xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0488d1e4ba71d364e8f11bd6837a811e32fbf5b1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericMIPS:
68   case TargetCXXABI::GenericItanium:
69     return CreateItaniumCXXABI(CGM);
70   case TargetCXXABI::Microsoft:
71     return CreateMicrosoftCXXABI(CGM);
72   }
73 
74   llvm_unreachable("invalid C++ ABI kind");
75 }
76 
77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
78                              llvm::Module &M, const llvm::DataLayout &TD,
79                              DiagnosticsEngine &diags,
80                              CoverageSourceInfo *CoverageInfo)
81     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
82       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
83       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
84       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
85       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
86       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
87       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
88       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
89       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
90       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
91       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
92       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
93       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     auto ReaderOrErr =
145         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
146     if (std::error_code EC = ReaderOrErr.getError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile: %0");
149       getDiags().Report(DiagID) << EC.message();
150     } else
151       PGOReader = std::move(ReaderOrErr.get());
152   }
153 
154   // If coverage mapping generation is enabled, create the
155   // CoverageMappingModuleGen object.
156   if (CodeGenOpts.CoverageMapping)
157     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159 
160 CodeGenModule::~CodeGenModule() {
161   delete ObjCRuntime;
162   delete OpenCLRuntime;
163   delete OpenMPRuntime;
164   delete CUDARuntime;
165   delete TheTargetCodeGenInfo;
166   delete TBAA;
167   delete DebugInfo;
168   delete ARCData;
169   delete RRData;
170 }
171 
172 void CodeGenModule::createObjCRuntime() {
173   // This is just isGNUFamily(), but we want to force implementors of
174   // new ABIs to decide how best to do this.
175   switch (LangOpts.ObjCRuntime.getKind()) {
176   case ObjCRuntime::GNUstep:
177   case ObjCRuntime::GCC:
178   case ObjCRuntime::ObjFW:
179     ObjCRuntime = CreateGNUObjCRuntime(*this);
180     return;
181 
182   case ObjCRuntime::FragileMacOSX:
183   case ObjCRuntime::MacOSX:
184   case ObjCRuntime::iOS:
185     ObjCRuntime = CreateMacObjCRuntime(*this);
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime = new CGOpenCLRuntime(*this);
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   OpenMPRuntime = new CGOpenMPRuntime(*this);
197 }
198 
199 void CodeGenModule::createCUDARuntime() {
200   CUDARuntime = CreateNVCUDARuntime(*this);
201 }
202 
203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
204   Replacements[Name] = C;
205 }
206 
207 void CodeGenModule::applyReplacements() {
208   for (ReplacementsTy::iterator I = Replacements.begin(),
209                                 E = Replacements.end();
210        I != E; ++I) {
211     StringRef MangledName = I->first();
212     llvm::Constant *Replacement = I->second;
213     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
214     if (!Entry)
215       continue;
216     auto *OldF = cast<llvm::Function>(Entry);
217     auto *NewF = dyn_cast<llvm::Function>(Replacement);
218     if (!NewF) {
219       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
220         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
221       } else {
222         auto *CE = cast<llvm::ConstantExpr>(Replacement);
223         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
224                CE->getOpcode() == llvm::Instruction::GetElementPtr);
225         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
226       }
227     }
228 
229     // Replace old with new, but keep the old order.
230     OldF->replaceAllUsesWith(Replacement);
231     if (NewF) {
232       NewF->removeFromParent();
233       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
234     }
235     OldF->eraseFromParent();
236   }
237 }
238 
239 // This is only used in aliases that we created and we know they have a
240 // linear structure.
241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
242   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
243   const llvm::Constant *C = &GA;
244   for (;;) {
245     C = C->stripPointerCasts();
246     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
247       return GO;
248     // stripPointerCasts will not walk over weak aliases.
249     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
250     if (!GA2)
251       return nullptr;
252     if (!Visited.insert(GA2).second)
253       return nullptr;
254     C = GA2->getAliasee();
255   }
256 }
257 
258 void CodeGenModule::checkAliases() {
259   // Check if the constructed aliases are well formed. It is really unfortunate
260   // that we have to do this in CodeGen, but we only construct mangled names
261   // and aliases during codegen.
262   bool Error = false;
263   DiagnosticsEngine &Diags = getDiags();
264   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
265          E = Aliases.end(); I != E; ++I) {
266     const GlobalDecl &GD = *I;
267     const auto *D = cast<ValueDecl>(GD.getDecl());
268     const AliasAttr *AA = D->getAttr<AliasAttr>();
269     StringRef MangledName = getMangledName(GD);
270     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
271     auto *Alias = cast<llvm::GlobalAlias>(Entry);
272     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
273     if (!GV) {
274       Error = true;
275       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
276     } else if (GV->isDeclaration()) {
277       Error = true;
278       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
279     }
280 
281     llvm::Constant *Aliasee = Alias->getAliasee();
282     llvm::GlobalValue *AliaseeGV;
283     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
284       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
285     else
286       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
287 
288     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
289       StringRef AliasSection = SA->getName();
290       if (AliasSection != AliaseeGV->getSection())
291         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
292             << AliasSection;
293     }
294 
295     // We have to handle alias to weak aliases in here. LLVM itself disallows
296     // this since the object semantics would not match the IL one. For
297     // compatibility with gcc we implement it by just pointing the alias
298     // to its aliasee's aliasee. We also warn, since the user is probably
299     // expecting the link to be weak.
300     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
301       if (GA->mayBeOverridden()) {
302         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
303             << GV->getName() << GA->getName();
304         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
305             GA->getAliasee(), Alias->getType());
306         Alias->setAliasee(Aliasee);
307       }
308     }
309   }
310   if (!Error)
311     return;
312 
313   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
314          E = Aliases.end(); I != E; ++I) {
315     const GlobalDecl &GD = *I;
316     StringRef MangledName = getMangledName(GD);
317     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
318     auto *Alias = cast<llvm::GlobalAlias>(Entry);
319     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
320     Alias->eraseFromParent();
321   }
322 }
323 
324 void CodeGenModule::clear() {
325   DeferredDeclsToEmit.clear();
326   if (OpenMPRuntime)
327     OpenMPRuntime->clear();
328 }
329 
330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
331                                        StringRef MainFile) {
332   if (!hasDiagnostics())
333     return;
334   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
335     if (MainFile.empty())
336       MainFile = "<stdin>";
337     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
338   } else
339     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
340                                                       << Mismatched;
341 }
342 
343 void CodeGenModule::Release() {
344   EmitDeferred();
345   applyReplacements();
346   checkAliases();
347   EmitCXXGlobalInitFunc();
348   EmitCXXGlobalDtorFunc();
349   EmitCXXThreadLocalInitFunc();
350   if (ObjCRuntime)
351     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
352       AddGlobalCtor(ObjCInitFunction);
353   if (PGOReader && PGOStats.hasDiagnostics())
354     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
355   EmitCtorList(GlobalCtors, "llvm.global_ctors");
356   EmitCtorList(GlobalDtors, "llvm.global_dtors");
357   EmitGlobalAnnotations();
358   EmitStaticExternCAliases();
359   EmitDeferredUnusedCoverageMappings();
360   if (CoverageMapping)
361     CoverageMapping->emit();
362   emitLLVMUsed();
363 
364   if (CodeGenOpts.Autolink &&
365       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
366     EmitModuleLinkOptions();
367   }
368   if (CodeGenOpts.DwarfVersion)
369     // We actually want the latest version when there are conflicts.
370     // We can change from Warning to Latest if such mode is supported.
371     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
372                               CodeGenOpts.DwarfVersion);
373   if (DebugInfo)
374     // We support a single version in the linked module. The LLVM
375     // parser will drop debug info with a different version number
376     // (and warn about it, too).
377     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
378                               llvm::DEBUG_METADATA_VERSION);
379 
380   // We need to record the widths of enums and wchar_t, so that we can generate
381   // the correct build attributes in the ARM backend.
382   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
383   if (   Arch == llvm::Triple::arm
384       || Arch == llvm::Triple::armeb
385       || Arch == llvm::Triple::thumb
386       || Arch == llvm::Triple::thumbeb) {
387     // Width of wchar_t in bytes
388     uint64_t WCharWidth =
389         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
390     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
391 
392     // The minimum width of an enum in bytes
393     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
394     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
395   }
396 
397   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
398     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
399     switch (PLevel) {
400     case 0: break;
401     case 1: PL = llvm::PICLevel::Small; break;
402     case 2: PL = llvm::PICLevel::Large; break;
403     default: llvm_unreachable("Invalid PIC Level");
404     }
405 
406     getModule().setPICLevel(PL);
407   }
408 
409   SimplifyPersonality();
410 
411   if (getCodeGenOpts().EmitDeclMetadata)
412     EmitDeclMetadata();
413 
414   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
415     EmitCoverageFile();
416 
417   if (DebugInfo)
418     DebugInfo->finalize();
419 
420   EmitVersionIdentMetadata();
421 
422   EmitTargetMetadata();
423 }
424 
425 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
426   // Make sure that this type is translated.
427   Types.UpdateCompletedType(TD);
428 }
429 
430 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
431   if (!TBAA)
432     return nullptr;
433   return TBAA->getTBAAInfo(QTy);
434 }
435 
436 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
437   if (!TBAA)
438     return nullptr;
439   return TBAA->getTBAAInfoForVTablePtr();
440 }
441 
442 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
443   if (!TBAA)
444     return nullptr;
445   return TBAA->getTBAAStructInfo(QTy);
446 }
447 
448 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
449   if (!TBAA)
450     return nullptr;
451   return TBAA->getTBAAStructTypeInfo(QTy);
452 }
453 
454 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
455                                                   llvm::MDNode *AccessN,
456                                                   uint64_t O) {
457   if (!TBAA)
458     return nullptr;
459   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
460 }
461 
462 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
463 /// and struct-path aware TBAA, the tag has the same format:
464 /// base type, access type and offset.
465 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
466 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
467                                         llvm::MDNode *TBAAInfo,
468                                         bool ConvertTypeToTag) {
469   if (ConvertTypeToTag && TBAA)
470     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
471                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
472   else
473     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
474 }
475 
476 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
477   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
478   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
479 }
480 
481 /// ErrorUnsupported - Print out an error that codegen doesn't support the
482 /// specified stmt yet.
483 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
484   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
485                                                "cannot compile this %0 yet");
486   std::string Msg = Type;
487   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
488     << Msg << S->getSourceRange();
489 }
490 
491 /// ErrorUnsupported - Print out an error that codegen doesn't support the
492 /// specified decl yet.
493 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
494   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
495                                                "cannot compile this %0 yet");
496   std::string Msg = Type;
497   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
498 }
499 
500 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
501   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
502 }
503 
504 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
505                                         const NamedDecl *D) const {
506   // Internal definitions always have default visibility.
507   if (GV->hasLocalLinkage()) {
508     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
509     return;
510   }
511 
512   // Set visibility for definitions.
513   LinkageInfo LV = D->getLinkageAndVisibility();
514   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
515     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
516 }
517 
518 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
519   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
520       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
521       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
522       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
523       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
524 }
525 
526 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
527     CodeGenOptions::TLSModel M) {
528   switch (M) {
529   case CodeGenOptions::GeneralDynamicTLSModel:
530     return llvm::GlobalVariable::GeneralDynamicTLSModel;
531   case CodeGenOptions::LocalDynamicTLSModel:
532     return llvm::GlobalVariable::LocalDynamicTLSModel;
533   case CodeGenOptions::InitialExecTLSModel:
534     return llvm::GlobalVariable::InitialExecTLSModel;
535   case CodeGenOptions::LocalExecTLSModel:
536     return llvm::GlobalVariable::LocalExecTLSModel;
537   }
538   llvm_unreachable("Invalid TLS model!");
539 }
540 
541 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
542   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
543 
544   llvm::GlobalValue::ThreadLocalMode TLM;
545   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
546 
547   // Override the TLS model if it is explicitly specified.
548   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
549     TLM = GetLLVMTLSModel(Attr->getModel());
550   }
551 
552   GV->setThreadLocalMode(TLM);
553 }
554 
555 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
556   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
557   if (!FoundStr.empty())
558     return FoundStr;
559 
560   const auto *ND = cast<NamedDecl>(GD.getDecl());
561   SmallString<256> Buffer;
562   StringRef Str;
563   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
564     llvm::raw_svector_ostream Out(Buffer);
565     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
566       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
567     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
568       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
569     else
570       getCXXABI().getMangleContext().mangleName(ND, Out);
571     Str = Out.str();
572   } else {
573     IdentifierInfo *II = ND->getIdentifier();
574     assert(II && "Attempt to mangle unnamed decl.");
575     Str = II->getName();
576   }
577 
578   // Keep the first result in the case of a mangling collision.
579   auto Result = Manglings.insert(std::make_pair(Str, GD));
580   return FoundStr = Result.first->first();
581 }
582 
583 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
584                                              const BlockDecl *BD) {
585   MangleContext &MangleCtx = getCXXABI().getMangleContext();
586   const Decl *D = GD.getDecl();
587 
588   SmallString<256> Buffer;
589   llvm::raw_svector_ostream Out(Buffer);
590   if (!D)
591     MangleCtx.mangleGlobalBlock(BD,
592       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
593   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
594     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
595   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
596     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
597   else
598     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
599 
600   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
601   return Result.first->first();
602 }
603 
604 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
605   return getModule().getNamedValue(Name);
606 }
607 
608 /// AddGlobalCtor - Add a function to the list that will be called before
609 /// main() runs.
610 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
611                                   llvm::Constant *AssociatedData) {
612   // FIXME: Type coercion of void()* types.
613   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
614 }
615 
616 /// AddGlobalDtor - Add a function to the list that will be called
617 /// when the module is unloaded.
618 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
619   // FIXME: Type coercion of void()* types.
620   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
621 }
622 
623 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
624   // Ctor function type is void()*.
625   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
626   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
627 
628   // Get the type of a ctor entry, { i32, void ()*, i8* }.
629   llvm::StructType *CtorStructTy = llvm::StructType::get(
630       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
631 
632   // Construct the constructor and destructor arrays.
633   SmallVector<llvm::Constant*, 8> Ctors;
634   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
635     llvm::Constant *S[] = {
636       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
637       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
638       (I->AssociatedData
639            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
640            : llvm::Constant::getNullValue(VoidPtrTy))
641     };
642     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
643   }
644 
645   if (!Ctors.empty()) {
646     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
647     new llvm::GlobalVariable(TheModule, AT, false,
648                              llvm::GlobalValue::AppendingLinkage,
649                              llvm::ConstantArray::get(AT, Ctors),
650                              GlobalName);
651   }
652 }
653 
654 llvm::GlobalValue::LinkageTypes
655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
656   const auto *D = cast<FunctionDecl>(GD.getDecl());
657 
658   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
659 
660   if (isa<CXXDestructorDecl>(D) &&
661       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
662                                          GD.getDtorType())) {
663     // Destructor variants in the Microsoft C++ ABI are always internal or
664     // linkonce_odr thunks emitted on an as-needed basis.
665     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
666                                    : llvm::GlobalValue::LinkOnceODRLinkage;
667   }
668 
669   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
670 }
671 
672 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
673                                                     llvm::Function *F) {
674   setNonAliasAttributes(D, F);
675 }
676 
677 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
678                                               const CGFunctionInfo &Info,
679                                               llvm::Function *F) {
680   unsigned CallingConv;
681   AttributeListType AttributeList;
682   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
683   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
684   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
685 }
686 
687 /// Determines whether the language options require us to model
688 /// unwind exceptions.  We treat -fexceptions as mandating this
689 /// except under the fragile ObjC ABI with only ObjC exceptions
690 /// enabled.  This means, for example, that C with -fexceptions
691 /// enables this.
692 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
693   // If exceptions are completely disabled, obviously this is false.
694   if (!LangOpts.Exceptions) return false;
695 
696   // If C++ exceptions are enabled, this is true.
697   if (LangOpts.CXXExceptions) return true;
698 
699   // If ObjC exceptions are enabled, this depends on the ABI.
700   if (LangOpts.ObjCExceptions) {
701     return LangOpts.ObjCRuntime.hasUnwindExceptions();
702   }
703 
704   return true;
705 }
706 
707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
708                                                            llvm::Function *F) {
709   llvm::AttrBuilder B;
710 
711   if (CodeGenOpts.UnwindTables)
712     B.addAttribute(llvm::Attribute::UWTable);
713 
714   if (!hasUnwindExceptions(LangOpts))
715     B.addAttribute(llvm::Attribute::NoUnwind);
716 
717   if (D->hasAttr<NakedAttr>()) {
718     // Naked implies noinline: we should not be inlining such functions.
719     B.addAttribute(llvm::Attribute::Naked);
720     B.addAttribute(llvm::Attribute::NoInline);
721   } else if (D->hasAttr<NoDuplicateAttr>()) {
722     B.addAttribute(llvm::Attribute::NoDuplicate);
723   } else if (D->hasAttr<NoInlineAttr>()) {
724     B.addAttribute(llvm::Attribute::NoInline);
725   } else if (D->hasAttr<AlwaysInlineAttr>() &&
726              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
727                                               llvm::Attribute::NoInline)) {
728     // (noinline wins over always_inline, and we can't specify both in IR)
729     B.addAttribute(llvm::Attribute::AlwaysInline);
730   }
731 
732   if (D->hasAttr<ColdAttr>()) {
733     if (!D->hasAttr<OptimizeNoneAttr>())
734       B.addAttribute(llvm::Attribute::OptimizeForSize);
735     B.addAttribute(llvm::Attribute::Cold);
736   }
737 
738   if (D->hasAttr<MinSizeAttr>())
739     B.addAttribute(llvm::Attribute::MinSize);
740 
741   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
742     B.addAttribute(llvm::Attribute::StackProtect);
743   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
744     B.addAttribute(llvm::Attribute::StackProtectStrong);
745   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
746     B.addAttribute(llvm::Attribute::StackProtectReq);
747 
748   // Add sanitizer attributes if function is not blacklisted.
749   if (!isInSanitizerBlacklist(F, D->getLocation())) {
750     // When AddressSanitizer is enabled, set SanitizeAddress attribute
751     // unless __attribute__((no_sanitize_address)) is used.
752     if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
753         !D->hasAttr<NoSanitizeAddressAttr>())
754       B.addAttribute(llvm::Attribute::SanitizeAddress);
755     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
756     if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
757         !D->hasAttr<NoSanitizeThreadAttr>())
758       B.addAttribute(llvm::Attribute::SanitizeThread);
759     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
760     if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
761         !D->hasAttr<NoSanitizeMemoryAttr>())
762       B.addAttribute(llvm::Attribute::SanitizeMemory);
763   }
764 
765   F->addAttributes(llvm::AttributeSet::FunctionIndex,
766                    llvm::AttributeSet::get(
767                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
768 
769   if (D->hasAttr<OptimizeNoneAttr>()) {
770     // OptimizeNone implies noinline; we should not be inlining such functions.
771     F->addFnAttr(llvm::Attribute::OptimizeNone);
772     F->addFnAttr(llvm::Attribute::NoInline);
773 
774     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
775     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
776            "OptimizeNone and OptimizeForSize on same function!");
777     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
778            "OptimizeNone and MinSize on same function!");
779     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
780            "OptimizeNone and AlwaysInline on same function!");
781 
782     // Attribute 'inlinehint' has no effect on 'optnone' functions.
783     // Explicitly remove it from the set of function attributes.
784     F->removeFnAttr(llvm::Attribute::InlineHint);
785   }
786 
787   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
788     F->setUnnamedAddr(true);
789   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
790     if (MD->isVirtual())
791       F->setUnnamedAddr(true);
792 
793   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
794   if (alignment)
795     F->setAlignment(alignment);
796 
797   // C++ ABI requires 2-byte alignment for member functions.
798   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
799     F->setAlignment(2);
800 }
801 
802 void CodeGenModule::SetCommonAttributes(const Decl *D,
803                                         llvm::GlobalValue *GV) {
804   if (const auto *ND = dyn_cast<NamedDecl>(D))
805     setGlobalVisibility(GV, ND);
806   else
807     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
808 
809   if (D->hasAttr<UsedAttr>())
810     addUsedGlobal(GV);
811 }
812 
813 void CodeGenModule::setAliasAttributes(const Decl *D,
814                                        llvm::GlobalValue *GV) {
815   SetCommonAttributes(D, GV);
816 
817   // Process the dllexport attribute based on whether the original definition
818   // (not necessarily the aliasee) was exported.
819   if (D->hasAttr<DLLExportAttr>())
820     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
821 }
822 
823 void CodeGenModule::setNonAliasAttributes(const Decl *D,
824                                           llvm::GlobalObject *GO) {
825   SetCommonAttributes(D, GO);
826 
827   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
828     GO->setSection(SA->getName());
829 
830   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
831 }
832 
833 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
834                                                   llvm::Function *F,
835                                                   const CGFunctionInfo &FI) {
836   SetLLVMFunctionAttributes(D, FI, F);
837   SetLLVMFunctionAttributesForDefinition(D, F);
838 
839   F->setLinkage(llvm::Function::InternalLinkage);
840 
841   setNonAliasAttributes(D, F);
842 }
843 
844 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
845                                          const NamedDecl *ND) {
846   // Set linkage and visibility in case we never see a definition.
847   LinkageInfo LV = ND->getLinkageAndVisibility();
848   if (LV.getLinkage() != ExternalLinkage) {
849     // Don't set internal linkage on declarations.
850   } else {
851     if (ND->hasAttr<DLLImportAttr>()) {
852       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
853       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
854     } else if (ND->hasAttr<DLLExportAttr>()) {
855       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
856       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
857     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
858       // "extern_weak" is overloaded in LLVM; we probably should have
859       // separate linkage types for this.
860       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
861     }
862 
863     // Set visibility on a declaration only if it's explicit.
864     if (LV.isVisibilityExplicit())
865       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
866   }
867 }
868 
869 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
870                                           bool IsIncompleteFunction,
871                                           bool IsThunk) {
872   if (unsigned IID = F->getIntrinsicID()) {
873     // If this is an intrinsic function, set the function's attributes
874     // to the intrinsic's attributes.
875     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
876                                                     (llvm::Intrinsic::ID)IID));
877     return;
878   }
879 
880   const auto *FD = cast<FunctionDecl>(GD.getDecl());
881 
882   if (!IsIncompleteFunction)
883     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
884 
885   // Add the Returned attribute for "this", except for iOS 5 and earlier
886   // where substantial code, including the libstdc++ dylib, was compiled with
887   // GCC and does not actually return "this".
888   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
889       !(getTarget().getTriple().isiOS() &&
890         getTarget().getTriple().isOSVersionLT(6))) {
891     assert(!F->arg_empty() &&
892            F->arg_begin()->getType()
893              ->canLosslesslyBitCastTo(F->getReturnType()) &&
894            "unexpected this return");
895     F->addAttribute(1, llvm::Attribute::Returned);
896   }
897 
898   // Only a few attributes are set on declarations; these may later be
899   // overridden by a definition.
900 
901   setLinkageAndVisibilityForGV(F, FD);
902 
903   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
904     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
905       // Don't dllexport/import destructor thunks.
906       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
907     }
908   }
909 
910   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
911     F->setSection(SA->getName());
912 
913   // A replaceable global allocation function does not act like a builtin by
914   // default, only if it is invoked by a new-expression or delete-expression.
915   if (FD->isReplaceableGlobalAllocationFunction())
916     F->addAttribute(llvm::AttributeSet::FunctionIndex,
917                     llvm::Attribute::NoBuiltin);
918 }
919 
920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
921   assert(!GV->isDeclaration() &&
922          "Only globals with definition can force usage.");
923   LLVMUsed.push_back(GV);
924 }
925 
926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
927   assert(!GV->isDeclaration() &&
928          "Only globals with definition can force usage.");
929   LLVMCompilerUsed.push_back(GV);
930 }
931 
932 static void emitUsed(CodeGenModule &CGM, StringRef Name,
933                      std::vector<llvm::WeakVH> &List) {
934   // Don't create llvm.used if there is no need.
935   if (List.empty())
936     return;
937 
938   // Convert List to what ConstantArray needs.
939   SmallVector<llvm::Constant*, 8> UsedArray;
940   UsedArray.resize(List.size());
941   for (unsigned i = 0, e = List.size(); i != e; ++i) {
942     UsedArray[i] =
943         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
944             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
945   }
946 
947   if (UsedArray.empty())
948     return;
949   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
950 
951   auto *GV = new llvm::GlobalVariable(
952       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
953       llvm::ConstantArray::get(ATy, UsedArray), Name);
954 
955   GV->setSection("llvm.metadata");
956 }
957 
958 void CodeGenModule::emitLLVMUsed() {
959   emitUsed(*this, "llvm.used", LLVMUsed);
960   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
961 }
962 
963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
964   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
965   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
966 }
967 
968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
969   llvm::SmallString<32> Opt;
970   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
971   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
972   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
973 }
974 
975 void CodeGenModule::AddDependentLib(StringRef Lib) {
976   llvm::SmallString<24> Opt;
977   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
978   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
979   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
980 }
981 
982 /// \brief Add link options implied by the given module, including modules
983 /// it depends on, using a postorder walk.
984 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
985                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
986                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
987   // Import this module's parent.
988   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
989     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
990   }
991 
992   // Import this module's dependencies.
993   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
994     if (Visited.insert(Mod->Imports[I - 1]).second)
995       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
996   }
997 
998   // Add linker options to link against the libraries/frameworks
999   // described by this module.
1000   llvm::LLVMContext &Context = CGM.getLLVMContext();
1001   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1002     // Link against a framework.  Frameworks are currently Darwin only, so we
1003     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1004     if (Mod->LinkLibraries[I-1].IsFramework) {
1005       llvm::Metadata *Args[2] = {
1006           llvm::MDString::get(Context, "-framework"),
1007           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1008 
1009       Metadata.push_back(llvm::MDNode::get(Context, Args));
1010       continue;
1011     }
1012 
1013     // Link against a library.
1014     llvm::SmallString<24> Opt;
1015     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1016       Mod->LinkLibraries[I-1].Library, Opt);
1017     auto *OptString = llvm::MDString::get(Context, Opt);
1018     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1019   }
1020 }
1021 
1022 void CodeGenModule::EmitModuleLinkOptions() {
1023   // Collect the set of all of the modules we want to visit to emit link
1024   // options, which is essentially the imported modules and all of their
1025   // non-explicit child modules.
1026   llvm::SetVector<clang::Module *> LinkModules;
1027   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1028   SmallVector<clang::Module *, 16> Stack;
1029 
1030   // Seed the stack with imported modules.
1031   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1032                                                MEnd = ImportedModules.end();
1033        M != MEnd; ++M) {
1034     if (Visited.insert(*M).second)
1035       Stack.push_back(*M);
1036   }
1037 
1038   // Find all of the modules to import, making a little effort to prune
1039   // non-leaf modules.
1040   while (!Stack.empty()) {
1041     clang::Module *Mod = Stack.pop_back_val();
1042 
1043     bool AnyChildren = false;
1044 
1045     // Visit the submodules of this module.
1046     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1047                                         SubEnd = Mod->submodule_end();
1048          Sub != SubEnd; ++Sub) {
1049       // Skip explicit children; they need to be explicitly imported to be
1050       // linked against.
1051       if ((*Sub)->IsExplicit)
1052         continue;
1053 
1054       if (Visited.insert(*Sub).second) {
1055         Stack.push_back(*Sub);
1056         AnyChildren = true;
1057       }
1058     }
1059 
1060     // We didn't find any children, so add this module to the list of
1061     // modules to link against.
1062     if (!AnyChildren) {
1063       LinkModules.insert(Mod);
1064     }
1065   }
1066 
1067   // Add link options for all of the imported modules in reverse topological
1068   // order.  We don't do anything to try to order import link flags with respect
1069   // to linker options inserted by things like #pragma comment().
1070   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1071   Visited.clear();
1072   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1073                                                MEnd = LinkModules.end();
1074        M != MEnd; ++M) {
1075     if (Visited.insert(*M).second)
1076       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1077   }
1078   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1079   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1080 
1081   // Add the linker options metadata flag.
1082   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1083                             llvm::MDNode::get(getLLVMContext(),
1084                                               LinkerOptionsMetadata));
1085 }
1086 
1087 void CodeGenModule::EmitDeferred() {
1088   // Emit code for any potentially referenced deferred decls.  Since a
1089   // previously unused static decl may become used during the generation of code
1090   // for a static function, iterate until no changes are made.
1091 
1092   if (!DeferredVTables.empty()) {
1093     EmitDeferredVTables();
1094 
1095     // Emitting a v-table doesn't directly cause more v-tables to
1096     // become deferred, although it can cause functions to be
1097     // emitted that then need those v-tables.
1098     assert(DeferredVTables.empty());
1099   }
1100 
1101   // Stop if we're out of both deferred v-tables and deferred declarations.
1102   if (DeferredDeclsToEmit.empty())
1103     return;
1104 
1105   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1106   // work, it will not interfere with this.
1107   std::vector<DeferredGlobal> CurDeclsToEmit;
1108   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1109 
1110   for (DeferredGlobal &G : CurDeclsToEmit) {
1111     GlobalDecl D = G.GD;
1112     llvm::GlobalValue *GV = G.GV;
1113     G.GV = nullptr;
1114 
1115     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1116     if (!GV)
1117       GV = GetGlobalValue(getMangledName(D));
1118 
1119     // Check to see if we've already emitted this.  This is necessary
1120     // for a couple of reasons: first, decls can end up in the
1121     // deferred-decls queue multiple times, and second, decls can end
1122     // up with definitions in unusual ways (e.g. by an extern inline
1123     // function acquiring a strong function redefinition).  Just
1124     // ignore these cases.
1125     if (GV && !GV->isDeclaration())
1126       continue;
1127 
1128     // Otherwise, emit the definition and move on to the next one.
1129     EmitGlobalDefinition(D, GV);
1130 
1131     // If we found out that we need to emit more decls, do that recursively.
1132     // This has the advantage that the decls are emitted in a DFS and related
1133     // ones are close together, which is convenient for testing.
1134     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1135       EmitDeferred();
1136       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1137     }
1138   }
1139 }
1140 
1141 void CodeGenModule::EmitGlobalAnnotations() {
1142   if (Annotations.empty())
1143     return;
1144 
1145   // Create a new global variable for the ConstantStruct in the Module.
1146   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1147     Annotations[0]->getType(), Annotations.size()), Annotations);
1148   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1149                                       llvm::GlobalValue::AppendingLinkage,
1150                                       Array, "llvm.global.annotations");
1151   gv->setSection(AnnotationSection);
1152 }
1153 
1154 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1155   llvm::Constant *&AStr = AnnotationStrings[Str];
1156   if (AStr)
1157     return AStr;
1158 
1159   // Not found yet, create a new global.
1160   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1161   auto *gv =
1162       new llvm::GlobalVariable(getModule(), s->getType(), true,
1163                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1164   gv->setSection(AnnotationSection);
1165   gv->setUnnamedAddr(true);
1166   AStr = gv;
1167   return gv;
1168 }
1169 
1170 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1171   SourceManager &SM = getContext().getSourceManager();
1172   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1173   if (PLoc.isValid())
1174     return EmitAnnotationString(PLoc.getFilename());
1175   return EmitAnnotationString(SM.getBufferName(Loc));
1176 }
1177 
1178 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1179   SourceManager &SM = getContext().getSourceManager();
1180   PresumedLoc PLoc = SM.getPresumedLoc(L);
1181   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1182     SM.getExpansionLineNumber(L);
1183   return llvm::ConstantInt::get(Int32Ty, LineNo);
1184 }
1185 
1186 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1187                                                 const AnnotateAttr *AA,
1188                                                 SourceLocation L) {
1189   // Get the globals for file name, annotation, and the line number.
1190   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1191                  *UnitGV = EmitAnnotationUnit(L),
1192                  *LineNoCst = EmitAnnotationLineNo(L);
1193 
1194   // Create the ConstantStruct for the global annotation.
1195   llvm::Constant *Fields[4] = {
1196     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1197     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1198     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1199     LineNoCst
1200   };
1201   return llvm::ConstantStruct::getAnon(Fields);
1202 }
1203 
1204 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1205                                          llvm::GlobalValue *GV) {
1206   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1207   // Get the struct elements for these annotations.
1208   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1209     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1210 }
1211 
1212 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1213                                            SourceLocation Loc) const {
1214   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1215   // Blacklist by function name.
1216   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1217     return true;
1218   // Blacklist by location.
1219   if (!Loc.isInvalid())
1220     return SanitizerBL.isBlacklistedLocation(Loc);
1221   // If location is unknown, this may be a compiler-generated function. Assume
1222   // it's located in the main file.
1223   auto &SM = Context.getSourceManager();
1224   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1225     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1226   }
1227   return false;
1228 }
1229 
1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1231                                            SourceLocation Loc, QualType Ty,
1232                                            StringRef Category) const {
1233   // For now globals can be blacklisted only in ASan.
1234   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1235     return false;
1236   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1237   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1238     return true;
1239   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1240     return true;
1241   // Check global type.
1242   if (!Ty.isNull()) {
1243     // Drill down the array types: if global variable of a fixed type is
1244     // blacklisted, we also don't instrument arrays of them.
1245     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1246       Ty = AT->getElementType();
1247     Ty = Ty.getCanonicalType().getUnqualifiedType();
1248     // We allow to blacklist only record types (classes, structs etc.)
1249     if (Ty->isRecordType()) {
1250       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1251       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1252         return true;
1253     }
1254   }
1255   return false;
1256 }
1257 
1258 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1259   // Never defer when EmitAllDecls is specified.
1260   if (LangOpts.EmitAllDecls)
1261     return true;
1262 
1263   return getContext().DeclMustBeEmitted(Global);
1264 }
1265 
1266 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1267   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1268     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1269       // Implicit template instantiations may change linkage if they are later
1270       // explicitly instantiated, so they should not be emitted eagerly.
1271       return false;
1272 
1273   return true;
1274 }
1275 
1276 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1277     const CXXUuidofExpr* E) {
1278   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1279   // well-formed.
1280   StringRef Uuid = E->getUuidAsStringRef(Context);
1281   std::string Name = "_GUID_" + Uuid.lower();
1282   std::replace(Name.begin(), Name.end(), '-', '_');
1283 
1284   // Look for an existing global.
1285   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1286     return GV;
1287 
1288   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1289   assert(Init && "failed to initialize as constant");
1290 
1291   auto *GV = new llvm::GlobalVariable(
1292       getModule(), Init->getType(),
1293       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1294   if (supportsCOMDAT())
1295     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1296   return GV;
1297 }
1298 
1299 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1300   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1301   assert(AA && "No alias?");
1302 
1303   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1304 
1305   // See if there is already something with the target's name in the module.
1306   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1307   if (Entry) {
1308     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1309     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1310   }
1311 
1312   llvm::Constant *Aliasee;
1313   if (isa<llvm::FunctionType>(DeclTy))
1314     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1315                                       GlobalDecl(cast<FunctionDecl>(VD)),
1316                                       /*ForVTable=*/false);
1317   else
1318     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1319                                     llvm::PointerType::getUnqual(DeclTy),
1320                                     nullptr);
1321 
1322   auto *F = cast<llvm::GlobalValue>(Aliasee);
1323   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1324   WeakRefReferences.insert(F);
1325 
1326   return Aliasee;
1327 }
1328 
1329 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1330   const auto *Global = cast<ValueDecl>(GD.getDecl());
1331 
1332   // Weak references don't produce any output by themselves.
1333   if (Global->hasAttr<WeakRefAttr>())
1334     return;
1335 
1336   // If this is an alias definition (which otherwise looks like a declaration)
1337   // emit it now.
1338   if (Global->hasAttr<AliasAttr>())
1339     return EmitAliasDefinition(GD);
1340 
1341   // If this is CUDA, be selective about which declarations we emit.
1342   if (LangOpts.CUDA) {
1343     if (LangOpts.CUDAIsDevice) {
1344       if (!Global->hasAttr<CUDADeviceAttr>() &&
1345           !Global->hasAttr<CUDAGlobalAttr>() &&
1346           !Global->hasAttr<CUDAConstantAttr>() &&
1347           !Global->hasAttr<CUDASharedAttr>())
1348         return;
1349     } else {
1350       if (!Global->hasAttr<CUDAHostAttr>() && (
1351             Global->hasAttr<CUDADeviceAttr>() ||
1352             Global->hasAttr<CUDAConstantAttr>() ||
1353             Global->hasAttr<CUDASharedAttr>()))
1354         return;
1355     }
1356   }
1357 
1358   // Ignore declarations, they will be emitted on their first use.
1359   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1360     // Forward declarations are emitted lazily on first use.
1361     if (!FD->doesThisDeclarationHaveABody()) {
1362       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1363         return;
1364 
1365       StringRef MangledName = getMangledName(GD);
1366 
1367       // Compute the function info and LLVM type.
1368       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1369       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1370 
1371       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1372                               /*DontDefer=*/false);
1373       return;
1374     }
1375   } else {
1376     const auto *VD = cast<VarDecl>(Global);
1377     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1378 
1379     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1380         !Context.isMSStaticDataMemberInlineDefinition(VD))
1381       return;
1382   }
1383 
1384   // Defer code generation to first use when possible, e.g. if this is an inline
1385   // function. If the global must always be emitted, do it eagerly if possible
1386   // to benefit from cache locality.
1387   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1388     // Emit the definition if it can't be deferred.
1389     EmitGlobalDefinition(GD);
1390     return;
1391   }
1392 
1393   // If we're deferring emission of a C++ variable with an
1394   // initializer, remember the order in which it appeared in the file.
1395   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1396       cast<VarDecl>(Global)->hasInit()) {
1397     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1398     CXXGlobalInits.push_back(nullptr);
1399   }
1400 
1401   StringRef MangledName = getMangledName(GD);
1402   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1403     // The value has already been used and should therefore be emitted.
1404     addDeferredDeclToEmit(GV, GD);
1405   } else if (MustBeEmitted(Global)) {
1406     // The value must be emitted, but cannot be emitted eagerly.
1407     assert(!MayBeEmittedEagerly(Global));
1408     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1409   } else {
1410     // Otherwise, remember that we saw a deferred decl with this name.  The
1411     // first use of the mangled name will cause it to move into
1412     // DeferredDeclsToEmit.
1413     DeferredDecls[MangledName] = GD;
1414   }
1415 }
1416 
1417 namespace {
1418   struct FunctionIsDirectlyRecursive :
1419     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1420     const StringRef Name;
1421     const Builtin::Context &BI;
1422     bool Result;
1423     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1424       Name(N), BI(C), Result(false) {
1425     }
1426     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1427 
1428     bool TraverseCallExpr(CallExpr *E) {
1429       const FunctionDecl *FD = E->getDirectCallee();
1430       if (!FD)
1431         return true;
1432       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1433       if (Attr && Name == Attr->getLabel()) {
1434         Result = true;
1435         return false;
1436       }
1437       unsigned BuiltinID = FD->getBuiltinID();
1438       if (!BuiltinID)
1439         return true;
1440       StringRef BuiltinName = BI.GetName(BuiltinID);
1441       if (BuiltinName.startswith("__builtin_") &&
1442           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1443         Result = true;
1444         return false;
1445       }
1446       return true;
1447     }
1448   };
1449 }
1450 
1451 // isTriviallyRecursive - Check if this function calls another
1452 // decl that, because of the asm attribute or the other decl being a builtin,
1453 // ends up pointing to itself.
1454 bool
1455 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1456   StringRef Name;
1457   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1458     // asm labels are a special kind of mangling we have to support.
1459     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1460     if (!Attr)
1461       return false;
1462     Name = Attr->getLabel();
1463   } else {
1464     Name = FD->getName();
1465   }
1466 
1467   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1468   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1469   return Walker.Result;
1470 }
1471 
1472 bool
1473 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1474   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1475     return true;
1476   const auto *F = cast<FunctionDecl>(GD.getDecl());
1477   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1478     return false;
1479   // PR9614. Avoid cases where the source code is lying to us. An available
1480   // externally function should have an equivalent function somewhere else,
1481   // but a function that calls itself is clearly not equivalent to the real
1482   // implementation.
1483   // This happens in glibc's btowc and in some configure checks.
1484   return !isTriviallyRecursive(F);
1485 }
1486 
1487 /// If the type for the method's class was generated by
1488 /// CGDebugInfo::createContextChain(), the cache contains only a
1489 /// limited DIType without any declarations. Since EmitFunctionStart()
1490 /// needs to find the canonical declaration for each method, we need
1491 /// to construct the complete type prior to emitting the method.
1492 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1493   if (!D->isInstance())
1494     return;
1495 
1496   if (CGDebugInfo *DI = getModuleDebugInfo())
1497     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1498       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1499       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1500     }
1501 }
1502 
1503 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1504   const auto *D = cast<ValueDecl>(GD.getDecl());
1505 
1506   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1507                                  Context.getSourceManager(),
1508                                  "Generating code for declaration");
1509 
1510   if (isa<FunctionDecl>(D)) {
1511     // At -O0, don't generate IR for functions with available_externally
1512     // linkage.
1513     if (!shouldEmitFunction(GD))
1514       return;
1515 
1516     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1517       CompleteDIClassType(Method);
1518       // Make sure to emit the definition(s) before we emit the thunks.
1519       // This is necessary for the generation of certain thunks.
1520       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1521         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1522       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1523         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1524       else
1525         EmitGlobalFunctionDefinition(GD, GV);
1526 
1527       if (Method->isVirtual())
1528         getVTables().EmitThunks(GD);
1529 
1530       return;
1531     }
1532 
1533     return EmitGlobalFunctionDefinition(GD, GV);
1534   }
1535 
1536   if (const auto *VD = dyn_cast<VarDecl>(D))
1537     return EmitGlobalVarDefinition(VD);
1538 
1539   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1540 }
1541 
1542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1543 /// module, create and return an llvm Function with the specified type. If there
1544 /// is something in the module with the specified name, return it potentially
1545 /// bitcasted to the right type.
1546 ///
1547 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1548 /// to set the attributes on the function when it is first created.
1549 llvm::Constant *
1550 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1551                                        llvm::Type *Ty,
1552                                        GlobalDecl GD, bool ForVTable,
1553                                        bool DontDefer, bool IsThunk,
1554                                        llvm::AttributeSet ExtraAttrs) {
1555   const Decl *D = GD.getDecl();
1556 
1557   // Lookup the entry, lazily creating it if necessary.
1558   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1559   if (Entry) {
1560     if (WeakRefReferences.erase(Entry)) {
1561       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1562       if (FD && !FD->hasAttr<WeakAttr>())
1563         Entry->setLinkage(llvm::Function::ExternalLinkage);
1564     }
1565 
1566     // Handle dropped DLL attributes.
1567     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1568       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1569 
1570     if (Entry->getType()->getElementType() == Ty)
1571       return Entry;
1572 
1573     // Make sure the result is of the correct type.
1574     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1575   }
1576 
1577   // This function doesn't have a complete type (for example, the return
1578   // type is an incomplete struct). Use a fake type instead, and make
1579   // sure not to try to set attributes.
1580   bool IsIncompleteFunction = false;
1581 
1582   llvm::FunctionType *FTy;
1583   if (isa<llvm::FunctionType>(Ty)) {
1584     FTy = cast<llvm::FunctionType>(Ty);
1585   } else {
1586     FTy = llvm::FunctionType::get(VoidTy, false);
1587     IsIncompleteFunction = true;
1588   }
1589 
1590   llvm::Function *F = llvm::Function::Create(FTy,
1591                                              llvm::Function::ExternalLinkage,
1592                                              MangledName, &getModule());
1593   assert(F->getName() == MangledName && "name was uniqued!");
1594   if (D)
1595     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1596   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1597     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1598     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1599                      llvm::AttributeSet::get(VMContext,
1600                                              llvm::AttributeSet::FunctionIndex,
1601                                              B));
1602   }
1603 
1604   if (!DontDefer) {
1605     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1606     // each other bottoming out with the base dtor.  Therefore we emit non-base
1607     // dtors on usage, even if there is no dtor definition in the TU.
1608     if (D && isa<CXXDestructorDecl>(D) &&
1609         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1610                                            GD.getDtorType()))
1611       addDeferredDeclToEmit(F, GD);
1612 
1613     // This is the first use or definition of a mangled name.  If there is a
1614     // deferred decl with this name, remember that we need to emit it at the end
1615     // of the file.
1616     auto DDI = DeferredDecls.find(MangledName);
1617     if (DDI != DeferredDecls.end()) {
1618       // Move the potentially referenced deferred decl to the
1619       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1620       // don't need it anymore).
1621       addDeferredDeclToEmit(F, DDI->second);
1622       DeferredDecls.erase(DDI);
1623 
1624       // Otherwise, there are cases we have to worry about where we're
1625       // using a declaration for which we must emit a definition but where
1626       // we might not find a top-level definition:
1627       //   - member functions defined inline in their classes
1628       //   - friend functions defined inline in some class
1629       //   - special member functions with implicit definitions
1630       // If we ever change our AST traversal to walk into class methods,
1631       // this will be unnecessary.
1632       //
1633       // We also don't emit a definition for a function if it's going to be an
1634       // entry in a vtable, unless it's already marked as used.
1635     } else if (getLangOpts().CPlusPlus && D) {
1636       // Look for a declaration that's lexically in a record.
1637       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1638            FD = FD->getPreviousDecl()) {
1639         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1640           if (FD->doesThisDeclarationHaveABody()) {
1641             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1642             break;
1643           }
1644         }
1645       }
1646     }
1647   }
1648 
1649   // Make sure the result is of the requested type.
1650   if (!IsIncompleteFunction) {
1651     assert(F->getType()->getElementType() == Ty);
1652     return F;
1653   }
1654 
1655   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1656   return llvm::ConstantExpr::getBitCast(F, PTy);
1657 }
1658 
1659 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1660 /// non-null, then this function will use the specified type if it has to
1661 /// create it (this occurs when we see a definition of the function).
1662 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1663                                                  llvm::Type *Ty,
1664                                                  bool ForVTable,
1665                                                  bool DontDefer) {
1666   // If there was no specific requested type, just convert it now.
1667   if (!Ty)
1668     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1669 
1670   StringRef MangledName = getMangledName(GD);
1671   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1672 }
1673 
1674 /// CreateRuntimeFunction - Create a new runtime function with the specified
1675 /// type and name.
1676 llvm::Constant *
1677 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1678                                      StringRef Name,
1679                                      llvm::AttributeSet ExtraAttrs) {
1680   llvm::Constant *C =
1681       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1682                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1683   if (auto *F = dyn_cast<llvm::Function>(C))
1684     if (F->empty())
1685       F->setCallingConv(getRuntimeCC());
1686   return C;
1687 }
1688 
1689 /// CreateBuiltinFunction - Create a new builtin function with the specified
1690 /// type and name.
1691 llvm::Constant *
1692 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1693                                      StringRef Name,
1694                                      llvm::AttributeSet ExtraAttrs) {
1695   llvm::Constant *C =
1696       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1697                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1698   if (auto *F = dyn_cast<llvm::Function>(C))
1699     if (F->empty())
1700       F->setCallingConv(getBuiltinCC());
1701   return C;
1702 }
1703 
1704 /// isTypeConstant - Determine whether an object of this type can be emitted
1705 /// as a constant.
1706 ///
1707 /// If ExcludeCtor is true, the duration when the object's constructor runs
1708 /// will not be considered. The caller will need to verify that the object is
1709 /// not written to during its construction.
1710 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1711   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1712     return false;
1713 
1714   if (Context.getLangOpts().CPlusPlus) {
1715     if (const CXXRecordDecl *Record
1716           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1717       return ExcludeCtor && !Record->hasMutableFields() &&
1718              Record->hasTrivialDestructor();
1719   }
1720 
1721   return true;
1722 }
1723 
1724 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1725 /// create and return an llvm GlobalVariable with the specified type.  If there
1726 /// is something in the module with the specified name, return it potentially
1727 /// bitcasted to the right type.
1728 ///
1729 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1730 /// to set the attributes on the global when it is first created.
1731 llvm::Constant *
1732 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1733                                      llvm::PointerType *Ty,
1734                                      const VarDecl *D) {
1735   // Lookup the entry, lazily creating it if necessary.
1736   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1737   if (Entry) {
1738     if (WeakRefReferences.erase(Entry)) {
1739       if (D && !D->hasAttr<WeakAttr>())
1740         Entry->setLinkage(llvm::Function::ExternalLinkage);
1741     }
1742 
1743     // Handle dropped DLL attributes.
1744     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1745       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1746 
1747     if (Entry->getType() == Ty)
1748       return Entry;
1749 
1750     // Make sure the result is of the correct type.
1751     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1752       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1753 
1754     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1755   }
1756 
1757   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1758   auto *GV = new llvm::GlobalVariable(
1759       getModule(), Ty->getElementType(), false,
1760       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1761       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1762 
1763   // This is the first use or definition of a mangled name.  If there is a
1764   // deferred decl with this name, remember that we need to emit it at the end
1765   // of the file.
1766   auto DDI = DeferredDecls.find(MangledName);
1767   if (DDI != DeferredDecls.end()) {
1768     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1769     // list, and remove it from DeferredDecls (since we don't need it anymore).
1770     addDeferredDeclToEmit(GV, DDI->second);
1771     DeferredDecls.erase(DDI);
1772   }
1773 
1774   // Handle things which are present even on external declarations.
1775   if (D) {
1776     // FIXME: This code is overly simple and should be merged with other global
1777     // handling.
1778     GV->setConstant(isTypeConstant(D->getType(), false));
1779 
1780     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1781 
1782     setLinkageAndVisibilityForGV(GV, D);
1783 
1784     if (D->getTLSKind()) {
1785       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1786         CXXThreadLocals.push_back(std::make_pair(D, GV));
1787       setTLSMode(GV, *D);
1788     }
1789 
1790     // If required by the ABI, treat declarations of static data members with
1791     // inline initializers as definitions.
1792     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1793       EmitGlobalVarDefinition(D);
1794     }
1795 
1796     // Handle XCore specific ABI requirements.
1797     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1798         D->getLanguageLinkage() == CLanguageLinkage &&
1799         D->getType().isConstant(Context) &&
1800         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1801       GV->setSection(".cp.rodata");
1802   }
1803 
1804   if (AddrSpace != Ty->getAddressSpace())
1805     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1806 
1807   return GV;
1808 }
1809 
1810 
1811 llvm::GlobalVariable *
1812 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1813                                       llvm::Type *Ty,
1814                                       llvm::GlobalValue::LinkageTypes Linkage) {
1815   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1816   llvm::GlobalVariable *OldGV = nullptr;
1817 
1818   if (GV) {
1819     // Check if the variable has the right type.
1820     if (GV->getType()->getElementType() == Ty)
1821       return GV;
1822 
1823     // Because C++ name mangling, the only way we can end up with an already
1824     // existing global with the same name is if it has been declared extern "C".
1825     assert(GV->isDeclaration() && "Declaration has wrong type!");
1826     OldGV = GV;
1827   }
1828 
1829   // Create a new variable.
1830   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1831                                 Linkage, nullptr, Name);
1832 
1833   if (OldGV) {
1834     // Replace occurrences of the old variable if needed.
1835     GV->takeName(OldGV);
1836 
1837     if (!OldGV->use_empty()) {
1838       llvm::Constant *NewPtrForOldDecl =
1839       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1840       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1841     }
1842 
1843     OldGV->eraseFromParent();
1844   }
1845 
1846   if (supportsCOMDAT() && GV->isWeakForLinker() &&
1847       !GV->hasAvailableExternallyLinkage())
1848     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1849 
1850   return GV;
1851 }
1852 
1853 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1854 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1855 /// then it will be created with the specified type instead of whatever the
1856 /// normal requested type would be.
1857 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1858                                                   llvm::Type *Ty) {
1859   assert(D->hasGlobalStorage() && "Not a global variable");
1860   QualType ASTTy = D->getType();
1861   if (!Ty)
1862     Ty = getTypes().ConvertTypeForMem(ASTTy);
1863 
1864   llvm::PointerType *PTy =
1865     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1866 
1867   StringRef MangledName = getMangledName(D);
1868   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1869 }
1870 
1871 /// CreateRuntimeVariable - Create a new runtime global variable with the
1872 /// specified type and name.
1873 llvm::Constant *
1874 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1875                                      StringRef Name) {
1876   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1877 }
1878 
1879 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1880   assert(!D->getInit() && "Cannot emit definite definitions here!");
1881 
1882   if (!MustBeEmitted(D)) {
1883     // If we have not seen a reference to this variable yet, place it
1884     // into the deferred declarations table to be emitted if needed
1885     // later.
1886     StringRef MangledName = getMangledName(D);
1887     if (!GetGlobalValue(MangledName)) {
1888       DeferredDecls[MangledName] = D;
1889       return;
1890     }
1891   }
1892 
1893   // The tentative definition is the only definition.
1894   EmitGlobalVarDefinition(D);
1895 }
1896 
1897 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1898     return Context.toCharUnitsFromBits(
1899       TheDataLayout.getTypeStoreSizeInBits(Ty));
1900 }
1901 
1902 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1903                                                  unsigned AddrSpace) {
1904   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
1905     if (D->hasAttr<CUDAConstantAttr>())
1906       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1907     else if (D->hasAttr<CUDASharedAttr>())
1908       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1909     else
1910       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1911   }
1912 
1913   return AddrSpace;
1914 }
1915 
1916 template<typename SomeDecl>
1917 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1918                                                llvm::GlobalValue *GV) {
1919   if (!getLangOpts().CPlusPlus)
1920     return;
1921 
1922   // Must have 'used' attribute, or else inline assembly can't rely on
1923   // the name existing.
1924   if (!D->template hasAttr<UsedAttr>())
1925     return;
1926 
1927   // Must have internal linkage and an ordinary name.
1928   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1929     return;
1930 
1931   // Must be in an extern "C" context. Entities declared directly within
1932   // a record are not extern "C" even if the record is in such a context.
1933   const SomeDecl *First = D->getFirstDecl();
1934   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1935     return;
1936 
1937   // OK, this is an internal linkage entity inside an extern "C" linkage
1938   // specification. Make a note of that so we can give it the "expected"
1939   // mangled name if nothing else is using that name.
1940   std::pair<StaticExternCMap::iterator, bool> R =
1941       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1942 
1943   // If we have multiple internal linkage entities with the same name
1944   // in extern "C" regions, none of them gets that name.
1945   if (!R.second)
1946     R.first->second = nullptr;
1947 }
1948 
1949 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1950   if (!CGM.supportsCOMDAT())
1951     return false;
1952 
1953   if (D.hasAttr<SelectAnyAttr>())
1954     return true;
1955 
1956   GVALinkage Linkage;
1957   if (auto *VD = dyn_cast<VarDecl>(&D))
1958     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1959   else
1960     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1961 
1962   switch (Linkage) {
1963   case GVA_Internal:
1964   case GVA_AvailableExternally:
1965   case GVA_StrongExternal:
1966     return false;
1967   case GVA_DiscardableODR:
1968   case GVA_StrongODR:
1969     return true;
1970   }
1971   llvm_unreachable("No such linkage");
1972 }
1973 
1974 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1975                                           llvm::GlobalObject &GO) {
1976   if (!shouldBeInCOMDAT(*this, D))
1977     return;
1978   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1979 }
1980 
1981 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1982   llvm::Constant *Init = nullptr;
1983   QualType ASTTy = D->getType();
1984   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1985   bool NeedsGlobalCtor = false;
1986   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1987 
1988   const VarDecl *InitDecl;
1989   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1990 
1991   if (!InitExpr) {
1992     // This is a tentative definition; tentative definitions are
1993     // implicitly initialized with { 0 }.
1994     //
1995     // Note that tentative definitions are only emitted at the end of
1996     // a translation unit, so they should never have incomplete
1997     // type. In addition, EmitTentativeDefinition makes sure that we
1998     // never attempt to emit a tentative definition if a real one
1999     // exists. A use may still exists, however, so we still may need
2000     // to do a RAUW.
2001     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2002     Init = EmitNullConstant(D->getType());
2003   } else {
2004     initializedGlobalDecl = GlobalDecl(D);
2005     Init = EmitConstantInit(*InitDecl);
2006 
2007     if (!Init) {
2008       QualType T = InitExpr->getType();
2009       if (D->getType()->isReferenceType())
2010         T = D->getType();
2011 
2012       if (getLangOpts().CPlusPlus) {
2013         Init = EmitNullConstant(T);
2014         NeedsGlobalCtor = true;
2015       } else {
2016         ErrorUnsupported(D, "static initializer");
2017         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2018       }
2019     } else {
2020       // We don't need an initializer, so remove the entry for the delayed
2021       // initializer position (just in case this entry was delayed) if we
2022       // also don't need to register a destructor.
2023       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2024         DelayedCXXInitPosition.erase(D);
2025     }
2026   }
2027 
2028   llvm::Type* InitType = Init->getType();
2029   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2030 
2031   // Strip off a bitcast if we got one back.
2032   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2033     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2034            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2035            // All zero index gep.
2036            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2037     Entry = CE->getOperand(0);
2038   }
2039 
2040   // Entry is now either a Function or GlobalVariable.
2041   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2042 
2043   // We have a definition after a declaration with the wrong type.
2044   // We must make a new GlobalVariable* and update everything that used OldGV
2045   // (a declaration or tentative definition) with the new GlobalVariable*
2046   // (which will be a definition).
2047   //
2048   // This happens if there is a prototype for a global (e.g.
2049   // "extern int x[];") and then a definition of a different type (e.g.
2050   // "int x[10];"). This also happens when an initializer has a different type
2051   // from the type of the global (this happens with unions).
2052   if (!GV ||
2053       GV->getType()->getElementType() != InitType ||
2054       GV->getType()->getAddressSpace() !=
2055        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2056 
2057     // Move the old entry aside so that we'll create a new one.
2058     Entry->setName(StringRef());
2059 
2060     // Make a new global with the correct type, this is now guaranteed to work.
2061     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2062 
2063     // Replace all uses of the old global with the new global
2064     llvm::Constant *NewPtrForOldDecl =
2065         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2066     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2067 
2068     // Erase the old global, since it is no longer used.
2069     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2070   }
2071 
2072   MaybeHandleStaticInExternC(D, GV);
2073 
2074   if (D->hasAttr<AnnotateAttr>())
2075     AddGlobalAnnotations(D, GV);
2076 
2077   GV->setInitializer(Init);
2078 
2079   // If it is safe to mark the global 'constant', do so now.
2080   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2081                   isTypeConstant(D->getType(), true));
2082 
2083   // If it is in a read-only section, mark it 'constant'.
2084   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2085     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2086     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2087       GV->setConstant(true);
2088   }
2089 
2090   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2091 
2092   // Set the llvm linkage type as appropriate.
2093   llvm::GlobalValue::LinkageTypes Linkage =
2094       getLLVMLinkageVarDefinition(D, GV->isConstant());
2095 
2096   // On Darwin, the backing variable for a C++11 thread_local variable always
2097   // has internal linkage; all accesses should just be calls to the
2098   // Itanium-specified entry point, which has the normal linkage of the
2099   // variable.
2100   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2101       Context.getTargetInfo().getTriple().isMacOSX())
2102     Linkage = llvm::GlobalValue::InternalLinkage;
2103 
2104   GV->setLinkage(Linkage);
2105   if (D->hasAttr<DLLImportAttr>())
2106     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2107   else if (D->hasAttr<DLLExportAttr>())
2108     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2109   else
2110     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2111 
2112   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2113     // common vars aren't constant even if declared const.
2114     GV->setConstant(false);
2115 
2116   setNonAliasAttributes(D, GV);
2117 
2118   if (D->getTLSKind() && !GV->isThreadLocal()) {
2119     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2120       CXXThreadLocals.push_back(std::make_pair(D, GV));
2121     setTLSMode(GV, *D);
2122   }
2123 
2124   maybeSetTrivialComdat(*D, *GV);
2125 
2126   // Emit the initializer function if necessary.
2127   if (NeedsGlobalCtor || NeedsGlobalDtor)
2128     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2129 
2130   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2131 
2132   // Emit global variable debug information.
2133   if (CGDebugInfo *DI = getModuleDebugInfo())
2134     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2135       DI->EmitGlobalVariable(GV, D);
2136 }
2137 
2138 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2139                                       CodeGenModule &CGM, const VarDecl *D,
2140                                       bool NoCommon) {
2141   // Don't give variables common linkage if -fno-common was specified unless it
2142   // was overridden by a NoCommon attribute.
2143   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2144     return true;
2145 
2146   // C11 6.9.2/2:
2147   //   A declaration of an identifier for an object that has file scope without
2148   //   an initializer, and without a storage-class specifier or with the
2149   //   storage-class specifier static, constitutes a tentative definition.
2150   if (D->getInit() || D->hasExternalStorage())
2151     return true;
2152 
2153   // A variable cannot be both common and exist in a section.
2154   if (D->hasAttr<SectionAttr>())
2155     return true;
2156 
2157   // Thread local vars aren't considered common linkage.
2158   if (D->getTLSKind())
2159     return true;
2160 
2161   // Tentative definitions marked with WeakImportAttr are true definitions.
2162   if (D->hasAttr<WeakImportAttr>())
2163     return true;
2164 
2165   // A variable cannot be both common and exist in a comdat.
2166   if (shouldBeInCOMDAT(CGM, *D))
2167     return true;
2168 
2169   // Declarations with a required alignment do not have common linakge in MSVC
2170   // mode.
2171   if (Context.getLangOpts().MSVCCompat) {
2172     if (D->hasAttr<AlignedAttr>())
2173       return true;
2174     QualType VarType = D->getType();
2175     if (Context.isAlignmentRequired(VarType))
2176       return true;
2177 
2178     if (const auto *RT = VarType->getAs<RecordType>()) {
2179       const RecordDecl *RD = RT->getDecl();
2180       for (const FieldDecl *FD : RD->fields()) {
2181         if (FD->isBitField())
2182           continue;
2183         if (FD->hasAttr<AlignedAttr>())
2184           return true;
2185         if (Context.isAlignmentRequired(FD->getType()))
2186           return true;
2187       }
2188     }
2189   }
2190 
2191   return false;
2192 }
2193 
2194 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2195     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2196   if (Linkage == GVA_Internal)
2197     return llvm::Function::InternalLinkage;
2198 
2199   if (D->hasAttr<WeakAttr>()) {
2200     if (IsConstantVariable)
2201       return llvm::GlobalVariable::WeakODRLinkage;
2202     else
2203       return llvm::GlobalVariable::WeakAnyLinkage;
2204   }
2205 
2206   // We are guaranteed to have a strong definition somewhere else,
2207   // so we can use available_externally linkage.
2208   if (Linkage == GVA_AvailableExternally)
2209     return llvm::Function::AvailableExternallyLinkage;
2210 
2211   // Note that Apple's kernel linker doesn't support symbol
2212   // coalescing, so we need to avoid linkonce and weak linkages there.
2213   // Normally, this means we just map to internal, but for explicit
2214   // instantiations we'll map to external.
2215 
2216   // In C++, the compiler has to emit a definition in every translation unit
2217   // that references the function.  We should use linkonce_odr because
2218   // a) if all references in this translation unit are optimized away, we
2219   // don't need to codegen it.  b) if the function persists, it needs to be
2220   // merged with other definitions. c) C++ has the ODR, so we know the
2221   // definition is dependable.
2222   if (Linkage == GVA_DiscardableODR)
2223     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2224                                             : llvm::Function::InternalLinkage;
2225 
2226   // An explicit instantiation of a template has weak linkage, since
2227   // explicit instantiations can occur in multiple translation units
2228   // and must all be equivalent. However, we are not allowed to
2229   // throw away these explicit instantiations.
2230   if (Linkage == GVA_StrongODR)
2231     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2232                                             : llvm::Function::ExternalLinkage;
2233 
2234   // C++ doesn't have tentative definitions and thus cannot have common
2235   // linkage.
2236   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2237       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2238                                  CodeGenOpts.NoCommon))
2239     return llvm::GlobalVariable::CommonLinkage;
2240 
2241   // selectany symbols are externally visible, so use weak instead of
2242   // linkonce.  MSVC optimizes away references to const selectany globals, so
2243   // all definitions should be the same and ODR linkage should be used.
2244   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2245   if (D->hasAttr<SelectAnyAttr>())
2246     return llvm::GlobalVariable::WeakODRLinkage;
2247 
2248   // Otherwise, we have strong external linkage.
2249   assert(Linkage == GVA_StrongExternal);
2250   return llvm::GlobalVariable::ExternalLinkage;
2251 }
2252 
2253 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2254     const VarDecl *VD, bool IsConstant) {
2255   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2256   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2257 }
2258 
2259 /// Replace the uses of a function that was declared with a non-proto type.
2260 /// We want to silently drop extra arguments from call sites
2261 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2262                                           llvm::Function *newFn) {
2263   // Fast path.
2264   if (old->use_empty()) return;
2265 
2266   llvm::Type *newRetTy = newFn->getReturnType();
2267   SmallVector<llvm::Value*, 4> newArgs;
2268 
2269   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2270          ui != ue; ) {
2271     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2272     llvm::User *user = use->getUser();
2273 
2274     // Recognize and replace uses of bitcasts.  Most calls to
2275     // unprototyped functions will use bitcasts.
2276     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2277       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2278         replaceUsesOfNonProtoConstant(bitcast, newFn);
2279       continue;
2280     }
2281 
2282     // Recognize calls to the function.
2283     llvm::CallSite callSite(user);
2284     if (!callSite) continue;
2285     if (!callSite.isCallee(&*use)) continue;
2286 
2287     // If the return types don't match exactly, then we can't
2288     // transform this call unless it's dead.
2289     if (callSite->getType() != newRetTy && !callSite->use_empty())
2290       continue;
2291 
2292     // Get the call site's attribute list.
2293     SmallVector<llvm::AttributeSet, 8> newAttrs;
2294     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2295 
2296     // Collect any return attributes from the call.
2297     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2298       newAttrs.push_back(
2299         llvm::AttributeSet::get(newFn->getContext(),
2300                                 oldAttrs.getRetAttributes()));
2301 
2302     // If the function was passed too few arguments, don't transform.
2303     unsigned newNumArgs = newFn->arg_size();
2304     if (callSite.arg_size() < newNumArgs) continue;
2305 
2306     // If extra arguments were passed, we silently drop them.
2307     // If any of the types mismatch, we don't transform.
2308     unsigned argNo = 0;
2309     bool dontTransform = false;
2310     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2311            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2312       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2313         dontTransform = true;
2314         break;
2315       }
2316 
2317       // Add any parameter attributes.
2318       if (oldAttrs.hasAttributes(argNo + 1))
2319         newAttrs.
2320           push_back(llvm::
2321                     AttributeSet::get(newFn->getContext(),
2322                                       oldAttrs.getParamAttributes(argNo + 1)));
2323     }
2324     if (dontTransform)
2325       continue;
2326 
2327     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2328       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2329                                                  oldAttrs.getFnAttributes()));
2330 
2331     // Okay, we can transform this.  Create the new call instruction and copy
2332     // over the required information.
2333     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2334 
2335     llvm::CallSite newCall;
2336     if (callSite.isCall()) {
2337       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2338                                        callSite.getInstruction());
2339     } else {
2340       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2341       newCall = llvm::InvokeInst::Create(newFn,
2342                                          oldInvoke->getNormalDest(),
2343                                          oldInvoke->getUnwindDest(),
2344                                          newArgs, "",
2345                                          callSite.getInstruction());
2346     }
2347     newArgs.clear(); // for the next iteration
2348 
2349     if (!newCall->getType()->isVoidTy())
2350       newCall->takeName(callSite.getInstruction());
2351     newCall.setAttributes(
2352                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2353     newCall.setCallingConv(callSite.getCallingConv());
2354 
2355     // Finally, remove the old call, replacing any uses with the new one.
2356     if (!callSite->use_empty())
2357       callSite->replaceAllUsesWith(newCall.getInstruction());
2358 
2359     // Copy debug location attached to CI.
2360     if (callSite->getDebugLoc())
2361       newCall->setDebugLoc(callSite->getDebugLoc());
2362     callSite->eraseFromParent();
2363   }
2364 }
2365 
2366 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2367 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2368 /// existing call uses of the old function in the module, this adjusts them to
2369 /// call the new function directly.
2370 ///
2371 /// This is not just a cleanup: the always_inline pass requires direct calls to
2372 /// functions to be able to inline them.  If there is a bitcast in the way, it
2373 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2374 /// run at -O0.
2375 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2376                                                       llvm::Function *NewFn) {
2377   // If we're redefining a global as a function, don't transform it.
2378   if (!isa<llvm::Function>(Old)) return;
2379 
2380   replaceUsesOfNonProtoConstant(Old, NewFn);
2381 }
2382 
2383 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2384   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2385   // If we have a definition, this might be a deferred decl. If the
2386   // instantiation is explicit, make sure we emit it at the end.
2387   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2388     GetAddrOfGlobalVar(VD);
2389 
2390   EmitTopLevelDecl(VD);
2391 }
2392 
2393 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2394                                                  llvm::GlobalValue *GV) {
2395   const auto *D = cast<FunctionDecl>(GD.getDecl());
2396 
2397   // Compute the function info and LLVM type.
2398   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2399   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2400 
2401   // Get or create the prototype for the function.
2402   if (!GV) {
2403     llvm::Constant *C =
2404         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2405 
2406     // Strip off a bitcast if we got one back.
2407     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2408       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2409       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2410     } else {
2411       GV = cast<llvm::GlobalValue>(C);
2412     }
2413   }
2414 
2415   if (!GV->isDeclaration()) {
2416     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2417     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2418     if (auto *Prev = OldGD.getDecl())
2419       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2420     return;
2421   }
2422 
2423   if (GV->getType()->getElementType() != Ty) {
2424     // If the types mismatch then we have to rewrite the definition.
2425     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2426 
2427     // F is the Function* for the one with the wrong type, we must make a new
2428     // Function* and update everything that used F (a declaration) with the new
2429     // Function* (which will be a definition).
2430     //
2431     // This happens if there is a prototype for a function
2432     // (e.g. "int f()") and then a definition of a different type
2433     // (e.g. "int f(int x)").  Move the old function aside so that it
2434     // doesn't interfere with GetAddrOfFunction.
2435     GV->setName(StringRef());
2436     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2437 
2438     // This might be an implementation of a function without a
2439     // prototype, in which case, try to do special replacement of
2440     // calls which match the new prototype.  The really key thing here
2441     // is that we also potentially drop arguments from the call site
2442     // so as to make a direct call, which makes the inliner happier
2443     // and suppresses a number of optimizer warnings (!) about
2444     // dropping arguments.
2445     if (!GV->use_empty()) {
2446       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2447       GV->removeDeadConstantUsers();
2448     }
2449 
2450     // Replace uses of F with the Function we will endow with a body.
2451     if (!GV->use_empty()) {
2452       llvm::Constant *NewPtrForOldDecl =
2453           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2454       GV->replaceAllUsesWith(NewPtrForOldDecl);
2455     }
2456 
2457     // Ok, delete the old function now, which is dead.
2458     GV->eraseFromParent();
2459 
2460     GV = NewFn;
2461   }
2462 
2463   // We need to set linkage and visibility on the function before
2464   // generating code for it because various parts of IR generation
2465   // want to propagate this information down (e.g. to local static
2466   // declarations).
2467   auto *Fn = cast<llvm::Function>(GV);
2468   setFunctionLinkage(GD, Fn);
2469   if (D->hasAttr<DLLImportAttr>())
2470     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2471   else if (D->hasAttr<DLLExportAttr>())
2472     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2473   else
2474     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2475 
2476   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2477   setGlobalVisibility(Fn, D);
2478 
2479   MaybeHandleStaticInExternC(D, Fn);
2480 
2481   maybeSetTrivialComdat(*D, *Fn);
2482 
2483   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2484 
2485   setFunctionDefinitionAttributes(D, Fn);
2486   SetLLVMFunctionAttributesForDefinition(D, Fn);
2487 
2488   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2489     AddGlobalCtor(Fn, CA->getPriority());
2490   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2491     AddGlobalDtor(Fn, DA->getPriority());
2492   if (D->hasAttr<AnnotateAttr>())
2493     AddGlobalAnnotations(D, Fn);
2494 }
2495 
2496 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2497   const auto *D = cast<ValueDecl>(GD.getDecl());
2498   const AliasAttr *AA = D->getAttr<AliasAttr>();
2499   assert(AA && "Not an alias?");
2500 
2501   StringRef MangledName = getMangledName(GD);
2502 
2503   // If there is a definition in the module, then it wins over the alias.
2504   // This is dubious, but allow it to be safe.  Just ignore the alias.
2505   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2506   if (Entry && !Entry->isDeclaration())
2507     return;
2508 
2509   Aliases.push_back(GD);
2510 
2511   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2512 
2513   // Create a reference to the named value.  This ensures that it is emitted
2514   // if a deferred decl.
2515   llvm::Constant *Aliasee;
2516   if (isa<llvm::FunctionType>(DeclTy))
2517     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2518                                       /*ForVTable=*/false);
2519   else
2520     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2521                                     llvm::PointerType::getUnqual(DeclTy),
2522                                     /*D=*/nullptr);
2523 
2524   // Create the new alias itself, but don't set a name yet.
2525   auto *GA = llvm::GlobalAlias::create(
2526       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2527       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2528 
2529   if (Entry) {
2530     if (GA->getAliasee() == Entry) {
2531       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2532       return;
2533     }
2534 
2535     assert(Entry->isDeclaration());
2536 
2537     // If there is a declaration in the module, then we had an extern followed
2538     // by the alias, as in:
2539     //   extern int test6();
2540     //   ...
2541     //   int test6() __attribute__((alias("test7")));
2542     //
2543     // Remove it and replace uses of it with the alias.
2544     GA->takeName(Entry);
2545 
2546     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2547                                                           Entry->getType()));
2548     Entry->eraseFromParent();
2549   } else {
2550     GA->setName(MangledName);
2551   }
2552 
2553   // Set attributes which are particular to an alias; this is a
2554   // specialization of the attributes which may be set on a global
2555   // variable/function.
2556   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2557       D->isWeakImported()) {
2558     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2559   }
2560 
2561   if (const auto *VD = dyn_cast<VarDecl>(D))
2562     if (VD->getTLSKind())
2563       setTLSMode(GA, *VD);
2564 
2565   setAliasAttributes(D, GA);
2566 }
2567 
2568 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2569                                             ArrayRef<llvm::Type*> Tys) {
2570   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2571                                          Tys);
2572 }
2573 
2574 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2575 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2576                          const StringLiteral *Literal, bool TargetIsLSB,
2577                          bool &IsUTF16, unsigned &StringLength) {
2578   StringRef String = Literal->getString();
2579   unsigned NumBytes = String.size();
2580 
2581   // Check for simple case.
2582   if (!Literal->containsNonAsciiOrNull()) {
2583     StringLength = NumBytes;
2584     return *Map.insert(std::make_pair(String, nullptr)).first;
2585   }
2586 
2587   // Otherwise, convert the UTF8 literals into a string of shorts.
2588   IsUTF16 = true;
2589 
2590   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2591   const UTF8 *FromPtr = (const UTF8 *)String.data();
2592   UTF16 *ToPtr = &ToBuf[0];
2593 
2594   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2595                            &ToPtr, ToPtr + NumBytes,
2596                            strictConversion);
2597 
2598   // ConvertUTF8toUTF16 returns the length in ToPtr.
2599   StringLength = ToPtr - &ToBuf[0];
2600 
2601   // Add an explicit null.
2602   *ToPtr = 0;
2603   return *Map.insert(std::make_pair(
2604                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2605                                    (StringLength + 1) * 2),
2606                          nullptr)).first;
2607 }
2608 
2609 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2610 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2611                        const StringLiteral *Literal, unsigned &StringLength) {
2612   StringRef String = Literal->getString();
2613   StringLength = String.size();
2614   return *Map.insert(std::make_pair(String, nullptr)).first;
2615 }
2616 
2617 llvm::Constant *
2618 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2619   unsigned StringLength = 0;
2620   bool isUTF16 = false;
2621   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2622       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2623                                getDataLayout().isLittleEndian(), isUTF16,
2624                                StringLength);
2625 
2626   if (auto *C = Entry.second)
2627     return C;
2628 
2629   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2630   llvm::Constant *Zeros[] = { Zero, Zero };
2631   llvm::Value *V;
2632 
2633   // If we don't already have it, get __CFConstantStringClassReference.
2634   if (!CFConstantStringClassRef) {
2635     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2636     Ty = llvm::ArrayType::get(Ty, 0);
2637     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2638                                            "__CFConstantStringClassReference");
2639     // Decay array -> ptr
2640     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2641     CFConstantStringClassRef = V;
2642   }
2643   else
2644     V = CFConstantStringClassRef;
2645 
2646   QualType CFTy = getContext().getCFConstantStringType();
2647 
2648   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2649 
2650   llvm::Constant *Fields[4];
2651 
2652   // Class pointer.
2653   Fields[0] = cast<llvm::ConstantExpr>(V);
2654 
2655   // Flags.
2656   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2657   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2658     llvm::ConstantInt::get(Ty, 0x07C8);
2659 
2660   // String pointer.
2661   llvm::Constant *C = nullptr;
2662   if (isUTF16) {
2663     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2664         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2665         Entry.first().size() / 2);
2666     C = llvm::ConstantDataArray::get(VMContext, Arr);
2667   } else {
2668     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2669   }
2670 
2671   // Note: -fwritable-strings doesn't make the backing store strings of
2672   // CFStrings writable. (See <rdar://problem/10657500>)
2673   auto *GV =
2674       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2675                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2676   GV->setUnnamedAddr(true);
2677   // Don't enforce the target's minimum global alignment, since the only use
2678   // of the string is via this class initializer.
2679   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2680   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2681   // that changes the section it ends in, which surprises ld64.
2682   if (isUTF16) {
2683     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2684     GV->setAlignment(Align.getQuantity());
2685     GV->setSection("__TEXT,__ustring");
2686   } else {
2687     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2688     GV->setAlignment(Align.getQuantity());
2689     GV->setSection("__TEXT,__cstring,cstring_literals");
2690   }
2691 
2692   // String.
2693   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV->getType(), GV, Zeros);
2694 
2695   if (isUTF16)
2696     // Cast the UTF16 string to the correct type.
2697     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2698 
2699   // String length.
2700   Ty = getTypes().ConvertType(getContext().LongTy);
2701   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2702 
2703   // The struct.
2704   C = llvm::ConstantStruct::get(STy, Fields);
2705   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2706                                 llvm::GlobalVariable::PrivateLinkage, C,
2707                                 "_unnamed_cfstring_");
2708   GV->setSection("__DATA,__cfstring");
2709   Entry.second = GV;
2710 
2711   return GV;
2712 }
2713 
2714 llvm::GlobalVariable *
2715 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2716   unsigned StringLength = 0;
2717   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2718       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2719 
2720   if (auto *C = Entry.second)
2721     return C;
2722 
2723   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2724   llvm::Constant *Zeros[] = { Zero, Zero };
2725   llvm::Value *V;
2726   // If we don't already have it, get _NSConstantStringClassReference.
2727   if (!ConstantStringClassRef) {
2728     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2729     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2730     llvm::Constant *GV;
2731     if (LangOpts.ObjCRuntime.isNonFragile()) {
2732       std::string str =
2733         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2734                             : "OBJC_CLASS_$_" + StringClass;
2735       GV = getObjCRuntime().GetClassGlobal(str);
2736       // Make sure the result is of the correct type.
2737       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2738       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2739       ConstantStringClassRef = V;
2740     } else {
2741       std::string str =
2742         StringClass.empty() ? "_NSConstantStringClassReference"
2743                             : "_" + StringClass + "ClassReference";
2744       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2745       GV = CreateRuntimeVariable(PTy, str);
2746       // Decay array -> ptr
2747       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2748       ConstantStringClassRef = V;
2749     }
2750   } else
2751     V = ConstantStringClassRef;
2752 
2753   if (!NSConstantStringType) {
2754     // Construct the type for a constant NSString.
2755     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2756     D->startDefinition();
2757 
2758     QualType FieldTypes[3];
2759 
2760     // const int *isa;
2761     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2762     // const char *str;
2763     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2764     // unsigned int length;
2765     FieldTypes[2] = Context.UnsignedIntTy;
2766 
2767     // Create fields
2768     for (unsigned i = 0; i < 3; ++i) {
2769       FieldDecl *Field = FieldDecl::Create(Context, D,
2770                                            SourceLocation(),
2771                                            SourceLocation(), nullptr,
2772                                            FieldTypes[i], /*TInfo=*/nullptr,
2773                                            /*BitWidth=*/nullptr,
2774                                            /*Mutable=*/false,
2775                                            ICIS_NoInit);
2776       Field->setAccess(AS_public);
2777       D->addDecl(Field);
2778     }
2779 
2780     D->completeDefinition();
2781     QualType NSTy = Context.getTagDeclType(D);
2782     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2783   }
2784 
2785   llvm::Constant *Fields[3];
2786 
2787   // Class pointer.
2788   Fields[0] = cast<llvm::ConstantExpr>(V);
2789 
2790   // String pointer.
2791   llvm::Constant *C =
2792       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2793 
2794   llvm::GlobalValue::LinkageTypes Linkage;
2795   bool isConstant;
2796   Linkage = llvm::GlobalValue::PrivateLinkage;
2797   isConstant = !LangOpts.WritableStrings;
2798 
2799   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2800                                       Linkage, C, ".str");
2801   GV->setUnnamedAddr(true);
2802   // Don't enforce the target's minimum global alignment, since the only use
2803   // of the string is via this class initializer.
2804   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2805   GV->setAlignment(Align.getQuantity());
2806   Fields[1] =
2807       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2808 
2809   // String length.
2810   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2811   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2812 
2813   // The struct.
2814   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2815   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2816                                 llvm::GlobalVariable::PrivateLinkage, C,
2817                                 "_unnamed_nsstring_");
2818   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2819   const char *NSStringNonFragileABISection =
2820       "__DATA,__objc_stringobj,regular,no_dead_strip";
2821   // FIXME. Fix section.
2822   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2823                      ? NSStringNonFragileABISection
2824                      : NSStringSection);
2825   Entry.second = GV;
2826 
2827   return GV;
2828 }
2829 
2830 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2831   if (ObjCFastEnumerationStateType.isNull()) {
2832     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2833     D->startDefinition();
2834 
2835     QualType FieldTypes[] = {
2836       Context.UnsignedLongTy,
2837       Context.getPointerType(Context.getObjCIdType()),
2838       Context.getPointerType(Context.UnsignedLongTy),
2839       Context.getConstantArrayType(Context.UnsignedLongTy,
2840                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2841     };
2842 
2843     for (size_t i = 0; i < 4; ++i) {
2844       FieldDecl *Field = FieldDecl::Create(Context,
2845                                            D,
2846                                            SourceLocation(),
2847                                            SourceLocation(), nullptr,
2848                                            FieldTypes[i], /*TInfo=*/nullptr,
2849                                            /*BitWidth=*/nullptr,
2850                                            /*Mutable=*/false,
2851                                            ICIS_NoInit);
2852       Field->setAccess(AS_public);
2853       D->addDecl(Field);
2854     }
2855 
2856     D->completeDefinition();
2857     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2858   }
2859 
2860   return ObjCFastEnumerationStateType;
2861 }
2862 
2863 llvm::Constant *
2864 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2865   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2866 
2867   // Don't emit it as the address of the string, emit the string data itself
2868   // as an inline array.
2869   if (E->getCharByteWidth() == 1) {
2870     SmallString<64> Str(E->getString());
2871 
2872     // Resize the string to the right size, which is indicated by its type.
2873     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2874     Str.resize(CAT->getSize().getZExtValue());
2875     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2876   }
2877 
2878   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2879   llvm::Type *ElemTy = AType->getElementType();
2880   unsigned NumElements = AType->getNumElements();
2881 
2882   // Wide strings have either 2-byte or 4-byte elements.
2883   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2884     SmallVector<uint16_t, 32> Elements;
2885     Elements.reserve(NumElements);
2886 
2887     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2888       Elements.push_back(E->getCodeUnit(i));
2889     Elements.resize(NumElements);
2890     return llvm::ConstantDataArray::get(VMContext, Elements);
2891   }
2892 
2893   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2894   SmallVector<uint32_t, 32> Elements;
2895   Elements.reserve(NumElements);
2896 
2897   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2898     Elements.push_back(E->getCodeUnit(i));
2899   Elements.resize(NumElements);
2900   return llvm::ConstantDataArray::get(VMContext, Elements);
2901 }
2902 
2903 static llvm::GlobalVariable *
2904 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2905                       CodeGenModule &CGM, StringRef GlobalName,
2906                       unsigned Alignment) {
2907   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2908   unsigned AddrSpace = 0;
2909   if (CGM.getLangOpts().OpenCL)
2910     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2911 
2912   llvm::Module &M = CGM.getModule();
2913   // Create a global variable for this string
2914   auto *GV = new llvm::GlobalVariable(
2915       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2916       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2917   GV->setAlignment(Alignment);
2918   GV->setUnnamedAddr(true);
2919   if (GV->isWeakForLinker()) {
2920     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2921     GV->setComdat(M.getOrInsertComdat(GV->getName()));
2922   }
2923 
2924   return GV;
2925 }
2926 
2927 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2928 /// constant array for the given string literal.
2929 llvm::GlobalVariable *
2930 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2931                                                   StringRef Name) {
2932   auto Alignment =
2933       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2934 
2935   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2936   llvm::GlobalVariable **Entry = nullptr;
2937   if (!LangOpts.WritableStrings) {
2938     Entry = &ConstantStringMap[C];
2939     if (auto GV = *Entry) {
2940       if (Alignment > GV->getAlignment())
2941         GV->setAlignment(Alignment);
2942       return GV;
2943     }
2944   }
2945 
2946   SmallString<256> MangledNameBuffer;
2947   StringRef GlobalVariableName;
2948   llvm::GlobalValue::LinkageTypes LT;
2949 
2950   // Mangle the string literal if the ABI allows for it.  However, we cannot
2951   // do this if  we are compiling with ASan or -fwritable-strings because they
2952   // rely on strings having normal linkage.
2953   if (!LangOpts.WritableStrings &&
2954       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2955       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2956     llvm::raw_svector_ostream Out(MangledNameBuffer);
2957     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2958     Out.flush();
2959 
2960     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2961     GlobalVariableName = MangledNameBuffer;
2962   } else {
2963     LT = llvm::GlobalValue::PrivateLinkage;
2964     GlobalVariableName = Name;
2965   }
2966 
2967   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2968   if (Entry)
2969     *Entry = GV;
2970 
2971   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2972                                   QualType());
2973   return GV;
2974 }
2975 
2976 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2977 /// array for the given ObjCEncodeExpr node.
2978 llvm::GlobalVariable *
2979 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2980   std::string Str;
2981   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2982 
2983   return GetAddrOfConstantCString(Str);
2984 }
2985 
2986 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2987 /// the literal and a terminating '\0' character.
2988 /// The result has pointer to array type.
2989 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2990     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2991   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2992   if (Alignment == 0) {
2993     Alignment = getContext()
2994                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2995                     .getQuantity();
2996   }
2997 
2998   llvm::Constant *C =
2999       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3000 
3001   // Don't share any string literals if strings aren't constant.
3002   llvm::GlobalVariable **Entry = nullptr;
3003   if (!LangOpts.WritableStrings) {
3004     Entry = &ConstantStringMap[C];
3005     if (auto GV = *Entry) {
3006       if (Alignment > GV->getAlignment())
3007         GV->setAlignment(Alignment);
3008       return GV;
3009     }
3010   }
3011 
3012   // Get the default prefix if a name wasn't specified.
3013   if (!GlobalName)
3014     GlobalName = ".str";
3015   // Create a global variable for this.
3016   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3017                                   GlobalName, Alignment);
3018   if (Entry)
3019     *Entry = GV;
3020   return GV;
3021 }
3022 
3023 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3024     const MaterializeTemporaryExpr *E, const Expr *Init) {
3025   assert((E->getStorageDuration() == SD_Static ||
3026           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3027   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3028 
3029   // If we're not materializing a subobject of the temporary, keep the
3030   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3031   QualType MaterializedType = Init->getType();
3032   if (Init == E->GetTemporaryExpr())
3033     MaterializedType = E->getType();
3034 
3035   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3036   if (Slot)
3037     return Slot;
3038 
3039   // FIXME: If an externally-visible declaration extends multiple temporaries,
3040   // we need to give each temporary the same name in every translation unit (and
3041   // we also need to make the temporaries externally-visible).
3042   SmallString<256> Name;
3043   llvm::raw_svector_ostream Out(Name);
3044   getCXXABI().getMangleContext().mangleReferenceTemporary(
3045       VD, E->getManglingNumber(), Out);
3046   Out.flush();
3047 
3048   APValue *Value = nullptr;
3049   if (E->getStorageDuration() == SD_Static) {
3050     // We might have a cached constant initializer for this temporary. Note
3051     // that this might have a different value from the value computed by
3052     // evaluating the initializer if the surrounding constant expression
3053     // modifies the temporary.
3054     Value = getContext().getMaterializedTemporaryValue(E, false);
3055     if (Value && Value->isUninit())
3056       Value = nullptr;
3057   }
3058 
3059   // Try evaluating it now, it might have a constant initializer.
3060   Expr::EvalResult EvalResult;
3061   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3062       !EvalResult.hasSideEffects())
3063     Value = &EvalResult.Val;
3064 
3065   llvm::Constant *InitialValue = nullptr;
3066   bool Constant = false;
3067   llvm::Type *Type;
3068   if (Value) {
3069     // The temporary has a constant initializer, use it.
3070     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3071     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3072     Type = InitialValue->getType();
3073   } else {
3074     // No initializer, the initialization will be provided when we
3075     // initialize the declaration which performed lifetime extension.
3076     Type = getTypes().ConvertTypeForMem(MaterializedType);
3077   }
3078 
3079   // Create a global variable for this lifetime-extended temporary.
3080   llvm::GlobalValue::LinkageTypes Linkage =
3081       getLLVMLinkageVarDefinition(VD, Constant);
3082   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3083     const VarDecl *InitVD;
3084     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3085         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3086       // Temporaries defined inside a class get linkonce_odr linkage because the
3087       // class can be defined in multipe translation units.
3088       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3089     } else {
3090       // There is no need for this temporary to have external linkage if the
3091       // VarDecl has external linkage.
3092       Linkage = llvm::GlobalVariable::InternalLinkage;
3093     }
3094   }
3095   unsigned AddrSpace = GetGlobalVarAddressSpace(
3096       VD, getContext().getTargetAddressSpace(MaterializedType));
3097   auto *GV = new llvm::GlobalVariable(
3098       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3099       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3100       AddrSpace);
3101   setGlobalVisibility(GV, VD);
3102   GV->setAlignment(
3103       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3104   if (supportsCOMDAT() && GV->isWeakForLinker())
3105     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3106   if (VD->getTLSKind())
3107     setTLSMode(GV, *VD);
3108   Slot = GV;
3109   return GV;
3110 }
3111 
3112 /// EmitObjCPropertyImplementations - Emit information for synthesized
3113 /// properties for an implementation.
3114 void CodeGenModule::EmitObjCPropertyImplementations(const
3115                                                     ObjCImplementationDecl *D) {
3116   for (const auto *PID : D->property_impls()) {
3117     // Dynamic is just for type-checking.
3118     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3119       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3120 
3121       // Determine which methods need to be implemented, some may have
3122       // been overridden. Note that ::isPropertyAccessor is not the method
3123       // we want, that just indicates if the decl came from a
3124       // property. What we want to know is if the method is defined in
3125       // this implementation.
3126       if (!D->getInstanceMethod(PD->getGetterName()))
3127         CodeGenFunction(*this).GenerateObjCGetter(
3128                                  const_cast<ObjCImplementationDecl *>(D), PID);
3129       if (!PD->isReadOnly() &&
3130           !D->getInstanceMethod(PD->getSetterName()))
3131         CodeGenFunction(*this).GenerateObjCSetter(
3132                                  const_cast<ObjCImplementationDecl *>(D), PID);
3133     }
3134   }
3135 }
3136 
3137 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3138   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3139   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3140        ivar; ivar = ivar->getNextIvar())
3141     if (ivar->getType().isDestructedType())
3142       return true;
3143 
3144   return false;
3145 }
3146 
3147 static bool AllTrivialInitializers(CodeGenModule &CGM,
3148                                    ObjCImplementationDecl *D) {
3149   CodeGenFunction CGF(CGM);
3150   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3151        E = D->init_end(); B != E; ++B) {
3152     CXXCtorInitializer *CtorInitExp = *B;
3153     Expr *Init = CtorInitExp->getInit();
3154     if (!CGF.isTrivialInitializer(Init))
3155       return false;
3156   }
3157   return true;
3158 }
3159 
3160 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3161 /// for an implementation.
3162 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3163   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3164   if (needsDestructMethod(D)) {
3165     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3166     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3167     ObjCMethodDecl *DTORMethod =
3168       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3169                              cxxSelector, getContext().VoidTy, nullptr, D,
3170                              /*isInstance=*/true, /*isVariadic=*/false,
3171                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3172                              /*isDefined=*/false, ObjCMethodDecl::Required);
3173     D->addInstanceMethod(DTORMethod);
3174     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3175     D->setHasDestructors(true);
3176   }
3177 
3178   // If the implementation doesn't have any ivar initializers, we don't need
3179   // a .cxx_construct.
3180   if (D->getNumIvarInitializers() == 0 ||
3181       AllTrivialInitializers(*this, D))
3182     return;
3183 
3184   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3185   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3186   // The constructor returns 'self'.
3187   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3188                                                 D->getLocation(),
3189                                                 D->getLocation(),
3190                                                 cxxSelector,
3191                                                 getContext().getObjCIdType(),
3192                                                 nullptr, D, /*isInstance=*/true,
3193                                                 /*isVariadic=*/false,
3194                                                 /*isPropertyAccessor=*/true,
3195                                                 /*isImplicitlyDeclared=*/true,
3196                                                 /*isDefined=*/false,
3197                                                 ObjCMethodDecl::Required);
3198   D->addInstanceMethod(CTORMethod);
3199   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3200   D->setHasNonZeroConstructors(true);
3201 }
3202 
3203 /// EmitNamespace - Emit all declarations in a namespace.
3204 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3205   for (auto *I : ND->decls()) {
3206     if (const auto *VD = dyn_cast<VarDecl>(I))
3207       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3208           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3209         continue;
3210     EmitTopLevelDecl(I);
3211   }
3212 }
3213 
3214 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3215 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3216   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3217       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3218     ErrorUnsupported(LSD, "linkage spec");
3219     return;
3220   }
3221 
3222   for (auto *I : LSD->decls()) {
3223     // Meta-data for ObjC class includes references to implemented methods.
3224     // Generate class's method definitions first.
3225     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3226       for (auto *M : OID->methods())
3227         EmitTopLevelDecl(M);
3228     }
3229     EmitTopLevelDecl(I);
3230   }
3231 }
3232 
3233 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3234 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3235   // Ignore dependent declarations.
3236   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3237     return;
3238 
3239   switch (D->getKind()) {
3240   case Decl::CXXConversion:
3241   case Decl::CXXMethod:
3242   case Decl::Function:
3243     // Skip function templates
3244     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3245         cast<FunctionDecl>(D)->isLateTemplateParsed())
3246       return;
3247 
3248     EmitGlobal(cast<FunctionDecl>(D));
3249     // Always provide some coverage mapping
3250     // even for the functions that aren't emitted.
3251     AddDeferredUnusedCoverageMapping(D);
3252     break;
3253 
3254   case Decl::Var:
3255     // Skip variable templates
3256     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3257       return;
3258   case Decl::VarTemplateSpecialization:
3259     EmitGlobal(cast<VarDecl>(D));
3260     break;
3261 
3262   // Indirect fields from global anonymous structs and unions can be
3263   // ignored; only the actual variable requires IR gen support.
3264   case Decl::IndirectField:
3265     break;
3266 
3267   // C++ Decls
3268   case Decl::Namespace:
3269     EmitNamespace(cast<NamespaceDecl>(D));
3270     break;
3271     // No code generation needed.
3272   case Decl::UsingShadow:
3273   case Decl::ClassTemplate:
3274   case Decl::VarTemplate:
3275   case Decl::VarTemplatePartialSpecialization:
3276   case Decl::FunctionTemplate:
3277   case Decl::TypeAliasTemplate:
3278   case Decl::Block:
3279   case Decl::Empty:
3280     break;
3281   case Decl::Using:          // using X; [C++]
3282     if (CGDebugInfo *DI = getModuleDebugInfo())
3283         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3284     return;
3285   case Decl::NamespaceAlias:
3286     if (CGDebugInfo *DI = getModuleDebugInfo())
3287         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3288     return;
3289   case Decl::UsingDirective: // using namespace X; [C++]
3290     if (CGDebugInfo *DI = getModuleDebugInfo())
3291       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3292     return;
3293   case Decl::CXXConstructor:
3294     // Skip function templates
3295     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3296         cast<FunctionDecl>(D)->isLateTemplateParsed())
3297       return;
3298 
3299     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3300     break;
3301   case Decl::CXXDestructor:
3302     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3303       return;
3304     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3305     break;
3306 
3307   case Decl::StaticAssert:
3308     // Nothing to do.
3309     break;
3310 
3311   // Objective-C Decls
3312 
3313   // Forward declarations, no (immediate) code generation.
3314   case Decl::ObjCInterface:
3315   case Decl::ObjCCategory:
3316     break;
3317 
3318   case Decl::ObjCProtocol: {
3319     auto *Proto = cast<ObjCProtocolDecl>(D);
3320     if (Proto->isThisDeclarationADefinition())
3321       ObjCRuntime->GenerateProtocol(Proto);
3322     break;
3323   }
3324 
3325   case Decl::ObjCCategoryImpl:
3326     // Categories have properties but don't support synthesize so we
3327     // can ignore them here.
3328     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3329     break;
3330 
3331   case Decl::ObjCImplementation: {
3332     auto *OMD = cast<ObjCImplementationDecl>(D);
3333     EmitObjCPropertyImplementations(OMD);
3334     EmitObjCIvarInitializations(OMD);
3335     ObjCRuntime->GenerateClass(OMD);
3336     // Emit global variable debug information.
3337     if (CGDebugInfo *DI = getModuleDebugInfo())
3338       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3339         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3340             OMD->getClassInterface()), OMD->getLocation());
3341     break;
3342   }
3343   case Decl::ObjCMethod: {
3344     auto *OMD = cast<ObjCMethodDecl>(D);
3345     // If this is not a prototype, emit the body.
3346     if (OMD->getBody())
3347       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3348     break;
3349   }
3350   case Decl::ObjCCompatibleAlias:
3351     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3352     break;
3353 
3354   case Decl::LinkageSpec:
3355     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3356     break;
3357 
3358   case Decl::FileScopeAsm: {
3359     // File-scope asm is ignored during device-side CUDA compilation.
3360     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3361       break;
3362     auto *AD = cast<FileScopeAsmDecl>(D);
3363     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3364     break;
3365   }
3366 
3367   case Decl::Import: {
3368     auto *Import = cast<ImportDecl>(D);
3369 
3370     // Ignore import declarations that come from imported modules.
3371     if (clang::Module *Owner = Import->getOwningModule()) {
3372       if (getLangOpts().CurrentModule.empty() ||
3373           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3374         break;
3375     }
3376 
3377     ImportedModules.insert(Import->getImportedModule());
3378     break;
3379   }
3380 
3381   case Decl::OMPThreadPrivate:
3382     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3383     break;
3384 
3385   case Decl::ClassTemplateSpecialization: {
3386     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3387     if (DebugInfo &&
3388         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3389         Spec->hasDefinition())
3390       DebugInfo->completeTemplateDefinition(*Spec);
3391     break;
3392   }
3393 
3394   default:
3395     // Make sure we handled everything we should, every other kind is a
3396     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3397     // function. Need to recode Decl::Kind to do that easily.
3398     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3399     break;
3400   }
3401 }
3402 
3403 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3404   // Do we need to generate coverage mapping?
3405   if (!CodeGenOpts.CoverageMapping)
3406     return;
3407   switch (D->getKind()) {
3408   case Decl::CXXConversion:
3409   case Decl::CXXMethod:
3410   case Decl::Function:
3411   case Decl::ObjCMethod:
3412   case Decl::CXXConstructor:
3413   case Decl::CXXDestructor: {
3414     if (!cast<FunctionDecl>(D)->hasBody())
3415       return;
3416     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3417     if (I == DeferredEmptyCoverageMappingDecls.end())
3418       DeferredEmptyCoverageMappingDecls[D] = true;
3419     break;
3420   }
3421   default:
3422     break;
3423   };
3424 }
3425 
3426 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3427   // Do we need to generate coverage mapping?
3428   if (!CodeGenOpts.CoverageMapping)
3429     return;
3430   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3431     if (Fn->isTemplateInstantiation())
3432       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3433   }
3434   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3435   if (I == DeferredEmptyCoverageMappingDecls.end())
3436     DeferredEmptyCoverageMappingDecls[D] = false;
3437   else
3438     I->second = false;
3439 }
3440 
3441 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3442   std::vector<const Decl *> DeferredDecls;
3443   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3444     if (!I.second)
3445       continue;
3446     DeferredDecls.push_back(I.first);
3447   }
3448   // Sort the declarations by their location to make sure that the tests get a
3449   // predictable order for the coverage mapping for the unused declarations.
3450   if (CodeGenOpts.DumpCoverageMapping)
3451     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3452               [] (const Decl *LHS, const Decl *RHS) {
3453       return LHS->getLocStart() < RHS->getLocStart();
3454     });
3455   for (const auto *D : DeferredDecls) {
3456     switch (D->getKind()) {
3457     case Decl::CXXConversion:
3458     case Decl::CXXMethod:
3459     case Decl::Function:
3460     case Decl::ObjCMethod: {
3461       CodeGenPGO PGO(*this);
3462       GlobalDecl GD(cast<FunctionDecl>(D));
3463       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3464                                   getFunctionLinkage(GD));
3465       break;
3466     }
3467     case Decl::CXXConstructor: {
3468       CodeGenPGO PGO(*this);
3469       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3470       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3471                                   getFunctionLinkage(GD));
3472       break;
3473     }
3474     case Decl::CXXDestructor: {
3475       CodeGenPGO PGO(*this);
3476       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3477       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3478                                   getFunctionLinkage(GD));
3479       break;
3480     }
3481     default:
3482       break;
3483     };
3484   }
3485 }
3486 
3487 /// Turns the given pointer into a constant.
3488 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3489                                           const void *Ptr) {
3490   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3491   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3492   return llvm::ConstantInt::get(i64, PtrInt);
3493 }
3494 
3495 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3496                                    llvm::NamedMDNode *&GlobalMetadata,
3497                                    GlobalDecl D,
3498                                    llvm::GlobalValue *Addr) {
3499   if (!GlobalMetadata)
3500     GlobalMetadata =
3501       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3502 
3503   // TODO: should we report variant information for ctors/dtors?
3504   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3505                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3506                                CGM.getLLVMContext(), D.getDecl()))};
3507   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3508 }
3509 
3510 /// For each function which is declared within an extern "C" region and marked
3511 /// as 'used', but has internal linkage, create an alias from the unmangled
3512 /// name to the mangled name if possible. People expect to be able to refer
3513 /// to such functions with an unmangled name from inline assembly within the
3514 /// same translation unit.
3515 void CodeGenModule::EmitStaticExternCAliases() {
3516   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3517                                   E = StaticExternCValues.end();
3518        I != E; ++I) {
3519     IdentifierInfo *Name = I->first;
3520     llvm::GlobalValue *Val = I->second;
3521     if (Val && !getModule().getNamedValue(Name->getName()))
3522       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3523   }
3524 }
3525 
3526 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3527                                              GlobalDecl &Result) const {
3528   auto Res = Manglings.find(MangledName);
3529   if (Res == Manglings.end())
3530     return false;
3531   Result = Res->getValue();
3532   return true;
3533 }
3534 
3535 /// Emits metadata nodes associating all the global values in the
3536 /// current module with the Decls they came from.  This is useful for
3537 /// projects using IR gen as a subroutine.
3538 ///
3539 /// Since there's currently no way to associate an MDNode directly
3540 /// with an llvm::GlobalValue, we create a global named metadata
3541 /// with the name 'clang.global.decl.ptrs'.
3542 void CodeGenModule::EmitDeclMetadata() {
3543   llvm::NamedMDNode *GlobalMetadata = nullptr;
3544 
3545   // StaticLocalDeclMap
3546   for (auto &I : MangledDeclNames) {
3547     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3548     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3549   }
3550 }
3551 
3552 /// Emits metadata nodes for all the local variables in the current
3553 /// function.
3554 void CodeGenFunction::EmitDeclMetadata() {
3555   if (LocalDeclMap.empty()) return;
3556 
3557   llvm::LLVMContext &Context = getLLVMContext();
3558 
3559   // Find the unique metadata ID for this name.
3560   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3561 
3562   llvm::NamedMDNode *GlobalMetadata = nullptr;
3563 
3564   for (auto &I : LocalDeclMap) {
3565     const Decl *D = I.first;
3566     llvm::Value *Addr = I.second;
3567     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3568       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3569       Alloca->setMetadata(
3570           DeclPtrKind, llvm::MDNode::get(
3571                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3572     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3573       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3574       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3575     }
3576   }
3577 }
3578 
3579 void CodeGenModule::EmitVersionIdentMetadata() {
3580   llvm::NamedMDNode *IdentMetadata =
3581     TheModule.getOrInsertNamedMetadata("llvm.ident");
3582   std::string Version = getClangFullVersion();
3583   llvm::LLVMContext &Ctx = TheModule.getContext();
3584 
3585   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3586   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3587 }
3588 
3589 void CodeGenModule::EmitTargetMetadata() {
3590   // Warning, new MangledDeclNames may be appended within this loop.
3591   // We rely on MapVector insertions adding new elements to the end
3592   // of the container.
3593   // FIXME: Move this loop into the one target that needs it, and only
3594   // loop over those declarations for which we couldn't emit the target
3595   // metadata when we emitted the declaration.
3596   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3597     auto Val = *(MangledDeclNames.begin() + I);
3598     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3599     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3600     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3601   }
3602 }
3603 
3604 void CodeGenModule::EmitCoverageFile() {
3605   if (!getCodeGenOpts().CoverageFile.empty()) {
3606     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3607       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3608       llvm::LLVMContext &Ctx = TheModule.getContext();
3609       llvm::MDString *CoverageFile =
3610           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3611       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3612         llvm::MDNode *CU = CUNode->getOperand(i);
3613         llvm::Metadata *Elts[] = {CoverageFile, CU};
3614         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3615       }
3616     }
3617   }
3618 }
3619 
3620 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3621   // Sema has checked that all uuid strings are of the form
3622   // "12345678-1234-1234-1234-1234567890ab".
3623   assert(Uuid.size() == 36);
3624   for (unsigned i = 0; i < 36; ++i) {
3625     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3626     else                                         assert(isHexDigit(Uuid[i]));
3627   }
3628 
3629   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3630   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3631 
3632   llvm::Constant *Field3[8];
3633   for (unsigned Idx = 0; Idx < 8; ++Idx)
3634     Field3[Idx] = llvm::ConstantInt::get(
3635         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3636 
3637   llvm::Constant *Fields[4] = {
3638     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3639     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3640     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3641     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3642   };
3643 
3644   return llvm::ConstantStruct::getAnon(Fields);
3645 }
3646 
3647 llvm::Constant *
3648 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
3649                                             QualType CatchHandlerType) {
3650   return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
3651 }
3652 
3653 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3654                                                        bool ForEH) {
3655   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3656   // FIXME: should we even be calling this method if RTTI is disabled
3657   // and it's not for EH?
3658   if (!ForEH && !getLangOpts().RTTI)
3659     return llvm::Constant::getNullValue(Int8PtrTy);
3660 
3661   if (ForEH && Ty->isObjCObjectPointerType() &&
3662       LangOpts.ObjCRuntime.isGNUFamily())
3663     return ObjCRuntime->GetEHType(Ty);
3664 
3665   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3666 }
3667 
3668 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3669   for (auto RefExpr : D->varlists()) {
3670     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3671     bool PerformInit =
3672         VD->getAnyInitializer() &&
3673         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3674                                                         /*ForRef=*/false);
3675     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3676             VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
3677       CXXGlobalInits.push_back(InitFunction);
3678   }
3679 }
3680 
3681