xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0196a1d98f8a206259a4b5ce93c21807243af92f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::applyReplacements() {
176   for (ReplacementsTy::iterator I = Replacements.begin(),
177                                 E = Replacements.end();
178        I != E; ++I) {
179     StringRef MangledName = I->first();
180     llvm::Constant *Replacement = I->second;
181     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
182     if (!Entry)
183       continue;
184     llvm::Function *OldF = cast<llvm::Function>(Entry);
185     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
186     if (!NewF) {
187       llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
188       assert(CE->getOpcode() == llvm::Instruction::BitCast ||
189              CE->getOpcode() == llvm::Instruction::GetElementPtr);
190       NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
191     }
192 
193     // Replace old with new, but keep the old order.
194     OldF->replaceAllUsesWith(Replacement);
195     if (NewF) {
196       NewF->removeFromParent();
197       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
198     }
199     OldF->eraseFromParent();
200   }
201 }
202 
203 void CodeGenModule::checkAliases() {
204   bool Error = false;
205   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
206          E = Aliases.end(); I != E; ++I) {
207     const GlobalDecl &GD = *I;
208     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
209     const AliasAttr *AA = D->getAttr<AliasAttr>();
210     StringRef MangledName = getMangledName(GD);
211     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
212     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
213     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
214     if (GV->isDeclaration()) {
215       Error = true;
216       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
217     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
218       Error = true;
219       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
220     }
221   }
222   if (!Error)
223     return;
224 
225   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
226          E = Aliases.end(); I != E; ++I) {
227     const GlobalDecl &GD = *I;
228     StringRef MangledName = getMangledName(GD);
229     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
230     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
231     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
232     Alias->eraseFromParent();
233   }
234 }
235 
236 void CodeGenModule::Release() {
237   EmitDeferred();
238   applyReplacements();
239   checkAliases();
240   EmitCXXGlobalInitFunc();
241   EmitCXXGlobalDtorFunc();
242   EmitCXXThreadLocalInitFunc();
243   if (ObjCRuntime)
244     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
245       AddGlobalCtor(ObjCInitFunction);
246   EmitCtorList(GlobalCtors, "llvm.global_ctors");
247   EmitCtorList(GlobalDtors, "llvm.global_dtors");
248   EmitGlobalAnnotations();
249   EmitStaticExternCAliases();
250   EmitLLVMUsed();
251 
252   if (CodeGenOpts.Autolink &&
253       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
254     EmitModuleLinkOptions();
255   }
256   if (CodeGenOpts.DwarfVersion)
257     // We actually want the latest version when there are conflicts.
258     // We can change from Warning to Latest if such mode is supported.
259     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
260                               CodeGenOpts.DwarfVersion);
261 
262   SimplifyPersonality();
263 
264   if (getCodeGenOpts().EmitDeclMetadata)
265     EmitDeclMetadata();
266 
267   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
268     EmitCoverageFile();
269 
270   if (DebugInfo)
271     DebugInfo->finalize();
272 
273   EmitVersionIdentMetadata();
274 }
275 
276 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
277   // Make sure that this type is translated.
278   Types.UpdateCompletedType(TD);
279 }
280 
281 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
282   if (!TBAA)
283     return 0;
284   return TBAA->getTBAAInfo(QTy);
285 }
286 
287 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
288   if (!TBAA)
289     return 0;
290   return TBAA->getTBAAInfoForVTablePtr();
291 }
292 
293 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
294   if (!TBAA)
295     return 0;
296   return TBAA->getTBAAStructInfo(QTy);
297 }
298 
299 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
300   if (!TBAA)
301     return 0;
302   return TBAA->getTBAAStructTypeInfo(QTy);
303 }
304 
305 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
306                                                   llvm::MDNode *AccessN,
307                                                   uint64_t O) {
308   if (!TBAA)
309     return 0;
310   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
311 }
312 
313 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
314 /// and struct-path aware TBAA, the tag has the same format:
315 /// base type, access type and offset.
316 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
317 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
318                                         llvm::MDNode *TBAAInfo,
319                                         bool ConvertTypeToTag) {
320   if (ConvertTypeToTag && TBAA)
321     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
322                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
323   else
324     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
325 }
326 
327 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
328   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
329   getDiags().Report(Context.getFullLoc(loc), diagID);
330 }
331 
332 /// ErrorUnsupported - Print out an error that codegen doesn't support the
333 /// specified stmt yet.
334 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
335   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
336                                                "cannot compile this %0 yet");
337   std::string Msg = Type;
338   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
339     << Msg << S->getSourceRange();
340 }
341 
342 /// ErrorUnsupported - Print out an error that codegen doesn't support the
343 /// specified decl yet.
344 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
345   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
346                                                "cannot compile this %0 yet");
347   std::string Msg = Type;
348   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
349 }
350 
351 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
352   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
353 }
354 
355 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
356                                         const NamedDecl *D) const {
357   // Internal definitions always have default visibility.
358   if (GV->hasLocalLinkage()) {
359     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
360     return;
361   }
362 
363   // Set visibility for definitions.
364   LinkageInfo LV = D->getLinkageAndVisibility();
365   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
366     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
367 }
368 
369 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
370   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
371       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
372       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
373       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
374       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
375 }
376 
377 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
378     CodeGenOptions::TLSModel M) {
379   switch (M) {
380   case CodeGenOptions::GeneralDynamicTLSModel:
381     return llvm::GlobalVariable::GeneralDynamicTLSModel;
382   case CodeGenOptions::LocalDynamicTLSModel:
383     return llvm::GlobalVariable::LocalDynamicTLSModel;
384   case CodeGenOptions::InitialExecTLSModel:
385     return llvm::GlobalVariable::InitialExecTLSModel;
386   case CodeGenOptions::LocalExecTLSModel:
387     return llvm::GlobalVariable::LocalExecTLSModel;
388   }
389   llvm_unreachable("Invalid TLS model!");
390 }
391 
392 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
393                                const VarDecl &D) const {
394   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
395 
396   llvm::GlobalVariable::ThreadLocalMode TLM;
397   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
398 
399   // Override the TLS model if it is explicitly specified.
400   if (D.hasAttr<TLSModelAttr>()) {
401     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
402     TLM = GetLLVMTLSModel(Attr->getModel());
403   }
404 
405   GV->setThreadLocalMode(TLM);
406 }
407 
408 /// Set the symbol visibility of type information (vtable and RTTI)
409 /// associated with the given type.
410 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
411                                       const CXXRecordDecl *RD,
412                                       TypeVisibilityKind TVK) const {
413   setGlobalVisibility(GV, RD);
414 
415   if (!CodeGenOpts.HiddenWeakVTables)
416     return;
417 
418   // We never want to drop the visibility for RTTI names.
419   if (TVK == TVK_ForRTTIName)
420     return;
421 
422   // We want to drop the visibility to hidden for weak type symbols.
423   // This isn't possible if there might be unresolved references
424   // elsewhere that rely on this symbol being visible.
425 
426   // This should be kept roughly in sync with setThunkVisibility
427   // in CGVTables.cpp.
428 
429   // Preconditions.
430   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
431       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
432     return;
433 
434   // Don't override an explicit visibility attribute.
435   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
436     return;
437 
438   switch (RD->getTemplateSpecializationKind()) {
439   // We have to disable the optimization if this is an EI definition
440   // because there might be EI declarations in other shared objects.
441   case TSK_ExplicitInstantiationDefinition:
442   case TSK_ExplicitInstantiationDeclaration:
443     return;
444 
445   // Every use of a non-template class's type information has to emit it.
446   case TSK_Undeclared:
447     break;
448 
449   // In theory, implicit instantiations can ignore the possibility of
450   // an explicit instantiation declaration because there necessarily
451   // must be an EI definition somewhere with default visibility.  In
452   // practice, it's possible to have an explicit instantiation for
453   // an arbitrary template class, and linkers aren't necessarily able
454   // to deal with mixed-visibility symbols.
455   case TSK_ExplicitSpecialization:
456   case TSK_ImplicitInstantiation:
457     return;
458   }
459 
460   // If there's a key function, there may be translation units
461   // that don't have the key function's definition.  But ignore
462   // this if we're emitting RTTI under -fno-rtti.
463   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
464     // FIXME: what should we do if we "lose" the key function during
465     // the emission of the file?
466     if (Context.getCurrentKeyFunction(RD))
467       return;
468   }
469 
470   // Otherwise, drop the visibility to hidden.
471   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
472   GV->setUnnamedAddr(true);
473 }
474 
475 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
476   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
477 
478   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
479   if (!Str.empty())
480     return Str;
481 
482   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
483     IdentifierInfo *II = ND->getIdentifier();
484     assert(II && "Attempt to mangle unnamed decl.");
485 
486     Str = II->getName();
487     return Str;
488   }
489 
490   SmallString<256> Buffer;
491   llvm::raw_svector_ostream Out(Buffer);
492   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
493     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
494   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
495     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
496   else
497     getCXXABI().getMangleContext().mangleName(ND, Out);
498 
499   // Allocate space for the mangled name.
500   Out.flush();
501   size_t Length = Buffer.size();
502   char *Name = MangledNamesAllocator.Allocate<char>(Length);
503   std::copy(Buffer.begin(), Buffer.end(), Name);
504 
505   Str = StringRef(Name, Length);
506 
507   return Str;
508 }
509 
510 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
511                                         const BlockDecl *BD) {
512   MangleContext &MangleCtx = getCXXABI().getMangleContext();
513   const Decl *D = GD.getDecl();
514   llvm::raw_svector_ostream Out(Buffer.getBuffer());
515   if (D == 0)
516     MangleCtx.mangleGlobalBlock(BD,
517       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
518   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
519     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
520   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
521     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
522   else
523     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
524 }
525 
526 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
527   return getModule().getNamedValue(Name);
528 }
529 
530 /// AddGlobalCtor - Add a function to the list that will be called before
531 /// main() runs.
532 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
533   // FIXME: Type coercion of void()* types.
534   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
535 }
536 
537 /// AddGlobalDtor - Add a function to the list that will be called
538 /// when the module is unloaded.
539 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
540   // FIXME: Type coercion of void()* types.
541   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
542 }
543 
544 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
545   // Ctor function type is void()*.
546   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
547   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
548 
549   // Get the type of a ctor entry, { i32, void ()* }.
550   llvm::StructType *CtorStructTy =
551     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
552 
553   // Construct the constructor and destructor arrays.
554   SmallVector<llvm::Constant*, 8> Ctors;
555   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
556     llvm::Constant *S[] = {
557       llvm::ConstantInt::get(Int32Ty, I->second, false),
558       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
559     };
560     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
561   }
562 
563   if (!Ctors.empty()) {
564     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
565     new llvm::GlobalVariable(TheModule, AT, false,
566                              llvm::GlobalValue::AppendingLinkage,
567                              llvm::ConstantArray::get(AT, Ctors),
568                              GlobalName);
569   }
570 }
571 
572 llvm::GlobalValue::LinkageTypes
573 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
574   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
575 
576   if (isa<CXXDestructorDecl>(D) &&
577       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
578                                          GD.getDtorType()))
579     return llvm::Function::LinkOnceODRLinkage;
580 
581   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
582 
583   if (Linkage == GVA_Internal)
584     return llvm::Function::InternalLinkage;
585 
586   if (D->hasAttr<DLLExportAttr>())
587     return llvm::Function::DLLExportLinkage;
588 
589   if (D->hasAttr<WeakAttr>())
590     return llvm::Function::WeakAnyLinkage;
591 
592   // In C99 mode, 'inline' functions are guaranteed to have a strong
593   // definition somewhere else, so we can use available_externally linkage.
594   if (Linkage == GVA_C99Inline)
595     return llvm::Function::AvailableExternallyLinkage;
596 
597   // Note that Apple's kernel linker doesn't support symbol
598   // coalescing, so we need to avoid linkonce and weak linkages there.
599   // Normally, this means we just map to internal, but for explicit
600   // instantiations we'll map to external.
601 
602   // In C++, the compiler has to emit a definition in every translation unit
603   // that references the function.  We should use linkonce_odr because
604   // a) if all references in this translation unit are optimized away, we
605   // don't need to codegen it.  b) if the function persists, it needs to be
606   // merged with other definitions. c) C++ has the ODR, so we know the
607   // definition is dependable.
608   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
609     return !Context.getLangOpts().AppleKext
610              ? llvm::Function::LinkOnceODRLinkage
611              : llvm::Function::InternalLinkage;
612 
613   // An explicit instantiation of a template has weak linkage, since
614   // explicit instantiations can occur in multiple translation units
615   // and must all be equivalent. However, we are not allowed to
616   // throw away these explicit instantiations.
617   if (Linkage == GVA_ExplicitTemplateInstantiation)
618     return !Context.getLangOpts().AppleKext
619              ? llvm::Function::WeakODRLinkage
620              : llvm::Function::ExternalLinkage;
621 
622   // Otherwise, we have strong external linkage.
623   assert(Linkage == GVA_StrongExternal);
624   return llvm::Function::ExternalLinkage;
625 }
626 
627 
628 /// SetFunctionDefinitionAttributes - Set attributes for a global.
629 ///
630 /// FIXME: This is currently only done for aliases and functions, but not for
631 /// variables (these details are set in EmitGlobalVarDefinition for variables).
632 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
633                                                     llvm::GlobalValue *GV) {
634   SetCommonAttributes(D, GV);
635 }
636 
637 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
638                                               const CGFunctionInfo &Info,
639                                               llvm::Function *F) {
640   unsigned CallingConv;
641   AttributeListType AttributeList;
642   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
643   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
644   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
645 }
646 
647 /// Determines whether the language options require us to model
648 /// unwind exceptions.  We treat -fexceptions as mandating this
649 /// except under the fragile ObjC ABI with only ObjC exceptions
650 /// enabled.  This means, for example, that C with -fexceptions
651 /// enables this.
652 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
653   // If exceptions are completely disabled, obviously this is false.
654   if (!LangOpts.Exceptions) return false;
655 
656   // If C++ exceptions are enabled, this is true.
657   if (LangOpts.CXXExceptions) return true;
658 
659   // If ObjC exceptions are enabled, this depends on the ABI.
660   if (LangOpts.ObjCExceptions) {
661     return LangOpts.ObjCRuntime.hasUnwindExceptions();
662   }
663 
664   return true;
665 }
666 
667 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
668                                                            llvm::Function *F) {
669   llvm::AttrBuilder B;
670 
671   if (CodeGenOpts.UnwindTables)
672     B.addAttribute(llvm::Attribute::UWTable);
673 
674   if (!hasUnwindExceptions(LangOpts))
675     B.addAttribute(llvm::Attribute::NoUnwind);
676 
677   if (D->hasAttr<NakedAttr>()) {
678     // Naked implies noinline: we should not be inlining such functions.
679     B.addAttribute(llvm::Attribute::Naked);
680     B.addAttribute(llvm::Attribute::NoInline);
681   } else if (D->hasAttr<NoInlineAttr>()) {
682     B.addAttribute(llvm::Attribute::NoInline);
683   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
684               D->hasAttr<ForceInlineAttr>()) &&
685              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
686                                               llvm::Attribute::NoInline)) {
687     // (noinline wins over always_inline, and we can't specify both in IR)
688     B.addAttribute(llvm::Attribute::AlwaysInline);
689   }
690 
691   if (D->hasAttr<ColdAttr>()) {
692     B.addAttribute(llvm::Attribute::OptimizeForSize);
693     B.addAttribute(llvm::Attribute::Cold);
694   }
695 
696   if (D->hasAttr<MinSizeAttr>())
697     B.addAttribute(llvm::Attribute::MinSize);
698 
699   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
700     B.addAttribute(llvm::Attribute::StackProtect);
701   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
702     B.addAttribute(llvm::Attribute::StackProtectReq);
703 
704   // Add sanitizer attributes if function is not blacklisted.
705   if (!SanitizerBlacklist->isIn(*F)) {
706     // When AddressSanitizer is enabled, set SanitizeAddress attribute
707     // unless __attribute__((no_sanitize_address)) is used.
708     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
709       B.addAttribute(llvm::Attribute::SanitizeAddress);
710     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
711     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
712       B.addAttribute(llvm::Attribute::SanitizeThread);
713     }
714     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
715     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
716       B.addAttribute(llvm::Attribute::SanitizeMemory);
717   }
718 
719   F->addAttributes(llvm::AttributeSet::FunctionIndex,
720                    llvm::AttributeSet::get(
721                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
722 
723   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
724     F->setUnnamedAddr(true);
725   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
726     if (MD->isVirtual())
727       F->setUnnamedAddr(true);
728 
729   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
730   if (alignment)
731     F->setAlignment(alignment);
732 
733   // C++ ABI requires 2-byte alignment for member functions.
734   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
735     F->setAlignment(2);
736 }
737 
738 void CodeGenModule::SetCommonAttributes(const Decl *D,
739                                         llvm::GlobalValue *GV) {
740   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
741     setGlobalVisibility(GV, ND);
742   else
743     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
744 
745   if (D->hasAttr<UsedAttr>())
746     AddUsedGlobal(GV);
747 
748   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
749     GV->setSection(SA->getName());
750 
751   // Alias cannot have attributes. Filter them here.
752   if (!isa<llvm::GlobalAlias>(GV))
753     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
754 }
755 
756 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
757                                                   llvm::Function *F,
758                                                   const CGFunctionInfo &FI) {
759   SetLLVMFunctionAttributes(D, FI, F);
760   SetLLVMFunctionAttributesForDefinition(D, F);
761 
762   F->setLinkage(llvm::Function::InternalLinkage);
763 
764   SetCommonAttributes(D, F);
765 }
766 
767 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
768                                           llvm::Function *F,
769                                           bool IsIncompleteFunction) {
770   if (unsigned IID = F->getIntrinsicID()) {
771     // If this is an intrinsic function, set the function's attributes
772     // to the intrinsic's attributes.
773     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
774                                                     (llvm::Intrinsic::ID)IID));
775     return;
776   }
777 
778   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
779 
780   if (!IsIncompleteFunction)
781     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
782 
783   if (getCXXABI().HasThisReturn(GD)) {
784     assert(!F->arg_empty() &&
785            F->arg_begin()->getType()
786              ->canLosslesslyBitCastTo(F->getReturnType()) &&
787            "unexpected this return");
788     F->addAttribute(1, llvm::Attribute::Returned);
789   }
790 
791   // Only a few attributes are set on declarations; these may later be
792   // overridden by a definition.
793 
794   if (FD->hasAttr<DLLImportAttr>()) {
795     F->setLinkage(llvm::Function::DLLImportLinkage);
796   } else if (FD->hasAttr<WeakAttr>() ||
797              FD->isWeakImported()) {
798     // "extern_weak" is overloaded in LLVM; we probably should have
799     // separate linkage types for this.
800     F->setLinkage(llvm::Function::ExternalWeakLinkage);
801   } else {
802     F->setLinkage(llvm::Function::ExternalLinkage);
803 
804     LinkageInfo LV = FD->getLinkageAndVisibility();
805     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
806       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
807     }
808   }
809 
810   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
811     F->setSection(SA->getName());
812 
813   // A replaceable global allocation function does not act like a builtin by
814   // default, only if it is invoked by a new-expression or delete-expression.
815   if (FD->isReplaceableGlobalAllocationFunction())
816     F->addAttribute(llvm::AttributeSet::FunctionIndex,
817                     llvm::Attribute::NoBuiltin);
818 }
819 
820 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
821   assert(!GV->isDeclaration() &&
822          "Only globals with definition can force usage.");
823   LLVMUsed.push_back(GV);
824 }
825 
826 void CodeGenModule::EmitLLVMUsed() {
827   // Don't create llvm.used if there is no need.
828   if (LLVMUsed.empty())
829     return;
830 
831   // Convert LLVMUsed to what ConstantArray needs.
832   SmallVector<llvm::Constant*, 8> UsedArray;
833   UsedArray.resize(LLVMUsed.size());
834   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
835     UsedArray[i] =
836      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
837                                     Int8PtrTy);
838   }
839 
840   if (UsedArray.empty())
841     return;
842   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
843 
844   llvm::GlobalVariable *GV =
845     new llvm::GlobalVariable(getModule(), ATy, false,
846                              llvm::GlobalValue::AppendingLinkage,
847                              llvm::ConstantArray::get(ATy, UsedArray),
848                              "llvm.used");
849 
850   GV->setSection("llvm.metadata");
851 }
852 
853 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
854   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
855   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
856 }
857 
858 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
859   llvm::SmallString<32> Opt;
860   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
861   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
862   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
863 }
864 
865 void CodeGenModule::AddDependentLib(StringRef Lib) {
866   llvm::SmallString<24> Opt;
867   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
868   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
869   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
870 }
871 
872 /// \brief Add link options implied by the given module, including modules
873 /// it depends on, using a postorder walk.
874 static void addLinkOptionsPostorder(CodeGenModule &CGM,
875                                     Module *Mod,
876                                     SmallVectorImpl<llvm::Value *> &Metadata,
877                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
878   // Import this module's parent.
879   if (Mod->Parent && Visited.insert(Mod->Parent)) {
880     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
881   }
882 
883   // Import this module's dependencies.
884   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
885     if (Visited.insert(Mod->Imports[I-1]))
886       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
887   }
888 
889   // Add linker options to link against the libraries/frameworks
890   // described by this module.
891   llvm::LLVMContext &Context = CGM.getLLVMContext();
892   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
893     // Link against a framework.  Frameworks are currently Darwin only, so we
894     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
895     if (Mod->LinkLibraries[I-1].IsFramework) {
896       llvm::Value *Args[2] = {
897         llvm::MDString::get(Context, "-framework"),
898         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
899       };
900 
901       Metadata.push_back(llvm::MDNode::get(Context, Args));
902       continue;
903     }
904 
905     // Link against a library.
906     llvm::SmallString<24> Opt;
907     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
908       Mod->LinkLibraries[I-1].Library, Opt);
909     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
910     Metadata.push_back(llvm::MDNode::get(Context, OptString));
911   }
912 }
913 
914 void CodeGenModule::EmitModuleLinkOptions() {
915   // Collect the set of all of the modules we want to visit to emit link
916   // options, which is essentially the imported modules and all of their
917   // non-explicit child modules.
918   llvm::SetVector<clang::Module *> LinkModules;
919   llvm::SmallPtrSet<clang::Module *, 16> Visited;
920   SmallVector<clang::Module *, 16> Stack;
921 
922   // Seed the stack with imported modules.
923   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
924                                                MEnd = ImportedModules.end();
925        M != MEnd; ++M) {
926     if (Visited.insert(*M))
927       Stack.push_back(*M);
928   }
929 
930   // Find all of the modules to import, making a little effort to prune
931   // non-leaf modules.
932   while (!Stack.empty()) {
933     clang::Module *Mod = Stack.pop_back_val();
934 
935     bool AnyChildren = false;
936 
937     // Visit the submodules of this module.
938     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
939                                         SubEnd = Mod->submodule_end();
940          Sub != SubEnd; ++Sub) {
941       // Skip explicit children; they need to be explicitly imported to be
942       // linked against.
943       if ((*Sub)->IsExplicit)
944         continue;
945 
946       if (Visited.insert(*Sub)) {
947         Stack.push_back(*Sub);
948         AnyChildren = true;
949       }
950     }
951 
952     // We didn't find any children, so add this module to the list of
953     // modules to link against.
954     if (!AnyChildren) {
955       LinkModules.insert(Mod);
956     }
957   }
958 
959   // Add link options for all of the imported modules in reverse topological
960   // order.  We don't do anything to try to order import link flags with respect
961   // to linker options inserted by things like #pragma comment().
962   SmallVector<llvm::Value *, 16> MetadataArgs;
963   Visited.clear();
964   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
965                                                MEnd = LinkModules.end();
966        M != MEnd; ++M) {
967     if (Visited.insert(*M))
968       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
969   }
970   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
971   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
972 
973   // Add the linker options metadata flag.
974   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
975                             llvm::MDNode::get(getLLVMContext(),
976                                               LinkerOptionsMetadata));
977 }
978 
979 void CodeGenModule::EmitDeferred() {
980   // Emit code for any potentially referenced deferred decls.  Since a
981   // previously unused static decl may become used during the generation of code
982   // for a static function, iterate until no changes are made.
983 
984   while (true) {
985     if (!DeferredVTables.empty()) {
986       EmitDeferredVTables();
987 
988       // Emitting a v-table doesn't directly cause more v-tables to
989       // become deferred, although it can cause functions to be
990       // emitted that then need those v-tables.
991       assert(DeferredVTables.empty());
992     }
993 
994     // Stop if we're out of both deferred v-tables and deferred declarations.
995     if (DeferredDeclsToEmit.empty()) break;
996 
997     GlobalDecl D = DeferredDeclsToEmit.back();
998     DeferredDeclsToEmit.pop_back();
999 
1000     // Check to see if we've already emitted this.  This is necessary
1001     // for a couple of reasons: first, decls can end up in the
1002     // deferred-decls queue multiple times, and second, decls can end
1003     // up with definitions in unusual ways (e.g. by an extern inline
1004     // function acquiring a strong function redefinition).  Just
1005     // ignore these cases.
1006     //
1007     // TODO: That said, looking this up multiple times is very wasteful.
1008     StringRef Name = getMangledName(D);
1009     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
1010     assert(CGRef && "Deferred decl wasn't referenced?");
1011 
1012     if (!CGRef->isDeclaration())
1013       continue;
1014 
1015     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
1016     // purposes an alias counts as a definition.
1017     if (isa<llvm::GlobalAlias>(CGRef))
1018       continue;
1019 
1020     // Otherwise, emit the definition and move on to the next one.
1021     EmitGlobalDefinition(D);
1022   }
1023 }
1024 
1025 void CodeGenModule::EmitGlobalAnnotations() {
1026   if (Annotations.empty())
1027     return;
1028 
1029   // Create a new global variable for the ConstantStruct in the Module.
1030   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1031     Annotations[0]->getType(), Annotations.size()), Annotations);
1032   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1033     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1034     "llvm.global.annotations");
1035   gv->setSection(AnnotationSection);
1036 }
1037 
1038 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1039   llvm::Constant *&AStr = AnnotationStrings[Str];
1040   if (AStr)
1041     return AStr;
1042 
1043   // Not found yet, create a new global.
1044   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1045   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1046     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1047   gv->setSection(AnnotationSection);
1048   gv->setUnnamedAddr(true);
1049   AStr = gv;
1050   return gv;
1051 }
1052 
1053 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1054   SourceManager &SM = getContext().getSourceManager();
1055   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1056   if (PLoc.isValid())
1057     return EmitAnnotationString(PLoc.getFilename());
1058   return EmitAnnotationString(SM.getBufferName(Loc));
1059 }
1060 
1061 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1062   SourceManager &SM = getContext().getSourceManager();
1063   PresumedLoc PLoc = SM.getPresumedLoc(L);
1064   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1065     SM.getExpansionLineNumber(L);
1066   return llvm::ConstantInt::get(Int32Ty, LineNo);
1067 }
1068 
1069 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1070                                                 const AnnotateAttr *AA,
1071                                                 SourceLocation L) {
1072   // Get the globals for file name, annotation, and the line number.
1073   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1074                  *UnitGV = EmitAnnotationUnit(L),
1075                  *LineNoCst = EmitAnnotationLineNo(L);
1076 
1077   // Create the ConstantStruct for the global annotation.
1078   llvm::Constant *Fields[4] = {
1079     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1080     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1081     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1082     LineNoCst
1083   };
1084   return llvm::ConstantStruct::getAnon(Fields);
1085 }
1086 
1087 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1088                                          llvm::GlobalValue *GV) {
1089   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1090   // Get the struct elements for these annotations.
1091   for (specific_attr_iterator<AnnotateAttr>
1092        ai = D->specific_attr_begin<AnnotateAttr>(),
1093        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1094     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1095 }
1096 
1097 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1098   // Never defer when EmitAllDecls is specified.
1099   if (LangOpts.EmitAllDecls)
1100     return false;
1101 
1102   return !getContext().DeclMustBeEmitted(Global);
1103 }
1104 
1105 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1106     const CXXUuidofExpr* E) {
1107   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1108   // well-formed.
1109   StringRef Uuid = E->getUuidAsStringRef(Context);
1110   std::string Name = "_GUID_" + Uuid.lower();
1111   std::replace(Name.begin(), Name.end(), '-', '_');
1112 
1113   // Look for an existing global.
1114   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1115     return GV;
1116 
1117   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1118   assert(Init && "failed to initialize as constant");
1119 
1120   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1121       getModule(), Init->getType(),
1122       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1123   return GV;
1124 }
1125 
1126 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1127   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1128   assert(AA && "No alias?");
1129 
1130   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1131 
1132   // See if there is already something with the target's name in the module.
1133   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1134   if (Entry) {
1135     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1136     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1137   }
1138 
1139   llvm::Constant *Aliasee;
1140   if (isa<llvm::FunctionType>(DeclTy))
1141     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1142                                       GlobalDecl(cast<FunctionDecl>(VD)),
1143                                       /*ForVTable=*/false);
1144   else
1145     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1146                                     llvm::PointerType::getUnqual(DeclTy), 0);
1147 
1148   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1149   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1150   WeakRefReferences.insert(F);
1151 
1152   return Aliasee;
1153 }
1154 
1155 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1156   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1157 
1158   // Weak references don't produce any output by themselves.
1159   if (Global->hasAttr<WeakRefAttr>())
1160     return;
1161 
1162   // If this is an alias definition (which otherwise looks like a declaration)
1163   // emit it now.
1164   if (Global->hasAttr<AliasAttr>())
1165     return EmitAliasDefinition(GD);
1166 
1167   // If this is CUDA, be selective about which declarations we emit.
1168   if (LangOpts.CUDA) {
1169     if (CodeGenOpts.CUDAIsDevice) {
1170       if (!Global->hasAttr<CUDADeviceAttr>() &&
1171           !Global->hasAttr<CUDAGlobalAttr>() &&
1172           !Global->hasAttr<CUDAConstantAttr>() &&
1173           !Global->hasAttr<CUDASharedAttr>())
1174         return;
1175     } else {
1176       if (!Global->hasAttr<CUDAHostAttr>() && (
1177             Global->hasAttr<CUDADeviceAttr>() ||
1178             Global->hasAttr<CUDAConstantAttr>() ||
1179             Global->hasAttr<CUDASharedAttr>()))
1180         return;
1181     }
1182   }
1183 
1184   // Ignore declarations, they will be emitted on their first use.
1185   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1186     // Forward declarations are emitted lazily on first use.
1187     if (!FD->doesThisDeclarationHaveABody()) {
1188       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1189         return;
1190 
1191       const FunctionDecl *InlineDefinition = 0;
1192       FD->getBody(InlineDefinition);
1193 
1194       StringRef MangledName = getMangledName(GD);
1195       DeferredDecls.erase(MangledName);
1196       EmitGlobalDefinition(InlineDefinition);
1197       return;
1198     }
1199   } else {
1200     const VarDecl *VD = cast<VarDecl>(Global);
1201     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1202 
1203     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1204       return;
1205   }
1206 
1207   // Defer code generation when possible if this is a static definition, inline
1208   // function etc.  These we only want to emit if they are used.
1209   if (!MayDeferGeneration(Global)) {
1210     // Emit the definition if it can't be deferred.
1211     EmitGlobalDefinition(GD);
1212     return;
1213   }
1214 
1215   // If we're deferring emission of a C++ variable with an
1216   // initializer, remember the order in which it appeared in the file.
1217   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1218       cast<VarDecl>(Global)->hasInit()) {
1219     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1220     CXXGlobalInits.push_back(0);
1221   }
1222 
1223   // If the value has already been used, add it directly to the
1224   // DeferredDeclsToEmit list.
1225   StringRef MangledName = getMangledName(GD);
1226   if (GetGlobalValue(MangledName))
1227     DeferredDeclsToEmit.push_back(GD);
1228   else {
1229     // Otherwise, remember that we saw a deferred decl with this name.  The
1230     // first use of the mangled name will cause it to move into
1231     // DeferredDeclsToEmit.
1232     DeferredDecls[MangledName] = GD;
1233   }
1234 }
1235 
1236 namespace {
1237   struct FunctionIsDirectlyRecursive :
1238     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1239     const StringRef Name;
1240     const Builtin::Context &BI;
1241     bool Result;
1242     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1243       Name(N), BI(C), Result(false) {
1244     }
1245     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1246 
1247     bool TraverseCallExpr(CallExpr *E) {
1248       const FunctionDecl *FD = E->getDirectCallee();
1249       if (!FD)
1250         return true;
1251       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1252       if (Attr && Name == Attr->getLabel()) {
1253         Result = true;
1254         return false;
1255       }
1256       unsigned BuiltinID = FD->getBuiltinID();
1257       if (!BuiltinID)
1258         return true;
1259       StringRef BuiltinName = BI.GetName(BuiltinID);
1260       if (BuiltinName.startswith("__builtin_") &&
1261           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1262         Result = true;
1263         return false;
1264       }
1265       return true;
1266     }
1267   };
1268 }
1269 
1270 // isTriviallyRecursive - Check if this function calls another
1271 // decl that, because of the asm attribute or the other decl being a builtin,
1272 // ends up pointing to itself.
1273 bool
1274 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1275   StringRef Name;
1276   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1277     // asm labels are a special kind of mangling we have to support.
1278     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1279     if (!Attr)
1280       return false;
1281     Name = Attr->getLabel();
1282   } else {
1283     Name = FD->getName();
1284   }
1285 
1286   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1287   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1288   return Walker.Result;
1289 }
1290 
1291 bool
1292 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1293   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1294     return true;
1295   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1296   if (CodeGenOpts.OptimizationLevel == 0 &&
1297       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1298     return false;
1299   // PR9614. Avoid cases where the source code is lying to us. An available
1300   // externally function should have an equivalent function somewhere else,
1301   // but a function that calls itself is clearly not equivalent to the real
1302   // implementation.
1303   // This happens in glibc's btowc and in some configure checks.
1304   return !isTriviallyRecursive(F);
1305 }
1306 
1307 /// If the type for the method's class was generated by
1308 /// CGDebugInfo::createContextChain(), the cache contains only a
1309 /// limited DIType without any declarations. Since EmitFunctionStart()
1310 /// needs to find the canonical declaration for each method, we need
1311 /// to construct the complete type prior to emitting the method.
1312 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1313   if (!D->isInstance())
1314     return;
1315 
1316   if (CGDebugInfo *DI = getModuleDebugInfo())
1317     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1318       const PointerType *ThisPtr =
1319         cast<PointerType>(D->getThisType(getContext()));
1320       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1321     }
1322 }
1323 
1324 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1325   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1326 
1327   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1328                                  Context.getSourceManager(),
1329                                  "Generating code for declaration");
1330 
1331   if (isa<FunctionDecl>(D)) {
1332     // At -O0, don't generate IR for functions with available_externally
1333     // linkage.
1334     if (!shouldEmitFunction(GD))
1335       return;
1336 
1337     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1338       CompleteDIClassType(Method);
1339       // Make sure to emit the definition(s) before we emit the thunks.
1340       // This is necessary for the generation of certain thunks.
1341       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1342         EmitCXXConstructor(CD, GD.getCtorType());
1343       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1344         EmitCXXDestructor(DD, GD.getDtorType());
1345       else
1346         EmitGlobalFunctionDefinition(GD);
1347 
1348       if (Method->isVirtual())
1349         getVTables().EmitThunks(GD);
1350 
1351       return;
1352     }
1353 
1354     return EmitGlobalFunctionDefinition(GD);
1355   }
1356 
1357   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1358     return EmitGlobalVarDefinition(VD);
1359 
1360   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1361 }
1362 
1363 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1364 /// module, create and return an llvm Function with the specified type. If there
1365 /// is something in the module with the specified name, return it potentially
1366 /// bitcasted to the right type.
1367 ///
1368 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1369 /// to set the attributes on the function when it is first created.
1370 llvm::Constant *
1371 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1372                                        llvm::Type *Ty,
1373                                        GlobalDecl GD, bool ForVTable,
1374                                        llvm::AttributeSet ExtraAttrs) {
1375   const Decl *D = GD.getDecl();
1376 
1377   // Lookup the entry, lazily creating it if necessary.
1378   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1379   if (Entry) {
1380     if (WeakRefReferences.erase(Entry)) {
1381       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1382       if (FD && !FD->hasAttr<WeakAttr>())
1383         Entry->setLinkage(llvm::Function::ExternalLinkage);
1384     }
1385 
1386     if (Entry->getType()->getElementType() == Ty)
1387       return Entry;
1388 
1389     // Make sure the result is of the correct type.
1390     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1391   }
1392 
1393   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1394   // each other bottoming out with the base dtor.  Therefore we emit non-base
1395   // dtors on usage, even if there is no dtor definition in the TU.
1396   if (D && isa<CXXDestructorDecl>(D) &&
1397       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1398                                          GD.getDtorType()))
1399     DeferredDeclsToEmit.push_back(GD);
1400 
1401   // This function doesn't have a complete type (for example, the return
1402   // type is an incomplete struct). Use a fake type instead, and make
1403   // sure not to try to set attributes.
1404   bool IsIncompleteFunction = false;
1405 
1406   llvm::FunctionType *FTy;
1407   if (isa<llvm::FunctionType>(Ty)) {
1408     FTy = cast<llvm::FunctionType>(Ty);
1409   } else {
1410     FTy = llvm::FunctionType::get(VoidTy, false);
1411     IsIncompleteFunction = true;
1412   }
1413 
1414   llvm::Function *F = llvm::Function::Create(FTy,
1415                                              llvm::Function::ExternalLinkage,
1416                                              MangledName, &getModule());
1417   assert(F->getName() == MangledName && "name was uniqued!");
1418   if (D)
1419     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1420   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1421     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1422     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1423                      llvm::AttributeSet::get(VMContext,
1424                                              llvm::AttributeSet::FunctionIndex,
1425                                              B));
1426   }
1427 
1428   // This is the first use or definition of a mangled name.  If there is a
1429   // deferred decl with this name, remember that we need to emit it at the end
1430   // of the file.
1431   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1432   if (DDI != DeferredDecls.end()) {
1433     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1434     // list, and remove it from DeferredDecls (since we don't need it anymore).
1435     DeferredDeclsToEmit.push_back(DDI->second);
1436     DeferredDecls.erase(DDI);
1437 
1438   // Otherwise, if this is a sized deallocation function, emit a weak definition
1439   // for it at the end of the translation unit.
1440   } else if (D && cast<FunctionDecl>(D)
1441                       ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1442     DeferredDeclsToEmit.push_back(GD);
1443 
1444   // Otherwise, there are cases we have to worry about where we're
1445   // using a declaration for which we must emit a definition but where
1446   // we might not find a top-level definition:
1447   //   - member functions defined inline in their classes
1448   //   - friend functions defined inline in some class
1449   //   - special member functions with implicit definitions
1450   // If we ever change our AST traversal to walk into class methods,
1451   // this will be unnecessary.
1452   //
1453   // We also don't emit a definition for a function if it's going to be an entry
1454   // in a vtable, unless it's already marked as used.
1455   } else if (getLangOpts().CPlusPlus && D) {
1456     // Look for a declaration that's lexically in a record.
1457     const FunctionDecl *FD = cast<FunctionDecl>(D);
1458     FD = FD->getMostRecentDecl();
1459     do {
1460       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1461         if (FD->isImplicit() && !ForVTable) {
1462           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1463           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1464           break;
1465         } else if (FD->doesThisDeclarationHaveABody()) {
1466           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1467           break;
1468         }
1469       }
1470       FD = FD->getPreviousDecl();
1471     } while (FD);
1472   }
1473 
1474   // Make sure the result is of the requested type.
1475   if (!IsIncompleteFunction) {
1476     assert(F->getType()->getElementType() == Ty);
1477     return F;
1478   }
1479 
1480   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1481   return llvm::ConstantExpr::getBitCast(F, PTy);
1482 }
1483 
1484 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1485 /// non-null, then this function will use the specified type if it has to
1486 /// create it (this occurs when we see a definition of the function).
1487 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1488                                                  llvm::Type *Ty,
1489                                                  bool ForVTable) {
1490   // If there was no specific requested type, just convert it now.
1491   if (!Ty)
1492     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1493 
1494   StringRef MangledName = getMangledName(GD);
1495   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1496 }
1497 
1498 /// CreateRuntimeFunction - Create a new runtime function with the specified
1499 /// type and name.
1500 llvm::Constant *
1501 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1502                                      StringRef Name,
1503                                      llvm::AttributeSet ExtraAttrs) {
1504   llvm::Constant *C
1505     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1506                               ExtraAttrs);
1507   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1508     if (F->empty())
1509       F->setCallingConv(getRuntimeCC());
1510   return C;
1511 }
1512 
1513 /// isTypeConstant - Determine whether an object of this type can be emitted
1514 /// as a constant.
1515 ///
1516 /// If ExcludeCtor is true, the duration when the object's constructor runs
1517 /// will not be considered. The caller will need to verify that the object is
1518 /// not written to during its construction.
1519 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1520   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1521     return false;
1522 
1523   if (Context.getLangOpts().CPlusPlus) {
1524     if (const CXXRecordDecl *Record
1525           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1526       return ExcludeCtor && !Record->hasMutableFields() &&
1527              Record->hasTrivialDestructor();
1528   }
1529 
1530   return true;
1531 }
1532 
1533 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1534 /// create and return an llvm GlobalVariable with the specified type.  If there
1535 /// is something in the module with the specified name, return it potentially
1536 /// bitcasted to the right type.
1537 ///
1538 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1539 /// to set the attributes on the global when it is first created.
1540 llvm::Constant *
1541 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1542                                      llvm::PointerType *Ty,
1543                                      const VarDecl *D,
1544                                      bool UnnamedAddr) {
1545   // Lookup the entry, lazily creating it if necessary.
1546   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1547   if (Entry) {
1548     if (WeakRefReferences.erase(Entry)) {
1549       if (D && !D->hasAttr<WeakAttr>())
1550         Entry->setLinkage(llvm::Function::ExternalLinkage);
1551     }
1552 
1553     if (UnnamedAddr)
1554       Entry->setUnnamedAddr(true);
1555 
1556     if (Entry->getType() == Ty)
1557       return Entry;
1558 
1559     // Make sure the result is of the correct type.
1560     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1561   }
1562 
1563   // This is the first use or definition of a mangled name.  If there is a
1564   // deferred decl with this name, remember that we need to emit it at the end
1565   // of the file.
1566   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1567   if (DDI != DeferredDecls.end()) {
1568     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1569     // list, and remove it from DeferredDecls (since we don't need it anymore).
1570     DeferredDeclsToEmit.push_back(DDI->second);
1571     DeferredDecls.erase(DDI);
1572   }
1573 
1574   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1575   llvm::GlobalVariable *GV =
1576     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1577                              llvm::GlobalValue::ExternalLinkage,
1578                              0, MangledName, 0,
1579                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1580 
1581   // Handle things which are present even on external declarations.
1582   if (D) {
1583     // FIXME: This code is overly simple and should be merged with other global
1584     // handling.
1585     GV->setConstant(isTypeConstant(D->getType(), false));
1586 
1587     // Set linkage and visibility in case we never see a definition.
1588     LinkageInfo LV = D->getLinkageAndVisibility();
1589     if (LV.getLinkage() != ExternalLinkage) {
1590       // Don't set internal linkage on declarations.
1591     } else {
1592       if (D->hasAttr<DLLImportAttr>())
1593         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1594       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1595         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1596 
1597       // Set visibility on a declaration only if it's explicit.
1598       if (LV.isVisibilityExplicit())
1599         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1600     }
1601 
1602     if (D->getTLSKind()) {
1603       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1604         CXXThreadLocals.push_back(std::make_pair(D, GV));
1605       setTLSMode(GV, *D);
1606     }
1607   }
1608 
1609   if (AddrSpace != Ty->getAddressSpace())
1610     return llvm::ConstantExpr::getBitCast(GV, Ty);
1611   else
1612     return GV;
1613 }
1614 
1615 
1616 llvm::GlobalVariable *
1617 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1618                                       llvm::Type *Ty,
1619                                       llvm::GlobalValue::LinkageTypes Linkage) {
1620   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1621   llvm::GlobalVariable *OldGV = 0;
1622 
1623 
1624   if (GV) {
1625     // Check if the variable has the right type.
1626     if (GV->getType()->getElementType() == Ty)
1627       return GV;
1628 
1629     // Because C++ name mangling, the only way we can end up with an already
1630     // existing global with the same name is if it has been declared extern "C".
1631     assert(GV->isDeclaration() && "Declaration has wrong type!");
1632     OldGV = GV;
1633   }
1634 
1635   // Create a new variable.
1636   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1637                                 Linkage, 0, Name);
1638 
1639   if (OldGV) {
1640     // Replace occurrences of the old variable if needed.
1641     GV->takeName(OldGV);
1642 
1643     if (!OldGV->use_empty()) {
1644       llvm::Constant *NewPtrForOldDecl =
1645       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1646       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1647     }
1648 
1649     OldGV->eraseFromParent();
1650   }
1651 
1652   return GV;
1653 }
1654 
1655 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1656 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1657 /// then it will be created with the specified type instead of whatever the
1658 /// normal requested type would be.
1659 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1660                                                   llvm::Type *Ty) {
1661   assert(D->hasGlobalStorage() && "Not a global variable");
1662   QualType ASTTy = D->getType();
1663   if (Ty == 0)
1664     Ty = getTypes().ConvertTypeForMem(ASTTy);
1665 
1666   llvm::PointerType *PTy =
1667     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1668 
1669   StringRef MangledName = getMangledName(D);
1670   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1671 }
1672 
1673 /// CreateRuntimeVariable - Create a new runtime global variable with the
1674 /// specified type and name.
1675 llvm::Constant *
1676 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1677                                      StringRef Name) {
1678   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1679                                true);
1680 }
1681 
1682 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1683   assert(!D->getInit() && "Cannot emit definite definitions here!");
1684 
1685   if (MayDeferGeneration(D)) {
1686     // If we have not seen a reference to this variable yet, place it
1687     // into the deferred declarations table to be emitted if needed
1688     // later.
1689     StringRef MangledName = getMangledName(D);
1690     if (!GetGlobalValue(MangledName)) {
1691       DeferredDecls[MangledName] = D;
1692       return;
1693     }
1694   }
1695 
1696   // The tentative definition is the only definition.
1697   EmitGlobalVarDefinition(D);
1698 }
1699 
1700 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1701     return Context.toCharUnitsFromBits(
1702       TheDataLayout.getTypeStoreSizeInBits(Ty));
1703 }
1704 
1705 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1706                                                  unsigned AddrSpace) {
1707   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1708     if (D->hasAttr<CUDAConstantAttr>())
1709       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1710     else if (D->hasAttr<CUDASharedAttr>())
1711       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1712     else
1713       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1714   }
1715 
1716   return AddrSpace;
1717 }
1718 
1719 template<typename SomeDecl>
1720 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1721                                                llvm::GlobalValue *GV) {
1722   if (!getLangOpts().CPlusPlus)
1723     return;
1724 
1725   // Must have 'used' attribute, or else inline assembly can't rely on
1726   // the name existing.
1727   if (!D->template hasAttr<UsedAttr>())
1728     return;
1729 
1730   // Must have internal linkage and an ordinary name.
1731   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1732     return;
1733 
1734   // Must be in an extern "C" context. Entities declared directly within
1735   // a record are not extern "C" even if the record is in such a context.
1736   const SomeDecl *First = D->getFirstDecl();
1737   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1738     return;
1739 
1740   // OK, this is an internal linkage entity inside an extern "C" linkage
1741   // specification. Make a note of that so we can give it the "expected"
1742   // mangled name if nothing else is using that name.
1743   std::pair<StaticExternCMap::iterator, bool> R =
1744       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1745 
1746   // If we have multiple internal linkage entities with the same name
1747   // in extern "C" regions, none of them gets that name.
1748   if (!R.second)
1749     R.first->second = 0;
1750 }
1751 
1752 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1753   llvm::Constant *Init = 0;
1754   QualType ASTTy = D->getType();
1755   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1756   bool NeedsGlobalCtor = false;
1757   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1758 
1759   const VarDecl *InitDecl;
1760   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1761 
1762   if (!InitExpr) {
1763     // This is a tentative definition; tentative definitions are
1764     // implicitly initialized with { 0 }.
1765     //
1766     // Note that tentative definitions are only emitted at the end of
1767     // a translation unit, so they should never have incomplete
1768     // type. In addition, EmitTentativeDefinition makes sure that we
1769     // never attempt to emit a tentative definition if a real one
1770     // exists. A use may still exists, however, so we still may need
1771     // to do a RAUW.
1772     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1773     Init = EmitNullConstant(D->getType());
1774   } else {
1775     initializedGlobalDecl = GlobalDecl(D);
1776     Init = EmitConstantInit(*InitDecl);
1777 
1778     if (!Init) {
1779       QualType T = InitExpr->getType();
1780       if (D->getType()->isReferenceType())
1781         T = D->getType();
1782 
1783       if (getLangOpts().CPlusPlus) {
1784         Init = EmitNullConstant(T);
1785         NeedsGlobalCtor = true;
1786       } else {
1787         ErrorUnsupported(D, "static initializer");
1788         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1789       }
1790     } else {
1791       // We don't need an initializer, so remove the entry for the delayed
1792       // initializer position (just in case this entry was delayed) if we
1793       // also don't need to register a destructor.
1794       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1795         DelayedCXXInitPosition.erase(D);
1796     }
1797   }
1798 
1799   llvm::Type* InitType = Init->getType();
1800   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1801 
1802   // Strip off a bitcast if we got one back.
1803   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1804     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1805            // all zero index gep.
1806            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1807     Entry = CE->getOperand(0);
1808   }
1809 
1810   // Entry is now either a Function or GlobalVariable.
1811   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1812 
1813   // We have a definition after a declaration with the wrong type.
1814   // We must make a new GlobalVariable* and update everything that used OldGV
1815   // (a declaration or tentative definition) with the new GlobalVariable*
1816   // (which will be a definition).
1817   //
1818   // This happens if there is a prototype for a global (e.g.
1819   // "extern int x[];") and then a definition of a different type (e.g.
1820   // "int x[10];"). This also happens when an initializer has a different type
1821   // from the type of the global (this happens with unions).
1822   if (GV == 0 ||
1823       GV->getType()->getElementType() != InitType ||
1824       GV->getType()->getAddressSpace() !=
1825        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1826 
1827     // Move the old entry aside so that we'll create a new one.
1828     Entry->setName(StringRef());
1829 
1830     // Make a new global with the correct type, this is now guaranteed to work.
1831     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1832 
1833     // Replace all uses of the old global with the new global
1834     llvm::Constant *NewPtrForOldDecl =
1835         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1836     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1837 
1838     // Erase the old global, since it is no longer used.
1839     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1840   }
1841 
1842   MaybeHandleStaticInExternC(D, GV);
1843 
1844   if (D->hasAttr<AnnotateAttr>())
1845     AddGlobalAnnotations(D, GV);
1846 
1847   GV->setInitializer(Init);
1848 
1849   // If it is safe to mark the global 'constant', do so now.
1850   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1851                   isTypeConstant(D->getType(), true));
1852 
1853   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1854 
1855   // Set the llvm linkage type as appropriate.
1856   llvm::GlobalValue::LinkageTypes Linkage =
1857     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1858   GV->setLinkage(Linkage);
1859   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1860     // common vars aren't constant even if declared const.
1861     GV->setConstant(false);
1862 
1863   SetCommonAttributes(D, GV);
1864 
1865   // Emit the initializer function if necessary.
1866   if (NeedsGlobalCtor || NeedsGlobalDtor)
1867     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1868 
1869   // If we are compiling with ASan, add metadata indicating dynamically
1870   // initialized globals.
1871   if (SanOpts.Address && NeedsGlobalCtor) {
1872     llvm::Module &M = getModule();
1873 
1874     llvm::NamedMDNode *DynamicInitializers =
1875         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1876     llvm::Value *GlobalToAdd[] = { GV };
1877     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1878     DynamicInitializers->addOperand(ThisGlobal);
1879   }
1880 
1881   // Emit global variable debug information.
1882   if (CGDebugInfo *DI = getModuleDebugInfo())
1883     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1884       DI->EmitGlobalVariable(GV, D);
1885 }
1886 
1887 llvm::GlobalValue::LinkageTypes
1888 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1889   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1890   if (Linkage == GVA_Internal)
1891     return llvm::Function::InternalLinkage;
1892   else if (D->hasAttr<DLLImportAttr>())
1893     return llvm::Function::DLLImportLinkage;
1894   else if (D->hasAttr<DLLExportAttr>())
1895     return llvm::Function::DLLExportLinkage;
1896   else if (D->hasAttr<SelectAnyAttr>()) {
1897     // selectany symbols are externally visible, so use weak instead of
1898     // linkonce.  MSVC optimizes away references to const selectany globals, so
1899     // all definitions should be the same and ODR linkage should be used.
1900     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1901     return llvm::GlobalVariable::WeakODRLinkage;
1902   } else if (D->hasAttr<WeakAttr>()) {
1903     if (isConstant)
1904       return llvm::GlobalVariable::WeakODRLinkage;
1905     else
1906       return llvm::GlobalVariable::WeakAnyLinkage;
1907   } else if (Linkage == GVA_TemplateInstantiation ||
1908              Linkage == GVA_ExplicitTemplateInstantiation)
1909     return llvm::GlobalVariable::WeakODRLinkage;
1910   else if (!getLangOpts().CPlusPlus &&
1911            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1912              D->getAttr<CommonAttr>()) &&
1913            !D->hasExternalStorage() && !D->getInit() &&
1914            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1915            !D->getAttr<WeakImportAttr>()) {
1916     // Thread local vars aren't considered common linkage.
1917     return llvm::GlobalVariable::CommonLinkage;
1918   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1919              getTarget().getTriple().isMacOSX())
1920     // On Darwin, the backing variable for a C++11 thread_local variable always
1921     // has internal linkage; all accesses should just be calls to the
1922     // Itanium-specified entry point, which has the normal linkage of the
1923     // variable.
1924     return llvm::GlobalValue::InternalLinkage;
1925   return llvm::GlobalVariable::ExternalLinkage;
1926 }
1927 
1928 /// Replace the uses of a function that was declared with a non-proto type.
1929 /// We want to silently drop extra arguments from call sites
1930 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1931                                           llvm::Function *newFn) {
1932   // Fast path.
1933   if (old->use_empty()) return;
1934 
1935   llvm::Type *newRetTy = newFn->getReturnType();
1936   SmallVector<llvm::Value*, 4> newArgs;
1937 
1938   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1939          ui != ue; ) {
1940     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1941     llvm::User *user = *use;
1942 
1943     // Recognize and replace uses of bitcasts.  Most calls to
1944     // unprototyped functions will use bitcasts.
1945     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1946       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1947         replaceUsesOfNonProtoConstant(bitcast, newFn);
1948       continue;
1949     }
1950 
1951     // Recognize calls to the function.
1952     llvm::CallSite callSite(user);
1953     if (!callSite) continue;
1954     if (!callSite.isCallee(use)) continue;
1955 
1956     // If the return types don't match exactly, then we can't
1957     // transform this call unless it's dead.
1958     if (callSite->getType() != newRetTy && !callSite->use_empty())
1959       continue;
1960 
1961     // Get the call site's attribute list.
1962     SmallVector<llvm::AttributeSet, 8> newAttrs;
1963     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1964 
1965     // Collect any return attributes from the call.
1966     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1967       newAttrs.push_back(
1968         llvm::AttributeSet::get(newFn->getContext(),
1969                                 oldAttrs.getRetAttributes()));
1970 
1971     // If the function was passed too few arguments, don't transform.
1972     unsigned newNumArgs = newFn->arg_size();
1973     if (callSite.arg_size() < newNumArgs) continue;
1974 
1975     // If extra arguments were passed, we silently drop them.
1976     // If any of the types mismatch, we don't transform.
1977     unsigned argNo = 0;
1978     bool dontTransform = false;
1979     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1980            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1981       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1982         dontTransform = true;
1983         break;
1984       }
1985 
1986       // Add any parameter attributes.
1987       if (oldAttrs.hasAttributes(argNo + 1))
1988         newAttrs.
1989           push_back(llvm::
1990                     AttributeSet::get(newFn->getContext(),
1991                                       oldAttrs.getParamAttributes(argNo + 1)));
1992     }
1993     if (dontTransform)
1994       continue;
1995 
1996     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1997       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1998                                                  oldAttrs.getFnAttributes()));
1999 
2000     // Okay, we can transform this.  Create the new call instruction and copy
2001     // over the required information.
2002     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2003 
2004     llvm::CallSite newCall;
2005     if (callSite.isCall()) {
2006       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2007                                        callSite.getInstruction());
2008     } else {
2009       llvm::InvokeInst *oldInvoke =
2010         cast<llvm::InvokeInst>(callSite.getInstruction());
2011       newCall = llvm::InvokeInst::Create(newFn,
2012                                          oldInvoke->getNormalDest(),
2013                                          oldInvoke->getUnwindDest(),
2014                                          newArgs, "",
2015                                          callSite.getInstruction());
2016     }
2017     newArgs.clear(); // for the next iteration
2018 
2019     if (!newCall->getType()->isVoidTy())
2020       newCall->takeName(callSite.getInstruction());
2021     newCall.setAttributes(
2022                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2023     newCall.setCallingConv(callSite.getCallingConv());
2024 
2025     // Finally, remove the old call, replacing any uses with the new one.
2026     if (!callSite->use_empty())
2027       callSite->replaceAllUsesWith(newCall.getInstruction());
2028 
2029     // Copy debug location attached to CI.
2030     if (!callSite->getDebugLoc().isUnknown())
2031       newCall->setDebugLoc(callSite->getDebugLoc());
2032     callSite->eraseFromParent();
2033   }
2034 }
2035 
2036 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2037 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2038 /// existing call uses of the old function in the module, this adjusts them to
2039 /// call the new function directly.
2040 ///
2041 /// This is not just a cleanup: the always_inline pass requires direct calls to
2042 /// functions to be able to inline them.  If there is a bitcast in the way, it
2043 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2044 /// run at -O0.
2045 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2046                                                       llvm::Function *NewFn) {
2047   // If we're redefining a global as a function, don't transform it.
2048   if (!isa<llvm::Function>(Old)) return;
2049 
2050   replaceUsesOfNonProtoConstant(Old, NewFn);
2051 }
2052 
2053 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2054   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2055   // If we have a definition, this might be a deferred decl. If the
2056   // instantiation is explicit, make sure we emit it at the end.
2057   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2058     GetAddrOfGlobalVar(VD);
2059 
2060   EmitTopLevelDecl(VD);
2061 }
2062 
2063 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2064   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2065 
2066   // Compute the function info and LLVM type.
2067   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2068   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2069 
2070   // Get or create the prototype for the function.
2071   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2072 
2073   // Strip off a bitcast if we got one back.
2074   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2075     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2076     Entry = CE->getOperand(0);
2077   }
2078 
2079 
2080   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2081     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2082 
2083     // If the types mismatch then we have to rewrite the definition.
2084     assert(OldFn->isDeclaration() &&
2085            "Shouldn't replace non-declaration");
2086 
2087     // F is the Function* for the one with the wrong type, we must make a new
2088     // Function* and update everything that used F (a declaration) with the new
2089     // Function* (which will be a definition).
2090     //
2091     // This happens if there is a prototype for a function
2092     // (e.g. "int f()") and then a definition of a different type
2093     // (e.g. "int f(int x)").  Move the old function aside so that it
2094     // doesn't interfere with GetAddrOfFunction.
2095     OldFn->setName(StringRef());
2096     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2097 
2098     // This might be an implementation of a function without a
2099     // prototype, in which case, try to do special replacement of
2100     // calls which match the new prototype.  The really key thing here
2101     // is that we also potentially drop arguments from the call site
2102     // so as to make a direct call, which makes the inliner happier
2103     // and suppresses a number of optimizer warnings (!) about
2104     // dropping arguments.
2105     if (!OldFn->use_empty()) {
2106       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2107       OldFn->removeDeadConstantUsers();
2108     }
2109 
2110     // Replace uses of F with the Function we will endow with a body.
2111     if (!Entry->use_empty()) {
2112       llvm::Constant *NewPtrForOldDecl =
2113         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2114       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2115     }
2116 
2117     // Ok, delete the old function now, which is dead.
2118     OldFn->eraseFromParent();
2119 
2120     Entry = NewFn;
2121   }
2122 
2123   // We need to set linkage and visibility on the function before
2124   // generating code for it because various parts of IR generation
2125   // want to propagate this information down (e.g. to local static
2126   // declarations).
2127   llvm::Function *Fn = cast<llvm::Function>(Entry);
2128   setFunctionLinkage(GD, Fn);
2129 
2130   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2131   setGlobalVisibility(Fn, D);
2132 
2133   MaybeHandleStaticInExternC(D, Fn);
2134 
2135   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2136 
2137   SetFunctionDefinitionAttributes(D, Fn);
2138   SetLLVMFunctionAttributesForDefinition(D, Fn);
2139 
2140   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2141     AddGlobalCtor(Fn, CA->getPriority());
2142   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2143     AddGlobalDtor(Fn, DA->getPriority());
2144   if (D->hasAttr<AnnotateAttr>())
2145     AddGlobalAnnotations(D, Fn);
2146 }
2147 
2148 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2149   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2150   const AliasAttr *AA = D->getAttr<AliasAttr>();
2151   assert(AA && "Not an alias?");
2152 
2153   StringRef MangledName = getMangledName(GD);
2154 
2155   // If there is a definition in the module, then it wins over the alias.
2156   // This is dubious, but allow it to be safe.  Just ignore the alias.
2157   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2158   if (Entry && !Entry->isDeclaration())
2159     return;
2160 
2161   Aliases.push_back(GD);
2162 
2163   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2164 
2165   // Create a reference to the named value.  This ensures that it is emitted
2166   // if a deferred decl.
2167   llvm::Constant *Aliasee;
2168   if (isa<llvm::FunctionType>(DeclTy))
2169     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2170                                       /*ForVTable=*/false);
2171   else
2172     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2173                                     llvm::PointerType::getUnqual(DeclTy), 0);
2174 
2175   // Create the new alias itself, but don't set a name yet.
2176   llvm::GlobalValue *GA =
2177     new llvm::GlobalAlias(Aliasee->getType(),
2178                           llvm::Function::ExternalLinkage,
2179                           "", Aliasee, &getModule());
2180 
2181   if (Entry) {
2182     assert(Entry->isDeclaration());
2183 
2184     // If there is a declaration in the module, then we had an extern followed
2185     // by the alias, as in:
2186     //   extern int test6();
2187     //   ...
2188     //   int test6() __attribute__((alias("test7")));
2189     //
2190     // Remove it and replace uses of it with the alias.
2191     GA->takeName(Entry);
2192 
2193     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2194                                                           Entry->getType()));
2195     Entry->eraseFromParent();
2196   } else {
2197     GA->setName(MangledName);
2198   }
2199 
2200   // Set attributes which are particular to an alias; this is a
2201   // specialization of the attributes which may be set on a global
2202   // variable/function.
2203   if (D->hasAttr<DLLExportAttr>()) {
2204     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2205       // The dllexport attribute is ignored for undefined symbols.
2206       if (FD->hasBody())
2207         GA->setLinkage(llvm::Function::DLLExportLinkage);
2208     } else {
2209       GA->setLinkage(llvm::Function::DLLExportLinkage);
2210     }
2211   } else if (D->hasAttr<WeakAttr>() ||
2212              D->hasAttr<WeakRefAttr>() ||
2213              D->isWeakImported()) {
2214     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2215   }
2216 
2217   SetCommonAttributes(D, GA);
2218 }
2219 
2220 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2221                                             ArrayRef<llvm::Type*> Tys) {
2222   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2223                                          Tys);
2224 }
2225 
2226 static llvm::StringMapEntry<llvm::Constant*> &
2227 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2228                          const StringLiteral *Literal,
2229                          bool TargetIsLSB,
2230                          bool &IsUTF16,
2231                          unsigned &StringLength) {
2232   StringRef String = Literal->getString();
2233   unsigned NumBytes = String.size();
2234 
2235   // Check for simple case.
2236   if (!Literal->containsNonAsciiOrNull()) {
2237     StringLength = NumBytes;
2238     return Map.GetOrCreateValue(String);
2239   }
2240 
2241   // Otherwise, convert the UTF8 literals into a string of shorts.
2242   IsUTF16 = true;
2243 
2244   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2245   const UTF8 *FromPtr = (const UTF8 *)String.data();
2246   UTF16 *ToPtr = &ToBuf[0];
2247 
2248   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2249                            &ToPtr, ToPtr + NumBytes,
2250                            strictConversion);
2251 
2252   // ConvertUTF8toUTF16 returns the length in ToPtr.
2253   StringLength = ToPtr - &ToBuf[0];
2254 
2255   // Add an explicit null.
2256   *ToPtr = 0;
2257   return Map.
2258     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2259                                (StringLength + 1) * 2));
2260 }
2261 
2262 static llvm::StringMapEntry<llvm::Constant*> &
2263 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2264                        const StringLiteral *Literal,
2265                        unsigned &StringLength) {
2266   StringRef String = Literal->getString();
2267   StringLength = String.size();
2268   return Map.GetOrCreateValue(String);
2269 }
2270 
2271 llvm::Constant *
2272 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2273   unsigned StringLength = 0;
2274   bool isUTF16 = false;
2275   llvm::StringMapEntry<llvm::Constant*> &Entry =
2276     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2277                              getDataLayout().isLittleEndian(),
2278                              isUTF16, StringLength);
2279 
2280   if (llvm::Constant *C = Entry.getValue())
2281     return C;
2282 
2283   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2284   llvm::Constant *Zeros[] = { Zero, Zero };
2285   llvm::Value *V;
2286 
2287   // If we don't already have it, get __CFConstantStringClassReference.
2288   if (!CFConstantStringClassRef) {
2289     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2290     Ty = llvm::ArrayType::get(Ty, 0);
2291     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2292                                            "__CFConstantStringClassReference");
2293     // Decay array -> ptr
2294     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2295     CFConstantStringClassRef = V;
2296   }
2297   else
2298     V = CFConstantStringClassRef;
2299 
2300   QualType CFTy = getContext().getCFConstantStringType();
2301 
2302   llvm::StructType *STy =
2303     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2304 
2305   llvm::Constant *Fields[4];
2306 
2307   // Class pointer.
2308   Fields[0] = cast<llvm::ConstantExpr>(V);
2309 
2310   // Flags.
2311   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2312   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2313     llvm::ConstantInt::get(Ty, 0x07C8);
2314 
2315   // String pointer.
2316   llvm::Constant *C = 0;
2317   if (isUTF16) {
2318     ArrayRef<uint16_t> Arr =
2319       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2320                                      const_cast<char *>(Entry.getKey().data())),
2321                                    Entry.getKey().size() / 2);
2322     C = llvm::ConstantDataArray::get(VMContext, Arr);
2323   } else {
2324     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2325   }
2326 
2327   llvm::GlobalValue::LinkageTypes Linkage;
2328   if (isUTF16)
2329     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2330     Linkage = llvm::GlobalValue::InternalLinkage;
2331   else
2332     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2333     // when using private linkage. It is not clear if this is a bug in ld
2334     // or a reasonable new restriction.
2335     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2336 
2337   // Note: -fwritable-strings doesn't make the backing store strings of
2338   // CFStrings writable. (See <rdar://problem/10657500>)
2339   llvm::GlobalVariable *GV =
2340     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2341                              Linkage, C, ".str");
2342   GV->setUnnamedAddr(true);
2343   // Don't enforce the target's minimum global alignment, since the only use
2344   // of the string is via this class initializer.
2345   if (isUTF16) {
2346     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2347     GV->setAlignment(Align.getQuantity());
2348   } else {
2349     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2350     GV->setAlignment(Align.getQuantity());
2351   }
2352 
2353   // String.
2354   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2355 
2356   if (isUTF16)
2357     // Cast the UTF16 string to the correct type.
2358     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2359 
2360   // String length.
2361   Ty = getTypes().ConvertType(getContext().LongTy);
2362   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2363 
2364   // The struct.
2365   C = llvm::ConstantStruct::get(STy, Fields);
2366   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2367                                 llvm::GlobalVariable::PrivateLinkage, C,
2368                                 "_unnamed_cfstring_");
2369   if (const char *Sect = getTarget().getCFStringSection())
2370     GV->setSection(Sect);
2371   Entry.setValue(GV);
2372 
2373   return GV;
2374 }
2375 
2376 static RecordDecl *
2377 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2378                  DeclContext *DC, IdentifierInfo *Id) {
2379   SourceLocation Loc;
2380   if (Ctx.getLangOpts().CPlusPlus)
2381     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2382   else
2383     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2384 }
2385 
2386 llvm::Constant *
2387 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2388   unsigned StringLength = 0;
2389   llvm::StringMapEntry<llvm::Constant*> &Entry =
2390     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2391 
2392   if (llvm::Constant *C = Entry.getValue())
2393     return C;
2394 
2395   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2396   llvm::Constant *Zeros[] = { Zero, Zero };
2397   llvm::Value *V;
2398   // If we don't already have it, get _NSConstantStringClassReference.
2399   if (!ConstantStringClassRef) {
2400     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2401     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2402     llvm::Constant *GV;
2403     if (LangOpts.ObjCRuntime.isNonFragile()) {
2404       std::string str =
2405         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2406                             : "OBJC_CLASS_$_" + StringClass;
2407       GV = getObjCRuntime().GetClassGlobal(str);
2408       // Make sure the result is of the correct type.
2409       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2410       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2411       ConstantStringClassRef = V;
2412     } else {
2413       std::string str =
2414         StringClass.empty() ? "_NSConstantStringClassReference"
2415                             : "_" + StringClass + "ClassReference";
2416       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2417       GV = CreateRuntimeVariable(PTy, str);
2418       // Decay array -> ptr
2419       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2420       ConstantStringClassRef = V;
2421     }
2422   }
2423   else
2424     V = ConstantStringClassRef;
2425 
2426   if (!NSConstantStringType) {
2427     // Construct the type for a constant NSString.
2428     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2429                                      Context.getTranslationUnitDecl(),
2430                                    &Context.Idents.get("__builtin_NSString"));
2431     D->startDefinition();
2432 
2433     QualType FieldTypes[3];
2434 
2435     // const int *isa;
2436     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2437     // const char *str;
2438     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2439     // unsigned int length;
2440     FieldTypes[2] = Context.UnsignedIntTy;
2441 
2442     // Create fields
2443     for (unsigned i = 0; i < 3; ++i) {
2444       FieldDecl *Field = FieldDecl::Create(Context, D,
2445                                            SourceLocation(),
2446                                            SourceLocation(), 0,
2447                                            FieldTypes[i], /*TInfo=*/0,
2448                                            /*BitWidth=*/0,
2449                                            /*Mutable=*/false,
2450                                            ICIS_NoInit);
2451       Field->setAccess(AS_public);
2452       D->addDecl(Field);
2453     }
2454 
2455     D->completeDefinition();
2456     QualType NSTy = Context.getTagDeclType(D);
2457     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2458   }
2459 
2460   llvm::Constant *Fields[3];
2461 
2462   // Class pointer.
2463   Fields[0] = cast<llvm::ConstantExpr>(V);
2464 
2465   // String pointer.
2466   llvm::Constant *C =
2467     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2468 
2469   llvm::GlobalValue::LinkageTypes Linkage;
2470   bool isConstant;
2471   Linkage = llvm::GlobalValue::PrivateLinkage;
2472   isConstant = !LangOpts.WritableStrings;
2473 
2474   llvm::GlobalVariable *GV =
2475   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2476                            ".str");
2477   GV->setUnnamedAddr(true);
2478   // Don't enforce the target's minimum global alignment, since the only use
2479   // of the string is via this class initializer.
2480   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2481   GV->setAlignment(Align.getQuantity());
2482   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2483 
2484   // String length.
2485   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2486   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2487 
2488   // The struct.
2489   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2490   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2491                                 llvm::GlobalVariable::PrivateLinkage, C,
2492                                 "_unnamed_nsstring_");
2493   // FIXME. Fix section.
2494   if (const char *Sect =
2495         LangOpts.ObjCRuntime.isNonFragile()
2496           ? getTarget().getNSStringNonFragileABISection()
2497           : getTarget().getNSStringSection())
2498     GV->setSection(Sect);
2499   Entry.setValue(GV);
2500 
2501   return GV;
2502 }
2503 
2504 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2505   if (ObjCFastEnumerationStateType.isNull()) {
2506     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2507                                      Context.getTranslationUnitDecl(),
2508                       &Context.Idents.get("__objcFastEnumerationState"));
2509     D->startDefinition();
2510 
2511     QualType FieldTypes[] = {
2512       Context.UnsignedLongTy,
2513       Context.getPointerType(Context.getObjCIdType()),
2514       Context.getPointerType(Context.UnsignedLongTy),
2515       Context.getConstantArrayType(Context.UnsignedLongTy,
2516                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2517     };
2518 
2519     for (size_t i = 0; i < 4; ++i) {
2520       FieldDecl *Field = FieldDecl::Create(Context,
2521                                            D,
2522                                            SourceLocation(),
2523                                            SourceLocation(), 0,
2524                                            FieldTypes[i], /*TInfo=*/0,
2525                                            /*BitWidth=*/0,
2526                                            /*Mutable=*/false,
2527                                            ICIS_NoInit);
2528       Field->setAccess(AS_public);
2529       D->addDecl(Field);
2530     }
2531 
2532     D->completeDefinition();
2533     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2534   }
2535 
2536   return ObjCFastEnumerationStateType;
2537 }
2538 
2539 llvm::Constant *
2540 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2541   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2542 
2543   // Don't emit it as the address of the string, emit the string data itself
2544   // as an inline array.
2545   if (E->getCharByteWidth() == 1) {
2546     SmallString<64> Str(E->getString());
2547 
2548     // Resize the string to the right size, which is indicated by its type.
2549     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2550     Str.resize(CAT->getSize().getZExtValue());
2551     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2552   }
2553 
2554   llvm::ArrayType *AType =
2555     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2556   llvm::Type *ElemTy = AType->getElementType();
2557   unsigned NumElements = AType->getNumElements();
2558 
2559   // Wide strings have either 2-byte or 4-byte elements.
2560   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2561     SmallVector<uint16_t, 32> Elements;
2562     Elements.reserve(NumElements);
2563 
2564     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2565       Elements.push_back(E->getCodeUnit(i));
2566     Elements.resize(NumElements);
2567     return llvm::ConstantDataArray::get(VMContext, Elements);
2568   }
2569 
2570   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2571   SmallVector<uint32_t, 32> Elements;
2572   Elements.reserve(NumElements);
2573 
2574   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2575     Elements.push_back(E->getCodeUnit(i));
2576   Elements.resize(NumElements);
2577   return llvm::ConstantDataArray::get(VMContext, Elements);
2578 }
2579 
2580 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2581 /// constant array for the given string literal.
2582 llvm::Constant *
2583 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2584   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2585   if (S->isAscii() || S->isUTF8()) {
2586     SmallString<64> Str(S->getString());
2587 
2588     // Resize the string to the right size, which is indicated by its type.
2589     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2590     Str.resize(CAT->getSize().getZExtValue());
2591     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2592   }
2593 
2594   // FIXME: the following does not memoize wide strings.
2595   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2596   llvm::GlobalVariable *GV =
2597     new llvm::GlobalVariable(getModule(),C->getType(),
2598                              !LangOpts.WritableStrings,
2599                              llvm::GlobalValue::PrivateLinkage,
2600                              C,".str");
2601 
2602   GV->setAlignment(Align.getQuantity());
2603   GV->setUnnamedAddr(true);
2604   return GV;
2605 }
2606 
2607 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2608 /// array for the given ObjCEncodeExpr node.
2609 llvm::Constant *
2610 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2611   std::string Str;
2612   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2613 
2614   return GetAddrOfConstantCString(Str);
2615 }
2616 
2617 
2618 /// GenerateWritableString -- Creates storage for a string literal.
2619 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2620                                              bool constant,
2621                                              CodeGenModule &CGM,
2622                                              const char *GlobalName,
2623                                              unsigned Alignment) {
2624   // Create Constant for this string literal. Don't add a '\0'.
2625   llvm::Constant *C =
2626       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2627 
2628   // Create a global variable for this string
2629   llvm::GlobalVariable *GV =
2630     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2631                              llvm::GlobalValue::PrivateLinkage,
2632                              C, GlobalName);
2633   GV->setAlignment(Alignment);
2634   GV->setUnnamedAddr(true);
2635   return GV;
2636 }
2637 
2638 /// GetAddrOfConstantString - Returns a pointer to a character array
2639 /// containing the literal. This contents are exactly that of the
2640 /// given string, i.e. it will not be null terminated automatically;
2641 /// see GetAddrOfConstantCString. Note that whether the result is
2642 /// actually a pointer to an LLVM constant depends on
2643 /// Feature.WriteableStrings.
2644 ///
2645 /// The result has pointer to array type.
2646 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2647                                                        const char *GlobalName,
2648                                                        unsigned Alignment) {
2649   // Get the default prefix if a name wasn't specified.
2650   if (!GlobalName)
2651     GlobalName = ".str";
2652 
2653   if (Alignment == 0)
2654     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2655       .getQuantity();
2656 
2657   // Don't share any string literals if strings aren't constant.
2658   if (LangOpts.WritableStrings)
2659     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2660 
2661   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2662     ConstantStringMap.GetOrCreateValue(Str);
2663 
2664   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2665     if (Alignment > GV->getAlignment()) {
2666       GV->setAlignment(Alignment);
2667     }
2668     return GV;
2669   }
2670 
2671   // Create a global variable for this.
2672   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2673                                                    Alignment);
2674   Entry.setValue(GV);
2675   return GV;
2676 }
2677 
2678 /// GetAddrOfConstantCString - Returns a pointer to a character
2679 /// array containing the literal and a terminating '\0'
2680 /// character. The result has pointer to array type.
2681 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2682                                                         const char *GlobalName,
2683                                                         unsigned Alignment) {
2684   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2685   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2686 }
2687 
2688 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2689     const MaterializeTemporaryExpr *E, const Expr *Init) {
2690   assert((E->getStorageDuration() == SD_Static ||
2691           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2692   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2693 
2694   // If we're not materializing a subobject of the temporary, keep the
2695   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2696   QualType MaterializedType = Init->getType();
2697   if (Init == E->GetTemporaryExpr())
2698     MaterializedType = E->getType();
2699 
2700   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2701   if (Slot)
2702     return Slot;
2703 
2704   // FIXME: If an externally-visible declaration extends multiple temporaries,
2705   // we need to give each temporary the same name in every translation unit (and
2706   // we also need to make the temporaries externally-visible).
2707   SmallString<256> Name;
2708   llvm::raw_svector_ostream Out(Name);
2709   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2710   Out.flush();
2711 
2712   APValue *Value = 0;
2713   if (E->getStorageDuration() == SD_Static) {
2714     // We might have a cached constant initializer for this temporary. Note
2715     // that this might have a different value from the value computed by
2716     // evaluating the initializer if the surrounding constant expression
2717     // modifies the temporary.
2718     Value = getContext().getMaterializedTemporaryValue(E, false);
2719     if (Value && Value->isUninit())
2720       Value = 0;
2721   }
2722 
2723   // Try evaluating it now, it might have a constant initializer.
2724   Expr::EvalResult EvalResult;
2725   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2726       !EvalResult.hasSideEffects())
2727     Value = &EvalResult.Val;
2728 
2729   llvm::Constant *InitialValue = 0;
2730   bool Constant = false;
2731   llvm::Type *Type;
2732   if (Value) {
2733     // The temporary has a constant initializer, use it.
2734     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2735     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2736     Type = InitialValue->getType();
2737   } else {
2738     // No initializer, the initialization will be provided when we
2739     // initialize the declaration which performed lifetime extension.
2740     Type = getTypes().ConvertTypeForMem(MaterializedType);
2741   }
2742 
2743   // Create a global variable for this lifetime-extended temporary.
2744   llvm::GlobalVariable *GV =
2745     new llvm::GlobalVariable(getModule(), Type, Constant,
2746                              llvm::GlobalValue::PrivateLinkage,
2747                              InitialValue, Name.c_str());
2748   GV->setAlignment(
2749       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2750   if (VD->getTLSKind())
2751     setTLSMode(GV, *VD);
2752   Slot = GV;
2753   return GV;
2754 }
2755 
2756 /// EmitObjCPropertyImplementations - Emit information for synthesized
2757 /// properties for an implementation.
2758 void CodeGenModule::EmitObjCPropertyImplementations(const
2759                                                     ObjCImplementationDecl *D) {
2760   for (ObjCImplementationDecl::propimpl_iterator
2761          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2762     ObjCPropertyImplDecl *PID = *i;
2763 
2764     // Dynamic is just for type-checking.
2765     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2766       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2767 
2768       // Determine which methods need to be implemented, some may have
2769       // been overridden. Note that ::isPropertyAccessor is not the method
2770       // we want, that just indicates if the decl came from a
2771       // property. What we want to know is if the method is defined in
2772       // this implementation.
2773       if (!D->getInstanceMethod(PD->getGetterName()))
2774         CodeGenFunction(*this).GenerateObjCGetter(
2775                                  const_cast<ObjCImplementationDecl *>(D), PID);
2776       if (!PD->isReadOnly() &&
2777           !D->getInstanceMethod(PD->getSetterName()))
2778         CodeGenFunction(*this).GenerateObjCSetter(
2779                                  const_cast<ObjCImplementationDecl *>(D), PID);
2780     }
2781   }
2782 }
2783 
2784 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2785   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2786   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2787        ivar; ivar = ivar->getNextIvar())
2788     if (ivar->getType().isDestructedType())
2789       return true;
2790 
2791   return false;
2792 }
2793 
2794 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2795 /// for an implementation.
2796 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2797   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2798   if (needsDestructMethod(D)) {
2799     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2800     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2801     ObjCMethodDecl *DTORMethod =
2802       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2803                              cxxSelector, getContext().VoidTy, 0, D,
2804                              /*isInstance=*/true, /*isVariadic=*/false,
2805                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2806                              /*isDefined=*/false, ObjCMethodDecl::Required);
2807     D->addInstanceMethod(DTORMethod);
2808     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2809     D->setHasDestructors(true);
2810   }
2811 
2812   // If the implementation doesn't have any ivar initializers, we don't need
2813   // a .cxx_construct.
2814   if (D->getNumIvarInitializers() == 0)
2815     return;
2816 
2817   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2818   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2819   // The constructor returns 'self'.
2820   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2821                                                 D->getLocation(),
2822                                                 D->getLocation(),
2823                                                 cxxSelector,
2824                                                 getContext().getObjCIdType(), 0,
2825                                                 D, /*isInstance=*/true,
2826                                                 /*isVariadic=*/false,
2827                                                 /*isPropertyAccessor=*/true,
2828                                                 /*isImplicitlyDeclared=*/true,
2829                                                 /*isDefined=*/false,
2830                                                 ObjCMethodDecl::Required);
2831   D->addInstanceMethod(CTORMethod);
2832   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2833   D->setHasNonZeroConstructors(true);
2834 }
2835 
2836 /// EmitNamespace - Emit all declarations in a namespace.
2837 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2838   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2839        I != E; ++I) {
2840     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2841       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2842           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2843         continue;
2844     EmitTopLevelDecl(*I);
2845   }
2846 }
2847 
2848 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2849 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2850   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2851       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2852     ErrorUnsupported(LSD, "linkage spec");
2853     return;
2854   }
2855 
2856   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2857        I != E; ++I) {
2858     // Meta-data for ObjC class includes references to implemented methods.
2859     // Generate class's method definitions first.
2860     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2861       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2862            MEnd = OID->meth_end();
2863            M != MEnd; ++M)
2864         EmitTopLevelDecl(*M);
2865     }
2866     EmitTopLevelDecl(*I);
2867   }
2868 }
2869 
2870 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2871 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2872   // Ignore dependent declarations.
2873   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2874     return;
2875 
2876   switch (D->getKind()) {
2877   case Decl::CXXConversion:
2878   case Decl::CXXMethod:
2879   case Decl::Function:
2880     // Skip function templates
2881     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2882         cast<FunctionDecl>(D)->isLateTemplateParsed())
2883       return;
2884 
2885     EmitGlobal(cast<FunctionDecl>(D));
2886     break;
2887 
2888   case Decl::Var:
2889     // Skip variable templates
2890     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2891       return;
2892   case Decl::VarTemplateSpecialization:
2893     EmitGlobal(cast<VarDecl>(D));
2894     break;
2895 
2896   // Indirect fields from global anonymous structs and unions can be
2897   // ignored; only the actual variable requires IR gen support.
2898   case Decl::IndirectField:
2899     break;
2900 
2901   // C++ Decls
2902   case Decl::Namespace:
2903     EmitNamespace(cast<NamespaceDecl>(D));
2904     break;
2905     // No code generation needed.
2906   case Decl::UsingShadow:
2907   case Decl::Using:
2908   case Decl::ClassTemplate:
2909   case Decl::VarTemplate:
2910   case Decl::VarTemplatePartialSpecialization:
2911   case Decl::FunctionTemplate:
2912   case Decl::TypeAliasTemplate:
2913   case Decl::Block:
2914   case Decl::Empty:
2915     break;
2916   case Decl::NamespaceAlias:
2917     if (CGDebugInfo *DI = getModuleDebugInfo())
2918         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2919     return;
2920   case Decl::UsingDirective: // using namespace X; [C++]
2921     if (CGDebugInfo *DI = getModuleDebugInfo())
2922       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2923     return;
2924   case Decl::CXXConstructor:
2925     // Skip function templates
2926     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2927         cast<FunctionDecl>(D)->isLateTemplateParsed())
2928       return;
2929 
2930     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2931     break;
2932   case Decl::CXXDestructor:
2933     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2934       return;
2935     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2936     break;
2937 
2938   case Decl::StaticAssert:
2939     // Nothing to do.
2940     break;
2941 
2942   // Objective-C Decls
2943 
2944   // Forward declarations, no (immediate) code generation.
2945   case Decl::ObjCInterface:
2946   case Decl::ObjCCategory:
2947     break;
2948 
2949   case Decl::ObjCProtocol: {
2950     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2951     if (Proto->isThisDeclarationADefinition())
2952       ObjCRuntime->GenerateProtocol(Proto);
2953     break;
2954   }
2955 
2956   case Decl::ObjCCategoryImpl:
2957     // Categories have properties but don't support synthesize so we
2958     // can ignore them here.
2959     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2960     break;
2961 
2962   case Decl::ObjCImplementation: {
2963     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2964     EmitObjCPropertyImplementations(OMD);
2965     EmitObjCIvarInitializations(OMD);
2966     ObjCRuntime->GenerateClass(OMD);
2967     // Emit global variable debug information.
2968     if (CGDebugInfo *DI = getModuleDebugInfo())
2969       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2970         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2971             OMD->getClassInterface()), OMD->getLocation());
2972     break;
2973   }
2974   case Decl::ObjCMethod: {
2975     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2976     // If this is not a prototype, emit the body.
2977     if (OMD->getBody())
2978       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2979     break;
2980   }
2981   case Decl::ObjCCompatibleAlias:
2982     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2983     break;
2984 
2985   case Decl::LinkageSpec:
2986     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2987     break;
2988 
2989   case Decl::FileScopeAsm: {
2990     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2991     StringRef AsmString = AD->getAsmString()->getString();
2992 
2993     const std::string &S = getModule().getModuleInlineAsm();
2994     if (S.empty())
2995       getModule().setModuleInlineAsm(AsmString);
2996     else if (S.end()[-1] == '\n')
2997       getModule().setModuleInlineAsm(S + AsmString.str());
2998     else
2999       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3000     break;
3001   }
3002 
3003   case Decl::Import: {
3004     ImportDecl *Import = cast<ImportDecl>(D);
3005 
3006     // Ignore import declarations that come from imported modules.
3007     if (clang::Module *Owner = Import->getOwningModule()) {
3008       if (getLangOpts().CurrentModule.empty() ||
3009           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3010         break;
3011     }
3012 
3013     ImportedModules.insert(Import->getImportedModule());
3014     break;
3015  }
3016 
3017   default:
3018     // Make sure we handled everything we should, every other kind is a
3019     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3020     // function. Need to recode Decl::Kind to do that easily.
3021     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3022   }
3023 }
3024 
3025 /// Turns the given pointer into a constant.
3026 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3027                                           const void *Ptr) {
3028   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3029   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3030   return llvm::ConstantInt::get(i64, PtrInt);
3031 }
3032 
3033 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3034                                    llvm::NamedMDNode *&GlobalMetadata,
3035                                    GlobalDecl D,
3036                                    llvm::GlobalValue *Addr) {
3037   if (!GlobalMetadata)
3038     GlobalMetadata =
3039       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3040 
3041   // TODO: should we report variant information for ctors/dtors?
3042   llvm::Value *Ops[] = {
3043     Addr,
3044     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3045   };
3046   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3047 }
3048 
3049 /// For each function which is declared within an extern "C" region and marked
3050 /// as 'used', but has internal linkage, create an alias from the unmangled
3051 /// name to the mangled name if possible. People expect to be able to refer
3052 /// to such functions with an unmangled name from inline assembly within the
3053 /// same translation unit.
3054 void CodeGenModule::EmitStaticExternCAliases() {
3055   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3056                                   E = StaticExternCValues.end();
3057        I != E; ++I) {
3058     IdentifierInfo *Name = I->first;
3059     llvm::GlobalValue *Val = I->second;
3060     if (Val && !getModule().getNamedValue(Name->getName()))
3061       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3062                                           Name->getName(), Val, &getModule()));
3063   }
3064 }
3065 
3066 /// Emits metadata nodes associating all the global values in the
3067 /// current module with the Decls they came from.  This is useful for
3068 /// projects using IR gen as a subroutine.
3069 ///
3070 /// Since there's currently no way to associate an MDNode directly
3071 /// with an llvm::GlobalValue, we create a global named metadata
3072 /// with the name 'clang.global.decl.ptrs'.
3073 void CodeGenModule::EmitDeclMetadata() {
3074   llvm::NamedMDNode *GlobalMetadata = 0;
3075 
3076   // StaticLocalDeclMap
3077   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3078          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3079        I != E; ++I) {
3080     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3081     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3082   }
3083 }
3084 
3085 /// Emits metadata nodes for all the local variables in the current
3086 /// function.
3087 void CodeGenFunction::EmitDeclMetadata() {
3088   if (LocalDeclMap.empty()) return;
3089 
3090   llvm::LLVMContext &Context = getLLVMContext();
3091 
3092   // Find the unique metadata ID for this name.
3093   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3094 
3095   llvm::NamedMDNode *GlobalMetadata = 0;
3096 
3097   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3098          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3099     const Decl *D = I->first;
3100     llvm::Value *Addr = I->second;
3101 
3102     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3103       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3104       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3105     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3106       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3107       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3108     }
3109   }
3110 }
3111 
3112 void CodeGenModule::EmitVersionIdentMetadata() {
3113   llvm::NamedMDNode *IdentMetadata =
3114     TheModule.getOrInsertNamedMetadata("llvm.ident");
3115   std::string Version = getClangFullVersion();
3116   llvm::LLVMContext &Ctx = TheModule.getContext();
3117 
3118   llvm::Value *IdentNode[] = {
3119     llvm::MDString::get(Ctx, Version)
3120   };
3121   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3122 }
3123 
3124 void CodeGenModule::EmitCoverageFile() {
3125   if (!getCodeGenOpts().CoverageFile.empty()) {
3126     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3127       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3128       llvm::LLVMContext &Ctx = TheModule.getContext();
3129       llvm::MDString *CoverageFile =
3130           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3131       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3132         llvm::MDNode *CU = CUNode->getOperand(i);
3133         llvm::Value *node[] = { CoverageFile, CU };
3134         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3135         GCov->addOperand(N);
3136       }
3137     }
3138   }
3139 }
3140 
3141 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3142                                                      QualType GuidType) {
3143   // Sema has checked that all uuid strings are of the form
3144   // "12345678-1234-1234-1234-1234567890ab".
3145   assert(Uuid.size() == 36);
3146   for (unsigned i = 0; i < 36; ++i) {
3147     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3148     else                                         assert(isHexDigit(Uuid[i]));
3149   }
3150 
3151   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3152 
3153   llvm::Constant *Field3[8];
3154   for (unsigned Idx = 0; Idx < 8; ++Idx)
3155     Field3[Idx] = llvm::ConstantInt::get(
3156         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3157 
3158   llvm::Constant *Fields[4] = {
3159     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3160     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3161     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3162     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3163   };
3164 
3165   return llvm::ConstantStruct::getAnon(Fields);
3166 }
3167