xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 02afe4e077c480f839c891ea12c274fe2f63ca14)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   //
461   // CUDA/HIP device and host libraries are different. Currently there is no
462   // way to differentiate dependent libraries for host or device. Existing
463   // usage of #pragma comment(lib, *) is intended for host libraries on
464   // Windows. Therefore emit llvm.dependent-libraries only for host.
465   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467     for (auto *MD : ELFDependentLibraries)
468       NMD->addOperand(MD);
469   }
470 
471   // Record mregparm value now so it is visible through rest of codegen.
472   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474                               CodeGenOpts.NumRegisterParameters);
475 
476   if (CodeGenOpts.DwarfVersion) {
477     // We actually want the latest version when there are conflicts.
478     // We can change from Warning to Latest if such mode is supported.
479     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480                               CodeGenOpts.DwarfVersion);
481   }
482   if (CodeGenOpts.EmitCodeView) {
483     // Indicate that we want CodeView in the metadata.
484     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485   }
486   if (CodeGenOpts.CodeViewGHash) {
487     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488   }
489   if (CodeGenOpts.ControlFlowGuard) {
490     // We want function ID tables for Control Flow Guard.
491     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492   }
493   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494     // We don't support LTO with 2 with different StrictVTablePointers
495     // FIXME: we could support it by stripping all the information introduced
496     // by StrictVTablePointers.
497 
498     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499 
500     llvm::Metadata *Ops[2] = {
501               llvm::MDString::get(VMContext, "StrictVTablePointers"),
502               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503                   llvm::Type::getInt32Ty(VMContext), 1))};
504 
505     getModule().addModuleFlag(llvm::Module::Require,
506                               "StrictVTablePointersRequirement",
507                               llvm::MDNode::get(VMContext, Ops));
508   }
509   if (DebugInfo)
510     // We support a single version in the linked module. The LLVM
511     // parser will drop debug info with a different version number
512     // (and warn about it, too).
513     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514                               llvm::DEBUG_METADATA_VERSION);
515 
516   // We need to record the widths of enums and wchar_t, so that we can generate
517   // the correct build attributes in the ARM backend. wchar_size is also used by
518   // TargetLibraryInfo.
519   uint64_t WCharWidth =
520       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522 
523   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524   if (   Arch == llvm::Triple::arm
525       || Arch == llvm::Triple::armeb
526       || Arch == llvm::Triple::thumb
527       || Arch == llvm::Triple::thumbeb) {
528     // The minimum width of an enum in bytes
529     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531   }
532 
533   if (CodeGenOpts.SanitizeCfiCrossDso) {
534     // Indicate that we want cross-DSO control flow integrity checks.
535     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536   }
537 
538   if (CodeGenOpts.CFProtectionReturn &&
539       Target.checkCFProtectionReturnSupported(getDiags())) {
540     // Indicate that we want to instrument return control flow protection.
541     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
542                               1);
543   }
544 
545   if (CodeGenOpts.CFProtectionBranch &&
546       Target.checkCFProtectionBranchSupported(getDiags())) {
547     // Indicate that we want to instrument branch control flow protection.
548     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
549                               1);
550   }
551 
552   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
553     // Indicate whether __nvvm_reflect should be configured to flush denormal
554     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
555     // property.)
556     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
557                               CodeGenOpts.FlushDenorm ? 1 : 0);
558   }
559 
560   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
561   if (LangOpts.OpenCL) {
562     EmitOpenCLMetadata();
563     // Emit SPIR version.
564     if (getTriple().isSPIR()) {
565       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
566       // opencl.spir.version named metadata.
567       llvm::Metadata *SPIRVerElts[] = {
568           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
569               Int32Ty, LangOpts.OpenCLVersion / 100)),
570           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
571               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
572       llvm::NamedMDNode *SPIRVerMD =
573           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
574       llvm::LLVMContext &Ctx = TheModule.getContext();
575       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
576     }
577   }
578 
579   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
580     assert(PLevel < 3 && "Invalid PIC Level");
581     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
582     if (Context.getLangOpts().PIE)
583       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
584   }
585 
586   if (getCodeGenOpts().CodeModel.size() > 0) {
587     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
588                   .Case("tiny", llvm::CodeModel::Tiny)
589                   .Case("small", llvm::CodeModel::Small)
590                   .Case("kernel", llvm::CodeModel::Kernel)
591                   .Case("medium", llvm::CodeModel::Medium)
592                   .Case("large", llvm::CodeModel::Large)
593                   .Default(~0u);
594     if (CM != ~0u) {
595       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
596       getModule().setCodeModel(codeModel);
597     }
598   }
599 
600   if (CodeGenOpts.NoPLT)
601     getModule().setRtLibUseGOT();
602 
603   SimplifyPersonality();
604 
605   if (getCodeGenOpts().EmitDeclMetadata)
606     EmitDeclMetadata();
607 
608   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
609     EmitCoverageFile();
610 
611   if (DebugInfo)
612     DebugInfo->finalize();
613 
614   if (getCodeGenOpts().EmitVersionIdentMetadata)
615     EmitVersionIdentMetadata();
616 
617   if (!getCodeGenOpts().RecordCommandLine.empty())
618     EmitCommandLineMetadata();
619 
620   EmitTargetMetadata();
621 }
622 
623 void CodeGenModule::EmitOpenCLMetadata() {
624   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
625   // opencl.ocl.version named metadata node.
626   llvm::Metadata *OCLVerElts[] = {
627       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
628           Int32Ty, LangOpts.OpenCLVersion / 100)),
629       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
630           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
631   llvm::NamedMDNode *OCLVerMD =
632       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
633   llvm::LLVMContext &Ctx = TheModule.getContext();
634   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
635 }
636 
637 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
638   // Make sure that this type is translated.
639   Types.UpdateCompletedType(TD);
640 }
641 
642 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
643   // Make sure that this type is translated.
644   Types.RefreshTypeCacheForClass(RD);
645 }
646 
647 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
648   if (!TBAA)
649     return nullptr;
650   return TBAA->getTypeInfo(QTy);
651 }
652 
653 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
654   if (!TBAA)
655     return TBAAAccessInfo();
656   return TBAA->getAccessInfo(AccessType);
657 }
658 
659 TBAAAccessInfo
660 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
661   if (!TBAA)
662     return TBAAAccessInfo();
663   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
664 }
665 
666 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
667   if (!TBAA)
668     return nullptr;
669   return TBAA->getTBAAStructInfo(QTy);
670 }
671 
672 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
673   if (!TBAA)
674     return nullptr;
675   return TBAA->getBaseTypeInfo(QTy);
676 }
677 
678 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
679   if (!TBAA)
680     return nullptr;
681   return TBAA->getAccessTagInfo(Info);
682 }
683 
684 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
685                                                    TBAAAccessInfo TargetInfo) {
686   if (!TBAA)
687     return TBAAAccessInfo();
688   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
689 }
690 
691 TBAAAccessInfo
692 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
693                                                    TBAAAccessInfo InfoB) {
694   if (!TBAA)
695     return TBAAAccessInfo();
696   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
697 }
698 
699 TBAAAccessInfo
700 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
701                                               TBAAAccessInfo SrcInfo) {
702   if (!TBAA)
703     return TBAAAccessInfo();
704   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
705 }
706 
707 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
708                                                 TBAAAccessInfo TBAAInfo) {
709   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
710     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
711 }
712 
713 void CodeGenModule::DecorateInstructionWithInvariantGroup(
714     llvm::Instruction *I, const CXXRecordDecl *RD) {
715   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
716                  llvm::MDNode::get(getLLVMContext(), {}));
717 }
718 
719 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
720   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
721   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
722 }
723 
724 /// ErrorUnsupported - Print out an error that codegen doesn't support the
725 /// specified stmt yet.
726 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
727   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
728                                                "cannot compile this %0 yet");
729   std::string Msg = Type;
730   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
731       << Msg << S->getSourceRange();
732 }
733 
734 /// ErrorUnsupported - Print out an error that codegen doesn't support the
735 /// specified decl yet.
736 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
737   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
738                                                "cannot compile this %0 yet");
739   std::string Msg = Type;
740   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
741 }
742 
743 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
744   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
745 }
746 
747 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
748                                         const NamedDecl *D) const {
749   if (GV->hasDLLImportStorageClass())
750     return;
751   // Internal definitions always have default visibility.
752   if (GV->hasLocalLinkage()) {
753     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
754     return;
755   }
756   if (!D)
757     return;
758   // Set visibility for definitions, and for declarations if requested globally
759   // or set explicitly.
760   LinkageInfo LV = D->getLinkageAndVisibility();
761   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
762       !GV->isDeclarationForLinker())
763     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
764 }
765 
766 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
767                                  llvm::GlobalValue *GV) {
768   if (GV->hasLocalLinkage())
769     return true;
770 
771   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
772     return true;
773 
774   // DLLImport explicitly marks the GV as external.
775   if (GV->hasDLLImportStorageClass())
776     return false;
777 
778   const llvm::Triple &TT = CGM.getTriple();
779   if (TT.isWindowsGNUEnvironment()) {
780     // In MinGW, variables without DLLImport can still be automatically
781     // imported from a DLL by the linker; don't mark variables that
782     // potentially could come from another DLL as DSO local.
783     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
784         !GV->isThreadLocal())
785       return false;
786   }
787 
788   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
789   // remain unresolved in the link, they can be resolved to zero, which is
790   // outside the current DSO.
791   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
792     return false;
793 
794   // Every other GV is local on COFF.
795   // Make an exception for windows OS in the triple: Some firmware builds use
796   // *-win32-macho triples. This (accidentally?) produced windows relocations
797   // without GOT tables in older clang versions; Keep this behaviour.
798   // FIXME: even thread local variables?
799   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
800     return true;
801 
802   // Only handle COFF and ELF for now.
803   if (!TT.isOSBinFormatELF())
804     return false;
805 
806   // If this is not an executable, don't assume anything is local.
807   const auto &CGOpts = CGM.getCodeGenOpts();
808   llvm::Reloc::Model RM = CGOpts.RelocationModel;
809   const auto &LOpts = CGM.getLangOpts();
810   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
811     return false;
812 
813   // A definition cannot be preempted from an executable.
814   if (!GV->isDeclarationForLinker())
815     return true;
816 
817   // Most PIC code sequences that assume that a symbol is local cannot produce a
818   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
819   // depended, it seems worth it to handle it here.
820   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
821     return false;
822 
823   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
824   llvm::Triple::ArchType Arch = TT.getArch();
825   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
826       Arch == llvm::Triple::ppc64le)
827     return false;
828 
829   // If we can use copy relocations we can assume it is local.
830   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
831     if (!Var->isThreadLocal() &&
832         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
833       return true;
834 
835   // If we can use a plt entry as the symbol address we can assume it
836   // is local.
837   // FIXME: This should work for PIE, but the gold linker doesn't support it.
838   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
839     return true;
840 
841   // Otherwise don't assue it is local.
842   return false;
843 }
844 
845 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
846   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
847 }
848 
849 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
850                                           GlobalDecl GD) const {
851   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
852   // C++ destructors have a few C++ ABI specific special cases.
853   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
854     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
855     return;
856   }
857   setDLLImportDLLExport(GV, D);
858 }
859 
860 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
861                                           const NamedDecl *D) const {
862   if (D && D->isExternallyVisible()) {
863     if (D->hasAttr<DLLImportAttr>())
864       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
865     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
866       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
867   }
868 }
869 
870 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
871                                     GlobalDecl GD) const {
872   setDLLImportDLLExport(GV, GD);
873   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
874 }
875 
876 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
877                                     const NamedDecl *D) const {
878   setDLLImportDLLExport(GV, D);
879   setGlobalVisibilityAndLocal(GV, D);
880 }
881 
882 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
883                                                 const NamedDecl *D) const {
884   setGlobalVisibility(GV, D);
885   setDSOLocal(GV);
886 }
887 
888 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
889   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
890       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
891       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
892       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
893       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
894 }
895 
896 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
897     CodeGenOptions::TLSModel M) {
898   switch (M) {
899   case CodeGenOptions::GeneralDynamicTLSModel:
900     return llvm::GlobalVariable::GeneralDynamicTLSModel;
901   case CodeGenOptions::LocalDynamicTLSModel:
902     return llvm::GlobalVariable::LocalDynamicTLSModel;
903   case CodeGenOptions::InitialExecTLSModel:
904     return llvm::GlobalVariable::InitialExecTLSModel;
905   case CodeGenOptions::LocalExecTLSModel:
906     return llvm::GlobalVariable::LocalExecTLSModel;
907   }
908   llvm_unreachable("Invalid TLS model!");
909 }
910 
911 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
912   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
913 
914   llvm::GlobalValue::ThreadLocalMode TLM;
915   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
916 
917   // Override the TLS model if it is explicitly specified.
918   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
919     TLM = GetLLVMTLSModel(Attr->getModel());
920   }
921 
922   GV->setThreadLocalMode(TLM);
923 }
924 
925 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
926                                           StringRef Name) {
927   const TargetInfo &Target = CGM.getTarget();
928   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
929 }
930 
931 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
932                                                  const CPUSpecificAttr *Attr,
933                                                  unsigned CPUIndex,
934                                                  raw_ostream &Out) {
935   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
936   // supported.
937   if (Attr)
938     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
939   else if (CGM.getTarget().supportsIFunc())
940     Out << ".resolver";
941 }
942 
943 static void AppendTargetMangling(const CodeGenModule &CGM,
944                                  const TargetAttr *Attr, raw_ostream &Out) {
945   if (Attr->isDefaultVersion())
946     return;
947 
948   Out << '.';
949   const TargetInfo &Target = CGM.getTarget();
950   TargetAttr::ParsedTargetAttr Info =
951       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
952         // Multiversioning doesn't allow "no-${feature}", so we can
953         // only have "+" prefixes here.
954         assert(LHS.startswith("+") && RHS.startswith("+") &&
955                "Features should always have a prefix.");
956         return Target.multiVersionSortPriority(LHS.substr(1)) >
957                Target.multiVersionSortPriority(RHS.substr(1));
958       });
959 
960   bool IsFirst = true;
961 
962   if (!Info.Architecture.empty()) {
963     IsFirst = false;
964     Out << "arch_" << Info.Architecture;
965   }
966 
967   for (StringRef Feat : Info.Features) {
968     if (!IsFirst)
969       Out << '_';
970     IsFirst = false;
971     Out << Feat.substr(1);
972   }
973 }
974 
975 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
976                                       const NamedDecl *ND,
977                                       bool OmitMultiVersionMangling = false) {
978   SmallString<256> Buffer;
979   llvm::raw_svector_ostream Out(Buffer);
980   MangleContext &MC = CGM.getCXXABI().getMangleContext();
981   if (MC.shouldMangleDeclName(ND)) {
982     llvm::raw_svector_ostream Out(Buffer);
983     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
984       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
985     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
986       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
987     else
988       MC.mangleName(ND, Out);
989   } else {
990     IdentifierInfo *II = ND->getIdentifier();
991     assert(II && "Attempt to mangle unnamed decl.");
992     const auto *FD = dyn_cast<FunctionDecl>(ND);
993 
994     if (FD &&
995         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
996       llvm::raw_svector_ostream Out(Buffer);
997       Out << "__regcall3__" << II->getName();
998     } else {
999       Out << II->getName();
1000     }
1001   }
1002 
1003   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1004     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1005       switch (FD->getMultiVersionKind()) {
1006       case MultiVersionKind::CPUDispatch:
1007       case MultiVersionKind::CPUSpecific:
1008         AppendCPUSpecificCPUDispatchMangling(CGM,
1009                                              FD->getAttr<CPUSpecificAttr>(),
1010                                              GD.getMultiVersionIndex(), Out);
1011         break;
1012       case MultiVersionKind::Target:
1013         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1014         break;
1015       case MultiVersionKind::None:
1016         llvm_unreachable("None multiversion type isn't valid here");
1017       }
1018     }
1019 
1020   return Out.str();
1021 }
1022 
1023 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1024                                             const FunctionDecl *FD) {
1025   if (!FD->isMultiVersion())
1026     return;
1027 
1028   // Get the name of what this would be without the 'target' attribute.  This
1029   // allows us to lookup the version that was emitted when this wasn't a
1030   // multiversion function.
1031   std::string NonTargetName =
1032       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1033   GlobalDecl OtherGD;
1034   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1035     assert(OtherGD.getCanonicalDecl()
1036                .getDecl()
1037                ->getAsFunction()
1038                ->isMultiVersion() &&
1039            "Other GD should now be a multiversioned function");
1040     // OtherFD is the version of this function that was mangled BEFORE
1041     // becoming a MultiVersion function.  It potentially needs to be updated.
1042     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1043                                       .getDecl()
1044                                       ->getAsFunction()
1045                                       ->getMostRecentDecl();
1046     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1047     // This is so that if the initial version was already the 'default'
1048     // version, we don't try to update it.
1049     if (OtherName != NonTargetName) {
1050       // Remove instead of erase, since others may have stored the StringRef
1051       // to this.
1052       const auto ExistingRecord = Manglings.find(NonTargetName);
1053       if (ExistingRecord != std::end(Manglings))
1054         Manglings.remove(&(*ExistingRecord));
1055       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1056       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1057       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1058         Entry->setName(OtherName);
1059     }
1060   }
1061 }
1062 
1063 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1064   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1065 
1066   // Some ABIs don't have constructor variants.  Make sure that base and
1067   // complete constructors get mangled the same.
1068   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1069     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1070       CXXCtorType OrigCtorType = GD.getCtorType();
1071       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1072       if (OrigCtorType == Ctor_Base)
1073         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1074     }
1075   }
1076 
1077   auto FoundName = MangledDeclNames.find(CanonicalGD);
1078   if (FoundName != MangledDeclNames.end())
1079     return FoundName->second;
1080 
1081   // Keep the first result in the case of a mangling collision.
1082   const auto *ND = cast<NamedDecl>(GD.getDecl());
1083   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1084 
1085   // Postfix kernel stub names with .stub to differentiate them from kernel
1086   // names in device binaries. This is to facilitate the debugger to find
1087   // the correct symbols for kernels in the device binary.
1088   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1089     if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1090         FD->hasAttr<CUDAGlobalAttr>())
1091       MangledName = MangledName + ".stub";
1092 
1093   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1094   return MangledDeclNames[CanonicalGD] = Result.first->first();
1095 }
1096 
1097 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1098                                              const BlockDecl *BD) {
1099   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1100   const Decl *D = GD.getDecl();
1101 
1102   SmallString<256> Buffer;
1103   llvm::raw_svector_ostream Out(Buffer);
1104   if (!D)
1105     MangleCtx.mangleGlobalBlock(BD,
1106       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1107   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1108     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1109   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1110     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1111   else
1112     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1113 
1114   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1115   return Result.first->first();
1116 }
1117 
1118 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1119   return getModule().getNamedValue(Name);
1120 }
1121 
1122 /// AddGlobalCtor - Add a function to the list that will be called before
1123 /// main() runs.
1124 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1125                                   llvm::Constant *AssociatedData) {
1126   // FIXME: Type coercion of void()* types.
1127   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1128 }
1129 
1130 /// AddGlobalDtor - Add a function to the list that will be called
1131 /// when the module is unloaded.
1132 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1133   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1134     DtorsUsingAtExit[Priority].push_back(Dtor);
1135     return;
1136   }
1137 
1138   // FIXME: Type coercion of void()* types.
1139   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1140 }
1141 
1142 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1143   if (Fns.empty()) return;
1144 
1145   // Ctor function type is void()*.
1146   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1147   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1148       TheModule.getDataLayout().getProgramAddressSpace());
1149 
1150   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1151   llvm::StructType *CtorStructTy = llvm::StructType::get(
1152       Int32Ty, CtorPFTy, VoidPtrTy);
1153 
1154   // Construct the constructor and destructor arrays.
1155   ConstantInitBuilder builder(*this);
1156   auto ctors = builder.beginArray(CtorStructTy);
1157   for (const auto &I : Fns) {
1158     auto ctor = ctors.beginStruct(CtorStructTy);
1159     ctor.addInt(Int32Ty, I.Priority);
1160     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1161     if (I.AssociatedData)
1162       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1163     else
1164       ctor.addNullPointer(VoidPtrTy);
1165     ctor.finishAndAddTo(ctors);
1166   }
1167 
1168   auto list =
1169     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1170                                 /*constant*/ false,
1171                                 llvm::GlobalValue::AppendingLinkage);
1172 
1173   // The LTO linker doesn't seem to like it when we set an alignment
1174   // on appending variables.  Take it off as a workaround.
1175   list->setAlignment(0);
1176 
1177   Fns.clear();
1178 }
1179 
1180 llvm::GlobalValue::LinkageTypes
1181 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1182   const auto *D = cast<FunctionDecl>(GD.getDecl());
1183 
1184   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1185 
1186   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1187     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1188 
1189   if (isa<CXXConstructorDecl>(D) &&
1190       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1191       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1192     // Our approach to inheriting constructors is fundamentally different from
1193     // that used by the MS ABI, so keep our inheriting constructor thunks
1194     // internal rather than trying to pick an unambiguous mangling for them.
1195     return llvm::GlobalValue::InternalLinkage;
1196   }
1197 
1198   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1199 }
1200 
1201 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1202   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1203   if (!MDS) return nullptr;
1204 
1205   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1206 }
1207 
1208 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1209                                               const CGFunctionInfo &Info,
1210                                               llvm::Function *F) {
1211   unsigned CallingConv;
1212   llvm::AttributeList PAL;
1213   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1214   F->setAttributes(PAL);
1215   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1216 }
1217 
1218 static void removeImageAccessQualifier(std::string& TyName) {
1219   std::string ReadOnlyQual("__read_only");
1220   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1221   if (ReadOnlyPos != std::string::npos)
1222     // "+ 1" for the space after access qualifier.
1223     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1224   else {
1225     std::string WriteOnlyQual("__write_only");
1226     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1227     if (WriteOnlyPos != std::string::npos)
1228       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1229     else {
1230       std::string ReadWriteQual("__read_write");
1231       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1232       if (ReadWritePos != std::string::npos)
1233         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1234     }
1235   }
1236 }
1237 
1238 // Returns the address space id that should be produced to the
1239 // kernel_arg_addr_space metadata. This is always fixed to the ids
1240 // as specified in the SPIR 2.0 specification in order to differentiate
1241 // for example in clGetKernelArgInfo() implementation between the address
1242 // spaces with targets without unique mapping to the OpenCL address spaces
1243 // (basically all single AS CPUs).
1244 static unsigned ArgInfoAddressSpace(LangAS AS) {
1245   switch (AS) {
1246   case LangAS::opencl_global:   return 1;
1247   case LangAS::opencl_constant: return 2;
1248   case LangAS::opencl_local:    return 3;
1249   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1250   default:
1251     return 0; // Assume private.
1252   }
1253 }
1254 
1255 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1256                                          const FunctionDecl *FD,
1257                                          CodeGenFunction *CGF) {
1258   assert(((FD && CGF) || (!FD && !CGF)) &&
1259          "Incorrect use - FD and CGF should either be both null or not!");
1260   // Create MDNodes that represent the kernel arg metadata.
1261   // Each MDNode is a list in the form of "key", N number of values which is
1262   // the same number of values as their are kernel arguments.
1263 
1264   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1265 
1266   // MDNode for the kernel argument address space qualifiers.
1267   SmallVector<llvm::Metadata *, 8> addressQuals;
1268 
1269   // MDNode for the kernel argument access qualifiers (images only).
1270   SmallVector<llvm::Metadata *, 8> accessQuals;
1271 
1272   // MDNode for the kernel argument type names.
1273   SmallVector<llvm::Metadata *, 8> argTypeNames;
1274 
1275   // MDNode for the kernel argument base type names.
1276   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1277 
1278   // MDNode for the kernel argument type qualifiers.
1279   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1280 
1281   // MDNode for the kernel argument names.
1282   SmallVector<llvm::Metadata *, 8> argNames;
1283 
1284   if (FD && CGF)
1285     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1286       const ParmVarDecl *parm = FD->getParamDecl(i);
1287       QualType ty = parm->getType();
1288       std::string typeQuals;
1289 
1290       if (ty->isPointerType()) {
1291         QualType pointeeTy = ty->getPointeeType();
1292 
1293         // Get address qualifier.
1294         addressQuals.push_back(
1295             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1296                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1297 
1298         // Get argument type name.
1299         std::string typeName =
1300             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1301 
1302         // Turn "unsigned type" to "utype"
1303         std::string::size_type pos = typeName.find("unsigned");
1304         if (pointeeTy.isCanonical() && pos != std::string::npos)
1305           typeName.erase(pos + 1, 8);
1306 
1307         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1308 
1309         std::string baseTypeName =
1310             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1311                 Policy) +
1312             "*";
1313 
1314         // Turn "unsigned type" to "utype"
1315         pos = baseTypeName.find("unsigned");
1316         if (pos != std::string::npos)
1317           baseTypeName.erase(pos + 1, 8);
1318 
1319         argBaseTypeNames.push_back(
1320             llvm::MDString::get(VMContext, baseTypeName));
1321 
1322         // Get argument type qualifiers:
1323         if (ty.isRestrictQualified())
1324           typeQuals = "restrict";
1325         if (pointeeTy.isConstQualified() ||
1326             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1327           typeQuals += typeQuals.empty() ? "const" : " const";
1328         if (pointeeTy.isVolatileQualified())
1329           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1330       } else {
1331         uint32_t AddrSpc = 0;
1332         bool isPipe = ty->isPipeType();
1333         if (ty->isImageType() || isPipe)
1334           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1335 
1336         addressQuals.push_back(
1337             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1338 
1339         // Get argument type name.
1340         std::string typeName;
1341         if (isPipe)
1342           typeName = ty.getCanonicalType()
1343                          ->getAs<PipeType>()
1344                          ->getElementType()
1345                          .getAsString(Policy);
1346         else
1347           typeName = ty.getUnqualifiedType().getAsString(Policy);
1348 
1349         // Turn "unsigned type" to "utype"
1350         std::string::size_type pos = typeName.find("unsigned");
1351         if (ty.isCanonical() && pos != std::string::npos)
1352           typeName.erase(pos + 1, 8);
1353 
1354         std::string baseTypeName;
1355         if (isPipe)
1356           baseTypeName = ty.getCanonicalType()
1357                              ->getAs<PipeType>()
1358                              ->getElementType()
1359                              .getCanonicalType()
1360                              .getAsString(Policy);
1361         else
1362           baseTypeName =
1363               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1364 
1365         // Remove access qualifiers on images
1366         // (as they are inseparable from type in clang implementation,
1367         // but OpenCL spec provides a special query to get access qualifier
1368         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1369         if (ty->isImageType()) {
1370           removeImageAccessQualifier(typeName);
1371           removeImageAccessQualifier(baseTypeName);
1372         }
1373 
1374         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1375 
1376         // Turn "unsigned type" to "utype"
1377         pos = baseTypeName.find("unsigned");
1378         if (pos != std::string::npos)
1379           baseTypeName.erase(pos + 1, 8);
1380 
1381         argBaseTypeNames.push_back(
1382             llvm::MDString::get(VMContext, baseTypeName));
1383 
1384         if (isPipe)
1385           typeQuals = "pipe";
1386       }
1387 
1388       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1389 
1390       // Get image and pipe access qualifier:
1391       if (ty->isImageType() || ty->isPipeType()) {
1392         const Decl *PDecl = parm;
1393         if (auto *TD = dyn_cast<TypedefType>(ty))
1394           PDecl = TD->getDecl();
1395         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1396         if (A && A->isWriteOnly())
1397           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1398         else if (A && A->isReadWrite())
1399           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1400         else
1401           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1402       } else
1403         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1404 
1405       // Get argument name.
1406       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1407     }
1408 
1409   Fn->setMetadata("kernel_arg_addr_space",
1410                   llvm::MDNode::get(VMContext, addressQuals));
1411   Fn->setMetadata("kernel_arg_access_qual",
1412                   llvm::MDNode::get(VMContext, accessQuals));
1413   Fn->setMetadata("kernel_arg_type",
1414                   llvm::MDNode::get(VMContext, argTypeNames));
1415   Fn->setMetadata("kernel_arg_base_type",
1416                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1417   Fn->setMetadata("kernel_arg_type_qual",
1418                   llvm::MDNode::get(VMContext, argTypeQuals));
1419   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1420     Fn->setMetadata("kernel_arg_name",
1421                     llvm::MDNode::get(VMContext, argNames));
1422 }
1423 
1424 /// Determines whether the language options require us to model
1425 /// unwind exceptions.  We treat -fexceptions as mandating this
1426 /// except under the fragile ObjC ABI with only ObjC exceptions
1427 /// enabled.  This means, for example, that C with -fexceptions
1428 /// enables this.
1429 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1430   // If exceptions are completely disabled, obviously this is false.
1431   if (!LangOpts.Exceptions) return false;
1432 
1433   // If C++ exceptions are enabled, this is true.
1434   if (LangOpts.CXXExceptions) return true;
1435 
1436   // If ObjC exceptions are enabled, this depends on the ABI.
1437   if (LangOpts.ObjCExceptions) {
1438     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1439   }
1440 
1441   return true;
1442 }
1443 
1444 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1445                                                       const CXXMethodDecl *MD) {
1446   // Check that the type metadata can ever actually be used by a call.
1447   if (!CGM.getCodeGenOpts().LTOUnit ||
1448       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1449     return false;
1450 
1451   // Only functions whose address can be taken with a member function pointer
1452   // need this sort of type metadata.
1453   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1454          !isa<CXXDestructorDecl>(MD);
1455 }
1456 
1457 std::vector<const CXXRecordDecl *>
1458 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1459   llvm::SetVector<const CXXRecordDecl *> MostBases;
1460 
1461   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1462   CollectMostBases = [&](const CXXRecordDecl *RD) {
1463     if (RD->getNumBases() == 0)
1464       MostBases.insert(RD);
1465     for (const CXXBaseSpecifier &B : RD->bases())
1466       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1467   };
1468   CollectMostBases(RD);
1469   return MostBases.takeVector();
1470 }
1471 
1472 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1473                                                            llvm::Function *F) {
1474   llvm::AttrBuilder B;
1475 
1476   if (CodeGenOpts.UnwindTables)
1477     B.addAttribute(llvm::Attribute::UWTable);
1478 
1479   if (!hasUnwindExceptions(LangOpts))
1480     B.addAttribute(llvm::Attribute::NoUnwind);
1481 
1482   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1483     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1484       B.addAttribute(llvm::Attribute::StackProtect);
1485     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1486       B.addAttribute(llvm::Attribute::StackProtectStrong);
1487     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1488       B.addAttribute(llvm::Attribute::StackProtectReq);
1489   }
1490 
1491   if (!D) {
1492     // If we don't have a declaration to control inlining, the function isn't
1493     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1494     // disabled, mark the function as noinline.
1495     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1496         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1497       B.addAttribute(llvm::Attribute::NoInline);
1498 
1499     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1500     return;
1501   }
1502 
1503   // Track whether we need to add the optnone LLVM attribute,
1504   // starting with the default for this optimization level.
1505   bool ShouldAddOptNone =
1506       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1507   // We can't add optnone in the following cases, it won't pass the verifier.
1508   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1509   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1510   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1511 
1512   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1513     B.addAttribute(llvm::Attribute::OptimizeNone);
1514 
1515     // OptimizeNone implies noinline; we should not be inlining such functions.
1516     B.addAttribute(llvm::Attribute::NoInline);
1517     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1518            "OptimizeNone and AlwaysInline on same function!");
1519 
1520     // We still need to handle naked functions even though optnone subsumes
1521     // much of their semantics.
1522     if (D->hasAttr<NakedAttr>())
1523       B.addAttribute(llvm::Attribute::Naked);
1524 
1525     // OptimizeNone wins over OptimizeForSize and MinSize.
1526     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1527     F->removeFnAttr(llvm::Attribute::MinSize);
1528   } else if (D->hasAttr<NakedAttr>()) {
1529     // Naked implies noinline: we should not be inlining such functions.
1530     B.addAttribute(llvm::Attribute::Naked);
1531     B.addAttribute(llvm::Attribute::NoInline);
1532   } else if (D->hasAttr<NoDuplicateAttr>()) {
1533     B.addAttribute(llvm::Attribute::NoDuplicate);
1534   } else if (D->hasAttr<NoInlineAttr>()) {
1535     B.addAttribute(llvm::Attribute::NoInline);
1536   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1537              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1538     // (noinline wins over always_inline, and we can't specify both in IR)
1539     B.addAttribute(llvm::Attribute::AlwaysInline);
1540   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1541     // If we're not inlining, then force everything that isn't always_inline to
1542     // carry an explicit noinline attribute.
1543     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1544       B.addAttribute(llvm::Attribute::NoInline);
1545   } else {
1546     // Otherwise, propagate the inline hint attribute and potentially use its
1547     // absence to mark things as noinline.
1548     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1549       // Search function and template pattern redeclarations for inline.
1550       auto CheckForInline = [](const FunctionDecl *FD) {
1551         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1552           return Redecl->isInlineSpecified();
1553         };
1554         if (any_of(FD->redecls(), CheckRedeclForInline))
1555           return true;
1556         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1557         if (!Pattern)
1558           return false;
1559         return any_of(Pattern->redecls(), CheckRedeclForInline);
1560       };
1561       if (CheckForInline(FD)) {
1562         B.addAttribute(llvm::Attribute::InlineHint);
1563       } else if (CodeGenOpts.getInlining() ==
1564                      CodeGenOptions::OnlyHintInlining &&
1565                  !FD->isInlined() &&
1566                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1567         B.addAttribute(llvm::Attribute::NoInline);
1568       }
1569     }
1570   }
1571 
1572   // Add other optimization related attributes if we are optimizing this
1573   // function.
1574   if (!D->hasAttr<OptimizeNoneAttr>()) {
1575     if (D->hasAttr<ColdAttr>()) {
1576       if (!ShouldAddOptNone)
1577         B.addAttribute(llvm::Attribute::OptimizeForSize);
1578       B.addAttribute(llvm::Attribute::Cold);
1579     }
1580 
1581     if (D->hasAttr<MinSizeAttr>())
1582       B.addAttribute(llvm::Attribute::MinSize);
1583   }
1584 
1585   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1586 
1587   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1588   if (alignment)
1589     F->setAlignment(alignment);
1590 
1591   if (!D->hasAttr<AlignedAttr>())
1592     if (LangOpts.FunctionAlignment)
1593       F->setAlignment(1 << LangOpts.FunctionAlignment);
1594 
1595   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1596   // reserve a bit for differentiating between virtual and non-virtual member
1597   // functions. If the current target's C++ ABI requires this and this is a
1598   // member function, set its alignment accordingly.
1599   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1600     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1601       F->setAlignment(2);
1602   }
1603 
1604   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1605   if (CodeGenOpts.SanitizeCfiCrossDso)
1606     if (auto *FD = dyn_cast<FunctionDecl>(D))
1607       CreateFunctionTypeMetadataForIcall(FD, F);
1608 
1609   // Emit type metadata on member functions for member function pointer checks.
1610   // These are only ever necessary on definitions; we're guaranteed that the
1611   // definition will be present in the LTO unit as a result of LTO visibility.
1612   auto *MD = dyn_cast<CXXMethodDecl>(D);
1613   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1614     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1615       llvm::Metadata *Id =
1616           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1617               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1618       F->addTypeMetadata(0, Id);
1619     }
1620   }
1621 }
1622 
1623 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1624   const Decl *D = GD.getDecl();
1625   if (dyn_cast_or_null<NamedDecl>(D))
1626     setGVProperties(GV, GD);
1627   else
1628     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1629 
1630   if (D && D->hasAttr<UsedAttr>())
1631     addUsedGlobal(GV);
1632 
1633   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1634     const auto *VD = cast<VarDecl>(D);
1635     if (VD->getType().isConstQualified() &&
1636         VD->getStorageDuration() == SD_Static)
1637       addUsedGlobal(GV);
1638   }
1639 }
1640 
1641 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1642                                                 llvm::AttrBuilder &Attrs) {
1643   // Add target-cpu and target-features attributes to functions. If
1644   // we have a decl for the function and it has a target attribute then
1645   // parse that and add it to the feature set.
1646   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1647   std::vector<std::string> Features;
1648   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1649   FD = FD ? FD->getMostRecentDecl() : FD;
1650   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1651   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1652   bool AddedAttr = false;
1653   if (TD || SD) {
1654     llvm::StringMap<bool> FeatureMap;
1655     getFunctionFeatureMap(FeatureMap, GD);
1656 
1657     // Produce the canonical string for this set of features.
1658     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1659       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1660 
1661     // Now add the target-cpu and target-features to the function.
1662     // While we populated the feature map above, we still need to
1663     // get and parse the target attribute so we can get the cpu for
1664     // the function.
1665     if (TD) {
1666       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1667       if (ParsedAttr.Architecture != "" &&
1668           getTarget().isValidCPUName(ParsedAttr.Architecture))
1669         TargetCPU = ParsedAttr.Architecture;
1670     }
1671   } else {
1672     // Otherwise just add the existing target cpu and target features to the
1673     // function.
1674     Features = getTarget().getTargetOpts().Features;
1675   }
1676 
1677   if (TargetCPU != "") {
1678     Attrs.addAttribute("target-cpu", TargetCPU);
1679     AddedAttr = true;
1680   }
1681   if (!Features.empty()) {
1682     llvm::sort(Features);
1683     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1684     AddedAttr = true;
1685   }
1686 
1687   return AddedAttr;
1688 }
1689 
1690 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1691                                           llvm::GlobalObject *GO) {
1692   const Decl *D = GD.getDecl();
1693   SetCommonAttributes(GD, GO);
1694 
1695   if (D) {
1696     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1697       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1698         GV->addAttribute("bss-section", SA->getName());
1699       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1700         GV->addAttribute("data-section", SA->getName());
1701       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1702         GV->addAttribute("rodata-section", SA->getName());
1703     }
1704 
1705     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1706       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1707         if (!D->getAttr<SectionAttr>())
1708           F->addFnAttr("implicit-section-name", SA->getName());
1709 
1710       llvm::AttrBuilder Attrs;
1711       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1712         // We know that GetCPUAndFeaturesAttributes will always have the
1713         // newest set, since it has the newest possible FunctionDecl, so the
1714         // new ones should replace the old.
1715         F->removeFnAttr("target-cpu");
1716         F->removeFnAttr("target-features");
1717         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1718       }
1719     }
1720 
1721     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1722       GO->setSection(CSA->getName());
1723     else if (const auto *SA = D->getAttr<SectionAttr>())
1724       GO->setSection(SA->getName());
1725   }
1726 
1727   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1728 }
1729 
1730 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1731                                                   llvm::Function *F,
1732                                                   const CGFunctionInfo &FI) {
1733   const Decl *D = GD.getDecl();
1734   SetLLVMFunctionAttributes(GD, FI, F);
1735   SetLLVMFunctionAttributesForDefinition(D, F);
1736 
1737   F->setLinkage(llvm::Function::InternalLinkage);
1738 
1739   setNonAliasAttributes(GD, F);
1740 }
1741 
1742 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1743   // Set linkage and visibility in case we never see a definition.
1744   LinkageInfo LV = ND->getLinkageAndVisibility();
1745   // Don't set internal linkage on declarations.
1746   // "extern_weak" is overloaded in LLVM; we probably should have
1747   // separate linkage types for this.
1748   if (isExternallyVisible(LV.getLinkage()) &&
1749       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1750     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1751 }
1752 
1753 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1754                                                        llvm::Function *F) {
1755   // Only if we are checking indirect calls.
1756   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1757     return;
1758 
1759   // Non-static class methods are handled via vtable or member function pointer
1760   // checks elsewhere.
1761   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1762     return;
1763 
1764   // Additionally, if building with cross-DSO support...
1765   if (CodeGenOpts.SanitizeCfiCrossDso) {
1766     // Skip available_externally functions. They won't be codegen'ed in the
1767     // current module anyway.
1768     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1769       return;
1770   }
1771 
1772   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1773   F->addTypeMetadata(0, MD);
1774   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1775 
1776   // Emit a hash-based bit set entry for cross-DSO calls.
1777   if (CodeGenOpts.SanitizeCfiCrossDso)
1778     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1779       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1780 }
1781 
1782 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1783                                           bool IsIncompleteFunction,
1784                                           bool IsThunk) {
1785 
1786   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1787     // If this is an intrinsic function, set the function's attributes
1788     // to the intrinsic's attributes.
1789     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1790     return;
1791   }
1792 
1793   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1794 
1795   if (!IsIncompleteFunction)
1796     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1797 
1798   // Add the Returned attribute for "this", except for iOS 5 and earlier
1799   // where substantial code, including the libstdc++ dylib, was compiled with
1800   // GCC and does not actually return "this".
1801   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1802       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1803     assert(!F->arg_empty() &&
1804            F->arg_begin()->getType()
1805              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1806            "unexpected this return");
1807     F->addAttribute(1, llvm::Attribute::Returned);
1808   }
1809 
1810   // Only a few attributes are set on declarations; these may later be
1811   // overridden by a definition.
1812 
1813   setLinkageForGV(F, FD);
1814   setGVProperties(F, FD);
1815 
1816   // Setup target-specific attributes.
1817   if (!IsIncompleteFunction && F->isDeclaration())
1818     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1819 
1820   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1821     F->setSection(CSA->getName());
1822   else if (const auto *SA = FD->getAttr<SectionAttr>())
1823      F->setSection(SA->getName());
1824 
1825   if (FD->isReplaceableGlobalAllocationFunction()) {
1826     // A replaceable global allocation function does not act like a builtin by
1827     // default, only if it is invoked by a new-expression or delete-expression.
1828     F->addAttribute(llvm::AttributeList::FunctionIndex,
1829                     llvm::Attribute::NoBuiltin);
1830 
1831     // A sane operator new returns a non-aliasing pointer.
1832     // FIXME: Also add NonNull attribute to the return value
1833     // for the non-nothrow forms?
1834     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1835     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1836         (Kind == OO_New || Kind == OO_Array_New))
1837       F->addAttribute(llvm::AttributeList::ReturnIndex,
1838                       llvm::Attribute::NoAlias);
1839   }
1840 
1841   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1842     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1843   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1844     if (MD->isVirtual())
1845       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1846 
1847   // Don't emit entries for function declarations in the cross-DSO mode. This
1848   // is handled with better precision by the receiving DSO.
1849   if (!CodeGenOpts.SanitizeCfiCrossDso)
1850     CreateFunctionTypeMetadataForIcall(FD, F);
1851 
1852   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1853     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1854 
1855   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1856     // Annotate the callback behavior as metadata:
1857     //  - The callback callee (as argument number).
1858     //  - The callback payloads (as argument numbers).
1859     llvm::LLVMContext &Ctx = F->getContext();
1860     llvm::MDBuilder MDB(Ctx);
1861 
1862     // The payload indices are all but the first one in the encoding. The first
1863     // identifies the callback callee.
1864     int CalleeIdx = *CB->encoding_begin();
1865     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1866     F->addMetadata(llvm::LLVMContext::MD_callback,
1867                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1868                                                CalleeIdx, PayloadIndices,
1869                                                /* VarArgsArePassed */ false)}));
1870   }
1871 }
1872 
1873 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1874   assert(!GV->isDeclaration() &&
1875          "Only globals with definition can force usage.");
1876   LLVMUsed.emplace_back(GV);
1877 }
1878 
1879 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1880   assert(!GV->isDeclaration() &&
1881          "Only globals with definition can force usage.");
1882   LLVMCompilerUsed.emplace_back(GV);
1883 }
1884 
1885 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1886                      std::vector<llvm::WeakTrackingVH> &List) {
1887   // Don't create llvm.used if there is no need.
1888   if (List.empty())
1889     return;
1890 
1891   // Convert List to what ConstantArray needs.
1892   SmallVector<llvm::Constant*, 8> UsedArray;
1893   UsedArray.resize(List.size());
1894   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1895     UsedArray[i] =
1896         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1897             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1898   }
1899 
1900   if (UsedArray.empty())
1901     return;
1902   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1903 
1904   auto *GV = new llvm::GlobalVariable(
1905       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1906       llvm::ConstantArray::get(ATy, UsedArray), Name);
1907 
1908   GV->setSection("llvm.metadata");
1909 }
1910 
1911 void CodeGenModule::emitLLVMUsed() {
1912   emitUsed(*this, "llvm.used", LLVMUsed);
1913   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1914 }
1915 
1916 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1917   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1918   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1919 }
1920 
1921 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1922   llvm::SmallString<32> Opt;
1923   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1924   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1925   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1926 }
1927 
1928 void CodeGenModule::AddDependentLib(StringRef Lib) {
1929   auto &C = getLLVMContext();
1930   if (getTarget().getTriple().isOSBinFormatELF()) {
1931       ELFDependentLibraries.push_back(
1932         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1933     return;
1934   }
1935 
1936   llvm::SmallString<24> Opt;
1937   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1938   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1939   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1940 }
1941 
1942 /// Add link options implied by the given module, including modules
1943 /// it depends on, using a postorder walk.
1944 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1945                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1946                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1947   // Import this module's parent.
1948   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1949     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1950   }
1951 
1952   // Import this module's dependencies.
1953   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1954     if (Visited.insert(Mod->Imports[I - 1]).second)
1955       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1956   }
1957 
1958   // Add linker options to link against the libraries/frameworks
1959   // described by this module.
1960   llvm::LLVMContext &Context = CGM.getLLVMContext();
1961   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1962 
1963   // For modules that use export_as for linking, use that module
1964   // name instead.
1965   if (Mod->UseExportAsModuleLinkName)
1966     return;
1967 
1968   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1969     // Link against a framework.  Frameworks are currently Darwin only, so we
1970     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1971     if (Mod->LinkLibraries[I-1].IsFramework) {
1972       llvm::Metadata *Args[2] = {
1973           llvm::MDString::get(Context, "-framework"),
1974           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1975 
1976       Metadata.push_back(llvm::MDNode::get(Context, Args));
1977       continue;
1978     }
1979 
1980     // Link against a library.
1981     if (IsELF) {
1982       llvm::Metadata *Args[2] = {
1983           llvm::MDString::get(Context, "lib"),
1984           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1985       };
1986       Metadata.push_back(llvm::MDNode::get(Context, Args));
1987     } else {
1988       llvm::SmallString<24> Opt;
1989       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1990           Mod->LinkLibraries[I - 1].Library, Opt);
1991       auto *OptString = llvm::MDString::get(Context, Opt);
1992       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1993     }
1994   }
1995 }
1996 
1997 void CodeGenModule::EmitModuleLinkOptions() {
1998   // Collect the set of all of the modules we want to visit to emit link
1999   // options, which is essentially the imported modules and all of their
2000   // non-explicit child modules.
2001   llvm::SetVector<clang::Module *> LinkModules;
2002   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2003   SmallVector<clang::Module *, 16> Stack;
2004 
2005   // Seed the stack with imported modules.
2006   for (Module *M : ImportedModules) {
2007     // Do not add any link flags when an implementation TU of a module imports
2008     // a header of that same module.
2009     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2010         !getLangOpts().isCompilingModule())
2011       continue;
2012     if (Visited.insert(M).second)
2013       Stack.push_back(M);
2014   }
2015 
2016   // Find all of the modules to import, making a little effort to prune
2017   // non-leaf modules.
2018   while (!Stack.empty()) {
2019     clang::Module *Mod = Stack.pop_back_val();
2020 
2021     bool AnyChildren = false;
2022 
2023     // Visit the submodules of this module.
2024     for (const auto &SM : Mod->submodules()) {
2025       // Skip explicit children; they need to be explicitly imported to be
2026       // linked against.
2027       if (SM->IsExplicit)
2028         continue;
2029 
2030       if (Visited.insert(SM).second) {
2031         Stack.push_back(SM);
2032         AnyChildren = true;
2033       }
2034     }
2035 
2036     // We didn't find any children, so add this module to the list of
2037     // modules to link against.
2038     if (!AnyChildren) {
2039       LinkModules.insert(Mod);
2040     }
2041   }
2042 
2043   // Add link options for all of the imported modules in reverse topological
2044   // order.  We don't do anything to try to order import link flags with respect
2045   // to linker options inserted by things like #pragma comment().
2046   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2047   Visited.clear();
2048   for (Module *M : LinkModules)
2049     if (Visited.insert(M).second)
2050       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2051   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2052   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2053 
2054   // Add the linker options metadata flag.
2055   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2056   for (auto *MD : LinkerOptionsMetadata)
2057     NMD->addOperand(MD);
2058 }
2059 
2060 void CodeGenModule::EmitDeferred() {
2061   // Emit deferred declare target declarations.
2062   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2063     getOpenMPRuntime().emitDeferredTargetDecls();
2064 
2065   // Emit code for any potentially referenced deferred decls.  Since a
2066   // previously unused static decl may become used during the generation of code
2067   // for a static function, iterate until no changes are made.
2068 
2069   if (!DeferredVTables.empty()) {
2070     EmitDeferredVTables();
2071 
2072     // Emitting a vtable doesn't directly cause more vtables to
2073     // become deferred, although it can cause functions to be
2074     // emitted that then need those vtables.
2075     assert(DeferredVTables.empty());
2076   }
2077 
2078   // Stop if we're out of both deferred vtables and deferred declarations.
2079   if (DeferredDeclsToEmit.empty())
2080     return;
2081 
2082   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2083   // work, it will not interfere with this.
2084   std::vector<GlobalDecl> CurDeclsToEmit;
2085   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2086 
2087   for (GlobalDecl &D : CurDeclsToEmit) {
2088     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2089     // to get GlobalValue with exactly the type we need, not something that
2090     // might had been created for another decl with the same mangled name but
2091     // different type.
2092     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2093         GetAddrOfGlobal(D, ForDefinition));
2094 
2095     // In case of different address spaces, we may still get a cast, even with
2096     // IsForDefinition equal to true. Query mangled names table to get
2097     // GlobalValue.
2098     if (!GV)
2099       GV = GetGlobalValue(getMangledName(D));
2100 
2101     // Make sure GetGlobalValue returned non-null.
2102     assert(GV);
2103 
2104     // Check to see if we've already emitted this.  This is necessary
2105     // for a couple of reasons: first, decls can end up in the
2106     // deferred-decls queue multiple times, and second, decls can end
2107     // up with definitions in unusual ways (e.g. by an extern inline
2108     // function acquiring a strong function redefinition).  Just
2109     // ignore these cases.
2110     if (!GV->isDeclaration())
2111       continue;
2112 
2113     // Otherwise, emit the definition and move on to the next one.
2114     EmitGlobalDefinition(D, GV);
2115 
2116     // If we found out that we need to emit more decls, do that recursively.
2117     // This has the advantage that the decls are emitted in a DFS and related
2118     // ones are close together, which is convenient for testing.
2119     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2120       EmitDeferred();
2121       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2122     }
2123   }
2124 }
2125 
2126 void CodeGenModule::EmitVTablesOpportunistically() {
2127   // Try to emit external vtables as available_externally if they have emitted
2128   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2129   // is not allowed to create new references to things that need to be emitted
2130   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2131 
2132   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2133          && "Only emit opportunistic vtables with optimizations");
2134 
2135   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2136     assert(getVTables().isVTableExternal(RD) &&
2137            "This queue should only contain external vtables");
2138     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2139       VTables.GenerateClassData(RD);
2140   }
2141   OpportunisticVTables.clear();
2142 }
2143 
2144 void CodeGenModule::EmitGlobalAnnotations() {
2145   if (Annotations.empty())
2146     return;
2147 
2148   // Create a new global variable for the ConstantStruct in the Module.
2149   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2150     Annotations[0]->getType(), Annotations.size()), Annotations);
2151   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2152                                       llvm::GlobalValue::AppendingLinkage,
2153                                       Array, "llvm.global.annotations");
2154   gv->setSection(AnnotationSection);
2155 }
2156 
2157 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2158   llvm::Constant *&AStr = AnnotationStrings[Str];
2159   if (AStr)
2160     return AStr;
2161 
2162   // Not found yet, create a new global.
2163   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2164   auto *gv =
2165       new llvm::GlobalVariable(getModule(), s->getType(), true,
2166                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2167   gv->setSection(AnnotationSection);
2168   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2169   AStr = gv;
2170   return gv;
2171 }
2172 
2173 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2174   SourceManager &SM = getContext().getSourceManager();
2175   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2176   if (PLoc.isValid())
2177     return EmitAnnotationString(PLoc.getFilename());
2178   return EmitAnnotationString(SM.getBufferName(Loc));
2179 }
2180 
2181 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2182   SourceManager &SM = getContext().getSourceManager();
2183   PresumedLoc PLoc = SM.getPresumedLoc(L);
2184   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2185     SM.getExpansionLineNumber(L);
2186   return llvm::ConstantInt::get(Int32Ty, LineNo);
2187 }
2188 
2189 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2190                                                 const AnnotateAttr *AA,
2191                                                 SourceLocation L) {
2192   // Get the globals for file name, annotation, and the line number.
2193   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2194                  *UnitGV = EmitAnnotationUnit(L),
2195                  *LineNoCst = EmitAnnotationLineNo(L);
2196 
2197   // Create the ConstantStruct for the global annotation.
2198   llvm::Constant *Fields[4] = {
2199     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2200     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2201     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2202     LineNoCst
2203   };
2204   return llvm::ConstantStruct::getAnon(Fields);
2205 }
2206 
2207 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2208                                          llvm::GlobalValue *GV) {
2209   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2210   // Get the struct elements for these annotations.
2211   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2212     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2213 }
2214 
2215 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2216                                            llvm::Function *Fn,
2217                                            SourceLocation Loc) const {
2218   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2219   // Blacklist by function name.
2220   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2221     return true;
2222   // Blacklist by location.
2223   if (Loc.isValid())
2224     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2225   // If location is unknown, this may be a compiler-generated function. Assume
2226   // it's located in the main file.
2227   auto &SM = Context.getSourceManager();
2228   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2229     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2230   }
2231   return false;
2232 }
2233 
2234 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2235                                            SourceLocation Loc, QualType Ty,
2236                                            StringRef Category) const {
2237   // For now globals can be blacklisted only in ASan and KASan.
2238   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2239       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2240        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2241   if (!EnabledAsanMask)
2242     return false;
2243   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2244   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2245     return true;
2246   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2247     return true;
2248   // Check global type.
2249   if (!Ty.isNull()) {
2250     // Drill down the array types: if global variable of a fixed type is
2251     // blacklisted, we also don't instrument arrays of them.
2252     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2253       Ty = AT->getElementType();
2254     Ty = Ty.getCanonicalType().getUnqualifiedType();
2255     // We allow to blacklist only record types (classes, structs etc.)
2256     if (Ty->isRecordType()) {
2257       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2258       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2259         return true;
2260     }
2261   }
2262   return false;
2263 }
2264 
2265 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2266                                    StringRef Category) const {
2267   const auto &XRayFilter = getContext().getXRayFilter();
2268   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2269   auto Attr = ImbueAttr::NONE;
2270   if (Loc.isValid())
2271     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2272   if (Attr == ImbueAttr::NONE)
2273     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2274   switch (Attr) {
2275   case ImbueAttr::NONE:
2276     return false;
2277   case ImbueAttr::ALWAYS:
2278     Fn->addFnAttr("function-instrument", "xray-always");
2279     break;
2280   case ImbueAttr::ALWAYS_ARG1:
2281     Fn->addFnAttr("function-instrument", "xray-always");
2282     Fn->addFnAttr("xray-log-args", "1");
2283     break;
2284   case ImbueAttr::NEVER:
2285     Fn->addFnAttr("function-instrument", "xray-never");
2286     break;
2287   }
2288   return true;
2289 }
2290 
2291 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2292   // Never defer when EmitAllDecls is specified.
2293   if (LangOpts.EmitAllDecls)
2294     return true;
2295 
2296   if (CodeGenOpts.KeepStaticConsts) {
2297     const auto *VD = dyn_cast<VarDecl>(Global);
2298     if (VD && VD->getType().isConstQualified() &&
2299         VD->getStorageDuration() == SD_Static)
2300       return true;
2301   }
2302 
2303   return getContext().DeclMustBeEmitted(Global);
2304 }
2305 
2306 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2307   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2308     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2309       // Implicit template instantiations may change linkage if they are later
2310       // explicitly instantiated, so they should not be emitted eagerly.
2311       return false;
2312   if (const auto *VD = dyn_cast<VarDecl>(Global))
2313     if (Context.getInlineVariableDefinitionKind(VD) ==
2314         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2315       // A definition of an inline constexpr static data member may change
2316       // linkage later if it's redeclared outside the class.
2317       return false;
2318   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2319   // codegen for global variables, because they may be marked as threadprivate.
2320   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2321       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2322       !isTypeConstant(Global->getType(), false) &&
2323       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2324     return false;
2325 
2326   return true;
2327 }
2328 
2329 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2330     const CXXUuidofExpr* E) {
2331   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2332   // well-formed.
2333   StringRef Uuid = E->getUuidStr();
2334   std::string Name = "_GUID_" + Uuid.lower();
2335   std::replace(Name.begin(), Name.end(), '-', '_');
2336 
2337   // The UUID descriptor should be pointer aligned.
2338   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2339 
2340   // Look for an existing global.
2341   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2342     return ConstantAddress(GV, Alignment);
2343 
2344   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2345   assert(Init && "failed to initialize as constant");
2346 
2347   auto *GV = new llvm::GlobalVariable(
2348       getModule(), Init->getType(),
2349       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2350   if (supportsCOMDAT())
2351     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2352   setDSOLocal(GV);
2353   return ConstantAddress(GV, Alignment);
2354 }
2355 
2356 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2357   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2358   assert(AA && "No alias?");
2359 
2360   CharUnits Alignment = getContext().getDeclAlign(VD);
2361   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2362 
2363   // See if there is already something with the target's name in the module.
2364   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2365   if (Entry) {
2366     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2367     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2368     return ConstantAddress(Ptr, Alignment);
2369   }
2370 
2371   llvm::Constant *Aliasee;
2372   if (isa<llvm::FunctionType>(DeclTy))
2373     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2374                                       GlobalDecl(cast<FunctionDecl>(VD)),
2375                                       /*ForVTable=*/false);
2376   else
2377     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2378                                     llvm::PointerType::getUnqual(DeclTy),
2379                                     nullptr);
2380 
2381   auto *F = cast<llvm::GlobalValue>(Aliasee);
2382   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2383   WeakRefReferences.insert(F);
2384 
2385   return ConstantAddress(Aliasee, Alignment);
2386 }
2387 
2388 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2389   const auto *Global = cast<ValueDecl>(GD.getDecl());
2390 
2391   // Weak references don't produce any output by themselves.
2392   if (Global->hasAttr<WeakRefAttr>())
2393     return;
2394 
2395   // If this is an alias definition (which otherwise looks like a declaration)
2396   // emit it now.
2397   if (Global->hasAttr<AliasAttr>())
2398     return EmitAliasDefinition(GD);
2399 
2400   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2401   if (Global->hasAttr<IFuncAttr>())
2402     return emitIFuncDefinition(GD);
2403 
2404   // If this is a cpu_dispatch multiversion function, emit the resolver.
2405   if (Global->hasAttr<CPUDispatchAttr>())
2406     return emitCPUDispatchDefinition(GD);
2407 
2408   // If this is CUDA, be selective about which declarations we emit.
2409   if (LangOpts.CUDA) {
2410     if (LangOpts.CUDAIsDevice) {
2411       if (!Global->hasAttr<CUDADeviceAttr>() &&
2412           !Global->hasAttr<CUDAGlobalAttr>() &&
2413           !Global->hasAttr<CUDAConstantAttr>() &&
2414           !Global->hasAttr<CUDASharedAttr>())
2415         return;
2416     } else {
2417       // We need to emit host-side 'shadows' for all global
2418       // device-side variables because the CUDA runtime needs their
2419       // size and host-side address in order to provide access to
2420       // their device-side incarnations.
2421 
2422       // So device-only functions are the only things we skip.
2423       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2424           Global->hasAttr<CUDADeviceAttr>())
2425         return;
2426 
2427       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2428              "Expected Variable or Function");
2429     }
2430   }
2431 
2432   if (LangOpts.OpenMP) {
2433     // If this is OpenMP device, check if it is legal to emit this global
2434     // normally.
2435     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2436       return;
2437     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2438       if (MustBeEmitted(Global))
2439         EmitOMPDeclareReduction(DRD);
2440       return;
2441     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2442       if (MustBeEmitted(Global))
2443         EmitOMPDeclareMapper(DMD);
2444       return;
2445     }
2446   }
2447 
2448   // Ignore declarations, they will be emitted on their first use.
2449   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2450     // Forward declarations are emitted lazily on first use.
2451     if (!FD->doesThisDeclarationHaveABody()) {
2452       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2453         return;
2454 
2455       StringRef MangledName = getMangledName(GD);
2456 
2457       // Compute the function info and LLVM type.
2458       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2459       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2460 
2461       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2462                               /*DontDefer=*/false);
2463       return;
2464     }
2465   } else {
2466     const auto *VD = cast<VarDecl>(Global);
2467     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2468     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2469         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2470       if (LangOpts.OpenMP) {
2471         // Emit declaration of the must-be-emitted declare target variable.
2472         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2473                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2474           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2475             (void)GetAddrOfGlobalVar(VD);
2476           } else {
2477             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2478                    "link claue expected.");
2479             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2480           }
2481           return;
2482         }
2483       }
2484       // If this declaration may have caused an inline variable definition to
2485       // change linkage, make sure that it's emitted.
2486       if (Context.getInlineVariableDefinitionKind(VD) ==
2487           ASTContext::InlineVariableDefinitionKind::Strong)
2488         GetAddrOfGlobalVar(VD);
2489       return;
2490     }
2491   }
2492 
2493   // Defer code generation to first use when possible, e.g. if this is an inline
2494   // function. If the global must always be emitted, do it eagerly if possible
2495   // to benefit from cache locality.
2496   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2497     // Emit the definition if it can't be deferred.
2498     EmitGlobalDefinition(GD);
2499     return;
2500   }
2501 
2502   // If we're deferring emission of a C++ variable with an
2503   // initializer, remember the order in which it appeared in the file.
2504   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2505       cast<VarDecl>(Global)->hasInit()) {
2506     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2507     CXXGlobalInits.push_back(nullptr);
2508   }
2509 
2510   StringRef MangledName = getMangledName(GD);
2511   if (GetGlobalValue(MangledName) != nullptr) {
2512     // The value has already been used and should therefore be emitted.
2513     addDeferredDeclToEmit(GD);
2514   } else if (MustBeEmitted(Global)) {
2515     // The value must be emitted, but cannot be emitted eagerly.
2516     assert(!MayBeEmittedEagerly(Global));
2517     addDeferredDeclToEmit(GD);
2518   } else {
2519     // Otherwise, remember that we saw a deferred decl with this name.  The
2520     // first use of the mangled name will cause it to move into
2521     // DeferredDeclsToEmit.
2522     DeferredDecls[MangledName] = GD;
2523   }
2524 }
2525 
2526 // Check if T is a class type with a destructor that's not dllimport.
2527 static bool HasNonDllImportDtor(QualType T) {
2528   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2529     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2530       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2531         return true;
2532 
2533   return false;
2534 }
2535 
2536 namespace {
2537   struct FunctionIsDirectlyRecursive
2538       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2539     const StringRef Name;
2540     const Builtin::Context &BI;
2541     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2542         : Name(N), BI(C) {}
2543 
2544     bool VisitCallExpr(const CallExpr *E) {
2545       const FunctionDecl *FD = E->getDirectCallee();
2546       if (!FD)
2547         return false;
2548       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2549       if (Attr && Name == Attr->getLabel())
2550         return true;
2551       unsigned BuiltinID = FD->getBuiltinID();
2552       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2553         return false;
2554       StringRef BuiltinName = BI.getName(BuiltinID);
2555       if (BuiltinName.startswith("__builtin_") &&
2556           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2557         return true;
2558       }
2559       return false;
2560     }
2561 
2562     bool VisitStmt(const Stmt *S) {
2563       for (const Stmt *Child : S->children())
2564         if (Child && this->Visit(Child))
2565           return true;
2566       return false;
2567     }
2568   };
2569 
2570   // Make sure we're not referencing non-imported vars or functions.
2571   struct DLLImportFunctionVisitor
2572       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2573     bool SafeToInline = true;
2574 
2575     bool shouldVisitImplicitCode() const { return true; }
2576 
2577     bool VisitVarDecl(VarDecl *VD) {
2578       if (VD->getTLSKind()) {
2579         // A thread-local variable cannot be imported.
2580         SafeToInline = false;
2581         return SafeToInline;
2582       }
2583 
2584       // A variable definition might imply a destructor call.
2585       if (VD->isThisDeclarationADefinition())
2586         SafeToInline = !HasNonDllImportDtor(VD->getType());
2587 
2588       return SafeToInline;
2589     }
2590 
2591     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2592       if (const auto *D = E->getTemporary()->getDestructor())
2593         SafeToInline = D->hasAttr<DLLImportAttr>();
2594       return SafeToInline;
2595     }
2596 
2597     bool VisitDeclRefExpr(DeclRefExpr *E) {
2598       ValueDecl *VD = E->getDecl();
2599       if (isa<FunctionDecl>(VD))
2600         SafeToInline = VD->hasAttr<DLLImportAttr>();
2601       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2602         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2603       return SafeToInline;
2604     }
2605 
2606     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2607       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2608       return SafeToInline;
2609     }
2610 
2611     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2612       CXXMethodDecl *M = E->getMethodDecl();
2613       if (!M) {
2614         // Call through a pointer to member function. This is safe to inline.
2615         SafeToInline = true;
2616       } else {
2617         SafeToInline = M->hasAttr<DLLImportAttr>();
2618       }
2619       return SafeToInline;
2620     }
2621 
2622     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2623       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2624       return SafeToInline;
2625     }
2626 
2627     bool VisitCXXNewExpr(CXXNewExpr *E) {
2628       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2629       return SafeToInline;
2630     }
2631   };
2632 }
2633 
2634 // isTriviallyRecursive - Check if this function calls another
2635 // decl that, because of the asm attribute or the other decl being a builtin,
2636 // ends up pointing to itself.
2637 bool
2638 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2639   StringRef Name;
2640   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2641     // asm labels are a special kind of mangling we have to support.
2642     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2643     if (!Attr)
2644       return false;
2645     Name = Attr->getLabel();
2646   } else {
2647     Name = FD->getName();
2648   }
2649 
2650   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2651   const Stmt *Body = FD->getBody();
2652   return Body ? Walker.Visit(Body) : false;
2653 }
2654 
2655 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2656   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2657     return true;
2658   const auto *F = cast<FunctionDecl>(GD.getDecl());
2659   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2660     return false;
2661 
2662   if (F->hasAttr<DLLImportAttr>()) {
2663     // Check whether it would be safe to inline this dllimport function.
2664     DLLImportFunctionVisitor Visitor;
2665     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2666     if (!Visitor.SafeToInline)
2667       return false;
2668 
2669     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2670       // Implicit destructor invocations aren't captured in the AST, so the
2671       // check above can't see them. Check for them manually here.
2672       for (const Decl *Member : Dtor->getParent()->decls())
2673         if (isa<FieldDecl>(Member))
2674           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2675             return false;
2676       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2677         if (HasNonDllImportDtor(B.getType()))
2678           return false;
2679     }
2680   }
2681 
2682   // PR9614. Avoid cases where the source code is lying to us. An available
2683   // externally function should have an equivalent function somewhere else,
2684   // but a function that calls itself is clearly not equivalent to the real
2685   // implementation.
2686   // This happens in glibc's btowc and in some configure checks.
2687   return !isTriviallyRecursive(F);
2688 }
2689 
2690 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2691   return CodeGenOpts.OptimizationLevel > 0;
2692 }
2693 
2694 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2695                                                        llvm::GlobalValue *GV) {
2696   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2697 
2698   if (FD->isCPUSpecificMultiVersion()) {
2699     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2700     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2701       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2702     // Requires multiple emits.
2703   } else
2704     EmitGlobalFunctionDefinition(GD, GV);
2705 }
2706 
2707 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2708   const auto *D = cast<ValueDecl>(GD.getDecl());
2709 
2710   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2711                                  Context.getSourceManager(),
2712                                  "Generating code for declaration");
2713 
2714   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2715     // At -O0, don't generate IR for functions with available_externally
2716     // linkage.
2717     if (!shouldEmitFunction(GD))
2718       return;
2719 
2720     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2721       std::string Name;
2722       llvm::raw_string_ostream OS(Name);
2723       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2724                                /*Qualified=*/true);
2725       return Name;
2726     });
2727 
2728     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2729       // Make sure to emit the definition(s) before we emit the thunks.
2730       // This is necessary for the generation of certain thunks.
2731       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2732         ABI->emitCXXStructor(GD);
2733       else if (FD->isMultiVersion())
2734         EmitMultiVersionFunctionDefinition(GD, GV);
2735       else
2736         EmitGlobalFunctionDefinition(GD, GV);
2737 
2738       if (Method->isVirtual())
2739         getVTables().EmitThunks(GD);
2740 
2741       return;
2742     }
2743 
2744     if (FD->isMultiVersion())
2745       return EmitMultiVersionFunctionDefinition(GD, GV);
2746     return EmitGlobalFunctionDefinition(GD, GV);
2747   }
2748 
2749   if (const auto *VD = dyn_cast<VarDecl>(D))
2750     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2751 
2752   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2753 }
2754 
2755 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2756                                                       llvm::Function *NewFn);
2757 
2758 static unsigned
2759 TargetMVPriority(const TargetInfo &TI,
2760                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2761   unsigned Priority = 0;
2762   for (StringRef Feat : RO.Conditions.Features)
2763     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2764 
2765   if (!RO.Conditions.Architecture.empty())
2766     Priority = std::max(
2767         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2768   return Priority;
2769 }
2770 
2771 void CodeGenModule::emitMultiVersionFunctions() {
2772   for (GlobalDecl GD : MultiVersionFuncs) {
2773     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2774     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2775     getContext().forEachMultiversionedFunctionVersion(
2776         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2777           GlobalDecl CurGD{
2778               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2779           StringRef MangledName = getMangledName(CurGD);
2780           llvm::Constant *Func = GetGlobalValue(MangledName);
2781           if (!Func) {
2782             if (CurFD->isDefined()) {
2783               EmitGlobalFunctionDefinition(CurGD, nullptr);
2784               Func = GetGlobalValue(MangledName);
2785             } else {
2786               const CGFunctionInfo &FI =
2787                   getTypes().arrangeGlobalDeclaration(GD);
2788               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2789               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2790                                        /*DontDefer=*/false, ForDefinition);
2791             }
2792             assert(Func && "This should have just been created");
2793           }
2794 
2795           const auto *TA = CurFD->getAttr<TargetAttr>();
2796           llvm::SmallVector<StringRef, 8> Feats;
2797           TA->getAddedFeatures(Feats);
2798 
2799           Options.emplace_back(cast<llvm::Function>(Func),
2800                                TA->getArchitecture(), Feats);
2801         });
2802 
2803     llvm::Function *ResolverFunc;
2804     const TargetInfo &TI = getTarget();
2805 
2806     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2807       ResolverFunc = cast<llvm::Function>(
2808           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2809     else
2810       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2811 
2812     if (supportsCOMDAT())
2813       ResolverFunc->setComdat(
2814           getModule().getOrInsertComdat(ResolverFunc->getName()));
2815 
2816     llvm::stable_sort(
2817         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2818                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2819           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2820         });
2821     CodeGenFunction CGF(*this);
2822     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2823   }
2824 }
2825 
2826 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2827   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2828   assert(FD && "Not a FunctionDecl?");
2829   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2830   assert(DD && "Not a cpu_dispatch Function?");
2831   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2832 
2833   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2834     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2835     DeclTy = getTypes().GetFunctionType(FInfo);
2836   }
2837 
2838   StringRef ResolverName = getMangledName(GD);
2839 
2840   llvm::Type *ResolverType;
2841   GlobalDecl ResolverGD;
2842   if (getTarget().supportsIFunc())
2843     ResolverType = llvm::FunctionType::get(
2844         llvm::PointerType::get(DeclTy,
2845                                Context.getTargetAddressSpace(FD->getType())),
2846         false);
2847   else {
2848     ResolverType = DeclTy;
2849     ResolverGD = GD;
2850   }
2851 
2852   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2853       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2854 
2855   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2856   const TargetInfo &Target = getTarget();
2857   unsigned Index = 0;
2858   for (const IdentifierInfo *II : DD->cpus()) {
2859     // Get the name of the target function so we can look it up/create it.
2860     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2861                               getCPUSpecificMangling(*this, II->getName());
2862 
2863     llvm::Constant *Func = GetGlobalValue(MangledName);
2864 
2865     if (!Func) {
2866       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2867       if (ExistingDecl.getDecl() &&
2868           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2869         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2870         Func = GetGlobalValue(MangledName);
2871       } else {
2872         if (!ExistingDecl.getDecl())
2873           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2874 
2875       Func = GetOrCreateLLVMFunction(
2876           MangledName, DeclTy, ExistingDecl,
2877           /*ForVTable=*/false, /*DontDefer=*/true,
2878           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2879       }
2880     }
2881 
2882     llvm::SmallVector<StringRef, 32> Features;
2883     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2884     llvm::transform(Features, Features.begin(),
2885                     [](StringRef Str) { return Str.substr(1); });
2886     Features.erase(std::remove_if(
2887         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2888           return !Target.validateCpuSupports(Feat);
2889         }), Features.end());
2890     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2891     ++Index;
2892   }
2893 
2894   llvm::sort(
2895       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2896                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2897         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2898                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2899       });
2900 
2901   // If the list contains multiple 'default' versions, such as when it contains
2902   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2903   // always run on at least a 'pentium'). We do this by deleting the 'least
2904   // advanced' (read, lowest mangling letter).
2905   while (Options.size() > 1 &&
2906          CodeGenFunction::GetX86CpuSupportsMask(
2907              (Options.end() - 2)->Conditions.Features) == 0) {
2908     StringRef LHSName = (Options.end() - 2)->Function->getName();
2909     StringRef RHSName = (Options.end() - 1)->Function->getName();
2910     if (LHSName.compare(RHSName) < 0)
2911       Options.erase(Options.end() - 2);
2912     else
2913       Options.erase(Options.end() - 1);
2914   }
2915 
2916   CodeGenFunction CGF(*this);
2917   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2918 }
2919 
2920 /// If a dispatcher for the specified mangled name is not in the module, create
2921 /// and return an llvm Function with the specified type.
2922 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2923     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2924   std::string MangledName =
2925       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2926 
2927   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2928   // a separate resolver).
2929   std::string ResolverName = MangledName;
2930   if (getTarget().supportsIFunc())
2931     ResolverName += ".ifunc";
2932   else if (FD->isTargetMultiVersion())
2933     ResolverName += ".resolver";
2934 
2935   // If this already exists, just return that one.
2936   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2937     return ResolverGV;
2938 
2939   // Since this is the first time we've created this IFunc, make sure
2940   // that we put this multiversioned function into the list to be
2941   // replaced later if necessary (target multiversioning only).
2942   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2943     MultiVersionFuncs.push_back(GD);
2944 
2945   if (getTarget().supportsIFunc()) {
2946     llvm::Type *ResolverType = llvm::FunctionType::get(
2947         llvm::PointerType::get(
2948             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2949         false);
2950     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2951         MangledName + ".resolver", ResolverType, GlobalDecl{},
2952         /*ForVTable=*/false);
2953     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2954         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2955     GIF->setName(ResolverName);
2956     SetCommonAttributes(FD, GIF);
2957 
2958     return GIF;
2959   }
2960 
2961   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2962       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2963   assert(isa<llvm::GlobalValue>(Resolver) &&
2964          "Resolver should be created for the first time");
2965   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2966   return Resolver;
2967 }
2968 
2969 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2970 /// module, create and return an llvm Function with the specified type. If there
2971 /// is something in the module with the specified name, return it potentially
2972 /// bitcasted to the right type.
2973 ///
2974 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2975 /// to set the attributes on the function when it is first created.
2976 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2977     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2978     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2979     ForDefinition_t IsForDefinition) {
2980   const Decl *D = GD.getDecl();
2981 
2982   // Any attempts to use a MultiVersion function should result in retrieving
2983   // the iFunc instead. Name Mangling will handle the rest of the changes.
2984   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2985     // For the device mark the function as one that should be emitted.
2986     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2987         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2988         !DontDefer && !IsForDefinition) {
2989       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2990         GlobalDecl GDDef;
2991         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2992           GDDef = GlobalDecl(CD, GD.getCtorType());
2993         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2994           GDDef = GlobalDecl(DD, GD.getDtorType());
2995         else
2996           GDDef = GlobalDecl(FDDef);
2997         EmitGlobal(GDDef);
2998       }
2999     }
3000 
3001     if (FD->isMultiVersion()) {
3002       const auto *TA = FD->getAttr<TargetAttr>();
3003       if (TA && TA->isDefaultVersion())
3004         UpdateMultiVersionNames(GD, FD);
3005       if (!IsForDefinition)
3006         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3007     }
3008   }
3009 
3010   // Lookup the entry, lazily creating it if necessary.
3011   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3012   if (Entry) {
3013     if (WeakRefReferences.erase(Entry)) {
3014       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3015       if (FD && !FD->hasAttr<WeakAttr>())
3016         Entry->setLinkage(llvm::Function::ExternalLinkage);
3017     }
3018 
3019     // Handle dropped DLL attributes.
3020     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3021       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3022       setDSOLocal(Entry);
3023     }
3024 
3025     // If there are two attempts to define the same mangled name, issue an
3026     // error.
3027     if (IsForDefinition && !Entry->isDeclaration()) {
3028       GlobalDecl OtherGD;
3029       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3030       // to make sure that we issue an error only once.
3031       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3032           (GD.getCanonicalDecl().getDecl() !=
3033            OtherGD.getCanonicalDecl().getDecl()) &&
3034           DiagnosedConflictingDefinitions.insert(GD).second) {
3035         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3036             << MangledName;
3037         getDiags().Report(OtherGD.getDecl()->getLocation(),
3038                           diag::note_previous_definition);
3039       }
3040     }
3041 
3042     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3043         (Entry->getType()->getElementType() == Ty)) {
3044       return Entry;
3045     }
3046 
3047     // Make sure the result is of the correct type.
3048     // (If function is requested for a definition, we always need to create a new
3049     // function, not just return a bitcast.)
3050     if (!IsForDefinition)
3051       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3052   }
3053 
3054   // This function doesn't have a complete type (for example, the return
3055   // type is an incomplete struct). Use a fake type instead, and make
3056   // sure not to try to set attributes.
3057   bool IsIncompleteFunction = false;
3058 
3059   llvm::FunctionType *FTy;
3060   if (isa<llvm::FunctionType>(Ty)) {
3061     FTy = cast<llvm::FunctionType>(Ty);
3062   } else {
3063     FTy = llvm::FunctionType::get(VoidTy, false);
3064     IsIncompleteFunction = true;
3065   }
3066 
3067   llvm::Function *F =
3068       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3069                              Entry ? StringRef() : MangledName, &getModule());
3070 
3071   // If we already created a function with the same mangled name (but different
3072   // type) before, take its name and add it to the list of functions to be
3073   // replaced with F at the end of CodeGen.
3074   //
3075   // This happens if there is a prototype for a function (e.g. "int f()") and
3076   // then a definition of a different type (e.g. "int f(int x)").
3077   if (Entry) {
3078     F->takeName(Entry);
3079 
3080     // This might be an implementation of a function without a prototype, in
3081     // which case, try to do special replacement of calls which match the new
3082     // prototype.  The really key thing here is that we also potentially drop
3083     // arguments from the call site so as to make a direct call, which makes the
3084     // inliner happier and suppresses a number of optimizer warnings (!) about
3085     // dropping arguments.
3086     if (!Entry->use_empty()) {
3087       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3088       Entry->removeDeadConstantUsers();
3089     }
3090 
3091     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3092         F, Entry->getType()->getElementType()->getPointerTo());
3093     addGlobalValReplacement(Entry, BC);
3094   }
3095 
3096   assert(F->getName() == MangledName && "name was uniqued!");
3097   if (D)
3098     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3099   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3100     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3101     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3102   }
3103 
3104   if (!DontDefer) {
3105     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3106     // each other bottoming out with the base dtor.  Therefore we emit non-base
3107     // dtors on usage, even if there is no dtor definition in the TU.
3108     if (D && isa<CXXDestructorDecl>(D) &&
3109         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3110                                            GD.getDtorType()))
3111       addDeferredDeclToEmit(GD);
3112 
3113     // This is the first use or definition of a mangled name.  If there is a
3114     // deferred decl with this name, remember that we need to emit it at the end
3115     // of the file.
3116     auto DDI = DeferredDecls.find(MangledName);
3117     if (DDI != DeferredDecls.end()) {
3118       // Move the potentially referenced deferred decl to the
3119       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3120       // don't need it anymore).
3121       addDeferredDeclToEmit(DDI->second);
3122       DeferredDecls.erase(DDI);
3123 
3124       // Otherwise, there are cases we have to worry about where we're
3125       // using a declaration for which we must emit a definition but where
3126       // we might not find a top-level definition:
3127       //   - member functions defined inline in their classes
3128       //   - friend functions defined inline in some class
3129       //   - special member functions with implicit definitions
3130       // If we ever change our AST traversal to walk into class methods,
3131       // this will be unnecessary.
3132       //
3133       // We also don't emit a definition for a function if it's going to be an
3134       // entry in a vtable, unless it's already marked as used.
3135     } else if (getLangOpts().CPlusPlus && D) {
3136       // Look for a declaration that's lexically in a record.
3137       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3138            FD = FD->getPreviousDecl()) {
3139         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3140           if (FD->doesThisDeclarationHaveABody()) {
3141             addDeferredDeclToEmit(GD.getWithDecl(FD));
3142             break;
3143           }
3144         }
3145       }
3146     }
3147   }
3148 
3149   // Make sure the result is of the requested type.
3150   if (!IsIncompleteFunction) {
3151     assert(F->getType()->getElementType() == Ty);
3152     return F;
3153   }
3154 
3155   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3156   return llvm::ConstantExpr::getBitCast(F, PTy);
3157 }
3158 
3159 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3160 /// non-null, then this function will use the specified type if it has to
3161 /// create it (this occurs when we see a definition of the function).
3162 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3163                                                  llvm::Type *Ty,
3164                                                  bool ForVTable,
3165                                                  bool DontDefer,
3166                                               ForDefinition_t IsForDefinition) {
3167   // If there was no specific requested type, just convert it now.
3168   if (!Ty) {
3169     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3170     Ty = getTypes().ConvertType(FD->getType());
3171   }
3172 
3173   // Devirtualized destructor calls may come through here instead of via
3174   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3175   // of the complete destructor when necessary.
3176   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3177     if (getTarget().getCXXABI().isMicrosoft() &&
3178         GD.getDtorType() == Dtor_Complete &&
3179         DD->getParent()->getNumVBases() == 0)
3180       GD = GlobalDecl(DD, Dtor_Base);
3181   }
3182 
3183   StringRef MangledName = getMangledName(GD);
3184   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3185                                  /*IsThunk=*/false, llvm::AttributeList(),
3186                                  IsForDefinition);
3187 }
3188 
3189 static const FunctionDecl *
3190 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3191   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3192   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3193 
3194   IdentifierInfo &CII = C.Idents.get(Name);
3195   for (const auto &Result : DC->lookup(&CII))
3196     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3197       return FD;
3198 
3199   if (!C.getLangOpts().CPlusPlus)
3200     return nullptr;
3201 
3202   // Demangle the premangled name from getTerminateFn()
3203   IdentifierInfo &CXXII =
3204       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3205           ? C.Idents.get("terminate")
3206           : C.Idents.get(Name);
3207 
3208   for (const auto &N : {"__cxxabiv1", "std"}) {
3209     IdentifierInfo &NS = C.Idents.get(N);
3210     for (const auto &Result : DC->lookup(&NS)) {
3211       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3212       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3213         for (const auto &Result : LSD->lookup(&NS))
3214           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3215             break;
3216 
3217       if (ND)
3218         for (const auto &Result : ND->lookup(&CXXII))
3219           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3220             return FD;
3221     }
3222   }
3223 
3224   return nullptr;
3225 }
3226 
3227 /// CreateRuntimeFunction - Create a new runtime function with the specified
3228 /// type and name.
3229 llvm::FunctionCallee
3230 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3231                                      llvm::AttributeList ExtraAttrs,
3232                                      bool Local) {
3233   llvm::Constant *C =
3234       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3235                               /*DontDefer=*/false, /*IsThunk=*/false,
3236                               ExtraAttrs);
3237 
3238   if (auto *F = dyn_cast<llvm::Function>(C)) {
3239     if (F->empty()) {
3240       F->setCallingConv(getRuntimeCC());
3241 
3242       // In Windows Itanium environments, try to mark runtime functions
3243       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3244       // will link their standard library statically or dynamically. Marking
3245       // functions imported when they are not imported can cause linker errors
3246       // and warnings.
3247       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3248           !getCodeGenOpts().LTOVisibilityPublicStd) {
3249         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3250         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3251           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3252           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3253         }
3254       }
3255       setDSOLocal(F);
3256     }
3257   }
3258 
3259   return {FTy, C};
3260 }
3261 
3262 /// isTypeConstant - Determine whether an object of this type can be emitted
3263 /// as a constant.
3264 ///
3265 /// If ExcludeCtor is true, the duration when the object's constructor runs
3266 /// will not be considered. The caller will need to verify that the object is
3267 /// not written to during its construction.
3268 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3269   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3270     return false;
3271 
3272   if (Context.getLangOpts().CPlusPlus) {
3273     if (const CXXRecordDecl *Record
3274           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3275       return ExcludeCtor && !Record->hasMutableFields() &&
3276              Record->hasTrivialDestructor();
3277   }
3278 
3279   return true;
3280 }
3281 
3282 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3283 /// create and return an llvm GlobalVariable with the specified type.  If there
3284 /// is something in the module with the specified name, return it potentially
3285 /// bitcasted to the right type.
3286 ///
3287 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3288 /// to set the attributes on the global when it is first created.
3289 ///
3290 /// If IsForDefinition is true, it is guaranteed that an actual global with
3291 /// type Ty will be returned, not conversion of a variable with the same
3292 /// mangled name but some other type.
3293 llvm::Constant *
3294 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3295                                      llvm::PointerType *Ty,
3296                                      const VarDecl *D,
3297                                      ForDefinition_t IsForDefinition) {
3298   // Lookup the entry, lazily creating it if necessary.
3299   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3300   if (Entry) {
3301     if (WeakRefReferences.erase(Entry)) {
3302       if (D && !D->hasAttr<WeakAttr>())
3303         Entry->setLinkage(llvm::Function::ExternalLinkage);
3304     }
3305 
3306     // Handle dropped DLL attributes.
3307     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3308       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3309 
3310     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3311       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3312 
3313     if (Entry->getType() == Ty)
3314       return Entry;
3315 
3316     // If there are two attempts to define the same mangled name, issue an
3317     // error.
3318     if (IsForDefinition && !Entry->isDeclaration()) {
3319       GlobalDecl OtherGD;
3320       const VarDecl *OtherD;
3321 
3322       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3323       // to make sure that we issue an error only once.
3324       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3325           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3326           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3327           OtherD->hasInit() &&
3328           DiagnosedConflictingDefinitions.insert(D).second) {
3329         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3330             << MangledName;
3331         getDiags().Report(OtherGD.getDecl()->getLocation(),
3332                           diag::note_previous_definition);
3333       }
3334     }
3335 
3336     // Make sure the result is of the correct type.
3337     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3338       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3339 
3340     // (If global is requested for a definition, we always need to create a new
3341     // global, not just return a bitcast.)
3342     if (!IsForDefinition)
3343       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3344   }
3345 
3346   auto AddrSpace = GetGlobalVarAddressSpace(D);
3347   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3348 
3349   auto *GV = new llvm::GlobalVariable(
3350       getModule(), Ty->getElementType(), false,
3351       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3352       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3353 
3354   // If we already created a global with the same mangled name (but different
3355   // type) before, take its name and remove it from its parent.
3356   if (Entry) {
3357     GV->takeName(Entry);
3358 
3359     if (!Entry->use_empty()) {
3360       llvm::Constant *NewPtrForOldDecl =
3361           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3362       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3363     }
3364 
3365     Entry->eraseFromParent();
3366   }
3367 
3368   // This is the first use or definition of a mangled name.  If there is a
3369   // deferred decl with this name, remember that we need to emit it at the end
3370   // of the file.
3371   auto DDI = DeferredDecls.find(MangledName);
3372   if (DDI != DeferredDecls.end()) {
3373     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3374     // list, and remove it from DeferredDecls (since we don't need it anymore).
3375     addDeferredDeclToEmit(DDI->second);
3376     DeferredDecls.erase(DDI);
3377   }
3378 
3379   // Handle things which are present even on external declarations.
3380   if (D) {
3381     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3382       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3383 
3384     // FIXME: This code is overly simple and should be merged with other global
3385     // handling.
3386     GV->setConstant(isTypeConstant(D->getType(), false));
3387 
3388     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3389 
3390     setLinkageForGV(GV, D);
3391 
3392     if (D->getTLSKind()) {
3393       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3394         CXXThreadLocals.push_back(D);
3395       setTLSMode(GV, *D);
3396     }
3397 
3398     setGVProperties(GV, D);
3399 
3400     // If required by the ABI, treat declarations of static data members with
3401     // inline initializers as definitions.
3402     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3403       EmitGlobalVarDefinition(D);
3404     }
3405 
3406     // Emit section information for extern variables.
3407     if (D->hasExternalStorage()) {
3408       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3409         GV->setSection(SA->getName());
3410     }
3411 
3412     // Handle XCore specific ABI requirements.
3413     if (getTriple().getArch() == llvm::Triple::xcore &&
3414         D->getLanguageLinkage() == CLanguageLinkage &&
3415         D->getType().isConstant(Context) &&
3416         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3417       GV->setSection(".cp.rodata");
3418 
3419     // Check if we a have a const declaration with an initializer, we may be
3420     // able to emit it as available_externally to expose it's value to the
3421     // optimizer.
3422     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3423         D->getType().isConstQualified() && !GV->hasInitializer() &&
3424         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3425       const auto *Record =
3426           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3427       bool HasMutableFields = Record && Record->hasMutableFields();
3428       if (!HasMutableFields) {
3429         const VarDecl *InitDecl;
3430         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3431         if (InitExpr) {
3432           ConstantEmitter emitter(*this);
3433           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3434           if (Init) {
3435             auto *InitType = Init->getType();
3436             if (GV->getType()->getElementType() != InitType) {
3437               // The type of the initializer does not match the definition.
3438               // This happens when an initializer has a different type from
3439               // the type of the global (because of padding at the end of a
3440               // structure for instance).
3441               GV->setName(StringRef());
3442               // Make a new global with the correct type, this is now guaranteed
3443               // to work.
3444               auto *NewGV = cast<llvm::GlobalVariable>(
3445                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3446 
3447               // Erase the old global, since it is no longer used.
3448               GV->eraseFromParent();
3449               GV = NewGV;
3450             } else {
3451               GV->setInitializer(Init);
3452               GV->setConstant(true);
3453               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3454             }
3455             emitter.finalize(GV);
3456           }
3457         }
3458       }
3459     }
3460   }
3461 
3462   LangAS ExpectedAS =
3463       D ? D->getType().getAddressSpace()
3464         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3465   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3466          Ty->getPointerAddressSpace());
3467   if (AddrSpace != ExpectedAS)
3468     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3469                                                        ExpectedAS, Ty);
3470 
3471   if (GV->isDeclaration())
3472     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3473 
3474   return GV;
3475 }
3476 
3477 llvm::Constant *
3478 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3479                                ForDefinition_t IsForDefinition) {
3480   const Decl *D = GD.getDecl();
3481   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3482     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3483                                 /*DontDefer=*/false, IsForDefinition);
3484   else if (isa<CXXMethodDecl>(D)) {
3485     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3486         cast<CXXMethodDecl>(D));
3487     auto Ty = getTypes().GetFunctionType(*FInfo);
3488     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3489                              IsForDefinition);
3490   } else if (isa<FunctionDecl>(D)) {
3491     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3492     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3493     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3494                              IsForDefinition);
3495   } else
3496     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3497                               IsForDefinition);
3498 }
3499 
3500 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3501     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3502     unsigned Alignment) {
3503   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3504   llvm::GlobalVariable *OldGV = nullptr;
3505 
3506   if (GV) {
3507     // Check if the variable has the right type.
3508     if (GV->getType()->getElementType() == Ty)
3509       return GV;
3510 
3511     // Because C++ name mangling, the only way we can end up with an already
3512     // existing global with the same name is if it has been declared extern "C".
3513     assert(GV->isDeclaration() && "Declaration has wrong type!");
3514     OldGV = GV;
3515   }
3516 
3517   // Create a new variable.
3518   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3519                                 Linkage, nullptr, Name);
3520 
3521   if (OldGV) {
3522     // Replace occurrences of the old variable if needed.
3523     GV->takeName(OldGV);
3524 
3525     if (!OldGV->use_empty()) {
3526       llvm::Constant *NewPtrForOldDecl =
3527       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3528       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3529     }
3530 
3531     OldGV->eraseFromParent();
3532   }
3533 
3534   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3535       !GV->hasAvailableExternallyLinkage())
3536     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3537 
3538   GV->setAlignment(Alignment);
3539 
3540   return GV;
3541 }
3542 
3543 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3544 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3545 /// then it will be created with the specified type instead of whatever the
3546 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3547 /// that an actual global with type Ty will be returned, not conversion of a
3548 /// variable with the same mangled name but some other type.
3549 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3550                                                   llvm::Type *Ty,
3551                                            ForDefinition_t IsForDefinition) {
3552   assert(D->hasGlobalStorage() && "Not a global variable");
3553   QualType ASTTy = D->getType();
3554   if (!Ty)
3555     Ty = getTypes().ConvertTypeForMem(ASTTy);
3556 
3557   llvm::PointerType *PTy =
3558     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3559 
3560   StringRef MangledName = getMangledName(D);
3561   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3562 }
3563 
3564 /// CreateRuntimeVariable - Create a new runtime global variable with the
3565 /// specified type and name.
3566 llvm::Constant *
3567 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3568                                      StringRef Name) {
3569   auto *Ret =
3570       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3571   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3572   return Ret;
3573 }
3574 
3575 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3576   assert(!D->getInit() && "Cannot emit definite definitions here!");
3577 
3578   StringRef MangledName = getMangledName(D);
3579   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3580 
3581   // We already have a definition, not declaration, with the same mangled name.
3582   // Emitting of declaration is not required (and actually overwrites emitted
3583   // definition).
3584   if (GV && !GV->isDeclaration())
3585     return;
3586 
3587   // If we have not seen a reference to this variable yet, place it into the
3588   // deferred declarations table to be emitted if needed later.
3589   if (!MustBeEmitted(D) && !GV) {
3590       DeferredDecls[MangledName] = D;
3591       return;
3592   }
3593 
3594   // The tentative definition is the only definition.
3595   EmitGlobalVarDefinition(D);
3596 }
3597 
3598 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3599   return Context.toCharUnitsFromBits(
3600       getDataLayout().getTypeStoreSizeInBits(Ty));
3601 }
3602 
3603 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3604   LangAS AddrSpace = LangAS::Default;
3605   if (LangOpts.OpenCL) {
3606     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3607     assert(AddrSpace == LangAS::opencl_global ||
3608            AddrSpace == LangAS::opencl_constant ||
3609            AddrSpace == LangAS::opencl_local ||
3610            AddrSpace >= LangAS::FirstTargetAddressSpace);
3611     return AddrSpace;
3612   }
3613 
3614   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3615     if (D && D->hasAttr<CUDAConstantAttr>())
3616       return LangAS::cuda_constant;
3617     else if (D && D->hasAttr<CUDASharedAttr>())
3618       return LangAS::cuda_shared;
3619     else if (D && D->hasAttr<CUDADeviceAttr>())
3620       return LangAS::cuda_device;
3621     else if (D && D->getType().isConstQualified())
3622       return LangAS::cuda_constant;
3623     else
3624       return LangAS::cuda_device;
3625   }
3626 
3627   if (LangOpts.OpenMP) {
3628     LangAS AS;
3629     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3630       return AS;
3631   }
3632   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3633 }
3634 
3635 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3636   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3637   if (LangOpts.OpenCL)
3638     return LangAS::opencl_constant;
3639   if (auto AS = getTarget().getConstantAddressSpace())
3640     return AS.getValue();
3641   return LangAS::Default;
3642 }
3643 
3644 // In address space agnostic languages, string literals are in default address
3645 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3646 // emitted in constant address space in LLVM IR. To be consistent with other
3647 // parts of AST, string literal global variables in constant address space
3648 // need to be casted to default address space before being put into address
3649 // map and referenced by other part of CodeGen.
3650 // In OpenCL, string literals are in constant address space in AST, therefore
3651 // they should not be casted to default address space.
3652 static llvm::Constant *
3653 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3654                                        llvm::GlobalVariable *GV) {
3655   llvm::Constant *Cast = GV;
3656   if (!CGM.getLangOpts().OpenCL) {
3657     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3658       if (AS != LangAS::Default)
3659         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3660             CGM, GV, AS.getValue(), LangAS::Default,
3661             GV->getValueType()->getPointerTo(
3662                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3663     }
3664   }
3665   return Cast;
3666 }
3667 
3668 template<typename SomeDecl>
3669 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3670                                                llvm::GlobalValue *GV) {
3671   if (!getLangOpts().CPlusPlus)
3672     return;
3673 
3674   // Must have 'used' attribute, or else inline assembly can't rely on
3675   // the name existing.
3676   if (!D->template hasAttr<UsedAttr>())
3677     return;
3678 
3679   // Must have internal linkage and an ordinary name.
3680   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3681     return;
3682 
3683   // Must be in an extern "C" context. Entities declared directly within
3684   // a record are not extern "C" even if the record is in such a context.
3685   const SomeDecl *First = D->getFirstDecl();
3686   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3687     return;
3688 
3689   // OK, this is an internal linkage entity inside an extern "C" linkage
3690   // specification. Make a note of that so we can give it the "expected"
3691   // mangled name if nothing else is using that name.
3692   std::pair<StaticExternCMap::iterator, bool> R =
3693       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3694 
3695   // If we have multiple internal linkage entities with the same name
3696   // in extern "C" regions, none of them gets that name.
3697   if (!R.second)
3698     R.first->second = nullptr;
3699 }
3700 
3701 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3702   if (!CGM.supportsCOMDAT())
3703     return false;
3704 
3705   if (D.hasAttr<SelectAnyAttr>())
3706     return true;
3707 
3708   GVALinkage Linkage;
3709   if (auto *VD = dyn_cast<VarDecl>(&D))
3710     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3711   else
3712     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3713 
3714   switch (Linkage) {
3715   case GVA_Internal:
3716   case GVA_AvailableExternally:
3717   case GVA_StrongExternal:
3718     return false;
3719   case GVA_DiscardableODR:
3720   case GVA_StrongODR:
3721     return true;
3722   }
3723   llvm_unreachable("No such linkage");
3724 }
3725 
3726 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3727                                           llvm::GlobalObject &GO) {
3728   if (!shouldBeInCOMDAT(*this, D))
3729     return;
3730   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3731 }
3732 
3733 /// Pass IsTentative as true if you want to create a tentative definition.
3734 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3735                                             bool IsTentative) {
3736   // OpenCL global variables of sampler type are translated to function calls,
3737   // therefore no need to be translated.
3738   QualType ASTTy = D->getType();
3739   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3740     return;
3741 
3742   // If this is OpenMP device, check if it is legal to emit this global
3743   // normally.
3744   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3745       OpenMPRuntime->emitTargetGlobalVariable(D))
3746     return;
3747 
3748   llvm::Constant *Init = nullptr;
3749   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3750   bool NeedsGlobalCtor = false;
3751   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3752 
3753   const VarDecl *InitDecl;
3754   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3755 
3756   Optional<ConstantEmitter> emitter;
3757 
3758   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3759   // as part of their declaration."  Sema has already checked for
3760   // error cases, so we just need to set Init to UndefValue.
3761   bool IsCUDASharedVar =
3762       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3763   // Shadows of initialized device-side global variables are also left
3764   // undefined.
3765   bool IsCUDAShadowVar =
3766       !getLangOpts().CUDAIsDevice &&
3767       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3768        D->hasAttr<CUDASharedAttr>());
3769   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3770     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3771   else if (!InitExpr) {
3772     // This is a tentative definition; tentative definitions are
3773     // implicitly initialized with { 0 }.
3774     //
3775     // Note that tentative definitions are only emitted at the end of
3776     // a translation unit, so they should never have incomplete
3777     // type. In addition, EmitTentativeDefinition makes sure that we
3778     // never attempt to emit a tentative definition if a real one
3779     // exists. A use may still exists, however, so we still may need
3780     // to do a RAUW.
3781     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3782     Init = EmitNullConstant(D->getType());
3783   } else {
3784     initializedGlobalDecl = GlobalDecl(D);
3785     emitter.emplace(*this);
3786     Init = emitter->tryEmitForInitializer(*InitDecl);
3787 
3788     if (!Init) {
3789       QualType T = InitExpr->getType();
3790       if (D->getType()->isReferenceType())
3791         T = D->getType();
3792 
3793       if (getLangOpts().CPlusPlus) {
3794         Init = EmitNullConstant(T);
3795         NeedsGlobalCtor = true;
3796       } else {
3797         ErrorUnsupported(D, "static initializer");
3798         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3799       }
3800     } else {
3801       // We don't need an initializer, so remove the entry for the delayed
3802       // initializer position (just in case this entry was delayed) if we
3803       // also don't need to register a destructor.
3804       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3805         DelayedCXXInitPosition.erase(D);
3806     }
3807   }
3808 
3809   llvm::Type* InitType = Init->getType();
3810   llvm::Constant *Entry =
3811       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3812 
3813   // Strip off a bitcast if we got one back.
3814   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3815     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3816            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3817            // All zero index gep.
3818            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3819     Entry = CE->getOperand(0);
3820   }
3821 
3822   // Entry is now either a Function or GlobalVariable.
3823   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3824 
3825   // We have a definition after a declaration with the wrong type.
3826   // We must make a new GlobalVariable* and update everything that used OldGV
3827   // (a declaration or tentative definition) with the new GlobalVariable*
3828   // (which will be a definition).
3829   //
3830   // This happens if there is a prototype for a global (e.g.
3831   // "extern int x[];") and then a definition of a different type (e.g.
3832   // "int x[10];"). This also happens when an initializer has a different type
3833   // from the type of the global (this happens with unions).
3834   if (!GV || GV->getType()->getElementType() != InitType ||
3835       GV->getType()->getAddressSpace() !=
3836           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3837 
3838     // Move the old entry aside so that we'll create a new one.
3839     Entry->setName(StringRef());
3840 
3841     // Make a new global with the correct type, this is now guaranteed to work.
3842     GV = cast<llvm::GlobalVariable>(
3843         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3844 
3845     // Replace all uses of the old global with the new global
3846     llvm::Constant *NewPtrForOldDecl =
3847         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3848     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3849 
3850     // Erase the old global, since it is no longer used.
3851     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3852   }
3853 
3854   MaybeHandleStaticInExternC(D, GV);
3855 
3856   if (D->hasAttr<AnnotateAttr>())
3857     AddGlobalAnnotations(D, GV);
3858 
3859   // Set the llvm linkage type as appropriate.
3860   llvm::GlobalValue::LinkageTypes Linkage =
3861       getLLVMLinkageVarDefinition(D, GV->isConstant());
3862 
3863   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3864   // the device. [...]"
3865   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3866   // __device__, declares a variable that: [...]
3867   // Is accessible from all the threads within the grid and from the host
3868   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3869   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3870   if (GV && LangOpts.CUDA) {
3871     if (LangOpts.CUDAIsDevice) {
3872       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3873         GV->setExternallyInitialized(true);
3874     } else {
3875       // Host-side shadows of external declarations of device-side
3876       // global variables become internal definitions. These have to
3877       // be internal in order to prevent name conflicts with global
3878       // host variables with the same name in a different TUs.
3879       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3880         Linkage = llvm::GlobalValue::InternalLinkage;
3881 
3882         // Shadow variables and their properties must be registered
3883         // with CUDA runtime.
3884         unsigned Flags = 0;
3885         if (!D->hasDefinition())
3886           Flags |= CGCUDARuntime::ExternDeviceVar;
3887         if (D->hasAttr<CUDAConstantAttr>())
3888           Flags |= CGCUDARuntime::ConstantDeviceVar;
3889         // Extern global variables will be registered in the TU where they are
3890         // defined.
3891         if (!D->hasExternalStorage())
3892           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3893       } else if (D->hasAttr<CUDASharedAttr>())
3894         // __shared__ variables are odd. Shadows do get created, but
3895         // they are not registered with the CUDA runtime, so they
3896         // can't really be used to access their device-side
3897         // counterparts. It's not clear yet whether it's nvcc's bug or
3898         // a feature, but we've got to do the same for compatibility.
3899         Linkage = llvm::GlobalValue::InternalLinkage;
3900     }
3901   }
3902 
3903   GV->setInitializer(Init);
3904   if (emitter) emitter->finalize(GV);
3905 
3906   // If it is safe to mark the global 'constant', do so now.
3907   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3908                   isTypeConstant(D->getType(), true));
3909 
3910   // If it is in a read-only section, mark it 'constant'.
3911   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3912     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3913     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3914       GV->setConstant(true);
3915   }
3916 
3917   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3918 
3919 
3920   // On Darwin, if the normal linkage of a C++ thread_local variable is
3921   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3922   // copies within a linkage unit; otherwise, the backing variable has
3923   // internal linkage and all accesses should just be calls to the
3924   // Itanium-specified entry point, which has the normal linkage of the
3925   // variable. This is to preserve the ability to change the implementation
3926   // behind the scenes.
3927   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3928       Context.getTargetInfo().getTriple().isOSDarwin() &&
3929       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3930       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3931     Linkage = llvm::GlobalValue::InternalLinkage;
3932 
3933   GV->setLinkage(Linkage);
3934   if (D->hasAttr<DLLImportAttr>())
3935     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3936   else if (D->hasAttr<DLLExportAttr>())
3937     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3938   else
3939     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3940 
3941   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3942     // common vars aren't constant even if declared const.
3943     GV->setConstant(false);
3944     // Tentative definition of global variables may be initialized with
3945     // non-zero null pointers. In this case they should have weak linkage
3946     // since common linkage must have zero initializer and must not have
3947     // explicit section therefore cannot have non-zero initial value.
3948     if (!GV->getInitializer()->isNullValue())
3949       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3950   }
3951 
3952   setNonAliasAttributes(D, GV);
3953 
3954   if (D->getTLSKind() && !GV->isThreadLocal()) {
3955     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3956       CXXThreadLocals.push_back(D);
3957     setTLSMode(GV, *D);
3958   }
3959 
3960   maybeSetTrivialComdat(*D, *GV);
3961 
3962   // Emit the initializer function if necessary.
3963   if (NeedsGlobalCtor || NeedsGlobalDtor)
3964     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3965 
3966   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3967 
3968   // Emit global variable debug information.
3969   if (CGDebugInfo *DI = getModuleDebugInfo())
3970     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3971       DI->EmitGlobalVariable(GV, D);
3972 }
3973 
3974 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3975                                       CodeGenModule &CGM, const VarDecl *D,
3976                                       bool NoCommon) {
3977   // Don't give variables common linkage if -fno-common was specified unless it
3978   // was overridden by a NoCommon attribute.
3979   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3980     return true;
3981 
3982   // C11 6.9.2/2:
3983   //   A declaration of an identifier for an object that has file scope without
3984   //   an initializer, and without a storage-class specifier or with the
3985   //   storage-class specifier static, constitutes a tentative definition.
3986   if (D->getInit() || D->hasExternalStorage())
3987     return true;
3988 
3989   // A variable cannot be both common and exist in a section.
3990   if (D->hasAttr<SectionAttr>())
3991     return true;
3992 
3993   // A variable cannot be both common and exist in a section.
3994   // We don't try to determine which is the right section in the front-end.
3995   // If no specialized section name is applicable, it will resort to default.
3996   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3997       D->hasAttr<PragmaClangDataSectionAttr>() ||
3998       D->hasAttr<PragmaClangRodataSectionAttr>())
3999     return true;
4000 
4001   // Thread local vars aren't considered common linkage.
4002   if (D->getTLSKind())
4003     return true;
4004 
4005   // Tentative definitions marked with WeakImportAttr are true definitions.
4006   if (D->hasAttr<WeakImportAttr>())
4007     return true;
4008 
4009   // A variable cannot be both common and exist in a comdat.
4010   if (shouldBeInCOMDAT(CGM, *D))
4011     return true;
4012 
4013   // Declarations with a required alignment do not have common linkage in MSVC
4014   // mode.
4015   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4016     if (D->hasAttr<AlignedAttr>())
4017       return true;
4018     QualType VarType = D->getType();
4019     if (Context.isAlignmentRequired(VarType))
4020       return true;
4021 
4022     if (const auto *RT = VarType->getAs<RecordType>()) {
4023       const RecordDecl *RD = RT->getDecl();
4024       for (const FieldDecl *FD : RD->fields()) {
4025         if (FD->isBitField())
4026           continue;
4027         if (FD->hasAttr<AlignedAttr>())
4028           return true;
4029         if (Context.isAlignmentRequired(FD->getType()))
4030           return true;
4031       }
4032     }
4033   }
4034 
4035   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4036   // common symbols, so symbols with greater alignment requirements cannot be
4037   // common.
4038   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4039   // alignments for common symbols via the aligncomm directive, so this
4040   // restriction only applies to MSVC environments.
4041   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4042       Context.getTypeAlignIfKnown(D->getType()) >
4043           Context.toBits(CharUnits::fromQuantity(32)))
4044     return true;
4045 
4046   return false;
4047 }
4048 
4049 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4050     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4051   if (Linkage == GVA_Internal)
4052     return llvm::Function::InternalLinkage;
4053 
4054   if (D->hasAttr<WeakAttr>()) {
4055     if (IsConstantVariable)
4056       return llvm::GlobalVariable::WeakODRLinkage;
4057     else
4058       return llvm::GlobalVariable::WeakAnyLinkage;
4059   }
4060 
4061   if (const auto *FD = D->getAsFunction())
4062     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4063       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4064 
4065   // We are guaranteed to have a strong definition somewhere else,
4066   // so we can use available_externally linkage.
4067   if (Linkage == GVA_AvailableExternally)
4068     return llvm::GlobalValue::AvailableExternallyLinkage;
4069 
4070   // Note that Apple's kernel linker doesn't support symbol
4071   // coalescing, so we need to avoid linkonce and weak linkages there.
4072   // Normally, this means we just map to internal, but for explicit
4073   // instantiations we'll map to external.
4074 
4075   // In C++, the compiler has to emit a definition in every translation unit
4076   // that references the function.  We should use linkonce_odr because
4077   // a) if all references in this translation unit are optimized away, we
4078   // don't need to codegen it.  b) if the function persists, it needs to be
4079   // merged with other definitions. c) C++ has the ODR, so we know the
4080   // definition is dependable.
4081   if (Linkage == GVA_DiscardableODR)
4082     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4083                                             : llvm::Function::InternalLinkage;
4084 
4085   // An explicit instantiation of a template has weak linkage, since
4086   // explicit instantiations can occur in multiple translation units
4087   // and must all be equivalent. However, we are not allowed to
4088   // throw away these explicit instantiations.
4089   //
4090   // We don't currently support CUDA device code spread out across multiple TUs,
4091   // so say that CUDA templates are either external (for kernels) or internal.
4092   // This lets llvm perform aggressive inter-procedural optimizations.
4093   if (Linkage == GVA_StrongODR) {
4094     if (Context.getLangOpts().AppleKext)
4095       return llvm::Function::ExternalLinkage;
4096     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4097       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4098                                           : llvm::Function::InternalLinkage;
4099     return llvm::Function::WeakODRLinkage;
4100   }
4101 
4102   // C++ doesn't have tentative definitions and thus cannot have common
4103   // linkage.
4104   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4105       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4106                                  CodeGenOpts.NoCommon))
4107     return llvm::GlobalVariable::CommonLinkage;
4108 
4109   // selectany symbols are externally visible, so use weak instead of
4110   // linkonce.  MSVC optimizes away references to const selectany globals, so
4111   // all definitions should be the same and ODR linkage should be used.
4112   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4113   if (D->hasAttr<SelectAnyAttr>())
4114     return llvm::GlobalVariable::WeakODRLinkage;
4115 
4116   // Otherwise, we have strong external linkage.
4117   assert(Linkage == GVA_StrongExternal);
4118   return llvm::GlobalVariable::ExternalLinkage;
4119 }
4120 
4121 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4122     const VarDecl *VD, bool IsConstant) {
4123   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4124   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4125 }
4126 
4127 /// Replace the uses of a function that was declared with a non-proto type.
4128 /// We want to silently drop extra arguments from call sites
4129 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4130                                           llvm::Function *newFn) {
4131   // Fast path.
4132   if (old->use_empty()) return;
4133 
4134   llvm::Type *newRetTy = newFn->getReturnType();
4135   SmallVector<llvm::Value*, 4> newArgs;
4136   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4137 
4138   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4139          ui != ue; ) {
4140     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4141     llvm::User *user = use->getUser();
4142 
4143     // Recognize and replace uses of bitcasts.  Most calls to
4144     // unprototyped functions will use bitcasts.
4145     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4146       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4147         replaceUsesOfNonProtoConstant(bitcast, newFn);
4148       continue;
4149     }
4150 
4151     // Recognize calls to the function.
4152     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4153     if (!callSite) continue;
4154     if (!callSite->isCallee(&*use))
4155       continue;
4156 
4157     // If the return types don't match exactly, then we can't
4158     // transform this call unless it's dead.
4159     if (callSite->getType() != newRetTy && !callSite->use_empty())
4160       continue;
4161 
4162     // Get the call site's attribute list.
4163     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4164     llvm::AttributeList oldAttrs = callSite->getAttributes();
4165 
4166     // If the function was passed too few arguments, don't transform.
4167     unsigned newNumArgs = newFn->arg_size();
4168     if (callSite->arg_size() < newNumArgs)
4169       continue;
4170 
4171     // If extra arguments were passed, we silently drop them.
4172     // If any of the types mismatch, we don't transform.
4173     unsigned argNo = 0;
4174     bool dontTransform = false;
4175     for (llvm::Argument &A : newFn->args()) {
4176       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4177         dontTransform = true;
4178         break;
4179       }
4180 
4181       // Add any parameter attributes.
4182       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4183       argNo++;
4184     }
4185     if (dontTransform)
4186       continue;
4187 
4188     // Okay, we can transform this.  Create the new call instruction and copy
4189     // over the required information.
4190     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4191 
4192     // Copy over any operand bundles.
4193     callSite->getOperandBundlesAsDefs(newBundles);
4194 
4195     llvm::CallBase *newCall;
4196     if (dyn_cast<llvm::CallInst>(callSite)) {
4197       newCall =
4198           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4199     } else {
4200       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4201       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4202                                          oldInvoke->getUnwindDest(), newArgs,
4203                                          newBundles, "", callSite);
4204     }
4205     newArgs.clear(); // for the next iteration
4206 
4207     if (!newCall->getType()->isVoidTy())
4208       newCall->takeName(callSite);
4209     newCall->setAttributes(llvm::AttributeList::get(
4210         newFn->getContext(), oldAttrs.getFnAttributes(),
4211         oldAttrs.getRetAttributes(), newArgAttrs));
4212     newCall->setCallingConv(callSite->getCallingConv());
4213 
4214     // Finally, remove the old call, replacing any uses with the new one.
4215     if (!callSite->use_empty())
4216       callSite->replaceAllUsesWith(newCall);
4217 
4218     // Copy debug location attached to CI.
4219     if (callSite->getDebugLoc())
4220       newCall->setDebugLoc(callSite->getDebugLoc());
4221 
4222     callSite->eraseFromParent();
4223   }
4224 }
4225 
4226 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4227 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4228 /// existing call uses of the old function in the module, this adjusts them to
4229 /// call the new function directly.
4230 ///
4231 /// This is not just a cleanup: the always_inline pass requires direct calls to
4232 /// functions to be able to inline them.  If there is a bitcast in the way, it
4233 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4234 /// run at -O0.
4235 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4236                                                       llvm::Function *NewFn) {
4237   // If we're redefining a global as a function, don't transform it.
4238   if (!isa<llvm::Function>(Old)) return;
4239 
4240   replaceUsesOfNonProtoConstant(Old, NewFn);
4241 }
4242 
4243 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4244   auto DK = VD->isThisDeclarationADefinition();
4245   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4246     return;
4247 
4248   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4249   // If we have a definition, this might be a deferred decl. If the
4250   // instantiation is explicit, make sure we emit it at the end.
4251   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4252     GetAddrOfGlobalVar(VD);
4253 
4254   EmitTopLevelDecl(VD);
4255 }
4256 
4257 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4258                                                  llvm::GlobalValue *GV) {
4259   const auto *D = cast<FunctionDecl>(GD.getDecl());
4260 
4261   // Compute the function info and LLVM type.
4262   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4263   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4264 
4265   // Get or create the prototype for the function.
4266   if (!GV || (GV->getType()->getElementType() != Ty))
4267     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4268                                                    /*DontDefer=*/true,
4269                                                    ForDefinition));
4270 
4271   // Already emitted.
4272   if (!GV->isDeclaration())
4273     return;
4274 
4275   // We need to set linkage and visibility on the function before
4276   // generating code for it because various parts of IR generation
4277   // want to propagate this information down (e.g. to local static
4278   // declarations).
4279   auto *Fn = cast<llvm::Function>(GV);
4280   setFunctionLinkage(GD, Fn);
4281 
4282   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4283   setGVProperties(Fn, GD);
4284 
4285   MaybeHandleStaticInExternC(D, Fn);
4286 
4287 
4288   maybeSetTrivialComdat(*D, *Fn);
4289 
4290   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4291 
4292   setNonAliasAttributes(GD, Fn);
4293   SetLLVMFunctionAttributesForDefinition(D, Fn);
4294 
4295   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4296     AddGlobalCtor(Fn, CA->getPriority());
4297   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4298     AddGlobalDtor(Fn, DA->getPriority());
4299   if (D->hasAttr<AnnotateAttr>())
4300     AddGlobalAnnotations(D, Fn);
4301 }
4302 
4303 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4304   const auto *D = cast<ValueDecl>(GD.getDecl());
4305   const AliasAttr *AA = D->getAttr<AliasAttr>();
4306   assert(AA && "Not an alias?");
4307 
4308   StringRef MangledName = getMangledName(GD);
4309 
4310   if (AA->getAliasee() == MangledName) {
4311     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4312     return;
4313   }
4314 
4315   // If there is a definition in the module, then it wins over the alias.
4316   // This is dubious, but allow it to be safe.  Just ignore the alias.
4317   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4318   if (Entry && !Entry->isDeclaration())
4319     return;
4320 
4321   Aliases.push_back(GD);
4322 
4323   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4324 
4325   // Create a reference to the named value.  This ensures that it is emitted
4326   // if a deferred decl.
4327   llvm::Constant *Aliasee;
4328   if (isa<llvm::FunctionType>(DeclTy))
4329     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4330                                       /*ForVTable=*/false);
4331   else
4332     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4333                                     llvm::PointerType::getUnqual(DeclTy),
4334                                     /*D=*/nullptr);
4335 
4336   // Create the new alias itself, but don't set a name yet.
4337   auto *GA = llvm::GlobalAlias::create(
4338       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4339 
4340   if (Entry) {
4341     if (GA->getAliasee() == Entry) {
4342       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4343       return;
4344     }
4345 
4346     assert(Entry->isDeclaration());
4347 
4348     // If there is a declaration in the module, then we had an extern followed
4349     // by the alias, as in:
4350     //   extern int test6();
4351     //   ...
4352     //   int test6() __attribute__((alias("test7")));
4353     //
4354     // Remove it and replace uses of it with the alias.
4355     GA->takeName(Entry);
4356 
4357     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4358                                                           Entry->getType()));
4359     Entry->eraseFromParent();
4360   } else {
4361     GA->setName(MangledName);
4362   }
4363 
4364   // Set attributes which are particular to an alias; this is a
4365   // specialization of the attributes which may be set on a global
4366   // variable/function.
4367   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4368       D->isWeakImported()) {
4369     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4370   }
4371 
4372   if (const auto *VD = dyn_cast<VarDecl>(D))
4373     if (VD->getTLSKind())
4374       setTLSMode(GA, *VD);
4375 
4376   SetCommonAttributes(GD, GA);
4377 }
4378 
4379 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4380   const auto *D = cast<ValueDecl>(GD.getDecl());
4381   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4382   assert(IFA && "Not an ifunc?");
4383 
4384   StringRef MangledName = getMangledName(GD);
4385 
4386   if (IFA->getResolver() == MangledName) {
4387     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4388     return;
4389   }
4390 
4391   // Report an error if some definition overrides ifunc.
4392   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4393   if (Entry && !Entry->isDeclaration()) {
4394     GlobalDecl OtherGD;
4395     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4396         DiagnosedConflictingDefinitions.insert(GD).second) {
4397       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4398           << MangledName;
4399       Diags.Report(OtherGD.getDecl()->getLocation(),
4400                    diag::note_previous_definition);
4401     }
4402     return;
4403   }
4404 
4405   Aliases.push_back(GD);
4406 
4407   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4408   llvm::Constant *Resolver =
4409       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4410                               /*ForVTable=*/false);
4411   llvm::GlobalIFunc *GIF =
4412       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4413                                 "", Resolver, &getModule());
4414   if (Entry) {
4415     if (GIF->getResolver() == Entry) {
4416       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4417       return;
4418     }
4419     assert(Entry->isDeclaration());
4420 
4421     // If there is a declaration in the module, then we had an extern followed
4422     // by the ifunc, as in:
4423     //   extern int test();
4424     //   ...
4425     //   int test() __attribute__((ifunc("resolver")));
4426     //
4427     // Remove it and replace uses of it with the ifunc.
4428     GIF->takeName(Entry);
4429 
4430     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4431                                                           Entry->getType()));
4432     Entry->eraseFromParent();
4433   } else
4434     GIF->setName(MangledName);
4435 
4436   SetCommonAttributes(GD, GIF);
4437 }
4438 
4439 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4440                                             ArrayRef<llvm::Type*> Tys) {
4441   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4442                                          Tys);
4443 }
4444 
4445 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4446 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4447                          const StringLiteral *Literal, bool TargetIsLSB,
4448                          bool &IsUTF16, unsigned &StringLength) {
4449   StringRef String = Literal->getString();
4450   unsigned NumBytes = String.size();
4451 
4452   // Check for simple case.
4453   if (!Literal->containsNonAsciiOrNull()) {
4454     StringLength = NumBytes;
4455     return *Map.insert(std::make_pair(String, nullptr)).first;
4456   }
4457 
4458   // Otherwise, convert the UTF8 literals into a string of shorts.
4459   IsUTF16 = true;
4460 
4461   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4462   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4463   llvm::UTF16 *ToPtr = &ToBuf[0];
4464 
4465   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4466                                  ToPtr + NumBytes, llvm::strictConversion);
4467 
4468   // ConvertUTF8toUTF16 returns the length in ToPtr.
4469   StringLength = ToPtr - &ToBuf[0];
4470 
4471   // Add an explicit null.
4472   *ToPtr = 0;
4473   return *Map.insert(std::make_pair(
4474                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4475                                    (StringLength + 1) * 2),
4476                          nullptr)).first;
4477 }
4478 
4479 ConstantAddress
4480 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4481   unsigned StringLength = 0;
4482   bool isUTF16 = false;
4483   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4484       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4485                                getDataLayout().isLittleEndian(), isUTF16,
4486                                StringLength);
4487 
4488   if (auto *C = Entry.second)
4489     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4490 
4491   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4492   llvm::Constant *Zeros[] = { Zero, Zero };
4493 
4494   const ASTContext &Context = getContext();
4495   const llvm::Triple &Triple = getTriple();
4496 
4497   const auto CFRuntime = getLangOpts().CFRuntime;
4498   const bool IsSwiftABI =
4499       static_cast<unsigned>(CFRuntime) >=
4500       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4501   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4502 
4503   // If we don't already have it, get __CFConstantStringClassReference.
4504   if (!CFConstantStringClassRef) {
4505     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4506     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4507     Ty = llvm::ArrayType::get(Ty, 0);
4508 
4509     switch (CFRuntime) {
4510     default: break;
4511     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4512     case LangOptions::CoreFoundationABI::Swift5_0:
4513       CFConstantStringClassName =
4514           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4515                               : "$s10Foundation19_NSCFConstantStringCN";
4516       Ty = IntPtrTy;
4517       break;
4518     case LangOptions::CoreFoundationABI::Swift4_2:
4519       CFConstantStringClassName =
4520           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4521                               : "$S10Foundation19_NSCFConstantStringCN";
4522       Ty = IntPtrTy;
4523       break;
4524     case LangOptions::CoreFoundationABI::Swift4_1:
4525       CFConstantStringClassName =
4526           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4527                               : "__T010Foundation19_NSCFConstantStringCN";
4528       Ty = IntPtrTy;
4529       break;
4530     }
4531 
4532     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4533 
4534     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4535       llvm::GlobalValue *GV = nullptr;
4536 
4537       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4538         IdentifierInfo &II = Context.Idents.get(GV->getName());
4539         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4540         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4541 
4542         const VarDecl *VD = nullptr;
4543         for (const auto &Result : DC->lookup(&II))
4544           if ((VD = dyn_cast<VarDecl>(Result)))
4545             break;
4546 
4547         if (Triple.isOSBinFormatELF()) {
4548           if (!VD)
4549             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4550         } else {
4551           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4552           if (!VD || !VD->hasAttr<DLLExportAttr>())
4553             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4554           else
4555             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4556         }
4557 
4558         setDSOLocal(GV);
4559       }
4560     }
4561 
4562     // Decay array -> ptr
4563     CFConstantStringClassRef =
4564         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4565                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4566   }
4567 
4568   QualType CFTy = Context.getCFConstantStringType();
4569 
4570   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4571 
4572   ConstantInitBuilder Builder(*this);
4573   auto Fields = Builder.beginStruct(STy);
4574 
4575   // Class pointer.
4576   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4577 
4578   // Flags.
4579   if (IsSwiftABI) {
4580     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4581     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4582   } else {
4583     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4584   }
4585 
4586   // String pointer.
4587   llvm::Constant *C = nullptr;
4588   if (isUTF16) {
4589     auto Arr = llvm::makeArrayRef(
4590         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4591         Entry.first().size() / 2);
4592     C = llvm::ConstantDataArray::get(VMContext, Arr);
4593   } else {
4594     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4595   }
4596 
4597   // Note: -fwritable-strings doesn't make the backing store strings of
4598   // CFStrings writable. (See <rdar://problem/10657500>)
4599   auto *GV =
4600       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4601                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4602   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4603   // Don't enforce the target's minimum global alignment, since the only use
4604   // of the string is via this class initializer.
4605   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4606                             : Context.getTypeAlignInChars(Context.CharTy);
4607   GV->setAlignment(Align.getQuantity());
4608 
4609   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4610   // Without it LLVM can merge the string with a non unnamed_addr one during
4611   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4612   if (Triple.isOSBinFormatMachO())
4613     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4614                            : "__TEXT,__cstring,cstring_literals");
4615   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4616   // the static linker to adjust permissions to read-only later on.
4617   else if (Triple.isOSBinFormatELF())
4618     GV->setSection(".rodata");
4619 
4620   // String.
4621   llvm::Constant *Str =
4622       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4623 
4624   if (isUTF16)
4625     // Cast the UTF16 string to the correct type.
4626     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4627   Fields.add(Str);
4628 
4629   // String length.
4630   llvm::IntegerType *LengthTy =
4631       llvm::IntegerType::get(getModule().getContext(),
4632                              Context.getTargetInfo().getLongWidth());
4633   if (IsSwiftABI) {
4634     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4635         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4636       LengthTy = Int32Ty;
4637     else
4638       LengthTy = IntPtrTy;
4639   }
4640   Fields.addInt(LengthTy, StringLength);
4641 
4642   CharUnits Alignment = getPointerAlign();
4643 
4644   // The struct.
4645   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4646                                     /*isConstant=*/false,
4647                                     llvm::GlobalVariable::PrivateLinkage);
4648   switch (Triple.getObjectFormat()) {
4649   case llvm::Triple::UnknownObjectFormat:
4650     llvm_unreachable("unknown file format");
4651   case llvm::Triple::XCOFF:
4652     llvm_unreachable("XCOFF is not yet implemented");
4653   case llvm::Triple::COFF:
4654   case llvm::Triple::ELF:
4655   case llvm::Triple::Wasm:
4656     GV->setSection("cfstring");
4657     break;
4658   case llvm::Triple::MachO:
4659     GV->setSection("__DATA,__cfstring");
4660     break;
4661   }
4662   Entry.second = GV;
4663 
4664   return ConstantAddress(GV, Alignment);
4665 }
4666 
4667 bool CodeGenModule::getExpressionLocationsEnabled() const {
4668   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4669 }
4670 
4671 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4672   if (ObjCFastEnumerationStateType.isNull()) {
4673     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4674     D->startDefinition();
4675 
4676     QualType FieldTypes[] = {
4677       Context.UnsignedLongTy,
4678       Context.getPointerType(Context.getObjCIdType()),
4679       Context.getPointerType(Context.UnsignedLongTy),
4680       Context.getConstantArrayType(Context.UnsignedLongTy,
4681                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4682     };
4683 
4684     for (size_t i = 0; i < 4; ++i) {
4685       FieldDecl *Field = FieldDecl::Create(Context,
4686                                            D,
4687                                            SourceLocation(),
4688                                            SourceLocation(), nullptr,
4689                                            FieldTypes[i], /*TInfo=*/nullptr,
4690                                            /*BitWidth=*/nullptr,
4691                                            /*Mutable=*/false,
4692                                            ICIS_NoInit);
4693       Field->setAccess(AS_public);
4694       D->addDecl(Field);
4695     }
4696 
4697     D->completeDefinition();
4698     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4699   }
4700 
4701   return ObjCFastEnumerationStateType;
4702 }
4703 
4704 llvm::Constant *
4705 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4706   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4707 
4708   // Don't emit it as the address of the string, emit the string data itself
4709   // as an inline array.
4710   if (E->getCharByteWidth() == 1) {
4711     SmallString<64> Str(E->getString());
4712 
4713     // Resize the string to the right size, which is indicated by its type.
4714     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4715     Str.resize(CAT->getSize().getZExtValue());
4716     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4717   }
4718 
4719   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4720   llvm::Type *ElemTy = AType->getElementType();
4721   unsigned NumElements = AType->getNumElements();
4722 
4723   // Wide strings have either 2-byte or 4-byte elements.
4724   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4725     SmallVector<uint16_t, 32> Elements;
4726     Elements.reserve(NumElements);
4727 
4728     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4729       Elements.push_back(E->getCodeUnit(i));
4730     Elements.resize(NumElements);
4731     return llvm::ConstantDataArray::get(VMContext, Elements);
4732   }
4733 
4734   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4735   SmallVector<uint32_t, 32> Elements;
4736   Elements.reserve(NumElements);
4737 
4738   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4739     Elements.push_back(E->getCodeUnit(i));
4740   Elements.resize(NumElements);
4741   return llvm::ConstantDataArray::get(VMContext, Elements);
4742 }
4743 
4744 static llvm::GlobalVariable *
4745 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4746                       CodeGenModule &CGM, StringRef GlobalName,
4747                       CharUnits Alignment) {
4748   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4749       CGM.getStringLiteralAddressSpace());
4750 
4751   llvm::Module &M = CGM.getModule();
4752   // Create a global variable for this string
4753   auto *GV = new llvm::GlobalVariable(
4754       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4755       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4756   GV->setAlignment(Alignment.getQuantity());
4757   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4758   if (GV->isWeakForLinker()) {
4759     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4760     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4761   }
4762   CGM.setDSOLocal(GV);
4763 
4764   return GV;
4765 }
4766 
4767 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4768 /// constant array for the given string literal.
4769 ConstantAddress
4770 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4771                                                   StringRef Name) {
4772   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4773 
4774   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4775   llvm::GlobalVariable **Entry = nullptr;
4776   if (!LangOpts.WritableStrings) {
4777     Entry = &ConstantStringMap[C];
4778     if (auto GV = *Entry) {
4779       if (Alignment.getQuantity() > GV->getAlignment())
4780         GV->setAlignment(Alignment.getQuantity());
4781       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4782                              Alignment);
4783     }
4784   }
4785 
4786   SmallString<256> MangledNameBuffer;
4787   StringRef GlobalVariableName;
4788   llvm::GlobalValue::LinkageTypes LT;
4789 
4790   // Mangle the string literal if that's how the ABI merges duplicate strings.
4791   // Don't do it if they are writable, since we don't want writes in one TU to
4792   // affect strings in another.
4793   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4794       !LangOpts.WritableStrings) {
4795     llvm::raw_svector_ostream Out(MangledNameBuffer);
4796     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4797     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4798     GlobalVariableName = MangledNameBuffer;
4799   } else {
4800     LT = llvm::GlobalValue::PrivateLinkage;
4801     GlobalVariableName = Name;
4802   }
4803 
4804   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4805   if (Entry)
4806     *Entry = GV;
4807 
4808   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4809                                   QualType());
4810 
4811   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4812                          Alignment);
4813 }
4814 
4815 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4816 /// array for the given ObjCEncodeExpr node.
4817 ConstantAddress
4818 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4819   std::string Str;
4820   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4821 
4822   return GetAddrOfConstantCString(Str);
4823 }
4824 
4825 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4826 /// the literal and a terminating '\0' character.
4827 /// The result has pointer to array type.
4828 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4829     const std::string &Str, const char *GlobalName) {
4830   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4831   CharUnits Alignment =
4832     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4833 
4834   llvm::Constant *C =
4835       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4836 
4837   // Don't share any string literals if strings aren't constant.
4838   llvm::GlobalVariable **Entry = nullptr;
4839   if (!LangOpts.WritableStrings) {
4840     Entry = &ConstantStringMap[C];
4841     if (auto GV = *Entry) {
4842       if (Alignment.getQuantity() > GV->getAlignment())
4843         GV->setAlignment(Alignment.getQuantity());
4844       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4845                              Alignment);
4846     }
4847   }
4848 
4849   // Get the default prefix if a name wasn't specified.
4850   if (!GlobalName)
4851     GlobalName = ".str";
4852   // Create a global variable for this.
4853   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4854                                   GlobalName, Alignment);
4855   if (Entry)
4856     *Entry = GV;
4857 
4858   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4859                          Alignment);
4860 }
4861 
4862 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4863     const MaterializeTemporaryExpr *E, const Expr *Init) {
4864   assert((E->getStorageDuration() == SD_Static ||
4865           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4866   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4867 
4868   // If we're not materializing a subobject of the temporary, keep the
4869   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4870   QualType MaterializedType = Init->getType();
4871   if (Init == E->GetTemporaryExpr())
4872     MaterializedType = E->getType();
4873 
4874   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4875 
4876   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4877     return ConstantAddress(Slot, Align);
4878 
4879   // FIXME: If an externally-visible declaration extends multiple temporaries,
4880   // we need to give each temporary the same name in every translation unit (and
4881   // we also need to make the temporaries externally-visible).
4882   SmallString<256> Name;
4883   llvm::raw_svector_ostream Out(Name);
4884   getCXXABI().getMangleContext().mangleReferenceTemporary(
4885       VD, E->getManglingNumber(), Out);
4886 
4887   APValue *Value = nullptr;
4888   if (E->getStorageDuration() == SD_Static) {
4889     // We might have a cached constant initializer for this temporary. Note
4890     // that this might have a different value from the value computed by
4891     // evaluating the initializer if the surrounding constant expression
4892     // modifies the temporary.
4893     Value = getContext().getMaterializedTemporaryValue(E, false);
4894     if (Value && Value->isAbsent())
4895       Value = nullptr;
4896   }
4897 
4898   // Try evaluating it now, it might have a constant initializer.
4899   Expr::EvalResult EvalResult;
4900   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4901       !EvalResult.hasSideEffects())
4902     Value = &EvalResult.Val;
4903 
4904   LangAS AddrSpace =
4905       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4906 
4907   Optional<ConstantEmitter> emitter;
4908   llvm::Constant *InitialValue = nullptr;
4909   bool Constant = false;
4910   llvm::Type *Type;
4911   if (Value) {
4912     // The temporary has a constant initializer, use it.
4913     emitter.emplace(*this);
4914     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4915                                                MaterializedType);
4916     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4917     Type = InitialValue->getType();
4918   } else {
4919     // No initializer, the initialization will be provided when we
4920     // initialize the declaration which performed lifetime extension.
4921     Type = getTypes().ConvertTypeForMem(MaterializedType);
4922   }
4923 
4924   // Create a global variable for this lifetime-extended temporary.
4925   llvm::GlobalValue::LinkageTypes Linkage =
4926       getLLVMLinkageVarDefinition(VD, Constant);
4927   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4928     const VarDecl *InitVD;
4929     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4930         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4931       // Temporaries defined inside a class get linkonce_odr linkage because the
4932       // class can be defined in multiple translation units.
4933       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4934     } else {
4935       // There is no need for this temporary to have external linkage if the
4936       // VarDecl has external linkage.
4937       Linkage = llvm::GlobalVariable::InternalLinkage;
4938     }
4939   }
4940   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4941   auto *GV = new llvm::GlobalVariable(
4942       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4943       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4944   if (emitter) emitter->finalize(GV);
4945   setGVProperties(GV, VD);
4946   GV->setAlignment(Align.getQuantity());
4947   if (supportsCOMDAT() && GV->isWeakForLinker())
4948     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4949   if (VD->getTLSKind())
4950     setTLSMode(GV, *VD);
4951   llvm::Constant *CV = GV;
4952   if (AddrSpace != LangAS::Default)
4953     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4954         *this, GV, AddrSpace, LangAS::Default,
4955         Type->getPointerTo(
4956             getContext().getTargetAddressSpace(LangAS::Default)));
4957   MaterializedGlobalTemporaryMap[E] = CV;
4958   return ConstantAddress(CV, Align);
4959 }
4960 
4961 /// EmitObjCPropertyImplementations - Emit information for synthesized
4962 /// properties for an implementation.
4963 void CodeGenModule::EmitObjCPropertyImplementations(const
4964                                                     ObjCImplementationDecl *D) {
4965   for (const auto *PID : D->property_impls()) {
4966     // Dynamic is just for type-checking.
4967     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4968       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4969 
4970       // Determine which methods need to be implemented, some may have
4971       // been overridden. Note that ::isPropertyAccessor is not the method
4972       // we want, that just indicates if the decl came from a
4973       // property. What we want to know is if the method is defined in
4974       // this implementation.
4975       if (!D->getInstanceMethod(PD->getGetterName()))
4976         CodeGenFunction(*this).GenerateObjCGetter(
4977                                  const_cast<ObjCImplementationDecl *>(D), PID);
4978       if (!PD->isReadOnly() &&
4979           !D->getInstanceMethod(PD->getSetterName()))
4980         CodeGenFunction(*this).GenerateObjCSetter(
4981                                  const_cast<ObjCImplementationDecl *>(D), PID);
4982     }
4983   }
4984 }
4985 
4986 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4987   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4988   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4989        ivar; ivar = ivar->getNextIvar())
4990     if (ivar->getType().isDestructedType())
4991       return true;
4992 
4993   return false;
4994 }
4995 
4996 static bool AllTrivialInitializers(CodeGenModule &CGM,
4997                                    ObjCImplementationDecl *D) {
4998   CodeGenFunction CGF(CGM);
4999   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5000        E = D->init_end(); B != E; ++B) {
5001     CXXCtorInitializer *CtorInitExp = *B;
5002     Expr *Init = CtorInitExp->getInit();
5003     if (!CGF.isTrivialInitializer(Init))
5004       return false;
5005   }
5006   return true;
5007 }
5008 
5009 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5010 /// for an implementation.
5011 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5012   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5013   if (needsDestructMethod(D)) {
5014     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5015     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5016     ObjCMethodDecl *DTORMethod =
5017       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5018                              cxxSelector, getContext().VoidTy, nullptr, D,
5019                              /*isInstance=*/true, /*isVariadic=*/false,
5020                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5021                              /*isDefined=*/false, ObjCMethodDecl::Required);
5022     D->addInstanceMethod(DTORMethod);
5023     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5024     D->setHasDestructors(true);
5025   }
5026 
5027   // If the implementation doesn't have any ivar initializers, we don't need
5028   // a .cxx_construct.
5029   if (D->getNumIvarInitializers() == 0 ||
5030       AllTrivialInitializers(*this, D))
5031     return;
5032 
5033   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5034   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5035   // The constructor returns 'self'.
5036   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5037                                                 D->getLocation(),
5038                                                 D->getLocation(),
5039                                                 cxxSelector,
5040                                                 getContext().getObjCIdType(),
5041                                                 nullptr, D, /*isInstance=*/true,
5042                                                 /*isVariadic=*/false,
5043                                                 /*isPropertyAccessor=*/true,
5044                                                 /*isImplicitlyDeclared=*/true,
5045                                                 /*isDefined=*/false,
5046                                                 ObjCMethodDecl::Required);
5047   D->addInstanceMethod(CTORMethod);
5048   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5049   D->setHasNonZeroConstructors(true);
5050 }
5051 
5052 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5053 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5054   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5055       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5056     ErrorUnsupported(LSD, "linkage spec");
5057     return;
5058   }
5059 
5060   EmitDeclContext(LSD);
5061 }
5062 
5063 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5064   for (auto *I : DC->decls()) {
5065     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5066     // are themselves considered "top-level", so EmitTopLevelDecl on an
5067     // ObjCImplDecl does not recursively visit them. We need to do that in
5068     // case they're nested inside another construct (LinkageSpecDecl /
5069     // ExportDecl) that does stop them from being considered "top-level".
5070     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5071       for (auto *M : OID->methods())
5072         EmitTopLevelDecl(M);
5073     }
5074 
5075     EmitTopLevelDecl(I);
5076   }
5077 }
5078 
5079 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5080 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5081   // Ignore dependent declarations.
5082   if (D->isTemplated())
5083     return;
5084 
5085   switch (D->getKind()) {
5086   case Decl::CXXConversion:
5087   case Decl::CXXMethod:
5088   case Decl::Function:
5089     EmitGlobal(cast<FunctionDecl>(D));
5090     // Always provide some coverage mapping
5091     // even for the functions that aren't emitted.
5092     AddDeferredUnusedCoverageMapping(D);
5093     break;
5094 
5095   case Decl::CXXDeductionGuide:
5096     // Function-like, but does not result in code emission.
5097     break;
5098 
5099   case Decl::Var:
5100   case Decl::Decomposition:
5101   case Decl::VarTemplateSpecialization:
5102     EmitGlobal(cast<VarDecl>(D));
5103     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5104       for (auto *B : DD->bindings())
5105         if (auto *HD = B->getHoldingVar())
5106           EmitGlobal(HD);
5107     break;
5108 
5109   // Indirect fields from global anonymous structs and unions can be
5110   // ignored; only the actual variable requires IR gen support.
5111   case Decl::IndirectField:
5112     break;
5113 
5114   // C++ Decls
5115   case Decl::Namespace:
5116     EmitDeclContext(cast<NamespaceDecl>(D));
5117     break;
5118   case Decl::ClassTemplateSpecialization: {
5119     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5120     if (DebugInfo &&
5121         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5122         Spec->hasDefinition())
5123       DebugInfo->completeTemplateDefinition(*Spec);
5124   } LLVM_FALLTHROUGH;
5125   case Decl::CXXRecord:
5126     if (DebugInfo) {
5127       if (auto *ES = D->getASTContext().getExternalSource())
5128         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5129           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5130     }
5131     // Emit any static data members, they may be definitions.
5132     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5133       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5134         EmitTopLevelDecl(I);
5135     break;
5136     // No code generation needed.
5137   case Decl::UsingShadow:
5138   case Decl::ClassTemplate:
5139   case Decl::VarTemplate:
5140   case Decl::VarTemplatePartialSpecialization:
5141   case Decl::FunctionTemplate:
5142   case Decl::TypeAliasTemplate:
5143   case Decl::Block:
5144   case Decl::Empty:
5145   case Decl::Binding:
5146     break;
5147   case Decl::Using:          // using X; [C++]
5148     if (CGDebugInfo *DI = getModuleDebugInfo())
5149         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5150     return;
5151   case Decl::NamespaceAlias:
5152     if (CGDebugInfo *DI = getModuleDebugInfo())
5153         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5154     return;
5155   case Decl::UsingDirective: // using namespace X; [C++]
5156     if (CGDebugInfo *DI = getModuleDebugInfo())
5157       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5158     return;
5159   case Decl::CXXConstructor:
5160     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5161     break;
5162   case Decl::CXXDestructor:
5163     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5164     break;
5165 
5166   case Decl::StaticAssert:
5167     // Nothing to do.
5168     break;
5169 
5170   // Objective-C Decls
5171 
5172   // Forward declarations, no (immediate) code generation.
5173   case Decl::ObjCInterface:
5174   case Decl::ObjCCategory:
5175     break;
5176 
5177   case Decl::ObjCProtocol: {
5178     auto *Proto = cast<ObjCProtocolDecl>(D);
5179     if (Proto->isThisDeclarationADefinition())
5180       ObjCRuntime->GenerateProtocol(Proto);
5181     break;
5182   }
5183 
5184   case Decl::ObjCCategoryImpl:
5185     // Categories have properties but don't support synthesize so we
5186     // can ignore them here.
5187     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5188     break;
5189 
5190   case Decl::ObjCImplementation: {
5191     auto *OMD = cast<ObjCImplementationDecl>(D);
5192     EmitObjCPropertyImplementations(OMD);
5193     EmitObjCIvarInitializations(OMD);
5194     ObjCRuntime->GenerateClass(OMD);
5195     // Emit global variable debug information.
5196     if (CGDebugInfo *DI = getModuleDebugInfo())
5197       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5198         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5199             OMD->getClassInterface()), OMD->getLocation());
5200     break;
5201   }
5202   case Decl::ObjCMethod: {
5203     auto *OMD = cast<ObjCMethodDecl>(D);
5204     // If this is not a prototype, emit the body.
5205     if (OMD->getBody())
5206       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5207     break;
5208   }
5209   case Decl::ObjCCompatibleAlias:
5210     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5211     break;
5212 
5213   case Decl::PragmaComment: {
5214     const auto *PCD = cast<PragmaCommentDecl>(D);
5215     switch (PCD->getCommentKind()) {
5216     case PCK_Unknown:
5217       llvm_unreachable("unexpected pragma comment kind");
5218     case PCK_Linker:
5219       AppendLinkerOptions(PCD->getArg());
5220       break;
5221     case PCK_Lib:
5222         AddDependentLib(PCD->getArg());
5223       break;
5224     case PCK_Compiler:
5225     case PCK_ExeStr:
5226     case PCK_User:
5227       break; // We ignore all of these.
5228     }
5229     break;
5230   }
5231 
5232   case Decl::PragmaDetectMismatch: {
5233     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5234     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5235     break;
5236   }
5237 
5238   case Decl::LinkageSpec:
5239     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5240     break;
5241 
5242   case Decl::FileScopeAsm: {
5243     // File-scope asm is ignored during device-side CUDA compilation.
5244     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5245       break;
5246     // File-scope asm is ignored during device-side OpenMP compilation.
5247     if (LangOpts.OpenMPIsDevice)
5248       break;
5249     auto *AD = cast<FileScopeAsmDecl>(D);
5250     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5251     break;
5252   }
5253 
5254   case Decl::Import: {
5255     auto *Import = cast<ImportDecl>(D);
5256 
5257     // If we've already imported this module, we're done.
5258     if (!ImportedModules.insert(Import->getImportedModule()))
5259       break;
5260 
5261     // Emit debug information for direct imports.
5262     if (!Import->getImportedOwningModule()) {
5263       if (CGDebugInfo *DI = getModuleDebugInfo())
5264         DI->EmitImportDecl(*Import);
5265     }
5266 
5267     // Find all of the submodules and emit the module initializers.
5268     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5269     SmallVector<clang::Module *, 16> Stack;
5270     Visited.insert(Import->getImportedModule());
5271     Stack.push_back(Import->getImportedModule());
5272 
5273     while (!Stack.empty()) {
5274       clang::Module *Mod = Stack.pop_back_val();
5275       if (!EmittedModuleInitializers.insert(Mod).second)
5276         continue;
5277 
5278       for (auto *D : Context.getModuleInitializers(Mod))
5279         EmitTopLevelDecl(D);
5280 
5281       // Visit the submodules of this module.
5282       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5283                                              SubEnd = Mod->submodule_end();
5284            Sub != SubEnd; ++Sub) {
5285         // Skip explicit children; they need to be explicitly imported to emit
5286         // the initializers.
5287         if ((*Sub)->IsExplicit)
5288           continue;
5289 
5290         if (Visited.insert(*Sub).second)
5291           Stack.push_back(*Sub);
5292       }
5293     }
5294     break;
5295   }
5296 
5297   case Decl::Export:
5298     EmitDeclContext(cast<ExportDecl>(D));
5299     break;
5300 
5301   case Decl::OMPThreadPrivate:
5302     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5303     break;
5304 
5305   case Decl::OMPAllocate:
5306     break;
5307 
5308   case Decl::OMPDeclareReduction:
5309     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5310     break;
5311 
5312   case Decl::OMPDeclareMapper:
5313     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5314     break;
5315 
5316   case Decl::OMPRequires:
5317     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5318     break;
5319 
5320   default:
5321     // Make sure we handled everything we should, every other kind is a
5322     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5323     // function. Need to recode Decl::Kind to do that easily.
5324     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5325     break;
5326   }
5327 }
5328 
5329 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5330   // Do we need to generate coverage mapping?
5331   if (!CodeGenOpts.CoverageMapping)
5332     return;
5333   switch (D->getKind()) {
5334   case Decl::CXXConversion:
5335   case Decl::CXXMethod:
5336   case Decl::Function:
5337   case Decl::ObjCMethod:
5338   case Decl::CXXConstructor:
5339   case Decl::CXXDestructor: {
5340     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5341       return;
5342     SourceManager &SM = getContext().getSourceManager();
5343     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5344       return;
5345     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5346     if (I == DeferredEmptyCoverageMappingDecls.end())
5347       DeferredEmptyCoverageMappingDecls[D] = true;
5348     break;
5349   }
5350   default:
5351     break;
5352   };
5353 }
5354 
5355 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5356   // Do we need to generate coverage mapping?
5357   if (!CodeGenOpts.CoverageMapping)
5358     return;
5359   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5360     if (Fn->isTemplateInstantiation())
5361       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5362   }
5363   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5364   if (I == DeferredEmptyCoverageMappingDecls.end())
5365     DeferredEmptyCoverageMappingDecls[D] = false;
5366   else
5367     I->second = false;
5368 }
5369 
5370 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5371   // We call takeVector() here to avoid use-after-free.
5372   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5373   // we deserialize function bodies to emit coverage info for them, and that
5374   // deserializes more declarations. How should we handle that case?
5375   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5376     if (!Entry.second)
5377       continue;
5378     const Decl *D = Entry.first;
5379     switch (D->getKind()) {
5380     case Decl::CXXConversion:
5381     case Decl::CXXMethod:
5382     case Decl::Function:
5383     case Decl::ObjCMethod: {
5384       CodeGenPGO PGO(*this);
5385       GlobalDecl GD(cast<FunctionDecl>(D));
5386       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5387                                   getFunctionLinkage(GD));
5388       break;
5389     }
5390     case Decl::CXXConstructor: {
5391       CodeGenPGO PGO(*this);
5392       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5393       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5394                                   getFunctionLinkage(GD));
5395       break;
5396     }
5397     case Decl::CXXDestructor: {
5398       CodeGenPGO PGO(*this);
5399       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5400       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5401                                   getFunctionLinkage(GD));
5402       break;
5403     }
5404     default:
5405       break;
5406     };
5407   }
5408 }
5409 
5410 /// Turns the given pointer into a constant.
5411 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5412                                           const void *Ptr) {
5413   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5414   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5415   return llvm::ConstantInt::get(i64, PtrInt);
5416 }
5417 
5418 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5419                                    llvm::NamedMDNode *&GlobalMetadata,
5420                                    GlobalDecl D,
5421                                    llvm::GlobalValue *Addr) {
5422   if (!GlobalMetadata)
5423     GlobalMetadata =
5424       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5425 
5426   // TODO: should we report variant information for ctors/dtors?
5427   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5428                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5429                                CGM.getLLVMContext(), D.getDecl()))};
5430   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5431 }
5432 
5433 /// For each function which is declared within an extern "C" region and marked
5434 /// as 'used', but has internal linkage, create an alias from the unmangled
5435 /// name to the mangled name if possible. People expect to be able to refer
5436 /// to such functions with an unmangled name from inline assembly within the
5437 /// same translation unit.
5438 void CodeGenModule::EmitStaticExternCAliases() {
5439   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5440     return;
5441   for (auto &I : StaticExternCValues) {
5442     IdentifierInfo *Name = I.first;
5443     llvm::GlobalValue *Val = I.second;
5444     if (Val && !getModule().getNamedValue(Name->getName()))
5445       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5446   }
5447 }
5448 
5449 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5450                                              GlobalDecl &Result) const {
5451   auto Res = Manglings.find(MangledName);
5452   if (Res == Manglings.end())
5453     return false;
5454   Result = Res->getValue();
5455   return true;
5456 }
5457 
5458 /// Emits metadata nodes associating all the global values in the
5459 /// current module with the Decls they came from.  This is useful for
5460 /// projects using IR gen as a subroutine.
5461 ///
5462 /// Since there's currently no way to associate an MDNode directly
5463 /// with an llvm::GlobalValue, we create a global named metadata
5464 /// with the name 'clang.global.decl.ptrs'.
5465 void CodeGenModule::EmitDeclMetadata() {
5466   llvm::NamedMDNode *GlobalMetadata = nullptr;
5467 
5468   for (auto &I : MangledDeclNames) {
5469     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5470     // Some mangled names don't necessarily have an associated GlobalValue
5471     // in this module, e.g. if we mangled it for DebugInfo.
5472     if (Addr)
5473       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5474   }
5475 }
5476 
5477 /// Emits metadata nodes for all the local variables in the current
5478 /// function.
5479 void CodeGenFunction::EmitDeclMetadata() {
5480   if (LocalDeclMap.empty()) return;
5481 
5482   llvm::LLVMContext &Context = getLLVMContext();
5483 
5484   // Find the unique metadata ID for this name.
5485   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5486 
5487   llvm::NamedMDNode *GlobalMetadata = nullptr;
5488 
5489   for (auto &I : LocalDeclMap) {
5490     const Decl *D = I.first;
5491     llvm::Value *Addr = I.second.getPointer();
5492     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5493       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5494       Alloca->setMetadata(
5495           DeclPtrKind, llvm::MDNode::get(
5496                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5497     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5498       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5499       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5500     }
5501   }
5502 }
5503 
5504 void CodeGenModule::EmitVersionIdentMetadata() {
5505   llvm::NamedMDNode *IdentMetadata =
5506     TheModule.getOrInsertNamedMetadata("llvm.ident");
5507   std::string Version = getClangFullVersion();
5508   llvm::LLVMContext &Ctx = TheModule.getContext();
5509 
5510   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5511   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5512 }
5513 
5514 void CodeGenModule::EmitCommandLineMetadata() {
5515   llvm::NamedMDNode *CommandLineMetadata =
5516     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5517   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5518   llvm::LLVMContext &Ctx = TheModule.getContext();
5519 
5520   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5521   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5522 }
5523 
5524 void CodeGenModule::EmitTargetMetadata() {
5525   // Warning, new MangledDeclNames may be appended within this loop.
5526   // We rely on MapVector insertions adding new elements to the end
5527   // of the container.
5528   // FIXME: Move this loop into the one target that needs it, and only
5529   // loop over those declarations for which we couldn't emit the target
5530   // metadata when we emitted the declaration.
5531   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5532     auto Val = *(MangledDeclNames.begin() + I);
5533     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5534     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5535     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5536   }
5537 }
5538 
5539 void CodeGenModule::EmitCoverageFile() {
5540   if (getCodeGenOpts().CoverageDataFile.empty() &&
5541       getCodeGenOpts().CoverageNotesFile.empty())
5542     return;
5543 
5544   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5545   if (!CUNode)
5546     return;
5547 
5548   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5549   llvm::LLVMContext &Ctx = TheModule.getContext();
5550   auto *CoverageDataFile =
5551       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5552   auto *CoverageNotesFile =
5553       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5554   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5555     llvm::MDNode *CU = CUNode->getOperand(i);
5556     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5557     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5558   }
5559 }
5560 
5561 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5562   // Sema has checked that all uuid strings are of the form
5563   // "12345678-1234-1234-1234-1234567890ab".
5564   assert(Uuid.size() == 36);
5565   for (unsigned i = 0; i < 36; ++i) {
5566     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5567     else                                         assert(isHexDigit(Uuid[i]));
5568   }
5569 
5570   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5571   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5572 
5573   llvm::Constant *Field3[8];
5574   for (unsigned Idx = 0; Idx < 8; ++Idx)
5575     Field3[Idx] = llvm::ConstantInt::get(
5576         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5577 
5578   llvm::Constant *Fields[4] = {
5579     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5580     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5581     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5582     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5583   };
5584 
5585   return llvm::ConstantStruct::getAnon(Fields);
5586 }
5587 
5588 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5589                                                        bool ForEH) {
5590   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5591   // FIXME: should we even be calling this method if RTTI is disabled
5592   // and it's not for EH?
5593   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5594     return llvm::Constant::getNullValue(Int8PtrTy);
5595 
5596   if (ForEH && Ty->isObjCObjectPointerType() &&
5597       LangOpts.ObjCRuntime.isGNUFamily())
5598     return ObjCRuntime->GetEHType(Ty);
5599 
5600   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5601 }
5602 
5603 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5604   // Do not emit threadprivates in simd-only mode.
5605   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5606     return;
5607   for (auto RefExpr : D->varlists()) {
5608     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5609     bool PerformInit =
5610         VD->getAnyInitializer() &&
5611         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5612                                                         /*ForRef=*/false);
5613 
5614     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5615     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5616             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5617       CXXGlobalInits.push_back(InitFunction);
5618   }
5619 }
5620 
5621 llvm::Metadata *
5622 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5623                                             StringRef Suffix) {
5624   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5625   if (InternalId)
5626     return InternalId;
5627 
5628   if (isExternallyVisible(T->getLinkage())) {
5629     std::string OutName;
5630     llvm::raw_string_ostream Out(OutName);
5631     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5632     Out << Suffix;
5633 
5634     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5635   } else {
5636     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5637                                            llvm::ArrayRef<llvm::Metadata *>());
5638   }
5639 
5640   return InternalId;
5641 }
5642 
5643 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5644   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5645 }
5646 
5647 llvm::Metadata *
5648 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5649   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5650 }
5651 
5652 // Generalize pointer types to a void pointer with the qualifiers of the
5653 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5654 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5655 // 'void *'.
5656 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5657   if (!Ty->isPointerType())
5658     return Ty;
5659 
5660   return Ctx.getPointerType(
5661       QualType(Ctx.VoidTy).withCVRQualifiers(
5662           Ty->getPointeeType().getCVRQualifiers()));
5663 }
5664 
5665 // Apply type generalization to a FunctionType's return and argument types
5666 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5667   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5668     SmallVector<QualType, 8> GeneralizedParams;
5669     for (auto &Param : FnType->param_types())
5670       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5671 
5672     return Ctx.getFunctionType(
5673         GeneralizeType(Ctx, FnType->getReturnType()),
5674         GeneralizedParams, FnType->getExtProtoInfo());
5675   }
5676 
5677   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5678     return Ctx.getFunctionNoProtoType(
5679         GeneralizeType(Ctx, FnType->getReturnType()));
5680 
5681   llvm_unreachable("Encountered unknown FunctionType");
5682 }
5683 
5684 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5685   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5686                                       GeneralizedMetadataIdMap, ".generalized");
5687 }
5688 
5689 /// Returns whether this module needs the "all-vtables" type identifier.
5690 bool CodeGenModule::NeedAllVtablesTypeId() const {
5691   // Returns true if at least one of vtable-based CFI checkers is enabled and
5692   // is not in the trapping mode.
5693   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5694            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5695           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5696            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5697           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5698            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5699           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5700            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5701 }
5702 
5703 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5704                                           CharUnits Offset,
5705                                           const CXXRecordDecl *RD) {
5706   llvm::Metadata *MD =
5707       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5708   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5709 
5710   if (CodeGenOpts.SanitizeCfiCrossDso)
5711     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5712       VTable->addTypeMetadata(Offset.getQuantity(),
5713                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5714 
5715   if (NeedAllVtablesTypeId()) {
5716     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5717     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5718   }
5719 }
5720 
5721 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5722   assert(TD != nullptr);
5723   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5724 
5725   ParsedAttr.Features.erase(
5726       llvm::remove_if(ParsedAttr.Features,
5727                       [&](const std::string &Feat) {
5728                         return !Target.isValidFeatureName(
5729                             StringRef{Feat}.substr(1));
5730                       }),
5731       ParsedAttr.Features.end());
5732   return ParsedAttr;
5733 }
5734 
5735 
5736 // Fills in the supplied string map with the set of target features for the
5737 // passed in function.
5738 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5739                                           GlobalDecl GD) {
5740   StringRef TargetCPU = Target.getTargetOpts().CPU;
5741   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5742   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5743     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5744 
5745     // Make a copy of the features as passed on the command line into the
5746     // beginning of the additional features from the function to override.
5747     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5748                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5749                             Target.getTargetOpts().FeaturesAsWritten.end());
5750 
5751     if (ParsedAttr.Architecture != "" &&
5752         Target.isValidCPUName(ParsedAttr.Architecture))
5753       TargetCPU = ParsedAttr.Architecture;
5754 
5755     // Now populate the feature map, first with the TargetCPU which is either
5756     // the default or a new one from the target attribute string. Then we'll use
5757     // the passed in features (FeaturesAsWritten) along with the new ones from
5758     // the attribute.
5759     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5760                           ParsedAttr.Features);
5761   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5762     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5763     Target.getCPUSpecificCPUDispatchFeatures(
5764         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5765     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5766     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5767   } else {
5768     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5769                           Target.getTargetOpts().Features);
5770   }
5771 }
5772 
5773 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5774   if (!SanStats)
5775     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5776 
5777   return *SanStats;
5778 }
5779 llvm::Value *
5780 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5781                                                   CodeGenFunction &CGF) {
5782   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5783   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5784   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5785   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5786                                 "__translate_sampler_initializer"),
5787                                 {C});
5788 }
5789