizeForSize);
878     B.addAttribute(llvm::Attribute::Cold);
879   }
880 
881   if (D->hasAttr<MinSizeAttr>())
882     B.addAttribute(llvm::Attribute::MinSize);
883 
884   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
885     B.addAttribute(llvm::Attribute::StackProtect);
886   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
887     B.addAttribute(llvm::Attribute::StackProtectStrong);
888   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
889     B.addAttribute(llvm::Attribute::StackProtectReq);
890 
891   F->addAttributes(llvm::AttributeSet::FunctionIndex,
892                    llvm::AttributeSet::get(
893                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
894 
895   if (D->hasAttr<OptimizeNoneAttr>()) {
896     // OptimizeNone implies noinline; we should not be inlining such functions.
897     F->addFnAttr(llvm::Attribute::OptimizeNone);
898     F->addFnAttr(llvm::Attribute::NoInline);
899 
900     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
901     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
902            "OptimizeNone and OptimizeForSize on same function!");
903     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
904            "OptimizeNone and MinSize on same function!");
905     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
906            "OptimizeNone and AlwaysInline on same function!");
907 
908     // Attribute 'inlinehint' has no effect on 'optnone' functions.
909     // Explicitly remove it from the set of function attributes.
910     F->removeFnAttr(llvm::Attribute::InlineHint);
911   }
912 
913   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
914     F->setUnnamedAddr(true);
915   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
916     if (MD->isVirtual())
917       F->setUnnamedAddr(true);
918 
919   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
920   if (alignment)
921     F->setAlignment(alignment);
922 
923   // Some C++ ABIs require 2-byte alignment for member functions, in order to
924   // reserve a bit for differentiating between virtual and non-virtual member
925   // functions. If the current target's C++ ABI requires this and this is a
926   // member function, set its alignment accordingly.
927   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
928     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
929       F->setAlignment(2);
930   }
931 }
932 
933 void CodeGenModule::SetCommonAttributes(const Decl *D,
934                                         llvm::GlobalValue *GV) {
935   if (const auto *ND = dyn_cast<NamedDecl>(D))
936     setGlobalVisibility(GV, ND);
937   else
938     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
939 
940   if (D->hasAttr<UsedAttr>())
941     addUsedGlobal(GV);
942 }
943 
944 void CodeGenModule::setAliasAttributes(const Decl *D,
945                                        llvm::GlobalValue *GV) {
946   SetCommonAttributes(D, GV);
947 
948   // Process the dllexport attribute based on whether the original definition
949   // (not necessarily the aliasee) was exported.
950   if (D->hasAttr<DLLExportAttr>())
951     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
952 }
953 
954 void CodeGenModule::setNonAliasAttributes(const Decl *D,
955                                           llvm::GlobalObject *GO) {
956   SetCommonAttributes(D, GO);
957 
958   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
959     GO->setSection(SA->getName());
960 
961   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
962 }
963 
964 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
965                                                   llvm::Function *F,
966                                                   const CGFunctionInfo &FI) {
967   SetLLVMFunctionAttributes(D, FI, F);
968   SetLLVMFunctionAttributesForDefinition(D, F);
969 
970   F->setLinkage(llvm::Function::InternalLinkage);
971 
972   setNonAliasAttributes(D, F);
973 }
974 
975 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
976                                          const NamedDecl *ND) {
977   // Set linkage and visibility in case we never see a definition.
978   LinkageInfo LV = ND->getLinkageAndVisibility();
979   if (LV.getLinkage() != ExternalLinkage) {
980     // Don't set internal linkage on declarations.
981   } else {
982     if (ND->hasAttr<DLLImportAttr>()) {
983       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
984       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
985     } else if (ND->hasAttr<DLLExportAttr>()) {
986       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
987       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
988     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
989       // "extern_weak" is overloaded in LLVM; we probably should have
990       // separate linkage types for this.
991       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
992     }
993 
994     // Set visibility on a declaration only if it's explicit.
995     if (LV.isVisibilityExplicit())
996       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
997   }
998 }
999 
1000 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1001                                           bool IsIncompleteFunction,
1002                                           bool IsThunk) {
1003   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1004     // If this is an intrinsic function, set the function's attributes
1005     // to the intrinsic's attributes.
1006     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1007     return;
1008   }
1009 
1010   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1011 
1012   if (!IsIncompleteFunction)
1013     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1014 
1015   // Add the Returned attribute for "this", except for iOS 5 and earlier
1016   // where substantial code, including the libstdc++ dylib, was compiled with
1017   // GCC and does not actually return "this".
1018   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1019       !(getTarget().getTriple().isiOS() &&
1020         getTarget().getTriple().isOSVersionLT(6))) {
1021     assert(!F->arg_empty() &&
1022            F->arg_begin()->getType()
1023              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1024            "unexpected this return");
1025     F->addAttribute(1, llvm::Attribute::Returned);
1026   }
1027 
1028   // Only a few attributes are set on declarations; these may later be
1029   // overridden by a definition.
1030 
1031   setLinkageAndVisibilityForGV(F, FD);
1032 
1033   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1034     F->setSection(SA->getName());
1035 
1036   // A replaceable global allocation function does not act like a builtin by
1037   // default, only if it is invoked by a new-expression or delete-expression.
1038   if (FD->isReplaceableGlobalAllocationFunction())
1039     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1040                     llvm::Attribute::NoBuiltin);
1041 
1042   // If we are checking indirect calls and this is not a non-static member
1043   // function, emit a bit set entry for the function type.
1044   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) &&
1045       !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) {
1046     llvm::NamedMDNode *BitsetsMD =
1047         getModule().getOrInsertNamedMetadata("llvm.bitsets");
1048 
1049     llvm::Metadata *BitsetOps[] = {
1050         CreateMetadataIdentifierForType(FD->getType()),
1051         llvm::ConstantAsMetadata::get(F),
1052         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1053     BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1054   }
1055 }
1056 
1057 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1058   assert(!GV->isDeclaration() &&
1059          "Only globals with definition can force usage.");
1060   LLVMUsed.emplace_back(GV);
1061 }
1062 
1063 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1064   assert(!GV->isDeclaration() &&
1065          "Only globals with definition can force usage.");
1066   LLVMCompilerUsed.emplace_back(GV);
1067 }
1068 
1069 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1070                      std::vector<llvm::WeakVH> &List) {
1071   // Don't create llvm.used if there is no need.
1072   if (List.empty())
1073     return;
1074 
1075   // Convert List to what ConstantArray needs.
1076   SmallVector<llvm::Constant*, 8> UsedArray;
1077   UsedArray.resize(List.size());
1078   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1079     UsedArray[i] =
1080         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1081             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1082   }
1083 
1084   if (UsedArray.empty())
1085     return;
1086   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1087 
1088   auto *GV = new llvm::GlobalVariable(
1089       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1090       llvm::ConstantArray::get(ATy, UsedArray), Name);
1091 
1092   GV->setSection("llvm.metadata");
1093 }
1094 
1095 void CodeGenModule::emitLLVMUsed() {
1096   emitUsed(*this, "llvm.used", LLVMUsed);
1097   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1098 }
1099 
1100 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1101   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1102   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1103 }
1104 
1105 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1106   llvm::SmallString<32> Opt;
1107   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1108   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1109   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1110 }
1111 
1112 void CodeGenModule::AddDependentLib(StringRef Lib) {
1113   llvm::SmallString<24> Opt;
1114   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1115   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1116   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1117 }
1118 
1119 /// \brief Add link options implied by the given module, including modules
1120 /// it depends on, using a postorder walk.
1121 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1122                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1123                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1124   // Import this module's parent.
1125   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1126     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1127   }
1128 
1129   // Import this module's dependencies.
1130   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1131     if (Visited.insert(Mod->Imports[I - 1]).second)
1132       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1133   }
1134 
1135   // Add linker options to link against the libraries/frameworks
1136   // described by this module.
1137   llvm::LLVMContext &Context = CGM.getLLVMContext();
1138   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1139     // Link against a framework.  Frameworks are currently Darwin only, so we
1140     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1141     if (Mod->LinkLibraries[I-1].IsFramework) {
1142       llvm::Metadata *Args[2] = {
1143           llvm::MDString::get(Context, "-framework"),
1144           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1145 
1146       Metadata.push_back(llvm::MDNode::get(Context, Args));
1147       continue;
1148     }
1149 
1150     // Link against a library.
1151     llvm::SmallString<24> Opt;
1152     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1153       Mod->LinkLibraries[I-1].Library, Opt);
1154     auto *OptString = llvm::MDString::get(Context, Opt);
1155     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1156   }
1157 }
1158 
1159 void CodeGenModule::EmitModuleLinkOptions() {
1160   // Collect the set of all of the modules we want to visit to emit link
1161   // options, which is essentially the imported modules and all of their
1162   // non-explicit child modules.
1163   llvm::SetVector<clang::Module *> LinkModules;
1164   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1165   SmallVector<clang::Module *, 16> Stack;
1166 
1167   // Seed the stack with imported modules.
1168   for (Module *M : ImportedModules)
1169     if (Visited.insert(M).second)
1170       Stack.push_back(M);
1171 
1172   // Find all of the modules to import, making a little effort to prune
1173   // non-leaf modules.
1174   while (!Stack.empty()) {
1175     clang::Module *Mod = Stack.pop_back_val();
1176 
1177     bool AnyChildren = false;
1178 
1179     // Visit the submodules of this module.
1180     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1181                                         SubEnd = Mod->submodule_end();
1182          Sub != SubEnd; ++Sub) {
1183       // Skip explicit children; they need to be explicitly imported to be
1184       // linked against.
1185       if ((*Sub)->IsExplicit)
1186         continue;
1187 
1188       if (Visited.insert(*Sub).second) {
1189         Stack.push_back(*Sub);
1190         AnyChildren = true;
1191       }
1192     }
1193 
1194     // We didn't find any children, so add this module to the list of
1195     // modules to link against.
1196     if (!AnyChildren) {
1197       LinkModules.insert(Mod);
1198     }
1199   }
1200 
1201   // Add link options for all of the imported modules in reverse topological
1202   // order.  We don't do anything to try to order import link flags with respect
1203   // to linker options inserted by things like #pragma comment().
1204   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1205   Visited.clear();
1206   for (Module *M : LinkModules)
1207     if (Visited.insert(M).second)
1208       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1209   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1210   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1211 
1212   // Add the linker options metadata flag.
1213   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1214                             llvm::MDNode::get(getLLVMContext(),
1215                                               LinkerOptionsMetadata));
1216 }
1217 
1218 void CodeGenModule::EmitDeferred() {
1219   // Emit code for any potentially referenced deferred decls.  Since a
1220   // previously unused static decl may become used during the generation of code
1221   // for a static function, iterate until no changes are made.
1222 
1223   if (!DeferredVTables.empty()) {
1224     EmitDeferredVTables();
1225 
1226     // Emitting a v-table doesn't directly cause more v-tables to
1227     // become deferred, although it can cause functions to be
1228     // emitted that then need those v-tables.
1229     assert(DeferredVTables.empty());
1230   }
1231 
1232   // Stop if we're out of both deferred v-tables and deferred declarations.
1233   if (DeferredDeclsToEmit.empty())
1234     return;
1235 
1236   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1237   // work, it will not interfere with this.
1238   std::vector<DeferredGlobal> CurDeclsToEmit;
1239   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1240 
1241   for (DeferredGlobal &G : CurDeclsToEmit) {
1242     GlobalDecl D = G.GD;
1243     llvm::GlobalValue *GV = G.GV;
1244     G.GV = nullptr;
1245 
1246     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1247     // to get GlobalValue with exactly the type we need, not something that
1248     // might had been created for another decl with the same mangled name but
1249     // different type.
1250     // FIXME: Support for variables is not implemented yet.
1251     if (isa<FunctionDecl>(D.getDecl()))
1252       GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1253     else
1254       if (!GV)
1255         GV = GetGlobalValue(getMangledName(D));
1256 
1257     // Check to see if we've already emitted this.  This is necessary
1258     // for a couple of reasons: first, decls can end up in the
1259     // deferred-decls queue multiple times, and second, decls can end
1260     // up with definitions in unusual ways (e.g. by an extern inline
1261     // function acquiring a strong function redefinition).  Just
1262     // ignore these cases.
1263     if (GV && !GV->isDeclaration())
1264       continue;
1265 
1266     // Otherwise, emit the definition and move on to the next one.
1267     EmitGlobalDefinition(D, GV);
1268 
1269     // If we found out that we need to emit more decls, do that recursively.
1270     // This has the advantage that the decls are emitted in a DFS and related
1271     // ones are close together, which is convenient for testing.
1272     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1273       EmitDeferred();
1274       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1275     }
1276   }
1277 }
1278 
1279 void CodeGenModule::EmitGlobalAnnotations() {
1280   if (Annotations.empty())
1281     return;
1282 
1283   // Create a new global variable for the ConstantStruct in the Module.
1284   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1285     Annotations[0]->getType(), Annotations.size()), Annotations);
1286   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1287                                       llvm::GlobalValue::AppendingLinkage,
1288                                       Array, "llvm.global.annotations");
1289   gv->setSection(AnnotationSection);
1290 }
1291 
1292 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1293   llvm::Constant *&AStr = AnnotationStrings[Str];
1294   if (AStr)
1295     return AStr;
1296 
1297   // Not found yet, create a new global.
1298   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1299   auto *gv =
1300       new llvm::GlobalVariable(getModule(), s->getType(), true,
1301                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1302   gv->setSection(AnnotationSection);
1303   gv->setUnnamedAddr(true);
1304   AStr = gv;
1305   return gv;
1306 }
1307 
1308 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1309   SourceManager &SM = getContext().getSourceManager();
1310   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1311   if (PLoc.isValid())
1312     return EmitAnnotationString(PLoc.getFilename());
1313   return EmitAnnotationString(SM.getBufferName(Loc));
1314 }
1315 
1316 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1317   SourceManager &SM = getContext().getSourceManager();
1318   PresumedLoc PLoc = SM.getPresumedLoc(L);
1319   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1320     SM.getExpansionLineNumber(L);
1321   return llvm::ConstantInt::get(Int32Ty, LineNo);
1322 }
1323 
1324 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1325                                                 const AnnotateAttr *AA,
1326                                                 SourceLocation L) {
1327   // Get the globals for file name, annotation, and the line number.
1328   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1329                  *UnitGV = EmitAnnotationUnit(L),
1330                  *LineNoCst = EmitAnnotationLineNo(L);
1331 
1332   // Create the ConstantStruct for the global annotation.
1333   llvm::Constant *Fields[4] = {
1334     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1335     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1336     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1337     LineNoCst
1338   };
1339   return llvm::ConstantStruct::getAnon(Fields);
1340 }
1341 
1342 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1343                                          llvm::GlobalValue *GV) {
1344   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1345   // Get the struct elements for these annotations.
1346   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1347     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1348 }
1349 
1350 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1351                                            SourceLocation Loc) const {
1352   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1353   // Blacklist by function name.
1354   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1355     return true;
1356   // Blacklist by location.
1357   if (!Loc.isInvalid())
1358     return SanitizerBL.isBlacklistedLocation(Loc);
1359   // If location is unknown, this may be a compiler-generated function. Assume
1360   // it's located in the main file.
1361   auto &SM = Context.getSourceManager();
1362   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1363     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1364   }
1365   return false;
1366 }
1367 
1368 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1369                                            SourceLocation Loc, QualType Ty,
1370                                            StringRef Category) const {
1371   // For now globals can be blacklisted only in ASan and KASan.
1372   if (!LangOpts.Sanitize.hasOneOf(
1373           SanitizerKind::Address | SanitizerKind::KernelAddress))
1374     return false;
1375   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1376   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1377     return true;
1378   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1379     return true;
1380   // Check global type.
1381   if (!Ty.isNull()) {
1382     // Drill down the array types: if global variable of a fixed type is
1383     // blacklisted, we also don't instrument arrays of them.
1384     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1385       Ty = AT->getElementType();
1386     Ty = Ty.getCanonicalType().getUnqualifiedType();
1387     // We allow to blacklist only record types (classes, structs etc.)
1388     if (Ty->isRecordType()) {
1389       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1390       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1391         return true;
1392     }
1393   }
1394   return false;
1395 }
1396 
1397 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1398   // Never defer when EmitAllDecls is specified.
1399   if (LangOpts.EmitAllDecls)
1400     return true;
1401 
1402   return getContext().DeclMustBeEmitted(Global);
1403 }
1404 
1405 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1406   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1407     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1408       // Implicit template instantiations may change linkage if they are later
1409       // explicitly instantiated, so they should not be emitted eagerly.
1410       return false;
1411   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1412   // codegen for global variables, because they may be marked as threadprivate.
1413   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1414       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1415     return false;
1416 
1417   return true;
1418 }
1419 
1420 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1421     const CXXUuidofExpr* E) {
1422   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1423   // well-formed.
1424   StringRef Uuid = E->getUuidAsStringRef(Context);
1425   std::string Name = "_GUID_" + Uuid.lower();
1426   std::replace(Name.begin(), Name.end(), '-', '_');
1427 
1428   // Contains a 32-bit field.
1429   CharUnits Alignment = CharUnits::fromQuantity(4);
1430 
1431   // Look for an existing global.
1432   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1433     return ConstantAddress(GV, Alignment);
1434 
1435   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1436   assert(Init && "failed to initialize as constant");
1437 
1438   auto *GV = new llvm::GlobalVariable(
1439       getModule(), Init->getType(),
1440       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1441   if (supportsCOMDAT())
1442     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1443   return ConstantAddress(GV, Alignment);
1444 }
1445 
1446 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1447   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1448   assert(AA && "No alias?");
1449 
1450   CharUnits Alignment = getContext().getDeclAlign(VD);
1451   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1452 
1453   // See if there is already something with the target's name in the module.
1454   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1455   if (Entry) {
1456     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1457     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1458     return ConstantAddress(Ptr, Alignment);
1459   }
1460 
1461   llvm::Constant *Aliasee;
1462   if (isa<llvm::FunctionType>(DeclTy))
1463     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1464                                       GlobalDecl(cast<FunctionDecl>(VD)),
1465                                       /*ForVTable=*/false);
1466   else
1467     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1468                                     llvm::PointerType::getUnqual(DeclTy),
1469                                     nullptr);
1470 
1471   auto *F = cast<llvm::GlobalValue>(Aliasee);
1472   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1473   WeakRefReferences.insert(F);
1474 
1475   return ConstantAddress(Aliasee, Alignment);
1476 }
1477 
1478 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1479   const auto *Global = cast<ValueDecl>(GD.getDecl());
1480 
1481   // Weak references don't produce any output by themselves.
1482   if (Global->hasAttr<WeakRefAttr>())
1483     return;
1484 
1485   // If this is an alias definition (which otherwise looks like a declaration)
1486   // emit it now.
1487   if (Global->hasAttr<AliasAttr>())
1488     return EmitAliasDefinition(GD);
1489 
1490   // If this is CUDA, be selective about which declarations we emit.
1491   if (LangOpts.CUDA) {
1492     if (LangOpts.CUDAIsDevice) {
1493       if (!Global->hasAttr<CUDADeviceAttr>() &&
1494           !Global->hasAttr<CUDAGlobalAttr>() &&
1495           !Global->hasAttr<CUDAConstantAttr>() &&
1496           !Global->hasAttr<CUDASharedAttr>())
1497         return;
1498     } else {
1499       if (!Global->hasAttr<CUDAHostAttr>() && (
1500             Global->hasAttr<CUDADeviceAttr>() ||
1501             Global->hasAttr<CUDAConstantAttr>() ||
1502             Global->hasAttr<CUDASharedAttr>()))
1503         return;
1504     }
1505   }
1506 
1507   // Ignore declarations, they will be emitted on their first use.
1508   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1509     // Forward declarations are emitted lazily on first use.
1510     if (!FD->doesThisDeclarationHaveABody()) {
1511       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1512         return;
1513 
1514       StringRef MangledName = getMangledName(GD);
1515 
1516       // Compute the function info and LLVM type.
1517       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1518       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1519 
1520       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1521                               /*DontDefer=*/false);
1522       return;
1523     }
1524   } else {
1525     const auto *VD = cast<VarDecl>(Global);
1526     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1527 
1528     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1529         !Context.isMSStaticDataMemberInlineDefinition(VD))
1530       return;
1531   }
1532 
1533   // Defer code generation to first use when possible, e.g. if this is an inline
1534   // function. If the global must always be emitted, do it eagerly if possible
1535   // to benefit from cache locality.
1536   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1537     // Emit the definition if it can't be deferred.
1538     EmitGlobalDefinition(GD);
1539     return;
1540   }
1541 
1542   // If we're deferring emission of a C++ variable with an
1543   // initializer, remember the order in which it appeared in the file.
1544   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1545       cast<VarDecl>(Global)->hasInit()) {
1546     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1547     CXXGlobalInits.push_back(nullptr);
1548   }
1549 
1550   StringRef MangledName = getMangledName(GD);
1551   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1552     // The value has already been used and should therefore be emitted.
1553     addDeferredDeclToEmit(GV, GD);
1554   } else if (MustBeEmitted(Global)) {
1555     // The value must be emitted, but cannot be emitted eagerly.
1556     assert(!MayBeEmittedEagerly(Global));
1557     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1558   } else {
1559     // Otherwise, remember that we saw a deferred decl with this name.  The
1560     // first use of the mangled name will cause it to move into
1561     // DeferredDeclsToEmit.
1562     DeferredDecls[MangledName] = GD;
1563   }
1564 }
1565 
1566 namespace {
1567   struct FunctionIsDirectlyRecursive :
1568     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1569     const StringRef Name;
1570     const Builtin::Context &BI;
1571     bool Result;
1572     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1573       Name(N), BI(C), Result(false) {
1574     }
1575     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1576 
1577     bool TraverseCallExpr(CallExpr *E) {
1578       const FunctionDecl *FD = E->getDirectCallee();
1579       if (!FD)
1580         return true;
1581       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1582       if (Attr && Name == Attr->getLabel()) {
1583         Result = true;
1584         return false;
1585       }
1586       unsigned BuiltinID = FD->getBuiltinID();
1587       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1588         return true;
1589       StringRef BuiltinName = BI.getName(BuiltinID);
1590       if (BuiltinName.startswith("__builtin_") &&
1591           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1592         Result = true;
1593         return false;
1594       }
1595       return true;
1596     }
1597   };
1598 
1599   struct DLLImportFunctionVisitor
1600       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1601     bool SafeToInline = true;
1602 
1603     bool VisitVarDecl(VarDecl *VD) {
1604       // A thread-local variable cannot be imported.
1605       SafeToInline = !VD->getTLSKind();
1606       return SafeToInline;
1607     }
1608 
1609     // Make sure we're not referencing non-imported vars or functions.
1610     bool VisitDeclRefExpr(DeclRefExpr *E) {
1611       ValueDecl *VD = E->getDecl();
1612       if (isa<FunctionDecl>(VD))
1613         SafeToInline = VD->hasAttr<DLLImportAttr>();
1614       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1615         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1616       return SafeToInline;
1617     }
1618     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1619       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1620       return SafeToInline;
1621     }
1622     bool VisitCXXNewExpr(CXXNewExpr *E) {
1623       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1624       return SafeToInline;
1625     }
1626   };
1627 }
1628 
1629 // isTriviallyRecursive - Check if this function calls another
1630 // decl that, because of the asm attribute or the other decl being a builtin,
1631 // ends up pointing to itself.
1632 bool
1633 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1634   StringRef Name;
1635   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1636     // asm labels are a special kind of mangling we have to support.
1637     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1638     if (!Attr)
1639       return false;
1640     Name = Attr->getLabel();
1641   } else {
1642     Name = FD->getName();
1643   }
1644 
1645   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1646   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1647   return Walker.Result;
1648 }
1649 
1650 bool
1651 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1652   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1653     return true;
1654   const auto *F = cast<FunctionDecl>(GD.getDecl());
1655   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1656     return false;
1657 
1658   if (F->hasAttr<DLLImportAttr>()) {
1659     // Check whether it would be safe to inline this dllimport function.
1660     DLLImportFunctionVisitor Visitor;
1661     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1662     if (!Visitor.SafeToInline)
1663       return false;
1664   }
1665 
1666   // PR9614. Avoid cases where the source code is lying to us. An available
1667   // externally function should have an equivalent function somewhere else,
1668   // but a function that calls itself is clearly not equivalent to the real
1669   // implementation.
1670   // This happens in glibc's btowc and in some configure checks.
1671   return !isTriviallyRecursive(F);
1672 }
1673 
1674 /// If the type for the method's class was generated by
1675 /// CGDebugInfo::createContextChain(), the cache contains only a
1676 /// limited DIType without any declarations. Since EmitFunctionStart()
1677 /// needs to find the canonical declaration for each method, we need
1678 /// to construct the complete type prior to emitting the method.
1679 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1680   if (!D->isInstance())
1681     return;
1682 
1683   if (CGDebugInfo *DI = getModuleDebugInfo())
1684     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1685       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1686       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1687     }
1688 }
1689 
1690 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1691   const auto *D = cast<ValueDecl>(GD.getDecl());
1692 
1693   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1694                                  Context.getSourceManager(),
1695                                  "Generating code for declaration");
1696 
1697   if (isa<FunctionDecl>(D)) {
1698     // At -O0, don't generate IR for functions with available_externally
1699     // linkage.
1700     if (!shouldEmitFunction(GD))
1701       return;
1702 
1703     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1704       CompleteDIClassType(Method);
1705       // Make sure to emit the definition(s) before we emit the thunks.
1706       // This is necessary for the generation of certain thunks.
1707       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1708         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1709       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1710         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1711       else
1712         EmitGlobalFunctionDefinition(GD, GV);
1713 
1714       if (Method->isVirtual())
1715         getVTables().EmitThunks(GD);
1716 
1717       return;
1718     }
1719 
1720     return EmitGlobalFunctionDefinition(GD, GV);
1721   }
1722 
1723   if (const auto *VD = dyn_cast<VarDecl>(D))
1724     return EmitGlobalVarDefinition(VD);
1725 
1726   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1727 }
1728 
1729 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1730                                                       llvm::Function *NewFn);
1731 
1732 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1733 /// module, create and return an llvm Function with the specified type. If there
1734 /// is something in the module with the specified name, return it potentially
1735 /// bitcasted to the right type.
1736 ///
1737 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1738 /// to set the attributes on the function when it is first created.
1739 llvm::Constant *
1740 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1741                                        llvm::Type *Ty,
1742                                        GlobalDecl GD, bool ForVTable,
1743                                        bool DontDefer, bool IsThunk,
1744                                        llvm::AttributeSet ExtraAttrs,
1745                                        bool IsForDefinition) {
1746   const Decl *D = GD.getDecl();
1747 
1748   // Lookup the entry, lazily creating it if necessary.
1749   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1750   if (Entry) {
1751     if (WeakRefReferences.erase(Entry)) {
1752       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1753       if (FD && !FD->hasAttr<WeakAttr>())
1754         Entry->setLinkage(llvm::Function::ExternalLinkage);
1755     }
1756 
1757     // Handle dropped DLL attributes.
1758     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1759       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1760 
1761     // If there are two attempts to define the same mangled name, issue an
1762     // error.
1763     if (IsForDefinition && !Entry->isDeclaration()) {
1764       GlobalDecl OtherGD;
1765       // Check that GD is not yet in ExplicitDefinitions is required to make
1766       // sure that we issue an error only once.
1767       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1768           (GD.getCanonicalDecl().getDecl() !=
1769            OtherGD.getCanonicalDecl().getDecl()) &&
1770           DiagnosedConflictingDefinitions.insert(GD).second) {
1771         getDiags().Report(D->getLocation(),
1772                           diag::err_duplicate_mangled_name);
1773         getDiags().Report(OtherGD.getDecl()->getLocation(),
1774                           diag::note_previous_definition);
1775       }
1776     }
1777 
1778     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1779         (Entry->getType()->getElementType() == Ty)) {
1780       return Entry;
1781     }
1782 
1783     // Make sure the result is of the correct type.
1784     // (If function is requested for a definition, we always need to create a new
1785     // function, not just return a bitcast.)
1786     if (!IsForDefinition)
1787       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1788   }
1789 
1790   // This function doesn't have a complete type (for example, the return
1791   // type is an incomplete struct). Use a fake type instead, and make
1792   // sure not to try to set attributes.
1793   bool IsIncompleteFunction = false;
1794 
1795   llvm::FunctionType *FTy;
1796   if (isa<llvm::FunctionType>(Ty)) {
1797     FTy = cast<llvm::FunctionType>(Ty);
1798   } else {
1799     FTy = llvm::FunctionType::get(VoidTy, false);
1800     IsIncompleteFunction = true;
1801   }
1802 
1803   llvm::Function *F =
1804       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1805                              Entry ? StringRef() : MangledName, &getModule());
1806 
1807   // If we already created a function with the same mangled name (but different
1808   // type) before, take its name and add it to the list of functions to be
1809   // replaced with F at the end of CodeGen.
1810   //
1811   // This happens if there is a prototype for a function (e.g. "int f()") and
1812   // then a definition of a different type (e.g. "int f(int x)").
1813   if (Entry) {
1814     F->takeName(Entry);
1815 
1816     // This might be an implementation of a function without a prototype, in
1817     // which case, try to do special replacement of calls which match the new
1818     // prototype.  The really key thing here is that we also potentially drop
1819     // arguments from the call site so as to make a direct call, which makes the
1820     // inliner happier and suppresses a number of optimizer warnings (!) about
1821     // dropping arguments.
1822     if (!Entry->use_empty()) {
1823       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1824       Entry->removeDeadConstantUsers();
1825     }
1826 
1827     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1828         F, Entry->getType()->getElementType()->getPointerTo());
1829     addGlobalValReplacement(Entry, BC);
1830   }
1831 
1832   assert(F->getName() == MangledName && "name was uniqued!");
1833   if (D)
1834     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1835   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1836     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1837     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1838                      llvm::AttributeSet::get(VMContext,
1839                                              llvm::AttributeSet::FunctionIndex,
1840                                              B));
1841   }
1842 
1843   if (!DontDefer) {
1844     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1845     // each other bottoming out with the base dtor.  Therefore we emit non-base
1846     // dtors on usage, even if there is no dtor definition in the TU.
1847     if (D && isa<CXXDestructorDecl>(D) &&
1848         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1849                                            GD.getDtorType()))
1850       addDeferredDeclToEmit(F, GD);
1851 
1852     // This is the first use or definition of a mangled name.  If there is a
1853     // deferred decl with this name, remember that we need to emit it at the end
1854     // of the file.
1855     auto DDI = DeferredDecls.find(MangledName);
1856     if (DDI != DeferredDecls.end()) {
1857       // Move the potentially referenced deferred decl to the
1858       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1859       // don't need it anymore).
1860       addDeferredDeclToEmit(F, DDI->second);
1861       DeferredDecls.erase(DDI);
1862 
1863       // Otherwise, there are cases we have to worry about where we're
1864       // using a declaration for which we must emit a definition but where
1865       // we might not find a top-level definition:
1866       //   - member functions defined inline in their classes
1867       //   - friend functions defined inline in some class
1868       //   - special member functions with implicit definitions
1869       // If we ever change our AST traversal to walk into class methods,
1870       // this will be unnecessary.
1871       //
1872       // We also don't emit a definition for a function if it's going to be an
1873       // entry in a vtable, unless it's already marked as used.
1874     } else if (getLangOpts().CPlusPlus && D) {
1875       // Look for a declaration that's lexically in a record.
1876       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1877            FD = FD->getPreviousDecl()) {
1878         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1879           if (FD->doesThisDeclarationHaveABody()) {
1880             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1881             break;
1882           }
1883         }
1884       }
1885     }
1886   }
1887 
1888   // Make sure the result is of the requested type.
1889   if (!IsIncompleteFunction) {
1890     assert(F->getType()->getElementType() == Ty);
1891     return F;
1892   }
1893 
1894   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1895   return llvm::ConstantExpr::getBitCast(F, PTy);
1896 }
1897 
1898 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1899 /// non-null, then this function will use the specified type if it has to
1900 /// create it (this occurs when we see a definition of the function).
1901 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1902                                                  llvm::Type *Ty,
1903                                                  bool ForVTable,
1904                                                  bool DontDefer,
1905                                                  bool IsForDefinition) {
1906   // If there was no specific requested type, just convert it now.
1907   if (!Ty)
1908     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1909 
1910   StringRef MangledName = getMangledName(GD);
1911   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1912                                  /*IsThunk=*/false, llvm::AttributeSet(),
1913                                  IsForDefinition);
1914 }
1915 
1916 /// CreateRuntimeFunction - Create a new runtime function with the specified
1917 /// type and name.
1918 llvm::Constant *
1919 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1920                                      StringRef Name,
1921                                      llvm::AttributeSet ExtraAttrs) {
1922   llvm::Constant *C =
1923       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1924                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1925   if (auto *F = dyn_cast<llvm::Function>(C))
1926     if (F->empty())
1927       F->setCallingConv(getRuntimeCC());
1928   return C;
1929 }
1930 
1931 /// CreateBuiltinFunction - Create a new builtin function with the specified
1932 /// type and name.
1933 llvm::Constant *
1934 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1935                                      StringRef Name,
1936                                      llvm::AttributeSet ExtraAttrs) {
1937   llvm::Constant *C =
1938       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1939                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1940   if (auto *F = dyn_cast<llvm::Function>(C))
1941     if (F->empty())
1942       F->setCallingConv(getBuiltinCC());
1943   return C;
1944 }
1945 
1946 /// isTypeConstant - Determine whether an object of this type can be emitted
1947 /// as a constant.
1948 ///
1949 /// If ExcludeCtor is true, the duration when the object's constructor runs
1950 /// will not be considered. The caller will need to verify that the object is
1951 /// not written to during its construction.
1952 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1953   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1954     return false;
1955 
1956   if (Context.getLangOpts().CPlusPlus) {
1957     if (const CXXRecordDecl *Record
1958           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1959       return ExcludeCtor && !Record->hasMutableFields() &&
1960              Record->hasTrivialDestructor();
1961   }
1962 
1963   return true;
1964 }
1965 
1966 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1967 /// create and return an llvm GlobalVariable with the specified type.  If there
1968 /// is something in the module with the specified name, return it potentially
1969 /// bitcasted to the right type.
1970 ///
1971 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1972 /// to set the attributes on the global when it is first created.
1973 llvm::Constant *
1974 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1975                                      llvm::PointerType *Ty,
1976                                      const VarDecl *D) {
1977   // Lookup the entry, lazily creating it if necessary.
1978   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1979   if (Entry) {
1980     if (WeakRefReferences.erase(Entry)) {
1981       if (D && !D->hasAttr<WeakAttr>())
1982         Entry->setLinkage(llvm::Function::ExternalLinkage);
1983     }
1984 
1985     // Handle dropped DLL attributes.
1986     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1987       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1988 
1989     if (Entry->getType() == Ty)
1990       return Entry;
1991 
1992     // Make sure the result is of the correct type.
1993     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1994       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1995 
1996     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1997   }
1998 
1999   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2000   auto *GV = new llvm::GlobalVariable(
2001       getModule(), Ty->getElementType(), false,
2002       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2003       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2004 
2005   // This is the first use or definition of a mangled name.  If there is a
2006   // deferred decl with this name, remember that we need to emit it at the end
2007   // of the file.
2008   auto DDI = DeferredDecls.find(MangledName);
2009   if (DDI != DeferredDecls.end()) {
2010     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2011     // list, and remove it from DeferredDecls (since we don't need it anymore).
2012     addDeferredDeclToEmit(GV, DDI->second);
2013     DeferredDecls.erase(DDI);
2014   }
2015 
2016   // Handle things which are present even on external declarations.
2017   if (D) {
2018     // FIXME: This code is overly simple and should be merged with other global
2019     // handling.
2020     GV->setConstant(isTypeConstant(D->getType(), false));
2021 
2022     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2023 
2024     setLinkageAndVisibilityForGV(GV, D);
2025 
2026     if (D->getTLSKind()) {
2027       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2028         CXXThreadLocals.push_back(std::make_pair(D, GV));
2029       setTLSMode(GV, *D);
2030     }
2031 
2032     // If required by the ABI, treat declarations of static data members with
2033     // inline initializers as definitions.
2034     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2035       EmitGlobalVarDefinition(D);
2036     }
2037 
2038     // Handle XCore specific ABI requirements.
2039     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2040         D->getLanguageLinkage() == CLanguageLinkage &&
2041         D->getType().isConstant(Context) &&
2042         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2043       GV->setSection(".cp.rodata");
2044   }
2045 
2046   if (AddrSpace != Ty->getAddressSpace())
2047     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2048 
2049   return GV;
2050 }
2051 
2052 llvm::Constant *
2053 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2054                                bool IsForDefinition) {
2055   if (isa<CXXConstructorDecl>(GD.getDecl()))
2056     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2057                                 getFromCtorType(GD.getCtorType()),
2058                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2059                                 /*DontDefer=*/false, IsForDefinition);
2060   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2061     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2062                                 getFromDtorType(GD.getDtorType()),
2063                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2064                                 /*DontDefer=*/false, IsForDefinition);
2065   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2066     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2067         cast<CXXMethodDecl>(GD.getDecl()));
2068     auto Ty = getTypes().GetFunctionType(*FInfo);
2069     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2070                              IsForDefinition);
2071   } else if (isa<FunctionDecl>(GD.getDecl())) {
2072     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2073     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2074     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2075                              IsForDefinition);
2076   } else
2077     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()));
2078 }
2079 
2080 llvm::GlobalVariable *
2081 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2082                                       llvm::Type *Ty,
2083                                       llvm::GlobalValue::LinkageTypes Linkage) {
2084   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2085   llvm::GlobalVariable *OldGV = nullptr;
2086 
2087   if (GV) {
2088     // Check if the variable has the right type.
2089     if (GV->getType()->getElementType() == Ty)
2090       return GV;
2091 
2092     // Because C++ name mangling, the only way we can end up with an already
2093     // existing global with the same name is if it has been declared extern "C".
2094     assert(GV->isDeclaration() && "Declaration has wrong type!");
2095     OldGV = GV;
2096   }
2097 
2098   // Create a new variable.
2099   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2100                                 Linkage, nullptr, Name);
2101 
2102   if (OldGV) {
2103     // Replace occurrences of the old variable if needed.
2104     GV->takeName(OldGV);
2105 
2106     if (!OldGV->use_empty()) {
2107       llvm::Constant *NewPtrForOldDecl =
2108       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2109       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2110     }
2111 
2112     OldGV->eraseFromParent();
2113   }
2114 
2115   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2116       !GV->hasAvailableExternallyLinkage())
2117     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2118 
2119   return GV;
2120 }
2121 
2122 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2123 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2124 /// then it will be created with the specified type instead of whatever the
2125 /// normal requested type would be.
2126 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2127                                                   llvm::Type *Ty) {
2128   assert(D->hasGlobalStorage() && "Not a global variable");
2129   QualType ASTTy = D->getType();
2130   if (!Ty)
2131     Ty = getTypes().ConvertTypeForMem(ASTTy);
2132 
2133   llvm::PointerType *PTy =
2134     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2135 
2136   StringRef MangledName = getMangledName(D);
2137   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
2138 }
2139 
2140 /// CreateRuntimeVariable - Create a new runtime global variable with the
2141 /// specified type and name.
2142 llvm::Constant *
2143 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2144                                      StringRef Name) {
2145   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2146 }
2147 
2148 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2149   assert(!D->getInit() && "Cannot emit definite definitions here!");
2150 
2151   if (!MustBeEmitted(D)) {
2152     // If we have not seen a reference to this variable yet, place it
2153     // into the deferred declarations table to be emitted if needed
2154     // later.
2155     StringRef MangledName = getMangledName(D);
2156     if (!GetGlobalValue(MangledName)) {
2157       DeferredDecls[MangledName] = D;
2158       return;
2159     }
2160   }
2161 
2162   // The tentative definition is the only definition.
2163   EmitGlobalVarDefinition(D);
2164 }
2165 
2166 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2167   return Context.toCharUnitsFromBits(
2168       getDataLayout().getTypeStoreSizeInBits(Ty));
2169 }
2170 
2171 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2172                                                  unsigned AddrSpace) {
2173   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2174     if (D->hasAttr<CUDAConstantAttr>())
2175       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2176     else if (D->hasAttr<CUDASharedAttr>())
2177       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2178     else
2179       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2180   }
2181 
2182   return AddrSpace;
2183 }
2184 
2185 template<typename SomeDecl>
2186 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2187                                                llvm::GlobalValue *GV) {
2188   if (!getLangOpts().CPlusPlus)
2189     return;
2190 
2191   // Must have 'used' attribute, or else inline assembly can't rely on
2192   // the name existing.
2193   if (!D->template hasAttr<UsedAttr>())
2194     return;
2195 
2196   // Must have internal linkage and an ordinary name.
2197   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2198     return;
2199 
2200   // Must be in an extern "C" context. Entities declared directly within
2201   // a record are not extern "C" even if the record is in such a context.
2202   const SomeDecl *First = D->getFirstDecl();
2203   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2204     return;
2205 
2206   // OK, this is an internal linkage entity inside an extern "C" linkage
2207   // specification. Make a note of that so we can give it the "expected"
2208   // mangled name if nothing else is using that name.
2209   std::pair<StaticExternCMap::iterator, bool> R =
2210       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2211 
2212   // If we have multiple internal linkage entities with the same name
2213   // in extern "C" regions, none of them gets that name.
2214   if (!R.second)
2215     R.first->second = nullptr;
2216 }
2217 
2218 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2219   if (!CGM.supportsCOMDAT())
2220     return false;
2221 
2222   if (D.hasAttr<SelectAnyAttr>())
2223     return true;
2224 
2225   GVALinkage Linkage;
2226   if (auto *VD = dyn_cast<VarDecl>(&D))
2227     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2228   else
2229     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2230 
2231   switch (Linkage) {
2232   case GVA_Internal:
2233   case GVA_AvailableExternally:
2234   case GVA_StrongExternal:
2235     return false;
2236   case GVA_DiscardableODR:
2237   case GVA_StrongODR:
2238     return true;
2239   }
2240   llvm_unreachable("No such linkage");
2241 }
2242 
2243 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2244                                           llvm::GlobalObject &GO) {
2245   if (!shouldBeInCOMDAT(*this, D))
2246     return;
2247   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2248 }
2249 
2250 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
2251   llvm::Constant *Init = nullptr;
2252   QualType ASTTy = D->getType();
2253   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2254   bool NeedsGlobalCtor = false;
2255   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2256 
2257   const VarDecl *InitDecl;
2258   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2259 
2260   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2261   // of their declaration."
2262   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2263       && D->hasAttr<CUDASharedAttr>()) {
2264     if (InitExpr) {
2265       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2266       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2267         Error(D->getLocation(),
2268               "__shared__ variable cannot have an initialization.");
2269     }
2270     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2271   } else if (!InitExpr) {
2272     // This is a tentative definition; tentative definitions are
2273     // implicitly initialized with { 0 }.
2274     //
2275     // Note that tentative definitions are only emitted at the end of
2276     // a translation unit, so they should never have incomplete
2277     // type. In addition, EmitTentativeDefinition makes sure that we
2278     // never attempt to emit a tentative definition if a real one
2279     // exists. A use may still exists, however, so we still may need
2280     // to do a RAUW.
2281     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2282     Init = EmitNullConstant(D->getType());
2283   } else {
2284     initializedGlobalDecl = GlobalDecl(D);
2285     Init = EmitConstantInit(*InitDecl);
2286 
2287     if (!Init) {
2288       QualType T = InitExpr->getType();
2289       if (D->getType()->isReferenceType())
2290         T = D->getType();
2291 
2292       if (getLangOpts().CPlusPlus) {
2293         Init = EmitNullConstant(T);
2294         NeedsGlobalCtor = true;
2295       } else {
2296         ErrorUnsupported(D, "static initializer");
2297         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2298       }
2299     } else {
2300       // We don't need an initializer, so remove the entry for the delayed
2301       // initializer position (just in case this entry was delayed) if we
2302       // also don't need to register a destructor.
2303       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2304         DelayedCXXInitPosition.erase(D);
2305     }
2306   }
2307 
2308   llvm::Type* InitType = Init->getType();
2309   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2310 
2311   // Strip off a bitcast if we got one back.
2312   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2313     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2314            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2315            // All zero index gep.
2316            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2317     Entry = CE->getOperand(0);
2318   }
2319 
2320   // Entry is now either a Function or GlobalVariable.
2321   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2322 
2323   // We have a definition after a declaration with the wrong type.
2324   // We must make a new GlobalVariable* and update everything that used OldGV
2325   // (a declaration or tentative definition) with the new GlobalVariable*
2326   // (which will be a definition).
2327   //
2328   // This happens if there is a prototype for a global (e.g.
2329   // "extern int x[];") and then a definition of a different type (e.g.
2330   // "int x[10];"). This also happens when an initializer has a different type
2331   // from the type of the global (this happens with unions).
2332   if (!GV ||
2333       GV->getType()->getElementType() != InitType ||
2334       GV->getType()->getAddressSpace() !=
2335        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2336 
2337     // Move the old entry aside so that we'll create a new one.
2338     Entry->setName(StringRef());
2339 
2340     // Make a new global with the correct type, this is now guaranteed to work.
2341     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2342 
2343     // Replace all uses of the old global with the new global
2344     llvm::Constant *NewPtrForOldDecl =
2345         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2346     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2347 
2348     // Erase the old global, since it is no longer used.
2349     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2350   }
2351 
2352   MaybeHandleStaticInExternC(D, GV);
2353 
2354   if (D->hasAttr<AnnotateAttr>())
2355     AddGlobalAnnotations(D, GV);
2356 
2357   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2358   // the device. [...]"
2359   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2360   // __device__, declares a variable that: [...]
2361   // Is accessible from all the threads within the grid and from the host
2362   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2363   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2364   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2365       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2366     GV->setExternallyInitialized(true);
2367   }
2368   GV->setInitializer(Init);
2369 
2370   // If it is safe to mark the global 'constant', do so now.
2371   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2372                   isTypeConstant(D->getType(), true));
2373 
2374   // If it is in a read-only section, mark it 'constant'.
2375   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2376     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2377     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2378       GV->setConstant(true);
2379   }
2380 
2381   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2382 
2383   // Set the llvm linkage type as appropriate.
2384   llvm::GlobalValue::LinkageTypes Linkage =
2385       getLLVMLinkageVarDefinition(D, GV->isConstant());
2386 
2387   // On Darwin, the backing variable for a C++11 thread_local variable always
2388   // has internal linkage; all accesses should just be calls to the
2389   // Itanium-specified entry point, which has the normal linkage of the
2390   // variable.
2391   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2392       Context.getTargetInfo().getTriple().isMacOSX())
2393     Linkage = llvm::GlobalValue::InternalLinkage;
2394 
2395   GV->setLinkage(Linkage);
2396   if (D->hasAttr<DLLImportAttr>())
2397     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2398   else if (D->hasAttr<DLLExportAttr>())
2399     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2400   else
2401     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2402 
2403   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2404     // common vars aren't constant even if declared const.
2405     GV->setConstant(false);
2406 
2407   setNonAliasAttributes(D, GV);
2408 
2409   if (D->getTLSKind() && !GV->isThreadLocal()) {
2410     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2411       CXXThreadLocals.push_back(std::make_pair(D, GV));
2412     setTLSMode(GV, *D);
2413   }
2414 
2415   maybeSetTrivialComdat(*D, *GV);
2416 
2417   // Emit the initializer function if necessary.
2418   if (NeedsGlobalCtor || NeedsGlobalDtor)
2419     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2420 
2421   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2422 
2423   // Emit global variable debug information.
2424   if (CGDebugInfo *DI = getModuleDebugInfo())
2425     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2426       DI->EmitGlobalVariable(GV, D);
2427 }
2428 
2429 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2430                                       CodeGenModule &CGM, const VarDecl *D,
2431                                       bool NoCommon) {
2432   // Don't give variables common linkage if -fno-common was specified unless it
2433   // was overridden by a NoCommon attribute.
2434   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2435     return true;
2436 
2437   // C11 6.9.2/2:
2438   //   A declaration of an identifier for an object that has file scope without
2439   //   an initializer, and without a storage-class specifier or with the
2440   //   storage-class specifier static, constitutes a tentative definition.
2441   if (D->getInit() || D->hasExternalStorage())
2442     return true;
2443 
2444   // A variable cannot be both common and exist in a section.
2445   if (D->hasAttr<SectionAttr>())
2446     return true;
2447 
2448   // Thread local vars aren't considered common linkage.
2449   if (D->getTLSKind())
2450     return true;
2451 
2452   // Tentative definitions marked with WeakImportAttr are true definitions.
2453   if (D->hasAttr<WeakImportAttr>())
2454     return true;
2455 
2456   // A variable cannot be both common and exist in a comdat.
2457   if (shouldBeInCOMDAT(CGM, *D))
2458     return true;
2459 
2460   // Declarations with a required alignment do not have common linakge in MSVC
2461   // mode.
2462   if (Context.getLangOpts().MSVCCompat) {
2463     if (D->hasAttr<AlignedAttr>())
2464       return true;
2465     QualType VarType = D->getType();
2466     if (Context.isAlignmentRequired(VarType))
2467       return true;
2468 
2469     if (const auto *RT = VarType->getAs<RecordType>()) {
2470       const RecordDecl *RD = RT->getDecl();
2471       for (const FieldDecl *FD : RD->fields()) {
2472         if (FD->isBitField())
2473           continue;
2474         if (FD->hasAttr<AlignedAttr>())
2475           return true;
2476         if (Context.isAlignmentRequired(FD->getType()))
2477           return true;
2478       }
2479     }
2480   }
2481 
2482   return false;
2483 }
2484 
2485 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2486     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2487   if (Linkage == GVA_Internal)
2488     return llvm::Function::InternalLinkage;
2489 
2490   if (D->hasAttr<WeakAttr>()) {
2491     if (IsConstantVariable)
2492       return llvm::GlobalVariable::WeakODRLinkage;
2493     else
2494       return llvm::GlobalVariable::WeakAnyLinkage;
2495   }
2496 
2497   // We are guaranteed to have a strong definition somewhere else,
2498   // so we can use available_externally linkage.
2499   if (Linkage == GVA_AvailableExternally)
2500     return llvm::Function::AvailableExternallyLinkage;
2501 
2502   // Note that Apple's kernel linker doesn't support symbol
2503   // coalescing, so we need to avoid linkonce and weak linkages there.
2504   // Normally, this means we just map to internal, but for explicit
2505   // instantiations we'll map to external.
2506 
2507   // In C++, the compiler has to emit a definition in every translation unit
2508   // that references the function.  We should use linkonce_odr because
2509   // a) if all references in this translation unit are optimized away, we
2510   // don't need to codegen it.  b) if the function persists, it needs to be
2511   // merged with other definitions. c) C++ has the ODR, so we know the
2512   // definition is dependable.
2513   if (Linkage == GVA_DiscardableODR)
2514     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2515                                             : llvm::Function::InternalLinkage;
2516 
2517   // An explicit instantiation of a template has weak linkage, since
2518   // explicit instantiations can occur in multiple translation units
2519   // and must all be equivalent. However, we are not allowed to
2520   // throw away these explicit instantiations.
2521   if (Linkage == GVA_StrongODR)
2522     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2523                                             : llvm::Function::ExternalLinkage;
2524 
2525   // C++ doesn't have tentative definitions and thus cannot have common
2526   // linkage.
2527   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2528       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2529                                  CodeGenOpts.NoCommon))
2530     return llvm::GlobalVariable::CommonLinkage;
2531 
2532   // selectany symbols are externally visible, so use weak instead of
2533   // linkonce.  MSVC optimizes away references to const selectany globals, so
2534   // all definitions should be the same and ODR linkage should be used.
2535   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2536   if (D->hasAttr<SelectAnyAttr>())
2537     return llvm::GlobalVariable::WeakODRLinkage;
2538 
2539   // Otherwise, we have strong external linkage.
2540   assert(Linkage == GVA_StrongExternal);
2541   return llvm::GlobalVariable::ExternalLinkage;
2542 }
2543 
2544 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2545     const VarDecl *VD, bool IsConstant) {
2546   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2547   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2548 }
2549 
2550 /// Replace the uses of a function that was declared with a non-proto type.
2551 /// We want to silently drop extra arguments from call sites
2552 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2553                                           llvm::Function *newFn) {
2554   // Fast path.
2555   if (old->use_empty()) return;
2556 
2557   llvm::Type *newRetTy = newFn->getReturnType();
2558   SmallVector<llvm::Value*, 4> newArgs;
2559 
2560   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2561          ui != ue; ) {
2562     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2563     llvm::User *user = use->getUser();
2564 
2565     // Recognize and replace uses of bitcasts.  Most calls to
2566     // unprototyped functions will use bitcasts.
2567     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2568       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2569         replaceUsesOfNonProtoConstant(bitcast, newFn);
2570       continue;
2571     }
2572 
2573     // Recognize calls to the function.
2574     llvm::CallSite callSite(user);
2575     if (!callSite) continue;
2576     if (!callSite.isCallee(&*use)) continue;
2577 
2578     // If the return types don't match exactly, then we can't
2579     // transform this call unless it's dead.
2580     if (callSite->getType() != newRetTy && !callSite->use_empty())
2581       continue;
2582 
2583     // Get the call site's attribute list.
2584     SmallVector<llvm::AttributeSet, 8> newAttrs;
2585     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2586 
2587     // Collect any return attributes from the call.
2588     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2589       newAttrs.push_back(
2590         llvm::AttributeSet::get(newFn->getContext(),
2591                                 oldAttrs.getRetAttributes()));
2592 
2593     // If the function was passed too few arguments, don't transform.
2594     unsigned newNumArgs = newFn->arg_size();
2595     if (callSite.arg_size() < newNumArgs) continue;
2596 
2597     // If extra arguments were passed, we silently drop them.
2598     // If any of the types mismatch, we don't transform.
2599     unsigned argNo = 0;
2600     bool dontTransform = false;
2601     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2602            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2603       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2604         dontTransform = true;
2605         break;
2606       }
2607 
2608       // Add any parameter attributes.
2609       if (oldAttrs.hasAttributes(argNo + 1))
2610         newAttrs.
2611           push_back(llvm::
2612                     AttributeSet::get(newFn->getContext(),
2613                                       oldAttrs.getParamAttributes(argNo + 1)));
2614     }
2615     if (dontTransform)
2616       continue;
2617 
2618     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2619       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2620                                                  oldAttrs.getFnAttributes()));
2621 
2622     // Okay, we can transform this.  Create the new call instruction and copy
2623     // over the required information.
2624     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2625 
2626     llvm::CallSite newCall;
2627     if (callSite.isCall()) {
2628       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2629                                        callSite.getInstruction());
2630     } else {
2631       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2632       newCall = llvm::InvokeInst::Create(newFn,
2633                                          oldInvoke->getNormalDest(),
2634                                          oldInvoke->getUnwindDest(),
2635                                          newArgs, "",
2636                                          callSite.getInstruction());
2637     }
2638     newArgs.clear(); // for the next iteration
2639 
2640     if (!newCall->getType()->isVoidTy())
2641       newCall->takeName(callSite.getInstruction());
2642     newCall.setAttributes(
2643                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2644     newCall.setCallingConv(callSite.getCallingConv());
2645 
2646     // Finally, remove the old call, replacing any uses with the new one.
2647     if (!callSite->use_empty())
2648       callSite->replaceAllUsesWith(newCall.getInstruction());
2649 
2650     // Copy debug location attached to CI.
2651     if (callSite->getDebugLoc())
2652       newCall->setDebugLoc(callSite->getDebugLoc());
2653     callSite->eraseFromParent();
2654   }
2655 }
2656 
2657 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2658 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2659 /// existing call uses of the old function in the module, this adjusts them to
2660 /// call the new function directly.
2661 ///
2662 /// This is not just a cleanup: the always_inline pass requires direct calls to
2663 /// functions to be able to inline them.  If there is a bitcast in the way, it
2664 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2665 /// run at -O0.
2666 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2667                                                       llvm::Function *NewFn) {
2668   // If we're redefining a global as a function, don't transform it.
2669   if (!isa<llvm::Function>(Old)) return;
2670 
2671   replaceUsesOfNonProtoConstant(Old, NewFn);
2672 }
2673 
2674 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2675   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2676   // If we have a definition, this might be a deferred decl. If the
2677   // instantiation is explicit, make sure we emit it at the end.
2678   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2679     GetAddrOfGlobalVar(VD);
2680 
2681   EmitTopLevelDecl(VD);
2682 }
2683 
2684 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2685                                                  llvm::GlobalValue *GV) {
2686   const auto *D = cast<FunctionDecl>(GD.getDecl());
2687 
2688   // Compute the function info and LLVM type.
2689   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2690   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2691 
2692   // Get or create the prototype for the function.
2693   if (!GV || (GV->getType()->getElementType() != Ty))
2694     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2695                                                    /*DontDefer=*/true,
2696                                                    /*IsForDefinition=*/true));
2697 
2698   // Already emitted.
2699   if (!GV->isDeclaration())
2700     return;
2701 
2702   // We need to set linkage and visibility on the function before
2703   // generating code for it because various parts of IR generation
2704   // want to propagate this information down (e.g. to local static
2705   // declarations).
2706   auto *Fn = cast<llvm::Function>(GV);
2707   setFunctionLinkage(GD, Fn);
2708   setFunctionDLLStorageClass(GD, Fn);
2709 
2710   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2711   setGlobalVisibility(Fn, D);
2712 
2713   MaybeHandleStaticInExternC(D, Fn);
2714 
2715   maybeSetTrivialComdat(*D, *Fn);
2716 
2717   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2718 
2719   setFunctionDefinitionAttributes(D, Fn);
2720   SetLLVMFunctionAttributesForDefinition(D, Fn);
2721 
2722   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2723     AddGlobalCtor(Fn, CA->getPriority());
2724   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2725     AddGlobalDtor(Fn, DA->getPriority());
2726   if (D->hasAttr<AnnotateAttr>())
2727     AddGlobalAnnotations(D, Fn);
2728 }
2729 
2730 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2731   const auto *D = cast<ValueDecl>(GD.getDecl());
2732   const AliasAttr *AA = D->getAttr<AliasAttr>();
2733   assert(AA && "Not an alias?");
2734 
2735   StringRef MangledName = getMangledName(GD);
2736 
2737   if (AA->getAliasee() == MangledName) {
2738     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2739     return;
2740   }
2741 
2742   // If there is a definition in the module, then it wins over the alias.
2743   // This is dubious, but allow it to be safe.  Just ignore the alias.
2744   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2745   if (Entry && !Entry->isDeclaration())
2746     return;
2747 
2748   Aliases.push_back(GD);
2749 
2750   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2751 
2752   // Create a reference to the named value.  This ensures that it is emitted
2753   // if a deferred decl.
2754   llvm::Constant *Aliasee;
2755   if (isa<llvm::FunctionType>(DeclTy))
2756     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2757                                       /*ForVTable=*/false);
2758   else
2759     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2760                                     llvm::PointerType::getUnqual(DeclTy),
2761                                     /*D=*/nullptr);
2762 
2763   // Create the new alias itself, but don't set a name yet.
2764   auto *GA = llvm::GlobalAlias::create(
2765       cast<llvm::PointerType>(Aliasee->getType()),
2766       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2767 
2768   if (Entry) {
2769     if (GA->getAliasee() == Entry) {
2770       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2771       return;
2772     }
2773 
2774     assert(Entry->isDeclaration());
2775 
2776     // If there is a declaration in the module, then we had an extern followed
2777     // by the alias, as in:
2778     //   extern int test6();
2779     //   ...
2780     //   int test6() __attribute__((alias("test7")));
2781     //
2782     // Remove it and replace uses of it with the alias.
2783     GA->takeName(Entry);
2784 
2785     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2786                                                           Entry->getType()));
2787     Entry->eraseFromParent();
2788   } else {
2789     GA->setName(MangledName);
2790   }
2791 
2792   // Set attributes which are particular to an alias; this is a
2793   // specialization of the attributes which may be set on a global
2794   // variable/function.
2795   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2796       D->isWeakImported()) {
2797     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2798   }
2799 
2800   if (const auto *VD = dyn_cast<VarDecl>(D))
2801     if (VD->getTLSKind())
2802       setTLSMode(GA, *VD);
2803 
2804   setAliasAttributes(D, GA);
2805 }
2806 
2807 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2808                                             ArrayRef<llvm::Type*> Tys) {
2809   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2810                                          Tys);
2811 }
2812 
2813 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2814 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2815                          const StringLiteral *Literal, bool TargetIsLSB,
2816                          bool &IsUTF16, unsigned &StringLength) {
2817   StringRef String = Literal->getString();
2818   unsigned NumBytes = String.size();
2819 
2820   // Check for simple case.
2821   if (!Literal->containsNonAsciiOrNull()) {
2822     StringLength = NumBytes;
2823     return *Map.insert(std::make_pair(String, nullptr)).first;
2824   }
2825 
2826   // Otherwise, convert the UTF8 literals into a string of shorts.
2827   IsUTF16 = true;
2828 
2829   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2830   const UTF8 *FromPtr = (const UTF8 *)String.data();
2831   UTF16 *ToPtr = &ToBuf[0];
2832 
2833   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2834                            &ToPtr, ToPtr + NumBytes,
2835                            strictConversion);
2836 
2837   // ConvertUTF8toUTF16 returns the length in ToPtr.
2838   StringLength = ToPtr - &ToBuf[0];
2839 
2840   // Add an explicit null.
2841   *ToPtr = 0;
2842   return *Map.insert(std::make_pair(
2843                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2844                                    (StringLength + 1) * 2),
2845                          nullptr)).first;
2846 }
2847 
2848 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2849 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2850                        const StringLiteral *Literal, unsigned &StringLength) {
2851   StringRef String = Literal->getString();
2852   StringLength = String.size();
2853   return *Map.insert(std::make_pair(String, nullptr)).first;
2854 }
2855 
2856 ConstantAddress
2857 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2858   unsigned StringLength = 0;
2859   bool isUTF16 = false;
2860   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2861       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2862                                getDataLayout().isLittleEndian(), isUTF16,
2863                                StringLength);
2864 
2865   if (auto *C = Entry.second)
2866     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2867 
2868   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2869   llvm::Constant *Zeros[] = { Zero, Zero };
2870   llvm::Value *V;
2871 
2872   // If we don't already have it, get __CFConstantStringClassReference.
2873   if (!CFConstantStringClassRef) {
2874     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2875     Ty = llvm::ArrayType::get(Ty, 0);
2876     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2877                                            "__CFConstantStringClassReference");
2878     // Decay array -> ptr
2879     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2880     CFConstantStringClassRef = V;
2881   }
2882   else
2883     V = CFConstantStringClassRef;
2884 
2885   QualType CFTy = getContext().getCFConstantStringType();
2886 
2887   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2888 
2889   llvm::Constant *Fields[4];
2890 
2891   // Class pointer.
2892   Fields[0] = cast<llvm::ConstantExpr>(V);
2893 
2894   // Flags.
2895   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2896   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2897     llvm::ConstantInt::get(Ty, 0x07C8);
2898 
2899   // String pointer.
2900   llvm::Constant *C = nullptr;
2901   if (isUTF16) {
2902     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2903         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2904         Entry.first().size() / 2);
2905     C = llvm::ConstantDataArray::get(VMContext, Arr);
2906   } else {
2907     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2908   }
2909 
2910   // Note: -fwritable-strings doesn't make the backing store strings of
2911   // CFStrings writable. (See <rdar://problem/10657500>)
2912   auto *GV =
2913       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2914                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2915   GV->setUnnamedAddr(true);
2916   // Don't enforce the target's minimum global alignment, since the only use
2917   // of the string is via this class initializer.
2918   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2919   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2920   // that changes the section it ends in, which surprises ld64.
2921   if (isUTF16) {
2922     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2923     GV->setAlignment(Align.getQuantity());
2924     GV->setSection("__TEXT,__ustring");
2925   } else {
2926     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2927     GV->setAlignment(Align.getQuantity());
2928     GV->setSection("__TEXT,__cstring,cstring_literals");
2929   }
2930 
2931   // String.
2932   Fields[2] =
2933       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2934 
2935   if (isUTF16)
2936     // Cast the UTF16 string to the correct type.
2937     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2938 
2939   // String length.
2940   Ty = getTypes().ConvertType(getContext().LongTy);
2941   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2942 
2943   CharUnits Alignment = getPointerAlign();
2944 
2945   // The struct.
2946   C = llvm::ConstantStruct::get(STy, Fields);
2947   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2948                                 llvm::GlobalVariable::PrivateLinkage, C,
2949                                 "_unnamed_cfstring_");
2950   GV->setSection("__DATA,__cfstring");
2951   GV->setAlignment(Alignment.getQuantity());
2952   Entry.second = GV;
2953 
2954   return ConstantAddress(GV, Alignment);
2955 }
2956 
2957 ConstantAddress
2958 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2959   unsigned StringLength = 0;
2960   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2961       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2962 
2963   if (auto *C = Entry.second)
2964     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2965 
2966   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2967   llvm::Constant *Zeros[] = { Zero, Zero };
2968   llvm::Value *V;
2969   // If we don't already have it, get _NSConstantStringClassReference.
2970   if (!ConstantStringClassRef) {
2971     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2972     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2973     llvm::Constant *GV;
2974     if (LangOpts.ObjCRuntime.isNonFragile()) {
2975       std::string str =
2976         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2977                             : "OBJC_CLASS_$_" + StringClass;
2978       GV = getObjCRuntime().GetClassGlobal(str);
2979       // Make sure the result is of the correct type.
2980       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2981       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2982       ConstantStringClassRef = V;
2983     } else {
2984       std::string str =
2985         StringClass.empty() ? "_NSConstantStringClassReference"
2986                             : "_" + StringClass + "ClassReference";
2987       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2988       GV = CreateRuntimeVariable(PTy, str);
2989       // Decay array -> ptr
2990       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2991       ConstantStringClassRef = V;
2992     }
2993   } else
2994     V = ConstantStringClassRef;
2995 
2996   if (!NSConstantStringType) {
2997     // Construct the type for a constant NSString.
2998     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2999     D->startDefinition();
3000 
3001     QualType FieldTypes[3];
3002 
3003     // const int *isa;
3004     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3005     // const char *str;
3006     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3007     // unsigned int length;
3008     FieldTypes[2] = Context.UnsignedIntTy;
3009 
3010     // Create fields
3011     for (unsigned i = 0; i < 3; ++i) {
3012       FieldDecl *Field = FieldDecl::Create(Context, D,
3013                                            SourceLocation(),
3014                                            SourceLocation(), nullptr,
3015                                            FieldTypes[i], /*TInfo=*/nullptr,
3016                                            /*BitWidth=*/nullptr,
3017                                            /*Mutable=*/false,
3018                                            ICIS_NoInit);
3019       Field->setAccess(AS_public);
3020       D->addDecl(Field);
3021     }
3022 
3023     D->completeDefinition();
3024     QualType NSTy = Context.getTagDeclType(D);
3025     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3026   }
3027 
3028   llvm::Constant *Fields[3];
3029 
3030   // Class pointer.
3031   Fields[0] = cast<llvm::ConstantExpr>(V);
3032 
3033   // String pointer.
3034   llvm::Constant *C =
3035       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3036 
3037   llvm::GlobalValue::LinkageTypes Linkage;
3038   bool isConstant;
3039   Linkage = llvm::GlobalValue::PrivateLinkage;
3040   isConstant = !LangOpts.WritableStrings;
3041 
3042   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3043                                       Linkage, C, ".str");
3044   GV->setUnnamedAddr(true);
3045   // Don't enforce the target's minimum global alignment, since the only use
3046   // of the string is via this class initializer.
3047   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3048   GV->setAlignment(Align.getQuantity());
3049   Fields[1] =
3050       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3051 
3052   // String length.
3053   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3054   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3055 
3056   // The struct.
3057   CharUnits Alignment = getPointerAlign();
3058   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3059   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3060                                 llvm::GlobalVariable::PrivateLinkage, C,
3061                                 "_unnamed_nsstring_");
3062   GV->setAlignment(Alignment.getQuantity());
3063   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3064   const char *NSStringNonFragileABISection =
3065       "__DATA,__objc_stringobj,regular,no_dead_strip";
3066   // FIXME. Fix section.
3067   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3068                      ? NSStringNonFragileABISection
3069                      : NSStringSection);
3070   Entry.second = GV;
3071 
3072   return ConstantAddress(GV, Alignment);
3073 }
3074 
3075 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3076   if (ObjCFastEnumerationStateType.isNull()) {
3077     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3078     D->startDefinition();
3079 
3080     QualType FieldTypes[] = {
3081       Context.UnsignedLongTy,
3082       Context.getPointerType(Context.getObjCIdType()),
3083       Context.getPointerType(Context.UnsignedLongTy),
3084       Context.getConstantArrayType(Context.UnsignedLongTy,
3085                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3086     };
3087 
3088     for (size_t i = 0; i < 4; ++i) {
3089       FieldDecl *Field = FieldDecl::Create(Context,
3090                                            D,
3091                                            SourceLocation(),
3092                                            SourceLocation(), nullptr,
3093                                            FieldTypes[i], /*TInfo=*/nullptr,
3094                                            /*BitWidth=*/nullptr,
3095                                            /*Mutable=*/false,
3096                                            ICIS_NoInit);
3097       Field->setAccess(AS_public);
3098       D->addDecl(Field);
3099     }
3100 
3101     D->completeDefinition();
3102     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3103   }
3104 
3105   return ObjCFastEnumerationStateType;
3106 }
3107 
3108 llvm::Constant *
3109 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3110   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3111 
3112   // Don't emit it as the address of the string, emit the string data itself
3113   // as an inline array.
3114   if (E->getCharByteWidth() == 1) {
3115     SmallString<64> Str(E->getString());
3116 
3117     // Resize the string to the right size, which is indicated by its type.
3118     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3119     Str.resize(CAT->getSize().getZExtValue());
3120     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3121   }
3122 
3123   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3124   llvm::Type *ElemTy = AType->getElementType();
3125   unsigned NumElements = AType->getNumElements();
3126 
3127   // Wide strings have either 2-byte or 4-byte elements.
3128   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3129     SmallVector<uint16_t, 32> Elements;
3130     Elements.reserve(NumElements);
3131 
3132     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3133       Elements.push_back(E->getCodeUnit(i));
3134     Elements.resize(NumElements);
3135     return llvm::ConstantDataArray::get(VMContext, Elements);
3136   }
3137 
3138   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3139   SmallVector<uint32_t, 32> Elements;
3140   Elements.reserve(NumElements);
3141 
3142   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3143     Elements.push_back(E->getCodeUnit(i));
3144   Elements.resize(NumElements);
3145   return llvm::ConstantDataArray::get(VMContext, Elements);
3146 }
3147 
3148 static llvm::GlobalVariable *
3149 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3150                       CodeGenModule &CGM, StringRef GlobalName,
3151                       CharUnits Alignment) {
3152   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3153   unsigned AddrSpace = 0;
3154   if (CGM.getLangOpts().OpenCL)
3155     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3156 
3157   llvm::Module &M = CGM.getModule();
3158   // Create a global variable for this string
3159   auto *GV = new llvm::GlobalVariable(
3160       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3161       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3162   GV->setAlignment(Alignment.getQuantity());
3163   GV->setUnnamedAddr(true);
3164   if (GV->isWeakForLinker()) {
3165     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3166     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3167   }
3168 
3169   return GV;
3170 }
3171 
3172 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3173 /// constant array for the given string literal.
3174 ConstantAddress
3175 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3176                                                   StringRef Name) {
3177   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3178 
3179   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3180   llvm::GlobalVariable **Entry = nullptr;
3181   if (!LangOpts.WritableStrings) {
3182     Entry = &ConstantStringMap[C];
3183     if (auto GV = *Entry) {
3184       if (Alignment.getQuantity() > GV->getAlignment())
3185         GV->setAlignment(Alignment.getQuantity());
3186       return ConstantAddress(GV, Alignment);
3187     }
3188   }
3189 
3190   SmallString<256> MangledNameBuffer;
3191   StringRef GlobalVariableName;
3192   llvm::GlobalValue::LinkageTypes LT;
3193 
3194   // Mangle the string literal if the ABI allows for it.  However, we cannot
3195   // do this if  we are compiling with ASan or -fwritable-strings because they
3196   // rely on strings having normal linkage.
3197   if (!LangOpts.WritableStrings &&
3198       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3199       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3200     llvm::raw_svector_ostream Out(MangledNameBuffer);
3201     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3202 
3203     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3204     GlobalVariableName = MangledNameBuffer;
3205   } else {
3206     LT = llvm::GlobalValue::PrivateLinkage;
3207     GlobalVariableName = Name;
3208   }
3209 
3210   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3211   if (Entry)
3212     *Entry = GV;
3213 
3214   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3215                                   QualType());
3216   return ConstantAddress(GV, Alignment);
3217 }
3218 
3219 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3220 /// array for the given ObjCEncodeExpr node.
3221 ConstantAddress
3222 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3223   std::string Str;
3224   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3225 
3226   return GetAddrOfConstantCString(Str);
3227 }
3228 
3229 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3230 /// the literal and a terminating '\0' character.
3231 /// The result has pointer to array type.
3232 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3233     const std::string &Str, const char *GlobalName) {
3234   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3235   CharUnits Alignment =
3236     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3237 
3238   llvm::Constant *C =
3239       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3240 
3241   // Don't share any string literals if strings aren't constant.
3242   llvm::GlobalVariable **Entry = nullptr;
3243   if (!LangOpts.WritableStrings) {
3244     Entry = &ConstantStringMap[C];
3245     if (auto GV = *Entry) {
3246       if (Alignment.getQuantity() > GV->getAlignment())
3247         GV->setAlignment(Alignment.getQuantity());
3248       return ConstantAddress(GV, Alignment);
3249     }
3250   }
3251 
3252   // Get the default prefix if a name wasn't specified.
3253   if (!GlobalName)
3254     GlobalName = ".str";
3255   // Create a global variable for this.
3256   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3257                                   GlobalName, Alignment);
3258   if (Entry)
3259     *Entry = GV;
3260   return ConstantAddress(GV, Alignment);
3261 }
3262 
3263 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3264     const MaterializeTemporaryExpr *E, const Expr *Init) {
3265   assert((E->getStorageDuration() == SD_Static ||
3266           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3267   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3268 
3269   // If we're not materializing a subobject of the temporary, keep the
3270   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3271   QualType MaterializedType = Init->getType();
3272   if (Init == E->GetTemporaryExpr())
3273     MaterializedType = E->getType();
3274 
3275   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3276 
3277   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3278     return ConstantAddress(Slot, Align);
3279 
3280   // FIXME: If an externally-visible declaration extends multiple temporaries,
3281   // we need to give each temporary the same name in every translation unit (and
3282   // we also need to make the temporaries externally-visible).
3283   SmallString<256> Name;
3284   llvm::raw_svector_ostream Out(Name);
3285   getCXXABI().getMangleContext().mangleReferenceTemporary(
3286       VD, E->getManglingNumber(), Out);
3287 
3288   APValue *Value = nullptr;
3289   if (E->getStorageDuration() == SD_Static) {
3290     // We might have a cached constant initializer for this temporary. Note
3291     // that this might have a different value from the value computed by
3292     // evaluating the initializer if the surrounding constant expression
3293     // modifies the temporary.
3294     Value = getContext().getMaterializedTemporaryValue(E, false);
3295     if (Value && Value->isUninit())
3296       Value = nullptr;
3297   }
3298 
3299   // Try evaluating it now, it might have a constant initializer.
3300   Expr::EvalResult EvalResult;
3301   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3302       !EvalResult.hasSideEffects())
3303     Value = &EvalResult.Val;
3304 
3305   llvm::Constant *InitialValue = nullptr;
3306   bool Constant = false;
3307   llvm::Type *Type;
3308   if (Value) {
3309     // The temporary has a constant initializer, use it.
3310     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3311     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3312     Type = InitialValue->getType();
3313   } else {
3314     // No initializer, the initialization will be provided when we
3315     // initialize the declaration which performed lifetime extension.
3316     Type = getTypes().ConvertTypeForMem(MaterializedType);
3317   }
3318 
3319   // Create a global variable for this lifetime-extended temporary.
3320   llvm::GlobalValue::LinkageTypes Linkage =
3321       getLLVMLinkageVarDefinition(VD, Constant);
3322   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3323     const VarDecl *InitVD;
3324     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3325         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3326       // Temporaries defined inside a class get linkonce_odr linkage because the
3327       // class can be defined in multipe translation units.
3328       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3329     } else {
3330       // There is no need for this temporary to have external linkage if the
3331       // VarDecl has external linkage.
3332       Linkage = llvm::GlobalVariable::InternalLinkage;
3333     }
3334   }
3335   unsigned AddrSpace = GetGlobalVarAddressSpace(
3336       VD, getContext().getTargetAddressSpace(MaterializedType));
3337   auto *GV = new llvm::GlobalVariable(
3338       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3339       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3340       AddrSpace);
3341   setGlobalVisibility(GV, VD);
3342   GV->setAlignment(Align.getQuantity());
3343   if (supportsCOMDAT() && GV->isWeakForLinker())
3344     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3345   if (VD->getTLSKind())
3346     setTLSMode(GV, *VD);
3347   MaterializedGlobalTemporaryMap[E] = GV;
3348   return ConstantAddress(GV, Align);
3349 }
3350 
3351 /// EmitObjCPropertyImplementations - Emit information for synthesized
3352 /// properties for an implementation.
3353 void CodeGenModule::EmitObjCPropertyImplementations(const
3354                                                     ObjCImplementationDecl *D) {
3355   for (const auto *PID : D->property_impls()) {
3356     // Dynamic is just for type-checking.
3357     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3358       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3359 
3360       // Determine which methods need to be implemented, some may have
3361       // been overridden. Note that ::isPropertyAccessor is not the method
3362       // we want, that just indicates if the decl came from a
3363       // property. What we want to know is if the method is defined in
3364       // this implementation.
3365       if (!D->getInstanceMethod(PD->getGetterName()))
3366         CodeGenFunction(*this).GenerateObjCGetter(
3367                                  const_cast<ObjCImplementationDecl *>(D), PID);
3368       if (!PD->isReadOnly() &&
3369           !D->getInstanceMethod(PD->getSetterName()))
3370         CodeGenFunction(*this).GenerateObjCSetter(
3371                                  const_cast<ObjCImplementationDecl *>(D), PID);
3372     }
3373   }
3374 }
3375 
3376 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3377   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3378   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3379        ivar; ivar = ivar->getNextIvar())
3380     if (ivar->getType().isDestructedType())
3381       return true;
3382 
3383   return false;
3384 }
3385 
3386 static bool AllTrivialInitializers(CodeGenModule &CGM,
3387                                    ObjCImplementationDecl *D) {
3388   CodeGenFunction CGF(CGM);
3389   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3390        E = D->init_end(); B != E; ++B) {
3391     CXXCtorInitializer *CtorInitExp = *B;
3392     Expr *Init = CtorInitExp->getInit();
3393     if (!CGF.isTrivialInitializer(Init))
3394       return false;
3395   }
3396   return true;
3397 }
3398 
3399 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3400 /// for an implementation.
3401 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3402   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3403   if (needsDestructMethod(D)) {
3404     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3405     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3406     ObjCMethodDecl *DTORMethod =
3407       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3408                              cxxSelector, getContext().VoidTy, nullptr, D,
3409                              /*isInstance=*/true, /*isVariadic=*/false,
3410                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3411                              /*isDefined=*/false, ObjCMethodDecl::Required);
3412     D->addInstanceMethod(DTORMethod);
3413     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3414     D->setHasDestructors(true);
3415   }
3416 
3417   // If the implementation doesn't have any ivar initializers, we don't need
3418   // a .cxx_construct.
3419   if (D->getNumIvarInitializers() == 0 ||
3420       AllTrivialInitializers(*this, D))
3421     return;
3422 
3423   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3424   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3425   // The constructor returns 'self'.
3426   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3427                                                 D->getLocation(),
3428                                                 D->getLocation(),
3429                                                 cxxSelector,
3430                                                 getContext().getObjCIdType(),
3431                                                 nullptr, D, /*isInstance=*/true,
3432                                                 /*isVariadic=*/false,
3433                                                 /*isPropertyAccessor=*/true,
3434                                                 /*isImplicitlyDeclared=*/true,
3435                                                 /*isDefined=*/false,
3436                                                 ObjCMethodDecl::Required);
3437   D->addInstanceMethod(CTORMethod);
3438   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3439   D->setHasNonZeroConstructors(true);
3440 }
3441 
3442 /// EmitNamespace - Emit all declarations in a namespace.
3443 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3444   for (auto *I : ND->decls()) {
3445     if (const auto *VD = dyn_cast<VarDecl>(I))
3446       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3447           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3448         continue;
3449     EmitTopLevelDecl(I);
3450   }
3451 }
3452 
3453 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3454 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3455   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3456       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3457     ErrorUnsupported(LSD, "linkage spec");
3458     return;
3459   }
3460 
3461   for (auto *I : LSD->decls()) {
3462     // Meta-data for ObjC class includes references to implemented methods.
3463     // Generate class's method definitions first.
3464     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3465       for (auto *M : OID->methods())
3466         EmitTopLevelDecl(M);
3467     }
3468     EmitTopLevelDecl(I);
3469   }
3470 }
3471 
3472 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3473 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3474   // Ignore dependent declarations.
3475   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3476     return;
3477 
3478   switch (D->getKind()) {
3479   case Decl::CXXConversion:
3480   case Decl::CXXMethod:
3481   case Decl::Function:
3482     // Skip function templates
3483     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3484         cast<FunctionDecl>(D)->isLateTemplateParsed())
3485       return;
3486 
3487     EmitGlobal(cast<FunctionDecl>(D));
3488     // Always provide some coverage mapping
3489     // even for the functions that aren't emitted.
3490     AddDeferredUnusedCoverageMapping(D);
3491     break;
3492 
3493   case Decl::Var:
3494     // Skip variable templates
3495     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3496       return;
3497   case Decl::VarTemplateSpecialization:
3498     EmitGlobal(cast<VarDecl>(D));
3499     break;
3500 
3501   // Indirect fields from global anonymous structs and unions can be
3502   // ignored; only the actual variable requires IR gen support.
3503   case Decl::IndirectField:
3504     break;
3505 
3506   // C++ Decls
3507   case Decl::Namespace:
3508     EmitNamespace(cast<NamespaceDecl>(D));
3509     break;
3510     // No code generation needed.
3511   case Decl::UsingShadow:
3512   case Decl::ClassTemplate:
3513   case Decl::VarTemplate:
3514   case Decl::VarTemplatePartialSpecialization:
3515   case Decl::FunctionTemplate:
3516   case Decl::TypeAliasTemplate:
3517   case Decl::Block:
3518   case Decl::Empty:
3519     break;
3520   case Decl::Using:          // using X; [C++]
3521     if (CGDebugInfo *DI = getModuleDebugInfo())
3522         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3523     return;
3524   case Decl::NamespaceAlias:
3525     if (CGDebugInfo *DI = getModuleDebugInfo())
3526         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3527     return;
3528   case Decl::UsingDirective: // using namespace X; [C++]
3529     if (CGDebugInfo *DI = getModuleDebugInfo())
3530       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3531     return;
3532   case Decl::CXXConstructor:
3533     // Skip function templates
3534     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3535         cast<FunctionDecl>(D)->isLateTemplateParsed())
3536       return;
3537 
3538     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3539     break;
3540   case Decl::CXXDestructor:
3541     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3542       return;
3543     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3544     break;
3545 
3546   case Decl::StaticAssert:
3547     // Nothing to do.
3548     break;
3549 
3550   // Objective-C Decls
3551 
3552   // Forward declarations, no (immediate) code generation.
3553   case Decl::ObjCInterface:
3554   case Decl::ObjCCategory:
3555     break;
3556 
3557   case Decl::ObjCProtocol: {
3558     auto *Proto = cast<ObjCProtocolDecl>(D);
3559     if (Proto->isThisDeclarationADefinition())
3560       ObjCRuntime->GenerateProtocol(Proto);
3561     break;
3562   }
3563 
3564   case Decl::ObjCCategoryImpl:
3565     // Categories have properties but don't support synthesize so we
3566     // can ignore them here.
3567     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3568     break;
3569 
3570   case Decl::ObjCImplementation: {
3571     auto *OMD = cast<ObjCImplementationDecl>(D);
3572     EmitObjCPropertyImplementations(OMD);
3573     EmitObjCIvarInitializations(OMD);
3574     ObjCRuntime->GenerateClass(OMD);
3575     // Emit global variable debug information.
3576     if (CGDebugInfo *DI = getModuleDebugInfo())
3577       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3578         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3579             OMD->getClassInterface()), OMD->getLocation());
3580     break;
3581   }
3582   case Decl::ObjCMethod: {
3583     auto *OMD = cast<ObjCMethodDecl>(D);
3584     // If this is not a prototype, emit the body.
3585     if (OMD->getBody())
3586       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3587     break;
3588   }
3589   case Decl::ObjCCompatibleAlias:
3590     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3591     break;
3592 
3593   case Decl::LinkageSpec:
3594     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3595     break;
3596 
3597   case Decl::FileScopeAsm: {
3598     // File-scope asm is ignored during device-side CUDA compilation.
3599     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3600       break;
3601     auto *AD = cast<FileScopeAsmDecl>(D);
3602     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3603     break;
3604   }
3605 
3606   case Decl::Import: {
3607     auto *Import = cast<ImportDecl>(D);
3608 
3609     // Ignore import declarations that come from imported modules.
3610     if (Import->getImportedOwningModule())
3611       break;
3612     if (CGDebugInfo *DI = getModuleDebugInfo())
3613       DI->EmitImportDecl(*Import);
3614 
3615     ImportedModules.insert(Import->getImportedModule());
3616     break;
3617   }
3618 
3619   case Decl::OMPThreadPrivate:
3620     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3621     break;
3622 
3623   case Decl::ClassTemplateSpecialization: {
3624     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3625     if (DebugInfo &&
3626         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3627         Spec->hasDefinition())
3628       DebugInfo->completeTemplateDefinition(*Spec);
3629     break;
3630   }
3631 
3632   default:
3633     // Make sure we handled everything we should, every other kind is a
3634     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3635     // function. Need to recode Decl::Kind to do that easily.
3636     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3637     break;
3638   }
3639 }
3640 
3641 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3642   // Do we need to generate coverage mapping?
3643   if (!CodeGenOpts.CoverageMapping)
3644     return;
3645   switch (D->getKind()) {
3646   case Decl::CXXConversion:
3647   case Decl::CXXMethod:
3648   case Decl::Function:
3649   case Decl::ObjCMethod:
3650   case Decl::CXXConstructor:
3651   case Decl::CXXDestructor: {
3652     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3653       return;
3654     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3655     if (I == DeferredEmptyCoverageMappingDecls.end())
3656       DeferredEmptyCoverageMappingDecls[D] = true;
3657     break;
3658   }
3659   default:
3660     break;
3661   };
3662 }
3663 
3664 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3665   // Do we need to generate coverage mapping?
3666   if (!CodeGenOpts.CoverageMapping)
3667     return;
3668   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3669     if (Fn->isTemplateInstantiation())
3670       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3671   }
3672   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3673   if (I == DeferredEmptyCoverageMappingDecls.end())
3674     DeferredEmptyCoverageMappingDecls[D] = false;
3675   else
3676     I->second = false;
3677 }
3678 
3679 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3680   std::vector<const Decl *> DeferredDecls;
3681   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3682     if (!I.second)
3683       continue;
3684     DeferredDecls.push_back(I.first);
3685   }
3686   // Sort the declarations by their location to make sure that the tests get a
3687   // predictable order for the coverage mapping for the unused declarations.
3688   if (CodeGenOpts.DumpCoverageMapping)
3689     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3690               [] (const Decl *LHS, const Decl *RHS) {
3691       return LHS->getLocStart() < RHS->getLocStart();
3692     });
3693   for (const auto *D : DeferredDecls) {
3694     switch (D->getKind()) {
3695     case Decl::CXXConversion:
3696     case Decl::CXXMethod:
3697     case Decl::Function:
3698     case Decl::ObjCMethod: {
3699       CodeGenPGO PGO(*this);
3700       GlobalDecl GD(cast<FunctionDecl>(D));
3701       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3702                                   getFunctionLinkage(GD));
3703       break;
3704     }
3705     case Decl::CXXConstructor: {
3706       CodeGenPGO PGO(*this);
3707       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3708       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3709                                   getFunctionLinkage(GD));
3710       break;
3711     }
3712     case Decl::CXXDestructor: {
3713       CodeGenPGO PGO(*this);
3714       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3715       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3716                                   getFunctionLinkage(GD));
3717       break;
3718     }
3719     default:
3720       break;
3721     };
3722   }
3723 }
3724 
3725 /// Turns the given pointer into a constant.
3726 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3727                                           const void *Ptr) {
3728   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3729   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3730   return llvm::ConstantInt::get(i64, PtrInt);
3731 }
3732 
3733 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3734                                    llvm::NamedMDNode *&GlobalMetadata,
3735                                    GlobalDecl D,
3736                                    llvm::GlobalValue *Addr) {
3737   if (!GlobalMetadata)
3738     GlobalMetadata =
3739       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3740 
3741   // TODO: should we report variant information for ctors/dtors?
3742   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3743                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3744                                CGM.getLLVMContext(), D.getDecl()))};
3745   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3746 }
3747 
3748 /// For each function which is declared within an extern "C" region and marked
3749 /// as 'used', but has internal linkage, create an alias from the unmangled
3750 /// name to the mangled name if possible. People expect to be able to refer
3751 /// to such functions with an unmangled name from inline assembly within the
3752 /// same translation unit.
3753 void CodeGenModule::EmitStaticExternCAliases() {
3754   for (auto &I : StaticExternCValues) {
3755     IdentifierInfo *Name = I.first;
3756     llvm::GlobalValue *Val = I.second;
3757     if (Val && !getModule().getNamedValue(Name->getName()))
3758       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3759   }
3760 }
3761 
3762 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3763                                              GlobalDecl &Result) const {
3764   auto Res = Manglings.find(MangledName);
3765   if (Res == Manglings.end())
3766     return false;
3767   Result = Res->getValue();
3768   return true;
3769 }
3770 
3771 /// Emits metadata nodes associating all the global values in the
3772 /// current module with the Decls they came from.  This is useful for
3773 /// projects using IR gen as a subroutine.
3774 ///
3775 /// Since there's currently no way to associate an MDNode directly
3776 /// with an llvm::GlobalValue, we create a global named metadata
3777 /// with the name 'clang.global.decl.ptrs'.
3778 void CodeGenModule::EmitDeclMetadata() {
3779   llvm::NamedMDNode *GlobalMetadata = nullptr;
3780 
3781   // StaticLocalDeclMap
3782   for (auto &I : MangledDeclNames) {
3783     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3784     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3785   }
3786 }
3787 
3788 /// Emits metadata nodes for all the local variables in the current
3789 /// function.
3790 void CodeGenFunction::EmitDeclMetadata() {
3791   if (LocalDeclMap.empty()) return;
3792 
3793   llvm::LLVMContext &Context = getLLVMContext();
3794 
3795   // Find the unique metadata ID for this name.
3796   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3797 
3798   llvm::NamedMDNode *GlobalMetadata = nullptr;
3799 
3800   for (auto &I : LocalDeclMap) {
3801     const Decl *D = I.first;
3802     llvm::Value *Addr = I.second.getPointer();
3803     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3804       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3805       Alloca->setMetadata(
3806           DeclPtrKind, llvm::MDNode::get(
3807                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3808     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3809       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3810       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3811     }
3812   }
3813 }
3814 
3815 void CodeGenModule::EmitVersionIdentMetadata() {
3816   llvm::NamedMDNode *IdentMetadata =
3817     TheModule.getOrInsertNamedMetadata("llvm.ident");
3818   std::string Version = getClangFullVersion();
3819   llvm::LLVMContext &Ctx = TheModule.getContext();
3820 
3821   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3822   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3823 }
3824 
3825 void CodeGenModule::EmitTargetMetadata() {
3826   // Warning, new MangledDeclNames may be appended within this loop.
3827   // We rely on MapVector insertions adding new elements to the end
3828   // of the container.
3829   // FIXME: Move this loop into the one target that needs it, and only
3830   // loop over those declarations for which we couldn't emit the target
3831   // metadata when we emitted the declaration.
3832   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3833     auto Val = *(MangledDeclNames.begin() + I);
3834     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3835     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3836     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3837   }
3838 }
3839 
3840 void CodeGenModule::EmitCoverageFile() {
3841   if (!getCodeGenOpts().CoverageFile.empty()) {
3842     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3843       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3844       llvm::LLVMContext &Ctx = TheModule.getContext();
3845       llvm::MDString *CoverageFile =
3846           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3847       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3848         llvm::MDNode *CU = CUNode->getOperand(i);
3849         llvm::Metadata *Elts[] = {CoverageFile, CU};
3850         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3851       }
3852     }
3853   }
3854 }
3855 
3856 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3857   // Sema has checked that all uuid strings are of the form
3858   // "12345678-1234-1234-1234-1234567890ab".
3859   assert(Uuid.size() == 36);
3860   for (unsigned i = 0; i < 36; ++i) {
3861     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3862     else                                         assert(isHexDigit(Uuid[i]));
3863   }
3864 
3865   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3866   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3867 
3868   llvm::Constant *Field3[8];
3869   for (unsigned Idx = 0; Idx < 8; ++Idx)
3870     Field3[Idx] = llvm::ConstantInt::get(
3871         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3872 
3873   llvm::Constant *Fields[4] = {
3874     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3875     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3876     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3877     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3878   };
3879 
3880   return llvm::ConstantStruct::getAnon(Fields);
3881 }
3882 
3883 llvm::Constant *
3884 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
3885                                             QualType CatchHandlerType) {
3886   return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
3887 }
3888 
3889 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3890                                                        bool ForEH) {
3891   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3892   // FIXME: should we even be calling this method if RTTI is disabled
3893   // and it's not for EH?
3894   if (!ForEH && !getLangOpts().RTTI)
3895     return llvm::Constant::getNullValue(Int8PtrTy);
3896 
3897   if (ForEH && Ty->isObjCObjectPointerType() &&
3898       LangOpts.ObjCRuntime.isGNUFamily())
3899     return ObjCRuntime->GetEHType(Ty);
3900 
3901   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3902 }
3903 
3904 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3905   for (auto RefExpr : D->varlists()) {
3906     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3907     bool PerformInit =
3908         VD->getAnyInitializer() &&
3909         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3910                                                         /*ForRef=*/false);
3911 
3912     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3913     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3914             VD, Addr, RefExpr->getLocStart(), PerformInit))
3915       CXXGlobalInits.push_back(InitFunction);
3916   }
3917 }
3918 
3919 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
3920   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
3921   if (InternalId)
3922     return InternalId;
3923 
3924   if (isExternallyVisible(T->getLinkage())) {
3925     std::string OutName;
3926     llvm::raw_string_ostream Out(OutName);
3927     getCXXABI().getMangleContext().mangleTypeName(T, Out);
3928 
3929     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
3930   } else {
3931     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
3932                                            llvm::ArrayRef<llvm::Metadata *>());
3933   }
3934 
3935   return InternalId;
3936 }
3937 
3938 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry(
3939     llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) {
3940   llvm::Metadata *BitsetOps[] = {
3941       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)),
3942       llvm::ConstantAsMetadata::get(VTable),
3943       llvm::ConstantAsMetadata::get(
3944           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3945   return llvm::MDTuple::get(getLLVMContext(), BitsetOps);
3946 }
3947