1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 91 Types(*this), VTables(*this), ObjCRuntime(nullptr), 92 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 93 DebugInfo(nullptr), ObjCData(nullptr), 94 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 95 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 96 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 97 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 98 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 99 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 100 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)), 101 WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles, 102 C.getSourceManager()) { 103 104 // Initialize the type cache. 105 llvm::LLVMContext &LLVMContext = M.getContext(); 106 VoidTy = llvm::Type::getVoidTy(LLVMContext); 107 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 108 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 109 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 110 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 111 FloatTy = llvm::Type::getFloatTy(LLVMContext); 112 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 113 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 114 PointerAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 120 Int8PtrTy = Int8Ty->getPointerTo(0); 121 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 122 123 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 124 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 125 126 if (LangOpts.ObjC1) 127 createObjCRuntime(); 128 if (LangOpts.OpenCL) 129 createOpenCLRuntime(); 130 if (LangOpts.OpenMP) 131 createOpenMPRuntime(); 132 if (LangOpts.CUDA) 133 createCUDARuntime(); 134 135 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 136 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 137 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 138 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 139 getCXXABI().getMangleContext()); 140 141 // If debug info or coverage generation is enabled, create the CGDebugInfo 142 // object. 143 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 144 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 145 DebugInfo = new CGDebugInfo(*this); 146 147 Block.GlobalUniqueCount = 0; 148 149 if (C.getLangOpts().ObjC1) 150 ObjCData = new ObjCEntrypoints(); 151 152 if (CodeGenOpts.hasProfileClangUse()) { 153 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 154 CodeGenOpts.ProfileInstrumentUsePath); 155 if (std::error_code EC = ReaderOrErr.getError()) { 156 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 157 "Could not read profile %0: %1"); 158 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 159 << EC.message(); 160 } else 161 PGOReader = std::move(ReaderOrErr.get()); 162 } 163 164 // If coverage mapping generation is enabled, create the 165 // CoverageMappingModuleGen object. 166 if (CodeGenOpts.CoverageMapping) 167 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 168 } 169 170 CodeGenModule::~CodeGenModule() { 171 delete ObjCRuntime; 172 delete OpenCLRuntime; 173 delete OpenMPRuntime; 174 delete CUDARuntime; 175 delete TheTargetCodeGenInfo; 176 delete TBAA; 177 delete DebugInfo; 178 delete ObjCData; 179 } 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime = CreateGNUObjCRuntime(*this); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime = CreateMacObjCRuntime(*this); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime = new CGOpenCLRuntime(*this); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTarget().getTriple().getArch()) { 209 210 case llvm::Triple::nvptx: 211 case llvm::Triple::nvptx64: 212 assert(getLangOpts().OpenMPIsDevice && 213 "OpenMP NVPTX is only prepared to deal with device code."); 214 OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this); 215 break; 216 default: 217 OpenMPRuntime = new CGOpenMPRuntime(*this); 218 break; 219 } 220 } 221 222 void CodeGenModule::createCUDARuntime() { 223 CUDARuntime = CreateNVCUDARuntime(*this); 224 } 225 226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 227 Replacements[Name] = C; 228 } 229 230 void CodeGenModule::applyReplacements() { 231 for (auto &I : Replacements) { 232 StringRef MangledName = I.first(); 233 llvm::Constant *Replacement = I.second; 234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 235 if (!Entry) 236 continue; 237 auto *OldF = cast<llvm::Function>(Entry); 238 auto *NewF = dyn_cast<llvm::Function>(Replacement); 239 if (!NewF) { 240 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 241 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 242 } else { 243 auto *CE = cast<llvm::ConstantExpr>(Replacement); 244 assert(CE->getOpcode() == llvm::Instruction::BitCast || 245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 246 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 247 } 248 } 249 250 // Replace old with new, but keep the old order. 251 OldF->replaceAllUsesWith(Replacement); 252 if (NewF) { 253 NewF->removeFromParent(); 254 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 255 NewF); 256 } 257 OldF->eraseFromParent(); 258 } 259 } 260 261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 262 GlobalValReplacements.push_back(std::make_pair(GV, C)); 263 } 264 265 void CodeGenModule::applyGlobalValReplacements() { 266 for (auto &I : GlobalValReplacements) { 267 llvm::GlobalValue *GV = I.first; 268 llvm::Constant *C = I.second; 269 270 GV->replaceAllUsesWith(C); 271 GV->eraseFromParent(); 272 } 273 } 274 275 // This is only used in aliases that we created and we know they have a 276 // linear structure. 277 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 278 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 279 const llvm::Constant *C = &GA; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 286 if (!GA2) 287 return nullptr; 288 if (!Visited.insert(GA2).second) 289 return nullptr; 290 C = GA2->getAliasee(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 const AliasAttr *AA = D->getAttr<AliasAttr>(); 303 StringRef MangledName = getMangledName(GD); 304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 305 auto *Alias = cast<llvm::GlobalAlias>(Entry); 306 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 307 if (!GV) { 308 Error = true; 309 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 310 } else if (GV->isDeclaration()) { 311 Error = true; 312 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 313 } 314 315 llvm::Constant *Aliasee = Alias->getAliasee(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 335 if (GA->mayBeOverridden()) { 336 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName(); 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getAliasee(), Alias->getType()); 340 Alias->setAliasee(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = cast<llvm::GlobalAlias>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 475 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 476 switch (PLevel) { 477 case 0: break; 478 case 1: PL = llvm::PICLevel::Small; break; 479 case 2: PL = llvm::PICLevel::Large; break; 480 default: llvm_unreachable("Invalid PIC Level"); 481 } 482 483 getModule().setPICLevel(PL); 484 } 485 486 SimplifyPersonality(); 487 488 if (getCodeGenOpts().EmitDeclMetadata) 489 EmitDeclMetadata(); 490 491 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 492 EmitCoverageFile(); 493 494 if (DebugInfo) 495 DebugInfo->finalize(); 496 497 EmitVersionIdentMetadata(); 498 499 EmitTargetMetadata(); 500 } 501 502 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 503 // Make sure that this type is translated. 504 Types.UpdateCompletedType(TD); 505 } 506 507 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 508 // Make sure that this type is translated. 509 Types.RefreshTypeCacheForClass(RD); 510 } 511 512 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 513 if (!TBAA) 514 return nullptr; 515 return TBAA->getTBAAInfo(QTy); 516 } 517 518 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 519 if (!TBAA) 520 return nullptr; 521 return TBAA->getTBAAInfoForVTablePtr(); 522 } 523 524 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 525 if (!TBAA) 526 return nullptr; 527 return TBAA->getTBAAStructInfo(QTy); 528 } 529 530 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 531 llvm::MDNode *AccessN, 532 uint64_t O) { 533 if (!TBAA) 534 return nullptr; 535 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 536 } 537 538 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 539 /// and struct-path aware TBAA, the tag has the same format: 540 /// base type, access type and offset. 541 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 542 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 543 llvm::MDNode *TBAAInfo, 544 bool ConvertTypeToTag) { 545 if (ConvertTypeToTag && TBAA) 546 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 547 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 548 else 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 550 } 551 552 void CodeGenModule::DecorateInstructionWithInvariantGroup( 553 llvm::Instruction *I, const CXXRecordDecl *RD) { 554 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 555 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 556 // Check if we have to wrap MDString in MDNode. 557 if (!MetaDataNode) 558 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 559 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 560 } 561 562 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 563 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 564 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 565 } 566 567 /// ErrorUnsupported - Print out an error that codegen doesn't support the 568 /// specified stmt yet. 569 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 570 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 571 "cannot compile this %0 yet"); 572 std::string Msg = Type; 573 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 574 << Msg << S->getSourceRange(); 575 } 576 577 /// ErrorUnsupported - Print out an error that codegen doesn't support the 578 /// specified decl yet. 579 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 580 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 581 "cannot compile this %0 yet"); 582 std::string Msg = Type; 583 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 584 } 585 586 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 587 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 588 } 589 590 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 591 const NamedDecl *D) const { 592 // Internal definitions always have default visibility. 593 if (GV->hasLocalLinkage()) { 594 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 595 return; 596 } 597 598 // Set visibility for definitions. 599 LinkageInfo LV = D->getLinkageAndVisibility(); 600 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 601 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 602 } 603 604 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 605 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 606 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 607 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 608 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 609 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 610 } 611 612 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 613 CodeGenOptions::TLSModel M) { 614 switch (M) { 615 case CodeGenOptions::GeneralDynamicTLSModel: 616 return llvm::GlobalVariable::GeneralDynamicTLSModel; 617 case CodeGenOptions::LocalDynamicTLSModel: 618 return llvm::GlobalVariable::LocalDynamicTLSModel; 619 case CodeGenOptions::InitialExecTLSModel: 620 return llvm::GlobalVariable::InitialExecTLSModel; 621 case CodeGenOptions::LocalExecTLSModel: 622 return llvm::GlobalVariable::LocalExecTLSModel; 623 } 624 llvm_unreachable("Invalid TLS model!"); 625 } 626 627 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 628 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 629 630 llvm::GlobalValue::ThreadLocalMode TLM; 631 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 632 633 // Override the TLS model if it is explicitly specified. 634 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 635 TLM = GetLLVMTLSModel(Attr->getModel()); 636 } 637 638 GV->setThreadLocalMode(TLM); 639 } 640 641 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 642 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 643 644 // Some ABIs don't have constructor variants. Make sure that base and 645 // complete constructors get mangled the same. 646 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 647 if (!getTarget().getCXXABI().hasConstructorVariants()) { 648 CXXCtorType OrigCtorType = GD.getCtorType(); 649 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 650 if (OrigCtorType == Ctor_Base) 651 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 652 } 653 } 654 655 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 656 if (!FoundStr.empty()) 657 return FoundStr; 658 659 const auto *ND = cast<NamedDecl>(GD.getDecl()); 660 SmallString<256> Buffer; 661 StringRef Str; 662 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 663 llvm::raw_svector_ostream Out(Buffer); 664 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 665 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 666 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 667 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 668 else 669 getCXXABI().getMangleContext().mangleName(ND, Out); 670 Str = Out.str(); 671 } else { 672 IdentifierInfo *II = ND->getIdentifier(); 673 assert(II && "Attempt to mangle unnamed decl."); 674 Str = II->getName(); 675 } 676 677 // Keep the first result in the case of a mangling collision. 678 auto Result = Manglings.insert(std::make_pair(Str, GD)); 679 return FoundStr = Result.first->first(); 680 } 681 682 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 683 const BlockDecl *BD) { 684 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 685 const Decl *D = GD.getDecl(); 686 687 SmallString<256> Buffer; 688 llvm::raw_svector_ostream Out(Buffer); 689 if (!D) 690 MangleCtx.mangleGlobalBlock(BD, 691 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 692 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 693 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 694 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 695 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 696 else 697 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 698 699 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 700 return Result.first->first(); 701 } 702 703 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 704 return getModule().getNamedValue(Name); 705 } 706 707 /// AddGlobalCtor - Add a function to the list that will be called before 708 /// main() runs. 709 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 710 llvm::Constant *AssociatedData) { 711 // FIXME: Type coercion of void()* types. 712 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 713 } 714 715 /// AddGlobalDtor - Add a function to the list that will be called 716 /// when the module is unloaded. 717 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 718 // FIXME: Type coercion of void()* types. 719 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 720 } 721 722 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 723 // Ctor function type is void()*. 724 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 725 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 726 727 // Get the type of a ctor entry, { i32, void ()*, i8* }. 728 llvm::StructType *CtorStructTy = llvm::StructType::get( 729 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 730 731 // Construct the constructor and destructor arrays. 732 SmallVector<llvm::Constant *, 8> Ctors; 733 for (const auto &I : Fns) { 734 llvm::Constant *S[] = { 735 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 736 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 737 (I.AssociatedData 738 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 739 : llvm::Constant::getNullValue(VoidPtrTy))}; 740 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 741 } 742 743 if (!Ctors.empty()) { 744 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 745 new llvm::GlobalVariable(TheModule, AT, false, 746 llvm::GlobalValue::AppendingLinkage, 747 llvm::ConstantArray::get(AT, Ctors), 748 GlobalName); 749 } 750 } 751 752 llvm::GlobalValue::LinkageTypes 753 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 754 const auto *D = cast<FunctionDecl>(GD.getDecl()); 755 756 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 757 758 if (isa<CXXDestructorDecl>(D) && 759 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 760 GD.getDtorType())) { 761 // Destructor variants in the Microsoft C++ ABI are always internal or 762 // linkonce_odr thunks emitted on an as-needed basis. 763 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 764 : llvm::GlobalValue::LinkOnceODRLinkage; 765 } 766 767 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 768 } 769 770 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 771 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 772 773 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 774 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 775 // Don't dllexport/import destructor thunks. 776 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 777 return; 778 } 779 } 780 781 if (FD->hasAttr<DLLImportAttr>()) 782 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 783 else if (FD->hasAttr<DLLExportAttr>()) 784 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 785 else 786 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 787 } 788 789 llvm::ConstantInt * 790 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 791 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 792 if (!MDS) return nullptr; 793 794 llvm::MD5 md5; 795 llvm::MD5::MD5Result result; 796 md5.update(MDS->getString()); 797 md5.final(result); 798 uint64_t id = 0; 799 for (int i = 0; i < 8; ++i) 800 id |= static_cast<uint64_t>(result[i]) << (i * 8); 801 return llvm::ConstantInt::get(Int64Ty, id); 802 } 803 804 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 805 llvm::Function *F) { 806 setNonAliasAttributes(D, F); 807 } 808 809 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 810 const CGFunctionInfo &Info, 811 llvm::Function *F) { 812 unsigned CallingConv; 813 AttributeListType AttributeList; 814 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 815 false); 816 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 817 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 818 } 819 820 /// Determines whether the language options require us to model 821 /// unwind exceptions. We treat -fexceptions as mandating this 822 /// except under the fragile ObjC ABI with only ObjC exceptions 823 /// enabled. This means, for example, that C with -fexceptions 824 /// enables this. 825 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 826 // If exceptions are completely disabled, obviously this is false. 827 if (!LangOpts.Exceptions) return false; 828 829 // If C++ exceptions are enabled, this is true. 830 if (LangOpts.CXXExceptions) return true; 831 832 // If ObjC exceptions are enabled, this depends on the ABI. 833 if (LangOpts.ObjCExceptions) { 834 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 835 } 836 837 return true; 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 841 llvm::Function *F) { 842 llvm::AttrBuilder B; 843 844 if (CodeGenOpts.UnwindTables) 845 B.addAttribute(llvm::Attribute::UWTable); 846 847 if (!hasUnwindExceptions(LangOpts)) 848 B.addAttribute(llvm::Attribute::NoUnwind); 849 850 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 851 B.addAttribute(llvm::Attribute::StackProtect); 852 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 853 B.addAttribute(llvm::Attribute::StackProtectStrong); 854 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 855 B.addAttribute(llvm::Attribute::StackProtectReq); 856 857 if (!D) { 858 F->addAttributes(llvm::AttributeSet::FunctionIndex, 859 llvm::AttributeSet::get( 860 F->getContext(), 861 llvm::AttributeSet::FunctionIndex, B)); 862 return; 863 } 864 865 if (D->hasAttr<NakedAttr>()) { 866 // Naked implies noinline: we should not be inlining such functions. 867 B.addAttribute(llvm::Attribute::Naked); 868 B.addAttribute(llvm::Attribute::NoInline); 869 } else if (D->hasAttr<NoDuplicateAttr>()) { 870 B.addAttribute(llvm::Attribute::NoDuplicate); 871 } else if (D->hasAttr<NoInlineAttr>()) { 872 B.addAttribute(llvm::Attribute::NoInline); 873 } else if (D->hasAttr<AlwaysInlineAttr>() && 874 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 875 llvm::Attribute::NoInline)) { 876 // (noinline wins over always_inline, and we can't specify both in IR) 877 B.addAttribute(llvm::Attribute::AlwaysInline); 878 } 879 880 if (D->hasAttr<ColdAttr>()) { 881 if (!D->hasAttr<OptimizeNoneAttr>()) 882 B.addAttribute(llvm::Attribute::OptimizeForSize); 883 B.addAttribute(llvm::Attribute::Cold); 884 } 885 886 if (D->hasAttr<MinSizeAttr>()) 887 B.addAttribute(llvm::Attribute::MinSize); 888 889 F->addAttributes(llvm::AttributeSet::FunctionIndex, 890 llvm::AttributeSet::get( 891 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 892 893 if (D->hasAttr<OptimizeNoneAttr>()) { 894 // OptimizeNone implies noinline; we should not be inlining such functions. 895 F->addFnAttr(llvm::Attribute::OptimizeNone); 896 F->addFnAttr(llvm::Attribute::NoInline); 897 898 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 899 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 900 F->removeFnAttr(llvm::Attribute::MinSize); 901 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 902 "OptimizeNone and AlwaysInline on same function!"); 903 904 // Attribute 'inlinehint' has no effect on 'optnone' functions. 905 // Explicitly remove it from the set of function attributes. 906 F->removeFnAttr(llvm::Attribute::InlineHint); 907 } 908 909 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 910 if (alignment) 911 F->setAlignment(alignment); 912 913 // Some C++ ABIs require 2-byte alignment for member functions, in order to 914 // reserve a bit for differentiating between virtual and non-virtual member 915 // functions. If the current target's C++ ABI requires this and this is a 916 // member function, set its alignment accordingly. 917 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 918 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 919 F->setAlignment(2); 920 } 921 } 922 923 void CodeGenModule::SetCommonAttributes(const Decl *D, 924 llvm::GlobalValue *GV) { 925 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 926 setGlobalVisibility(GV, ND); 927 else 928 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 929 930 if (D && D->hasAttr<UsedAttr>()) 931 addUsedGlobal(GV); 932 } 933 934 void CodeGenModule::setAliasAttributes(const Decl *D, 935 llvm::GlobalValue *GV) { 936 SetCommonAttributes(D, GV); 937 938 // Process the dllexport attribute based on whether the original definition 939 // (not necessarily the aliasee) was exported. 940 if (D->hasAttr<DLLExportAttr>()) 941 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 942 } 943 944 void CodeGenModule::setNonAliasAttributes(const Decl *D, 945 llvm::GlobalObject *GO) { 946 SetCommonAttributes(D, GO); 947 948 if (D) 949 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 950 GO->setSection(SA->getName()); 951 952 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 953 } 954 955 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 956 llvm::Function *F, 957 const CGFunctionInfo &FI) { 958 SetLLVMFunctionAttributes(D, FI, F); 959 SetLLVMFunctionAttributesForDefinition(D, F); 960 961 F->setLinkage(llvm::Function::InternalLinkage); 962 963 setNonAliasAttributes(D, F); 964 } 965 966 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 967 const NamedDecl *ND) { 968 // Set linkage and visibility in case we never see a definition. 969 LinkageInfo LV = ND->getLinkageAndVisibility(); 970 if (LV.getLinkage() != ExternalLinkage) { 971 // Don't set internal linkage on declarations. 972 } else { 973 if (ND->hasAttr<DLLImportAttr>()) { 974 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 975 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 976 } else if (ND->hasAttr<DLLExportAttr>()) { 977 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 978 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 979 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 980 // "extern_weak" is overloaded in LLVM; we probably should have 981 // separate linkage types for this. 982 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 983 } 984 985 // Set visibility on a declaration only if it's explicit. 986 if (LV.isVisibilityExplicit()) 987 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 988 } 989 } 990 991 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 992 llvm::Function *F) { 993 // Only if we are checking indirect calls. 994 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 995 return; 996 997 // Non-static class methods are handled via vtable pointer checks elsewhere. 998 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 999 return; 1000 1001 // Additionally, if building with cross-DSO support... 1002 if (CodeGenOpts.SanitizeCfiCrossDso) { 1003 // Don't emit entries for function declarations. In cross-DSO mode these are 1004 // handled with better precision at run time. 1005 if (!FD->hasBody()) 1006 return; 1007 // Skip available_externally functions. They won't be codegen'ed in the 1008 // current module anyway. 1009 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1010 return; 1011 } 1012 1013 llvm::NamedMDNode *BitsetsMD = 1014 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1015 1016 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1017 llvm::Metadata *BitsetOps[] = { 1018 MD, llvm::ConstantAsMetadata::get(F), 1019 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1020 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1021 1022 // Emit a hash-based bit set entry for cross-DSO calls. 1023 if (CodeGenOpts.SanitizeCfiCrossDso) { 1024 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1025 llvm::Metadata *BitsetOps2[] = { 1026 llvm::ConstantAsMetadata::get(TypeId), 1027 llvm::ConstantAsMetadata::get(F), 1028 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1029 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1030 } 1031 } 1032 } 1033 1034 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1035 bool IsIncompleteFunction, 1036 bool IsThunk) { 1037 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1038 // If this is an intrinsic function, set the function's attributes 1039 // to the intrinsic's attributes. 1040 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1041 return; 1042 } 1043 1044 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1045 1046 if (!IsIncompleteFunction) 1047 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1048 1049 // Add the Returned attribute for "this", except for iOS 5 and earlier 1050 // where substantial code, including the libstdc++ dylib, was compiled with 1051 // GCC and does not actually return "this". 1052 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1053 !(getTarget().getTriple().isiOS() && 1054 getTarget().getTriple().isOSVersionLT(6))) { 1055 assert(!F->arg_empty() && 1056 F->arg_begin()->getType() 1057 ->canLosslesslyBitCastTo(F->getReturnType()) && 1058 "unexpected this return"); 1059 F->addAttribute(1, llvm::Attribute::Returned); 1060 } 1061 1062 // Only a few attributes are set on declarations; these may later be 1063 // overridden by a definition. 1064 1065 setLinkageAndVisibilityForGV(F, FD); 1066 1067 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1068 F->setSection(SA->getName()); 1069 1070 // A replaceable global allocation function does not act like a builtin by 1071 // default, only if it is invoked by a new-expression or delete-expression. 1072 if (FD->isReplaceableGlobalAllocationFunction()) 1073 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1074 llvm::Attribute::NoBuiltin); 1075 1076 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1077 F->setUnnamedAddr(true); 1078 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1079 if (MD->isVirtual()) 1080 F->setUnnamedAddr(true); 1081 1082 CreateFunctionBitSetEntry(FD, F); 1083 } 1084 1085 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1086 assert(!GV->isDeclaration() && 1087 "Only globals with definition can force usage."); 1088 LLVMUsed.emplace_back(GV); 1089 } 1090 1091 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1092 assert(!GV->isDeclaration() && 1093 "Only globals with definition can force usage."); 1094 LLVMCompilerUsed.emplace_back(GV); 1095 } 1096 1097 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1098 std::vector<llvm::WeakVH> &List) { 1099 // Don't create llvm.used if there is no need. 1100 if (List.empty()) 1101 return; 1102 1103 // Convert List to what ConstantArray needs. 1104 SmallVector<llvm::Constant*, 8> UsedArray; 1105 UsedArray.resize(List.size()); 1106 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1107 UsedArray[i] = 1108 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1109 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1110 } 1111 1112 if (UsedArray.empty()) 1113 return; 1114 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1115 1116 auto *GV = new llvm::GlobalVariable( 1117 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1118 llvm::ConstantArray::get(ATy, UsedArray), Name); 1119 1120 GV->setSection("llvm.metadata"); 1121 } 1122 1123 void CodeGenModule::emitLLVMUsed() { 1124 emitUsed(*this, "llvm.used", LLVMUsed); 1125 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1126 } 1127 1128 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1129 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1130 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1131 } 1132 1133 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1134 llvm::SmallString<32> Opt; 1135 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1138 } 1139 1140 void CodeGenModule::AddDependentLib(StringRef Lib) { 1141 llvm::SmallString<24> Opt; 1142 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1143 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1144 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1145 } 1146 1147 /// \brief Add link options implied by the given module, including modules 1148 /// it depends on, using a postorder walk. 1149 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1150 SmallVectorImpl<llvm::Metadata *> &Metadata, 1151 llvm::SmallPtrSet<Module *, 16> &Visited) { 1152 // Import this module's parent. 1153 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1154 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1155 } 1156 1157 // Import this module's dependencies. 1158 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1159 if (Visited.insert(Mod->Imports[I - 1]).second) 1160 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1161 } 1162 1163 // Add linker options to link against the libraries/frameworks 1164 // described by this module. 1165 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1166 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1167 // Link against a framework. Frameworks are currently Darwin only, so we 1168 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1169 if (Mod->LinkLibraries[I-1].IsFramework) { 1170 llvm::Metadata *Args[2] = { 1171 llvm::MDString::get(Context, "-framework"), 1172 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1173 1174 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1175 continue; 1176 } 1177 1178 // Link against a library. 1179 llvm::SmallString<24> Opt; 1180 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1181 Mod->LinkLibraries[I-1].Library, Opt); 1182 auto *OptString = llvm::MDString::get(Context, Opt); 1183 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1184 } 1185 } 1186 1187 void CodeGenModule::EmitModuleLinkOptions() { 1188 // Collect the set of all of the modules we want to visit to emit link 1189 // options, which is essentially the imported modules and all of their 1190 // non-explicit child modules. 1191 llvm::SetVector<clang::Module *> LinkModules; 1192 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1193 SmallVector<clang::Module *, 16> Stack; 1194 1195 // Seed the stack with imported modules. 1196 for (Module *M : ImportedModules) 1197 if (Visited.insert(M).second) 1198 Stack.push_back(M); 1199 1200 // Find all of the modules to import, making a little effort to prune 1201 // non-leaf modules. 1202 while (!Stack.empty()) { 1203 clang::Module *Mod = Stack.pop_back_val(); 1204 1205 bool AnyChildren = false; 1206 1207 // Visit the submodules of this module. 1208 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1209 SubEnd = Mod->submodule_end(); 1210 Sub != SubEnd; ++Sub) { 1211 // Skip explicit children; they need to be explicitly imported to be 1212 // linked against. 1213 if ((*Sub)->IsExplicit) 1214 continue; 1215 1216 if (Visited.insert(*Sub).second) { 1217 Stack.push_back(*Sub); 1218 AnyChildren = true; 1219 } 1220 } 1221 1222 // We didn't find any children, so add this module to the list of 1223 // modules to link against. 1224 if (!AnyChildren) { 1225 LinkModules.insert(Mod); 1226 } 1227 } 1228 1229 // Add link options for all of the imported modules in reverse topological 1230 // order. We don't do anything to try to order import link flags with respect 1231 // to linker options inserted by things like #pragma comment(). 1232 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1233 Visited.clear(); 1234 for (Module *M : LinkModules) 1235 if (Visited.insert(M).second) 1236 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1237 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1238 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1239 1240 // Add the linker options metadata flag. 1241 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1242 llvm::MDNode::get(getLLVMContext(), 1243 LinkerOptionsMetadata)); 1244 } 1245 1246 void CodeGenModule::EmitDeferred() { 1247 // Emit code for any potentially referenced deferred decls. Since a 1248 // previously unused static decl may become used during the generation of code 1249 // for a static function, iterate until no changes are made. 1250 1251 if (!DeferredVTables.empty()) { 1252 EmitDeferredVTables(); 1253 1254 // Emitting a vtable doesn't directly cause more vtables to 1255 // become deferred, although it can cause functions to be 1256 // emitted that then need those vtables. 1257 assert(DeferredVTables.empty()); 1258 } 1259 1260 // Stop if we're out of both deferred vtables and deferred declarations. 1261 if (DeferredDeclsToEmit.empty()) 1262 return; 1263 1264 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1265 // work, it will not interfere with this. 1266 std::vector<DeferredGlobal> CurDeclsToEmit; 1267 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1268 1269 for (DeferredGlobal &G : CurDeclsToEmit) { 1270 GlobalDecl D = G.GD; 1271 G.GV = nullptr; 1272 1273 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1274 // to get GlobalValue with exactly the type we need, not something that 1275 // might had been created for another decl with the same mangled name but 1276 // different type. 1277 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1278 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1279 1280 // In case of different address spaces, we may still get a cast, even with 1281 // IsForDefinition equal to true. Query mangled names table to get 1282 // GlobalValue. 1283 if (!GV) 1284 GV = GetGlobalValue(getMangledName(D)); 1285 1286 // Make sure GetGlobalValue returned non-null. 1287 assert(GV); 1288 1289 // Check to see if we've already emitted this. This is necessary 1290 // for a couple of reasons: first, decls can end up in the 1291 // deferred-decls queue multiple times, and second, decls can end 1292 // up with definitions in unusual ways (e.g. by an extern inline 1293 // function acquiring a strong function redefinition). Just 1294 // ignore these cases. 1295 if (!GV->isDeclaration()) 1296 continue; 1297 1298 // Otherwise, emit the definition and move on to the next one. 1299 EmitGlobalDefinition(D, GV); 1300 1301 // If we found out that we need to emit more decls, do that recursively. 1302 // This has the advantage that the decls are emitted in a DFS and related 1303 // ones are close together, which is convenient for testing. 1304 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1305 EmitDeferred(); 1306 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1307 } 1308 } 1309 } 1310 1311 void CodeGenModule::EmitGlobalAnnotations() { 1312 if (Annotations.empty()) 1313 return; 1314 1315 // Create a new global variable for the ConstantStruct in the Module. 1316 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1317 Annotations[0]->getType(), Annotations.size()), Annotations); 1318 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1319 llvm::GlobalValue::AppendingLinkage, 1320 Array, "llvm.global.annotations"); 1321 gv->setSection(AnnotationSection); 1322 } 1323 1324 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1325 llvm::Constant *&AStr = AnnotationStrings[Str]; 1326 if (AStr) 1327 return AStr; 1328 1329 // Not found yet, create a new global. 1330 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1331 auto *gv = 1332 new llvm::GlobalVariable(getModule(), s->getType(), true, 1333 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1334 gv->setSection(AnnotationSection); 1335 gv->setUnnamedAddr(true); 1336 AStr = gv; 1337 return gv; 1338 } 1339 1340 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1341 SourceManager &SM = getContext().getSourceManager(); 1342 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1343 if (PLoc.isValid()) 1344 return EmitAnnotationString(PLoc.getFilename()); 1345 return EmitAnnotationString(SM.getBufferName(Loc)); 1346 } 1347 1348 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1349 SourceManager &SM = getContext().getSourceManager(); 1350 PresumedLoc PLoc = SM.getPresumedLoc(L); 1351 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1352 SM.getExpansionLineNumber(L); 1353 return llvm::ConstantInt::get(Int32Ty, LineNo); 1354 } 1355 1356 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1357 const AnnotateAttr *AA, 1358 SourceLocation L) { 1359 // Get the globals for file name, annotation, and the line number. 1360 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1361 *UnitGV = EmitAnnotationUnit(L), 1362 *LineNoCst = EmitAnnotationLineNo(L); 1363 1364 // Create the ConstantStruct for the global annotation. 1365 llvm::Constant *Fields[4] = { 1366 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1367 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1368 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1369 LineNoCst 1370 }; 1371 return llvm::ConstantStruct::getAnon(Fields); 1372 } 1373 1374 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1375 llvm::GlobalValue *GV) { 1376 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1377 // Get the struct elements for these annotations. 1378 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1379 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1380 } 1381 1382 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1383 SourceLocation Loc) const { 1384 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1385 // Blacklist by function name. 1386 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1387 return true; 1388 // Blacklist by location. 1389 if (Loc.isValid()) 1390 return SanitizerBL.isBlacklistedLocation(Loc); 1391 // If location is unknown, this may be a compiler-generated function. Assume 1392 // it's located in the main file. 1393 auto &SM = Context.getSourceManager(); 1394 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1395 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1396 } 1397 return false; 1398 } 1399 1400 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1401 SourceLocation Loc, QualType Ty, 1402 StringRef Category) const { 1403 // For now globals can be blacklisted only in ASan and KASan. 1404 if (!LangOpts.Sanitize.hasOneOf( 1405 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1406 return false; 1407 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1408 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1409 return true; 1410 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1411 return true; 1412 // Check global type. 1413 if (!Ty.isNull()) { 1414 // Drill down the array types: if global variable of a fixed type is 1415 // blacklisted, we also don't instrument arrays of them. 1416 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1417 Ty = AT->getElementType(); 1418 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1419 // We allow to blacklist only record types (classes, structs etc.) 1420 if (Ty->isRecordType()) { 1421 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1422 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1423 return true; 1424 } 1425 } 1426 return false; 1427 } 1428 1429 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1430 // Never defer when EmitAllDecls is specified. 1431 if (LangOpts.EmitAllDecls) 1432 return true; 1433 1434 return getContext().DeclMustBeEmitted(Global); 1435 } 1436 1437 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1438 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1439 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1440 // Implicit template instantiations may change linkage if they are later 1441 // explicitly instantiated, so they should not be emitted eagerly. 1442 return false; 1443 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1444 // codegen for global variables, because they may be marked as threadprivate. 1445 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1446 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1453 const CXXUuidofExpr* E) { 1454 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1455 // well-formed. 1456 StringRef Uuid = E->getUuidAsStringRef(Context); 1457 std::string Name = "_GUID_" + Uuid.lower(); 1458 std::replace(Name.begin(), Name.end(), '-', '_'); 1459 1460 // Contains a 32-bit field. 1461 CharUnits Alignment = CharUnits::fromQuantity(4); 1462 1463 // Look for an existing global. 1464 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1465 return ConstantAddress(GV, Alignment); 1466 1467 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1468 assert(Init && "failed to initialize as constant"); 1469 1470 auto *GV = new llvm::GlobalVariable( 1471 getModule(), Init->getType(), 1472 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1473 if (supportsCOMDAT()) 1474 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1475 return ConstantAddress(GV, Alignment); 1476 } 1477 1478 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1479 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1480 assert(AA && "No alias?"); 1481 1482 CharUnits Alignment = getContext().getDeclAlign(VD); 1483 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1484 1485 // See if there is already something with the target's name in the module. 1486 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1487 if (Entry) { 1488 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1489 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1490 return ConstantAddress(Ptr, Alignment); 1491 } 1492 1493 llvm::Constant *Aliasee; 1494 if (isa<llvm::FunctionType>(DeclTy)) 1495 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1496 GlobalDecl(cast<FunctionDecl>(VD)), 1497 /*ForVTable=*/false); 1498 else 1499 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1500 llvm::PointerType::getUnqual(DeclTy), 1501 nullptr); 1502 1503 auto *F = cast<llvm::GlobalValue>(Aliasee); 1504 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1505 WeakRefReferences.insert(F); 1506 1507 return ConstantAddress(Aliasee, Alignment); 1508 } 1509 1510 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1511 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1512 1513 // Weak references don't produce any output by themselves. 1514 if (Global->hasAttr<WeakRefAttr>()) 1515 return; 1516 1517 // If this is an alias definition (which otherwise looks like a declaration) 1518 // emit it now. 1519 if (Global->hasAttr<AliasAttr>()) 1520 return EmitAliasDefinition(GD); 1521 1522 // If this is CUDA, be selective about which declarations we emit. 1523 if (LangOpts.CUDA) { 1524 if (LangOpts.CUDAIsDevice) { 1525 if (!Global->hasAttr<CUDADeviceAttr>() && 1526 !Global->hasAttr<CUDAGlobalAttr>() && 1527 !Global->hasAttr<CUDAConstantAttr>() && 1528 !Global->hasAttr<CUDASharedAttr>()) 1529 return; 1530 } else { 1531 // We need to emit host-side 'shadows' for all global 1532 // device-side variables because the CUDA runtime needs their 1533 // size and host-side address in order to provide access to 1534 // their device-side incarnations. 1535 1536 // So device-only functions are the only things we skip. 1537 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1538 Global->hasAttr<CUDADeviceAttr>()) 1539 return; 1540 1541 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1542 "Expected Variable or Function"); 1543 } 1544 } 1545 1546 if (LangOpts.OpenMP) { 1547 // If this is OpenMP device, check if it is legal to emit this global 1548 // normally. 1549 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1550 return; 1551 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1552 if (MustBeEmitted(Global)) 1553 EmitOMPDeclareReduction(DRD); 1554 return; 1555 } 1556 } 1557 1558 // Ignore declarations, they will be emitted on their first use. 1559 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1560 // Forward declarations are emitted lazily on first use. 1561 if (!FD->doesThisDeclarationHaveABody()) { 1562 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1563 return; 1564 1565 StringRef MangledName = getMangledName(GD); 1566 1567 // Compute the function info and LLVM type. 1568 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1569 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1570 1571 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1572 /*DontDefer=*/false); 1573 return; 1574 } 1575 } else { 1576 const auto *VD = cast<VarDecl>(Global); 1577 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1578 // We need to emit device-side global CUDA variables even if a 1579 // variable does not have a definition -- we still need to define 1580 // host-side shadow for it. 1581 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1582 !VD->hasDefinition() && 1583 (VD->hasAttr<CUDAConstantAttr>() || 1584 VD->hasAttr<CUDADeviceAttr>()); 1585 if (!MustEmitForCuda && 1586 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1587 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1588 return; 1589 } 1590 1591 // Defer code generation to first use when possible, e.g. if this is an inline 1592 // function. If the global must always be emitted, do it eagerly if possible 1593 // to benefit from cache locality. 1594 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1595 // Emit the definition if it can't be deferred. 1596 EmitGlobalDefinition(GD); 1597 return; 1598 } 1599 1600 // If we're deferring emission of a C++ variable with an 1601 // initializer, remember the order in which it appeared in the file. 1602 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1603 cast<VarDecl>(Global)->hasInit()) { 1604 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1605 CXXGlobalInits.push_back(nullptr); 1606 } 1607 1608 StringRef MangledName = getMangledName(GD); 1609 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1610 // The value has already been used and should therefore be emitted. 1611 addDeferredDeclToEmit(GV, GD); 1612 } else if (MustBeEmitted(Global)) { 1613 // The value must be emitted, but cannot be emitted eagerly. 1614 assert(!MayBeEmittedEagerly(Global)); 1615 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1616 } else { 1617 // Otherwise, remember that we saw a deferred decl with this name. The 1618 // first use of the mangled name will cause it to move into 1619 // DeferredDeclsToEmit. 1620 DeferredDecls[MangledName] = GD; 1621 } 1622 } 1623 1624 namespace { 1625 struct FunctionIsDirectlyRecursive : 1626 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1627 const StringRef Name; 1628 const Builtin::Context &BI; 1629 bool Result; 1630 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1631 Name(N), BI(C), Result(false) { 1632 } 1633 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1634 1635 bool TraverseCallExpr(CallExpr *E) { 1636 const FunctionDecl *FD = E->getDirectCallee(); 1637 if (!FD) 1638 return true; 1639 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1640 if (Attr && Name == Attr->getLabel()) { 1641 Result = true; 1642 return false; 1643 } 1644 unsigned BuiltinID = FD->getBuiltinID(); 1645 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1646 return true; 1647 StringRef BuiltinName = BI.getName(BuiltinID); 1648 if (BuiltinName.startswith("__builtin_") && 1649 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1650 Result = true; 1651 return false; 1652 } 1653 return true; 1654 } 1655 }; 1656 1657 struct DLLImportFunctionVisitor 1658 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1659 bool SafeToInline = true; 1660 1661 bool VisitVarDecl(VarDecl *VD) { 1662 // A thread-local variable cannot be imported. 1663 SafeToInline = !VD->getTLSKind(); 1664 return SafeToInline; 1665 } 1666 1667 // Make sure we're not referencing non-imported vars or functions. 1668 bool VisitDeclRefExpr(DeclRefExpr *E) { 1669 ValueDecl *VD = E->getDecl(); 1670 if (isa<FunctionDecl>(VD)) 1671 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1672 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1673 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1674 return SafeToInline; 1675 } 1676 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1677 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1678 return SafeToInline; 1679 } 1680 bool VisitCXXNewExpr(CXXNewExpr *E) { 1681 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1682 return SafeToInline; 1683 } 1684 }; 1685 } 1686 1687 // isTriviallyRecursive - Check if this function calls another 1688 // decl that, because of the asm attribute or the other decl being a builtin, 1689 // ends up pointing to itself. 1690 bool 1691 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1692 StringRef Name; 1693 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1694 // asm labels are a special kind of mangling we have to support. 1695 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1696 if (!Attr) 1697 return false; 1698 Name = Attr->getLabel(); 1699 } else { 1700 Name = FD->getName(); 1701 } 1702 1703 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1704 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1705 return Walker.Result; 1706 } 1707 1708 bool 1709 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1710 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1711 return true; 1712 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1713 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1714 return false; 1715 1716 if (F->hasAttr<DLLImportAttr>()) { 1717 // Check whether it would be safe to inline this dllimport function. 1718 DLLImportFunctionVisitor Visitor; 1719 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1720 if (!Visitor.SafeToInline) 1721 return false; 1722 } 1723 1724 // PR9614. Avoid cases where the source code is lying to us. An available 1725 // externally function should have an equivalent function somewhere else, 1726 // but a function that calls itself is clearly not equivalent to the real 1727 // implementation. 1728 // This happens in glibc's btowc and in some configure checks. 1729 return !isTriviallyRecursive(F); 1730 } 1731 1732 /// If the type for the method's class was generated by 1733 /// CGDebugInfo::createContextChain(), the cache contains only a 1734 /// limited DIType without any declarations. Since EmitFunctionStart() 1735 /// needs to find the canonical declaration for each method, we need 1736 /// to construct the complete type prior to emitting the method. 1737 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1738 if (!D->isInstance()) 1739 return; 1740 1741 if (CGDebugInfo *DI = getModuleDebugInfo()) 1742 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1743 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1744 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1745 } 1746 } 1747 1748 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1749 const auto *D = cast<ValueDecl>(GD.getDecl()); 1750 1751 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1752 Context.getSourceManager(), 1753 "Generating code for declaration"); 1754 1755 if (isa<FunctionDecl>(D)) { 1756 // At -O0, don't generate IR for functions with available_externally 1757 // linkage. 1758 if (!shouldEmitFunction(GD)) 1759 return; 1760 1761 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1762 CompleteDIClassType(Method); 1763 // Make sure to emit the definition(s) before we emit the thunks. 1764 // This is necessary for the generation of certain thunks. 1765 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1766 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1767 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1768 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1769 else 1770 EmitGlobalFunctionDefinition(GD, GV); 1771 1772 if (Method->isVirtual()) 1773 getVTables().EmitThunks(GD); 1774 1775 return; 1776 } 1777 1778 return EmitGlobalFunctionDefinition(GD, GV); 1779 } 1780 1781 if (const auto *VD = dyn_cast<VarDecl>(D)) 1782 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1783 1784 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1785 } 1786 1787 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1788 llvm::Function *NewFn); 1789 1790 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1791 /// module, create and return an llvm Function with the specified type. If there 1792 /// is something in the module with the specified name, return it potentially 1793 /// bitcasted to the right type. 1794 /// 1795 /// If D is non-null, it specifies a decl that correspond to this. This is used 1796 /// to set the attributes on the function when it is first created. 1797 llvm::Constant * 1798 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1799 llvm::Type *Ty, 1800 GlobalDecl GD, bool ForVTable, 1801 bool DontDefer, bool IsThunk, 1802 llvm::AttributeSet ExtraAttrs, 1803 bool IsForDefinition) { 1804 const Decl *D = GD.getDecl(); 1805 1806 // Lookup the entry, lazily creating it if necessary. 1807 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1808 if (Entry) { 1809 if (WeakRefReferences.erase(Entry)) { 1810 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1811 if (FD && !FD->hasAttr<WeakAttr>()) 1812 Entry->setLinkage(llvm::Function::ExternalLinkage); 1813 } 1814 1815 // Handle dropped DLL attributes. 1816 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1817 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1818 1819 // If there are two attempts to define the same mangled name, issue an 1820 // error. 1821 if (IsForDefinition && !Entry->isDeclaration()) { 1822 GlobalDecl OtherGD; 1823 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1824 // to make sure that we issue an error only once. 1825 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1826 (GD.getCanonicalDecl().getDecl() != 1827 OtherGD.getCanonicalDecl().getDecl()) && 1828 DiagnosedConflictingDefinitions.insert(GD).second) { 1829 getDiags().Report(D->getLocation(), 1830 diag::err_duplicate_mangled_name); 1831 getDiags().Report(OtherGD.getDecl()->getLocation(), 1832 diag::note_previous_definition); 1833 } 1834 } 1835 1836 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1837 (Entry->getType()->getElementType() == Ty)) { 1838 return Entry; 1839 } 1840 1841 // Make sure the result is of the correct type. 1842 // (If function is requested for a definition, we always need to create a new 1843 // function, not just return a bitcast.) 1844 if (!IsForDefinition) 1845 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1846 } 1847 1848 // This function doesn't have a complete type (for example, the return 1849 // type is an incomplete struct). Use a fake type instead, and make 1850 // sure not to try to set attributes. 1851 bool IsIncompleteFunction = false; 1852 1853 llvm::FunctionType *FTy; 1854 if (isa<llvm::FunctionType>(Ty)) { 1855 FTy = cast<llvm::FunctionType>(Ty); 1856 } else { 1857 FTy = llvm::FunctionType::get(VoidTy, false); 1858 IsIncompleteFunction = true; 1859 } 1860 1861 llvm::Function *F = 1862 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1863 Entry ? StringRef() : MangledName, &getModule()); 1864 1865 // If we already created a function with the same mangled name (but different 1866 // type) before, take its name and add it to the list of functions to be 1867 // replaced with F at the end of CodeGen. 1868 // 1869 // This happens if there is a prototype for a function (e.g. "int f()") and 1870 // then a definition of a different type (e.g. "int f(int x)"). 1871 if (Entry) { 1872 F->takeName(Entry); 1873 1874 // This might be an implementation of a function without a prototype, in 1875 // which case, try to do special replacement of calls which match the new 1876 // prototype. The really key thing here is that we also potentially drop 1877 // arguments from the call site so as to make a direct call, which makes the 1878 // inliner happier and suppresses a number of optimizer warnings (!) about 1879 // dropping arguments. 1880 if (!Entry->use_empty()) { 1881 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1882 Entry->removeDeadConstantUsers(); 1883 } 1884 1885 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1886 F, Entry->getType()->getElementType()->getPointerTo()); 1887 addGlobalValReplacement(Entry, BC); 1888 } 1889 1890 assert(F->getName() == MangledName && "name was uniqued!"); 1891 if (D) 1892 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1893 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1894 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1895 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1896 llvm::AttributeSet::get(VMContext, 1897 llvm::AttributeSet::FunctionIndex, 1898 B)); 1899 } 1900 1901 if (!DontDefer) { 1902 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1903 // each other bottoming out with the base dtor. Therefore we emit non-base 1904 // dtors on usage, even if there is no dtor definition in the TU. 1905 if (D && isa<CXXDestructorDecl>(D) && 1906 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1907 GD.getDtorType())) 1908 addDeferredDeclToEmit(F, GD); 1909 1910 // This is the first use or definition of a mangled name. If there is a 1911 // deferred decl with this name, remember that we need to emit it at the end 1912 // of the file. 1913 auto DDI = DeferredDecls.find(MangledName); 1914 if (DDI != DeferredDecls.end()) { 1915 // Move the potentially referenced deferred decl to the 1916 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1917 // don't need it anymore). 1918 addDeferredDeclToEmit(F, DDI->second); 1919 DeferredDecls.erase(DDI); 1920 1921 // Otherwise, there are cases we have to worry about where we're 1922 // using a declaration for which we must emit a definition but where 1923 // we might not find a top-level definition: 1924 // - member functions defined inline in their classes 1925 // - friend functions defined inline in some class 1926 // - special member functions with implicit definitions 1927 // If we ever change our AST traversal to walk into class methods, 1928 // this will be unnecessary. 1929 // 1930 // We also don't emit a definition for a function if it's going to be an 1931 // entry in a vtable, unless it's already marked as used. 1932 } else if (getLangOpts().CPlusPlus && D) { 1933 // Look for a declaration that's lexically in a record. 1934 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1935 FD = FD->getPreviousDecl()) { 1936 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1937 if (FD->doesThisDeclarationHaveABody()) { 1938 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1939 break; 1940 } 1941 } 1942 } 1943 } 1944 } 1945 1946 // Make sure the result is of the requested type. 1947 if (!IsIncompleteFunction) { 1948 assert(F->getType()->getElementType() == Ty); 1949 return F; 1950 } 1951 1952 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1953 return llvm::ConstantExpr::getBitCast(F, PTy); 1954 } 1955 1956 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1957 /// non-null, then this function will use the specified type if it has to 1958 /// create it (this occurs when we see a definition of the function). 1959 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1960 llvm::Type *Ty, 1961 bool ForVTable, 1962 bool DontDefer, 1963 bool IsForDefinition) { 1964 // If there was no specific requested type, just convert it now. 1965 if (!Ty) { 1966 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1967 auto CanonTy = Context.getCanonicalType(FD->getType()); 1968 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1969 } 1970 1971 StringRef MangledName = getMangledName(GD); 1972 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1973 /*IsThunk=*/false, llvm::AttributeSet(), 1974 IsForDefinition); 1975 } 1976 1977 /// CreateRuntimeFunction - Create a new runtime function with the specified 1978 /// type and name. 1979 llvm::Constant * 1980 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1981 StringRef Name, 1982 llvm::AttributeSet ExtraAttrs) { 1983 llvm::Constant *C = 1984 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1985 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1986 if (auto *F = dyn_cast<llvm::Function>(C)) 1987 if (F->empty()) 1988 F->setCallingConv(getRuntimeCC()); 1989 return C; 1990 } 1991 1992 /// CreateBuiltinFunction - Create a new builtin function with the specified 1993 /// type and name. 1994 llvm::Constant * 1995 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1996 StringRef Name, 1997 llvm::AttributeSet ExtraAttrs) { 1998 llvm::Constant *C = 1999 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2000 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2001 if (auto *F = dyn_cast<llvm::Function>(C)) 2002 if (F->empty()) 2003 F->setCallingConv(getBuiltinCC()); 2004 return C; 2005 } 2006 2007 /// isTypeConstant - Determine whether an object of this type can be emitted 2008 /// as a constant. 2009 /// 2010 /// If ExcludeCtor is true, the duration when the object's constructor runs 2011 /// will not be considered. The caller will need to verify that the object is 2012 /// not written to during its construction. 2013 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2014 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2015 return false; 2016 2017 if (Context.getLangOpts().CPlusPlus) { 2018 if (const CXXRecordDecl *Record 2019 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2020 return ExcludeCtor && !Record->hasMutableFields() && 2021 Record->hasTrivialDestructor(); 2022 } 2023 2024 return true; 2025 } 2026 2027 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2028 /// create and return an llvm GlobalVariable with the specified type. If there 2029 /// is something in the module with the specified name, return it potentially 2030 /// bitcasted to the right type. 2031 /// 2032 /// If D is non-null, it specifies a decl that correspond to this. This is used 2033 /// to set the attributes on the global when it is first created. 2034 /// 2035 /// If IsForDefinition is true, it is guranteed that an actual global with 2036 /// type Ty will be returned, not conversion of a variable with the same 2037 /// mangled name but some other type. 2038 llvm::Constant * 2039 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2040 llvm::PointerType *Ty, 2041 const VarDecl *D, 2042 bool IsForDefinition) { 2043 // Lookup the entry, lazily creating it if necessary. 2044 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2045 if (Entry) { 2046 if (WeakRefReferences.erase(Entry)) { 2047 if (D && !D->hasAttr<WeakAttr>()) 2048 Entry->setLinkage(llvm::Function::ExternalLinkage); 2049 } 2050 2051 // Handle dropped DLL attributes. 2052 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2053 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2054 2055 if (Entry->getType() == Ty) 2056 return Entry; 2057 2058 // If there are two attempts to define the same mangled name, issue an 2059 // error. 2060 if (IsForDefinition && !Entry->isDeclaration()) { 2061 GlobalDecl OtherGD; 2062 const VarDecl *OtherD; 2063 2064 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2065 // to make sure that we issue an error only once. 2066 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2067 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2068 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2069 OtherD->hasInit() && 2070 DiagnosedConflictingDefinitions.insert(D).second) { 2071 getDiags().Report(D->getLocation(), 2072 diag::err_duplicate_mangled_name); 2073 getDiags().Report(OtherGD.getDecl()->getLocation(), 2074 diag::note_previous_definition); 2075 } 2076 } 2077 2078 // Make sure the result is of the correct type. 2079 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2080 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2081 2082 // (If global is requested for a definition, we always need to create a new 2083 // global, not just return a bitcast.) 2084 if (!IsForDefinition) 2085 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2086 } 2087 2088 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2089 auto *GV = new llvm::GlobalVariable( 2090 getModule(), Ty->getElementType(), false, 2091 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2092 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2093 2094 // If we already created a global with the same mangled name (but different 2095 // type) before, take its name and remove it from its parent. 2096 if (Entry) { 2097 GV->takeName(Entry); 2098 2099 if (!Entry->use_empty()) { 2100 llvm::Constant *NewPtrForOldDecl = 2101 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2102 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2103 } 2104 2105 Entry->eraseFromParent(); 2106 } 2107 2108 // This is the first use or definition of a mangled name. If there is a 2109 // deferred decl with this name, remember that we need to emit it at the end 2110 // of the file. 2111 auto DDI = DeferredDecls.find(MangledName); 2112 if (DDI != DeferredDecls.end()) { 2113 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2114 // list, and remove it from DeferredDecls (since we don't need it anymore). 2115 addDeferredDeclToEmit(GV, DDI->second); 2116 DeferredDecls.erase(DDI); 2117 } 2118 2119 // Handle things which are present even on external declarations. 2120 if (D) { 2121 // FIXME: This code is overly simple and should be merged with other global 2122 // handling. 2123 GV->setConstant(isTypeConstant(D->getType(), false)); 2124 2125 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2126 2127 setLinkageAndVisibilityForGV(GV, D); 2128 2129 if (D->getTLSKind()) { 2130 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2131 CXXThreadLocals.push_back(D); 2132 setTLSMode(GV, *D); 2133 } 2134 2135 // If required by the ABI, treat declarations of static data members with 2136 // inline initializers as definitions. 2137 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2138 EmitGlobalVarDefinition(D); 2139 } 2140 2141 // Handle XCore specific ABI requirements. 2142 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2143 D->getLanguageLinkage() == CLanguageLinkage && 2144 D->getType().isConstant(Context) && 2145 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2146 GV->setSection(".cp.rodata"); 2147 } 2148 2149 if (AddrSpace != Ty->getAddressSpace()) 2150 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2151 2152 return GV; 2153 } 2154 2155 llvm::Constant * 2156 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2157 bool IsForDefinition) { 2158 if (isa<CXXConstructorDecl>(GD.getDecl())) 2159 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2160 getFromCtorType(GD.getCtorType()), 2161 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2162 /*DontDefer=*/false, IsForDefinition); 2163 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2164 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2165 getFromDtorType(GD.getDtorType()), 2166 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2167 /*DontDefer=*/false, IsForDefinition); 2168 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2169 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2170 cast<CXXMethodDecl>(GD.getDecl())); 2171 auto Ty = getTypes().GetFunctionType(*FInfo); 2172 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2173 IsForDefinition); 2174 } else if (isa<FunctionDecl>(GD.getDecl())) { 2175 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2176 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2177 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2178 IsForDefinition); 2179 } else 2180 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2181 IsForDefinition); 2182 } 2183 2184 llvm::GlobalVariable * 2185 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2186 llvm::Type *Ty, 2187 llvm::GlobalValue::LinkageTypes Linkage) { 2188 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2189 llvm::GlobalVariable *OldGV = nullptr; 2190 2191 if (GV) { 2192 // Check if the variable has the right type. 2193 if (GV->getType()->getElementType() == Ty) 2194 return GV; 2195 2196 // Because C++ name mangling, the only way we can end up with an already 2197 // existing global with the same name is if it has been declared extern "C". 2198 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2199 OldGV = GV; 2200 } 2201 2202 // Create a new variable. 2203 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2204 Linkage, nullptr, Name); 2205 2206 if (OldGV) { 2207 // Replace occurrences of the old variable if needed. 2208 GV->takeName(OldGV); 2209 2210 if (!OldGV->use_empty()) { 2211 llvm::Constant *NewPtrForOldDecl = 2212 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2213 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2214 } 2215 2216 OldGV->eraseFromParent(); 2217 } 2218 2219 if (supportsCOMDAT() && GV->isWeakForLinker() && 2220 !GV->hasAvailableExternallyLinkage()) 2221 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2222 2223 return GV; 2224 } 2225 2226 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2227 /// given global variable. If Ty is non-null and if the global doesn't exist, 2228 /// then it will be created with the specified type instead of whatever the 2229 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2230 /// that an actual global with type Ty will be returned, not conversion of a 2231 /// variable with the same mangled name but some other type. 2232 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2233 llvm::Type *Ty, 2234 bool IsForDefinition) { 2235 assert(D->hasGlobalStorage() && "Not a global variable"); 2236 QualType ASTTy = D->getType(); 2237 if (!Ty) 2238 Ty = getTypes().ConvertTypeForMem(ASTTy); 2239 2240 llvm::PointerType *PTy = 2241 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2242 2243 StringRef MangledName = getMangledName(D); 2244 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2245 } 2246 2247 /// CreateRuntimeVariable - Create a new runtime global variable with the 2248 /// specified type and name. 2249 llvm::Constant * 2250 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2251 StringRef Name) { 2252 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2253 } 2254 2255 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2256 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2257 2258 StringRef MangledName = getMangledName(D); 2259 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2260 2261 // We already have a definition, not declaration, with the same mangled name. 2262 // Emitting of declaration is not required (and actually overwrites emitted 2263 // definition). 2264 if (GV && !GV->isDeclaration()) 2265 return; 2266 2267 // If we have not seen a reference to this variable yet, place it into the 2268 // deferred declarations table to be emitted if needed later. 2269 if (!MustBeEmitted(D) && !GV) { 2270 DeferredDecls[MangledName] = D; 2271 return; 2272 } 2273 2274 // The tentative definition is the only definition. 2275 EmitGlobalVarDefinition(D); 2276 } 2277 2278 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2279 return Context.toCharUnitsFromBits( 2280 getDataLayout().getTypeStoreSizeInBits(Ty)); 2281 } 2282 2283 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2284 unsigned AddrSpace) { 2285 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2286 if (D->hasAttr<CUDAConstantAttr>()) 2287 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2288 else if (D->hasAttr<CUDASharedAttr>()) 2289 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2290 else 2291 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2292 } 2293 2294 return AddrSpace; 2295 } 2296 2297 template<typename SomeDecl> 2298 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2299 llvm::GlobalValue *GV) { 2300 if (!getLangOpts().CPlusPlus) 2301 return; 2302 2303 // Must have 'used' attribute, or else inline assembly can't rely on 2304 // the name existing. 2305 if (!D->template hasAttr<UsedAttr>()) 2306 return; 2307 2308 // Must have internal linkage and an ordinary name. 2309 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2310 return; 2311 2312 // Must be in an extern "C" context. Entities declared directly within 2313 // a record are not extern "C" even if the record is in such a context. 2314 const SomeDecl *First = D->getFirstDecl(); 2315 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2316 return; 2317 2318 // OK, this is an internal linkage entity inside an extern "C" linkage 2319 // specification. Make a note of that so we can give it the "expected" 2320 // mangled name if nothing else is using that name. 2321 std::pair<StaticExternCMap::iterator, bool> R = 2322 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2323 2324 // If we have multiple internal linkage entities with the same name 2325 // in extern "C" regions, none of them gets that name. 2326 if (!R.second) 2327 R.first->second = nullptr; 2328 } 2329 2330 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2331 if (!CGM.supportsCOMDAT()) 2332 return false; 2333 2334 if (D.hasAttr<SelectAnyAttr>()) 2335 return true; 2336 2337 GVALinkage Linkage; 2338 if (auto *VD = dyn_cast<VarDecl>(&D)) 2339 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2340 else 2341 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2342 2343 switch (Linkage) { 2344 case GVA_Internal: 2345 case GVA_AvailableExternally: 2346 case GVA_StrongExternal: 2347 return false; 2348 case GVA_DiscardableODR: 2349 case GVA_StrongODR: 2350 return true; 2351 } 2352 llvm_unreachable("No such linkage"); 2353 } 2354 2355 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2356 llvm::GlobalObject &GO) { 2357 if (!shouldBeInCOMDAT(*this, D)) 2358 return; 2359 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2360 } 2361 2362 /// Pass IsTentative as true if you want to create a tentative definition. 2363 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2364 bool IsTentative) { 2365 llvm::Constant *Init = nullptr; 2366 QualType ASTTy = D->getType(); 2367 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2368 bool NeedsGlobalCtor = false; 2369 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2370 2371 const VarDecl *InitDecl; 2372 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2373 2374 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2375 // as part of their declaration." Sema has already checked for 2376 // error cases, so we just need to set Init to UndefValue. 2377 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2378 D->hasAttr<CUDASharedAttr>()) 2379 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2380 else if (!InitExpr) { 2381 // This is a tentative definition; tentative definitions are 2382 // implicitly initialized with { 0 }. 2383 // 2384 // Note that tentative definitions are only emitted at the end of 2385 // a translation unit, so they should never have incomplete 2386 // type. In addition, EmitTentativeDefinition makes sure that we 2387 // never attempt to emit a tentative definition if a real one 2388 // exists. A use may still exists, however, so we still may need 2389 // to do a RAUW. 2390 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2391 Init = EmitNullConstant(D->getType()); 2392 } else { 2393 initializedGlobalDecl = GlobalDecl(D); 2394 Init = EmitConstantInit(*InitDecl); 2395 2396 if (!Init) { 2397 QualType T = InitExpr->getType(); 2398 if (D->getType()->isReferenceType()) 2399 T = D->getType(); 2400 2401 if (getLangOpts().CPlusPlus) { 2402 Init = EmitNullConstant(T); 2403 NeedsGlobalCtor = true; 2404 } else { 2405 ErrorUnsupported(D, "static initializer"); 2406 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2407 } 2408 } else { 2409 // We don't need an initializer, so remove the entry for the delayed 2410 // initializer position (just in case this entry was delayed) if we 2411 // also don't need to register a destructor. 2412 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2413 DelayedCXXInitPosition.erase(D); 2414 } 2415 } 2416 2417 llvm::Type* InitType = Init->getType(); 2418 llvm::Constant *Entry = 2419 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2420 2421 // Strip off a bitcast if we got one back. 2422 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2423 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2424 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2425 // All zero index gep. 2426 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2427 Entry = CE->getOperand(0); 2428 } 2429 2430 // Entry is now either a Function or GlobalVariable. 2431 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2432 2433 // We have a definition after a declaration with the wrong type. 2434 // We must make a new GlobalVariable* and update everything that used OldGV 2435 // (a declaration or tentative definition) with the new GlobalVariable* 2436 // (which will be a definition). 2437 // 2438 // This happens if there is a prototype for a global (e.g. 2439 // "extern int x[];") and then a definition of a different type (e.g. 2440 // "int x[10];"). This also happens when an initializer has a different type 2441 // from the type of the global (this happens with unions). 2442 if (!GV || 2443 GV->getType()->getElementType() != InitType || 2444 GV->getType()->getAddressSpace() != 2445 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2446 2447 // Move the old entry aside so that we'll create a new one. 2448 Entry->setName(StringRef()); 2449 2450 // Make a new global with the correct type, this is now guaranteed to work. 2451 GV = cast<llvm::GlobalVariable>( 2452 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2453 2454 // Replace all uses of the old global with the new global 2455 llvm::Constant *NewPtrForOldDecl = 2456 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2457 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2458 2459 // Erase the old global, since it is no longer used. 2460 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2461 } 2462 2463 MaybeHandleStaticInExternC(D, GV); 2464 2465 if (D->hasAttr<AnnotateAttr>()) 2466 AddGlobalAnnotations(D, GV); 2467 2468 // Set the llvm linkage type as appropriate. 2469 llvm::GlobalValue::LinkageTypes Linkage = 2470 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2471 2472 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2473 // the device. [...]" 2474 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2475 // __device__, declares a variable that: [...] 2476 // Is accessible from all the threads within the grid and from the host 2477 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2478 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2479 if (GV && LangOpts.CUDA) { 2480 if (LangOpts.CUDAIsDevice) { 2481 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2482 GV->setExternallyInitialized(true); 2483 } else { 2484 // Host-side shadows of external declarations of device-side 2485 // global variables become internal definitions. These have to 2486 // be internal in order to prevent name conflicts with global 2487 // host variables with the same name in a different TUs. 2488 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2489 Linkage = llvm::GlobalValue::InternalLinkage; 2490 2491 // Shadow variables and their properties must be registered 2492 // with CUDA runtime. 2493 unsigned Flags = 0; 2494 if (!D->hasDefinition()) 2495 Flags |= CGCUDARuntime::ExternDeviceVar; 2496 if (D->hasAttr<CUDAConstantAttr>()) 2497 Flags |= CGCUDARuntime::ConstantDeviceVar; 2498 getCUDARuntime().registerDeviceVar(*GV, Flags); 2499 } else if (D->hasAttr<CUDASharedAttr>()) 2500 // __shared__ variables are odd. Shadows do get created, but 2501 // they are not registered with the CUDA runtime, so they 2502 // can't really be used to access their device-side 2503 // counterparts. It's not clear yet whether it's nvcc's bug or 2504 // a feature, but we've got to do the same for compatibility. 2505 Linkage = llvm::GlobalValue::InternalLinkage; 2506 } 2507 } 2508 GV->setInitializer(Init); 2509 2510 // If it is safe to mark the global 'constant', do so now. 2511 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2512 isTypeConstant(D->getType(), true)); 2513 2514 // If it is in a read-only section, mark it 'constant'. 2515 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2516 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2517 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2518 GV->setConstant(true); 2519 } 2520 2521 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2522 2523 2524 // On Darwin, if the normal linkage of a C++ thread_local variable is 2525 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2526 // copies within a linkage unit; otherwise, the backing variable has 2527 // internal linkage and all accesses should just be calls to the 2528 // Itanium-specified entry point, which has the normal linkage of the 2529 // variable. This is to preserve the ability to change the implementation 2530 // behind the scenes. 2531 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2532 Context.getTargetInfo().getTriple().isOSDarwin() && 2533 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2534 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2535 Linkage = llvm::GlobalValue::InternalLinkage; 2536 2537 GV->setLinkage(Linkage); 2538 if (D->hasAttr<DLLImportAttr>()) 2539 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2540 else if (D->hasAttr<DLLExportAttr>()) 2541 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2542 else 2543 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2544 2545 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2546 // common vars aren't constant even if declared const. 2547 GV->setConstant(false); 2548 2549 setNonAliasAttributes(D, GV); 2550 2551 if (D->getTLSKind() && !GV->isThreadLocal()) { 2552 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2553 CXXThreadLocals.push_back(D); 2554 setTLSMode(GV, *D); 2555 } 2556 2557 maybeSetTrivialComdat(*D, *GV); 2558 2559 // Emit the initializer function if necessary. 2560 if (NeedsGlobalCtor || NeedsGlobalDtor) 2561 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2562 2563 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2564 2565 // Emit global variable debug information. 2566 if (CGDebugInfo *DI = getModuleDebugInfo()) 2567 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2568 DI->EmitGlobalVariable(GV, D); 2569 } 2570 2571 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2572 CodeGenModule &CGM, const VarDecl *D, 2573 bool NoCommon) { 2574 // Don't give variables common linkage if -fno-common was specified unless it 2575 // was overridden by a NoCommon attribute. 2576 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2577 return true; 2578 2579 // C11 6.9.2/2: 2580 // A declaration of an identifier for an object that has file scope without 2581 // an initializer, and without a storage-class specifier or with the 2582 // storage-class specifier static, constitutes a tentative definition. 2583 if (D->getInit() || D->hasExternalStorage()) 2584 return true; 2585 2586 // A variable cannot be both common and exist in a section. 2587 if (D->hasAttr<SectionAttr>()) 2588 return true; 2589 2590 // Thread local vars aren't considered common linkage. 2591 if (D->getTLSKind()) 2592 return true; 2593 2594 // Tentative definitions marked with WeakImportAttr are true definitions. 2595 if (D->hasAttr<WeakImportAttr>()) 2596 return true; 2597 2598 // A variable cannot be both common and exist in a comdat. 2599 if (shouldBeInCOMDAT(CGM, *D)) 2600 return true; 2601 2602 // Declarations with a required alignment do not have common linakge in MSVC 2603 // mode. 2604 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2605 if (D->hasAttr<AlignedAttr>()) 2606 return true; 2607 QualType VarType = D->getType(); 2608 if (Context.isAlignmentRequired(VarType)) 2609 return true; 2610 2611 if (const auto *RT = VarType->getAs<RecordType>()) { 2612 const RecordDecl *RD = RT->getDecl(); 2613 for (const FieldDecl *FD : RD->fields()) { 2614 if (FD->isBitField()) 2615 continue; 2616 if (FD->hasAttr<AlignedAttr>()) 2617 return true; 2618 if (Context.isAlignmentRequired(FD->getType())) 2619 return true; 2620 } 2621 } 2622 } 2623 2624 return false; 2625 } 2626 2627 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2628 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2629 if (Linkage == GVA_Internal) 2630 return llvm::Function::InternalLinkage; 2631 2632 if (D->hasAttr<WeakAttr>()) { 2633 if (IsConstantVariable) 2634 return llvm::GlobalVariable::WeakODRLinkage; 2635 else 2636 return llvm::GlobalVariable::WeakAnyLinkage; 2637 } 2638 2639 // We are guaranteed to have a strong definition somewhere else, 2640 // so we can use available_externally linkage. 2641 if (Linkage == GVA_AvailableExternally) 2642 return llvm::Function::AvailableExternallyLinkage; 2643 2644 // Note that Apple's kernel linker doesn't support symbol 2645 // coalescing, so we need to avoid linkonce and weak linkages there. 2646 // Normally, this means we just map to internal, but for explicit 2647 // instantiations we'll map to external. 2648 2649 // In C++, the compiler has to emit a definition in every translation unit 2650 // that references the function. We should use linkonce_odr because 2651 // a) if all references in this translation unit are optimized away, we 2652 // don't need to codegen it. b) if the function persists, it needs to be 2653 // merged with other definitions. c) C++ has the ODR, so we know the 2654 // definition is dependable. 2655 if (Linkage == GVA_DiscardableODR) 2656 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2657 : llvm::Function::InternalLinkage; 2658 2659 // An explicit instantiation of a template has weak linkage, since 2660 // explicit instantiations can occur in multiple translation units 2661 // and must all be equivalent. However, we are not allowed to 2662 // throw away these explicit instantiations. 2663 if (Linkage == GVA_StrongODR) 2664 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2665 : llvm::Function::ExternalLinkage; 2666 2667 // C++ doesn't have tentative definitions and thus cannot have common 2668 // linkage. 2669 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2670 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2671 CodeGenOpts.NoCommon)) 2672 return llvm::GlobalVariable::CommonLinkage; 2673 2674 // selectany symbols are externally visible, so use weak instead of 2675 // linkonce. MSVC optimizes away references to const selectany globals, so 2676 // all definitions should be the same and ODR linkage should be used. 2677 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2678 if (D->hasAttr<SelectAnyAttr>()) 2679 return llvm::GlobalVariable::WeakODRLinkage; 2680 2681 // Otherwise, we have strong external linkage. 2682 assert(Linkage == GVA_StrongExternal); 2683 return llvm::GlobalVariable::ExternalLinkage; 2684 } 2685 2686 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2687 const VarDecl *VD, bool IsConstant) { 2688 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2689 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2690 } 2691 2692 /// Replace the uses of a function that was declared with a non-proto type. 2693 /// We want to silently drop extra arguments from call sites 2694 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2695 llvm::Function *newFn) { 2696 // Fast path. 2697 if (old->use_empty()) return; 2698 2699 llvm::Type *newRetTy = newFn->getReturnType(); 2700 SmallVector<llvm::Value*, 4> newArgs; 2701 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2702 2703 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2704 ui != ue; ) { 2705 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2706 llvm::User *user = use->getUser(); 2707 2708 // Recognize and replace uses of bitcasts. Most calls to 2709 // unprototyped functions will use bitcasts. 2710 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2711 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2712 replaceUsesOfNonProtoConstant(bitcast, newFn); 2713 continue; 2714 } 2715 2716 // Recognize calls to the function. 2717 llvm::CallSite callSite(user); 2718 if (!callSite) continue; 2719 if (!callSite.isCallee(&*use)) continue; 2720 2721 // If the return types don't match exactly, then we can't 2722 // transform this call unless it's dead. 2723 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2724 continue; 2725 2726 // Get the call site's attribute list. 2727 SmallVector<llvm::AttributeSet, 8> newAttrs; 2728 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2729 2730 // Collect any return attributes from the call. 2731 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2732 newAttrs.push_back( 2733 llvm::AttributeSet::get(newFn->getContext(), 2734 oldAttrs.getRetAttributes())); 2735 2736 // If the function was passed too few arguments, don't transform. 2737 unsigned newNumArgs = newFn->arg_size(); 2738 if (callSite.arg_size() < newNumArgs) continue; 2739 2740 // If extra arguments were passed, we silently drop them. 2741 // If any of the types mismatch, we don't transform. 2742 unsigned argNo = 0; 2743 bool dontTransform = false; 2744 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2745 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2746 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2747 dontTransform = true; 2748 break; 2749 } 2750 2751 // Add any parameter attributes. 2752 if (oldAttrs.hasAttributes(argNo + 1)) 2753 newAttrs. 2754 push_back(llvm:: 2755 AttributeSet::get(newFn->getContext(), 2756 oldAttrs.getParamAttributes(argNo + 1))); 2757 } 2758 if (dontTransform) 2759 continue; 2760 2761 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2762 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2763 oldAttrs.getFnAttributes())); 2764 2765 // Okay, we can transform this. Create the new call instruction and copy 2766 // over the required information. 2767 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2768 2769 // Copy over any operand bundles. 2770 callSite.getOperandBundlesAsDefs(newBundles); 2771 2772 llvm::CallSite newCall; 2773 if (callSite.isCall()) { 2774 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2775 callSite.getInstruction()); 2776 } else { 2777 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2778 newCall = llvm::InvokeInst::Create(newFn, 2779 oldInvoke->getNormalDest(), 2780 oldInvoke->getUnwindDest(), 2781 newArgs, newBundles, "", 2782 callSite.getInstruction()); 2783 } 2784 newArgs.clear(); // for the next iteration 2785 2786 if (!newCall->getType()->isVoidTy()) 2787 newCall->takeName(callSite.getInstruction()); 2788 newCall.setAttributes( 2789 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2790 newCall.setCallingConv(callSite.getCallingConv()); 2791 2792 // Finally, remove the old call, replacing any uses with the new one. 2793 if (!callSite->use_empty()) 2794 callSite->replaceAllUsesWith(newCall.getInstruction()); 2795 2796 // Copy debug location attached to CI. 2797 if (callSite->getDebugLoc()) 2798 newCall->setDebugLoc(callSite->getDebugLoc()); 2799 2800 callSite->eraseFromParent(); 2801 } 2802 } 2803 2804 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2805 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2806 /// existing call uses of the old function in the module, this adjusts them to 2807 /// call the new function directly. 2808 /// 2809 /// This is not just a cleanup: the always_inline pass requires direct calls to 2810 /// functions to be able to inline them. If there is a bitcast in the way, it 2811 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2812 /// run at -O0. 2813 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2814 llvm::Function *NewFn) { 2815 // If we're redefining a global as a function, don't transform it. 2816 if (!isa<llvm::Function>(Old)) return; 2817 2818 replaceUsesOfNonProtoConstant(Old, NewFn); 2819 } 2820 2821 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2822 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2823 // If we have a definition, this might be a deferred decl. If the 2824 // instantiation is explicit, make sure we emit it at the end. 2825 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2826 GetAddrOfGlobalVar(VD); 2827 2828 EmitTopLevelDecl(VD); 2829 } 2830 2831 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2832 llvm::GlobalValue *GV) { 2833 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2834 2835 // Compute the function info and LLVM type. 2836 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2837 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2838 2839 // Get or create the prototype for the function. 2840 if (!GV || (GV->getType()->getElementType() != Ty)) 2841 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2842 /*DontDefer=*/true, 2843 /*IsForDefinition=*/true)); 2844 2845 // Already emitted. 2846 if (!GV->isDeclaration()) 2847 return; 2848 2849 // We need to set linkage and visibility on the function before 2850 // generating code for it because various parts of IR generation 2851 // want to propagate this information down (e.g. to local static 2852 // declarations). 2853 auto *Fn = cast<llvm::Function>(GV); 2854 setFunctionLinkage(GD, Fn); 2855 setFunctionDLLStorageClass(GD, Fn); 2856 2857 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2858 setGlobalVisibility(Fn, D); 2859 2860 MaybeHandleStaticInExternC(D, Fn); 2861 2862 maybeSetTrivialComdat(*D, *Fn); 2863 2864 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2865 2866 setFunctionDefinitionAttributes(D, Fn); 2867 SetLLVMFunctionAttributesForDefinition(D, Fn); 2868 2869 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2870 AddGlobalCtor(Fn, CA->getPriority()); 2871 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2872 AddGlobalDtor(Fn, DA->getPriority()); 2873 if (D->hasAttr<AnnotateAttr>()) 2874 AddGlobalAnnotations(D, Fn); 2875 } 2876 2877 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2878 const auto *D = cast<ValueDecl>(GD.getDecl()); 2879 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2880 assert(AA && "Not an alias?"); 2881 2882 StringRef MangledName = getMangledName(GD); 2883 2884 if (AA->getAliasee() == MangledName) { 2885 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2886 return; 2887 } 2888 2889 // If there is a definition in the module, then it wins over the alias. 2890 // This is dubious, but allow it to be safe. Just ignore the alias. 2891 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2892 if (Entry && !Entry->isDeclaration()) 2893 return; 2894 2895 Aliases.push_back(GD); 2896 2897 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2898 2899 // Create a reference to the named value. This ensures that it is emitted 2900 // if a deferred decl. 2901 llvm::Constant *Aliasee; 2902 if (isa<llvm::FunctionType>(DeclTy)) 2903 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2904 /*ForVTable=*/false); 2905 else 2906 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2907 llvm::PointerType::getUnqual(DeclTy), 2908 /*D=*/nullptr); 2909 2910 // Create the new alias itself, but don't set a name yet. 2911 auto *GA = llvm::GlobalAlias::create( 2912 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2913 2914 if (Entry) { 2915 if (GA->getAliasee() == Entry) { 2916 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2917 return; 2918 } 2919 2920 assert(Entry->isDeclaration()); 2921 2922 // If there is a declaration in the module, then we had an extern followed 2923 // by the alias, as in: 2924 // extern int test6(); 2925 // ... 2926 // int test6() __attribute__((alias("test7"))); 2927 // 2928 // Remove it and replace uses of it with the alias. 2929 GA->takeName(Entry); 2930 2931 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2932 Entry->getType())); 2933 Entry->eraseFromParent(); 2934 } else { 2935 GA->setName(MangledName); 2936 } 2937 2938 // Set attributes which are particular to an alias; this is a 2939 // specialization of the attributes which may be set on a global 2940 // variable/function. 2941 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2942 D->isWeakImported()) { 2943 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2944 } 2945 2946 if (const auto *VD = dyn_cast<VarDecl>(D)) 2947 if (VD->getTLSKind()) 2948 setTLSMode(GA, *VD); 2949 2950 setAliasAttributes(D, GA); 2951 } 2952 2953 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2954 ArrayRef<llvm::Type*> Tys) { 2955 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2956 Tys); 2957 } 2958 2959 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2960 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2961 const StringLiteral *Literal, bool TargetIsLSB, 2962 bool &IsUTF16, unsigned &StringLength) { 2963 StringRef String = Literal->getString(); 2964 unsigned NumBytes = String.size(); 2965 2966 // Check for simple case. 2967 if (!Literal->containsNonAsciiOrNull()) { 2968 StringLength = NumBytes; 2969 return *Map.insert(std::make_pair(String, nullptr)).first; 2970 } 2971 2972 // Otherwise, convert the UTF8 literals into a string of shorts. 2973 IsUTF16 = true; 2974 2975 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2976 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2977 UTF16 *ToPtr = &ToBuf[0]; 2978 2979 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2980 &ToPtr, ToPtr + NumBytes, 2981 strictConversion); 2982 2983 // ConvertUTF8toUTF16 returns the length in ToPtr. 2984 StringLength = ToPtr - &ToBuf[0]; 2985 2986 // Add an explicit null. 2987 *ToPtr = 0; 2988 return *Map.insert(std::make_pair( 2989 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2990 (StringLength + 1) * 2), 2991 nullptr)).first; 2992 } 2993 2994 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2995 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2996 const StringLiteral *Literal, unsigned &StringLength) { 2997 StringRef String = Literal->getString(); 2998 StringLength = String.size(); 2999 return *Map.insert(std::make_pair(String, nullptr)).first; 3000 } 3001 3002 ConstantAddress 3003 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3004 unsigned StringLength = 0; 3005 bool isUTF16 = false; 3006 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3007 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3008 getDataLayout().isLittleEndian(), isUTF16, 3009 StringLength); 3010 3011 if (auto *C = Entry.second) 3012 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3013 3014 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3015 llvm::Constant *Zeros[] = { Zero, Zero }; 3016 llvm::Value *V; 3017 3018 // If we don't already have it, get __CFConstantStringClassReference. 3019 if (!CFConstantStringClassRef) { 3020 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3021 Ty = llvm::ArrayType::get(Ty, 0); 3022 llvm::Constant *GV = CreateRuntimeVariable(Ty, 3023 "__CFConstantStringClassReference"); 3024 // Decay array -> ptr 3025 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3026 CFConstantStringClassRef = V; 3027 } 3028 else 3029 V = CFConstantStringClassRef; 3030 3031 QualType CFTy = getContext().getCFConstantStringType(); 3032 3033 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3034 3035 llvm::Constant *Fields[4]; 3036 3037 // Class pointer. 3038 Fields[0] = cast<llvm::ConstantExpr>(V); 3039 3040 // Flags. 3041 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3042 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 3043 llvm::ConstantInt::get(Ty, 0x07C8); 3044 3045 // String pointer. 3046 llvm::Constant *C = nullptr; 3047 if (isUTF16) { 3048 auto Arr = llvm::makeArrayRef( 3049 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3050 Entry.first().size() / 2); 3051 C = llvm::ConstantDataArray::get(VMContext, Arr); 3052 } else { 3053 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3054 } 3055 3056 // Note: -fwritable-strings doesn't make the backing store strings of 3057 // CFStrings writable. (See <rdar://problem/10657500>) 3058 auto *GV = 3059 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3060 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3061 GV->setUnnamedAddr(true); 3062 // Don't enforce the target's minimum global alignment, since the only use 3063 // of the string is via this class initializer. 3064 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3065 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3066 // that changes the section it ends in, which surprises ld64. 3067 if (isUTF16) { 3068 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3069 GV->setAlignment(Align.getQuantity()); 3070 GV->setSection("__TEXT,__ustring"); 3071 } else { 3072 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3073 GV->setAlignment(Align.getQuantity()); 3074 GV->setSection("__TEXT,__cstring,cstring_literals"); 3075 } 3076 3077 // String. 3078 Fields[2] = 3079 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3080 3081 if (isUTF16) 3082 // Cast the UTF16 string to the correct type. 3083 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3084 3085 // String length. 3086 Ty = getTypes().ConvertType(getContext().LongTy); 3087 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3088 3089 CharUnits Alignment = getPointerAlign(); 3090 3091 // The struct. 3092 C = llvm::ConstantStruct::get(STy, Fields); 3093 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3094 llvm::GlobalVariable::PrivateLinkage, C, 3095 "_unnamed_cfstring_"); 3096 GV->setSection("__DATA,__cfstring"); 3097 GV->setAlignment(Alignment.getQuantity()); 3098 Entry.second = GV; 3099 3100 return ConstantAddress(GV, Alignment); 3101 } 3102 3103 ConstantAddress 3104 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3105 unsigned StringLength = 0; 3106 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3107 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3108 3109 if (auto *C = Entry.second) 3110 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3111 3112 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3113 llvm::Constant *Zeros[] = { Zero, Zero }; 3114 llvm::Value *V; 3115 // If we don't already have it, get _NSConstantStringClassReference. 3116 if (!ConstantStringClassRef) { 3117 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3118 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3119 llvm::Constant *GV; 3120 if (LangOpts.ObjCRuntime.isNonFragile()) { 3121 std::string str = 3122 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3123 : "OBJC_CLASS_$_" + StringClass; 3124 GV = getObjCRuntime().GetClassGlobal(str); 3125 // Make sure the result is of the correct type. 3126 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3127 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3128 ConstantStringClassRef = V; 3129 } else { 3130 std::string str = 3131 StringClass.empty() ? "_NSConstantStringClassReference" 3132 : "_" + StringClass + "ClassReference"; 3133 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3134 GV = CreateRuntimeVariable(PTy, str); 3135 // Decay array -> ptr 3136 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3137 ConstantStringClassRef = V; 3138 } 3139 } else 3140 V = ConstantStringClassRef; 3141 3142 if (!NSConstantStringType) { 3143 // Construct the type for a constant NSString. 3144 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3145 D->startDefinition(); 3146 3147 QualType FieldTypes[3]; 3148 3149 // const int *isa; 3150 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3151 // const char *str; 3152 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3153 // unsigned int length; 3154 FieldTypes[2] = Context.UnsignedIntTy; 3155 3156 // Create fields 3157 for (unsigned i = 0; i < 3; ++i) { 3158 FieldDecl *Field = FieldDecl::Create(Context, D, 3159 SourceLocation(), 3160 SourceLocation(), nullptr, 3161 FieldTypes[i], /*TInfo=*/nullptr, 3162 /*BitWidth=*/nullptr, 3163 /*Mutable=*/false, 3164 ICIS_NoInit); 3165 Field->setAccess(AS_public); 3166 D->addDecl(Field); 3167 } 3168 3169 D->completeDefinition(); 3170 QualType NSTy = Context.getTagDeclType(D); 3171 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3172 } 3173 3174 llvm::Constant *Fields[3]; 3175 3176 // Class pointer. 3177 Fields[0] = cast<llvm::ConstantExpr>(V); 3178 3179 // String pointer. 3180 llvm::Constant *C = 3181 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3182 3183 llvm::GlobalValue::LinkageTypes Linkage; 3184 bool isConstant; 3185 Linkage = llvm::GlobalValue::PrivateLinkage; 3186 isConstant = !LangOpts.WritableStrings; 3187 3188 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3189 Linkage, C, ".str"); 3190 GV->setUnnamedAddr(true); 3191 // Don't enforce the target's minimum global alignment, since the only use 3192 // of the string is via this class initializer. 3193 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3194 GV->setAlignment(Align.getQuantity()); 3195 Fields[1] = 3196 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3197 3198 // String length. 3199 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3200 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3201 3202 // The struct. 3203 CharUnits Alignment = getPointerAlign(); 3204 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3205 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3206 llvm::GlobalVariable::PrivateLinkage, C, 3207 "_unnamed_nsstring_"); 3208 GV->setAlignment(Alignment.getQuantity()); 3209 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3210 const char *NSStringNonFragileABISection = 3211 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3212 // FIXME. Fix section. 3213 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3214 ? NSStringNonFragileABISection 3215 : NSStringSection); 3216 Entry.second = GV; 3217 3218 return ConstantAddress(GV, Alignment); 3219 } 3220 3221 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3222 if (ObjCFastEnumerationStateType.isNull()) { 3223 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3224 D->startDefinition(); 3225 3226 QualType FieldTypes[] = { 3227 Context.UnsignedLongTy, 3228 Context.getPointerType(Context.getObjCIdType()), 3229 Context.getPointerType(Context.UnsignedLongTy), 3230 Context.getConstantArrayType(Context.UnsignedLongTy, 3231 llvm::APInt(32, 5), ArrayType::Normal, 0) 3232 }; 3233 3234 for (size_t i = 0; i < 4; ++i) { 3235 FieldDecl *Field = FieldDecl::Create(Context, 3236 D, 3237 SourceLocation(), 3238 SourceLocation(), nullptr, 3239 FieldTypes[i], /*TInfo=*/nullptr, 3240 /*BitWidth=*/nullptr, 3241 /*Mutable=*/false, 3242 ICIS_NoInit); 3243 Field->setAccess(AS_public); 3244 D->addDecl(Field); 3245 } 3246 3247 D->completeDefinition(); 3248 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3249 } 3250 3251 return ObjCFastEnumerationStateType; 3252 } 3253 3254 llvm::Constant * 3255 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3256 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3257 3258 // Don't emit it as the address of the string, emit the string data itself 3259 // as an inline array. 3260 if (E->getCharByteWidth() == 1) { 3261 SmallString<64> Str(E->getString()); 3262 3263 // Resize the string to the right size, which is indicated by its type. 3264 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3265 Str.resize(CAT->getSize().getZExtValue()); 3266 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3267 } 3268 3269 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3270 llvm::Type *ElemTy = AType->getElementType(); 3271 unsigned NumElements = AType->getNumElements(); 3272 3273 // Wide strings have either 2-byte or 4-byte elements. 3274 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3275 SmallVector<uint16_t, 32> Elements; 3276 Elements.reserve(NumElements); 3277 3278 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3279 Elements.push_back(E->getCodeUnit(i)); 3280 Elements.resize(NumElements); 3281 return llvm::ConstantDataArray::get(VMContext, Elements); 3282 } 3283 3284 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3285 SmallVector<uint32_t, 32> Elements; 3286 Elements.reserve(NumElements); 3287 3288 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3289 Elements.push_back(E->getCodeUnit(i)); 3290 Elements.resize(NumElements); 3291 return llvm::ConstantDataArray::get(VMContext, Elements); 3292 } 3293 3294 static llvm::GlobalVariable * 3295 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3296 CodeGenModule &CGM, StringRef GlobalName, 3297 CharUnits Alignment) { 3298 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3299 unsigned AddrSpace = 0; 3300 if (CGM.getLangOpts().OpenCL) 3301 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3302 3303 llvm::Module &M = CGM.getModule(); 3304 // Create a global variable for this string 3305 auto *GV = new llvm::GlobalVariable( 3306 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3307 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3308 GV->setAlignment(Alignment.getQuantity()); 3309 GV->setUnnamedAddr(true); 3310 if (GV->isWeakForLinker()) { 3311 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3312 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3313 } 3314 3315 return GV; 3316 } 3317 3318 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3319 /// constant array for the given string literal. 3320 ConstantAddress 3321 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3322 StringRef Name) { 3323 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3324 3325 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3326 llvm::GlobalVariable **Entry = nullptr; 3327 if (!LangOpts.WritableStrings) { 3328 Entry = &ConstantStringMap[C]; 3329 if (auto GV = *Entry) { 3330 if (Alignment.getQuantity() > GV->getAlignment()) 3331 GV->setAlignment(Alignment.getQuantity()); 3332 return ConstantAddress(GV, Alignment); 3333 } 3334 } 3335 3336 SmallString<256> MangledNameBuffer; 3337 StringRef GlobalVariableName; 3338 llvm::GlobalValue::LinkageTypes LT; 3339 3340 // Mangle the string literal if the ABI allows for it. However, we cannot 3341 // do this if we are compiling with ASan or -fwritable-strings because they 3342 // rely on strings having normal linkage. 3343 if (!LangOpts.WritableStrings && 3344 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3345 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3346 llvm::raw_svector_ostream Out(MangledNameBuffer); 3347 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3348 3349 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3350 GlobalVariableName = MangledNameBuffer; 3351 } else { 3352 LT = llvm::GlobalValue::PrivateLinkage; 3353 GlobalVariableName = Name; 3354 } 3355 3356 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3357 if (Entry) 3358 *Entry = GV; 3359 3360 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3361 QualType()); 3362 return ConstantAddress(GV, Alignment); 3363 } 3364 3365 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3366 /// array for the given ObjCEncodeExpr node. 3367 ConstantAddress 3368 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3369 std::string Str; 3370 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3371 3372 return GetAddrOfConstantCString(Str); 3373 } 3374 3375 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3376 /// the literal and a terminating '\0' character. 3377 /// The result has pointer to array type. 3378 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3379 const std::string &Str, const char *GlobalName) { 3380 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3381 CharUnits Alignment = 3382 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3383 3384 llvm::Constant *C = 3385 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3386 3387 // Don't share any string literals if strings aren't constant. 3388 llvm::GlobalVariable **Entry = nullptr; 3389 if (!LangOpts.WritableStrings) { 3390 Entry = &ConstantStringMap[C]; 3391 if (auto GV = *Entry) { 3392 if (Alignment.getQuantity() > GV->getAlignment()) 3393 GV->setAlignment(Alignment.getQuantity()); 3394 return ConstantAddress(GV, Alignment); 3395 } 3396 } 3397 3398 // Get the default prefix if a name wasn't specified. 3399 if (!GlobalName) 3400 GlobalName = ".str"; 3401 // Create a global variable for this. 3402 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3403 GlobalName, Alignment); 3404 if (Entry) 3405 *Entry = GV; 3406 return ConstantAddress(GV, Alignment); 3407 } 3408 3409 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3410 const MaterializeTemporaryExpr *E, const Expr *Init) { 3411 assert((E->getStorageDuration() == SD_Static || 3412 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3413 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3414 3415 // If we're not materializing a subobject of the temporary, keep the 3416 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3417 QualType MaterializedType = Init->getType(); 3418 if (Init == E->GetTemporaryExpr()) 3419 MaterializedType = E->getType(); 3420 3421 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3422 3423 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3424 return ConstantAddress(Slot, Align); 3425 3426 // FIXME: If an externally-visible declaration extends multiple temporaries, 3427 // we need to give each temporary the same name in every translation unit (and 3428 // we also need to make the temporaries externally-visible). 3429 SmallString<256> Name; 3430 llvm::raw_svector_ostream Out(Name); 3431 getCXXABI().getMangleContext().mangleReferenceTemporary( 3432 VD, E->getManglingNumber(), Out); 3433 3434 APValue *Value = nullptr; 3435 if (E->getStorageDuration() == SD_Static) { 3436 // We might have a cached constant initializer for this temporary. Note 3437 // that this might have a different value from the value computed by 3438 // evaluating the initializer if the surrounding constant expression 3439 // modifies the temporary. 3440 Value = getContext().getMaterializedTemporaryValue(E, false); 3441 if (Value && Value->isUninit()) 3442 Value = nullptr; 3443 } 3444 3445 // Try evaluating it now, it might have a constant initializer. 3446 Expr::EvalResult EvalResult; 3447 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3448 !EvalResult.hasSideEffects()) 3449 Value = &EvalResult.Val; 3450 3451 llvm::Constant *InitialValue = nullptr; 3452 bool Constant = false; 3453 llvm::Type *Type; 3454 if (Value) { 3455 // The temporary has a constant initializer, use it. 3456 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3457 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3458 Type = InitialValue->getType(); 3459 } else { 3460 // No initializer, the initialization will be provided when we 3461 // initialize the declaration which performed lifetime extension. 3462 Type = getTypes().ConvertTypeForMem(MaterializedType); 3463 } 3464 3465 // Create a global variable for this lifetime-extended temporary. 3466 llvm::GlobalValue::LinkageTypes Linkage = 3467 getLLVMLinkageVarDefinition(VD, Constant); 3468 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3469 const VarDecl *InitVD; 3470 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3471 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3472 // Temporaries defined inside a class get linkonce_odr linkage because the 3473 // class can be defined in multipe translation units. 3474 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3475 } else { 3476 // There is no need for this temporary to have external linkage if the 3477 // VarDecl has external linkage. 3478 Linkage = llvm::GlobalVariable::InternalLinkage; 3479 } 3480 } 3481 unsigned AddrSpace = GetGlobalVarAddressSpace( 3482 VD, getContext().getTargetAddressSpace(MaterializedType)); 3483 auto *GV = new llvm::GlobalVariable( 3484 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3485 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3486 AddrSpace); 3487 setGlobalVisibility(GV, VD); 3488 GV->setAlignment(Align.getQuantity()); 3489 if (supportsCOMDAT() && GV->isWeakForLinker()) 3490 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3491 if (VD->getTLSKind()) 3492 setTLSMode(GV, *VD); 3493 MaterializedGlobalTemporaryMap[E] = GV; 3494 return ConstantAddress(GV, Align); 3495 } 3496 3497 /// EmitObjCPropertyImplementations - Emit information for synthesized 3498 /// properties for an implementation. 3499 void CodeGenModule::EmitObjCPropertyImplementations(const 3500 ObjCImplementationDecl *D) { 3501 for (const auto *PID : D->property_impls()) { 3502 // Dynamic is just for type-checking. 3503 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3504 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3505 3506 // Determine which methods need to be implemented, some may have 3507 // been overridden. Note that ::isPropertyAccessor is not the method 3508 // we want, that just indicates if the decl came from a 3509 // property. What we want to know is if the method is defined in 3510 // this implementation. 3511 if (!D->getInstanceMethod(PD->getGetterName())) 3512 CodeGenFunction(*this).GenerateObjCGetter( 3513 const_cast<ObjCImplementationDecl *>(D), PID); 3514 if (!PD->isReadOnly() && 3515 !D->getInstanceMethod(PD->getSetterName())) 3516 CodeGenFunction(*this).GenerateObjCSetter( 3517 const_cast<ObjCImplementationDecl *>(D), PID); 3518 } 3519 } 3520 } 3521 3522 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3523 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3524 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3525 ivar; ivar = ivar->getNextIvar()) 3526 if (ivar->getType().isDestructedType()) 3527 return true; 3528 3529 return false; 3530 } 3531 3532 static bool AllTrivialInitializers(CodeGenModule &CGM, 3533 ObjCImplementationDecl *D) { 3534 CodeGenFunction CGF(CGM); 3535 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3536 E = D->init_end(); B != E; ++B) { 3537 CXXCtorInitializer *CtorInitExp = *B; 3538 Expr *Init = CtorInitExp->getInit(); 3539 if (!CGF.isTrivialInitializer(Init)) 3540 return false; 3541 } 3542 return true; 3543 } 3544 3545 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3546 /// for an implementation. 3547 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3548 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3549 if (needsDestructMethod(D)) { 3550 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3551 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3552 ObjCMethodDecl *DTORMethod = 3553 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3554 cxxSelector, getContext().VoidTy, nullptr, D, 3555 /*isInstance=*/true, /*isVariadic=*/false, 3556 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3557 /*isDefined=*/false, ObjCMethodDecl::Required); 3558 D->addInstanceMethod(DTORMethod); 3559 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3560 D->setHasDestructors(true); 3561 } 3562 3563 // If the implementation doesn't have any ivar initializers, we don't need 3564 // a .cxx_construct. 3565 if (D->getNumIvarInitializers() == 0 || 3566 AllTrivialInitializers(*this, D)) 3567 return; 3568 3569 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3570 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3571 // The constructor returns 'self'. 3572 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3573 D->getLocation(), 3574 D->getLocation(), 3575 cxxSelector, 3576 getContext().getObjCIdType(), 3577 nullptr, D, /*isInstance=*/true, 3578 /*isVariadic=*/false, 3579 /*isPropertyAccessor=*/true, 3580 /*isImplicitlyDeclared=*/true, 3581 /*isDefined=*/false, 3582 ObjCMethodDecl::Required); 3583 D->addInstanceMethod(CTORMethod); 3584 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3585 D->setHasNonZeroConstructors(true); 3586 } 3587 3588 /// EmitNamespace - Emit all declarations in a namespace. 3589 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3590 for (auto *I : ND->decls()) { 3591 if (const auto *VD = dyn_cast<VarDecl>(I)) 3592 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3593 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3594 continue; 3595 EmitTopLevelDecl(I); 3596 } 3597 } 3598 3599 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3600 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3601 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3602 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3603 ErrorUnsupported(LSD, "linkage spec"); 3604 return; 3605 } 3606 3607 for (auto *I : LSD->decls()) { 3608 // Meta-data for ObjC class includes references to implemented methods. 3609 // Generate class's method definitions first. 3610 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3611 for (auto *M : OID->methods()) 3612 EmitTopLevelDecl(M); 3613 } 3614 EmitTopLevelDecl(I); 3615 } 3616 } 3617 3618 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3619 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3620 // Ignore dependent declarations. 3621 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3622 return; 3623 3624 switch (D->getKind()) { 3625 case Decl::CXXConversion: 3626 case Decl::CXXMethod: 3627 case Decl::Function: 3628 // Skip function templates 3629 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3630 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3631 return; 3632 3633 EmitGlobal(cast<FunctionDecl>(D)); 3634 // Always provide some coverage mapping 3635 // even for the functions that aren't emitted. 3636 AddDeferredUnusedCoverageMapping(D); 3637 break; 3638 3639 case Decl::Var: 3640 // Skip variable templates 3641 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3642 return; 3643 case Decl::VarTemplateSpecialization: 3644 EmitGlobal(cast<VarDecl>(D)); 3645 break; 3646 3647 // Indirect fields from global anonymous structs and unions can be 3648 // ignored; only the actual variable requires IR gen support. 3649 case Decl::IndirectField: 3650 break; 3651 3652 // C++ Decls 3653 case Decl::Namespace: 3654 EmitNamespace(cast<NamespaceDecl>(D)); 3655 break; 3656 // No code generation needed. 3657 case Decl::UsingShadow: 3658 case Decl::ClassTemplate: 3659 case Decl::VarTemplate: 3660 case Decl::VarTemplatePartialSpecialization: 3661 case Decl::FunctionTemplate: 3662 case Decl::TypeAliasTemplate: 3663 case Decl::Block: 3664 case Decl::Empty: 3665 break; 3666 case Decl::Using: // using X; [C++] 3667 if (CGDebugInfo *DI = getModuleDebugInfo()) 3668 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3669 return; 3670 case Decl::NamespaceAlias: 3671 if (CGDebugInfo *DI = getModuleDebugInfo()) 3672 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3673 return; 3674 case Decl::UsingDirective: // using namespace X; [C++] 3675 if (CGDebugInfo *DI = getModuleDebugInfo()) 3676 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3677 return; 3678 case Decl::CXXConstructor: 3679 // Skip function templates 3680 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3681 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3682 return; 3683 3684 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3685 break; 3686 case Decl::CXXDestructor: 3687 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3688 return; 3689 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3690 break; 3691 3692 case Decl::StaticAssert: 3693 // Nothing to do. 3694 break; 3695 3696 // Objective-C Decls 3697 3698 // Forward declarations, no (immediate) code generation. 3699 case Decl::ObjCInterface: 3700 case Decl::ObjCCategory: 3701 break; 3702 3703 case Decl::ObjCProtocol: { 3704 auto *Proto = cast<ObjCProtocolDecl>(D); 3705 if (Proto->isThisDeclarationADefinition()) 3706 ObjCRuntime->GenerateProtocol(Proto); 3707 break; 3708 } 3709 3710 case Decl::ObjCCategoryImpl: 3711 // Categories have properties but don't support synthesize so we 3712 // can ignore them here. 3713 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3714 break; 3715 3716 case Decl::ObjCImplementation: { 3717 auto *OMD = cast<ObjCImplementationDecl>(D); 3718 EmitObjCPropertyImplementations(OMD); 3719 EmitObjCIvarInitializations(OMD); 3720 ObjCRuntime->GenerateClass(OMD); 3721 // Emit global variable debug information. 3722 if (CGDebugInfo *DI = getModuleDebugInfo()) 3723 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3724 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3725 OMD->getClassInterface()), OMD->getLocation()); 3726 break; 3727 } 3728 case Decl::ObjCMethod: { 3729 auto *OMD = cast<ObjCMethodDecl>(D); 3730 // If this is not a prototype, emit the body. 3731 if (OMD->getBody()) 3732 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3733 break; 3734 } 3735 case Decl::ObjCCompatibleAlias: 3736 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3737 break; 3738 3739 case Decl::PragmaComment: { 3740 const auto *PCD = cast<PragmaCommentDecl>(D); 3741 switch (PCD->getCommentKind()) { 3742 case PCK_Unknown: 3743 llvm_unreachable("unexpected pragma comment kind"); 3744 case PCK_Linker: 3745 AppendLinkerOptions(PCD->getArg()); 3746 break; 3747 case PCK_Lib: 3748 AddDependentLib(PCD->getArg()); 3749 break; 3750 case PCK_Compiler: 3751 case PCK_ExeStr: 3752 case PCK_User: 3753 break; // We ignore all of these. 3754 } 3755 break; 3756 } 3757 3758 case Decl::PragmaDetectMismatch: { 3759 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3760 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3761 break; 3762 } 3763 3764 case Decl::LinkageSpec: 3765 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3766 break; 3767 3768 case Decl::FileScopeAsm: { 3769 // File-scope asm is ignored during device-side CUDA compilation. 3770 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3771 break; 3772 // File-scope asm is ignored during device-side OpenMP compilation. 3773 if (LangOpts.OpenMPIsDevice) 3774 break; 3775 auto *AD = cast<FileScopeAsmDecl>(D); 3776 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3777 break; 3778 } 3779 3780 case Decl::Import: { 3781 auto *Import = cast<ImportDecl>(D); 3782 3783 // Ignore import declarations that come from imported modules. 3784 if (Import->getImportedOwningModule()) 3785 break; 3786 if (CGDebugInfo *DI = getModuleDebugInfo()) 3787 DI->EmitImportDecl(*Import); 3788 3789 ImportedModules.insert(Import->getImportedModule()); 3790 break; 3791 } 3792 3793 case Decl::OMPThreadPrivate: 3794 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3795 break; 3796 3797 case Decl::ClassTemplateSpecialization: { 3798 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3799 if (DebugInfo && 3800 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3801 Spec->hasDefinition()) 3802 DebugInfo->completeTemplateDefinition(*Spec); 3803 break; 3804 } 3805 3806 case Decl::OMPDeclareReduction: 3807 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3808 break; 3809 3810 default: 3811 // Make sure we handled everything we should, every other kind is a 3812 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3813 // function. Need to recode Decl::Kind to do that easily. 3814 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3815 break; 3816 } 3817 } 3818 3819 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3820 // Do we need to generate coverage mapping? 3821 if (!CodeGenOpts.CoverageMapping) 3822 return; 3823 switch (D->getKind()) { 3824 case Decl::CXXConversion: 3825 case Decl::CXXMethod: 3826 case Decl::Function: 3827 case Decl::ObjCMethod: 3828 case Decl::CXXConstructor: 3829 case Decl::CXXDestructor: { 3830 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3831 return; 3832 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3833 if (I == DeferredEmptyCoverageMappingDecls.end()) 3834 DeferredEmptyCoverageMappingDecls[D] = true; 3835 break; 3836 } 3837 default: 3838 break; 3839 }; 3840 } 3841 3842 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3843 // Do we need to generate coverage mapping? 3844 if (!CodeGenOpts.CoverageMapping) 3845 return; 3846 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3847 if (Fn->isTemplateInstantiation()) 3848 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3849 } 3850 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3851 if (I == DeferredEmptyCoverageMappingDecls.end()) 3852 DeferredEmptyCoverageMappingDecls[D] = false; 3853 else 3854 I->second = false; 3855 } 3856 3857 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3858 std::vector<const Decl *> DeferredDecls; 3859 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3860 if (!I.second) 3861 continue; 3862 DeferredDecls.push_back(I.first); 3863 } 3864 // Sort the declarations by their location to make sure that the tests get a 3865 // predictable order for the coverage mapping for the unused declarations. 3866 if (CodeGenOpts.DumpCoverageMapping) 3867 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3868 [] (const Decl *LHS, const Decl *RHS) { 3869 return LHS->getLocStart() < RHS->getLocStart(); 3870 }); 3871 for (const auto *D : DeferredDecls) { 3872 switch (D->getKind()) { 3873 case Decl::CXXConversion: 3874 case Decl::CXXMethod: 3875 case Decl::Function: 3876 case Decl::ObjCMethod: { 3877 CodeGenPGO PGO(*this); 3878 GlobalDecl GD(cast<FunctionDecl>(D)); 3879 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3880 getFunctionLinkage(GD)); 3881 break; 3882 } 3883 case Decl::CXXConstructor: { 3884 CodeGenPGO PGO(*this); 3885 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3886 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3887 getFunctionLinkage(GD)); 3888 break; 3889 } 3890 case Decl::CXXDestructor: { 3891 CodeGenPGO PGO(*this); 3892 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3893 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3894 getFunctionLinkage(GD)); 3895 break; 3896 } 3897 default: 3898 break; 3899 }; 3900 } 3901 } 3902 3903 /// Turns the given pointer into a constant. 3904 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3905 const void *Ptr) { 3906 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3907 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3908 return llvm::ConstantInt::get(i64, PtrInt); 3909 } 3910 3911 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3912 llvm::NamedMDNode *&GlobalMetadata, 3913 GlobalDecl D, 3914 llvm::GlobalValue *Addr) { 3915 if (!GlobalMetadata) 3916 GlobalMetadata = 3917 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3918 3919 // TODO: should we report variant information for ctors/dtors? 3920 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3921 llvm::ConstantAsMetadata::get(GetPointerConstant( 3922 CGM.getLLVMContext(), D.getDecl()))}; 3923 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3924 } 3925 3926 /// For each function which is declared within an extern "C" region and marked 3927 /// as 'used', but has internal linkage, create an alias from the unmangled 3928 /// name to the mangled name if possible. People expect to be able to refer 3929 /// to such functions with an unmangled name from inline assembly within the 3930 /// same translation unit. 3931 void CodeGenModule::EmitStaticExternCAliases() { 3932 // Don't do anything if we're generating CUDA device code -- the NVPTX 3933 // assembly target doesn't support aliases. 3934 if (Context.getTargetInfo().getTriple().isNVPTX()) 3935 return; 3936 for (auto &I : StaticExternCValues) { 3937 IdentifierInfo *Name = I.first; 3938 llvm::GlobalValue *Val = I.second; 3939 if (Val && !getModule().getNamedValue(Name->getName())) 3940 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3941 } 3942 } 3943 3944 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3945 GlobalDecl &Result) const { 3946 auto Res = Manglings.find(MangledName); 3947 if (Res == Manglings.end()) 3948 return false; 3949 Result = Res->getValue(); 3950 return true; 3951 } 3952 3953 /// Emits metadata nodes associating all the global values in the 3954 /// current module with the Decls they came from. This is useful for 3955 /// projects using IR gen as a subroutine. 3956 /// 3957 /// Since there's currently no way to associate an MDNode directly 3958 /// with an llvm::GlobalValue, we create a global named metadata 3959 /// with the name 'clang.global.decl.ptrs'. 3960 void CodeGenModule::EmitDeclMetadata() { 3961 llvm::NamedMDNode *GlobalMetadata = nullptr; 3962 3963 for (auto &I : MangledDeclNames) { 3964 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3965 // Some mangled names don't necessarily have an associated GlobalValue 3966 // in this module, e.g. if we mangled it for DebugInfo. 3967 if (Addr) 3968 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3969 } 3970 } 3971 3972 /// Emits metadata nodes for all the local variables in the current 3973 /// function. 3974 void CodeGenFunction::EmitDeclMetadata() { 3975 if (LocalDeclMap.empty()) return; 3976 3977 llvm::LLVMContext &Context = getLLVMContext(); 3978 3979 // Find the unique metadata ID for this name. 3980 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3981 3982 llvm::NamedMDNode *GlobalMetadata = nullptr; 3983 3984 for (auto &I : LocalDeclMap) { 3985 const Decl *D = I.first; 3986 llvm::Value *Addr = I.second.getPointer(); 3987 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3988 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3989 Alloca->setMetadata( 3990 DeclPtrKind, llvm::MDNode::get( 3991 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3992 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3993 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3994 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3995 } 3996 } 3997 } 3998 3999 void CodeGenModule::EmitVersionIdentMetadata() { 4000 llvm::NamedMDNode *IdentMetadata = 4001 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4002 std::string Version = getClangFullVersion(); 4003 llvm::LLVMContext &Ctx = TheModule.getContext(); 4004 4005 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4006 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4007 } 4008 4009 void CodeGenModule::EmitTargetMetadata() { 4010 // Warning, new MangledDeclNames may be appended within this loop. 4011 // We rely on MapVector insertions adding new elements to the end 4012 // of the container. 4013 // FIXME: Move this loop into the one target that needs it, and only 4014 // loop over those declarations for which we couldn't emit the target 4015 // metadata when we emitted the declaration. 4016 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4017 auto Val = *(MangledDeclNames.begin() + I); 4018 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4019 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4020 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4021 } 4022 } 4023 4024 void CodeGenModule::EmitCoverageFile() { 4025 if (!getCodeGenOpts().CoverageFile.empty()) { 4026 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4027 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4028 llvm::LLVMContext &Ctx = TheModule.getContext(); 4029 llvm::MDString *CoverageFile = 4030 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4031 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4032 llvm::MDNode *CU = CUNode->getOperand(i); 4033 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4034 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4035 } 4036 } 4037 } 4038 } 4039 4040 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4041 // Sema has checked that all uuid strings are of the form 4042 // "12345678-1234-1234-1234-1234567890ab". 4043 assert(Uuid.size() == 36); 4044 for (unsigned i = 0; i < 36; ++i) { 4045 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4046 else assert(isHexDigit(Uuid[i])); 4047 } 4048 4049 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4050 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4051 4052 llvm::Constant *Field3[8]; 4053 for (unsigned Idx = 0; Idx < 8; ++Idx) 4054 Field3[Idx] = llvm::ConstantInt::get( 4055 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4056 4057 llvm::Constant *Fields[4] = { 4058 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4059 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4060 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4061 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4062 }; 4063 4064 return llvm::ConstantStruct::getAnon(Fields); 4065 } 4066 4067 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4068 bool ForEH) { 4069 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4070 // FIXME: should we even be calling this method if RTTI is disabled 4071 // and it's not for EH? 4072 if (!ForEH && !getLangOpts().RTTI) 4073 return llvm::Constant::getNullValue(Int8PtrTy); 4074 4075 if (ForEH && Ty->isObjCObjectPointerType() && 4076 LangOpts.ObjCRuntime.isGNUFamily()) 4077 return ObjCRuntime->GetEHType(Ty); 4078 4079 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4080 } 4081 4082 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4083 for (auto RefExpr : D->varlists()) { 4084 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4085 bool PerformInit = 4086 VD->getAnyInitializer() && 4087 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4088 /*ForRef=*/false); 4089 4090 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4091 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4092 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4093 CXXGlobalInits.push_back(InitFunction); 4094 } 4095 } 4096 4097 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4098 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4099 if (InternalId) 4100 return InternalId; 4101 4102 if (isExternallyVisible(T->getLinkage())) { 4103 std::string OutName; 4104 llvm::raw_string_ostream Out(OutName); 4105 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4106 4107 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4108 } else { 4109 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4110 llvm::ArrayRef<llvm::Metadata *>()); 4111 } 4112 4113 return InternalId; 4114 } 4115 4116 /// Returns whether this module needs the "all-vtables" bitset. 4117 bool CodeGenModule::NeedAllVtablesBitSet() const { 4118 // Returns true if at least one of vtable-based CFI checkers is enabled and 4119 // is not in the trapping mode. 4120 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4121 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4122 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4123 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4124 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4125 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4126 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4127 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4128 } 4129 4130 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4131 llvm::GlobalVariable *VTable, 4132 CharUnits Offset, 4133 const CXXRecordDecl *RD) { 4134 llvm::Metadata *MD = 4135 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4136 llvm::Metadata *BitsetOps[] = { 4137 MD, llvm::ConstantAsMetadata::get(VTable), 4138 llvm::ConstantAsMetadata::get( 4139 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4140 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4141 4142 if (CodeGenOpts.SanitizeCfiCrossDso) { 4143 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4144 llvm::Metadata *BitsetOps2[] = { 4145 llvm::ConstantAsMetadata::get(TypeId), 4146 llvm::ConstantAsMetadata::get(VTable), 4147 llvm::ConstantAsMetadata::get( 4148 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4149 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4150 } 4151 } 4152 4153 if (NeedAllVtablesBitSet()) { 4154 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4155 llvm::Metadata *BitsetOps[] = { 4156 MD, llvm::ConstantAsMetadata::get(VTable), 4157 llvm::ConstantAsMetadata::get( 4158 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4159 // Avoid adding a node to BitsetsMD twice. 4160 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4161 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4162 } 4163 } 4164 4165 // Fills in the supplied string map with the set of target features for the 4166 // passed in function. 4167 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4168 const FunctionDecl *FD) { 4169 StringRef TargetCPU = Target.getTargetOpts().CPU; 4170 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4171 // If we have a TargetAttr build up the feature map based on that. 4172 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4173 4174 // Make a copy of the features as passed on the command line into the 4175 // beginning of the additional features from the function to override. 4176 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4177 Target.getTargetOpts().FeaturesAsWritten.begin(), 4178 Target.getTargetOpts().FeaturesAsWritten.end()); 4179 4180 if (ParsedAttr.second != "") 4181 TargetCPU = ParsedAttr.second; 4182 4183 // Now populate the feature map, first with the TargetCPU which is either 4184 // the default or a new one from the target attribute string. Then we'll use 4185 // the passed in features (FeaturesAsWritten) along with the new ones from 4186 // the attribute. 4187 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4188 } else { 4189 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4190 Target.getTargetOpts().Features); 4191 } 4192 } 4193 4194 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4195 if (!SanStats) 4196 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4197 4198 return *SanStats; 4199 } 4200