1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile: %0"); 149 getDiags().Report(DiagID) << EC.message(); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() { 161 delete ObjCRuntime; 162 delete OpenCLRuntime; 163 delete OpenMPRuntime; 164 delete CUDARuntime; 165 delete TheTargetCodeGenInfo; 166 delete TBAA; 167 delete DebugInfo; 168 delete ARCData; 169 delete RRData; 170 } 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime = CreateGNUObjCRuntime(*this); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 ObjCRuntime = CreateMacObjCRuntime(*this); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime = new CGOpenCLRuntime(*this); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 OpenMPRuntime = new CGOpenMPRuntime(*this); 197 } 198 199 void CodeGenModule::createCUDARuntime() { 200 CUDARuntime = CreateNVCUDARuntime(*this); 201 } 202 203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 204 Replacements[Name] = C; 205 } 206 207 void CodeGenModule::applyReplacements() { 208 for (ReplacementsTy::iterator I = Replacements.begin(), 209 E = Replacements.end(); 210 I != E; ++I) { 211 StringRef MangledName = I->first(); 212 llvm::Constant *Replacement = I->second; 213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 214 if (!Entry) 215 continue; 216 auto *OldF = cast<llvm::Function>(Entry); 217 auto *NewF = dyn_cast<llvm::Function>(Replacement); 218 if (!NewF) { 219 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 220 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 221 } else { 222 auto *CE = cast<llvm::ConstantExpr>(Replacement); 223 assert(CE->getOpcode() == llvm::Instruction::BitCast || 224 CE->getOpcode() == llvm::Instruction::GetElementPtr); 225 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 226 } 227 } 228 229 // Replace old with new, but keep the old order. 230 OldF->replaceAllUsesWith(Replacement); 231 if (NewF) { 232 NewF->removeFromParent(); 233 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 234 } 235 OldF->eraseFromParent(); 236 } 237 } 238 239 // This is only used in aliases that we created and we know they have a 240 // linear structure. 241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 242 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 243 const llvm::Constant *C = &GA; 244 for (;;) { 245 C = C->stripPointerCasts(); 246 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 247 return GO; 248 // stripPointerCasts will not walk over weak aliases. 249 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 250 if (!GA2) 251 return nullptr; 252 if (!Visited.insert(GA2).second) 253 return nullptr; 254 C = GA2->getAliasee(); 255 } 256 } 257 258 void CodeGenModule::checkAliases() { 259 // Check if the constructed aliases are well formed. It is really unfortunate 260 // that we have to do this in CodeGen, but we only construct mangled names 261 // and aliases during codegen. 262 bool Error = false; 263 DiagnosticsEngine &Diags = getDiags(); 264 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 265 E = Aliases.end(); I != E; ++I) { 266 const GlobalDecl &GD = *I; 267 const auto *D = cast<ValueDecl>(GD.getDecl()); 268 const AliasAttr *AA = D->getAttr<AliasAttr>(); 269 StringRef MangledName = getMangledName(GD); 270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 271 auto *Alias = cast<llvm::GlobalAlias>(Entry); 272 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 273 if (!GV) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 276 } else if (GV->isDeclaration()) { 277 Error = true; 278 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 279 } 280 281 llvm::Constant *Aliasee = Alias->getAliasee(); 282 llvm::GlobalValue *AliaseeGV; 283 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 284 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 285 else 286 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 287 288 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 289 StringRef AliasSection = SA->getName(); 290 if (AliasSection != AliaseeGV->getSection()) 291 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 292 << AliasSection; 293 } 294 295 // We have to handle alias to weak aliases in here. LLVM itself disallows 296 // this since the object semantics would not match the IL one. For 297 // compatibility with gcc we implement it by just pointing the alias 298 // to its aliasee's aliasee. We also warn, since the user is probably 299 // expecting the link to be weak. 300 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 301 if (GA->mayBeOverridden()) { 302 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 303 << GV->getName() << GA->getName(); 304 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 305 GA->getAliasee(), Alias->getType()); 306 Alias->setAliasee(Aliasee); 307 } 308 } 309 } 310 if (!Error) 311 return; 312 313 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 314 E = Aliases.end(); I != E; ++I) { 315 const GlobalDecl &GD = *I; 316 StringRef MangledName = getMangledName(GD); 317 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 318 auto *Alias = cast<llvm::GlobalAlias>(Entry); 319 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 320 Alias->eraseFromParent(); 321 } 322 } 323 324 void CodeGenModule::clear() { 325 DeferredDeclsToEmit.clear(); 326 if (OpenMPRuntime) 327 OpenMPRuntime->clear(); 328 } 329 330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 331 StringRef MainFile) { 332 if (!hasDiagnostics()) 333 return; 334 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 335 if (MainFile.empty()) 336 MainFile = "<stdin>"; 337 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 338 } else 339 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 340 << Mismatched; 341 } 342 343 void CodeGenModule::Release() { 344 EmitDeferred(); 345 applyReplacements(); 346 checkAliases(); 347 EmitCXXGlobalInitFunc(); 348 EmitCXXGlobalDtorFunc(); 349 EmitCXXThreadLocalInitFunc(); 350 if (ObjCRuntime) 351 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 352 AddGlobalCtor(ObjCInitFunction); 353 if (PGOReader && PGOStats.hasDiagnostics()) 354 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 355 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 356 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 357 EmitGlobalAnnotations(); 358 EmitStaticExternCAliases(); 359 EmitDeferredUnusedCoverageMappings(); 360 if (CoverageMapping) 361 CoverageMapping->emit(); 362 emitLLVMUsed(); 363 364 if (CodeGenOpts.Autolink && 365 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 366 EmitModuleLinkOptions(); 367 } 368 if (CodeGenOpts.DwarfVersion) 369 // We actually want the latest version when there are conflicts. 370 // We can change from Warning to Latest if such mode is supported. 371 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 372 CodeGenOpts.DwarfVersion); 373 if (DebugInfo) 374 // We support a single version in the linked module. The LLVM 375 // parser will drop debug info with a different version number 376 // (and warn about it, too). 377 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 378 llvm::DEBUG_METADATA_VERSION); 379 380 // We need to record the widths of enums and wchar_t, so that we can generate 381 // the correct build attributes in the ARM backend. 382 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 383 if ( Arch == llvm::Triple::arm 384 || Arch == llvm::Triple::armeb 385 || Arch == llvm::Triple::thumb 386 || Arch == llvm::Triple::thumbeb) { 387 // Width of wchar_t in bytes 388 uint64_t WCharWidth = 389 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 390 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 391 392 // The minimum width of an enum in bytes 393 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 394 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 395 } 396 397 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 398 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 399 switch (PLevel) { 400 case 0: break; 401 case 1: PL = llvm::PICLevel::Small; break; 402 case 2: PL = llvm::PICLevel::Large; break; 403 default: llvm_unreachable("Invalid PIC Level"); 404 } 405 406 getModule().setPICLevel(PL); 407 } 408 409 SimplifyPersonality(); 410 411 if (getCodeGenOpts().EmitDeclMetadata) 412 EmitDeclMetadata(); 413 414 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 415 EmitCoverageFile(); 416 417 if (DebugInfo) 418 DebugInfo->finalize(); 419 420 EmitVersionIdentMetadata(); 421 422 EmitTargetMetadata(); 423 } 424 425 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 426 // Make sure that this type is translated. 427 Types.UpdateCompletedType(TD); 428 } 429 430 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 431 if (!TBAA) 432 return nullptr; 433 return TBAA->getTBAAInfo(QTy); 434 } 435 436 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 437 if (!TBAA) 438 return nullptr; 439 return TBAA->getTBAAInfoForVTablePtr(); 440 } 441 442 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 443 if (!TBAA) 444 return nullptr; 445 return TBAA->getTBAAStructInfo(QTy); 446 } 447 448 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 449 if (!TBAA) 450 return nullptr; 451 return TBAA->getTBAAStructTypeInfo(QTy); 452 } 453 454 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 455 llvm::MDNode *AccessN, 456 uint64_t O) { 457 if (!TBAA) 458 return nullptr; 459 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 460 } 461 462 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 463 /// and struct-path aware TBAA, the tag has the same format: 464 /// base type, access type and offset. 465 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 466 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 467 llvm::MDNode *TBAAInfo, 468 bool ConvertTypeToTag) { 469 if (ConvertTypeToTag && TBAA) 470 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 471 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 472 else 473 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 474 } 475 476 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 477 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 478 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 479 } 480 481 /// ErrorUnsupported - Print out an error that codegen doesn't support the 482 /// specified stmt yet. 483 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 484 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 485 "cannot compile this %0 yet"); 486 std::string Msg = Type; 487 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 488 << Msg << S->getSourceRange(); 489 } 490 491 /// ErrorUnsupported - Print out an error that codegen doesn't support the 492 /// specified decl yet. 493 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 494 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 495 "cannot compile this %0 yet"); 496 std::string Msg = Type; 497 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 498 } 499 500 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 501 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 502 } 503 504 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 505 const NamedDecl *D) const { 506 // Internal definitions always have default visibility. 507 if (GV->hasLocalLinkage()) { 508 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 509 return; 510 } 511 512 // Set visibility for definitions. 513 LinkageInfo LV = D->getLinkageAndVisibility(); 514 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 515 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 516 } 517 518 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 519 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 520 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 521 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 522 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 523 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 524 } 525 526 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 527 CodeGenOptions::TLSModel M) { 528 switch (M) { 529 case CodeGenOptions::GeneralDynamicTLSModel: 530 return llvm::GlobalVariable::GeneralDynamicTLSModel; 531 case CodeGenOptions::LocalDynamicTLSModel: 532 return llvm::GlobalVariable::LocalDynamicTLSModel; 533 case CodeGenOptions::InitialExecTLSModel: 534 return llvm::GlobalVariable::InitialExecTLSModel; 535 case CodeGenOptions::LocalExecTLSModel: 536 return llvm::GlobalVariable::LocalExecTLSModel; 537 } 538 llvm_unreachable("Invalid TLS model!"); 539 } 540 541 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 542 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 543 544 llvm::GlobalValue::ThreadLocalMode TLM; 545 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 546 547 // Override the TLS model if it is explicitly specified. 548 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 549 TLM = GetLLVMTLSModel(Attr->getModel()); 550 } 551 552 GV->setThreadLocalMode(TLM); 553 } 554 555 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 556 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 557 if (!FoundStr.empty()) 558 return FoundStr; 559 560 const auto *ND = cast<NamedDecl>(GD.getDecl()); 561 SmallString<256> Buffer; 562 StringRef Str; 563 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 564 llvm::raw_svector_ostream Out(Buffer); 565 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 566 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 567 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 568 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 569 else 570 getCXXABI().getMangleContext().mangleName(ND, Out); 571 Str = Out.str(); 572 } else { 573 IdentifierInfo *II = ND->getIdentifier(); 574 assert(II && "Attempt to mangle unnamed decl."); 575 Str = II->getName(); 576 } 577 578 // Keep the first result in the case of a mangling collision. 579 auto Result = Manglings.insert(std::make_pair(Str, GD)); 580 return FoundStr = Result.first->first(); 581 } 582 583 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 584 const BlockDecl *BD) { 585 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 586 const Decl *D = GD.getDecl(); 587 588 SmallString<256> Buffer; 589 llvm::raw_svector_ostream Out(Buffer); 590 if (!D) 591 MangleCtx.mangleGlobalBlock(BD, 592 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 593 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 594 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 595 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 596 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 597 else 598 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 599 600 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 601 return Result.first->first(); 602 } 603 604 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 605 return getModule().getNamedValue(Name); 606 } 607 608 /// AddGlobalCtor - Add a function to the list that will be called before 609 /// main() runs. 610 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 611 llvm::Constant *AssociatedData) { 612 // FIXME: Type coercion of void()* types. 613 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 614 } 615 616 /// AddGlobalDtor - Add a function to the list that will be called 617 /// when the module is unloaded. 618 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 619 // FIXME: Type coercion of void()* types. 620 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 621 } 622 623 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 624 // Ctor function type is void()*. 625 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 626 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 627 628 // Get the type of a ctor entry, { i32, void ()*, i8* }. 629 llvm::StructType *CtorStructTy = llvm::StructType::get( 630 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 631 632 // Construct the constructor and destructor arrays. 633 SmallVector<llvm::Constant*, 8> Ctors; 634 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 635 llvm::Constant *S[] = { 636 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 637 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 638 (I->AssociatedData 639 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 640 : llvm::Constant::getNullValue(VoidPtrTy)) 641 }; 642 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 643 } 644 645 if (!Ctors.empty()) { 646 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 647 new llvm::GlobalVariable(TheModule, AT, false, 648 llvm::GlobalValue::AppendingLinkage, 649 llvm::ConstantArray::get(AT, Ctors), 650 GlobalName); 651 } 652 } 653 654 llvm::GlobalValue::LinkageTypes 655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 656 const auto *D = cast<FunctionDecl>(GD.getDecl()); 657 658 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 659 660 if (isa<CXXDestructorDecl>(D) && 661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 662 GD.getDtorType())) { 663 // Destructor variants in the Microsoft C++ ABI are always internal or 664 // linkonce_odr thunks emitted on an as-needed basis. 665 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 666 : llvm::GlobalValue::LinkOnceODRLinkage; 667 } 668 669 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 670 } 671 672 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 673 llvm::Function *F) { 674 setNonAliasAttributes(D, F); 675 } 676 677 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 678 const CGFunctionInfo &Info, 679 llvm::Function *F) { 680 unsigned CallingConv; 681 AttributeListType AttributeList; 682 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 683 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 684 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 685 } 686 687 /// Determines whether the language options require us to model 688 /// unwind exceptions. We treat -fexceptions as mandating this 689 /// except under the fragile ObjC ABI with only ObjC exceptions 690 /// enabled. This means, for example, that C with -fexceptions 691 /// enables this. 692 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 693 // If exceptions are completely disabled, obviously this is false. 694 if (!LangOpts.Exceptions) return false; 695 696 // If C++ exceptions are enabled, this is true. 697 if (LangOpts.CXXExceptions) return true; 698 699 // If ObjC exceptions are enabled, this depends on the ABI. 700 if (LangOpts.ObjCExceptions) { 701 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 702 } 703 704 return true; 705 } 706 707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 708 llvm::Function *F) { 709 llvm::AttrBuilder B; 710 711 if (CodeGenOpts.UnwindTables) 712 B.addAttribute(llvm::Attribute::UWTable); 713 714 if (!hasUnwindExceptions(LangOpts)) 715 B.addAttribute(llvm::Attribute::NoUnwind); 716 717 if (D->hasAttr<NakedAttr>()) { 718 // Naked implies noinline: we should not be inlining such functions. 719 B.addAttribute(llvm::Attribute::Naked); 720 B.addAttribute(llvm::Attribute::NoInline); 721 } else if (D->hasAttr<NoDuplicateAttr>()) { 722 B.addAttribute(llvm::Attribute::NoDuplicate); 723 } else if (D->hasAttr<NoInlineAttr>()) { 724 B.addAttribute(llvm::Attribute::NoInline); 725 } else if (D->hasAttr<AlwaysInlineAttr>() && 726 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 727 llvm::Attribute::NoInline)) { 728 // (noinline wins over always_inline, and we can't specify both in IR) 729 B.addAttribute(llvm::Attribute::AlwaysInline); 730 } 731 732 if (D->hasAttr<ColdAttr>()) { 733 if (!D->hasAttr<OptimizeNoneAttr>()) 734 B.addAttribute(llvm::Attribute::OptimizeForSize); 735 B.addAttribute(llvm::Attribute::Cold); 736 } 737 738 if (D->hasAttr<MinSizeAttr>()) 739 B.addAttribute(llvm::Attribute::MinSize); 740 741 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 742 B.addAttribute(llvm::Attribute::StackProtect); 743 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 744 B.addAttribute(llvm::Attribute::StackProtectStrong); 745 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 746 B.addAttribute(llvm::Attribute::StackProtectReq); 747 748 // Add sanitizer attributes if function is not blacklisted. 749 if (!isInSanitizerBlacklist(F, D->getLocation())) { 750 // When AddressSanitizer is enabled, set SanitizeAddress attribute 751 // unless __attribute__((no_sanitize_address)) is used. 752 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 753 !D->hasAttr<NoSanitizeAddressAttr>()) 754 B.addAttribute(llvm::Attribute::SanitizeAddress); 755 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 756 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 757 !D->hasAttr<NoSanitizeThreadAttr>()) 758 B.addAttribute(llvm::Attribute::SanitizeThread); 759 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 760 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 761 !D->hasAttr<NoSanitizeMemoryAttr>()) 762 B.addAttribute(llvm::Attribute::SanitizeMemory); 763 } 764 765 F->addAttributes(llvm::AttributeSet::FunctionIndex, 766 llvm::AttributeSet::get( 767 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 768 769 if (D->hasAttr<OptimizeNoneAttr>()) { 770 // OptimizeNone implies noinline; we should not be inlining such functions. 771 F->addFnAttr(llvm::Attribute::OptimizeNone); 772 F->addFnAttr(llvm::Attribute::NoInline); 773 774 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 775 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 776 "OptimizeNone and OptimizeForSize on same function!"); 777 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 778 "OptimizeNone and MinSize on same function!"); 779 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 780 "OptimizeNone and AlwaysInline on same function!"); 781 782 // Attribute 'inlinehint' has no effect on 'optnone' functions. 783 // Explicitly remove it from the set of function attributes. 784 F->removeFnAttr(llvm::Attribute::InlineHint); 785 } 786 787 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 788 F->setUnnamedAddr(true); 789 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 790 if (MD->isVirtual()) 791 F->setUnnamedAddr(true); 792 793 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 794 if (alignment) 795 F->setAlignment(alignment); 796 797 // C++ ABI requires 2-byte alignment for member functions. 798 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 799 F->setAlignment(2); 800 } 801 802 void CodeGenModule::SetCommonAttributes(const Decl *D, 803 llvm::GlobalValue *GV) { 804 if (const auto *ND = dyn_cast<NamedDecl>(D)) 805 setGlobalVisibility(GV, ND); 806 else 807 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 808 809 if (D->hasAttr<UsedAttr>()) 810 addUsedGlobal(GV); 811 } 812 813 void CodeGenModule::setAliasAttributes(const Decl *D, 814 llvm::GlobalValue *GV) { 815 SetCommonAttributes(D, GV); 816 817 // Process the dllexport attribute based on whether the original definition 818 // (not necessarily the aliasee) was exported. 819 if (D->hasAttr<DLLExportAttr>()) 820 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 821 } 822 823 void CodeGenModule::setNonAliasAttributes(const Decl *D, 824 llvm::GlobalObject *GO) { 825 SetCommonAttributes(D, GO); 826 827 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 828 GO->setSection(SA->getName()); 829 830 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 831 } 832 833 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 834 llvm::Function *F, 835 const CGFunctionInfo &FI) { 836 SetLLVMFunctionAttributes(D, FI, F); 837 SetLLVMFunctionAttributesForDefinition(D, F); 838 839 F->setLinkage(llvm::Function::InternalLinkage); 840 841 setNonAliasAttributes(D, F); 842 } 843 844 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 845 const NamedDecl *ND) { 846 // Set linkage and visibility in case we never see a definition. 847 LinkageInfo LV = ND->getLinkageAndVisibility(); 848 if (LV.getLinkage() != ExternalLinkage) { 849 // Don't set internal linkage on declarations. 850 } else { 851 if (ND->hasAttr<DLLImportAttr>()) { 852 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 853 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 854 } else if (ND->hasAttr<DLLExportAttr>()) { 855 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 856 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 857 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 858 // "extern_weak" is overloaded in LLVM; we probably should have 859 // separate linkage types for this. 860 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 861 } 862 863 // Set visibility on a declaration only if it's explicit. 864 if (LV.isVisibilityExplicit()) 865 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 866 } 867 } 868 869 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 870 bool IsIncompleteFunction, 871 bool IsThunk) { 872 if (unsigned IID = F->getIntrinsicID()) { 873 // If this is an intrinsic function, set the function's attributes 874 // to the intrinsic's attributes. 875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 876 (llvm::Intrinsic::ID)IID)); 877 return; 878 } 879 880 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 881 882 if (!IsIncompleteFunction) 883 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 884 885 // Add the Returned attribute for "this", except for iOS 5 and earlier 886 // where substantial code, including the libstdc++ dylib, was compiled with 887 // GCC and does not actually return "this". 888 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 889 !(getTarget().getTriple().isiOS() && 890 getTarget().getTriple().isOSVersionLT(6))) { 891 assert(!F->arg_empty() && 892 F->arg_begin()->getType() 893 ->canLosslesslyBitCastTo(F->getReturnType()) && 894 "unexpected this return"); 895 F->addAttribute(1, llvm::Attribute::Returned); 896 } 897 898 // Only a few attributes are set on declarations; these may later be 899 // overridden by a definition. 900 901 setLinkageAndVisibilityForGV(F, FD); 902 903 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 904 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 905 // Don't dllexport/import destructor thunks. 906 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 907 } 908 } 909 910 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 911 F->setSection(SA->getName()); 912 913 // A replaceable global allocation function does not act like a builtin by 914 // default, only if it is invoked by a new-expression or delete-expression. 915 if (FD->isReplaceableGlobalAllocationFunction()) 916 F->addAttribute(llvm::AttributeSet::FunctionIndex, 917 llvm::Attribute::NoBuiltin); 918 } 919 920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 921 assert(!GV->isDeclaration() && 922 "Only globals with definition can force usage."); 923 LLVMUsed.push_back(GV); 924 } 925 926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 927 assert(!GV->isDeclaration() && 928 "Only globals with definition can force usage."); 929 LLVMCompilerUsed.push_back(GV); 930 } 931 932 static void emitUsed(CodeGenModule &CGM, StringRef Name, 933 std::vector<llvm::WeakVH> &List) { 934 // Don't create llvm.used if there is no need. 935 if (List.empty()) 936 return; 937 938 // Convert List to what ConstantArray needs. 939 SmallVector<llvm::Constant*, 8> UsedArray; 940 UsedArray.resize(List.size()); 941 for (unsigned i = 0, e = List.size(); i != e; ++i) { 942 UsedArray[i] = 943 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 944 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 945 } 946 947 if (UsedArray.empty()) 948 return; 949 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 950 951 auto *GV = new llvm::GlobalVariable( 952 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 953 llvm::ConstantArray::get(ATy, UsedArray), Name); 954 955 GV->setSection("llvm.metadata"); 956 } 957 958 void CodeGenModule::emitLLVMUsed() { 959 emitUsed(*this, "llvm.used", LLVMUsed); 960 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 961 } 962 963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 964 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 966 } 967 968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 969 llvm::SmallString<32> Opt; 970 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 971 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 972 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 973 } 974 975 void CodeGenModule::AddDependentLib(StringRef Lib) { 976 llvm::SmallString<24> Opt; 977 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 978 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 979 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 980 } 981 982 /// \brief Add link options implied by the given module, including modules 983 /// it depends on, using a postorder walk. 984 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 985 SmallVectorImpl<llvm::Metadata *> &Metadata, 986 llvm::SmallPtrSet<Module *, 16> &Visited) { 987 // Import this module's parent. 988 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 989 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 990 } 991 992 // Import this module's dependencies. 993 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 994 if (Visited.insert(Mod->Imports[I - 1]).second) 995 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 996 } 997 998 // Add linker options to link against the libraries/frameworks 999 // described by this module. 1000 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1001 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1002 // Link against a framework. Frameworks are currently Darwin only, so we 1003 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1004 if (Mod->LinkLibraries[I-1].IsFramework) { 1005 llvm::Metadata *Args[2] = { 1006 llvm::MDString::get(Context, "-framework"), 1007 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1008 1009 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1010 continue; 1011 } 1012 1013 // Link against a library. 1014 llvm::SmallString<24> Opt; 1015 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1016 Mod->LinkLibraries[I-1].Library, Opt); 1017 auto *OptString = llvm::MDString::get(Context, Opt); 1018 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1019 } 1020 } 1021 1022 void CodeGenModule::EmitModuleLinkOptions() { 1023 // Collect the set of all of the modules we want to visit to emit link 1024 // options, which is essentially the imported modules and all of their 1025 // non-explicit child modules. 1026 llvm::SetVector<clang::Module *> LinkModules; 1027 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1028 SmallVector<clang::Module *, 16> Stack; 1029 1030 // Seed the stack with imported modules. 1031 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1032 MEnd = ImportedModules.end(); 1033 M != MEnd; ++M) { 1034 if (Visited.insert(*M).second) 1035 Stack.push_back(*M); 1036 } 1037 1038 // Find all of the modules to import, making a little effort to prune 1039 // non-leaf modules. 1040 while (!Stack.empty()) { 1041 clang::Module *Mod = Stack.pop_back_val(); 1042 1043 bool AnyChildren = false; 1044 1045 // Visit the submodules of this module. 1046 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1047 SubEnd = Mod->submodule_end(); 1048 Sub != SubEnd; ++Sub) { 1049 // Skip explicit children; they need to be explicitly imported to be 1050 // linked against. 1051 if ((*Sub)->IsExplicit) 1052 continue; 1053 1054 if (Visited.insert(*Sub).second) { 1055 Stack.push_back(*Sub); 1056 AnyChildren = true; 1057 } 1058 } 1059 1060 // We didn't find any children, so add this module to the list of 1061 // modules to link against. 1062 if (!AnyChildren) { 1063 LinkModules.insert(Mod); 1064 } 1065 } 1066 1067 // Add link options for all of the imported modules in reverse topological 1068 // order. We don't do anything to try to order import link flags with respect 1069 // to linker options inserted by things like #pragma comment(). 1070 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1071 Visited.clear(); 1072 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1073 MEnd = LinkModules.end(); 1074 M != MEnd; ++M) { 1075 if (Visited.insert(*M).second) 1076 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1077 } 1078 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1079 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1080 1081 // Add the linker options metadata flag. 1082 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1083 llvm::MDNode::get(getLLVMContext(), 1084 LinkerOptionsMetadata)); 1085 } 1086 1087 void CodeGenModule::EmitDeferred() { 1088 // Emit code for any potentially referenced deferred decls. Since a 1089 // previously unused static decl may become used during the generation of code 1090 // for a static function, iterate until no changes are made. 1091 1092 if (!DeferredVTables.empty()) { 1093 EmitDeferredVTables(); 1094 1095 // Emitting a v-table doesn't directly cause more v-tables to 1096 // become deferred, although it can cause functions to be 1097 // emitted that then need those v-tables. 1098 assert(DeferredVTables.empty()); 1099 } 1100 1101 // Stop if we're out of both deferred v-tables and deferred declarations. 1102 if (DeferredDeclsToEmit.empty()) 1103 return; 1104 1105 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1106 // work, it will not interfere with this. 1107 std::vector<DeferredGlobal> CurDeclsToEmit; 1108 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1109 1110 for (DeferredGlobal &G : CurDeclsToEmit) { 1111 GlobalDecl D = G.GD; 1112 llvm::GlobalValue *GV = G.GV; 1113 G.GV = nullptr; 1114 1115 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1116 if (!GV) 1117 GV = GetGlobalValue(getMangledName(D)); 1118 1119 // Check to see if we've already emitted this. This is necessary 1120 // for a couple of reasons: first, decls can end up in the 1121 // deferred-decls queue multiple times, and second, decls can end 1122 // up with definitions in unusual ways (e.g. by an extern inline 1123 // function acquiring a strong function redefinition). Just 1124 // ignore these cases. 1125 if (GV && !GV->isDeclaration()) 1126 continue; 1127 1128 // Otherwise, emit the definition and move on to the next one. 1129 EmitGlobalDefinition(D, GV); 1130 1131 // If we found out that we need to emit more decls, do that recursively. 1132 // This has the advantage that the decls are emitted in a DFS and related 1133 // ones are close together, which is convenient for testing. 1134 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1135 EmitDeferred(); 1136 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1137 } 1138 } 1139 } 1140 1141 void CodeGenModule::EmitGlobalAnnotations() { 1142 if (Annotations.empty()) 1143 return; 1144 1145 // Create a new global variable for the ConstantStruct in the Module. 1146 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1147 Annotations[0]->getType(), Annotations.size()), Annotations); 1148 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1149 llvm::GlobalValue::AppendingLinkage, 1150 Array, "llvm.global.annotations"); 1151 gv->setSection(AnnotationSection); 1152 } 1153 1154 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1155 llvm::Constant *&AStr = AnnotationStrings[Str]; 1156 if (AStr) 1157 return AStr; 1158 1159 // Not found yet, create a new global. 1160 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1161 auto *gv = 1162 new llvm::GlobalVariable(getModule(), s->getType(), true, 1163 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1164 gv->setSection(AnnotationSection); 1165 gv->setUnnamedAddr(true); 1166 AStr = gv; 1167 return gv; 1168 } 1169 1170 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1171 SourceManager &SM = getContext().getSourceManager(); 1172 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1173 if (PLoc.isValid()) 1174 return EmitAnnotationString(PLoc.getFilename()); 1175 return EmitAnnotationString(SM.getBufferName(Loc)); 1176 } 1177 1178 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1179 SourceManager &SM = getContext().getSourceManager(); 1180 PresumedLoc PLoc = SM.getPresumedLoc(L); 1181 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1182 SM.getExpansionLineNumber(L); 1183 return llvm::ConstantInt::get(Int32Ty, LineNo); 1184 } 1185 1186 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1187 const AnnotateAttr *AA, 1188 SourceLocation L) { 1189 // Get the globals for file name, annotation, and the line number. 1190 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1191 *UnitGV = EmitAnnotationUnit(L), 1192 *LineNoCst = EmitAnnotationLineNo(L); 1193 1194 // Create the ConstantStruct for the global annotation. 1195 llvm::Constant *Fields[4] = { 1196 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1197 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1198 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1199 LineNoCst 1200 }; 1201 return llvm::ConstantStruct::getAnon(Fields); 1202 } 1203 1204 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1205 llvm::GlobalValue *GV) { 1206 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1207 // Get the struct elements for these annotations. 1208 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1209 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1210 } 1211 1212 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1213 SourceLocation Loc) const { 1214 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1215 // Blacklist by function name. 1216 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1217 return true; 1218 // Blacklist by location. 1219 if (!Loc.isInvalid()) 1220 return SanitizerBL.isBlacklistedLocation(Loc); 1221 // If location is unknown, this may be a compiler-generated function. Assume 1222 // it's located in the main file. 1223 auto &SM = Context.getSourceManager(); 1224 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1225 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1226 } 1227 return false; 1228 } 1229 1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1231 SourceLocation Loc, QualType Ty, 1232 StringRef Category) const { 1233 // For now globals can be blacklisted only in ASan. 1234 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1235 return false; 1236 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1237 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1238 return true; 1239 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1240 return true; 1241 // Check global type. 1242 if (!Ty.isNull()) { 1243 // Drill down the array types: if global variable of a fixed type is 1244 // blacklisted, we also don't instrument arrays of them. 1245 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1246 Ty = AT->getElementType(); 1247 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1248 // We allow to blacklist only record types (classes, structs etc.) 1249 if (Ty->isRecordType()) { 1250 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1251 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1252 return true; 1253 } 1254 } 1255 return false; 1256 } 1257 1258 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1259 // Never defer when EmitAllDecls is specified. 1260 if (LangOpts.EmitAllDecls) 1261 return true; 1262 1263 return getContext().DeclMustBeEmitted(Global); 1264 } 1265 1266 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1267 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1268 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1269 // Implicit template instantiations may change linkage if they are later 1270 // explicitly instantiated, so they should not be emitted eagerly. 1271 return false; 1272 1273 return true; 1274 } 1275 1276 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1277 const CXXUuidofExpr* E) { 1278 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1279 // well-formed. 1280 StringRef Uuid = E->getUuidAsStringRef(Context); 1281 std::string Name = "_GUID_" + Uuid.lower(); 1282 std::replace(Name.begin(), Name.end(), '-', '_'); 1283 1284 // Look for an existing global. 1285 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1286 return GV; 1287 1288 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1289 assert(Init && "failed to initialize as constant"); 1290 1291 auto *GV = new llvm::GlobalVariable( 1292 getModule(), Init->getType(), 1293 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1294 if (supportsCOMDAT()) 1295 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1296 return GV; 1297 } 1298 1299 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1300 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1301 assert(AA && "No alias?"); 1302 1303 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1304 1305 // See if there is already something with the target's name in the module. 1306 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1307 if (Entry) { 1308 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1309 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1310 } 1311 1312 llvm::Constant *Aliasee; 1313 if (isa<llvm::FunctionType>(DeclTy)) 1314 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1315 GlobalDecl(cast<FunctionDecl>(VD)), 1316 /*ForVTable=*/false); 1317 else 1318 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1319 llvm::PointerType::getUnqual(DeclTy), 1320 nullptr); 1321 1322 auto *F = cast<llvm::GlobalValue>(Aliasee); 1323 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1324 WeakRefReferences.insert(F); 1325 1326 return Aliasee; 1327 } 1328 1329 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1330 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1331 1332 // Weak references don't produce any output by themselves. 1333 if (Global->hasAttr<WeakRefAttr>()) 1334 return; 1335 1336 // If this is an alias definition (which otherwise looks like a declaration) 1337 // emit it now. 1338 if (Global->hasAttr<AliasAttr>()) 1339 return EmitAliasDefinition(GD); 1340 1341 // If this is CUDA, be selective about which declarations we emit. 1342 if (LangOpts.CUDA) { 1343 if (LangOpts.CUDAIsDevice) { 1344 if (!Global->hasAttr<CUDADeviceAttr>() && 1345 !Global->hasAttr<CUDAGlobalAttr>() && 1346 !Global->hasAttr<CUDAConstantAttr>() && 1347 !Global->hasAttr<CUDASharedAttr>()) 1348 return; 1349 } else { 1350 if (!Global->hasAttr<CUDAHostAttr>() && ( 1351 Global->hasAttr<CUDADeviceAttr>() || 1352 Global->hasAttr<CUDAConstantAttr>() || 1353 Global->hasAttr<CUDASharedAttr>())) 1354 return; 1355 } 1356 } 1357 1358 // Ignore declarations, they will be emitted on their first use. 1359 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1360 // Forward declarations are emitted lazily on first use. 1361 if (!FD->doesThisDeclarationHaveABody()) { 1362 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1363 return; 1364 1365 StringRef MangledName = getMangledName(GD); 1366 1367 // Compute the function info and LLVM type. 1368 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1369 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1370 1371 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1372 /*DontDefer=*/false); 1373 return; 1374 } 1375 } else { 1376 const auto *VD = cast<VarDecl>(Global); 1377 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1378 1379 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1380 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1381 return; 1382 } 1383 1384 // Defer code generation to first use when possible, e.g. if this is an inline 1385 // function. If the global must always be emitted, do it eagerly if possible 1386 // to benefit from cache locality. 1387 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1388 // Emit the definition if it can't be deferred. 1389 EmitGlobalDefinition(GD); 1390 return; 1391 } 1392 1393 // If we're deferring emission of a C++ variable with an 1394 // initializer, remember the order in which it appeared in the file. 1395 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1396 cast<VarDecl>(Global)->hasInit()) { 1397 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1398 CXXGlobalInits.push_back(nullptr); 1399 } 1400 1401 StringRef MangledName = getMangledName(GD); 1402 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1403 // The value has already been used and should therefore be emitted. 1404 addDeferredDeclToEmit(GV, GD); 1405 } else if (MustBeEmitted(Global)) { 1406 // The value must be emitted, but cannot be emitted eagerly. 1407 assert(!MayBeEmittedEagerly(Global)); 1408 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1409 } else { 1410 // Otherwise, remember that we saw a deferred decl with this name. The 1411 // first use of the mangled name will cause it to move into 1412 // DeferredDeclsToEmit. 1413 DeferredDecls[MangledName] = GD; 1414 } 1415 } 1416 1417 namespace { 1418 struct FunctionIsDirectlyRecursive : 1419 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1420 const StringRef Name; 1421 const Builtin::Context &BI; 1422 bool Result; 1423 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1424 Name(N), BI(C), Result(false) { 1425 } 1426 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1427 1428 bool TraverseCallExpr(CallExpr *E) { 1429 const FunctionDecl *FD = E->getDirectCallee(); 1430 if (!FD) 1431 return true; 1432 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1433 if (Attr && Name == Attr->getLabel()) { 1434 Result = true; 1435 return false; 1436 } 1437 unsigned BuiltinID = FD->getBuiltinID(); 1438 if (!BuiltinID) 1439 return true; 1440 StringRef BuiltinName = BI.GetName(BuiltinID); 1441 if (BuiltinName.startswith("__builtin_") && 1442 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1443 Result = true; 1444 return false; 1445 } 1446 return true; 1447 } 1448 }; 1449 } 1450 1451 // isTriviallyRecursive - Check if this function calls another 1452 // decl that, because of the asm attribute or the other decl being a builtin, 1453 // ends up pointing to itself. 1454 bool 1455 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1456 StringRef Name; 1457 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1458 // asm labels are a special kind of mangling we have to support. 1459 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1460 if (!Attr) 1461 return false; 1462 Name = Attr->getLabel(); 1463 } else { 1464 Name = FD->getName(); 1465 } 1466 1467 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1468 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1469 return Walker.Result; 1470 } 1471 1472 bool 1473 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1474 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1475 return true; 1476 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1477 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1478 return false; 1479 // PR9614. Avoid cases where the source code is lying to us. An available 1480 // externally function should have an equivalent function somewhere else, 1481 // but a function that calls itself is clearly not equivalent to the real 1482 // implementation. 1483 // This happens in glibc's btowc and in some configure checks. 1484 return !isTriviallyRecursive(F); 1485 } 1486 1487 /// If the type for the method's class was generated by 1488 /// CGDebugInfo::createContextChain(), the cache contains only a 1489 /// limited DIType without any declarations. Since EmitFunctionStart() 1490 /// needs to find the canonical declaration for each method, we need 1491 /// to construct the complete type prior to emitting the method. 1492 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1493 if (!D->isInstance()) 1494 return; 1495 1496 if (CGDebugInfo *DI = getModuleDebugInfo()) 1497 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1498 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1499 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1500 } 1501 } 1502 1503 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1504 const auto *D = cast<ValueDecl>(GD.getDecl()); 1505 1506 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1507 Context.getSourceManager(), 1508 "Generating code for declaration"); 1509 1510 if (isa<FunctionDecl>(D)) { 1511 // At -O0, don't generate IR for functions with available_externally 1512 // linkage. 1513 if (!shouldEmitFunction(GD)) 1514 return; 1515 1516 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1517 CompleteDIClassType(Method); 1518 // Make sure to emit the definition(s) before we emit the thunks. 1519 // This is necessary for the generation of certain thunks. 1520 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1521 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1522 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1523 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1524 else 1525 EmitGlobalFunctionDefinition(GD, GV); 1526 1527 if (Method->isVirtual()) 1528 getVTables().EmitThunks(GD); 1529 1530 return; 1531 } 1532 1533 return EmitGlobalFunctionDefinition(GD, GV); 1534 } 1535 1536 if (const auto *VD = dyn_cast<VarDecl>(D)) 1537 return EmitGlobalVarDefinition(VD); 1538 1539 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1540 } 1541 1542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1543 /// module, create and return an llvm Function with the specified type. If there 1544 /// is something in the module with the specified name, return it potentially 1545 /// bitcasted to the right type. 1546 /// 1547 /// If D is non-null, it specifies a decl that correspond to this. This is used 1548 /// to set the attributes on the function when it is first created. 1549 llvm::Constant * 1550 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1551 llvm::Type *Ty, 1552 GlobalDecl GD, bool ForVTable, 1553 bool DontDefer, bool IsThunk, 1554 llvm::AttributeSet ExtraAttrs) { 1555 const Decl *D = GD.getDecl(); 1556 1557 // Lookup the entry, lazily creating it if necessary. 1558 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1559 if (Entry) { 1560 if (WeakRefReferences.erase(Entry)) { 1561 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1562 if (FD && !FD->hasAttr<WeakAttr>()) 1563 Entry->setLinkage(llvm::Function::ExternalLinkage); 1564 } 1565 1566 // Handle dropped DLL attributes. 1567 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1568 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1569 1570 if (Entry->getType()->getElementType() == Ty) 1571 return Entry; 1572 1573 // Make sure the result is of the correct type. 1574 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1575 } 1576 1577 // This function doesn't have a complete type (for example, the return 1578 // type is an incomplete struct). Use a fake type instead, and make 1579 // sure not to try to set attributes. 1580 bool IsIncompleteFunction = false; 1581 1582 llvm::FunctionType *FTy; 1583 if (isa<llvm::FunctionType>(Ty)) { 1584 FTy = cast<llvm::FunctionType>(Ty); 1585 } else { 1586 FTy = llvm::FunctionType::get(VoidTy, false); 1587 IsIncompleteFunction = true; 1588 } 1589 1590 llvm::Function *F = llvm::Function::Create(FTy, 1591 llvm::Function::ExternalLinkage, 1592 MangledName, &getModule()); 1593 assert(F->getName() == MangledName && "name was uniqued!"); 1594 if (D) 1595 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1596 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1597 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1598 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1599 llvm::AttributeSet::get(VMContext, 1600 llvm::AttributeSet::FunctionIndex, 1601 B)); 1602 } 1603 1604 if (!DontDefer) { 1605 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1606 // each other bottoming out with the base dtor. Therefore we emit non-base 1607 // dtors on usage, even if there is no dtor definition in the TU. 1608 if (D && isa<CXXDestructorDecl>(D) && 1609 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1610 GD.getDtorType())) 1611 addDeferredDeclToEmit(F, GD); 1612 1613 // This is the first use or definition of a mangled name. If there is a 1614 // deferred decl with this name, remember that we need to emit it at the end 1615 // of the file. 1616 auto DDI = DeferredDecls.find(MangledName); 1617 if (DDI != DeferredDecls.end()) { 1618 // Move the potentially referenced deferred decl to the 1619 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1620 // don't need it anymore). 1621 addDeferredDeclToEmit(F, DDI->second); 1622 DeferredDecls.erase(DDI); 1623 1624 // Otherwise, there are cases we have to worry about where we're 1625 // using a declaration for which we must emit a definition but where 1626 // we might not find a top-level definition: 1627 // - member functions defined inline in their classes 1628 // - friend functions defined inline in some class 1629 // - special member functions with implicit definitions 1630 // If we ever change our AST traversal to walk into class methods, 1631 // this will be unnecessary. 1632 // 1633 // We also don't emit a definition for a function if it's going to be an 1634 // entry in a vtable, unless it's already marked as used. 1635 } else if (getLangOpts().CPlusPlus && D) { 1636 // Look for a declaration that's lexically in a record. 1637 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1638 FD = FD->getPreviousDecl()) { 1639 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1640 if (FD->doesThisDeclarationHaveABody()) { 1641 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1642 break; 1643 } 1644 } 1645 } 1646 } 1647 } 1648 1649 // Make sure the result is of the requested type. 1650 if (!IsIncompleteFunction) { 1651 assert(F->getType()->getElementType() == Ty); 1652 return F; 1653 } 1654 1655 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1656 return llvm::ConstantExpr::getBitCast(F, PTy); 1657 } 1658 1659 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1660 /// non-null, then this function will use the specified type if it has to 1661 /// create it (this occurs when we see a definition of the function). 1662 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1663 llvm::Type *Ty, 1664 bool ForVTable, 1665 bool DontDefer) { 1666 // If there was no specific requested type, just convert it now. 1667 if (!Ty) 1668 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1669 1670 StringRef MangledName = getMangledName(GD); 1671 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1672 } 1673 1674 /// CreateRuntimeFunction - Create a new runtime function with the specified 1675 /// type and name. 1676 llvm::Constant * 1677 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1678 StringRef Name, 1679 llvm::AttributeSet ExtraAttrs) { 1680 llvm::Constant *C = 1681 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1682 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1683 if (auto *F = dyn_cast<llvm::Function>(C)) 1684 if (F->empty()) 1685 F->setCallingConv(getRuntimeCC()); 1686 return C; 1687 } 1688 1689 /// CreateBuiltinFunction - Create a new builtin function with the specified 1690 /// type and name. 1691 llvm::Constant * 1692 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1693 StringRef Name, 1694 llvm::AttributeSet ExtraAttrs) { 1695 llvm::Constant *C = 1696 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1697 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1698 if (auto *F = dyn_cast<llvm::Function>(C)) 1699 if (F->empty()) 1700 F->setCallingConv(getBuiltinCC()); 1701 return C; 1702 } 1703 1704 /// isTypeConstant - Determine whether an object of this type can be emitted 1705 /// as a constant. 1706 /// 1707 /// If ExcludeCtor is true, the duration when the object's constructor runs 1708 /// will not be considered. The caller will need to verify that the object is 1709 /// not written to during its construction. 1710 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1711 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1712 return false; 1713 1714 if (Context.getLangOpts().CPlusPlus) { 1715 if (const CXXRecordDecl *Record 1716 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1717 return ExcludeCtor && !Record->hasMutableFields() && 1718 Record->hasTrivialDestructor(); 1719 } 1720 1721 return true; 1722 } 1723 1724 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1725 /// create and return an llvm GlobalVariable with the specified type. If there 1726 /// is something in the module with the specified name, return it potentially 1727 /// bitcasted to the right type. 1728 /// 1729 /// If D is non-null, it specifies a decl that correspond to this. This is used 1730 /// to set the attributes on the global when it is first created. 1731 llvm::Constant * 1732 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1733 llvm::PointerType *Ty, 1734 const VarDecl *D) { 1735 // Lookup the entry, lazily creating it if necessary. 1736 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1737 if (Entry) { 1738 if (WeakRefReferences.erase(Entry)) { 1739 if (D && !D->hasAttr<WeakAttr>()) 1740 Entry->setLinkage(llvm::Function::ExternalLinkage); 1741 } 1742 1743 // Handle dropped DLL attributes. 1744 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1745 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1746 1747 if (Entry->getType() == Ty) 1748 return Entry; 1749 1750 // Make sure the result is of the correct type. 1751 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1752 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1753 1754 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1755 } 1756 1757 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1758 auto *GV = new llvm::GlobalVariable( 1759 getModule(), Ty->getElementType(), false, 1760 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1761 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1762 1763 // This is the first use or definition of a mangled name. If there is a 1764 // deferred decl with this name, remember that we need to emit it at the end 1765 // of the file. 1766 auto DDI = DeferredDecls.find(MangledName); 1767 if (DDI != DeferredDecls.end()) { 1768 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1769 // list, and remove it from DeferredDecls (since we don't need it anymore). 1770 addDeferredDeclToEmit(GV, DDI->second); 1771 DeferredDecls.erase(DDI); 1772 } 1773 1774 // Handle things which are present even on external declarations. 1775 if (D) { 1776 // FIXME: This code is overly simple and should be merged with other global 1777 // handling. 1778 GV->setConstant(isTypeConstant(D->getType(), false)); 1779 1780 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1781 1782 setLinkageAndVisibilityForGV(GV, D); 1783 1784 if (D->getTLSKind()) { 1785 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1786 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1787 setTLSMode(GV, *D); 1788 } 1789 1790 // If required by the ABI, treat declarations of static data members with 1791 // inline initializers as definitions. 1792 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1793 EmitGlobalVarDefinition(D); 1794 } 1795 1796 // Handle XCore specific ABI requirements. 1797 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1798 D->getLanguageLinkage() == CLanguageLinkage && 1799 D->getType().isConstant(Context) && 1800 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1801 GV->setSection(".cp.rodata"); 1802 } 1803 1804 if (AddrSpace != Ty->getAddressSpace()) 1805 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1806 1807 return GV; 1808 } 1809 1810 1811 llvm::GlobalVariable * 1812 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1813 llvm::Type *Ty, 1814 llvm::GlobalValue::LinkageTypes Linkage) { 1815 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1816 llvm::GlobalVariable *OldGV = nullptr; 1817 1818 if (GV) { 1819 // Check if the variable has the right type. 1820 if (GV->getType()->getElementType() == Ty) 1821 return GV; 1822 1823 // Because C++ name mangling, the only way we can end up with an already 1824 // existing global with the same name is if it has been declared extern "C". 1825 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1826 OldGV = GV; 1827 } 1828 1829 // Create a new variable. 1830 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1831 Linkage, nullptr, Name); 1832 1833 if (OldGV) { 1834 // Replace occurrences of the old variable if needed. 1835 GV->takeName(OldGV); 1836 1837 if (!OldGV->use_empty()) { 1838 llvm::Constant *NewPtrForOldDecl = 1839 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1840 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1841 } 1842 1843 OldGV->eraseFromParent(); 1844 } 1845 1846 if (supportsCOMDAT() && GV->isWeakForLinker() && 1847 !GV->hasAvailableExternallyLinkage()) 1848 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1849 1850 return GV; 1851 } 1852 1853 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1854 /// given global variable. If Ty is non-null and if the global doesn't exist, 1855 /// then it will be created with the specified type instead of whatever the 1856 /// normal requested type would be. 1857 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1858 llvm::Type *Ty) { 1859 assert(D->hasGlobalStorage() && "Not a global variable"); 1860 QualType ASTTy = D->getType(); 1861 if (!Ty) 1862 Ty = getTypes().ConvertTypeForMem(ASTTy); 1863 1864 llvm::PointerType *PTy = 1865 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1866 1867 StringRef MangledName = getMangledName(D); 1868 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1869 } 1870 1871 /// CreateRuntimeVariable - Create a new runtime global variable with the 1872 /// specified type and name. 1873 llvm::Constant * 1874 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1875 StringRef Name) { 1876 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1877 } 1878 1879 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1880 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1881 1882 if (!MustBeEmitted(D)) { 1883 // If we have not seen a reference to this variable yet, place it 1884 // into the deferred declarations table to be emitted if needed 1885 // later. 1886 StringRef MangledName = getMangledName(D); 1887 if (!GetGlobalValue(MangledName)) { 1888 DeferredDecls[MangledName] = D; 1889 return; 1890 } 1891 } 1892 1893 // The tentative definition is the only definition. 1894 EmitGlobalVarDefinition(D); 1895 } 1896 1897 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1898 return Context.toCharUnitsFromBits( 1899 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1900 } 1901 1902 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1903 unsigned AddrSpace) { 1904 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1905 if (D->hasAttr<CUDAConstantAttr>()) 1906 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1907 else if (D->hasAttr<CUDASharedAttr>()) 1908 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1909 else 1910 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1911 } 1912 1913 return AddrSpace; 1914 } 1915 1916 template<typename SomeDecl> 1917 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1918 llvm::GlobalValue *GV) { 1919 if (!getLangOpts().CPlusPlus) 1920 return; 1921 1922 // Must have 'used' attribute, or else inline assembly can't rely on 1923 // the name existing. 1924 if (!D->template hasAttr<UsedAttr>()) 1925 return; 1926 1927 // Must have internal linkage and an ordinary name. 1928 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1929 return; 1930 1931 // Must be in an extern "C" context. Entities declared directly within 1932 // a record are not extern "C" even if the record is in such a context. 1933 const SomeDecl *First = D->getFirstDecl(); 1934 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1935 return; 1936 1937 // OK, this is an internal linkage entity inside an extern "C" linkage 1938 // specification. Make a note of that so we can give it the "expected" 1939 // mangled name if nothing else is using that name. 1940 std::pair<StaticExternCMap::iterator, bool> R = 1941 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1942 1943 // If we have multiple internal linkage entities with the same name 1944 // in extern "C" regions, none of them gets that name. 1945 if (!R.second) 1946 R.first->second = nullptr; 1947 } 1948 1949 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1950 if (!CGM.supportsCOMDAT()) 1951 return false; 1952 1953 if (D.hasAttr<SelectAnyAttr>()) 1954 return true; 1955 1956 GVALinkage Linkage; 1957 if (auto *VD = dyn_cast<VarDecl>(&D)) 1958 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1959 else 1960 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1961 1962 switch (Linkage) { 1963 case GVA_Internal: 1964 case GVA_AvailableExternally: 1965 case GVA_StrongExternal: 1966 return false; 1967 case GVA_DiscardableODR: 1968 case GVA_StrongODR: 1969 return true; 1970 } 1971 llvm_unreachable("No such linkage"); 1972 } 1973 1974 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1975 llvm::GlobalObject &GO) { 1976 if (!shouldBeInCOMDAT(*this, D)) 1977 return; 1978 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1979 } 1980 1981 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1982 llvm::Constant *Init = nullptr; 1983 QualType ASTTy = D->getType(); 1984 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1985 bool NeedsGlobalCtor = false; 1986 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1987 1988 const VarDecl *InitDecl; 1989 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1990 1991 if (!InitExpr) { 1992 // This is a tentative definition; tentative definitions are 1993 // implicitly initialized with { 0 }. 1994 // 1995 // Note that tentative definitions are only emitted at the end of 1996 // a translation unit, so they should never have incomplete 1997 // type. In addition, EmitTentativeDefinition makes sure that we 1998 // never attempt to emit a tentative definition if a real one 1999 // exists. A use may still exists, however, so we still may need 2000 // to do a RAUW. 2001 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2002 Init = EmitNullConstant(D->getType()); 2003 } else { 2004 initializedGlobalDecl = GlobalDecl(D); 2005 Init = EmitConstantInit(*InitDecl); 2006 2007 if (!Init) { 2008 QualType T = InitExpr->getType(); 2009 if (D->getType()->isReferenceType()) 2010 T = D->getType(); 2011 2012 if (getLangOpts().CPlusPlus) { 2013 Init = EmitNullConstant(T); 2014 NeedsGlobalCtor = true; 2015 } else { 2016 ErrorUnsupported(D, "static initializer"); 2017 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2018 } 2019 } else { 2020 // We don't need an initializer, so remove the entry for the delayed 2021 // initializer position (just in case this entry was delayed) if we 2022 // also don't need to register a destructor. 2023 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2024 DelayedCXXInitPosition.erase(D); 2025 } 2026 } 2027 2028 llvm::Type* InitType = Init->getType(); 2029 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2030 2031 // Strip off a bitcast if we got one back. 2032 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2033 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2034 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2035 // All zero index gep. 2036 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2037 Entry = CE->getOperand(0); 2038 } 2039 2040 // Entry is now either a Function or GlobalVariable. 2041 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2042 2043 // We have a definition after a declaration with the wrong type. 2044 // We must make a new GlobalVariable* and update everything that used OldGV 2045 // (a declaration or tentative definition) with the new GlobalVariable* 2046 // (which will be a definition). 2047 // 2048 // This happens if there is a prototype for a global (e.g. 2049 // "extern int x[];") and then a definition of a different type (e.g. 2050 // "int x[10];"). This also happens when an initializer has a different type 2051 // from the type of the global (this happens with unions). 2052 if (!GV || 2053 GV->getType()->getElementType() != InitType || 2054 GV->getType()->getAddressSpace() != 2055 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2056 2057 // Move the old entry aside so that we'll create a new one. 2058 Entry->setName(StringRef()); 2059 2060 // Make a new global with the correct type, this is now guaranteed to work. 2061 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2062 2063 // Replace all uses of the old global with the new global 2064 llvm::Constant *NewPtrForOldDecl = 2065 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2066 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2067 2068 // Erase the old global, since it is no longer used. 2069 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2070 } 2071 2072 MaybeHandleStaticInExternC(D, GV); 2073 2074 if (D->hasAttr<AnnotateAttr>()) 2075 AddGlobalAnnotations(D, GV); 2076 2077 GV->setInitializer(Init); 2078 2079 // If it is safe to mark the global 'constant', do so now. 2080 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2081 isTypeConstant(D->getType(), true)); 2082 2083 // If it is in a read-only section, mark it 'constant'. 2084 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2085 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2086 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2087 GV->setConstant(true); 2088 } 2089 2090 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2091 2092 // Set the llvm linkage type as appropriate. 2093 llvm::GlobalValue::LinkageTypes Linkage = 2094 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2095 2096 // On Darwin, the backing variable for a C++11 thread_local variable always 2097 // has internal linkage; all accesses should just be calls to the 2098 // Itanium-specified entry point, which has the normal linkage of the 2099 // variable. 2100 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2101 Context.getTargetInfo().getTriple().isMacOSX()) 2102 Linkage = llvm::GlobalValue::InternalLinkage; 2103 2104 GV->setLinkage(Linkage); 2105 if (D->hasAttr<DLLImportAttr>()) 2106 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2107 else if (D->hasAttr<DLLExportAttr>()) 2108 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2109 else 2110 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2111 2112 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2113 // common vars aren't constant even if declared const. 2114 GV->setConstant(false); 2115 2116 setNonAliasAttributes(D, GV); 2117 2118 if (D->getTLSKind() && !GV->isThreadLocal()) { 2119 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2120 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2121 setTLSMode(GV, *D); 2122 } 2123 2124 maybeSetTrivialComdat(*D, *GV); 2125 2126 // Emit the initializer function if necessary. 2127 if (NeedsGlobalCtor || NeedsGlobalDtor) 2128 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2129 2130 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2131 2132 // Emit global variable debug information. 2133 if (CGDebugInfo *DI = getModuleDebugInfo()) 2134 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2135 DI->EmitGlobalVariable(GV, D); 2136 } 2137 2138 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2139 CodeGenModule &CGM, const VarDecl *D, 2140 bool NoCommon) { 2141 // Don't give variables common linkage if -fno-common was specified unless it 2142 // was overridden by a NoCommon attribute. 2143 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2144 return true; 2145 2146 // C11 6.9.2/2: 2147 // A declaration of an identifier for an object that has file scope without 2148 // an initializer, and without a storage-class specifier or with the 2149 // storage-class specifier static, constitutes a tentative definition. 2150 if (D->getInit() || D->hasExternalStorage()) 2151 return true; 2152 2153 // A variable cannot be both common and exist in a section. 2154 if (D->hasAttr<SectionAttr>()) 2155 return true; 2156 2157 // Thread local vars aren't considered common linkage. 2158 if (D->getTLSKind()) 2159 return true; 2160 2161 // Tentative definitions marked with WeakImportAttr are true definitions. 2162 if (D->hasAttr<WeakImportAttr>()) 2163 return true; 2164 2165 // A variable cannot be both common and exist in a comdat. 2166 if (shouldBeInCOMDAT(CGM, *D)) 2167 return true; 2168 2169 // Declarations with a required alignment do not have common linakge in MSVC 2170 // mode. 2171 if (Context.getLangOpts().MSVCCompat) { 2172 if (D->hasAttr<AlignedAttr>()) 2173 return true; 2174 QualType VarType = D->getType(); 2175 if (Context.isAlignmentRequired(VarType)) 2176 return true; 2177 2178 if (const auto *RT = VarType->getAs<RecordType>()) { 2179 const RecordDecl *RD = RT->getDecl(); 2180 for (const FieldDecl *FD : RD->fields()) { 2181 if (FD->isBitField()) 2182 continue; 2183 if (FD->hasAttr<AlignedAttr>()) 2184 return true; 2185 if (Context.isAlignmentRequired(FD->getType())) 2186 return true; 2187 } 2188 } 2189 } 2190 2191 return false; 2192 } 2193 2194 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2195 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2196 if (Linkage == GVA_Internal) 2197 return llvm::Function::InternalLinkage; 2198 2199 if (D->hasAttr<WeakAttr>()) { 2200 if (IsConstantVariable) 2201 return llvm::GlobalVariable::WeakODRLinkage; 2202 else 2203 return llvm::GlobalVariable::WeakAnyLinkage; 2204 } 2205 2206 // We are guaranteed to have a strong definition somewhere else, 2207 // so we can use available_externally linkage. 2208 if (Linkage == GVA_AvailableExternally) 2209 return llvm::Function::AvailableExternallyLinkage; 2210 2211 // Note that Apple's kernel linker doesn't support symbol 2212 // coalescing, so we need to avoid linkonce and weak linkages there. 2213 // Normally, this means we just map to internal, but for explicit 2214 // instantiations we'll map to external. 2215 2216 // In C++, the compiler has to emit a definition in every translation unit 2217 // that references the function. We should use linkonce_odr because 2218 // a) if all references in this translation unit are optimized away, we 2219 // don't need to codegen it. b) if the function persists, it needs to be 2220 // merged with other definitions. c) C++ has the ODR, so we know the 2221 // definition is dependable. 2222 if (Linkage == GVA_DiscardableODR) 2223 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2224 : llvm::Function::InternalLinkage; 2225 2226 // An explicit instantiation of a template has weak linkage, since 2227 // explicit instantiations can occur in multiple translation units 2228 // and must all be equivalent. However, we are not allowed to 2229 // throw away these explicit instantiations. 2230 if (Linkage == GVA_StrongODR) 2231 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2232 : llvm::Function::ExternalLinkage; 2233 2234 // C++ doesn't have tentative definitions and thus cannot have common 2235 // linkage. 2236 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2237 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2238 CodeGenOpts.NoCommon)) 2239 return llvm::GlobalVariable::CommonLinkage; 2240 2241 // selectany symbols are externally visible, so use weak instead of 2242 // linkonce. MSVC optimizes away references to const selectany globals, so 2243 // all definitions should be the same and ODR linkage should be used. 2244 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2245 if (D->hasAttr<SelectAnyAttr>()) 2246 return llvm::GlobalVariable::WeakODRLinkage; 2247 2248 // Otherwise, we have strong external linkage. 2249 assert(Linkage == GVA_StrongExternal); 2250 return llvm::GlobalVariable::ExternalLinkage; 2251 } 2252 2253 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2254 const VarDecl *VD, bool IsConstant) { 2255 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2256 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2257 } 2258 2259 /// Replace the uses of a function that was declared with a non-proto type. 2260 /// We want to silently drop extra arguments from call sites 2261 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2262 llvm::Function *newFn) { 2263 // Fast path. 2264 if (old->use_empty()) return; 2265 2266 llvm::Type *newRetTy = newFn->getReturnType(); 2267 SmallVector<llvm::Value*, 4> newArgs; 2268 2269 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2270 ui != ue; ) { 2271 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2272 llvm::User *user = use->getUser(); 2273 2274 // Recognize and replace uses of bitcasts. Most calls to 2275 // unprototyped functions will use bitcasts. 2276 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2277 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2278 replaceUsesOfNonProtoConstant(bitcast, newFn); 2279 continue; 2280 } 2281 2282 // Recognize calls to the function. 2283 llvm::CallSite callSite(user); 2284 if (!callSite) continue; 2285 if (!callSite.isCallee(&*use)) continue; 2286 2287 // If the return types don't match exactly, then we can't 2288 // transform this call unless it's dead. 2289 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2290 continue; 2291 2292 // Get the call site's attribute list. 2293 SmallVector<llvm::AttributeSet, 8> newAttrs; 2294 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2295 2296 // Collect any return attributes from the call. 2297 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2298 newAttrs.push_back( 2299 llvm::AttributeSet::get(newFn->getContext(), 2300 oldAttrs.getRetAttributes())); 2301 2302 // If the function was passed too few arguments, don't transform. 2303 unsigned newNumArgs = newFn->arg_size(); 2304 if (callSite.arg_size() < newNumArgs) continue; 2305 2306 // If extra arguments were passed, we silently drop them. 2307 // If any of the types mismatch, we don't transform. 2308 unsigned argNo = 0; 2309 bool dontTransform = false; 2310 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2311 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2312 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2313 dontTransform = true; 2314 break; 2315 } 2316 2317 // Add any parameter attributes. 2318 if (oldAttrs.hasAttributes(argNo + 1)) 2319 newAttrs. 2320 push_back(llvm:: 2321 AttributeSet::get(newFn->getContext(), 2322 oldAttrs.getParamAttributes(argNo + 1))); 2323 } 2324 if (dontTransform) 2325 continue; 2326 2327 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2328 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2329 oldAttrs.getFnAttributes())); 2330 2331 // Okay, we can transform this. Create the new call instruction and copy 2332 // over the required information. 2333 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2334 2335 llvm::CallSite newCall; 2336 if (callSite.isCall()) { 2337 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2338 callSite.getInstruction()); 2339 } else { 2340 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2341 newCall = llvm::InvokeInst::Create(newFn, 2342 oldInvoke->getNormalDest(), 2343 oldInvoke->getUnwindDest(), 2344 newArgs, "", 2345 callSite.getInstruction()); 2346 } 2347 newArgs.clear(); // for the next iteration 2348 2349 if (!newCall->getType()->isVoidTy()) 2350 newCall->takeName(callSite.getInstruction()); 2351 newCall.setAttributes( 2352 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2353 newCall.setCallingConv(callSite.getCallingConv()); 2354 2355 // Finally, remove the old call, replacing any uses with the new one. 2356 if (!callSite->use_empty()) 2357 callSite->replaceAllUsesWith(newCall.getInstruction()); 2358 2359 // Copy debug location attached to CI. 2360 if (callSite->getDebugLoc()) 2361 newCall->setDebugLoc(callSite->getDebugLoc()); 2362 callSite->eraseFromParent(); 2363 } 2364 } 2365 2366 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2367 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2368 /// existing call uses of the old function in the module, this adjusts them to 2369 /// call the new function directly. 2370 /// 2371 /// This is not just a cleanup: the always_inline pass requires direct calls to 2372 /// functions to be able to inline them. If there is a bitcast in the way, it 2373 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2374 /// run at -O0. 2375 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2376 llvm::Function *NewFn) { 2377 // If we're redefining a global as a function, don't transform it. 2378 if (!isa<llvm::Function>(Old)) return; 2379 2380 replaceUsesOfNonProtoConstant(Old, NewFn); 2381 } 2382 2383 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2384 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2385 // If we have a definition, this might be a deferred decl. If the 2386 // instantiation is explicit, make sure we emit it at the end. 2387 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2388 GetAddrOfGlobalVar(VD); 2389 2390 EmitTopLevelDecl(VD); 2391 } 2392 2393 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2394 llvm::GlobalValue *GV) { 2395 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2396 2397 // Compute the function info and LLVM type. 2398 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2399 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2400 2401 // Get or create the prototype for the function. 2402 if (!GV) { 2403 llvm::Constant *C = 2404 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2405 2406 // Strip off a bitcast if we got one back. 2407 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2408 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2409 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2410 } else { 2411 GV = cast<llvm::GlobalValue>(C); 2412 } 2413 } 2414 2415 if (!GV->isDeclaration()) { 2416 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2417 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2418 if (auto *Prev = OldGD.getDecl()) 2419 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2420 return; 2421 } 2422 2423 if (GV->getType()->getElementType() != Ty) { 2424 // If the types mismatch then we have to rewrite the definition. 2425 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2426 2427 // F is the Function* for the one with the wrong type, we must make a new 2428 // Function* and update everything that used F (a declaration) with the new 2429 // Function* (which will be a definition). 2430 // 2431 // This happens if there is a prototype for a function 2432 // (e.g. "int f()") and then a definition of a different type 2433 // (e.g. "int f(int x)"). Move the old function aside so that it 2434 // doesn't interfere with GetAddrOfFunction. 2435 GV->setName(StringRef()); 2436 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2437 2438 // This might be an implementation of a function without a 2439 // prototype, in which case, try to do special replacement of 2440 // calls which match the new prototype. The really key thing here 2441 // is that we also potentially drop arguments from the call site 2442 // so as to make a direct call, which makes the inliner happier 2443 // and suppresses a number of optimizer warnings (!) about 2444 // dropping arguments. 2445 if (!GV->use_empty()) { 2446 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2447 GV->removeDeadConstantUsers(); 2448 } 2449 2450 // Replace uses of F with the Function we will endow with a body. 2451 if (!GV->use_empty()) { 2452 llvm::Constant *NewPtrForOldDecl = 2453 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2454 GV->replaceAllUsesWith(NewPtrForOldDecl); 2455 } 2456 2457 // Ok, delete the old function now, which is dead. 2458 GV->eraseFromParent(); 2459 2460 GV = NewFn; 2461 } 2462 2463 // We need to set linkage and visibility on the function before 2464 // generating code for it because various parts of IR generation 2465 // want to propagate this information down (e.g. to local static 2466 // declarations). 2467 auto *Fn = cast<llvm::Function>(GV); 2468 setFunctionLinkage(GD, Fn); 2469 if (D->hasAttr<DLLImportAttr>()) 2470 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2471 else if (D->hasAttr<DLLExportAttr>()) 2472 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2473 else 2474 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2475 2476 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2477 setGlobalVisibility(Fn, D); 2478 2479 MaybeHandleStaticInExternC(D, Fn); 2480 2481 maybeSetTrivialComdat(*D, *Fn); 2482 2483 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2484 2485 setFunctionDefinitionAttributes(D, Fn); 2486 SetLLVMFunctionAttributesForDefinition(D, Fn); 2487 2488 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2489 AddGlobalCtor(Fn, CA->getPriority()); 2490 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2491 AddGlobalDtor(Fn, DA->getPriority()); 2492 if (D->hasAttr<AnnotateAttr>()) 2493 AddGlobalAnnotations(D, Fn); 2494 } 2495 2496 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2497 const auto *D = cast<ValueDecl>(GD.getDecl()); 2498 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2499 assert(AA && "Not an alias?"); 2500 2501 StringRef MangledName = getMangledName(GD); 2502 2503 // If there is a definition in the module, then it wins over the alias. 2504 // This is dubious, but allow it to be safe. Just ignore the alias. 2505 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2506 if (Entry && !Entry->isDeclaration()) 2507 return; 2508 2509 Aliases.push_back(GD); 2510 2511 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2512 2513 // Create a reference to the named value. This ensures that it is emitted 2514 // if a deferred decl. 2515 llvm::Constant *Aliasee; 2516 if (isa<llvm::FunctionType>(DeclTy)) 2517 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2518 /*ForVTable=*/false); 2519 else 2520 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2521 llvm::PointerType::getUnqual(DeclTy), 2522 /*D=*/nullptr); 2523 2524 // Create the new alias itself, but don't set a name yet. 2525 auto *GA = llvm::GlobalAlias::create( 2526 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2527 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2528 2529 if (Entry) { 2530 if (GA->getAliasee() == Entry) { 2531 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2532 return; 2533 } 2534 2535 assert(Entry->isDeclaration()); 2536 2537 // If there is a declaration in the module, then we had an extern followed 2538 // by the alias, as in: 2539 // extern int test6(); 2540 // ... 2541 // int test6() __attribute__((alias("test7"))); 2542 // 2543 // Remove it and replace uses of it with the alias. 2544 GA->takeName(Entry); 2545 2546 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2547 Entry->getType())); 2548 Entry->eraseFromParent(); 2549 } else { 2550 GA->setName(MangledName); 2551 } 2552 2553 // Set attributes which are particular to an alias; this is a 2554 // specialization of the attributes which may be set on a global 2555 // variable/function. 2556 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2557 D->isWeakImported()) { 2558 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2559 } 2560 2561 if (const auto *VD = dyn_cast<VarDecl>(D)) 2562 if (VD->getTLSKind()) 2563 setTLSMode(GA, *VD); 2564 2565 setAliasAttributes(D, GA); 2566 } 2567 2568 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2569 ArrayRef<llvm::Type*> Tys) { 2570 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2571 Tys); 2572 } 2573 2574 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2575 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2576 const StringLiteral *Literal, bool TargetIsLSB, 2577 bool &IsUTF16, unsigned &StringLength) { 2578 StringRef String = Literal->getString(); 2579 unsigned NumBytes = String.size(); 2580 2581 // Check for simple case. 2582 if (!Literal->containsNonAsciiOrNull()) { 2583 StringLength = NumBytes; 2584 return *Map.insert(std::make_pair(String, nullptr)).first; 2585 } 2586 2587 // Otherwise, convert the UTF8 literals into a string of shorts. 2588 IsUTF16 = true; 2589 2590 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2591 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2592 UTF16 *ToPtr = &ToBuf[0]; 2593 2594 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2595 &ToPtr, ToPtr + NumBytes, 2596 strictConversion); 2597 2598 // ConvertUTF8toUTF16 returns the length in ToPtr. 2599 StringLength = ToPtr - &ToBuf[0]; 2600 2601 // Add an explicit null. 2602 *ToPtr = 0; 2603 return *Map.insert(std::make_pair( 2604 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2605 (StringLength + 1) * 2), 2606 nullptr)).first; 2607 } 2608 2609 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2610 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2611 const StringLiteral *Literal, unsigned &StringLength) { 2612 StringRef String = Literal->getString(); 2613 StringLength = String.size(); 2614 return *Map.insert(std::make_pair(String, nullptr)).first; 2615 } 2616 2617 llvm::Constant * 2618 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2619 unsigned StringLength = 0; 2620 bool isUTF16 = false; 2621 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2622 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2623 getDataLayout().isLittleEndian(), isUTF16, 2624 StringLength); 2625 2626 if (auto *C = Entry.second) 2627 return C; 2628 2629 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2630 llvm::Constant *Zeros[] = { Zero, Zero }; 2631 llvm::Value *V; 2632 2633 // If we don't already have it, get __CFConstantStringClassReference. 2634 if (!CFConstantStringClassRef) { 2635 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2636 Ty = llvm::ArrayType::get(Ty, 0); 2637 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2638 "__CFConstantStringClassReference"); 2639 // Decay array -> ptr 2640 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2641 CFConstantStringClassRef = V; 2642 } 2643 else 2644 V = CFConstantStringClassRef; 2645 2646 QualType CFTy = getContext().getCFConstantStringType(); 2647 2648 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2649 2650 llvm::Constant *Fields[4]; 2651 2652 // Class pointer. 2653 Fields[0] = cast<llvm::ConstantExpr>(V); 2654 2655 // Flags. 2656 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2657 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2658 llvm::ConstantInt::get(Ty, 0x07C8); 2659 2660 // String pointer. 2661 llvm::Constant *C = nullptr; 2662 if (isUTF16) { 2663 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2664 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2665 Entry.first().size() / 2); 2666 C = llvm::ConstantDataArray::get(VMContext, Arr); 2667 } else { 2668 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2669 } 2670 2671 // Note: -fwritable-strings doesn't make the backing store strings of 2672 // CFStrings writable. (See <rdar://problem/10657500>) 2673 auto *GV = 2674 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2675 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2676 GV->setUnnamedAddr(true); 2677 // Don't enforce the target's minimum global alignment, since the only use 2678 // of the string is via this class initializer. 2679 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2680 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2681 // that changes the section it ends in, which surprises ld64. 2682 if (isUTF16) { 2683 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2684 GV->setAlignment(Align.getQuantity()); 2685 GV->setSection("__TEXT,__ustring"); 2686 } else { 2687 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2688 GV->setAlignment(Align.getQuantity()); 2689 GV->setSection("__TEXT,__cstring,cstring_literals"); 2690 } 2691 2692 // String. 2693 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV->getType(), GV, Zeros); 2694 2695 if (isUTF16) 2696 // Cast the UTF16 string to the correct type. 2697 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2698 2699 // String length. 2700 Ty = getTypes().ConvertType(getContext().LongTy); 2701 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2702 2703 // The struct. 2704 C = llvm::ConstantStruct::get(STy, Fields); 2705 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2706 llvm::GlobalVariable::PrivateLinkage, C, 2707 "_unnamed_cfstring_"); 2708 GV->setSection("__DATA,__cfstring"); 2709 Entry.second = GV; 2710 2711 return GV; 2712 } 2713 2714 llvm::GlobalVariable * 2715 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2716 unsigned StringLength = 0; 2717 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2718 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2719 2720 if (auto *C = Entry.second) 2721 return C; 2722 2723 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2724 llvm::Constant *Zeros[] = { Zero, Zero }; 2725 llvm::Value *V; 2726 // If we don't already have it, get _NSConstantStringClassReference. 2727 if (!ConstantStringClassRef) { 2728 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2729 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2730 llvm::Constant *GV; 2731 if (LangOpts.ObjCRuntime.isNonFragile()) { 2732 std::string str = 2733 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2734 : "OBJC_CLASS_$_" + StringClass; 2735 GV = getObjCRuntime().GetClassGlobal(str); 2736 // Make sure the result is of the correct type. 2737 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2738 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2739 ConstantStringClassRef = V; 2740 } else { 2741 std::string str = 2742 StringClass.empty() ? "_NSConstantStringClassReference" 2743 : "_" + StringClass + "ClassReference"; 2744 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2745 GV = CreateRuntimeVariable(PTy, str); 2746 // Decay array -> ptr 2747 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2748 ConstantStringClassRef = V; 2749 } 2750 } else 2751 V = ConstantStringClassRef; 2752 2753 if (!NSConstantStringType) { 2754 // Construct the type for a constant NSString. 2755 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2756 D->startDefinition(); 2757 2758 QualType FieldTypes[3]; 2759 2760 // const int *isa; 2761 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2762 // const char *str; 2763 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2764 // unsigned int length; 2765 FieldTypes[2] = Context.UnsignedIntTy; 2766 2767 // Create fields 2768 for (unsigned i = 0; i < 3; ++i) { 2769 FieldDecl *Field = FieldDecl::Create(Context, D, 2770 SourceLocation(), 2771 SourceLocation(), nullptr, 2772 FieldTypes[i], /*TInfo=*/nullptr, 2773 /*BitWidth=*/nullptr, 2774 /*Mutable=*/false, 2775 ICIS_NoInit); 2776 Field->setAccess(AS_public); 2777 D->addDecl(Field); 2778 } 2779 2780 D->completeDefinition(); 2781 QualType NSTy = Context.getTagDeclType(D); 2782 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2783 } 2784 2785 llvm::Constant *Fields[3]; 2786 2787 // Class pointer. 2788 Fields[0] = cast<llvm::ConstantExpr>(V); 2789 2790 // String pointer. 2791 llvm::Constant *C = 2792 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2793 2794 llvm::GlobalValue::LinkageTypes Linkage; 2795 bool isConstant; 2796 Linkage = llvm::GlobalValue::PrivateLinkage; 2797 isConstant = !LangOpts.WritableStrings; 2798 2799 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2800 Linkage, C, ".str"); 2801 GV->setUnnamedAddr(true); 2802 // Don't enforce the target's minimum global alignment, since the only use 2803 // of the string is via this class initializer. 2804 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2805 GV->setAlignment(Align.getQuantity()); 2806 Fields[1] = 2807 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2808 2809 // String length. 2810 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2811 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2812 2813 // The struct. 2814 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2815 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2816 llvm::GlobalVariable::PrivateLinkage, C, 2817 "_unnamed_nsstring_"); 2818 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2819 const char *NSStringNonFragileABISection = 2820 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2821 // FIXME. Fix section. 2822 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2823 ? NSStringNonFragileABISection 2824 : NSStringSection); 2825 Entry.second = GV; 2826 2827 return GV; 2828 } 2829 2830 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2831 if (ObjCFastEnumerationStateType.isNull()) { 2832 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2833 D->startDefinition(); 2834 2835 QualType FieldTypes[] = { 2836 Context.UnsignedLongTy, 2837 Context.getPointerType(Context.getObjCIdType()), 2838 Context.getPointerType(Context.UnsignedLongTy), 2839 Context.getConstantArrayType(Context.UnsignedLongTy, 2840 llvm::APInt(32, 5), ArrayType::Normal, 0) 2841 }; 2842 2843 for (size_t i = 0; i < 4; ++i) { 2844 FieldDecl *Field = FieldDecl::Create(Context, 2845 D, 2846 SourceLocation(), 2847 SourceLocation(), nullptr, 2848 FieldTypes[i], /*TInfo=*/nullptr, 2849 /*BitWidth=*/nullptr, 2850 /*Mutable=*/false, 2851 ICIS_NoInit); 2852 Field->setAccess(AS_public); 2853 D->addDecl(Field); 2854 } 2855 2856 D->completeDefinition(); 2857 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2858 } 2859 2860 return ObjCFastEnumerationStateType; 2861 } 2862 2863 llvm::Constant * 2864 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2865 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2866 2867 // Don't emit it as the address of the string, emit the string data itself 2868 // as an inline array. 2869 if (E->getCharByteWidth() == 1) { 2870 SmallString<64> Str(E->getString()); 2871 2872 // Resize the string to the right size, which is indicated by its type. 2873 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2874 Str.resize(CAT->getSize().getZExtValue()); 2875 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2876 } 2877 2878 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2879 llvm::Type *ElemTy = AType->getElementType(); 2880 unsigned NumElements = AType->getNumElements(); 2881 2882 // Wide strings have either 2-byte or 4-byte elements. 2883 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2884 SmallVector<uint16_t, 32> Elements; 2885 Elements.reserve(NumElements); 2886 2887 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2888 Elements.push_back(E->getCodeUnit(i)); 2889 Elements.resize(NumElements); 2890 return llvm::ConstantDataArray::get(VMContext, Elements); 2891 } 2892 2893 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2894 SmallVector<uint32_t, 32> Elements; 2895 Elements.reserve(NumElements); 2896 2897 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2898 Elements.push_back(E->getCodeUnit(i)); 2899 Elements.resize(NumElements); 2900 return llvm::ConstantDataArray::get(VMContext, Elements); 2901 } 2902 2903 static llvm::GlobalVariable * 2904 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2905 CodeGenModule &CGM, StringRef GlobalName, 2906 unsigned Alignment) { 2907 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2908 unsigned AddrSpace = 0; 2909 if (CGM.getLangOpts().OpenCL) 2910 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2911 2912 llvm::Module &M = CGM.getModule(); 2913 // Create a global variable for this string 2914 auto *GV = new llvm::GlobalVariable( 2915 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2916 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2917 GV->setAlignment(Alignment); 2918 GV->setUnnamedAddr(true); 2919 if (GV->isWeakForLinker()) { 2920 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2921 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2922 } 2923 2924 return GV; 2925 } 2926 2927 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2928 /// constant array for the given string literal. 2929 llvm::GlobalVariable * 2930 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2931 StringRef Name) { 2932 auto Alignment = 2933 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2934 2935 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2936 llvm::GlobalVariable **Entry = nullptr; 2937 if (!LangOpts.WritableStrings) { 2938 Entry = &ConstantStringMap[C]; 2939 if (auto GV = *Entry) { 2940 if (Alignment > GV->getAlignment()) 2941 GV->setAlignment(Alignment); 2942 return GV; 2943 } 2944 } 2945 2946 SmallString<256> MangledNameBuffer; 2947 StringRef GlobalVariableName; 2948 llvm::GlobalValue::LinkageTypes LT; 2949 2950 // Mangle the string literal if the ABI allows for it. However, we cannot 2951 // do this if we are compiling with ASan or -fwritable-strings because they 2952 // rely on strings having normal linkage. 2953 if (!LangOpts.WritableStrings && 2954 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2955 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2956 llvm::raw_svector_ostream Out(MangledNameBuffer); 2957 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2958 Out.flush(); 2959 2960 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2961 GlobalVariableName = MangledNameBuffer; 2962 } else { 2963 LT = llvm::GlobalValue::PrivateLinkage; 2964 GlobalVariableName = Name; 2965 } 2966 2967 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2968 if (Entry) 2969 *Entry = GV; 2970 2971 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2972 QualType()); 2973 return GV; 2974 } 2975 2976 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2977 /// array for the given ObjCEncodeExpr node. 2978 llvm::GlobalVariable * 2979 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2980 std::string Str; 2981 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2982 2983 return GetAddrOfConstantCString(Str); 2984 } 2985 2986 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2987 /// the literal and a terminating '\0' character. 2988 /// The result has pointer to array type. 2989 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2990 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2991 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2992 if (Alignment == 0) { 2993 Alignment = getContext() 2994 .getAlignOfGlobalVarInChars(getContext().CharTy) 2995 .getQuantity(); 2996 } 2997 2998 llvm::Constant *C = 2999 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3000 3001 // Don't share any string literals if strings aren't constant. 3002 llvm::GlobalVariable **Entry = nullptr; 3003 if (!LangOpts.WritableStrings) { 3004 Entry = &ConstantStringMap[C]; 3005 if (auto GV = *Entry) { 3006 if (Alignment > GV->getAlignment()) 3007 GV->setAlignment(Alignment); 3008 return GV; 3009 } 3010 } 3011 3012 // Get the default prefix if a name wasn't specified. 3013 if (!GlobalName) 3014 GlobalName = ".str"; 3015 // Create a global variable for this. 3016 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3017 GlobalName, Alignment); 3018 if (Entry) 3019 *Entry = GV; 3020 return GV; 3021 } 3022 3023 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3024 const MaterializeTemporaryExpr *E, const Expr *Init) { 3025 assert((E->getStorageDuration() == SD_Static || 3026 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3027 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3028 3029 // If we're not materializing a subobject of the temporary, keep the 3030 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3031 QualType MaterializedType = Init->getType(); 3032 if (Init == E->GetTemporaryExpr()) 3033 MaterializedType = E->getType(); 3034 3035 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3036 if (Slot) 3037 return Slot; 3038 3039 // FIXME: If an externally-visible declaration extends multiple temporaries, 3040 // we need to give each temporary the same name in every translation unit (and 3041 // we also need to make the temporaries externally-visible). 3042 SmallString<256> Name; 3043 llvm::raw_svector_ostream Out(Name); 3044 getCXXABI().getMangleContext().mangleReferenceTemporary( 3045 VD, E->getManglingNumber(), Out); 3046 Out.flush(); 3047 3048 APValue *Value = nullptr; 3049 if (E->getStorageDuration() == SD_Static) { 3050 // We might have a cached constant initializer for this temporary. Note 3051 // that this might have a different value from the value computed by 3052 // evaluating the initializer if the surrounding constant expression 3053 // modifies the temporary. 3054 Value = getContext().getMaterializedTemporaryValue(E, false); 3055 if (Value && Value->isUninit()) 3056 Value = nullptr; 3057 } 3058 3059 // Try evaluating it now, it might have a constant initializer. 3060 Expr::EvalResult EvalResult; 3061 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3062 !EvalResult.hasSideEffects()) 3063 Value = &EvalResult.Val; 3064 3065 llvm::Constant *InitialValue = nullptr; 3066 bool Constant = false; 3067 llvm::Type *Type; 3068 if (Value) { 3069 // The temporary has a constant initializer, use it. 3070 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3071 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3072 Type = InitialValue->getType(); 3073 } else { 3074 // No initializer, the initialization will be provided when we 3075 // initialize the declaration which performed lifetime extension. 3076 Type = getTypes().ConvertTypeForMem(MaterializedType); 3077 } 3078 3079 // Create a global variable for this lifetime-extended temporary. 3080 llvm::GlobalValue::LinkageTypes Linkage = 3081 getLLVMLinkageVarDefinition(VD, Constant); 3082 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3083 const VarDecl *InitVD; 3084 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3085 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3086 // Temporaries defined inside a class get linkonce_odr linkage because the 3087 // class can be defined in multipe translation units. 3088 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3089 } else { 3090 // There is no need for this temporary to have external linkage if the 3091 // VarDecl has external linkage. 3092 Linkage = llvm::GlobalVariable::InternalLinkage; 3093 } 3094 } 3095 unsigned AddrSpace = GetGlobalVarAddressSpace( 3096 VD, getContext().getTargetAddressSpace(MaterializedType)); 3097 auto *GV = new llvm::GlobalVariable( 3098 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3099 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3100 AddrSpace); 3101 setGlobalVisibility(GV, VD); 3102 GV->setAlignment( 3103 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3104 if (supportsCOMDAT() && GV->isWeakForLinker()) 3105 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3106 if (VD->getTLSKind()) 3107 setTLSMode(GV, *VD); 3108 Slot = GV; 3109 return GV; 3110 } 3111 3112 /// EmitObjCPropertyImplementations - Emit information for synthesized 3113 /// properties for an implementation. 3114 void CodeGenModule::EmitObjCPropertyImplementations(const 3115 ObjCImplementationDecl *D) { 3116 for (const auto *PID : D->property_impls()) { 3117 // Dynamic is just for type-checking. 3118 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3119 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3120 3121 // Determine which methods need to be implemented, some may have 3122 // been overridden. Note that ::isPropertyAccessor is not the method 3123 // we want, that just indicates if the decl came from a 3124 // property. What we want to know is if the method is defined in 3125 // this implementation. 3126 if (!D->getInstanceMethod(PD->getGetterName())) 3127 CodeGenFunction(*this).GenerateObjCGetter( 3128 const_cast<ObjCImplementationDecl *>(D), PID); 3129 if (!PD->isReadOnly() && 3130 !D->getInstanceMethod(PD->getSetterName())) 3131 CodeGenFunction(*this).GenerateObjCSetter( 3132 const_cast<ObjCImplementationDecl *>(D), PID); 3133 } 3134 } 3135 } 3136 3137 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3138 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3139 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3140 ivar; ivar = ivar->getNextIvar()) 3141 if (ivar->getType().isDestructedType()) 3142 return true; 3143 3144 return false; 3145 } 3146 3147 static bool AllTrivialInitializers(CodeGenModule &CGM, 3148 ObjCImplementationDecl *D) { 3149 CodeGenFunction CGF(CGM); 3150 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3151 E = D->init_end(); B != E; ++B) { 3152 CXXCtorInitializer *CtorInitExp = *B; 3153 Expr *Init = CtorInitExp->getInit(); 3154 if (!CGF.isTrivialInitializer(Init)) 3155 return false; 3156 } 3157 return true; 3158 } 3159 3160 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3161 /// for an implementation. 3162 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3163 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3164 if (needsDestructMethod(D)) { 3165 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3166 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3167 ObjCMethodDecl *DTORMethod = 3168 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3169 cxxSelector, getContext().VoidTy, nullptr, D, 3170 /*isInstance=*/true, /*isVariadic=*/false, 3171 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3172 /*isDefined=*/false, ObjCMethodDecl::Required); 3173 D->addInstanceMethod(DTORMethod); 3174 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3175 D->setHasDestructors(true); 3176 } 3177 3178 // If the implementation doesn't have any ivar initializers, we don't need 3179 // a .cxx_construct. 3180 if (D->getNumIvarInitializers() == 0 || 3181 AllTrivialInitializers(*this, D)) 3182 return; 3183 3184 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3185 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3186 // The constructor returns 'self'. 3187 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3188 D->getLocation(), 3189 D->getLocation(), 3190 cxxSelector, 3191 getContext().getObjCIdType(), 3192 nullptr, D, /*isInstance=*/true, 3193 /*isVariadic=*/false, 3194 /*isPropertyAccessor=*/true, 3195 /*isImplicitlyDeclared=*/true, 3196 /*isDefined=*/false, 3197 ObjCMethodDecl::Required); 3198 D->addInstanceMethod(CTORMethod); 3199 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3200 D->setHasNonZeroConstructors(true); 3201 } 3202 3203 /// EmitNamespace - Emit all declarations in a namespace. 3204 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3205 for (auto *I : ND->decls()) { 3206 if (const auto *VD = dyn_cast<VarDecl>(I)) 3207 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3208 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3209 continue; 3210 EmitTopLevelDecl(I); 3211 } 3212 } 3213 3214 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3215 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3216 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3217 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3218 ErrorUnsupported(LSD, "linkage spec"); 3219 return; 3220 } 3221 3222 for (auto *I : LSD->decls()) { 3223 // Meta-data for ObjC class includes references to implemented methods. 3224 // Generate class's method definitions first. 3225 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3226 for (auto *M : OID->methods()) 3227 EmitTopLevelDecl(M); 3228 } 3229 EmitTopLevelDecl(I); 3230 } 3231 } 3232 3233 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3234 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3235 // Ignore dependent declarations. 3236 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3237 return; 3238 3239 switch (D->getKind()) { 3240 case Decl::CXXConversion: 3241 case Decl::CXXMethod: 3242 case Decl::Function: 3243 // Skip function templates 3244 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3245 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3246 return; 3247 3248 EmitGlobal(cast<FunctionDecl>(D)); 3249 // Always provide some coverage mapping 3250 // even for the functions that aren't emitted. 3251 AddDeferredUnusedCoverageMapping(D); 3252 break; 3253 3254 case Decl::Var: 3255 // Skip variable templates 3256 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3257 return; 3258 case Decl::VarTemplateSpecialization: 3259 EmitGlobal(cast<VarDecl>(D)); 3260 break; 3261 3262 // Indirect fields from global anonymous structs and unions can be 3263 // ignored; only the actual variable requires IR gen support. 3264 case Decl::IndirectField: 3265 break; 3266 3267 // C++ Decls 3268 case Decl::Namespace: 3269 EmitNamespace(cast<NamespaceDecl>(D)); 3270 break; 3271 // No code generation needed. 3272 case Decl::UsingShadow: 3273 case Decl::ClassTemplate: 3274 case Decl::VarTemplate: 3275 case Decl::VarTemplatePartialSpecialization: 3276 case Decl::FunctionTemplate: 3277 case Decl::TypeAliasTemplate: 3278 case Decl::Block: 3279 case Decl::Empty: 3280 break; 3281 case Decl::Using: // using X; [C++] 3282 if (CGDebugInfo *DI = getModuleDebugInfo()) 3283 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3284 return; 3285 case Decl::NamespaceAlias: 3286 if (CGDebugInfo *DI = getModuleDebugInfo()) 3287 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3288 return; 3289 case Decl::UsingDirective: // using namespace X; [C++] 3290 if (CGDebugInfo *DI = getModuleDebugInfo()) 3291 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3292 return; 3293 case Decl::CXXConstructor: 3294 // Skip function templates 3295 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3296 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3297 return; 3298 3299 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3300 break; 3301 case Decl::CXXDestructor: 3302 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3303 return; 3304 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3305 break; 3306 3307 case Decl::StaticAssert: 3308 // Nothing to do. 3309 break; 3310 3311 // Objective-C Decls 3312 3313 // Forward declarations, no (immediate) code generation. 3314 case Decl::ObjCInterface: 3315 case Decl::ObjCCategory: 3316 break; 3317 3318 case Decl::ObjCProtocol: { 3319 auto *Proto = cast<ObjCProtocolDecl>(D); 3320 if (Proto->isThisDeclarationADefinition()) 3321 ObjCRuntime->GenerateProtocol(Proto); 3322 break; 3323 } 3324 3325 case Decl::ObjCCategoryImpl: 3326 // Categories have properties but don't support synthesize so we 3327 // can ignore them here. 3328 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3329 break; 3330 3331 case Decl::ObjCImplementation: { 3332 auto *OMD = cast<ObjCImplementationDecl>(D); 3333 EmitObjCPropertyImplementations(OMD); 3334 EmitObjCIvarInitializations(OMD); 3335 ObjCRuntime->GenerateClass(OMD); 3336 // Emit global variable debug information. 3337 if (CGDebugInfo *DI = getModuleDebugInfo()) 3338 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3339 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3340 OMD->getClassInterface()), OMD->getLocation()); 3341 break; 3342 } 3343 case Decl::ObjCMethod: { 3344 auto *OMD = cast<ObjCMethodDecl>(D); 3345 // If this is not a prototype, emit the body. 3346 if (OMD->getBody()) 3347 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3348 break; 3349 } 3350 case Decl::ObjCCompatibleAlias: 3351 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3352 break; 3353 3354 case Decl::LinkageSpec: 3355 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3356 break; 3357 3358 case Decl::FileScopeAsm: { 3359 // File-scope asm is ignored during device-side CUDA compilation. 3360 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3361 break; 3362 auto *AD = cast<FileScopeAsmDecl>(D); 3363 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3364 break; 3365 } 3366 3367 case Decl::Import: { 3368 auto *Import = cast<ImportDecl>(D); 3369 3370 // Ignore import declarations that come from imported modules. 3371 if (clang::Module *Owner = Import->getOwningModule()) { 3372 if (getLangOpts().CurrentModule.empty() || 3373 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3374 break; 3375 } 3376 3377 ImportedModules.insert(Import->getImportedModule()); 3378 break; 3379 } 3380 3381 case Decl::OMPThreadPrivate: 3382 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3383 break; 3384 3385 case Decl::ClassTemplateSpecialization: { 3386 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3387 if (DebugInfo && 3388 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3389 Spec->hasDefinition()) 3390 DebugInfo->completeTemplateDefinition(*Spec); 3391 break; 3392 } 3393 3394 default: 3395 // Make sure we handled everything we should, every other kind is a 3396 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3397 // function. Need to recode Decl::Kind to do that easily. 3398 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3399 break; 3400 } 3401 } 3402 3403 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3404 // Do we need to generate coverage mapping? 3405 if (!CodeGenOpts.CoverageMapping) 3406 return; 3407 switch (D->getKind()) { 3408 case Decl::CXXConversion: 3409 case Decl::CXXMethod: 3410 case Decl::Function: 3411 case Decl::ObjCMethod: 3412 case Decl::CXXConstructor: 3413 case Decl::CXXDestructor: { 3414 if (!cast<FunctionDecl>(D)->hasBody()) 3415 return; 3416 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3417 if (I == DeferredEmptyCoverageMappingDecls.end()) 3418 DeferredEmptyCoverageMappingDecls[D] = true; 3419 break; 3420 } 3421 default: 3422 break; 3423 }; 3424 } 3425 3426 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3427 // Do we need to generate coverage mapping? 3428 if (!CodeGenOpts.CoverageMapping) 3429 return; 3430 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3431 if (Fn->isTemplateInstantiation()) 3432 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3433 } 3434 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3435 if (I == DeferredEmptyCoverageMappingDecls.end()) 3436 DeferredEmptyCoverageMappingDecls[D] = false; 3437 else 3438 I->second = false; 3439 } 3440 3441 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3442 std::vector<const Decl *> DeferredDecls; 3443 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3444 if (!I.second) 3445 continue; 3446 DeferredDecls.push_back(I.first); 3447 } 3448 // Sort the declarations by their location to make sure that the tests get a 3449 // predictable order for the coverage mapping for the unused declarations. 3450 if (CodeGenOpts.DumpCoverageMapping) 3451 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3452 [] (const Decl *LHS, const Decl *RHS) { 3453 return LHS->getLocStart() < RHS->getLocStart(); 3454 }); 3455 for (const auto *D : DeferredDecls) { 3456 switch (D->getKind()) { 3457 case Decl::CXXConversion: 3458 case Decl::CXXMethod: 3459 case Decl::Function: 3460 case Decl::ObjCMethod: { 3461 CodeGenPGO PGO(*this); 3462 GlobalDecl GD(cast<FunctionDecl>(D)); 3463 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3464 getFunctionLinkage(GD)); 3465 break; 3466 } 3467 case Decl::CXXConstructor: { 3468 CodeGenPGO PGO(*this); 3469 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3470 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3471 getFunctionLinkage(GD)); 3472 break; 3473 } 3474 case Decl::CXXDestructor: { 3475 CodeGenPGO PGO(*this); 3476 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3477 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3478 getFunctionLinkage(GD)); 3479 break; 3480 } 3481 default: 3482 break; 3483 }; 3484 } 3485 } 3486 3487 /// Turns the given pointer into a constant. 3488 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3489 const void *Ptr) { 3490 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3491 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3492 return llvm::ConstantInt::get(i64, PtrInt); 3493 } 3494 3495 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3496 llvm::NamedMDNode *&GlobalMetadata, 3497 GlobalDecl D, 3498 llvm::GlobalValue *Addr) { 3499 if (!GlobalMetadata) 3500 GlobalMetadata = 3501 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3502 3503 // TODO: should we report variant information for ctors/dtors? 3504 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3505 llvm::ConstantAsMetadata::get(GetPointerConstant( 3506 CGM.getLLVMContext(), D.getDecl()))}; 3507 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3508 } 3509 3510 /// For each function which is declared within an extern "C" region and marked 3511 /// as 'used', but has internal linkage, create an alias from the unmangled 3512 /// name to the mangled name if possible. People expect to be able to refer 3513 /// to such functions with an unmangled name from inline assembly within the 3514 /// same translation unit. 3515 void CodeGenModule::EmitStaticExternCAliases() { 3516 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3517 E = StaticExternCValues.end(); 3518 I != E; ++I) { 3519 IdentifierInfo *Name = I->first; 3520 llvm::GlobalValue *Val = I->second; 3521 if (Val && !getModule().getNamedValue(Name->getName())) 3522 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3523 } 3524 } 3525 3526 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3527 GlobalDecl &Result) const { 3528 auto Res = Manglings.find(MangledName); 3529 if (Res == Manglings.end()) 3530 return false; 3531 Result = Res->getValue(); 3532 return true; 3533 } 3534 3535 /// Emits metadata nodes associating all the global values in the 3536 /// current module with the Decls they came from. This is useful for 3537 /// projects using IR gen as a subroutine. 3538 /// 3539 /// Since there's currently no way to associate an MDNode directly 3540 /// with an llvm::GlobalValue, we create a global named metadata 3541 /// with the name 'clang.global.decl.ptrs'. 3542 void CodeGenModule::EmitDeclMetadata() { 3543 llvm::NamedMDNode *GlobalMetadata = nullptr; 3544 3545 // StaticLocalDeclMap 3546 for (auto &I : MangledDeclNames) { 3547 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3548 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3549 } 3550 } 3551 3552 /// Emits metadata nodes for all the local variables in the current 3553 /// function. 3554 void CodeGenFunction::EmitDeclMetadata() { 3555 if (LocalDeclMap.empty()) return; 3556 3557 llvm::LLVMContext &Context = getLLVMContext(); 3558 3559 // Find the unique metadata ID for this name. 3560 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3561 3562 llvm::NamedMDNode *GlobalMetadata = nullptr; 3563 3564 for (auto &I : LocalDeclMap) { 3565 const Decl *D = I.first; 3566 llvm::Value *Addr = I.second; 3567 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3568 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3569 Alloca->setMetadata( 3570 DeclPtrKind, llvm::MDNode::get( 3571 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3572 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3573 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3574 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3575 } 3576 } 3577 } 3578 3579 void CodeGenModule::EmitVersionIdentMetadata() { 3580 llvm::NamedMDNode *IdentMetadata = 3581 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3582 std::string Version = getClangFullVersion(); 3583 llvm::LLVMContext &Ctx = TheModule.getContext(); 3584 3585 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3586 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3587 } 3588 3589 void CodeGenModule::EmitTargetMetadata() { 3590 // Warning, new MangledDeclNames may be appended within this loop. 3591 // We rely on MapVector insertions adding new elements to the end 3592 // of the container. 3593 // FIXME: Move this loop into the one target that needs it, and only 3594 // loop over those declarations for which we couldn't emit the target 3595 // metadata when we emitted the declaration. 3596 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3597 auto Val = *(MangledDeclNames.begin() + I); 3598 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3599 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3600 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3601 } 3602 } 3603 3604 void CodeGenModule::EmitCoverageFile() { 3605 if (!getCodeGenOpts().CoverageFile.empty()) { 3606 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3607 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3608 llvm::LLVMContext &Ctx = TheModule.getContext(); 3609 llvm::MDString *CoverageFile = 3610 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3611 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3612 llvm::MDNode *CU = CUNode->getOperand(i); 3613 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3614 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3615 } 3616 } 3617 } 3618 } 3619 3620 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3621 // Sema has checked that all uuid strings are of the form 3622 // "12345678-1234-1234-1234-1234567890ab". 3623 assert(Uuid.size() == 36); 3624 for (unsigned i = 0; i < 36; ++i) { 3625 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3626 else assert(isHexDigit(Uuid[i])); 3627 } 3628 3629 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3630 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3631 3632 llvm::Constant *Field3[8]; 3633 for (unsigned Idx = 0; Idx < 8; ++Idx) 3634 Field3[Idx] = llvm::ConstantInt::get( 3635 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3636 3637 llvm::Constant *Fields[4] = { 3638 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3639 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3640 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3641 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3642 }; 3643 3644 return llvm::ConstantStruct::getAnon(Fields); 3645 } 3646 3647 llvm::Constant * 3648 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3649 QualType CatchHandlerType) { 3650 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3651 } 3652 3653 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3654 bool ForEH) { 3655 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3656 // FIXME: should we even be calling this method if RTTI is disabled 3657 // and it's not for EH? 3658 if (!ForEH && !getLangOpts().RTTI) 3659 return llvm::Constant::getNullValue(Int8PtrTy); 3660 3661 if (ForEH && Ty->isObjCObjectPointerType() && 3662 LangOpts.ObjCRuntime.isGNUFamily()) 3663 return ObjCRuntime->GetEHType(Ty); 3664 3665 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3666 } 3667 3668 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3669 for (auto RefExpr : D->varlists()) { 3670 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3671 bool PerformInit = 3672 VD->getAnyInitializer() && 3673 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3674 /*ForRef=*/false); 3675 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3676 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3677 CXXGlobalInits.push_back(InitFunction); 3678 } 3679 } 3680 3681