xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 02b77f4248815b31e711e506bfd8c440ddbd9ad1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie(
93                                   CGO.SanitizerBlacklistFile)),
94       SanitizerMD(new SanitizerMetadata(*this)) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 
152   // If coverage mapping generation is enabled, create the
153   // CoverageMappingModuleGen object.
154   if (CodeGenOpts.CoverageMapping)
155     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
156 }
157 
158 CodeGenModule::~CodeGenModule() {
159   delete ObjCRuntime;
160   delete OpenCLRuntime;
161   delete OpenMPRuntime;
162   delete CUDARuntime;
163   delete TheTargetCodeGenInfo;
164   delete TBAA;
165   delete DebugInfo;
166   delete ARCData;
167   delete RRData;
168 }
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime = CreateGNUObjCRuntime(*this);
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183     ObjCRuntime = CreateMacObjCRuntime(*this);
184     return;
185   }
186   llvm_unreachable("bad runtime kind");
187 }
188 
189 void CodeGenModule::createOpenCLRuntime() {
190   OpenCLRuntime = new CGOpenCLRuntime(*this);
191 }
192 
193 void CodeGenModule::createOpenMPRuntime() {
194   OpenMPRuntime = new CGOpenMPRuntime(*this);
195 }
196 
197 void CodeGenModule::createCUDARuntime() {
198   CUDARuntime = CreateNVCUDARuntime(*this);
199 }
200 
201 void CodeGenModule::applyReplacements() {
202   for (ReplacementsTy::iterator I = Replacements.begin(),
203                                 E = Replacements.end();
204        I != E; ++I) {
205     StringRef MangledName = I->first();
206     llvm::Constant *Replacement = I->second;
207     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
208     if (!Entry)
209       continue;
210     auto *OldF = cast<llvm::Function>(Entry);
211     auto *NewF = dyn_cast<llvm::Function>(Replacement);
212     if (!NewF) {
213       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
214         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
215       } else {
216         auto *CE = cast<llvm::ConstantExpr>(Replacement);
217         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
218                CE->getOpcode() == llvm::Instruction::GetElementPtr);
219         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
220       }
221     }
222 
223     // Replace old with new, but keep the old order.
224     OldF->replaceAllUsesWith(Replacement);
225     if (NewF) {
226       NewF->removeFromParent();
227       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
228     }
229     OldF->eraseFromParent();
230   }
231 }
232 
233 // This is only used in aliases that we created and we know they have a
234 // linear structure.
235 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
236   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
237   const llvm::Constant *C = &GA;
238   for (;;) {
239     C = C->stripPointerCasts();
240     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
241       return GO;
242     // stripPointerCasts will not walk over weak aliases.
243     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
244     if (!GA2)
245       return nullptr;
246     if (!Visited.insert(GA2))
247       return nullptr;
248     C = GA2->getAliasee();
249   }
250 }
251 
252 void CodeGenModule::checkAliases() {
253   // Check if the constructed aliases are well formed. It is really unfortunate
254   // that we have to do this in CodeGen, but we only construct mangled names
255   // and aliases during codegen.
256   bool Error = false;
257   DiagnosticsEngine &Diags = getDiags();
258   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
259          E = Aliases.end(); I != E; ++I) {
260     const GlobalDecl &GD = *I;
261     const auto *D = cast<ValueDecl>(GD.getDecl());
262     const AliasAttr *AA = D->getAttr<AliasAttr>();
263     StringRef MangledName = getMangledName(GD);
264     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
265     auto *Alias = cast<llvm::GlobalAlias>(Entry);
266     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
267     if (!GV) {
268       Error = true;
269       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
270     } else if (GV->isDeclaration()) {
271       Error = true;
272       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
273     }
274 
275     llvm::Constant *Aliasee = Alias->getAliasee();
276     llvm::GlobalValue *AliaseeGV;
277     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
278       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
279     else
280       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
281 
282     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
283       StringRef AliasSection = SA->getName();
284       if (AliasSection != AliaseeGV->getSection())
285         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
286             << AliasSection;
287     }
288 
289     // We have to handle alias to weak aliases in here. LLVM itself disallows
290     // this since the object semantics would not match the IL one. For
291     // compatibility with gcc we implement it by just pointing the alias
292     // to its aliasee's aliasee. We also warn, since the user is probably
293     // expecting the link to be weak.
294     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
295       if (GA->mayBeOverridden()) {
296         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
297             << GV->getName() << GA->getName();
298         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
299             GA->getAliasee(), Alias->getType());
300         Alias->setAliasee(Aliasee);
301       }
302     }
303   }
304   if (!Error)
305     return;
306 
307   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
308          E = Aliases.end(); I != E; ++I) {
309     const GlobalDecl &GD = *I;
310     StringRef MangledName = getMangledName(GD);
311     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
312     auto *Alias = cast<llvm::GlobalAlias>(Entry);
313     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
314     Alias->eraseFromParent();
315   }
316 }
317 
318 void CodeGenModule::clear() {
319   DeferredDeclsToEmit.clear();
320 }
321 
322 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
323                                        StringRef MainFile) {
324   if (!hasDiagnostics())
325     return;
326   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
327     if (MainFile.empty())
328       MainFile = "<stdin>";
329     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
330   } else
331     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
332                                                       << Mismatched;
333 }
334 
335 void CodeGenModule::Release() {
336   EmitDeferred();
337   applyReplacements();
338   checkAliases();
339   EmitCXXGlobalInitFunc();
340   EmitCXXGlobalDtorFunc();
341   EmitCXXThreadLocalInitFunc();
342   if (ObjCRuntime)
343     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
344       AddGlobalCtor(ObjCInitFunction);
345   if (getCodeGenOpts().ProfileInstrGenerate)
346     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
347       AddGlobalCtor(PGOInit, 0);
348   if (PGOReader && PGOStats.hasDiagnostics())
349     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
350   EmitCtorList(GlobalCtors, "llvm.global_ctors");
351   EmitCtorList(GlobalDtors, "llvm.global_dtors");
352   EmitGlobalAnnotations();
353   EmitStaticExternCAliases();
354   EmitDeferredUnusedCoverageMappings();
355   if (CoverageMapping)
356     CoverageMapping->emit();
357   emitLLVMUsed();
358 
359   if (CodeGenOpts.Autolink &&
360       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
361     EmitModuleLinkOptions();
362   }
363   if (CodeGenOpts.DwarfVersion)
364     // We actually want the latest version when there are conflicts.
365     // We can change from Warning to Latest if such mode is supported.
366     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
367                               CodeGenOpts.DwarfVersion);
368   if (DebugInfo)
369     // We support a single version in the linked module. The LLVM
370     // parser will drop debug info with a different version number
371     // (and warn about it, too).
372     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
373                               llvm::DEBUG_METADATA_VERSION);
374 
375   // We need to record the widths of enums and wchar_t, so that we can generate
376   // the correct build attributes in the ARM backend.
377   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
378   if (   Arch == llvm::Triple::arm
379       || Arch == llvm::Triple::armeb
380       || Arch == llvm::Triple::thumb
381       || Arch == llvm::Triple::thumbeb) {
382     // Width of wchar_t in bytes
383     uint64_t WCharWidth =
384         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
385     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
386 
387     // The minimum width of an enum in bytes
388     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
389     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
390   }
391 
392   SimplifyPersonality();
393 
394   if (getCodeGenOpts().EmitDeclMetadata)
395     EmitDeclMetadata();
396 
397   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
398     EmitCoverageFile();
399 
400   if (DebugInfo)
401     DebugInfo->finalize();
402 
403   EmitVersionIdentMetadata();
404 
405   EmitTargetMetadata();
406 }
407 
408 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
409   // Make sure that this type is translated.
410   Types.UpdateCompletedType(TD);
411 }
412 
413 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
414   if (!TBAA)
415     return nullptr;
416   return TBAA->getTBAAInfo(QTy);
417 }
418 
419 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
420   if (!TBAA)
421     return nullptr;
422   return TBAA->getTBAAInfoForVTablePtr();
423 }
424 
425 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
426   if (!TBAA)
427     return nullptr;
428   return TBAA->getTBAAStructInfo(QTy);
429 }
430 
431 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
432   if (!TBAA)
433     return nullptr;
434   return TBAA->getTBAAStructTypeInfo(QTy);
435 }
436 
437 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
438                                                   llvm::MDNode *AccessN,
439                                                   uint64_t O) {
440   if (!TBAA)
441     return nullptr;
442   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
443 }
444 
445 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
446 /// and struct-path aware TBAA, the tag has the same format:
447 /// base type, access type and offset.
448 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
449 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
450                                         llvm::MDNode *TBAAInfo,
451                                         bool ConvertTypeToTag) {
452   if (ConvertTypeToTag && TBAA)
453     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
454                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
455   else
456     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
457 }
458 
459 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
460   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
461   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
462 }
463 
464 /// ErrorUnsupported - Print out an error that codegen doesn't support the
465 /// specified stmt yet.
466 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
467   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
468                                                "cannot compile this %0 yet");
469   std::string Msg = Type;
470   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
471     << Msg << S->getSourceRange();
472 }
473 
474 /// ErrorUnsupported - Print out an error that codegen doesn't support the
475 /// specified decl yet.
476 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
477   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
478                                                "cannot compile this %0 yet");
479   std::string Msg = Type;
480   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
481 }
482 
483 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
484   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
485 }
486 
487 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
488                                         const NamedDecl *D) const {
489   // Internal definitions always have default visibility.
490   if (GV->hasLocalLinkage()) {
491     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
492     return;
493   }
494 
495   // Set visibility for definitions.
496   LinkageInfo LV = D->getLinkageAndVisibility();
497   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
498     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
499 }
500 
501 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
502   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
503       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
504       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
505       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
506       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
507 }
508 
509 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
510     CodeGenOptions::TLSModel M) {
511   switch (M) {
512   case CodeGenOptions::GeneralDynamicTLSModel:
513     return llvm::GlobalVariable::GeneralDynamicTLSModel;
514   case CodeGenOptions::LocalDynamicTLSModel:
515     return llvm::GlobalVariable::LocalDynamicTLSModel;
516   case CodeGenOptions::InitialExecTLSModel:
517     return llvm::GlobalVariable::InitialExecTLSModel;
518   case CodeGenOptions::LocalExecTLSModel:
519     return llvm::GlobalVariable::LocalExecTLSModel;
520   }
521   llvm_unreachable("Invalid TLS model!");
522 }
523 
524 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
525                                const VarDecl &D) const {
526   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
527 
528   llvm::GlobalVariable::ThreadLocalMode TLM;
529   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
530 
531   // Override the TLS model if it is explicitly specified.
532   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
533     TLM = GetLLVMTLSModel(Attr->getModel());
534   }
535 
536   GV->setThreadLocalMode(TLM);
537 }
538 
539 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
540   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
541   if (!FoundStr.empty())
542     return FoundStr;
543 
544   const auto *ND = cast<NamedDecl>(GD.getDecl());
545   SmallString<256> Buffer;
546   StringRef Str;
547   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
548     llvm::raw_svector_ostream Out(Buffer);
549     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
550       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
551     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
552       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
553     else
554       getCXXABI().getMangleContext().mangleName(ND, Out);
555     Str = Out.str();
556   } else {
557     IdentifierInfo *II = ND->getIdentifier();
558     assert(II && "Attempt to mangle unnamed decl.");
559     Str = II->getName();
560   }
561 
562   // Keep the first result in the case of a mangling collision.
563   auto Result = Manglings.insert(std::make_pair(Str, GD));
564   return FoundStr = Result.first->first();
565 }
566 
567 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
568                                              const BlockDecl *BD) {
569   MangleContext &MangleCtx = getCXXABI().getMangleContext();
570   const Decl *D = GD.getDecl();
571 
572   SmallString<256> Buffer;
573   llvm::raw_svector_ostream Out(Buffer);
574   if (!D)
575     MangleCtx.mangleGlobalBlock(BD,
576       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
577   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
578     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
579   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
580     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
581   else
582     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
583 
584   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
585   return Result.first->first();
586 }
587 
588 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
589   return getModule().getNamedValue(Name);
590 }
591 
592 /// AddGlobalCtor - Add a function to the list that will be called before
593 /// main() runs.
594 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
595                                   llvm::Constant *AssociatedData) {
596   // FIXME: Type coercion of void()* types.
597   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
598 }
599 
600 /// AddGlobalDtor - Add a function to the list that will be called
601 /// when the module is unloaded.
602 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
603   // FIXME: Type coercion of void()* types.
604   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
605 }
606 
607 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
608   // Ctor function type is void()*.
609   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
610   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
611 
612   // Get the type of a ctor entry, { i32, void ()*, i8* }.
613   llvm::StructType *CtorStructTy = llvm::StructType::get(
614       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
615 
616   // Construct the constructor and destructor arrays.
617   SmallVector<llvm::Constant*, 8> Ctors;
618   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
619     llvm::Constant *S[] = {
620       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
621       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
622       (I->AssociatedData
623            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
624            : llvm::Constant::getNullValue(VoidPtrTy))
625     };
626     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
627   }
628 
629   if (!Ctors.empty()) {
630     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
631     new llvm::GlobalVariable(TheModule, AT, false,
632                              llvm::GlobalValue::AppendingLinkage,
633                              llvm::ConstantArray::get(AT, Ctors),
634                              GlobalName);
635   }
636 }
637 
638 llvm::GlobalValue::LinkageTypes
639 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
640   const auto *D = cast<FunctionDecl>(GD.getDecl());
641 
642   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
643 
644   if (isa<CXXDestructorDecl>(D) &&
645       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
646                                          GD.getDtorType())) {
647     // Destructor variants in the Microsoft C++ ABI are always internal or
648     // linkonce_odr thunks emitted on an as-needed basis.
649     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
650                                    : llvm::GlobalValue::LinkOnceODRLinkage;
651   }
652 
653   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
654 }
655 
656 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
657                                                     llvm::Function *F) {
658   setNonAliasAttributes(D, F);
659 }
660 
661 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
662                                               const CGFunctionInfo &Info,
663                                               llvm::Function *F) {
664   unsigned CallingConv;
665   AttributeListType AttributeList;
666   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
667   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
668   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
669 }
670 
671 /// Determines whether the language options require us to model
672 /// unwind exceptions.  We treat -fexceptions as mandating this
673 /// except under the fragile ObjC ABI with only ObjC exceptions
674 /// enabled.  This means, for example, that C with -fexceptions
675 /// enables this.
676 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
677   // If exceptions are completely disabled, obviously this is false.
678   if (!LangOpts.Exceptions) return false;
679 
680   // If C++ exceptions are enabled, this is true.
681   if (LangOpts.CXXExceptions) return true;
682 
683   // If ObjC exceptions are enabled, this depends on the ABI.
684   if (LangOpts.ObjCExceptions) {
685     return LangOpts.ObjCRuntime.hasUnwindExceptions();
686   }
687 
688   return true;
689 }
690 
691 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
692                                                            llvm::Function *F) {
693   llvm::AttrBuilder B;
694 
695   if (CodeGenOpts.UnwindTables)
696     B.addAttribute(llvm::Attribute::UWTable);
697 
698   if (!hasUnwindExceptions(LangOpts))
699     B.addAttribute(llvm::Attribute::NoUnwind);
700 
701   if (D->hasAttr<NakedAttr>()) {
702     // Naked implies noinline: we should not be inlining such functions.
703     B.addAttribute(llvm::Attribute::Naked);
704     B.addAttribute(llvm::Attribute::NoInline);
705   } else if (D->hasAttr<OptimizeNoneAttr>()) {
706     // OptimizeNone implies noinline; we should not be inlining such functions.
707     B.addAttribute(llvm::Attribute::OptimizeNone);
708     B.addAttribute(llvm::Attribute::NoInline);
709   } else if (D->hasAttr<NoDuplicateAttr>()) {
710     B.addAttribute(llvm::Attribute::NoDuplicate);
711   } else if (D->hasAttr<NoInlineAttr>()) {
712     B.addAttribute(llvm::Attribute::NoInline);
713   } else if (D->hasAttr<AlwaysInlineAttr>() &&
714              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
715                                               llvm::Attribute::NoInline)) {
716     // (noinline wins over always_inline, and we can't specify both in IR)
717     B.addAttribute(llvm::Attribute::AlwaysInline);
718   }
719 
720   if (D->hasAttr<ColdAttr>()) {
721     B.addAttribute(llvm::Attribute::OptimizeForSize);
722     B.addAttribute(llvm::Attribute::Cold);
723   }
724 
725   if (D->hasAttr<MinSizeAttr>())
726     B.addAttribute(llvm::Attribute::MinSize);
727 
728   if (D->hasAttr<OptimizeNoneAttr>()) {
729     // OptimizeNone wins over OptimizeForSize and MinSize.
730     B.removeAttribute(llvm::Attribute::OptimizeForSize);
731     B.removeAttribute(llvm::Attribute::MinSize);
732   }
733 
734   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
735     B.addAttribute(llvm::Attribute::StackProtect);
736   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
737     B.addAttribute(llvm::Attribute::StackProtectStrong);
738   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
739     B.addAttribute(llvm::Attribute::StackProtectReq);
740 
741   // Add sanitizer attributes if function is not blacklisted.
742   if (!SanitizerBL.isIn(*F)) {
743     // When AddressSanitizer is enabled, set SanitizeAddress attribute
744     // unless __attribute__((no_sanitize_address)) is used.
745     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
746       B.addAttribute(llvm::Attribute::SanitizeAddress);
747     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
748     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
749       B.addAttribute(llvm::Attribute::SanitizeThread);
750     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
751     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
752       B.addAttribute(llvm::Attribute::SanitizeMemory);
753   }
754 
755   F->addAttributes(llvm::AttributeSet::FunctionIndex,
756                    llvm::AttributeSet::get(
757                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
758 
759   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
760     F->setUnnamedAddr(true);
761   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
762     if (MD->isVirtual())
763       F->setUnnamedAddr(true);
764 
765   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
766   if (alignment)
767     F->setAlignment(alignment);
768 
769   // C++ ABI requires 2-byte alignment for member functions.
770   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
771     F->setAlignment(2);
772 }
773 
774 void CodeGenModule::SetCommonAttributes(const Decl *D,
775                                         llvm::GlobalValue *GV) {
776   if (const auto *ND = dyn_cast<NamedDecl>(D))
777     setGlobalVisibility(GV, ND);
778   else
779     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
780 
781   if (D->hasAttr<UsedAttr>())
782     addUsedGlobal(GV);
783 }
784 
785 void CodeGenModule::setNonAliasAttributes(const Decl *D,
786                                           llvm::GlobalObject *GO) {
787   SetCommonAttributes(D, GO);
788 
789   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
790     GO->setSection(SA->getName());
791 
792   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
793 }
794 
795 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
796                                                   llvm::Function *F,
797                                                   const CGFunctionInfo &FI) {
798   SetLLVMFunctionAttributes(D, FI, F);
799   SetLLVMFunctionAttributesForDefinition(D, F);
800 
801   F->setLinkage(llvm::Function::InternalLinkage);
802 
803   setNonAliasAttributes(D, F);
804 }
805 
806 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
807                                          const NamedDecl *ND) {
808   // Set linkage and visibility in case we never see a definition.
809   LinkageInfo LV = ND->getLinkageAndVisibility();
810   if (LV.getLinkage() != ExternalLinkage) {
811     // Don't set internal linkage on declarations.
812   } else {
813     if (ND->hasAttr<DLLImportAttr>()) {
814       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
815       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
816     } else if (ND->hasAttr<DLLExportAttr>()) {
817       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
818       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
819     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
820       // "extern_weak" is overloaded in LLVM; we probably should have
821       // separate linkage types for this.
822       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
823     }
824 
825     // Set visibility on a declaration only if it's explicit.
826     if (LV.isVisibilityExplicit())
827       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
828   }
829 }
830 
831 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
832                                           llvm::Function *F,
833                                           bool IsIncompleteFunction) {
834   if (unsigned IID = F->getIntrinsicID()) {
835     // If this is an intrinsic function, set the function's attributes
836     // to the intrinsic's attributes.
837     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
838                                                     (llvm::Intrinsic::ID)IID));
839     return;
840   }
841 
842   const auto *FD = cast<FunctionDecl>(GD.getDecl());
843 
844   if (!IsIncompleteFunction)
845     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
846 
847   // Add the Returned attribute for "this", except for iOS 5 and earlier
848   // where substantial code, including the libstdc++ dylib, was compiled with
849   // GCC and does not actually return "this".
850   if (getCXXABI().HasThisReturn(GD) &&
851       !(getTarget().getTriple().isiOS() &&
852         getTarget().getTriple().isOSVersionLT(6))) {
853     assert(!F->arg_empty() &&
854            F->arg_begin()->getType()
855              ->canLosslesslyBitCastTo(F->getReturnType()) &&
856            "unexpected this return");
857     F->addAttribute(1, llvm::Attribute::Returned);
858   }
859 
860   // Only a few attributes are set on declarations; these may later be
861   // overridden by a definition.
862 
863   setLinkageAndVisibilityForGV(F, FD);
864 
865   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
866     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
867       // Don't dllexport/import destructor thunks.
868       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
869     }
870   }
871 
872   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
873     F->setSection(SA->getName());
874 
875   // A replaceable global allocation function does not act like a builtin by
876   // default, only if it is invoked by a new-expression or delete-expression.
877   if (FD->isReplaceableGlobalAllocationFunction())
878     F->addAttribute(llvm::AttributeSet::FunctionIndex,
879                     llvm::Attribute::NoBuiltin);
880 }
881 
882 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
883   assert(!GV->isDeclaration() &&
884          "Only globals with definition can force usage.");
885   LLVMUsed.push_back(GV);
886 }
887 
888 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
889   assert(!GV->isDeclaration() &&
890          "Only globals with definition can force usage.");
891   LLVMCompilerUsed.push_back(GV);
892 }
893 
894 static void emitUsed(CodeGenModule &CGM, StringRef Name,
895                      std::vector<llvm::WeakVH> &List) {
896   // Don't create llvm.used if there is no need.
897   if (List.empty())
898     return;
899 
900   // Convert List to what ConstantArray needs.
901   SmallVector<llvm::Constant*, 8> UsedArray;
902   UsedArray.resize(List.size());
903   for (unsigned i = 0, e = List.size(); i != e; ++i) {
904     UsedArray[i] =
905      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
906                                     CGM.Int8PtrTy);
907   }
908 
909   if (UsedArray.empty())
910     return;
911   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
912 
913   auto *GV = new llvm::GlobalVariable(
914       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
915       llvm::ConstantArray::get(ATy, UsedArray), Name);
916 
917   GV->setSection("llvm.metadata");
918 }
919 
920 void CodeGenModule::emitLLVMUsed() {
921   emitUsed(*this, "llvm.used", LLVMUsed);
922   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
923 }
924 
925 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
926   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
927   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
928 }
929 
930 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
931   llvm::SmallString<32> Opt;
932   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
933   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
934   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
935 }
936 
937 void CodeGenModule::AddDependentLib(StringRef Lib) {
938   llvm::SmallString<24> Opt;
939   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
940   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
941   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
942 }
943 
944 /// \brief Add link options implied by the given module, including modules
945 /// it depends on, using a postorder walk.
946 static void addLinkOptionsPostorder(CodeGenModule &CGM,
947                                     Module *Mod,
948                                     SmallVectorImpl<llvm::Value *> &Metadata,
949                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
950   // Import this module's parent.
951   if (Mod->Parent && Visited.insert(Mod->Parent)) {
952     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
953   }
954 
955   // Import this module's dependencies.
956   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
957     if (Visited.insert(Mod->Imports[I-1]))
958       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
959   }
960 
961   // Add linker options to link against the libraries/frameworks
962   // described by this module.
963   llvm::LLVMContext &Context = CGM.getLLVMContext();
964   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
965     // Link against a framework.  Frameworks are currently Darwin only, so we
966     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
967     if (Mod->LinkLibraries[I-1].IsFramework) {
968       llvm::Value *Args[2] = {
969         llvm::MDString::get(Context, "-framework"),
970         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
971       };
972 
973       Metadata.push_back(llvm::MDNode::get(Context, Args));
974       continue;
975     }
976 
977     // Link against a library.
978     llvm::SmallString<24> Opt;
979     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
980       Mod->LinkLibraries[I-1].Library, Opt);
981     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
982     Metadata.push_back(llvm::MDNode::get(Context, OptString));
983   }
984 }
985 
986 void CodeGenModule::EmitModuleLinkOptions() {
987   // Collect the set of all of the modules we want to visit to emit link
988   // options, which is essentially the imported modules and all of their
989   // non-explicit child modules.
990   llvm::SetVector<clang::Module *> LinkModules;
991   llvm::SmallPtrSet<clang::Module *, 16> Visited;
992   SmallVector<clang::Module *, 16> Stack;
993 
994   // Seed the stack with imported modules.
995   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
996                                                MEnd = ImportedModules.end();
997        M != MEnd; ++M) {
998     if (Visited.insert(*M))
999       Stack.push_back(*M);
1000   }
1001 
1002   // Find all of the modules to import, making a little effort to prune
1003   // non-leaf modules.
1004   while (!Stack.empty()) {
1005     clang::Module *Mod = Stack.pop_back_val();
1006 
1007     bool AnyChildren = false;
1008 
1009     // Visit the submodules of this module.
1010     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1011                                         SubEnd = Mod->submodule_end();
1012          Sub != SubEnd; ++Sub) {
1013       // Skip explicit children; they need to be explicitly imported to be
1014       // linked against.
1015       if ((*Sub)->IsExplicit)
1016         continue;
1017 
1018       if (Visited.insert(*Sub)) {
1019         Stack.push_back(*Sub);
1020         AnyChildren = true;
1021       }
1022     }
1023 
1024     // We didn't find any children, so add this module to the list of
1025     // modules to link against.
1026     if (!AnyChildren) {
1027       LinkModules.insert(Mod);
1028     }
1029   }
1030 
1031   // Add link options for all of the imported modules in reverse topological
1032   // order.  We don't do anything to try to order import link flags with respect
1033   // to linker options inserted by things like #pragma comment().
1034   SmallVector<llvm::Value *, 16> MetadataArgs;
1035   Visited.clear();
1036   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1037                                                MEnd = LinkModules.end();
1038        M != MEnd; ++M) {
1039     if (Visited.insert(*M))
1040       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1041   }
1042   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1043   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1044 
1045   // Add the linker options metadata flag.
1046   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1047                             llvm::MDNode::get(getLLVMContext(),
1048                                               LinkerOptionsMetadata));
1049 }
1050 
1051 void CodeGenModule::EmitDeferred() {
1052   // Emit code for any potentially referenced deferred decls.  Since a
1053   // previously unused static decl may become used during the generation of code
1054   // for a static function, iterate until no changes are made.
1055 
1056   while (true) {
1057     if (!DeferredVTables.empty()) {
1058       EmitDeferredVTables();
1059 
1060       // Emitting a v-table doesn't directly cause more v-tables to
1061       // become deferred, although it can cause functions to be
1062       // emitted that then need those v-tables.
1063       assert(DeferredVTables.empty());
1064     }
1065 
1066     // Stop if we're out of both deferred v-tables and deferred declarations.
1067     if (DeferredDeclsToEmit.empty()) break;
1068 
1069     DeferredGlobal &G = DeferredDeclsToEmit.back();
1070     GlobalDecl D = G.GD;
1071     llvm::GlobalValue *GV = G.GV;
1072     DeferredDeclsToEmit.pop_back();
1073 
1074     assert(GV == GetGlobalValue(getMangledName(D)));
1075     // Check to see if we've already emitted this.  This is necessary
1076     // for a couple of reasons: first, decls can end up in the
1077     // deferred-decls queue multiple times, and second, decls can end
1078     // up with definitions in unusual ways (e.g. by an extern inline
1079     // function acquiring a strong function redefinition).  Just
1080     // ignore these cases.
1081     if(!GV->isDeclaration())
1082       continue;
1083 
1084     // Otherwise, emit the definition and move on to the next one.
1085     EmitGlobalDefinition(D, GV);
1086   }
1087 }
1088 
1089 void CodeGenModule::EmitGlobalAnnotations() {
1090   if (Annotations.empty())
1091     return;
1092 
1093   // Create a new global variable for the ConstantStruct in the Module.
1094   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1095     Annotations[0]->getType(), Annotations.size()), Annotations);
1096   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1097                                       llvm::GlobalValue::AppendingLinkage,
1098                                       Array, "llvm.global.annotations");
1099   gv->setSection(AnnotationSection);
1100 }
1101 
1102 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1103   llvm::Constant *&AStr = AnnotationStrings[Str];
1104   if (AStr)
1105     return AStr;
1106 
1107   // Not found yet, create a new global.
1108   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1109   auto *gv =
1110       new llvm::GlobalVariable(getModule(), s->getType(), true,
1111                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1112   gv->setSection(AnnotationSection);
1113   gv->setUnnamedAddr(true);
1114   AStr = gv;
1115   return gv;
1116 }
1117 
1118 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1119   SourceManager &SM = getContext().getSourceManager();
1120   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1121   if (PLoc.isValid())
1122     return EmitAnnotationString(PLoc.getFilename());
1123   return EmitAnnotationString(SM.getBufferName(Loc));
1124 }
1125 
1126 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1127   SourceManager &SM = getContext().getSourceManager();
1128   PresumedLoc PLoc = SM.getPresumedLoc(L);
1129   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1130     SM.getExpansionLineNumber(L);
1131   return llvm::ConstantInt::get(Int32Ty, LineNo);
1132 }
1133 
1134 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1135                                                 const AnnotateAttr *AA,
1136                                                 SourceLocation L) {
1137   // Get the globals for file name, annotation, and the line number.
1138   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1139                  *UnitGV = EmitAnnotationUnit(L),
1140                  *LineNoCst = EmitAnnotationLineNo(L);
1141 
1142   // Create the ConstantStruct for the global annotation.
1143   llvm::Constant *Fields[4] = {
1144     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1145     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1146     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1147     LineNoCst
1148   };
1149   return llvm::ConstantStruct::getAnon(Fields);
1150 }
1151 
1152 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1153                                          llvm::GlobalValue *GV) {
1154   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1155   // Get the struct elements for these annotations.
1156   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1157     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1158 }
1159 
1160 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1161   // Never defer when EmitAllDecls is specified.
1162   if (LangOpts.EmitAllDecls)
1163     return false;
1164 
1165   return !getContext().DeclMustBeEmitted(Global);
1166 }
1167 
1168 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1169     const CXXUuidofExpr* E) {
1170   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1171   // well-formed.
1172   StringRef Uuid = E->getUuidAsStringRef(Context);
1173   std::string Name = "_GUID_" + Uuid.lower();
1174   std::replace(Name.begin(), Name.end(), '-', '_');
1175 
1176   // Look for an existing global.
1177   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1178     return GV;
1179 
1180   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1181   assert(Init && "failed to initialize as constant");
1182 
1183   auto *GV = new llvm::GlobalVariable(
1184       getModule(), Init->getType(),
1185       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1186   return GV;
1187 }
1188 
1189 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1190   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1191   assert(AA && "No alias?");
1192 
1193   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1194 
1195   // See if there is already something with the target's name in the module.
1196   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1197   if (Entry) {
1198     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1199     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1200   }
1201 
1202   llvm::Constant *Aliasee;
1203   if (isa<llvm::FunctionType>(DeclTy))
1204     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1205                                       GlobalDecl(cast<FunctionDecl>(VD)),
1206                                       /*ForVTable=*/false);
1207   else
1208     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1209                                     llvm::PointerType::getUnqual(DeclTy),
1210                                     nullptr);
1211 
1212   auto *F = cast<llvm::GlobalValue>(Aliasee);
1213   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1214   WeakRefReferences.insert(F);
1215 
1216   return Aliasee;
1217 }
1218 
1219 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1220   const auto *Global = cast<ValueDecl>(GD.getDecl());
1221 
1222   // Weak references don't produce any output by themselves.
1223   if (Global->hasAttr<WeakRefAttr>())
1224     return;
1225 
1226   // If this is an alias definition (which otherwise looks like a declaration)
1227   // emit it now.
1228   if (Global->hasAttr<AliasAttr>())
1229     return EmitAliasDefinition(GD);
1230 
1231   // If this is CUDA, be selective about which declarations we emit.
1232   if (LangOpts.CUDA) {
1233     if (CodeGenOpts.CUDAIsDevice) {
1234       if (!Global->hasAttr<CUDADeviceAttr>() &&
1235           !Global->hasAttr<CUDAGlobalAttr>() &&
1236           !Global->hasAttr<CUDAConstantAttr>() &&
1237           !Global->hasAttr<CUDASharedAttr>())
1238         return;
1239     } else {
1240       if (!Global->hasAttr<CUDAHostAttr>() && (
1241             Global->hasAttr<CUDADeviceAttr>() ||
1242             Global->hasAttr<CUDAConstantAttr>() ||
1243             Global->hasAttr<CUDASharedAttr>()))
1244         return;
1245     }
1246   }
1247 
1248   // Ignore declarations, they will be emitted on their first use.
1249   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1250     // Forward declarations are emitted lazily on first use.
1251     if (!FD->doesThisDeclarationHaveABody()) {
1252       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1253         return;
1254 
1255       StringRef MangledName = getMangledName(GD);
1256 
1257       // Compute the function info and LLVM type.
1258       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1259       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1260 
1261       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1262                               /*DontDefer=*/false);
1263       return;
1264     }
1265   } else {
1266     const auto *VD = cast<VarDecl>(Global);
1267     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1268 
1269     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1270         !Context.isMSStaticDataMemberInlineDefinition(VD))
1271       return;
1272   }
1273 
1274   // Defer code generation when possible if this is a static definition, inline
1275   // function etc.  These we only want to emit if they are used.
1276   if (!MayDeferGeneration(Global)) {
1277     // Emit the definition if it can't be deferred.
1278     EmitGlobalDefinition(GD);
1279     return;
1280   }
1281 
1282   // If we're deferring emission of a C++ variable with an
1283   // initializer, remember the order in which it appeared in the file.
1284   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1285       cast<VarDecl>(Global)->hasInit()) {
1286     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1287     CXXGlobalInits.push_back(nullptr);
1288   }
1289 
1290   // If the value has already been used, add it directly to the
1291   // DeferredDeclsToEmit list.
1292   StringRef MangledName = getMangledName(GD);
1293   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1294     addDeferredDeclToEmit(GV, GD);
1295   else {
1296     // Otherwise, remember that we saw a deferred decl with this name.  The
1297     // first use of the mangled name will cause it to move into
1298     // DeferredDeclsToEmit.
1299     DeferredDecls[MangledName] = GD;
1300   }
1301 }
1302 
1303 namespace {
1304   struct FunctionIsDirectlyRecursive :
1305     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1306     const StringRef Name;
1307     const Builtin::Context &BI;
1308     bool Result;
1309     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1310       Name(N), BI(C), Result(false) {
1311     }
1312     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1313 
1314     bool TraverseCallExpr(CallExpr *E) {
1315       const FunctionDecl *FD = E->getDirectCallee();
1316       if (!FD)
1317         return true;
1318       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1319       if (Attr && Name == Attr->getLabel()) {
1320         Result = true;
1321         return false;
1322       }
1323       unsigned BuiltinID = FD->getBuiltinID();
1324       if (!BuiltinID)
1325         return true;
1326       StringRef BuiltinName = BI.GetName(BuiltinID);
1327       if (BuiltinName.startswith("__builtin_") &&
1328           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1329         Result = true;
1330         return false;
1331       }
1332       return true;
1333     }
1334   };
1335 }
1336 
1337 // isTriviallyRecursive - Check if this function calls another
1338 // decl that, because of the asm attribute or the other decl being a builtin,
1339 // ends up pointing to itself.
1340 bool
1341 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1342   StringRef Name;
1343   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1344     // asm labels are a special kind of mangling we have to support.
1345     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1346     if (!Attr)
1347       return false;
1348     Name = Attr->getLabel();
1349   } else {
1350     Name = FD->getName();
1351   }
1352 
1353   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1354   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1355   return Walker.Result;
1356 }
1357 
1358 bool
1359 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1360   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1361     return true;
1362   const auto *F = cast<FunctionDecl>(GD.getDecl());
1363   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1364     return false;
1365   // PR9614. Avoid cases where the source code is lying to us. An available
1366   // externally function should have an equivalent function somewhere else,
1367   // but a function that calls itself is clearly not equivalent to the real
1368   // implementation.
1369   // This happens in glibc's btowc and in some configure checks.
1370   return !isTriviallyRecursive(F);
1371 }
1372 
1373 /// If the type for the method's class was generated by
1374 /// CGDebugInfo::createContextChain(), the cache contains only a
1375 /// limited DIType without any declarations. Since EmitFunctionStart()
1376 /// needs to find the canonical declaration for each method, we need
1377 /// to construct the complete type prior to emitting the method.
1378 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1379   if (!D->isInstance())
1380     return;
1381 
1382   if (CGDebugInfo *DI = getModuleDebugInfo())
1383     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1384       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1385       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1386     }
1387 }
1388 
1389 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1390   const auto *D = cast<ValueDecl>(GD.getDecl());
1391 
1392   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1393                                  Context.getSourceManager(),
1394                                  "Generating code for declaration");
1395 
1396   if (isa<FunctionDecl>(D)) {
1397     // At -O0, don't generate IR for functions with available_externally
1398     // linkage.
1399     if (!shouldEmitFunction(GD))
1400       return;
1401 
1402     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1403       CompleteDIClassType(Method);
1404       // Make sure to emit the definition(s) before we emit the thunks.
1405       // This is necessary for the generation of certain thunks.
1406       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1407         emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1408       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1409         emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1410       else
1411         EmitGlobalFunctionDefinition(GD, GV);
1412 
1413       if (Method->isVirtual())
1414         getVTables().EmitThunks(GD);
1415 
1416       return;
1417     }
1418 
1419     return EmitGlobalFunctionDefinition(GD, GV);
1420   }
1421 
1422   if (const auto *VD = dyn_cast<VarDecl>(D))
1423     return EmitGlobalVarDefinition(VD);
1424 
1425   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1426 }
1427 
1428 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1429 /// module, create and return an llvm Function with the specified type. If there
1430 /// is something in the module with the specified name, return it potentially
1431 /// bitcasted to the right type.
1432 ///
1433 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1434 /// to set the attributes on the function when it is first created.
1435 llvm::Constant *
1436 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1437                                        llvm::Type *Ty,
1438                                        GlobalDecl GD, bool ForVTable,
1439                                        bool DontDefer,
1440                                        llvm::AttributeSet ExtraAttrs) {
1441   const Decl *D = GD.getDecl();
1442 
1443   // Lookup the entry, lazily creating it if necessary.
1444   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1445   if (Entry) {
1446     if (WeakRefReferences.erase(Entry)) {
1447       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1448       if (FD && !FD->hasAttr<WeakAttr>())
1449         Entry->setLinkage(llvm::Function::ExternalLinkage);
1450     }
1451 
1452     // Handle dropped DLL attributes.
1453     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1454       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1455 
1456     if (Entry->getType()->getElementType() == Ty)
1457       return Entry;
1458 
1459     // Make sure the result is of the correct type.
1460     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1461   }
1462 
1463   // This function doesn't have a complete type (for example, the return
1464   // type is an incomplete struct). Use a fake type instead, and make
1465   // sure not to try to set attributes.
1466   bool IsIncompleteFunction = false;
1467 
1468   llvm::FunctionType *FTy;
1469   if (isa<llvm::FunctionType>(Ty)) {
1470     FTy = cast<llvm::FunctionType>(Ty);
1471   } else {
1472     FTy = llvm::FunctionType::get(VoidTy, false);
1473     IsIncompleteFunction = true;
1474   }
1475 
1476   llvm::Function *F = llvm::Function::Create(FTy,
1477                                              llvm::Function::ExternalLinkage,
1478                                              MangledName, &getModule());
1479   assert(F->getName() == MangledName && "name was uniqued!");
1480   if (D)
1481     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1482   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1483     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1484     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1485                      llvm::AttributeSet::get(VMContext,
1486                                              llvm::AttributeSet::FunctionIndex,
1487                                              B));
1488   }
1489 
1490   if (!DontDefer) {
1491     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1492     // each other bottoming out with the base dtor.  Therefore we emit non-base
1493     // dtors on usage, even if there is no dtor definition in the TU.
1494     if (D && isa<CXXDestructorDecl>(D) &&
1495         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1496                                            GD.getDtorType()))
1497       addDeferredDeclToEmit(F, GD);
1498 
1499     // This is the first use or definition of a mangled name.  If there is a
1500     // deferred decl with this name, remember that we need to emit it at the end
1501     // of the file.
1502     auto DDI = DeferredDecls.find(MangledName);
1503     if (DDI != DeferredDecls.end()) {
1504       // Move the potentially referenced deferred decl to the
1505       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1506       // don't need it anymore).
1507       addDeferredDeclToEmit(F, DDI->second);
1508       DeferredDecls.erase(DDI);
1509 
1510       // Otherwise, if this is a sized deallocation function, emit a weak
1511       // definition
1512       // for it at the end of the translation unit.
1513     } else if (D && cast<FunctionDecl>(D)
1514                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1515       addDeferredDeclToEmit(F, GD);
1516 
1517       // Otherwise, there are cases we have to worry about where we're
1518       // using a declaration for which we must emit a definition but where
1519       // we might not find a top-level definition:
1520       //   - member functions defined inline in their classes
1521       //   - friend functions defined inline in some class
1522       //   - special member functions with implicit definitions
1523       // If we ever change our AST traversal to walk into class methods,
1524       // this will be unnecessary.
1525       //
1526       // We also don't emit a definition for a function if it's going to be an
1527       // entry in a vtable, unless it's already marked as used.
1528     } else if (getLangOpts().CPlusPlus && D) {
1529       // Look for a declaration that's lexically in a record.
1530       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1531            FD = FD->getPreviousDecl()) {
1532         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1533           if (FD->doesThisDeclarationHaveABody()) {
1534             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1535             break;
1536           }
1537         }
1538       }
1539     }
1540   }
1541 
1542   // Make sure the result is of the requested type.
1543   if (!IsIncompleteFunction) {
1544     assert(F->getType()->getElementType() == Ty);
1545     return F;
1546   }
1547 
1548   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1549   return llvm::ConstantExpr::getBitCast(F, PTy);
1550 }
1551 
1552 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1553 /// non-null, then this function will use the specified type if it has to
1554 /// create it (this occurs when we see a definition of the function).
1555 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1556                                                  llvm::Type *Ty,
1557                                                  bool ForVTable,
1558                                                  bool DontDefer) {
1559   // If there was no specific requested type, just convert it now.
1560   if (!Ty)
1561     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1562 
1563   StringRef MangledName = getMangledName(GD);
1564   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1565 }
1566 
1567 /// CreateRuntimeFunction - Create a new runtime function with the specified
1568 /// type and name.
1569 llvm::Constant *
1570 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1571                                      StringRef Name,
1572                                      llvm::AttributeSet ExtraAttrs) {
1573   llvm::Constant *C =
1574       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1575                               /*DontDefer=*/false, ExtraAttrs);
1576   if (auto *F = dyn_cast<llvm::Function>(C))
1577     if (F->empty())
1578       F->setCallingConv(getRuntimeCC());
1579   return C;
1580 }
1581 
1582 /// isTypeConstant - Determine whether an object of this type can be emitted
1583 /// as a constant.
1584 ///
1585 /// If ExcludeCtor is true, the duration when the object's constructor runs
1586 /// will not be considered. The caller will need to verify that the object is
1587 /// not written to during its construction.
1588 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1589   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1590     return false;
1591 
1592   if (Context.getLangOpts().CPlusPlus) {
1593     if (const CXXRecordDecl *Record
1594           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1595       return ExcludeCtor && !Record->hasMutableFields() &&
1596              Record->hasTrivialDestructor();
1597   }
1598 
1599   return true;
1600 }
1601 
1602 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1603 /// create and return an llvm GlobalVariable with the specified type.  If there
1604 /// is something in the module with the specified name, return it potentially
1605 /// bitcasted to the right type.
1606 ///
1607 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1608 /// to set the attributes on the global when it is first created.
1609 llvm::Constant *
1610 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1611                                      llvm::PointerType *Ty,
1612                                      const VarDecl *D) {
1613   // Lookup the entry, lazily creating it if necessary.
1614   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1615   if (Entry) {
1616     if (WeakRefReferences.erase(Entry)) {
1617       if (D && !D->hasAttr<WeakAttr>())
1618         Entry->setLinkage(llvm::Function::ExternalLinkage);
1619     }
1620 
1621     // Handle dropped DLL attributes.
1622     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1623       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1624 
1625     if (Entry->getType() == Ty)
1626       return Entry;
1627 
1628     // Make sure the result is of the correct type.
1629     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1630       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1631 
1632     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1633   }
1634 
1635   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1636   auto *GV = new llvm::GlobalVariable(
1637       getModule(), Ty->getElementType(), false,
1638       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1639       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1640 
1641   // This is the first use or definition of a mangled name.  If there is a
1642   // deferred decl with this name, remember that we need to emit it at the end
1643   // of the file.
1644   auto DDI = DeferredDecls.find(MangledName);
1645   if (DDI != DeferredDecls.end()) {
1646     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1647     // list, and remove it from DeferredDecls (since we don't need it anymore).
1648     addDeferredDeclToEmit(GV, DDI->second);
1649     DeferredDecls.erase(DDI);
1650   }
1651 
1652   // Handle things which are present even on external declarations.
1653   if (D) {
1654     // FIXME: This code is overly simple and should be merged with other global
1655     // handling.
1656     GV->setConstant(isTypeConstant(D->getType(), false));
1657 
1658     setLinkageAndVisibilityForGV(GV, D);
1659 
1660     if (D->getTLSKind()) {
1661       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1662         CXXThreadLocals.push_back(std::make_pair(D, GV));
1663       setTLSMode(GV, *D);
1664     }
1665 
1666     // If required by the ABI, treat declarations of static data members with
1667     // inline initializers as definitions.
1668     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1669       EmitGlobalVarDefinition(D);
1670     }
1671 
1672     // Handle XCore specific ABI requirements.
1673     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1674         D->getLanguageLinkage() == CLanguageLinkage &&
1675         D->getType().isConstant(Context) &&
1676         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1677       GV->setSection(".cp.rodata");
1678   }
1679 
1680   if (AddrSpace != Ty->getAddressSpace())
1681     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1682 
1683   return GV;
1684 }
1685 
1686 
1687 llvm::GlobalVariable *
1688 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1689                                       llvm::Type *Ty,
1690                                       llvm::GlobalValue::LinkageTypes Linkage) {
1691   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1692   llvm::GlobalVariable *OldGV = nullptr;
1693 
1694   if (GV) {
1695     // Check if the variable has the right type.
1696     if (GV->getType()->getElementType() == Ty)
1697       return GV;
1698 
1699     // Because C++ name mangling, the only way we can end up with an already
1700     // existing global with the same name is if it has been declared extern "C".
1701     assert(GV->isDeclaration() && "Declaration has wrong type!");
1702     OldGV = GV;
1703   }
1704 
1705   // Create a new variable.
1706   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1707                                 Linkage, nullptr, Name);
1708 
1709   if (OldGV) {
1710     // Replace occurrences of the old variable if needed.
1711     GV->takeName(OldGV);
1712 
1713     if (!OldGV->use_empty()) {
1714       llvm::Constant *NewPtrForOldDecl =
1715       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1716       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1717     }
1718 
1719     OldGV->eraseFromParent();
1720   }
1721 
1722   return GV;
1723 }
1724 
1725 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1726 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1727 /// then it will be created with the specified type instead of whatever the
1728 /// normal requested type would be.
1729 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1730                                                   llvm::Type *Ty) {
1731   assert(D->hasGlobalStorage() && "Not a global variable");
1732   QualType ASTTy = D->getType();
1733   if (!Ty)
1734     Ty = getTypes().ConvertTypeForMem(ASTTy);
1735 
1736   llvm::PointerType *PTy =
1737     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1738 
1739   StringRef MangledName = getMangledName(D);
1740   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1741 }
1742 
1743 /// CreateRuntimeVariable - Create a new runtime global variable with the
1744 /// specified type and name.
1745 llvm::Constant *
1746 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1747                                      StringRef Name) {
1748   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1749 }
1750 
1751 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1752   assert(!D->getInit() && "Cannot emit definite definitions here!");
1753 
1754   if (MayDeferGeneration(D)) {
1755     // If we have not seen a reference to this variable yet, place it
1756     // into the deferred declarations table to be emitted if needed
1757     // later.
1758     StringRef MangledName = getMangledName(D);
1759     if (!GetGlobalValue(MangledName)) {
1760       DeferredDecls[MangledName] = D;
1761       return;
1762     }
1763   }
1764 
1765   // The tentative definition is the only definition.
1766   EmitGlobalVarDefinition(D);
1767 }
1768 
1769 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1770     return Context.toCharUnitsFromBits(
1771       TheDataLayout.getTypeStoreSizeInBits(Ty));
1772 }
1773 
1774 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1775                                                  unsigned AddrSpace) {
1776   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1777     if (D->hasAttr<CUDAConstantAttr>())
1778       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1779     else if (D->hasAttr<CUDASharedAttr>())
1780       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1781     else
1782       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1783   }
1784 
1785   return AddrSpace;
1786 }
1787 
1788 template<typename SomeDecl>
1789 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1790                                                llvm::GlobalValue *GV) {
1791   if (!getLangOpts().CPlusPlus)
1792     return;
1793 
1794   // Must have 'used' attribute, or else inline assembly can't rely on
1795   // the name existing.
1796   if (!D->template hasAttr<UsedAttr>())
1797     return;
1798 
1799   // Must have internal linkage and an ordinary name.
1800   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1801     return;
1802 
1803   // Must be in an extern "C" context. Entities declared directly within
1804   // a record are not extern "C" even if the record is in such a context.
1805   const SomeDecl *First = D->getFirstDecl();
1806   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1807     return;
1808 
1809   // OK, this is an internal linkage entity inside an extern "C" linkage
1810   // specification. Make a note of that so we can give it the "expected"
1811   // mangled name if nothing else is using that name.
1812   std::pair<StaticExternCMap::iterator, bool> R =
1813       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1814 
1815   // If we have multiple internal linkage entities with the same name
1816   // in extern "C" regions, none of them gets that name.
1817   if (!R.second)
1818     R.first->second = nullptr;
1819 }
1820 
1821 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1822   llvm::Constant *Init = nullptr;
1823   QualType ASTTy = D->getType();
1824   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1825   bool NeedsGlobalCtor = false;
1826   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1827 
1828   const VarDecl *InitDecl;
1829   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1830 
1831   if (!InitExpr) {
1832     // This is a tentative definition; tentative definitions are
1833     // implicitly initialized with { 0 }.
1834     //
1835     // Note that tentative definitions are only emitted at the end of
1836     // a translation unit, so they should never have incomplete
1837     // type. In addition, EmitTentativeDefinition makes sure that we
1838     // never attempt to emit a tentative definition if a real one
1839     // exists. A use may still exists, however, so we still may need
1840     // to do a RAUW.
1841     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1842     Init = EmitNullConstant(D->getType());
1843   } else {
1844     initializedGlobalDecl = GlobalDecl(D);
1845     Init = EmitConstantInit(*InitDecl);
1846 
1847     if (!Init) {
1848       QualType T = InitExpr->getType();
1849       if (D->getType()->isReferenceType())
1850         T = D->getType();
1851 
1852       if (getLangOpts().CPlusPlus) {
1853         Init = EmitNullConstant(T);
1854         NeedsGlobalCtor = true;
1855       } else {
1856         ErrorUnsupported(D, "static initializer");
1857         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1858       }
1859     } else {
1860       // We don't need an initializer, so remove the entry for the delayed
1861       // initializer position (just in case this entry was delayed) if we
1862       // also don't need to register a destructor.
1863       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1864         DelayedCXXInitPosition.erase(D);
1865     }
1866   }
1867 
1868   llvm::Type* InitType = Init->getType();
1869   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1870 
1871   // Strip off a bitcast if we got one back.
1872   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1873     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1874            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1875            // All zero index gep.
1876            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1877     Entry = CE->getOperand(0);
1878   }
1879 
1880   // Entry is now either a Function or GlobalVariable.
1881   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1882 
1883   // We have a definition after a declaration with the wrong type.
1884   // We must make a new GlobalVariable* and update everything that used OldGV
1885   // (a declaration or tentative definition) with the new GlobalVariable*
1886   // (which will be a definition).
1887   //
1888   // This happens if there is a prototype for a global (e.g.
1889   // "extern int x[];") and then a definition of a different type (e.g.
1890   // "int x[10];"). This also happens when an initializer has a different type
1891   // from the type of the global (this happens with unions).
1892   if (!GV ||
1893       GV->getType()->getElementType() != InitType ||
1894       GV->getType()->getAddressSpace() !=
1895        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1896 
1897     // Move the old entry aside so that we'll create a new one.
1898     Entry->setName(StringRef());
1899 
1900     // Make a new global with the correct type, this is now guaranteed to work.
1901     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1902 
1903     // Replace all uses of the old global with the new global
1904     llvm::Constant *NewPtrForOldDecl =
1905         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1906     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1907 
1908     // Erase the old global, since it is no longer used.
1909     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1910   }
1911 
1912   MaybeHandleStaticInExternC(D, GV);
1913 
1914   if (D->hasAttr<AnnotateAttr>())
1915     AddGlobalAnnotations(D, GV);
1916 
1917   GV->setInitializer(Init);
1918 
1919   // If it is safe to mark the global 'constant', do so now.
1920   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1921                   isTypeConstant(D->getType(), true));
1922 
1923   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1924 
1925   // Set the llvm linkage type as appropriate.
1926   llvm::GlobalValue::LinkageTypes Linkage =
1927       getLLVMLinkageVarDefinition(D, GV->isConstant());
1928 
1929   // On Darwin, the backing variable for a C++11 thread_local variable always
1930   // has internal linkage; all accesses should just be calls to the
1931   // Itanium-specified entry point, which has the normal linkage of the
1932   // variable.
1933   if (const auto *VD = dyn_cast<VarDecl>(D))
1934     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1935         Context.getTargetInfo().getTriple().isMacOSX())
1936       Linkage = llvm::GlobalValue::InternalLinkage;
1937 
1938   GV->setLinkage(Linkage);
1939   if (D->hasAttr<DLLImportAttr>())
1940     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1941   else if (D->hasAttr<DLLExportAttr>())
1942     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1943 
1944   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1945     // common vars aren't constant even if declared const.
1946     GV->setConstant(false);
1947 
1948   setNonAliasAttributes(D, GV);
1949 
1950   // Emit the initializer function if necessary.
1951   if (NeedsGlobalCtor || NeedsGlobalDtor)
1952     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1953 
1954   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1955 
1956   // Emit global variable debug information.
1957   if (CGDebugInfo *DI = getModuleDebugInfo())
1958     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1959       DI->EmitGlobalVariable(GV, D);
1960 }
1961 
1962 static bool isVarDeclStrongDefinition(const ASTContext &Context,
1963                                       const VarDecl *D, bool NoCommon) {
1964   // Don't give variables common linkage if -fno-common was specified unless it
1965   // was overridden by a NoCommon attribute.
1966   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1967     return true;
1968 
1969   // C11 6.9.2/2:
1970   //   A declaration of an identifier for an object that has file scope without
1971   //   an initializer, and without a storage-class specifier or with the
1972   //   storage-class specifier static, constitutes a tentative definition.
1973   if (D->getInit() || D->hasExternalStorage())
1974     return true;
1975 
1976   // A variable cannot be both common and exist in a section.
1977   if (D->hasAttr<SectionAttr>())
1978     return true;
1979 
1980   // Thread local vars aren't considered common linkage.
1981   if (D->getTLSKind())
1982     return true;
1983 
1984   // Tentative definitions marked with WeakImportAttr are true definitions.
1985   if (D->hasAttr<WeakImportAttr>())
1986     return true;
1987 
1988   // Declarations with a required alignment do not have common linakge in MSVC
1989   // mode.
1990   if (Context.getLangOpts().MSVCCompat &&
1991       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
1992     return true;
1993 
1994   return false;
1995 }
1996 
1997 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1998     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
1999   if (Linkage == GVA_Internal)
2000     return llvm::Function::InternalLinkage;
2001 
2002   if (D->hasAttr<WeakAttr>()) {
2003     if (IsConstantVariable)
2004       return llvm::GlobalVariable::WeakODRLinkage;
2005     else
2006       return llvm::GlobalVariable::WeakAnyLinkage;
2007   }
2008 
2009   // We are guaranteed to have a strong definition somewhere else,
2010   // so we can use available_externally linkage.
2011   if (Linkage == GVA_AvailableExternally)
2012     return llvm::Function::AvailableExternallyLinkage;
2013 
2014   // Note that Apple's kernel linker doesn't support symbol
2015   // coalescing, so we need to avoid linkonce and weak linkages there.
2016   // Normally, this means we just map to internal, but for explicit
2017   // instantiations we'll map to external.
2018 
2019   // In C++, the compiler has to emit a definition in every translation unit
2020   // that references the function.  We should use linkonce_odr because
2021   // a) if all references in this translation unit are optimized away, we
2022   // don't need to codegen it.  b) if the function persists, it needs to be
2023   // merged with other definitions. c) C++ has the ODR, so we know the
2024   // definition is dependable.
2025   if (Linkage == GVA_DiscardableODR)
2026     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2027                                             : llvm::Function::InternalLinkage;
2028 
2029   // An explicit instantiation of a template has weak linkage, since
2030   // explicit instantiations can occur in multiple translation units
2031   // and must all be equivalent. However, we are not allowed to
2032   // throw away these explicit instantiations.
2033   if (Linkage == GVA_StrongODR)
2034     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2035                                             : llvm::Function::ExternalLinkage;
2036 
2037   // C++ doesn't have tentative definitions and thus cannot have common
2038   // linkage.
2039   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2040       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2041                                  CodeGenOpts.NoCommon))
2042     return llvm::GlobalVariable::CommonLinkage;
2043 
2044   // selectany symbols are externally visible, so use weak instead of
2045   // linkonce.  MSVC optimizes away references to const selectany globals, so
2046   // all definitions should be the same and ODR linkage should be used.
2047   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2048   if (D->hasAttr<SelectAnyAttr>())
2049     return llvm::GlobalVariable::WeakODRLinkage;
2050 
2051   // Otherwise, we have strong external linkage.
2052   assert(Linkage == GVA_StrongExternal);
2053   return llvm::GlobalVariable::ExternalLinkage;
2054 }
2055 
2056 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2057     const VarDecl *VD, bool IsConstant) {
2058   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2059   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2060 }
2061 
2062 /// Replace the uses of a function that was declared with a non-proto type.
2063 /// We want to silently drop extra arguments from call sites
2064 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2065                                           llvm::Function *newFn) {
2066   // Fast path.
2067   if (old->use_empty()) return;
2068 
2069   llvm::Type *newRetTy = newFn->getReturnType();
2070   SmallVector<llvm::Value*, 4> newArgs;
2071 
2072   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2073          ui != ue; ) {
2074     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2075     llvm::User *user = use->getUser();
2076 
2077     // Recognize and replace uses of bitcasts.  Most calls to
2078     // unprototyped functions will use bitcasts.
2079     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2080       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2081         replaceUsesOfNonProtoConstant(bitcast, newFn);
2082       continue;
2083     }
2084 
2085     // Recognize calls to the function.
2086     llvm::CallSite callSite(user);
2087     if (!callSite) continue;
2088     if (!callSite.isCallee(&*use)) continue;
2089 
2090     // If the return types don't match exactly, then we can't
2091     // transform this call unless it's dead.
2092     if (callSite->getType() != newRetTy && !callSite->use_empty())
2093       continue;
2094 
2095     // Get the call site's attribute list.
2096     SmallVector<llvm::AttributeSet, 8> newAttrs;
2097     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2098 
2099     // Collect any return attributes from the call.
2100     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2101       newAttrs.push_back(
2102         llvm::AttributeSet::get(newFn->getContext(),
2103                                 oldAttrs.getRetAttributes()));
2104 
2105     // If the function was passed too few arguments, don't transform.
2106     unsigned newNumArgs = newFn->arg_size();
2107     if (callSite.arg_size() < newNumArgs) continue;
2108 
2109     // If extra arguments were passed, we silently drop them.
2110     // If any of the types mismatch, we don't transform.
2111     unsigned argNo = 0;
2112     bool dontTransform = false;
2113     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2114            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2115       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2116         dontTransform = true;
2117         break;
2118       }
2119 
2120       // Add any parameter attributes.
2121       if (oldAttrs.hasAttributes(argNo + 1))
2122         newAttrs.
2123           push_back(llvm::
2124                     AttributeSet::get(newFn->getContext(),
2125                                       oldAttrs.getParamAttributes(argNo + 1)));
2126     }
2127     if (dontTransform)
2128       continue;
2129 
2130     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2131       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2132                                                  oldAttrs.getFnAttributes()));
2133 
2134     // Okay, we can transform this.  Create the new call instruction and copy
2135     // over the required information.
2136     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2137 
2138     llvm::CallSite newCall;
2139     if (callSite.isCall()) {
2140       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2141                                        callSite.getInstruction());
2142     } else {
2143       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2144       newCall = llvm::InvokeInst::Create(newFn,
2145                                          oldInvoke->getNormalDest(),
2146                                          oldInvoke->getUnwindDest(),
2147                                          newArgs, "",
2148                                          callSite.getInstruction());
2149     }
2150     newArgs.clear(); // for the next iteration
2151 
2152     if (!newCall->getType()->isVoidTy())
2153       newCall->takeName(callSite.getInstruction());
2154     newCall.setAttributes(
2155                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2156     newCall.setCallingConv(callSite.getCallingConv());
2157 
2158     // Finally, remove the old call, replacing any uses with the new one.
2159     if (!callSite->use_empty())
2160       callSite->replaceAllUsesWith(newCall.getInstruction());
2161 
2162     // Copy debug location attached to CI.
2163     if (!callSite->getDebugLoc().isUnknown())
2164       newCall->setDebugLoc(callSite->getDebugLoc());
2165     callSite->eraseFromParent();
2166   }
2167 }
2168 
2169 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2170 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2171 /// existing call uses of the old function in the module, this adjusts them to
2172 /// call the new function directly.
2173 ///
2174 /// This is not just a cleanup: the always_inline pass requires direct calls to
2175 /// functions to be able to inline them.  If there is a bitcast in the way, it
2176 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2177 /// run at -O0.
2178 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2179                                                       llvm::Function *NewFn) {
2180   // If we're redefining a global as a function, don't transform it.
2181   if (!isa<llvm::Function>(Old)) return;
2182 
2183   replaceUsesOfNonProtoConstant(Old, NewFn);
2184 }
2185 
2186 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2187   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2188   // If we have a definition, this might be a deferred decl. If the
2189   // instantiation is explicit, make sure we emit it at the end.
2190   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2191     GetAddrOfGlobalVar(VD);
2192 
2193   EmitTopLevelDecl(VD);
2194 }
2195 
2196 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2197                                                  llvm::GlobalValue *GV) {
2198   const auto *D = cast<FunctionDecl>(GD.getDecl());
2199 
2200   // Compute the function info and LLVM type.
2201   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2202   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2203 
2204   // Get or create the prototype for the function.
2205   if (!GV) {
2206     llvm::Constant *C =
2207         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2208 
2209     // Strip off a bitcast if we got one back.
2210     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2211       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2212       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2213     } else {
2214       GV = cast<llvm::GlobalValue>(C);
2215     }
2216   }
2217 
2218   if (!GV->isDeclaration()) {
2219     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2220     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2221     if (auto *Prev = OldGD.getDecl())
2222       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2223     return;
2224   }
2225 
2226   if (GV->getType()->getElementType() != Ty) {
2227     // If the types mismatch then we have to rewrite the definition.
2228     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2229 
2230     // F is the Function* for the one with the wrong type, we must make a new
2231     // Function* and update everything that used F (a declaration) with the new
2232     // Function* (which will be a definition).
2233     //
2234     // This happens if there is a prototype for a function
2235     // (e.g. "int f()") and then a definition of a different type
2236     // (e.g. "int f(int x)").  Move the old function aside so that it
2237     // doesn't interfere with GetAddrOfFunction.
2238     GV->setName(StringRef());
2239     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2240 
2241     // This might be an implementation of a function without a
2242     // prototype, in which case, try to do special replacement of
2243     // calls which match the new prototype.  The really key thing here
2244     // is that we also potentially drop arguments from the call site
2245     // so as to make a direct call, which makes the inliner happier
2246     // and suppresses a number of optimizer warnings (!) about
2247     // dropping arguments.
2248     if (!GV->use_empty()) {
2249       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2250       GV->removeDeadConstantUsers();
2251     }
2252 
2253     // Replace uses of F with the Function we will endow with a body.
2254     if (!GV->use_empty()) {
2255       llvm::Constant *NewPtrForOldDecl =
2256           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2257       GV->replaceAllUsesWith(NewPtrForOldDecl);
2258     }
2259 
2260     // Ok, delete the old function now, which is dead.
2261     GV->eraseFromParent();
2262 
2263     GV = NewFn;
2264   }
2265 
2266   // We need to set linkage and visibility on the function before
2267   // generating code for it because various parts of IR generation
2268   // want to propagate this information down (e.g. to local static
2269   // declarations).
2270   auto *Fn = cast<llvm::Function>(GV);
2271   setFunctionLinkage(GD, Fn);
2272 
2273   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2274   setGlobalVisibility(Fn, D);
2275 
2276   MaybeHandleStaticInExternC(D, Fn);
2277 
2278   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2279 
2280   setFunctionDefinitionAttributes(D, Fn);
2281   SetLLVMFunctionAttributesForDefinition(D, Fn);
2282 
2283   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2284     AddGlobalCtor(Fn, CA->getPriority());
2285   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2286     AddGlobalDtor(Fn, DA->getPriority());
2287   if (D->hasAttr<AnnotateAttr>())
2288     AddGlobalAnnotations(D, Fn);
2289 }
2290 
2291 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2292   const auto *D = cast<ValueDecl>(GD.getDecl());
2293   const AliasAttr *AA = D->getAttr<AliasAttr>();
2294   assert(AA && "Not an alias?");
2295 
2296   StringRef MangledName = getMangledName(GD);
2297 
2298   // If there is a definition in the module, then it wins over the alias.
2299   // This is dubious, but allow it to be safe.  Just ignore the alias.
2300   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2301   if (Entry && !Entry->isDeclaration())
2302     return;
2303 
2304   Aliases.push_back(GD);
2305 
2306   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2307 
2308   // Create a reference to the named value.  This ensures that it is emitted
2309   // if a deferred decl.
2310   llvm::Constant *Aliasee;
2311   if (isa<llvm::FunctionType>(DeclTy))
2312     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2313                                       /*ForVTable=*/false);
2314   else
2315     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2316                                     llvm::PointerType::getUnqual(DeclTy),
2317                                     nullptr);
2318 
2319   // Create the new alias itself, but don't set a name yet.
2320   auto *GA = llvm::GlobalAlias::create(
2321       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2322       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2323 
2324   if (Entry) {
2325     if (GA->getAliasee() == Entry) {
2326       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2327       return;
2328     }
2329 
2330     assert(Entry->isDeclaration());
2331 
2332     // If there is a declaration in the module, then we had an extern followed
2333     // by the alias, as in:
2334     //   extern int test6();
2335     //   ...
2336     //   int test6() __attribute__((alias("test7")));
2337     //
2338     // Remove it and replace uses of it with the alias.
2339     GA->takeName(Entry);
2340 
2341     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2342                                                           Entry->getType()));
2343     Entry->eraseFromParent();
2344   } else {
2345     GA->setName(MangledName);
2346   }
2347 
2348   // Set attributes which are particular to an alias; this is a
2349   // specialization of the attributes which may be set on a global
2350   // variable/function.
2351   if (D->hasAttr<DLLExportAttr>()) {
2352     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2353       // The dllexport attribute is ignored for undefined symbols.
2354       if (FD->hasBody())
2355         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2356     } else {
2357       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2358     }
2359   } else if (D->hasAttr<WeakAttr>() ||
2360              D->hasAttr<WeakRefAttr>() ||
2361              D->isWeakImported()) {
2362     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2363   }
2364 
2365   SetCommonAttributes(D, GA);
2366 }
2367 
2368 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2369                                             ArrayRef<llvm::Type*> Tys) {
2370   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2371                                          Tys);
2372 }
2373 
2374 static llvm::StringMapEntry<llvm::Constant*> &
2375 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2376                          const StringLiteral *Literal,
2377                          bool TargetIsLSB,
2378                          bool &IsUTF16,
2379                          unsigned &StringLength) {
2380   StringRef String = Literal->getString();
2381   unsigned NumBytes = String.size();
2382 
2383   // Check for simple case.
2384   if (!Literal->containsNonAsciiOrNull()) {
2385     StringLength = NumBytes;
2386     return Map.GetOrCreateValue(String);
2387   }
2388 
2389   // Otherwise, convert the UTF8 literals into a string of shorts.
2390   IsUTF16 = true;
2391 
2392   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2393   const UTF8 *FromPtr = (const UTF8 *)String.data();
2394   UTF16 *ToPtr = &ToBuf[0];
2395 
2396   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2397                            &ToPtr, ToPtr + NumBytes,
2398                            strictConversion);
2399 
2400   // ConvertUTF8toUTF16 returns the length in ToPtr.
2401   StringLength = ToPtr - &ToBuf[0];
2402 
2403   // Add an explicit null.
2404   *ToPtr = 0;
2405   return Map.
2406     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2407                                (StringLength + 1) * 2));
2408 }
2409 
2410 static llvm::StringMapEntry<llvm::Constant*> &
2411 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2412                        const StringLiteral *Literal,
2413                        unsigned &StringLength) {
2414   StringRef String = Literal->getString();
2415   StringLength = String.size();
2416   return Map.GetOrCreateValue(String);
2417 }
2418 
2419 llvm::Constant *
2420 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2421   unsigned StringLength = 0;
2422   bool isUTF16 = false;
2423   llvm::StringMapEntry<llvm::Constant*> &Entry =
2424     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2425                              getDataLayout().isLittleEndian(),
2426                              isUTF16, StringLength);
2427 
2428   if (llvm::Constant *C = Entry.getValue())
2429     return C;
2430 
2431   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2432   llvm::Constant *Zeros[] = { Zero, Zero };
2433   llvm::Value *V;
2434 
2435   // If we don't already have it, get __CFConstantStringClassReference.
2436   if (!CFConstantStringClassRef) {
2437     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2438     Ty = llvm::ArrayType::get(Ty, 0);
2439     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2440                                            "__CFConstantStringClassReference");
2441     // Decay array -> ptr
2442     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2443     CFConstantStringClassRef = V;
2444   }
2445   else
2446     V = CFConstantStringClassRef;
2447 
2448   QualType CFTy = getContext().getCFConstantStringType();
2449 
2450   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2451 
2452   llvm::Constant *Fields[4];
2453 
2454   // Class pointer.
2455   Fields[0] = cast<llvm::ConstantExpr>(V);
2456 
2457   // Flags.
2458   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2459   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2460     llvm::ConstantInt::get(Ty, 0x07C8);
2461 
2462   // String pointer.
2463   llvm::Constant *C = nullptr;
2464   if (isUTF16) {
2465     ArrayRef<uint16_t> Arr =
2466       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2467                                      const_cast<char *>(Entry.getKey().data())),
2468                                    Entry.getKey().size() / 2);
2469     C = llvm::ConstantDataArray::get(VMContext, Arr);
2470   } else {
2471     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2472   }
2473 
2474   // Note: -fwritable-strings doesn't make the backing store strings of
2475   // CFStrings writable. (See <rdar://problem/10657500>)
2476   auto *GV =
2477       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2478                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2479   GV->setUnnamedAddr(true);
2480   // Don't enforce the target's minimum global alignment, since the only use
2481   // of the string is via this class initializer.
2482   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2483   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2484   // that changes the section it ends in, which surprises ld64.
2485   if (isUTF16) {
2486     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2487     GV->setAlignment(Align.getQuantity());
2488     GV->setSection("__TEXT,__ustring");
2489   } else {
2490     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2491     GV->setAlignment(Align.getQuantity());
2492     GV->setSection("__TEXT,__cstring,cstring_literals");
2493   }
2494 
2495   // String.
2496   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2497 
2498   if (isUTF16)
2499     // Cast the UTF16 string to the correct type.
2500     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2501 
2502   // String length.
2503   Ty = getTypes().ConvertType(getContext().LongTy);
2504   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2505 
2506   // The struct.
2507   C = llvm::ConstantStruct::get(STy, Fields);
2508   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2509                                 llvm::GlobalVariable::PrivateLinkage, C,
2510                                 "_unnamed_cfstring_");
2511   GV->setSection("__DATA,__cfstring");
2512   Entry.setValue(GV);
2513 
2514   return GV;
2515 }
2516 
2517 llvm::Constant *
2518 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2519   unsigned StringLength = 0;
2520   llvm::StringMapEntry<llvm::Constant*> &Entry =
2521     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2522 
2523   if (llvm::Constant *C = Entry.getValue())
2524     return C;
2525 
2526   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2527   llvm::Constant *Zeros[] = { Zero, Zero };
2528   llvm::Value *V;
2529   // If we don't already have it, get _NSConstantStringClassReference.
2530   if (!ConstantStringClassRef) {
2531     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2532     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2533     llvm::Constant *GV;
2534     if (LangOpts.ObjCRuntime.isNonFragile()) {
2535       std::string str =
2536         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2537                             : "OBJC_CLASS_$_" + StringClass;
2538       GV = getObjCRuntime().GetClassGlobal(str);
2539       // Make sure the result is of the correct type.
2540       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2541       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2542       ConstantStringClassRef = V;
2543     } else {
2544       std::string str =
2545         StringClass.empty() ? "_NSConstantStringClassReference"
2546                             : "_" + StringClass + "ClassReference";
2547       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2548       GV = CreateRuntimeVariable(PTy, str);
2549       // Decay array -> ptr
2550       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2551       ConstantStringClassRef = V;
2552     }
2553   }
2554   else
2555     V = ConstantStringClassRef;
2556 
2557   if (!NSConstantStringType) {
2558     // Construct the type for a constant NSString.
2559     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2560     D->startDefinition();
2561 
2562     QualType FieldTypes[3];
2563 
2564     // const int *isa;
2565     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2566     // const char *str;
2567     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2568     // unsigned int length;
2569     FieldTypes[2] = Context.UnsignedIntTy;
2570 
2571     // Create fields
2572     for (unsigned i = 0; i < 3; ++i) {
2573       FieldDecl *Field = FieldDecl::Create(Context, D,
2574                                            SourceLocation(),
2575                                            SourceLocation(), nullptr,
2576                                            FieldTypes[i], /*TInfo=*/nullptr,
2577                                            /*BitWidth=*/nullptr,
2578                                            /*Mutable=*/false,
2579                                            ICIS_NoInit);
2580       Field->setAccess(AS_public);
2581       D->addDecl(Field);
2582     }
2583 
2584     D->completeDefinition();
2585     QualType NSTy = Context.getTagDeclType(D);
2586     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2587   }
2588 
2589   llvm::Constant *Fields[3];
2590 
2591   // Class pointer.
2592   Fields[0] = cast<llvm::ConstantExpr>(V);
2593 
2594   // String pointer.
2595   llvm::Constant *C =
2596     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2597 
2598   llvm::GlobalValue::LinkageTypes Linkage;
2599   bool isConstant;
2600   Linkage = llvm::GlobalValue::PrivateLinkage;
2601   isConstant = !LangOpts.WritableStrings;
2602 
2603   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2604                                       Linkage, C, ".str");
2605   GV->setUnnamedAddr(true);
2606   // Don't enforce the target's minimum global alignment, since the only use
2607   // of the string is via this class initializer.
2608   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2609   GV->setAlignment(Align.getQuantity());
2610   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2611 
2612   // String length.
2613   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2614   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2615 
2616   // The struct.
2617   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2618   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2619                                 llvm::GlobalVariable::PrivateLinkage, C,
2620                                 "_unnamed_nsstring_");
2621   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2622   const char *NSStringNonFragileABISection =
2623       "__DATA,__objc_stringobj,regular,no_dead_strip";
2624   // FIXME. Fix section.
2625   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2626                      ? NSStringNonFragileABISection
2627                      : NSStringSection);
2628   Entry.setValue(GV);
2629 
2630   return GV;
2631 }
2632 
2633 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2634   if (ObjCFastEnumerationStateType.isNull()) {
2635     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2636     D->startDefinition();
2637 
2638     QualType FieldTypes[] = {
2639       Context.UnsignedLongTy,
2640       Context.getPointerType(Context.getObjCIdType()),
2641       Context.getPointerType(Context.UnsignedLongTy),
2642       Context.getConstantArrayType(Context.UnsignedLongTy,
2643                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2644     };
2645 
2646     for (size_t i = 0; i < 4; ++i) {
2647       FieldDecl *Field = FieldDecl::Create(Context,
2648                                            D,
2649                                            SourceLocation(),
2650                                            SourceLocation(), nullptr,
2651                                            FieldTypes[i], /*TInfo=*/nullptr,
2652                                            /*BitWidth=*/nullptr,
2653                                            /*Mutable=*/false,
2654                                            ICIS_NoInit);
2655       Field->setAccess(AS_public);
2656       D->addDecl(Field);
2657     }
2658 
2659     D->completeDefinition();
2660     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2661   }
2662 
2663   return ObjCFastEnumerationStateType;
2664 }
2665 
2666 llvm::Constant *
2667 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2668   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2669 
2670   // Don't emit it as the address of the string, emit the string data itself
2671   // as an inline array.
2672   if (E->getCharByteWidth() == 1) {
2673     SmallString<64> Str(E->getString());
2674 
2675     // Resize the string to the right size, which is indicated by its type.
2676     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2677     Str.resize(CAT->getSize().getZExtValue());
2678     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2679   }
2680 
2681   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2682   llvm::Type *ElemTy = AType->getElementType();
2683   unsigned NumElements = AType->getNumElements();
2684 
2685   // Wide strings have either 2-byte or 4-byte elements.
2686   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2687     SmallVector<uint16_t, 32> Elements;
2688     Elements.reserve(NumElements);
2689 
2690     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2691       Elements.push_back(E->getCodeUnit(i));
2692     Elements.resize(NumElements);
2693     return llvm::ConstantDataArray::get(VMContext, Elements);
2694   }
2695 
2696   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2697   SmallVector<uint32_t, 32> Elements;
2698   Elements.reserve(NumElements);
2699 
2700   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2701     Elements.push_back(E->getCodeUnit(i));
2702   Elements.resize(NumElements);
2703   return llvm::ConstantDataArray::get(VMContext, Elements);
2704 }
2705 
2706 static llvm::GlobalVariable *
2707 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2708                       CodeGenModule &CGM, StringRef GlobalName,
2709                       unsigned Alignment) {
2710   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2711   unsigned AddrSpace = 0;
2712   if (CGM.getLangOpts().OpenCL)
2713     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2714 
2715   // Create a global variable for this string
2716   auto *GV = new llvm::GlobalVariable(
2717       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2718       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2719   GV->setAlignment(Alignment);
2720   GV->setUnnamedAddr(true);
2721   return GV;
2722 }
2723 
2724 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2725 /// constant array for the given string literal.
2726 llvm::GlobalVariable *
2727 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2728   auto Alignment =
2729       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2730 
2731   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2732   llvm::GlobalVariable **Entry = nullptr;
2733   if (!LangOpts.WritableStrings) {
2734     Entry = &ConstantStringMap[C];
2735     if (auto GV = *Entry) {
2736       if (Alignment > GV->getAlignment())
2737         GV->setAlignment(Alignment);
2738       return GV;
2739     }
2740   }
2741 
2742   SmallString<256> MangledNameBuffer;
2743   StringRef GlobalVariableName;
2744   llvm::GlobalValue::LinkageTypes LT;
2745 
2746   // Mangle the string literal if the ABI allows for it.  However, we cannot
2747   // do this if  we are compiling with ASan or -fwritable-strings because they
2748   // rely on strings having normal linkage.
2749   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2750       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2751     llvm::raw_svector_ostream Out(MangledNameBuffer);
2752     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2753     Out.flush();
2754 
2755     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2756     GlobalVariableName = MangledNameBuffer;
2757   } else {
2758     LT = llvm::GlobalValue::PrivateLinkage;
2759     GlobalVariableName = ".str";
2760   }
2761 
2762   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2763   if (Entry)
2764     *Entry = GV;
2765 
2766   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2767   return GV;
2768 }
2769 
2770 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2771 /// array for the given ObjCEncodeExpr node.
2772 llvm::GlobalVariable *
2773 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2774   std::string Str;
2775   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2776 
2777   return GetAddrOfConstantCString(Str);
2778 }
2779 
2780 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2781 /// the literal and a terminating '\0' character.
2782 /// The result has pointer to array type.
2783 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2784     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2785   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2786   if (Alignment == 0) {
2787     Alignment = getContext()
2788                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2789                     .getQuantity();
2790   }
2791 
2792   llvm::Constant *C =
2793       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2794 
2795   // Don't share any string literals if strings aren't constant.
2796   llvm::GlobalVariable **Entry = nullptr;
2797   if (!LangOpts.WritableStrings) {
2798     Entry = &ConstantStringMap[C];
2799     if (auto GV = *Entry) {
2800       if (Alignment > GV->getAlignment())
2801         GV->setAlignment(Alignment);
2802       return GV;
2803     }
2804   }
2805 
2806   // Get the default prefix if a name wasn't specified.
2807   if (!GlobalName)
2808     GlobalName = ".str";
2809   // Create a global variable for this.
2810   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2811                                   GlobalName, Alignment);
2812   if (Entry)
2813     *Entry = GV;
2814   return GV;
2815 }
2816 
2817 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2818     const MaterializeTemporaryExpr *E, const Expr *Init) {
2819   assert((E->getStorageDuration() == SD_Static ||
2820           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2821   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2822 
2823   // If we're not materializing a subobject of the temporary, keep the
2824   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2825   QualType MaterializedType = Init->getType();
2826   if (Init == E->GetTemporaryExpr())
2827     MaterializedType = E->getType();
2828 
2829   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2830   if (Slot)
2831     return Slot;
2832 
2833   // FIXME: If an externally-visible declaration extends multiple temporaries,
2834   // we need to give each temporary the same name in every translation unit (and
2835   // we also need to make the temporaries externally-visible).
2836   SmallString<256> Name;
2837   llvm::raw_svector_ostream Out(Name);
2838   getCXXABI().getMangleContext().mangleReferenceTemporary(
2839       VD, E->getManglingNumber(), Out);
2840   Out.flush();
2841 
2842   APValue *Value = nullptr;
2843   if (E->getStorageDuration() == SD_Static) {
2844     // We might have a cached constant initializer for this temporary. Note
2845     // that this might have a different value from the value computed by
2846     // evaluating the initializer if the surrounding constant expression
2847     // modifies the temporary.
2848     Value = getContext().getMaterializedTemporaryValue(E, false);
2849     if (Value && Value->isUninit())
2850       Value = nullptr;
2851   }
2852 
2853   // Try evaluating it now, it might have a constant initializer.
2854   Expr::EvalResult EvalResult;
2855   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2856       !EvalResult.hasSideEffects())
2857     Value = &EvalResult.Val;
2858 
2859   llvm::Constant *InitialValue = nullptr;
2860   bool Constant = false;
2861   llvm::Type *Type;
2862   if (Value) {
2863     // The temporary has a constant initializer, use it.
2864     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2865     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2866     Type = InitialValue->getType();
2867   } else {
2868     // No initializer, the initialization will be provided when we
2869     // initialize the declaration which performed lifetime extension.
2870     Type = getTypes().ConvertTypeForMem(MaterializedType);
2871   }
2872 
2873   // Create a global variable for this lifetime-extended temporary.
2874   llvm::GlobalValue::LinkageTypes Linkage =
2875       getLLVMLinkageVarDefinition(VD, Constant);
2876   // There is no need for this temporary to have global linkage if the global
2877   // variable has external linkage.
2878   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2879     Linkage = llvm::GlobalVariable::PrivateLinkage;
2880   unsigned AddrSpace = GetGlobalVarAddressSpace(
2881       VD, getContext().getTargetAddressSpace(MaterializedType));
2882   auto *GV = new llvm::GlobalVariable(
2883       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2884       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2885       AddrSpace);
2886   setGlobalVisibility(GV, VD);
2887   GV->setAlignment(
2888       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2889   if (VD->getTLSKind())
2890     setTLSMode(GV, *VD);
2891   Slot = GV;
2892   return GV;
2893 }
2894 
2895 /// EmitObjCPropertyImplementations - Emit information for synthesized
2896 /// properties for an implementation.
2897 void CodeGenModule::EmitObjCPropertyImplementations(const
2898                                                     ObjCImplementationDecl *D) {
2899   for (const auto *PID : D->property_impls()) {
2900     // Dynamic is just for type-checking.
2901     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2902       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2903 
2904       // Determine which methods need to be implemented, some may have
2905       // been overridden. Note that ::isPropertyAccessor is not the method
2906       // we want, that just indicates if the decl came from a
2907       // property. What we want to know is if the method is defined in
2908       // this implementation.
2909       if (!D->getInstanceMethod(PD->getGetterName()))
2910         CodeGenFunction(*this).GenerateObjCGetter(
2911                                  const_cast<ObjCImplementationDecl *>(D), PID);
2912       if (!PD->isReadOnly() &&
2913           !D->getInstanceMethod(PD->getSetterName()))
2914         CodeGenFunction(*this).GenerateObjCSetter(
2915                                  const_cast<ObjCImplementationDecl *>(D), PID);
2916     }
2917   }
2918 }
2919 
2920 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2921   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2922   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2923        ivar; ivar = ivar->getNextIvar())
2924     if (ivar->getType().isDestructedType())
2925       return true;
2926 
2927   return false;
2928 }
2929 
2930 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2931 /// for an implementation.
2932 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2933   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2934   if (needsDestructMethod(D)) {
2935     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2936     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2937     ObjCMethodDecl *DTORMethod =
2938       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2939                              cxxSelector, getContext().VoidTy, nullptr, D,
2940                              /*isInstance=*/true, /*isVariadic=*/false,
2941                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2942                              /*isDefined=*/false, ObjCMethodDecl::Required);
2943     D->addInstanceMethod(DTORMethod);
2944     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2945     D->setHasDestructors(true);
2946   }
2947 
2948   // If the implementation doesn't have any ivar initializers, we don't need
2949   // a .cxx_construct.
2950   if (D->getNumIvarInitializers() == 0)
2951     return;
2952 
2953   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2954   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2955   // The constructor returns 'self'.
2956   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2957                                                 D->getLocation(),
2958                                                 D->getLocation(),
2959                                                 cxxSelector,
2960                                                 getContext().getObjCIdType(),
2961                                                 nullptr, D, /*isInstance=*/true,
2962                                                 /*isVariadic=*/false,
2963                                                 /*isPropertyAccessor=*/true,
2964                                                 /*isImplicitlyDeclared=*/true,
2965                                                 /*isDefined=*/false,
2966                                                 ObjCMethodDecl::Required);
2967   D->addInstanceMethod(CTORMethod);
2968   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2969   D->setHasNonZeroConstructors(true);
2970 }
2971 
2972 /// EmitNamespace - Emit all declarations in a namespace.
2973 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2974   for (auto *I : ND->decls()) {
2975     if (const auto *VD = dyn_cast<VarDecl>(I))
2976       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2977           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2978         continue;
2979     EmitTopLevelDecl(I);
2980   }
2981 }
2982 
2983 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2984 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2985   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2986       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2987     ErrorUnsupported(LSD, "linkage spec");
2988     return;
2989   }
2990 
2991   for (auto *I : LSD->decls()) {
2992     // Meta-data for ObjC class includes references to implemented methods.
2993     // Generate class's method definitions first.
2994     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2995       for (auto *M : OID->methods())
2996         EmitTopLevelDecl(M);
2997     }
2998     EmitTopLevelDecl(I);
2999   }
3000 }
3001 
3002 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3003 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3004   // Ignore dependent declarations.
3005   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3006     return;
3007 
3008   switch (D->getKind()) {
3009   case Decl::CXXConversion:
3010   case Decl::CXXMethod:
3011   case Decl::Function:
3012     // Skip function templates
3013     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3014         cast<FunctionDecl>(D)->isLateTemplateParsed())
3015       return;
3016 
3017     EmitGlobal(cast<FunctionDecl>(D));
3018     // Always provide some coverage mapping
3019     // even for the functions that aren't emitted.
3020     AddDeferredUnusedCoverageMapping(D);
3021     break;
3022 
3023   case Decl::Var:
3024     // Skip variable templates
3025     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3026       return;
3027   case Decl::VarTemplateSpecialization:
3028     EmitGlobal(cast<VarDecl>(D));
3029     break;
3030 
3031   // Indirect fields from global anonymous structs and unions can be
3032   // ignored; only the actual variable requires IR gen support.
3033   case Decl::IndirectField:
3034     break;
3035 
3036   // C++ Decls
3037   case Decl::Namespace:
3038     EmitNamespace(cast<NamespaceDecl>(D));
3039     break;
3040     // No code generation needed.
3041   case Decl::UsingShadow:
3042   case Decl::ClassTemplate:
3043   case Decl::VarTemplate:
3044   case Decl::VarTemplatePartialSpecialization:
3045   case Decl::FunctionTemplate:
3046   case Decl::TypeAliasTemplate:
3047   case Decl::Block:
3048   case Decl::Empty:
3049     break;
3050   case Decl::Using:          // using X; [C++]
3051     if (CGDebugInfo *DI = getModuleDebugInfo())
3052         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3053     return;
3054   case Decl::NamespaceAlias:
3055     if (CGDebugInfo *DI = getModuleDebugInfo())
3056         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3057     return;
3058   case Decl::UsingDirective: // using namespace X; [C++]
3059     if (CGDebugInfo *DI = getModuleDebugInfo())
3060       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3061     return;
3062   case Decl::CXXConstructor:
3063     // Skip function templates
3064     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3065         cast<FunctionDecl>(D)->isLateTemplateParsed())
3066       return;
3067 
3068     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3069     break;
3070   case Decl::CXXDestructor:
3071     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3072       return;
3073     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3074     break;
3075 
3076   case Decl::StaticAssert:
3077     // Nothing to do.
3078     break;
3079 
3080   // Objective-C Decls
3081 
3082   // Forward declarations, no (immediate) code generation.
3083   case Decl::ObjCInterface:
3084   case Decl::ObjCCategory:
3085     break;
3086 
3087   case Decl::ObjCProtocol: {
3088     auto *Proto = cast<ObjCProtocolDecl>(D);
3089     if (Proto->isThisDeclarationADefinition())
3090       ObjCRuntime->GenerateProtocol(Proto);
3091     break;
3092   }
3093 
3094   case Decl::ObjCCategoryImpl:
3095     // Categories have properties but don't support synthesize so we
3096     // can ignore them here.
3097     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3098     break;
3099 
3100   case Decl::ObjCImplementation: {
3101     auto *OMD = cast<ObjCImplementationDecl>(D);
3102     EmitObjCPropertyImplementations(OMD);
3103     EmitObjCIvarInitializations(OMD);
3104     ObjCRuntime->GenerateClass(OMD);
3105     // Emit global variable debug information.
3106     if (CGDebugInfo *DI = getModuleDebugInfo())
3107       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3108         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3109             OMD->getClassInterface()), OMD->getLocation());
3110     break;
3111   }
3112   case Decl::ObjCMethod: {
3113     auto *OMD = cast<ObjCMethodDecl>(D);
3114     // If this is not a prototype, emit the body.
3115     if (OMD->getBody())
3116       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3117     break;
3118   }
3119   case Decl::ObjCCompatibleAlias:
3120     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3121     break;
3122 
3123   case Decl::LinkageSpec:
3124     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3125     break;
3126 
3127   case Decl::FileScopeAsm: {
3128     auto *AD = cast<FileScopeAsmDecl>(D);
3129     StringRef AsmString = AD->getAsmString()->getString();
3130 
3131     const std::string &S = getModule().getModuleInlineAsm();
3132     if (S.empty())
3133       getModule().setModuleInlineAsm(AsmString);
3134     else if (S.end()[-1] == '\n')
3135       getModule().setModuleInlineAsm(S + AsmString.str());
3136     else
3137       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3138     break;
3139   }
3140 
3141   case Decl::Import: {
3142     auto *Import = cast<ImportDecl>(D);
3143 
3144     // Ignore import declarations that come from imported modules.
3145     if (clang::Module *Owner = Import->getOwningModule()) {
3146       if (getLangOpts().CurrentModule.empty() ||
3147           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3148         break;
3149     }
3150 
3151     ImportedModules.insert(Import->getImportedModule());
3152     break;
3153   }
3154 
3155   case Decl::ClassTemplateSpecialization: {
3156     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3157     if (DebugInfo &&
3158         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3159       DebugInfo->completeTemplateDefinition(*Spec);
3160   }
3161 
3162   default:
3163     // Make sure we handled everything we should, every other kind is a
3164     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3165     // function. Need to recode Decl::Kind to do that easily.
3166     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3167   }
3168 }
3169 
3170 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3171   // Do we need to generate coverage mapping?
3172   if (!CodeGenOpts.CoverageMapping)
3173     return;
3174   switch (D->getKind()) {
3175   case Decl::CXXConversion:
3176   case Decl::CXXMethod:
3177   case Decl::Function:
3178   case Decl::ObjCMethod:
3179   case Decl::CXXConstructor:
3180   case Decl::CXXDestructor: {
3181     if (!cast<FunctionDecl>(D)->hasBody())
3182       return;
3183     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3184     if (I == DeferredEmptyCoverageMappingDecls.end())
3185       DeferredEmptyCoverageMappingDecls[D] = true;
3186     break;
3187   }
3188   default:
3189     break;
3190   };
3191 }
3192 
3193 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3194   // Do we need to generate coverage mapping?
3195   if (!CodeGenOpts.CoverageMapping)
3196     return;
3197   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3198     if (Fn->isTemplateInstantiation())
3199       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3200   }
3201   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3202   if (I == DeferredEmptyCoverageMappingDecls.end())
3203     DeferredEmptyCoverageMappingDecls[D] = false;
3204   else
3205     I->second = false;
3206 }
3207 
3208 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3209   std::vector<const Decl *> DeferredDecls;
3210   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3211     if (!I.second)
3212       continue;
3213     DeferredDecls.push_back(I.first);
3214   }
3215   // Sort the declarations by their location to make sure that the tests get a
3216   // predictable order for the coverage mapping for the unused declarations.
3217   if (CodeGenOpts.DumpCoverageMapping)
3218     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3219               [] (const Decl *LHS, const Decl *RHS) {
3220       return LHS->getLocStart() < RHS->getLocStart();
3221     });
3222   for (const auto *D : DeferredDecls) {
3223     switch (D->getKind()) {
3224     case Decl::CXXConversion:
3225     case Decl::CXXMethod:
3226     case Decl::Function:
3227     case Decl::ObjCMethod: {
3228       CodeGenPGO PGO(*this);
3229       GlobalDecl GD(cast<FunctionDecl>(D));
3230       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3231                                   getFunctionLinkage(GD));
3232       break;
3233     }
3234     case Decl::CXXConstructor: {
3235       CodeGenPGO PGO(*this);
3236       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3237       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3238                                   getFunctionLinkage(GD));
3239       break;
3240     }
3241     case Decl::CXXDestructor: {
3242       CodeGenPGO PGO(*this);
3243       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3244       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3245                                   getFunctionLinkage(GD));
3246       break;
3247     }
3248     default:
3249       break;
3250     };
3251   }
3252 }
3253 
3254 /// Turns the given pointer into a constant.
3255 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3256                                           const void *Ptr) {
3257   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3258   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3259   return llvm::ConstantInt::get(i64, PtrInt);
3260 }
3261 
3262 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3263                                    llvm::NamedMDNode *&GlobalMetadata,
3264                                    GlobalDecl D,
3265                                    llvm::GlobalValue *Addr) {
3266   if (!GlobalMetadata)
3267     GlobalMetadata =
3268       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3269 
3270   // TODO: should we report variant information for ctors/dtors?
3271   llvm::Value *Ops[] = {
3272     Addr,
3273     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3274   };
3275   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3276 }
3277 
3278 /// For each function which is declared within an extern "C" region and marked
3279 /// as 'used', but has internal linkage, create an alias from the unmangled
3280 /// name to the mangled name if possible. People expect to be able to refer
3281 /// to such functions with an unmangled name from inline assembly within the
3282 /// same translation unit.
3283 void CodeGenModule::EmitStaticExternCAliases() {
3284   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3285                                   E = StaticExternCValues.end();
3286        I != E; ++I) {
3287     IdentifierInfo *Name = I->first;
3288     llvm::GlobalValue *Val = I->second;
3289     if (Val && !getModule().getNamedValue(Name->getName()))
3290       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3291   }
3292 }
3293 
3294 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3295                                              GlobalDecl &Result) const {
3296   auto Res = Manglings.find(MangledName);
3297   if (Res == Manglings.end())
3298     return false;
3299   Result = Res->getValue();
3300   return true;
3301 }
3302 
3303 /// Emits metadata nodes associating all the global values in the
3304 /// current module with the Decls they came from.  This is useful for
3305 /// projects using IR gen as a subroutine.
3306 ///
3307 /// Since there's currently no way to associate an MDNode directly
3308 /// with an llvm::GlobalValue, we create a global named metadata
3309 /// with the name 'clang.global.decl.ptrs'.
3310 void CodeGenModule::EmitDeclMetadata() {
3311   llvm::NamedMDNode *GlobalMetadata = nullptr;
3312 
3313   // StaticLocalDeclMap
3314   for (auto &I : MangledDeclNames) {
3315     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3316     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3317   }
3318 }
3319 
3320 /// Emits metadata nodes for all the local variables in the current
3321 /// function.
3322 void CodeGenFunction::EmitDeclMetadata() {
3323   if (LocalDeclMap.empty()) return;
3324 
3325   llvm::LLVMContext &Context = getLLVMContext();
3326 
3327   // Find the unique metadata ID for this name.
3328   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3329 
3330   llvm::NamedMDNode *GlobalMetadata = nullptr;
3331 
3332   for (auto &I : LocalDeclMap) {
3333     const Decl *D = I.first;
3334     llvm::Value *Addr = I.second;
3335     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3336       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3337       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3338     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3339       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3340       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3341     }
3342   }
3343 }
3344 
3345 void CodeGenModule::EmitVersionIdentMetadata() {
3346   llvm::NamedMDNode *IdentMetadata =
3347     TheModule.getOrInsertNamedMetadata("llvm.ident");
3348   std::string Version = getClangFullVersion();
3349   llvm::LLVMContext &Ctx = TheModule.getContext();
3350 
3351   llvm::Value *IdentNode[] = {
3352     llvm::MDString::get(Ctx, Version)
3353   };
3354   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3355 }
3356 
3357 void CodeGenModule::EmitTargetMetadata() {
3358   // Warning, new MangledDeclNames may be appended within this loop.
3359   // We rely on MapVector insertions adding new elements to the end
3360   // of the container.
3361   // FIXME: Move this loop into the one target that needs it, and only
3362   // loop over those declarations for which we couldn't emit the target
3363   // metadata when we emitted the declaration.
3364   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3365     auto Val = *(MangledDeclNames.begin() + I);
3366     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3367     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3368     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3369   }
3370 }
3371 
3372 void CodeGenModule::EmitCoverageFile() {
3373   if (!getCodeGenOpts().CoverageFile.empty()) {
3374     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3375       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3376       llvm::LLVMContext &Ctx = TheModule.getContext();
3377       llvm::MDString *CoverageFile =
3378           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3379       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3380         llvm::MDNode *CU = CUNode->getOperand(i);
3381         llvm::Value *node[] = { CoverageFile, CU };
3382         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3383         GCov->addOperand(N);
3384       }
3385     }
3386   }
3387 }
3388 
3389 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3390   // Sema has checked that all uuid strings are of the form
3391   // "12345678-1234-1234-1234-1234567890ab".
3392   assert(Uuid.size() == 36);
3393   for (unsigned i = 0; i < 36; ++i) {
3394     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3395     else                                         assert(isHexDigit(Uuid[i]));
3396   }
3397 
3398   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3399   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3400 
3401   llvm::Constant *Field3[8];
3402   for (unsigned Idx = 0; Idx < 8; ++Idx)
3403     Field3[Idx] = llvm::ConstantInt::get(
3404         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3405 
3406   llvm::Constant *Fields[4] = {
3407     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3408     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3409     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3410     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3411   };
3412 
3413   return llvm::ConstantStruct::getAnon(Fields);
3414 }
3415 
3416 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3417                                                        bool ForEH) {
3418   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3419   // FIXME: should we even be calling this method if RTTI is disabled
3420   // and it's not for EH?
3421   if (!ForEH && !getLangOpts().RTTI)
3422     return llvm::Constant::getNullValue(Int8PtrTy);
3423 
3424   if (ForEH && Ty->isObjCObjectPointerType() &&
3425       LangOpts.ObjCRuntime.isGNUFamily())
3426     return ObjCRuntime->GetEHType(Ty);
3427 
3428   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3429 }
3430 
3431