1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie( 91 CGO.SanitizerBlacklistFile)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.OpenMP) 117 createOpenMPRuntime(); 118 if (LangOpts.CUDA) 119 createCUDARuntime(); 120 121 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 122 if (LangOpts.Sanitize.Thread || 123 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 124 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 125 getCXXABI().getMangleContext()); 126 127 // If debug info or coverage generation is enabled, create the CGDebugInfo 128 // object. 129 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 130 CodeGenOpts.EmitGcovArcs || 131 CodeGenOpts.EmitGcovNotes) 132 DebugInfo = new CGDebugInfo(*this); 133 134 Block.GlobalUniqueCount = 0; 135 136 if (C.getLangOpts().ObjCAutoRefCount) 137 ARCData = new ARCEntrypoints(); 138 RRData = new RREntrypoints(); 139 140 if (!CodeGenOpts.InstrProfileInput.empty()) { 141 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 142 CodeGenOpts.InstrProfileInput, PGOReader)) { 143 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 144 "Could not read profile: %0"); 145 getDiags().Report(DiagID) << EC.message(); 146 } 147 } 148 } 149 150 CodeGenModule::~CodeGenModule() { 151 delete ObjCRuntime; 152 delete OpenCLRuntime; 153 delete OpenMPRuntime; 154 delete CUDARuntime; 155 delete TheTargetCodeGenInfo; 156 delete TBAA; 157 delete DebugInfo; 158 delete ARCData; 159 delete RRData; 160 } 161 162 void CodeGenModule::createObjCRuntime() { 163 // This is just isGNUFamily(), but we want to force implementors of 164 // new ABIs to decide how best to do this. 165 switch (LangOpts.ObjCRuntime.getKind()) { 166 case ObjCRuntime::GNUstep: 167 case ObjCRuntime::GCC: 168 case ObjCRuntime::ObjFW: 169 ObjCRuntime = CreateGNUObjCRuntime(*this); 170 return; 171 172 case ObjCRuntime::FragileMacOSX: 173 case ObjCRuntime::MacOSX: 174 case ObjCRuntime::iOS: 175 ObjCRuntime = CreateMacObjCRuntime(*this); 176 return; 177 } 178 llvm_unreachable("bad runtime kind"); 179 } 180 181 void CodeGenModule::createOpenCLRuntime() { 182 OpenCLRuntime = new CGOpenCLRuntime(*this); 183 } 184 185 void CodeGenModule::createOpenMPRuntime() { 186 OpenMPRuntime = new CGOpenMPRuntime(*this); 187 } 188 189 void CodeGenModule::createCUDARuntime() { 190 CUDARuntime = CreateNVCUDARuntime(*this); 191 } 192 193 void CodeGenModule::applyReplacements() { 194 for (ReplacementsTy::iterator I = Replacements.begin(), 195 E = Replacements.end(); 196 I != E; ++I) { 197 StringRef MangledName = I->first(); 198 llvm::Constant *Replacement = I->second; 199 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 200 if (!Entry) 201 continue; 202 auto *OldF = cast<llvm::Function>(Entry); 203 auto *NewF = dyn_cast<llvm::Function>(Replacement); 204 if (!NewF) { 205 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 206 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 207 } else { 208 auto *CE = cast<llvm::ConstantExpr>(Replacement); 209 assert(CE->getOpcode() == llvm::Instruction::BitCast || 210 CE->getOpcode() == llvm::Instruction::GetElementPtr); 211 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 212 } 213 } 214 215 // Replace old with new, but keep the old order. 216 OldF->replaceAllUsesWith(Replacement); 217 if (NewF) { 218 NewF->removeFromParent(); 219 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 220 } 221 OldF->eraseFromParent(); 222 } 223 } 224 225 // This is only used in aliases that we created and we know they have a 226 // linear structure. 227 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 228 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 229 const llvm::Constant *C = &GA; 230 for (;;) { 231 C = C->stripPointerCasts(); 232 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 233 return GO; 234 // stripPointerCasts will not walk over weak aliases. 235 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 236 if (!GA2) 237 return nullptr; 238 if (!Visited.insert(GA2)) 239 return nullptr; 240 C = GA2->getAliasee(); 241 } 242 } 243 244 void CodeGenModule::checkAliases() { 245 // Check if the constructed aliases are well formed. It is really unfortunate 246 // that we have to do this in CodeGen, but we only construct mangled names 247 // and aliases during codegen. 248 bool Error = false; 249 DiagnosticsEngine &Diags = getDiags(); 250 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 251 E = Aliases.end(); I != E; ++I) { 252 const GlobalDecl &GD = *I; 253 const auto *D = cast<ValueDecl>(GD.getDecl()); 254 const AliasAttr *AA = D->getAttr<AliasAttr>(); 255 StringRef MangledName = getMangledName(GD); 256 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 257 auto *Alias = cast<llvm::GlobalAlias>(Entry); 258 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 259 if (!GV) { 260 Error = true; 261 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 262 } else if (GV->isDeclaration()) { 263 Error = true; 264 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 265 } 266 267 llvm::Constant *Aliasee = Alias->getAliasee(); 268 llvm::GlobalValue *AliaseeGV; 269 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 270 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 271 else 272 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 273 274 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 275 StringRef AliasSection = SA->getName(); 276 if (AliasSection != AliaseeGV->getSection()) 277 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 278 << AliasSection; 279 } 280 281 // We have to handle alias to weak aliases in here. LLVM itself disallows 282 // this since the object semantics would not match the IL one. For 283 // compatibility with gcc we implement it by just pointing the alias 284 // to its aliasee's aliasee. We also warn, since the user is probably 285 // expecting the link to be weak. 286 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 287 if (GA->mayBeOverridden()) { 288 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 289 << GV->getName() << GA->getName(); 290 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 291 GA->getAliasee(), Alias->getType()); 292 Alias->setAliasee(Aliasee); 293 } 294 } 295 } 296 if (!Error) 297 return; 298 299 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 300 E = Aliases.end(); I != E; ++I) { 301 const GlobalDecl &GD = *I; 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalAlias>(Entry); 305 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 306 Alias->eraseFromParent(); 307 } 308 } 309 310 void CodeGenModule::clear() { 311 DeferredDeclsToEmit.clear(); 312 } 313 314 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 315 StringRef MainFile) { 316 if (!hasDiagnostics()) 317 return; 318 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 319 if (MainFile.empty()) 320 MainFile = "<stdin>"; 321 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 322 } else 323 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 324 << Mismatched; 325 } 326 327 void CodeGenModule::Release() { 328 EmitDeferred(); 329 applyReplacements(); 330 checkAliases(); 331 EmitCXXGlobalInitFunc(); 332 EmitCXXGlobalDtorFunc(); 333 EmitCXXThreadLocalInitFunc(); 334 if (ObjCRuntime) 335 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 336 AddGlobalCtor(ObjCInitFunction); 337 if (getCodeGenOpts().ProfileInstrGenerate) 338 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 339 AddGlobalCtor(PGOInit, 0); 340 if (PGOReader && PGOStats.hasDiagnostics()) 341 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 342 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 343 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 344 EmitGlobalAnnotations(); 345 EmitStaticExternCAliases(); 346 emitLLVMUsed(); 347 348 if (CodeGenOpts.Autolink && 349 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 350 EmitModuleLinkOptions(); 351 } 352 if (CodeGenOpts.DwarfVersion) 353 // We actually want the latest version when there are conflicts. 354 // We can change from Warning to Latest if such mode is supported. 355 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 356 CodeGenOpts.DwarfVersion); 357 if (DebugInfo) 358 // We support a single version in the linked module. The LLVM 359 // parser will drop debug info with a different version number 360 // (and warn about it, too). 361 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 362 llvm::DEBUG_METADATA_VERSION); 363 364 // We need to record the widths of enums and wchar_t, so that we can generate 365 // the correct build attributes in the ARM backend. 366 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 367 if ( Arch == llvm::Triple::arm 368 || Arch == llvm::Triple::armeb 369 || Arch == llvm::Triple::thumb 370 || Arch == llvm::Triple::thumbeb) { 371 // Width of wchar_t in bytes 372 uint64_t WCharWidth = 373 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 374 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 375 376 // The minimum width of an enum in bytes 377 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 378 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 379 } 380 381 SimplifyPersonality(); 382 383 if (getCodeGenOpts().EmitDeclMetadata) 384 EmitDeclMetadata(); 385 386 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 387 EmitCoverageFile(); 388 389 if (DebugInfo) 390 DebugInfo->finalize(); 391 392 EmitVersionIdentMetadata(); 393 394 EmitTargetMetadata(); 395 } 396 397 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 398 // Make sure that this type is translated. 399 Types.UpdateCompletedType(TD); 400 } 401 402 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 403 if (!TBAA) 404 return nullptr; 405 return TBAA->getTBAAInfo(QTy); 406 } 407 408 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 409 if (!TBAA) 410 return nullptr; 411 return TBAA->getTBAAInfoForVTablePtr(); 412 } 413 414 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 415 if (!TBAA) 416 return nullptr; 417 return TBAA->getTBAAStructInfo(QTy); 418 } 419 420 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 421 if (!TBAA) 422 return nullptr; 423 return TBAA->getTBAAStructTypeInfo(QTy); 424 } 425 426 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 427 llvm::MDNode *AccessN, 428 uint64_t O) { 429 if (!TBAA) 430 return nullptr; 431 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 432 } 433 434 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 435 /// and struct-path aware TBAA, the tag has the same format: 436 /// base type, access type and offset. 437 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 438 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 439 llvm::MDNode *TBAAInfo, 440 bool ConvertTypeToTag) { 441 if (ConvertTypeToTag && TBAA) 442 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 443 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 444 else 445 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 446 } 447 448 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 449 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 450 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 451 } 452 453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 454 /// specified stmt yet. 455 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 456 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 457 "cannot compile this %0 yet"); 458 std::string Msg = Type; 459 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 460 << Msg << S->getSourceRange(); 461 } 462 463 /// ErrorUnsupported - Print out an error that codegen doesn't support the 464 /// specified decl yet. 465 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 466 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 467 "cannot compile this %0 yet"); 468 std::string Msg = Type; 469 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 470 } 471 472 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 473 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 474 } 475 476 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 477 const NamedDecl *D) const { 478 // Internal definitions always have default visibility. 479 if (GV->hasLocalLinkage()) { 480 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 481 return; 482 } 483 484 // Set visibility for definitions. 485 LinkageInfo LV = D->getLinkageAndVisibility(); 486 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 487 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 488 } 489 490 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 491 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 492 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 493 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 494 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 495 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 496 } 497 498 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 499 CodeGenOptions::TLSModel M) { 500 switch (M) { 501 case CodeGenOptions::GeneralDynamicTLSModel: 502 return llvm::GlobalVariable::GeneralDynamicTLSModel; 503 case CodeGenOptions::LocalDynamicTLSModel: 504 return llvm::GlobalVariable::LocalDynamicTLSModel; 505 case CodeGenOptions::InitialExecTLSModel: 506 return llvm::GlobalVariable::InitialExecTLSModel; 507 case CodeGenOptions::LocalExecTLSModel: 508 return llvm::GlobalVariable::LocalExecTLSModel; 509 } 510 llvm_unreachable("Invalid TLS model!"); 511 } 512 513 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 514 const VarDecl &D) const { 515 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 516 517 llvm::GlobalVariable::ThreadLocalMode TLM; 518 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 519 520 // Override the TLS model if it is explicitly specified. 521 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 522 TLM = GetLLVMTLSModel(Attr->getModel()); 523 } 524 525 GV->setThreadLocalMode(TLM); 526 } 527 528 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 529 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 530 if (!FoundStr.empty()) 531 return FoundStr; 532 533 const auto *ND = cast<NamedDecl>(GD.getDecl()); 534 SmallString<256> Buffer; 535 StringRef Str; 536 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 537 llvm::raw_svector_ostream Out(Buffer); 538 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 539 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 540 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 541 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 542 else 543 getCXXABI().getMangleContext().mangleName(ND, Out); 544 Str = Out.str(); 545 } else { 546 IdentifierInfo *II = ND->getIdentifier(); 547 assert(II && "Attempt to mangle unnamed decl."); 548 Str = II->getName(); 549 } 550 551 auto &Mangled = Manglings.GetOrCreateValue(Str); 552 Mangled.second = GD; 553 return FoundStr = Mangled.first(); 554 } 555 556 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 557 const BlockDecl *BD) { 558 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 559 const Decl *D = GD.getDecl(); 560 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 if (!D) 564 MangleCtx.mangleGlobalBlock(BD, 565 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 566 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 567 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 568 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 569 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 570 else 571 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 572 573 auto &Mangled = Manglings.GetOrCreateValue(Out.str()); 574 Mangled.second = BD; 575 return Mangled.first(); 576 } 577 578 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 579 return getModule().getNamedValue(Name); 580 } 581 582 /// AddGlobalCtor - Add a function to the list that will be called before 583 /// main() runs. 584 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 585 llvm::Constant *AssociatedData) { 586 // FIXME: Type coercion of void()* types. 587 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 588 } 589 590 /// AddGlobalDtor - Add a function to the list that will be called 591 /// when the module is unloaded. 592 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 593 // FIXME: Type coercion of void()* types. 594 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 595 } 596 597 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 598 // Ctor function type is void()*. 599 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 600 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 601 602 // Get the type of a ctor entry, { i32, void ()*, i8* }. 603 llvm::StructType *CtorStructTy = llvm::StructType::get( 604 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 605 606 // Construct the constructor and destructor arrays. 607 SmallVector<llvm::Constant*, 8> Ctors; 608 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 609 llvm::Constant *S[] = { 610 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 611 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 612 (I->AssociatedData 613 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 614 : llvm::Constant::getNullValue(VoidPtrTy)) 615 }; 616 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 617 } 618 619 if (!Ctors.empty()) { 620 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 621 new llvm::GlobalVariable(TheModule, AT, false, 622 llvm::GlobalValue::AppendingLinkage, 623 llvm::ConstantArray::get(AT, Ctors), 624 GlobalName); 625 } 626 } 627 628 llvm::GlobalValue::LinkageTypes 629 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 630 const auto *D = cast<FunctionDecl>(GD.getDecl()); 631 632 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 633 634 if (isa<CXXDestructorDecl>(D) && 635 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 636 GD.getDtorType())) { 637 // Destructor variants in the Microsoft C++ ABI are always internal or 638 // linkonce_odr thunks emitted on an as-needed basis. 639 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 640 : llvm::GlobalValue::LinkOnceODRLinkage; 641 } 642 643 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 644 } 645 646 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 647 llvm::Function *F) { 648 setNonAliasAttributes(D, F); 649 } 650 651 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 652 const CGFunctionInfo &Info, 653 llvm::Function *F) { 654 unsigned CallingConv; 655 AttributeListType AttributeList; 656 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 657 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 658 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 659 } 660 661 /// Determines whether the language options require us to model 662 /// unwind exceptions. We treat -fexceptions as mandating this 663 /// except under the fragile ObjC ABI with only ObjC exceptions 664 /// enabled. This means, for example, that C with -fexceptions 665 /// enables this. 666 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 667 // If exceptions are completely disabled, obviously this is false. 668 if (!LangOpts.Exceptions) return false; 669 670 // If C++ exceptions are enabled, this is true. 671 if (LangOpts.CXXExceptions) return true; 672 673 // If ObjC exceptions are enabled, this depends on the ABI. 674 if (LangOpts.ObjCExceptions) { 675 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 676 } 677 678 return true; 679 } 680 681 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 682 llvm::Function *F) { 683 llvm::AttrBuilder B; 684 685 if (CodeGenOpts.UnwindTables) 686 B.addAttribute(llvm::Attribute::UWTable); 687 688 if (!hasUnwindExceptions(LangOpts)) 689 B.addAttribute(llvm::Attribute::NoUnwind); 690 691 if (D->hasAttr<NakedAttr>()) { 692 // Naked implies noinline: we should not be inlining such functions. 693 B.addAttribute(llvm::Attribute::Naked); 694 B.addAttribute(llvm::Attribute::NoInline); 695 } else if (D->hasAttr<OptimizeNoneAttr>()) { 696 // OptimizeNone implies noinline; we should not be inlining such functions. 697 B.addAttribute(llvm::Attribute::OptimizeNone); 698 B.addAttribute(llvm::Attribute::NoInline); 699 } else if (D->hasAttr<NoDuplicateAttr>()) { 700 B.addAttribute(llvm::Attribute::NoDuplicate); 701 } else if (D->hasAttr<NoInlineAttr>()) { 702 B.addAttribute(llvm::Attribute::NoInline); 703 } else if (D->hasAttr<AlwaysInlineAttr>() && 704 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 705 llvm::Attribute::NoInline)) { 706 // (noinline wins over always_inline, and we can't specify both in IR) 707 B.addAttribute(llvm::Attribute::AlwaysInline); 708 } 709 710 if (D->hasAttr<ColdAttr>()) { 711 B.addAttribute(llvm::Attribute::OptimizeForSize); 712 B.addAttribute(llvm::Attribute::Cold); 713 } 714 715 if (D->hasAttr<MinSizeAttr>()) 716 B.addAttribute(llvm::Attribute::MinSize); 717 718 if (D->hasAttr<OptimizeNoneAttr>()) { 719 // OptimizeNone wins over OptimizeForSize and MinSize. 720 B.removeAttribute(llvm::Attribute::OptimizeForSize); 721 B.removeAttribute(llvm::Attribute::MinSize); 722 } 723 724 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 725 B.addAttribute(llvm::Attribute::StackProtect); 726 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 727 B.addAttribute(llvm::Attribute::StackProtectStrong); 728 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 729 B.addAttribute(llvm::Attribute::StackProtectReq); 730 731 // Add sanitizer attributes if function is not blacklisted. 732 if (!SanitizerBL.isIn(*F)) { 733 // When AddressSanitizer is enabled, set SanitizeAddress attribute 734 // unless __attribute__((no_sanitize_address)) is used. 735 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 736 B.addAttribute(llvm::Attribute::SanitizeAddress); 737 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 738 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 739 B.addAttribute(llvm::Attribute::SanitizeThread); 740 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 741 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 742 B.addAttribute(llvm::Attribute::SanitizeMemory); 743 } 744 745 F->addAttributes(llvm::AttributeSet::FunctionIndex, 746 llvm::AttributeSet::get( 747 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 748 749 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 750 F->setUnnamedAddr(true); 751 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 752 if (MD->isVirtual()) 753 F->setUnnamedAddr(true); 754 755 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 756 if (alignment) 757 F->setAlignment(alignment); 758 759 // C++ ABI requires 2-byte alignment for member functions. 760 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 761 F->setAlignment(2); 762 } 763 764 void CodeGenModule::SetCommonAttributes(const Decl *D, 765 llvm::GlobalValue *GV) { 766 if (const auto *ND = dyn_cast<NamedDecl>(D)) 767 setGlobalVisibility(GV, ND); 768 else 769 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 770 771 if (D->hasAttr<UsedAttr>()) 772 addUsedGlobal(GV); 773 } 774 775 void CodeGenModule::setNonAliasAttributes(const Decl *D, 776 llvm::GlobalObject *GO) { 777 SetCommonAttributes(D, GO); 778 779 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 780 GO->setSection(SA->getName()); 781 782 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 783 } 784 785 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 786 llvm::Function *F, 787 const CGFunctionInfo &FI) { 788 SetLLVMFunctionAttributes(D, FI, F); 789 SetLLVMFunctionAttributesForDefinition(D, F); 790 791 F->setLinkage(llvm::Function::InternalLinkage); 792 793 setNonAliasAttributes(D, F); 794 } 795 796 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 797 const NamedDecl *ND) { 798 // Set linkage and visibility in case we never see a definition. 799 LinkageInfo LV = ND->getLinkageAndVisibility(); 800 if (LV.getLinkage() != ExternalLinkage) { 801 // Don't set internal linkage on declarations. 802 } else { 803 if (ND->hasAttr<DLLImportAttr>()) { 804 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 805 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 806 } else if (ND->hasAttr<DLLExportAttr>()) { 807 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 808 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 809 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 810 // "extern_weak" is overloaded in LLVM; we probably should have 811 // separate linkage types for this. 812 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 813 } 814 815 // Set visibility on a declaration only if it's explicit. 816 if (LV.isVisibilityExplicit()) 817 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 818 } 819 } 820 821 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 822 llvm::Function *F, 823 bool IsIncompleteFunction) { 824 if (unsigned IID = F->getIntrinsicID()) { 825 // If this is an intrinsic function, set the function's attributes 826 // to the intrinsic's attributes. 827 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 828 (llvm::Intrinsic::ID)IID)); 829 return; 830 } 831 832 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 833 834 if (!IsIncompleteFunction) 835 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 836 837 // Add the Returned attribute for "this", except for iOS 5 and earlier 838 // where substantial code, including the libstdc++ dylib, was compiled with 839 // GCC and does not actually return "this". 840 if (getCXXABI().HasThisReturn(GD) && 841 !(getTarget().getTriple().isiOS() && 842 getTarget().getTriple().isOSVersionLT(6))) { 843 assert(!F->arg_empty() && 844 F->arg_begin()->getType() 845 ->canLosslesslyBitCastTo(F->getReturnType()) && 846 "unexpected this return"); 847 F->addAttribute(1, llvm::Attribute::Returned); 848 } 849 850 // Only a few attributes are set on declarations; these may later be 851 // overridden by a definition. 852 853 setLinkageAndVisibilityForGV(F, FD); 854 855 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 856 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 857 // Don't dllexport/import destructor thunks. 858 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 859 } 860 } 861 862 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 863 F->setSection(SA->getName()); 864 865 // A replaceable global allocation function does not act like a builtin by 866 // default, only if it is invoked by a new-expression or delete-expression. 867 if (FD->isReplaceableGlobalAllocationFunction()) 868 F->addAttribute(llvm::AttributeSet::FunctionIndex, 869 llvm::Attribute::NoBuiltin); 870 } 871 872 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 873 assert(!GV->isDeclaration() && 874 "Only globals with definition can force usage."); 875 LLVMUsed.push_back(GV); 876 } 877 878 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 879 assert(!GV->isDeclaration() && 880 "Only globals with definition can force usage."); 881 LLVMCompilerUsed.push_back(GV); 882 } 883 884 static void emitUsed(CodeGenModule &CGM, StringRef Name, 885 std::vector<llvm::WeakVH> &List) { 886 // Don't create llvm.used if there is no need. 887 if (List.empty()) 888 return; 889 890 // Convert List to what ConstantArray needs. 891 SmallVector<llvm::Constant*, 8> UsedArray; 892 UsedArray.resize(List.size()); 893 for (unsigned i = 0, e = List.size(); i != e; ++i) { 894 UsedArray[i] = 895 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 896 CGM.Int8PtrTy); 897 } 898 899 if (UsedArray.empty()) 900 return; 901 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 902 903 auto *GV = new llvm::GlobalVariable( 904 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 905 llvm::ConstantArray::get(ATy, UsedArray), Name); 906 907 GV->setSection("llvm.metadata"); 908 } 909 910 void CodeGenModule::emitLLVMUsed() { 911 emitUsed(*this, "llvm.used", LLVMUsed); 912 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 913 } 914 915 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 916 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 917 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 918 } 919 920 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 921 llvm::SmallString<32> Opt; 922 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 923 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 924 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 925 } 926 927 void CodeGenModule::AddDependentLib(StringRef Lib) { 928 llvm::SmallString<24> Opt; 929 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 930 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 931 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 932 } 933 934 /// \brief Add link options implied by the given module, including modules 935 /// it depends on, using a postorder walk. 936 static void addLinkOptionsPostorder(CodeGenModule &CGM, 937 Module *Mod, 938 SmallVectorImpl<llvm::Value *> &Metadata, 939 llvm::SmallPtrSet<Module *, 16> &Visited) { 940 // Import this module's parent. 941 if (Mod->Parent && Visited.insert(Mod->Parent)) { 942 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 943 } 944 945 // Import this module's dependencies. 946 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 947 if (Visited.insert(Mod->Imports[I-1])) 948 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 949 } 950 951 // Add linker options to link against the libraries/frameworks 952 // described by this module. 953 llvm::LLVMContext &Context = CGM.getLLVMContext(); 954 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 955 // Link against a framework. Frameworks are currently Darwin only, so we 956 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 957 if (Mod->LinkLibraries[I-1].IsFramework) { 958 llvm::Value *Args[2] = { 959 llvm::MDString::get(Context, "-framework"), 960 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 961 }; 962 963 Metadata.push_back(llvm::MDNode::get(Context, Args)); 964 continue; 965 } 966 967 // Link against a library. 968 llvm::SmallString<24> Opt; 969 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 970 Mod->LinkLibraries[I-1].Library, Opt); 971 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 972 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 973 } 974 } 975 976 void CodeGenModule::EmitModuleLinkOptions() { 977 // Collect the set of all of the modules we want to visit to emit link 978 // options, which is essentially the imported modules and all of their 979 // non-explicit child modules. 980 llvm::SetVector<clang::Module *> LinkModules; 981 llvm::SmallPtrSet<clang::Module *, 16> Visited; 982 SmallVector<clang::Module *, 16> Stack; 983 984 // Seed the stack with imported modules. 985 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 986 MEnd = ImportedModules.end(); 987 M != MEnd; ++M) { 988 if (Visited.insert(*M)) 989 Stack.push_back(*M); 990 } 991 992 // Find all of the modules to import, making a little effort to prune 993 // non-leaf modules. 994 while (!Stack.empty()) { 995 clang::Module *Mod = Stack.pop_back_val(); 996 997 bool AnyChildren = false; 998 999 // Visit the submodules of this module. 1000 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1001 SubEnd = Mod->submodule_end(); 1002 Sub != SubEnd; ++Sub) { 1003 // Skip explicit children; they need to be explicitly imported to be 1004 // linked against. 1005 if ((*Sub)->IsExplicit) 1006 continue; 1007 1008 if (Visited.insert(*Sub)) { 1009 Stack.push_back(*Sub); 1010 AnyChildren = true; 1011 } 1012 } 1013 1014 // We didn't find any children, so add this module to the list of 1015 // modules to link against. 1016 if (!AnyChildren) { 1017 LinkModules.insert(Mod); 1018 } 1019 } 1020 1021 // Add link options for all of the imported modules in reverse topological 1022 // order. We don't do anything to try to order import link flags with respect 1023 // to linker options inserted by things like #pragma comment(). 1024 SmallVector<llvm::Value *, 16> MetadataArgs; 1025 Visited.clear(); 1026 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1027 MEnd = LinkModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M)) 1030 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1031 } 1032 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1033 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1034 1035 // Add the linker options metadata flag. 1036 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1037 llvm::MDNode::get(getLLVMContext(), 1038 LinkerOptionsMetadata)); 1039 } 1040 1041 void CodeGenModule::EmitDeferred() { 1042 // Emit code for any potentially referenced deferred decls. Since a 1043 // previously unused static decl may become used during the generation of code 1044 // for a static function, iterate until no changes are made. 1045 1046 while (true) { 1047 if (!DeferredVTables.empty()) { 1048 EmitDeferredVTables(); 1049 1050 // Emitting a v-table doesn't directly cause more v-tables to 1051 // become deferred, although it can cause functions to be 1052 // emitted that then need those v-tables. 1053 assert(DeferredVTables.empty()); 1054 } 1055 1056 // Stop if we're out of both deferred v-tables and deferred declarations. 1057 if (DeferredDeclsToEmit.empty()) break; 1058 1059 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1060 GlobalDecl D = G.GD; 1061 llvm::GlobalValue *GV = G.GV; 1062 DeferredDeclsToEmit.pop_back(); 1063 1064 assert(GV == GetGlobalValue(getMangledName(D))); 1065 // Check to see if we've already emitted this. This is necessary 1066 // for a couple of reasons: first, decls can end up in the 1067 // deferred-decls queue multiple times, and second, decls can end 1068 // up with definitions in unusual ways (e.g. by an extern inline 1069 // function acquiring a strong function redefinition). Just 1070 // ignore these cases. 1071 if(!GV->isDeclaration()) 1072 continue; 1073 1074 // Otherwise, emit the definition and move on to the next one. 1075 EmitGlobalDefinition(D, GV); 1076 } 1077 } 1078 1079 void CodeGenModule::EmitGlobalAnnotations() { 1080 if (Annotations.empty()) 1081 return; 1082 1083 // Create a new global variable for the ConstantStruct in the Module. 1084 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1085 Annotations[0]->getType(), Annotations.size()), Annotations); 1086 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1087 llvm::GlobalValue::AppendingLinkage, 1088 Array, "llvm.global.annotations"); 1089 gv->setSection(AnnotationSection); 1090 } 1091 1092 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1093 llvm::Constant *&AStr = AnnotationStrings[Str]; 1094 if (AStr) 1095 return AStr; 1096 1097 // Not found yet, create a new global. 1098 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1099 auto *gv = 1100 new llvm::GlobalVariable(getModule(), s->getType(), true, 1101 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1102 gv->setSection(AnnotationSection); 1103 gv->setUnnamedAddr(true); 1104 AStr = gv; 1105 return gv; 1106 } 1107 1108 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1109 SourceManager &SM = getContext().getSourceManager(); 1110 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1111 if (PLoc.isValid()) 1112 return EmitAnnotationString(PLoc.getFilename()); 1113 return EmitAnnotationString(SM.getBufferName(Loc)); 1114 } 1115 1116 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1117 SourceManager &SM = getContext().getSourceManager(); 1118 PresumedLoc PLoc = SM.getPresumedLoc(L); 1119 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1120 SM.getExpansionLineNumber(L); 1121 return llvm::ConstantInt::get(Int32Ty, LineNo); 1122 } 1123 1124 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1125 const AnnotateAttr *AA, 1126 SourceLocation L) { 1127 // Get the globals for file name, annotation, and the line number. 1128 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1129 *UnitGV = EmitAnnotationUnit(L), 1130 *LineNoCst = EmitAnnotationLineNo(L); 1131 1132 // Create the ConstantStruct for the global annotation. 1133 llvm::Constant *Fields[4] = { 1134 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1135 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1136 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1137 LineNoCst 1138 }; 1139 return llvm::ConstantStruct::getAnon(Fields); 1140 } 1141 1142 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1143 llvm::GlobalValue *GV) { 1144 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1145 // Get the struct elements for these annotations. 1146 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1147 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1148 } 1149 1150 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1151 // Never defer when EmitAllDecls is specified. 1152 if (LangOpts.EmitAllDecls) 1153 return false; 1154 1155 return !getContext().DeclMustBeEmitted(Global); 1156 } 1157 1158 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1159 const CXXUuidofExpr* E) { 1160 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1161 // well-formed. 1162 StringRef Uuid = E->getUuidAsStringRef(Context); 1163 std::string Name = "_GUID_" + Uuid.lower(); 1164 std::replace(Name.begin(), Name.end(), '-', '_'); 1165 1166 // Look for an existing global. 1167 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1168 return GV; 1169 1170 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1171 assert(Init && "failed to initialize as constant"); 1172 1173 auto *GV = new llvm::GlobalVariable( 1174 getModule(), Init->getType(), 1175 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1176 return GV; 1177 } 1178 1179 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1180 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1181 assert(AA && "No alias?"); 1182 1183 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1184 1185 // See if there is already something with the target's name in the module. 1186 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1187 if (Entry) { 1188 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1189 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1190 } 1191 1192 llvm::Constant *Aliasee; 1193 if (isa<llvm::FunctionType>(DeclTy)) 1194 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1195 GlobalDecl(cast<FunctionDecl>(VD)), 1196 /*ForVTable=*/false); 1197 else 1198 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1199 llvm::PointerType::getUnqual(DeclTy), 1200 nullptr); 1201 1202 auto *F = cast<llvm::GlobalValue>(Aliasee); 1203 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1204 WeakRefReferences.insert(F); 1205 1206 return Aliasee; 1207 } 1208 1209 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1210 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1211 1212 // Weak references don't produce any output by themselves. 1213 if (Global->hasAttr<WeakRefAttr>()) 1214 return; 1215 1216 // If this is an alias definition (which otherwise looks like a declaration) 1217 // emit it now. 1218 if (Global->hasAttr<AliasAttr>()) 1219 return EmitAliasDefinition(GD); 1220 1221 // If this is CUDA, be selective about which declarations we emit. 1222 if (LangOpts.CUDA) { 1223 if (CodeGenOpts.CUDAIsDevice) { 1224 if (!Global->hasAttr<CUDADeviceAttr>() && 1225 !Global->hasAttr<CUDAGlobalAttr>() && 1226 !Global->hasAttr<CUDAConstantAttr>() && 1227 !Global->hasAttr<CUDASharedAttr>()) 1228 return; 1229 } else { 1230 if (!Global->hasAttr<CUDAHostAttr>() && ( 1231 Global->hasAttr<CUDADeviceAttr>() || 1232 Global->hasAttr<CUDAConstantAttr>() || 1233 Global->hasAttr<CUDASharedAttr>())) 1234 return; 1235 } 1236 } 1237 1238 // Ignore declarations, they will be emitted on their first use. 1239 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1240 // Forward declarations are emitted lazily on first use. 1241 if (!FD->doesThisDeclarationHaveABody()) { 1242 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1243 return; 1244 1245 StringRef MangledName = getMangledName(GD); 1246 1247 // Compute the function info and LLVM type. 1248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1249 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1250 1251 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1252 /*DontDefer=*/false); 1253 return; 1254 } 1255 } else { 1256 const auto *VD = cast<VarDecl>(Global); 1257 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1258 1259 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1260 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1261 return; 1262 } 1263 1264 // Defer code generation when possible if this is a static definition, inline 1265 // function etc. These we only want to emit if they are used. 1266 if (!MayDeferGeneration(Global)) { 1267 // Emit the definition if it can't be deferred. 1268 EmitGlobalDefinition(GD); 1269 return; 1270 } 1271 1272 // If we're deferring emission of a C++ variable with an 1273 // initializer, remember the order in which it appeared in the file. 1274 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1275 cast<VarDecl>(Global)->hasInit()) { 1276 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1277 CXXGlobalInits.push_back(nullptr); 1278 } 1279 1280 // If the value has already been used, add it directly to the 1281 // DeferredDeclsToEmit list. 1282 StringRef MangledName = getMangledName(GD); 1283 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1284 addDeferredDeclToEmit(GV, GD); 1285 else { 1286 // Otherwise, remember that we saw a deferred decl with this name. The 1287 // first use of the mangled name will cause it to move into 1288 // DeferredDeclsToEmit. 1289 DeferredDecls[MangledName] = GD; 1290 } 1291 } 1292 1293 namespace { 1294 struct FunctionIsDirectlyRecursive : 1295 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1296 const StringRef Name; 1297 const Builtin::Context &BI; 1298 bool Result; 1299 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1300 Name(N), BI(C), Result(false) { 1301 } 1302 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1303 1304 bool TraverseCallExpr(CallExpr *E) { 1305 const FunctionDecl *FD = E->getDirectCallee(); 1306 if (!FD) 1307 return true; 1308 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1309 if (Attr && Name == Attr->getLabel()) { 1310 Result = true; 1311 return false; 1312 } 1313 unsigned BuiltinID = FD->getBuiltinID(); 1314 if (!BuiltinID) 1315 return true; 1316 StringRef BuiltinName = BI.GetName(BuiltinID); 1317 if (BuiltinName.startswith("__builtin_") && 1318 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1319 Result = true; 1320 return false; 1321 } 1322 return true; 1323 } 1324 }; 1325 } 1326 1327 // isTriviallyRecursive - Check if this function calls another 1328 // decl that, because of the asm attribute or the other decl being a builtin, 1329 // ends up pointing to itself. 1330 bool 1331 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1332 StringRef Name; 1333 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1334 // asm labels are a special kind of mangling we have to support. 1335 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1336 if (!Attr) 1337 return false; 1338 Name = Attr->getLabel(); 1339 } else { 1340 Name = FD->getName(); 1341 } 1342 1343 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1344 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1345 return Walker.Result; 1346 } 1347 1348 bool 1349 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1350 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1351 return true; 1352 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1353 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1354 return false; 1355 // PR9614. Avoid cases where the source code is lying to us. An available 1356 // externally function should have an equivalent function somewhere else, 1357 // but a function that calls itself is clearly not equivalent to the real 1358 // implementation. 1359 // This happens in glibc's btowc and in some configure checks. 1360 return !isTriviallyRecursive(F); 1361 } 1362 1363 /// If the type for the method's class was generated by 1364 /// CGDebugInfo::createContextChain(), the cache contains only a 1365 /// limited DIType without any declarations. Since EmitFunctionStart() 1366 /// needs to find the canonical declaration for each method, we need 1367 /// to construct the complete type prior to emitting the method. 1368 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1369 if (!D->isInstance()) 1370 return; 1371 1372 if (CGDebugInfo *DI = getModuleDebugInfo()) 1373 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1374 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1375 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1376 } 1377 } 1378 1379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1380 const auto *D = cast<ValueDecl>(GD.getDecl()); 1381 1382 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1383 Context.getSourceManager(), 1384 "Generating code for declaration"); 1385 1386 if (isa<FunctionDecl>(D)) { 1387 // At -O0, don't generate IR for functions with available_externally 1388 // linkage. 1389 if (!shouldEmitFunction(GD)) 1390 return; 1391 1392 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1393 CompleteDIClassType(Method); 1394 // Make sure to emit the definition(s) before we emit the thunks. 1395 // This is necessary for the generation of certain thunks. 1396 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1397 EmitCXXConstructor(CD, GD.getCtorType()); 1398 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1399 EmitCXXDestructor(DD, GD.getDtorType()); 1400 else 1401 EmitGlobalFunctionDefinition(GD, GV); 1402 1403 if (Method->isVirtual()) 1404 getVTables().EmitThunks(GD); 1405 1406 return; 1407 } 1408 1409 return EmitGlobalFunctionDefinition(GD, GV); 1410 } 1411 1412 if (const auto *VD = dyn_cast<VarDecl>(D)) 1413 return EmitGlobalVarDefinition(VD); 1414 1415 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1416 } 1417 1418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1419 /// module, create and return an llvm Function with the specified type. If there 1420 /// is something in the module with the specified name, return it potentially 1421 /// bitcasted to the right type. 1422 /// 1423 /// If D is non-null, it specifies a decl that correspond to this. This is used 1424 /// to set the attributes on the function when it is first created. 1425 llvm::Constant * 1426 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1427 llvm::Type *Ty, 1428 GlobalDecl GD, bool ForVTable, 1429 bool DontDefer, 1430 llvm::AttributeSet ExtraAttrs) { 1431 const Decl *D = GD.getDecl(); 1432 1433 // Lookup the entry, lazily creating it if necessary. 1434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1435 if (Entry) { 1436 if (WeakRefReferences.erase(Entry)) { 1437 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1438 if (FD && !FD->hasAttr<WeakAttr>()) 1439 Entry->setLinkage(llvm::Function::ExternalLinkage); 1440 } 1441 1442 if (Entry->getType()->getElementType() == Ty) 1443 return Entry; 1444 1445 // Make sure the result is of the correct type. 1446 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1447 } 1448 1449 // This function doesn't have a complete type (for example, the return 1450 // type is an incomplete struct). Use a fake type instead, and make 1451 // sure not to try to set attributes. 1452 bool IsIncompleteFunction = false; 1453 1454 llvm::FunctionType *FTy; 1455 if (isa<llvm::FunctionType>(Ty)) { 1456 FTy = cast<llvm::FunctionType>(Ty); 1457 } else { 1458 FTy = llvm::FunctionType::get(VoidTy, false); 1459 IsIncompleteFunction = true; 1460 } 1461 1462 llvm::Function *F = llvm::Function::Create(FTy, 1463 llvm::Function::ExternalLinkage, 1464 MangledName, &getModule()); 1465 assert(F->getName() == MangledName && "name was uniqued!"); 1466 if (D) 1467 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1468 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1469 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1470 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1471 llvm::AttributeSet::get(VMContext, 1472 llvm::AttributeSet::FunctionIndex, 1473 B)); 1474 } 1475 1476 if (!DontDefer) { 1477 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1478 // each other bottoming out with the base dtor. Therefore we emit non-base 1479 // dtors on usage, even if there is no dtor definition in the TU. 1480 if (D && isa<CXXDestructorDecl>(D) && 1481 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1482 GD.getDtorType())) 1483 addDeferredDeclToEmit(F, GD); 1484 1485 // This is the first use or definition of a mangled name. If there is a 1486 // deferred decl with this name, remember that we need to emit it at the end 1487 // of the file. 1488 auto DDI = DeferredDecls.find(MangledName); 1489 if (DDI != DeferredDecls.end()) { 1490 // Move the potentially referenced deferred decl to the 1491 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1492 // don't need it anymore). 1493 addDeferredDeclToEmit(F, DDI->second); 1494 DeferredDecls.erase(DDI); 1495 1496 // Otherwise, if this is a sized deallocation function, emit a weak 1497 // definition 1498 // for it at the end of the translation unit. 1499 } else if (D && cast<FunctionDecl>(D) 1500 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1501 addDeferredDeclToEmit(F, GD); 1502 1503 // Otherwise, there are cases we have to worry about where we're 1504 // using a declaration for which we must emit a definition but where 1505 // we might not find a top-level definition: 1506 // - member functions defined inline in their classes 1507 // - friend functions defined inline in some class 1508 // - special member functions with implicit definitions 1509 // If we ever change our AST traversal to walk into class methods, 1510 // this will be unnecessary. 1511 // 1512 // We also don't emit a definition for a function if it's going to be an 1513 // entry 1514 // in a vtable, unless it's already marked as used. 1515 } else if (getLangOpts().CPlusPlus && D) { 1516 // Look for a declaration that's lexically in a record. 1517 const auto *FD = cast<FunctionDecl>(D); 1518 FD = FD->getMostRecentDecl(); 1519 do { 1520 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1521 if (FD->isImplicit() && !ForVTable) { 1522 assert(FD->isUsed() && 1523 "Sema didn't mark implicit function as used!"); 1524 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1525 break; 1526 } else if (FD->doesThisDeclarationHaveABody()) { 1527 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1528 break; 1529 } 1530 } 1531 FD = FD->getPreviousDecl(); 1532 } while (FD); 1533 } 1534 } 1535 1536 // Make sure the result is of the requested type. 1537 if (!IsIncompleteFunction) { 1538 assert(F->getType()->getElementType() == Ty); 1539 return F; 1540 } 1541 1542 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1543 return llvm::ConstantExpr::getBitCast(F, PTy); 1544 } 1545 1546 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1547 /// non-null, then this function will use the specified type if it has to 1548 /// create it (this occurs when we see a definition of the function). 1549 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1550 llvm::Type *Ty, 1551 bool ForVTable, 1552 bool DontDefer) { 1553 // If there was no specific requested type, just convert it now. 1554 if (!Ty) 1555 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1556 1557 StringRef MangledName = getMangledName(GD); 1558 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1559 } 1560 1561 /// CreateRuntimeFunction - Create a new runtime function with the specified 1562 /// type and name. 1563 llvm::Constant * 1564 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1565 StringRef Name, 1566 llvm::AttributeSet ExtraAttrs) { 1567 llvm::Constant *C = 1568 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1569 /*DontDefer=*/false, ExtraAttrs); 1570 if (auto *F = dyn_cast<llvm::Function>(C)) 1571 if (F->empty()) 1572 F->setCallingConv(getRuntimeCC()); 1573 return C; 1574 } 1575 1576 /// isTypeConstant - Determine whether an object of this type can be emitted 1577 /// as a constant. 1578 /// 1579 /// If ExcludeCtor is true, the duration when the object's constructor runs 1580 /// will not be considered. The caller will need to verify that the object is 1581 /// not written to during its construction. 1582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1583 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1584 return false; 1585 1586 if (Context.getLangOpts().CPlusPlus) { 1587 if (const CXXRecordDecl *Record 1588 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1589 return ExcludeCtor && !Record->hasMutableFields() && 1590 Record->hasTrivialDestructor(); 1591 } 1592 1593 return true; 1594 } 1595 1596 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1597 /// create and return an llvm GlobalVariable with the specified type. If there 1598 /// is something in the module with the specified name, return it potentially 1599 /// bitcasted to the right type. 1600 /// 1601 /// If D is non-null, it specifies a decl that correspond to this. This is used 1602 /// to set the attributes on the global when it is first created. 1603 llvm::Constant * 1604 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1605 llvm::PointerType *Ty, 1606 const VarDecl *D) { 1607 // Lookup the entry, lazily creating it if necessary. 1608 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1609 if (Entry) { 1610 if (WeakRefReferences.erase(Entry)) { 1611 if (D && !D->hasAttr<WeakAttr>()) 1612 Entry->setLinkage(llvm::Function::ExternalLinkage); 1613 } 1614 1615 if (Entry->getType() == Ty) 1616 return Entry; 1617 1618 // Make sure the result is of the correct type. 1619 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1620 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1621 1622 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1623 } 1624 1625 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1626 auto *GV = new llvm::GlobalVariable( 1627 getModule(), Ty->getElementType(), false, 1628 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1629 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1630 1631 // This is the first use or definition of a mangled name. If there is a 1632 // deferred decl with this name, remember that we need to emit it at the end 1633 // of the file. 1634 auto DDI = DeferredDecls.find(MangledName); 1635 if (DDI != DeferredDecls.end()) { 1636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1637 // list, and remove it from DeferredDecls (since we don't need it anymore). 1638 addDeferredDeclToEmit(GV, DDI->second); 1639 DeferredDecls.erase(DDI); 1640 } 1641 1642 // Handle things which are present even on external declarations. 1643 if (D) { 1644 // FIXME: This code is overly simple and should be merged with other global 1645 // handling. 1646 GV->setConstant(isTypeConstant(D->getType(), false)); 1647 1648 setLinkageAndVisibilityForGV(GV, D); 1649 1650 if (D->getTLSKind()) { 1651 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1652 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1653 setTLSMode(GV, *D); 1654 } 1655 1656 // If required by the ABI, treat declarations of static data members with 1657 // inline initializers as definitions. 1658 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1659 EmitGlobalVarDefinition(D); 1660 } 1661 1662 // Handle XCore specific ABI requirements. 1663 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1664 D->getLanguageLinkage() == CLanguageLinkage && 1665 D->getType().isConstant(Context) && 1666 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1667 GV->setSection(".cp.rodata"); 1668 } 1669 1670 if (AddrSpace != Ty->getAddressSpace()) 1671 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1672 1673 return GV; 1674 } 1675 1676 1677 llvm::GlobalVariable * 1678 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1679 llvm::Type *Ty, 1680 llvm::GlobalValue::LinkageTypes Linkage) { 1681 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1682 llvm::GlobalVariable *OldGV = nullptr; 1683 1684 if (GV) { 1685 // Check if the variable has the right type. 1686 if (GV->getType()->getElementType() == Ty) 1687 return GV; 1688 1689 // Because C++ name mangling, the only way we can end up with an already 1690 // existing global with the same name is if it has been declared extern "C". 1691 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1692 OldGV = GV; 1693 } 1694 1695 // Create a new variable. 1696 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1697 Linkage, nullptr, Name); 1698 1699 if (OldGV) { 1700 // Replace occurrences of the old variable if needed. 1701 GV->takeName(OldGV); 1702 1703 if (!OldGV->use_empty()) { 1704 llvm::Constant *NewPtrForOldDecl = 1705 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1706 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1707 } 1708 1709 OldGV->eraseFromParent(); 1710 } 1711 1712 return GV; 1713 } 1714 1715 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1716 /// given global variable. If Ty is non-null and if the global doesn't exist, 1717 /// then it will be created with the specified type instead of whatever the 1718 /// normal requested type would be. 1719 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1720 llvm::Type *Ty) { 1721 assert(D->hasGlobalStorage() && "Not a global variable"); 1722 QualType ASTTy = D->getType(); 1723 if (!Ty) 1724 Ty = getTypes().ConvertTypeForMem(ASTTy); 1725 1726 llvm::PointerType *PTy = 1727 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1728 1729 StringRef MangledName = getMangledName(D); 1730 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1731 } 1732 1733 /// CreateRuntimeVariable - Create a new runtime global variable with the 1734 /// specified type and name. 1735 llvm::Constant * 1736 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1737 StringRef Name) { 1738 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1739 } 1740 1741 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1742 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1743 1744 if (MayDeferGeneration(D)) { 1745 // If we have not seen a reference to this variable yet, place it 1746 // into the deferred declarations table to be emitted if needed 1747 // later. 1748 StringRef MangledName = getMangledName(D); 1749 if (!GetGlobalValue(MangledName)) { 1750 DeferredDecls[MangledName] = D; 1751 return; 1752 } 1753 } 1754 1755 // The tentative definition is the only definition. 1756 EmitGlobalVarDefinition(D); 1757 } 1758 1759 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1760 return Context.toCharUnitsFromBits( 1761 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1762 } 1763 1764 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1765 unsigned AddrSpace) { 1766 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1767 if (D->hasAttr<CUDAConstantAttr>()) 1768 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1769 else if (D->hasAttr<CUDASharedAttr>()) 1770 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1771 else 1772 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1773 } 1774 1775 return AddrSpace; 1776 } 1777 1778 template<typename SomeDecl> 1779 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1780 llvm::GlobalValue *GV) { 1781 if (!getLangOpts().CPlusPlus) 1782 return; 1783 1784 // Must have 'used' attribute, or else inline assembly can't rely on 1785 // the name existing. 1786 if (!D->template hasAttr<UsedAttr>()) 1787 return; 1788 1789 // Must have internal linkage and an ordinary name. 1790 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1791 return; 1792 1793 // Must be in an extern "C" context. Entities declared directly within 1794 // a record are not extern "C" even if the record is in such a context. 1795 const SomeDecl *First = D->getFirstDecl(); 1796 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1797 return; 1798 1799 // OK, this is an internal linkage entity inside an extern "C" linkage 1800 // specification. Make a note of that so we can give it the "expected" 1801 // mangled name if nothing else is using that name. 1802 std::pair<StaticExternCMap::iterator, bool> R = 1803 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1804 1805 // If we have multiple internal linkage entities with the same name 1806 // in extern "C" regions, none of them gets that name. 1807 if (!R.second) 1808 R.first->second = nullptr; 1809 } 1810 1811 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1812 llvm::Constant *Init = nullptr; 1813 QualType ASTTy = D->getType(); 1814 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1815 bool NeedsGlobalCtor = false; 1816 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1817 1818 const VarDecl *InitDecl; 1819 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1820 1821 if (!InitExpr) { 1822 // This is a tentative definition; tentative definitions are 1823 // implicitly initialized with { 0 }. 1824 // 1825 // Note that tentative definitions are only emitted at the end of 1826 // a translation unit, so they should never have incomplete 1827 // type. In addition, EmitTentativeDefinition makes sure that we 1828 // never attempt to emit a tentative definition if a real one 1829 // exists. A use may still exists, however, so we still may need 1830 // to do a RAUW. 1831 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1832 Init = EmitNullConstant(D->getType()); 1833 } else { 1834 initializedGlobalDecl = GlobalDecl(D); 1835 Init = EmitConstantInit(*InitDecl); 1836 1837 if (!Init) { 1838 QualType T = InitExpr->getType(); 1839 if (D->getType()->isReferenceType()) 1840 T = D->getType(); 1841 1842 if (getLangOpts().CPlusPlus) { 1843 Init = EmitNullConstant(T); 1844 NeedsGlobalCtor = true; 1845 } else { 1846 ErrorUnsupported(D, "static initializer"); 1847 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1848 } 1849 } else { 1850 // We don't need an initializer, so remove the entry for the delayed 1851 // initializer position (just in case this entry was delayed) if we 1852 // also don't need to register a destructor. 1853 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1854 DelayedCXXInitPosition.erase(D); 1855 } 1856 } 1857 1858 llvm::Type* InitType = Init->getType(); 1859 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1860 1861 // Strip off a bitcast if we got one back. 1862 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1863 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1864 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1865 // All zero index gep. 1866 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1867 Entry = CE->getOperand(0); 1868 } 1869 1870 // Entry is now either a Function or GlobalVariable. 1871 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1872 1873 // We have a definition after a declaration with the wrong type. 1874 // We must make a new GlobalVariable* and update everything that used OldGV 1875 // (a declaration or tentative definition) with the new GlobalVariable* 1876 // (which will be a definition). 1877 // 1878 // This happens if there is a prototype for a global (e.g. 1879 // "extern int x[];") and then a definition of a different type (e.g. 1880 // "int x[10];"). This also happens when an initializer has a different type 1881 // from the type of the global (this happens with unions). 1882 if (!GV || 1883 GV->getType()->getElementType() != InitType || 1884 GV->getType()->getAddressSpace() != 1885 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1886 1887 // Move the old entry aside so that we'll create a new one. 1888 Entry->setName(StringRef()); 1889 1890 // Make a new global with the correct type, this is now guaranteed to work. 1891 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1892 1893 // Replace all uses of the old global with the new global 1894 llvm::Constant *NewPtrForOldDecl = 1895 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1896 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1897 1898 // Erase the old global, since it is no longer used. 1899 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1900 } 1901 1902 MaybeHandleStaticInExternC(D, GV); 1903 1904 if (D->hasAttr<AnnotateAttr>()) 1905 AddGlobalAnnotations(D, GV); 1906 1907 GV->setInitializer(Init); 1908 1909 // If it is safe to mark the global 'constant', do so now. 1910 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1911 isTypeConstant(D->getType(), true)); 1912 1913 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1914 1915 // Set the llvm linkage type as appropriate. 1916 llvm::GlobalValue::LinkageTypes Linkage = 1917 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1918 1919 // On Darwin, the backing variable for a C++11 thread_local variable always 1920 // has internal linkage; all accesses should just be calls to the 1921 // Itanium-specified entry point, which has the normal linkage of the 1922 // variable. 1923 if (const auto *VD = dyn_cast<VarDecl>(D)) 1924 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1925 Context.getTargetInfo().getTriple().isMacOSX()) 1926 Linkage = llvm::GlobalValue::InternalLinkage; 1927 1928 GV->setLinkage(Linkage); 1929 if (D->hasAttr<DLLImportAttr>()) 1930 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1931 else if (D->hasAttr<DLLExportAttr>()) 1932 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1933 1934 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1935 // common vars aren't constant even if declared const. 1936 GV->setConstant(false); 1937 1938 setNonAliasAttributes(D, GV); 1939 1940 // Emit the initializer function if necessary. 1941 if (NeedsGlobalCtor || NeedsGlobalDtor) 1942 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1943 1944 reportGlobalToASan(GV, *D, NeedsGlobalCtor); 1945 1946 // Emit global variable debug information. 1947 if (CGDebugInfo *DI = getModuleDebugInfo()) 1948 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1949 DI->EmitGlobalVariable(GV, D); 1950 } 1951 1952 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1953 SourceLocation Loc, StringRef Name, 1954 bool IsDynInit, bool IsBlacklisted) { 1955 if (!LangOpts.Sanitize.Address) 1956 return; 1957 IsDynInit &= !SanitizerBL.isIn(*GV, "init"); 1958 IsBlacklisted |= SanitizerBL.isIn(*GV); 1959 1960 llvm::GlobalVariable *LocDescr = nullptr; 1961 llvm::GlobalVariable *GlobalName = nullptr; 1962 if (!IsBlacklisted) { 1963 // Don't generate source location and global name if it is blacklisted - 1964 // it won't be instrumented anyway. 1965 PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc); 1966 if (PLoc.isValid()) { 1967 llvm::Constant *LocData[] = { 1968 GetAddrOfConstantCString(PLoc.getFilename()), 1969 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1970 PLoc.getLine()), 1971 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1972 PLoc.getColumn()), 1973 }; 1974 auto LocStruct = llvm::ConstantStruct::getAnon(LocData); 1975 LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true, 1976 llvm::GlobalValue::PrivateLinkage, 1977 LocStruct, ".asan_loc_descr"); 1978 LocDescr->setUnnamedAddr(true); 1979 // Add LocDescr to llvm.compiler.used, so that it won't be removed by 1980 // the optimizer before the ASan instrumentation pass. 1981 addCompilerUsedGlobal(LocDescr); 1982 } 1983 if (!Name.empty()) { 1984 GlobalName = GetAddrOfConstantCString(Name); 1985 // GlobalName shouldn't be removed by the optimizer. 1986 addCompilerUsedGlobal(GlobalName); 1987 } 1988 } 1989 1990 llvm::Value *GlobalMetadata[] = { 1991 GV, LocDescr, GlobalName, 1992 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsDynInit), 1993 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsBlacklisted)}; 1994 1995 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata); 1996 llvm::NamedMDNode *AsanGlobals = 1997 TheModule.getOrInsertNamedMetadata("llvm.asan.globals"); 1998 AsanGlobals->addOperand(ThisGlobal); 1999 } 2000 2001 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 2002 const VarDecl &D, bool IsDynInit) { 2003 if (!LangOpts.Sanitize.Address) 2004 return; 2005 std::string QualName; 2006 llvm::raw_string_ostream OS(QualName); 2007 D.printQualifiedName(OS); 2008 reportGlobalToASan(GV, D.getLocation(), OS.str(), IsDynInit); 2009 } 2010 2011 void CodeGenModule::disableSanitizerForGlobal(llvm::GlobalVariable *GV) { 2012 // For now, just make sure the global is not modified by the ASan 2013 // instrumentation. 2014 if (LangOpts.Sanitize.Address) 2015 reportGlobalToASan(GV, SourceLocation(), "", false, true); 2016 } 2017 2018 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 2019 // Don't give variables common linkage if -fno-common was specified unless it 2020 // was overridden by a NoCommon attribute. 2021 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2022 return true; 2023 2024 // C11 6.9.2/2: 2025 // A declaration of an identifier for an object that has file scope without 2026 // an initializer, and without a storage-class specifier or with the 2027 // storage-class specifier static, constitutes a tentative definition. 2028 if (D->getInit() || D->hasExternalStorage()) 2029 return true; 2030 2031 // A variable cannot be both common and exist in a section. 2032 if (D->hasAttr<SectionAttr>()) 2033 return true; 2034 2035 // Thread local vars aren't considered common linkage. 2036 if (D->getTLSKind()) 2037 return true; 2038 2039 // Tentative definitions marked with WeakImportAttr are true definitions. 2040 if (D->hasAttr<WeakImportAttr>()) 2041 return true; 2042 2043 return false; 2044 } 2045 2046 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2047 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2048 if (Linkage == GVA_Internal) 2049 return llvm::Function::InternalLinkage; 2050 2051 if (D->hasAttr<WeakAttr>()) { 2052 if (IsConstantVariable) 2053 return llvm::GlobalVariable::WeakODRLinkage; 2054 else 2055 return llvm::GlobalVariable::WeakAnyLinkage; 2056 } 2057 2058 // We are guaranteed to have a strong definition somewhere else, 2059 // so we can use available_externally linkage. 2060 if (Linkage == GVA_AvailableExternally) 2061 return llvm::Function::AvailableExternallyLinkage; 2062 2063 // Note that Apple's kernel linker doesn't support symbol 2064 // coalescing, so we need to avoid linkonce and weak linkages there. 2065 // Normally, this means we just map to internal, but for explicit 2066 // instantiations we'll map to external. 2067 2068 // In C++, the compiler has to emit a definition in every translation unit 2069 // that references the function. We should use linkonce_odr because 2070 // a) if all references in this translation unit are optimized away, we 2071 // don't need to codegen it. b) if the function persists, it needs to be 2072 // merged with other definitions. c) C++ has the ODR, so we know the 2073 // definition is dependable. 2074 if (Linkage == GVA_DiscardableODR) 2075 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2076 : llvm::Function::InternalLinkage; 2077 2078 // An explicit instantiation of a template has weak linkage, since 2079 // explicit instantiations can occur in multiple translation units 2080 // and must all be equivalent. However, we are not allowed to 2081 // throw away these explicit instantiations. 2082 if (Linkage == GVA_StrongODR) 2083 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2084 : llvm::Function::ExternalLinkage; 2085 2086 // C++ doesn't have tentative definitions and thus cannot have common 2087 // linkage. 2088 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2089 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2090 return llvm::GlobalVariable::CommonLinkage; 2091 2092 // selectany symbols are externally visible, so use weak instead of 2093 // linkonce. MSVC optimizes away references to const selectany globals, so 2094 // all definitions should be the same and ODR linkage should be used. 2095 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2096 if (D->hasAttr<SelectAnyAttr>()) 2097 return llvm::GlobalVariable::WeakODRLinkage; 2098 2099 // Otherwise, we have strong external linkage. 2100 assert(Linkage == GVA_StrongExternal); 2101 return llvm::GlobalVariable::ExternalLinkage; 2102 } 2103 2104 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2105 const VarDecl *VD, bool IsConstant) { 2106 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2107 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2108 } 2109 2110 /// Replace the uses of a function that was declared with a non-proto type. 2111 /// We want to silently drop extra arguments from call sites 2112 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2113 llvm::Function *newFn) { 2114 // Fast path. 2115 if (old->use_empty()) return; 2116 2117 llvm::Type *newRetTy = newFn->getReturnType(); 2118 SmallVector<llvm::Value*, 4> newArgs; 2119 2120 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2121 ui != ue; ) { 2122 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2123 llvm::User *user = use->getUser(); 2124 2125 // Recognize and replace uses of bitcasts. Most calls to 2126 // unprototyped functions will use bitcasts. 2127 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2128 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2129 replaceUsesOfNonProtoConstant(bitcast, newFn); 2130 continue; 2131 } 2132 2133 // Recognize calls to the function. 2134 llvm::CallSite callSite(user); 2135 if (!callSite) continue; 2136 if (!callSite.isCallee(&*use)) continue; 2137 2138 // If the return types don't match exactly, then we can't 2139 // transform this call unless it's dead. 2140 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2141 continue; 2142 2143 // Get the call site's attribute list. 2144 SmallVector<llvm::AttributeSet, 8> newAttrs; 2145 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2146 2147 // Collect any return attributes from the call. 2148 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2149 newAttrs.push_back( 2150 llvm::AttributeSet::get(newFn->getContext(), 2151 oldAttrs.getRetAttributes())); 2152 2153 // If the function was passed too few arguments, don't transform. 2154 unsigned newNumArgs = newFn->arg_size(); 2155 if (callSite.arg_size() < newNumArgs) continue; 2156 2157 // If extra arguments were passed, we silently drop them. 2158 // If any of the types mismatch, we don't transform. 2159 unsigned argNo = 0; 2160 bool dontTransform = false; 2161 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2162 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2163 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2164 dontTransform = true; 2165 break; 2166 } 2167 2168 // Add any parameter attributes. 2169 if (oldAttrs.hasAttributes(argNo + 1)) 2170 newAttrs. 2171 push_back(llvm:: 2172 AttributeSet::get(newFn->getContext(), 2173 oldAttrs.getParamAttributes(argNo + 1))); 2174 } 2175 if (dontTransform) 2176 continue; 2177 2178 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2179 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2180 oldAttrs.getFnAttributes())); 2181 2182 // Okay, we can transform this. Create the new call instruction and copy 2183 // over the required information. 2184 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2185 2186 llvm::CallSite newCall; 2187 if (callSite.isCall()) { 2188 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2189 callSite.getInstruction()); 2190 } else { 2191 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2192 newCall = llvm::InvokeInst::Create(newFn, 2193 oldInvoke->getNormalDest(), 2194 oldInvoke->getUnwindDest(), 2195 newArgs, "", 2196 callSite.getInstruction()); 2197 } 2198 newArgs.clear(); // for the next iteration 2199 2200 if (!newCall->getType()->isVoidTy()) 2201 newCall->takeName(callSite.getInstruction()); 2202 newCall.setAttributes( 2203 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2204 newCall.setCallingConv(callSite.getCallingConv()); 2205 2206 // Finally, remove the old call, replacing any uses with the new one. 2207 if (!callSite->use_empty()) 2208 callSite->replaceAllUsesWith(newCall.getInstruction()); 2209 2210 // Copy debug location attached to CI. 2211 if (!callSite->getDebugLoc().isUnknown()) 2212 newCall->setDebugLoc(callSite->getDebugLoc()); 2213 callSite->eraseFromParent(); 2214 } 2215 } 2216 2217 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2218 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2219 /// existing call uses of the old function in the module, this adjusts them to 2220 /// call the new function directly. 2221 /// 2222 /// This is not just a cleanup: the always_inline pass requires direct calls to 2223 /// functions to be able to inline them. If there is a bitcast in the way, it 2224 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2225 /// run at -O0. 2226 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2227 llvm::Function *NewFn) { 2228 // If we're redefining a global as a function, don't transform it. 2229 if (!isa<llvm::Function>(Old)) return; 2230 2231 replaceUsesOfNonProtoConstant(Old, NewFn); 2232 } 2233 2234 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2235 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2236 // If we have a definition, this might be a deferred decl. If the 2237 // instantiation is explicit, make sure we emit it at the end. 2238 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2239 GetAddrOfGlobalVar(VD); 2240 2241 EmitTopLevelDecl(VD); 2242 } 2243 2244 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2245 llvm::GlobalValue *GV) { 2246 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2247 2248 // Compute the function info and LLVM type. 2249 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2250 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2251 2252 // Get or create the prototype for the function. 2253 if (!GV) { 2254 llvm::Constant *C = 2255 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2256 2257 // Strip off a bitcast if we got one back. 2258 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2259 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2260 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2261 } else { 2262 GV = cast<llvm::GlobalValue>(C); 2263 } 2264 } 2265 2266 if (!GV->isDeclaration()) { 2267 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2268 return; 2269 } 2270 2271 if (GV->getType()->getElementType() != Ty) { 2272 // If the types mismatch then we have to rewrite the definition. 2273 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2274 2275 // F is the Function* for the one with the wrong type, we must make a new 2276 // Function* and update everything that used F (a declaration) with the new 2277 // Function* (which will be a definition). 2278 // 2279 // This happens if there is a prototype for a function 2280 // (e.g. "int f()") and then a definition of a different type 2281 // (e.g. "int f(int x)"). Move the old function aside so that it 2282 // doesn't interfere with GetAddrOfFunction. 2283 GV->setName(StringRef()); 2284 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2285 2286 // This might be an implementation of a function without a 2287 // prototype, in which case, try to do special replacement of 2288 // calls which match the new prototype. The really key thing here 2289 // is that we also potentially drop arguments from the call site 2290 // so as to make a direct call, which makes the inliner happier 2291 // and suppresses a number of optimizer warnings (!) about 2292 // dropping arguments. 2293 if (!GV->use_empty()) { 2294 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2295 GV->removeDeadConstantUsers(); 2296 } 2297 2298 // Replace uses of F with the Function we will endow with a body. 2299 if (!GV->use_empty()) { 2300 llvm::Constant *NewPtrForOldDecl = 2301 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2302 GV->replaceAllUsesWith(NewPtrForOldDecl); 2303 } 2304 2305 // Ok, delete the old function now, which is dead. 2306 GV->eraseFromParent(); 2307 2308 GV = NewFn; 2309 } 2310 2311 // We need to set linkage and visibility on the function before 2312 // generating code for it because various parts of IR generation 2313 // want to propagate this information down (e.g. to local static 2314 // declarations). 2315 auto *Fn = cast<llvm::Function>(GV); 2316 setFunctionLinkage(GD, Fn); 2317 2318 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2319 setGlobalVisibility(Fn, D); 2320 2321 MaybeHandleStaticInExternC(D, Fn); 2322 2323 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2324 2325 setFunctionDefinitionAttributes(D, Fn); 2326 SetLLVMFunctionAttributesForDefinition(D, Fn); 2327 2328 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2329 AddGlobalCtor(Fn, CA->getPriority()); 2330 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2331 AddGlobalDtor(Fn, DA->getPriority()); 2332 if (D->hasAttr<AnnotateAttr>()) 2333 AddGlobalAnnotations(D, Fn); 2334 } 2335 2336 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2337 const auto *D = cast<ValueDecl>(GD.getDecl()); 2338 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2339 assert(AA && "Not an alias?"); 2340 2341 StringRef MangledName = getMangledName(GD); 2342 2343 // If there is a definition in the module, then it wins over the alias. 2344 // This is dubious, but allow it to be safe. Just ignore the alias. 2345 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2346 if (Entry && !Entry->isDeclaration()) 2347 return; 2348 2349 Aliases.push_back(GD); 2350 2351 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2352 2353 // Create a reference to the named value. This ensures that it is emitted 2354 // if a deferred decl. 2355 llvm::Constant *Aliasee; 2356 if (isa<llvm::FunctionType>(DeclTy)) 2357 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2358 /*ForVTable=*/false); 2359 else 2360 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2361 llvm::PointerType::getUnqual(DeclTy), 2362 nullptr); 2363 2364 // Create the new alias itself, but don't set a name yet. 2365 auto *GA = llvm::GlobalAlias::create( 2366 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2367 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2368 2369 if (Entry) { 2370 if (GA->getAliasee() == Entry) { 2371 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2372 return; 2373 } 2374 2375 assert(Entry->isDeclaration()); 2376 2377 // If there is a declaration in the module, then we had an extern followed 2378 // by the alias, as in: 2379 // extern int test6(); 2380 // ... 2381 // int test6() __attribute__((alias("test7"))); 2382 // 2383 // Remove it and replace uses of it with the alias. 2384 GA->takeName(Entry); 2385 2386 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2387 Entry->getType())); 2388 Entry->eraseFromParent(); 2389 } else { 2390 GA->setName(MangledName); 2391 } 2392 2393 // Set attributes which are particular to an alias; this is a 2394 // specialization of the attributes which may be set on a global 2395 // variable/function. 2396 if (D->hasAttr<DLLExportAttr>()) { 2397 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2398 // The dllexport attribute is ignored for undefined symbols. 2399 if (FD->hasBody()) 2400 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2401 } else { 2402 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2403 } 2404 } else if (D->hasAttr<WeakAttr>() || 2405 D->hasAttr<WeakRefAttr>() || 2406 D->isWeakImported()) { 2407 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2408 } 2409 2410 SetCommonAttributes(D, GA); 2411 } 2412 2413 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2414 ArrayRef<llvm::Type*> Tys) { 2415 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2416 Tys); 2417 } 2418 2419 static llvm::StringMapEntry<llvm::Constant*> & 2420 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2421 const StringLiteral *Literal, 2422 bool TargetIsLSB, 2423 bool &IsUTF16, 2424 unsigned &StringLength) { 2425 StringRef String = Literal->getString(); 2426 unsigned NumBytes = String.size(); 2427 2428 // Check for simple case. 2429 if (!Literal->containsNonAsciiOrNull()) { 2430 StringLength = NumBytes; 2431 return Map.GetOrCreateValue(String); 2432 } 2433 2434 // Otherwise, convert the UTF8 literals into a string of shorts. 2435 IsUTF16 = true; 2436 2437 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2438 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2439 UTF16 *ToPtr = &ToBuf[0]; 2440 2441 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2442 &ToPtr, ToPtr + NumBytes, 2443 strictConversion); 2444 2445 // ConvertUTF8toUTF16 returns the length in ToPtr. 2446 StringLength = ToPtr - &ToBuf[0]; 2447 2448 // Add an explicit null. 2449 *ToPtr = 0; 2450 return Map. 2451 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2452 (StringLength + 1) * 2)); 2453 } 2454 2455 static llvm::StringMapEntry<llvm::Constant*> & 2456 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2457 const StringLiteral *Literal, 2458 unsigned &StringLength) { 2459 StringRef String = Literal->getString(); 2460 StringLength = String.size(); 2461 return Map.GetOrCreateValue(String); 2462 } 2463 2464 llvm::Constant * 2465 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2466 unsigned StringLength = 0; 2467 bool isUTF16 = false; 2468 llvm::StringMapEntry<llvm::Constant*> &Entry = 2469 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2470 getDataLayout().isLittleEndian(), 2471 isUTF16, StringLength); 2472 2473 if (llvm::Constant *C = Entry.getValue()) 2474 return C; 2475 2476 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2477 llvm::Constant *Zeros[] = { Zero, Zero }; 2478 llvm::Value *V; 2479 2480 // If we don't already have it, get __CFConstantStringClassReference. 2481 if (!CFConstantStringClassRef) { 2482 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2483 Ty = llvm::ArrayType::get(Ty, 0); 2484 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2485 "__CFConstantStringClassReference"); 2486 // Decay array -> ptr 2487 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2488 CFConstantStringClassRef = V; 2489 } 2490 else 2491 V = CFConstantStringClassRef; 2492 2493 QualType CFTy = getContext().getCFConstantStringType(); 2494 2495 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2496 2497 llvm::Constant *Fields[4]; 2498 2499 // Class pointer. 2500 Fields[0] = cast<llvm::ConstantExpr>(V); 2501 2502 // Flags. 2503 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2504 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2505 llvm::ConstantInt::get(Ty, 0x07C8); 2506 2507 // String pointer. 2508 llvm::Constant *C = nullptr; 2509 if (isUTF16) { 2510 ArrayRef<uint16_t> Arr = 2511 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2512 const_cast<char *>(Entry.getKey().data())), 2513 Entry.getKey().size() / 2); 2514 C = llvm::ConstantDataArray::get(VMContext, Arr); 2515 } else { 2516 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2517 } 2518 2519 // Note: -fwritable-strings doesn't make the backing store strings of 2520 // CFStrings writable. (See <rdar://problem/10657500>) 2521 auto *GV = 2522 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2523 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2524 GV->setUnnamedAddr(true); 2525 // Don't enforce the target's minimum global alignment, since the only use 2526 // of the string is via this class initializer. 2527 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2528 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2529 // that changes the section it ends in, which surprises ld64. 2530 if (isUTF16) { 2531 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2532 GV->setAlignment(Align.getQuantity()); 2533 GV->setSection("__TEXT,__ustring"); 2534 } else { 2535 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2536 GV->setAlignment(Align.getQuantity()); 2537 GV->setSection("__TEXT,__cstring,cstring_literals"); 2538 } 2539 2540 // String. 2541 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2542 2543 if (isUTF16) 2544 // Cast the UTF16 string to the correct type. 2545 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2546 2547 // String length. 2548 Ty = getTypes().ConvertType(getContext().LongTy); 2549 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2550 2551 // The struct. 2552 C = llvm::ConstantStruct::get(STy, Fields); 2553 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2554 llvm::GlobalVariable::PrivateLinkage, C, 2555 "_unnamed_cfstring_"); 2556 GV->setSection("__DATA,__cfstring"); 2557 Entry.setValue(GV); 2558 2559 return GV; 2560 } 2561 2562 llvm::Constant * 2563 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2564 unsigned StringLength = 0; 2565 llvm::StringMapEntry<llvm::Constant*> &Entry = 2566 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2567 2568 if (llvm::Constant *C = Entry.getValue()) 2569 return C; 2570 2571 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2572 llvm::Constant *Zeros[] = { Zero, Zero }; 2573 llvm::Value *V; 2574 // If we don't already have it, get _NSConstantStringClassReference. 2575 if (!ConstantStringClassRef) { 2576 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2577 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2578 llvm::Constant *GV; 2579 if (LangOpts.ObjCRuntime.isNonFragile()) { 2580 std::string str = 2581 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2582 : "OBJC_CLASS_$_" + StringClass; 2583 GV = getObjCRuntime().GetClassGlobal(str); 2584 // Make sure the result is of the correct type. 2585 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2586 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2587 ConstantStringClassRef = V; 2588 } else { 2589 std::string str = 2590 StringClass.empty() ? "_NSConstantStringClassReference" 2591 : "_" + StringClass + "ClassReference"; 2592 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2593 GV = CreateRuntimeVariable(PTy, str); 2594 // Decay array -> ptr 2595 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2596 ConstantStringClassRef = V; 2597 } 2598 } 2599 else 2600 V = ConstantStringClassRef; 2601 2602 if (!NSConstantStringType) { 2603 // Construct the type for a constant NSString. 2604 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2605 D->startDefinition(); 2606 2607 QualType FieldTypes[3]; 2608 2609 // const int *isa; 2610 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2611 // const char *str; 2612 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2613 // unsigned int length; 2614 FieldTypes[2] = Context.UnsignedIntTy; 2615 2616 // Create fields 2617 for (unsigned i = 0; i < 3; ++i) { 2618 FieldDecl *Field = FieldDecl::Create(Context, D, 2619 SourceLocation(), 2620 SourceLocation(), nullptr, 2621 FieldTypes[i], /*TInfo=*/nullptr, 2622 /*BitWidth=*/nullptr, 2623 /*Mutable=*/false, 2624 ICIS_NoInit); 2625 Field->setAccess(AS_public); 2626 D->addDecl(Field); 2627 } 2628 2629 D->completeDefinition(); 2630 QualType NSTy = Context.getTagDeclType(D); 2631 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2632 } 2633 2634 llvm::Constant *Fields[3]; 2635 2636 // Class pointer. 2637 Fields[0] = cast<llvm::ConstantExpr>(V); 2638 2639 // String pointer. 2640 llvm::Constant *C = 2641 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2642 2643 llvm::GlobalValue::LinkageTypes Linkage; 2644 bool isConstant; 2645 Linkage = llvm::GlobalValue::PrivateLinkage; 2646 isConstant = !LangOpts.WritableStrings; 2647 2648 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2649 Linkage, C, ".str"); 2650 GV->setUnnamedAddr(true); 2651 // Don't enforce the target's minimum global alignment, since the only use 2652 // of the string is via this class initializer. 2653 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2654 GV->setAlignment(Align.getQuantity()); 2655 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2656 2657 // String length. 2658 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2659 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2660 2661 // The struct. 2662 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2663 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2664 llvm::GlobalVariable::PrivateLinkage, C, 2665 "_unnamed_nsstring_"); 2666 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2667 const char *NSStringNonFragileABISection = 2668 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2669 // FIXME. Fix section. 2670 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2671 ? NSStringNonFragileABISection 2672 : NSStringSection); 2673 Entry.setValue(GV); 2674 2675 return GV; 2676 } 2677 2678 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2679 if (ObjCFastEnumerationStateType.isNull()) { 2680 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2681 D->startDefinition(); 2682 2683 QualType FieldTypes[] = { 2684 Context.UnsignedLongTy, 2685 Context.getPointerType(Context.getObjCIdType()), 2686 Context.getPointerType(Context.UnsignedLongTy), 2687 Context.getConstantArrayType(Context.UnsignedLongTy, 2688 llvm::APInt(32, 5), ArrayType::Normal, 0) 2689 }; 2690 2691 for (size_t i = 0; i < 4; ++i) { 2692 FieldDecl *Field = FieldDecl::Create(Context, 2693 D, 2694 SourceLocation(), 2695 SourceLocation(), nullptr, 2696 FieldTypes[i], /*TInfo=*/nullptr, 2697 /*BitWidth=*/nullptr, 2698 /*Mutable=*/false, 2699 ICIS_NoInit); 2700 Field->setAccess(AS_public); 2701 D->addDecl(Field); 2702 } 2703 2704 D->completeDefinition(); 2705 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2706 } 2707 2708 return ObjCFastEnumerationStateType; 2709 } 2710 2711 llvm::Constant * 2712 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2713 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2714 2715 // Don't emit it as the address of the string, emit the string data itself 2716 // as an inline array. 2717 if (E->getCharByteWidth() == 1) { 2718 SmallString<64> Str(E->getString()); 2719 2720 // Resize the string to the right size, which is indicated by its type. 2721 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2722 Str.resize(CAT->getSize().getZExtValue()); 2723 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2724 } 2725 2726 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2727 llvm::Type *ElemTy = AType->getElementType(); 2728 unsigned NumElements = AType->getNumElements(); 2729 2730 // Wide strings have either 2-byte or 4-byte elements. 2731 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2732 SmallVector<uint16_t, 32> Elements; 2733 Elements.reserve(NumElements); 2734 2735 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2736 Elements.push_back(E->getCodeUnit(i)); 2737 Elements.resize(NumElements); 2738 return llvm::ConstantDataArray::get(VMContext, Elements); 2739 } 2740 2741 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2742 SmallVector<uint32_t, 32> Elements; 2743 Elements.reserve(NumElements); 2744 2745 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2746 Elements.push_back(E->getCodeUnit(i)); 2747 Elements.resize(NumElements); 2748 return llvm::ConstantDataArray::get(VMContext, Elements); 2749 } 2750 2751 static llvm::GlobalVariable * 2752 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2753 CodeGenModule &CGM, StringRef GlobalName, 2754 unsigned Alignment) { 2755 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2756 unsigned AddrSpace = 0; 2757 if (CGM.getLangOpts().OpenCL) 2758 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2759 2760 // Create a global variable for this string 2761 auto *GV = new llvm::GlobalVariable( 2762 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2763 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2764 GV->setAlignment(Alignment); 2765 GV->setUnnamedAddr(true); 2766 return GV; 2767 } 2768 2769 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2770 /// constant array for the given string literal. 2771 llvm::GlobalVariable * 2772 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2773 auto Alignment = 2774 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2775 2776 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2777 llvm::GlobalVariable **Entry = nullptr; 2778 if (!LangOpts.WritableStrings) { 2779 Entry = &ConstantStringMap[C]; 2780 if (auto GV = *Entry) { 2781 if (Alignment > GV->getAlignment()) 2782 GV->setAlignment(Alignment); 2783 return GV; 2784 } 2785 } 2786 2787 SmallString<256> MangledNameBuffer; 2788 StringRef GlobalVariableName; 2789 llvm::GlobalValue::LinkageTypes LT; 2790 2791 // Mangle the string literal if the ABI allows for it. However, we cannot 2792 // do this if we are compiling with ASan or -fwritable-strings because they 2793 // rely on strings having normal linkage. 2794 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2795 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2796 llvm::raw_svector_ostream Out(MangledNameBuffer); 2797 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2798 Out.flush(); 2799 2800 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2801 GlobalVariableName = MangledNameBuffer; 2802 } else { 2803 LT = llvm::GlobalValue::PrivateLinkage; 2804 GlobalVariableName = ".str"; 2805 } 2806 2807 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2808 if (Entry) 2809 *Entry = GV; 2810 2811 reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>"); 2812 return GV; 2813 } 2814 2815 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2816 /// array for the given ObjCEncodeExpr node. 2817 llvm::GlobalVariable * 2818 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2819 std::string Str; 2820 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2821 2822 return GetAddrOfConstantCString(Str); 2823 } 2824 2825 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2826 /// the literal and a terminating '\0' character. 2827 /// The result has pointer to array type. 2828 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2829 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2830 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2831 if (Alignment == 0) { 2832 Alignment = getContext() 2833 .getAlignOfGlobalVarInChars(getContext().CharTy) 2834 .getQuantity(); 2835 } 2836 2837 llvm::Constant *C = 2838 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2839 2840 // Don't share any string literals if strings aren't constant. 2841 llvm::GlobalVariable **Entry = nullptr; 2842 if (!LangOpts.WritableStrings) { 2843 Entry = &ConstantStringMap[C]; 2844 if (auto GV = *Entry) { 2845 if (Alignment > GV->getAlignment()) 2846 GV->setAlignment(Alignment); 2847 return GV; 2848 } 2849 } 2850 2851 // Get the default prefix if a name wasn't specified. 2852 if (!GlobalName) 2853 GlobalName = ".str"; 2854 // Create a global variable for this. 2855 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2856 GlobalName, Alignment); 2857 if (Entry) 2858 *Entry = GV; 2859 return GV; 2860 } 2861 2862 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2863 const MaterializeTemporaryExpr *E, const Expr *Init) { 2864 assert((E->getStorageDuration() == SD_Static || 2865 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2866 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2867 2868 // If we're not materializing a subobject of the temporary, keep the 2869 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2870 QualType MaterializedType = Init->getType(); 2871 if (Init == E->GetTemporaryExpr()) 2872 MaterializedType = E->getType(); 2873 2874 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2875 if (Slot) 2876 return Slot; 2877 2878 // FIXME: If an externally-visible declaration extends multiple temporaries, 2879 // we need to give each temporary the same name in every translation unit (and 2880 // we also need to make the temporaries externally-visible). 2881 SmallString<256> Name; 2882 llvm::raw_svector_ostream Out(Name); 2883 getCXXABI().getMangleContext().mangleReferenceTemporary( 2884 VD, E->getManglingNumber(), Out); 2885 Out.flush(); 2886 2887 APValue *Value = nullptr; 2888 if (E->getStorageDuration() == SD_Static) { 2889 // We might have a cached constant initializer for this temporary. Note 2890 // that this might have a different value from the value computed by 2891 // evaluating the initializer if the surrounding constant expression 2892 // modifies the temporary. 2893 Value = getContext().getMaterializedTemporaryValue(E, false); 2894 if (Value && Value->isUninit()) 2895 Value = nullptr; 2896 } 2897 2898 // Try evaluating it now, it might have a constant initializer. 2899 Expr::EvalResult EvalResult; 2900 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2901 !EvalResult.hasSideEffects()) 2902 Value = &EvalResult.Val; 2903 2904 llvm::Constant *InitialValue = nullptr; 2905 bool Constant = false; 2906 llvm::Type *Type; 2907 if (Value) { 2908 // The temporary has a constant initializer, use it. 2909 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2910 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2911 Type = InitialValue->getType(); 2912 } else { 2913 // No initializer, the initialization will be provided when we 2914 // initialize the declaration which performed lifetime extension. 2915 Type = getTypes().ConvertTypeForMem(MaterializedType); 2916 } 2917 2918 // Create a global variable for this lifetime-extended temporary. 2919 llvm::GlobalValue::LinkageTypes Linkage = 2920 getLLVMLinkageVarDefinition(VD, Constant); 2921 // There is no need for this temporary to have global linkage if the global 2922 // variable has external linkage. 2923 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2924 Linkage = llvm::GlobalVariable::PrivateLinkage; 2925 unsigned AddrSpace = GetGlobalVarAddressSpace( 2926 VD, getContext().getTargetAddressSpace(MaterializedType)); 2927 auto *GV = new llvm::GlobalVariable( 2928 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2929 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2930 AddrSpace); 2931 setGlobalVisibility(GV, VD); 2932 GV->setAlignment( 2933 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2934 if (VD->getTLSKind()) 2935 setTLSMode(GV, *VD); 2936 Slot = GV; 2937 return GV; 2938 } 2939 2940 /// EmitObjCPropertyImplementations - Emit information for synthesized 2941 /// properties for an implementation. 2942 void CodeGenModule::EmitObjCPropertyImplementations(const 2943 ObjCImplementationDecl *D) { 2944 for (const auto *PID : D->property_impls()) { 2945 // Dynamic is just for type-checking. 2946 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2947 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2948 2949 // Determine which methods need to be implemented, some may have 2950 // been overridden. Note that ::isPropertyAccessor is not the method 2951 // we want, that just indicates if the decl came from a 2952 // property. What we want to know is if the method is defined in 2953 // this implementation. 2954 if (!D->getInstanceMethod(PD->getGetterName())) 2955 CodeGenFunction(*this).GenerateObjCGetter( 2956 const_cast<ObjCImplementationDecl *>(D), PID); 2957 if (!PD->isReadOnly() && 2958 !D->getInstanceMethod(PD->getSetterName())) 2959 CodeGenFunction(*this).GenerateObjCSetter( 2960 const_cast<ObjCImplementationDecl *>(D), PID); 2961 } 2962 } 2963 } 2964 2965 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2966 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2967 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2968 ivar; ivar = ivar->getNextIvar()) 2969 if (ivar->getType().isDestructedType()) 2970 return true; 2971 2972 return false; 2973 } 2974 2975 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2976 /// for an implementation. 2977 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2978 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2979 if (needsDestructMethod(D)) { 2980 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2981 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2982 ObjCMethodDecl *DTORMethod = 2983 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2984 cxxSelector, getContext().VoidTy, nullptr, D, 2985 /*isInstance=*/true, /*isVariadic=*/false, 2986 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2987 /*isDefined=*/false, ObjCMethodDecl::Required); 2988 D->addInstanceMethod(DTORMethod); 2989 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2990 D->setHasDestructors(true); 2991 } 2992 2993 // If the implementation doesn't have any ivar initializers, we don't need 2994 // a .cxx_construct. 2995 if (D->getNumIvarInitializers() == 0) 2996 return; 2997 2998 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2999 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3000 // The constructor returns 'self'. 3001 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3002 D->getLocation(), 3003 D->getLocation(), 3004 cxxSelector, 3005 getContext().getObjCIdType(), 3006 nullptr, D, /*isInstance=*/true, 3007 /*isVariadic=*/false, 3008 /*isPropertyAccessor=*/true, 3009 /*isImplicitlyDeclared=*/true, 3010 /*isDefined=*/false, 3011 ObjCMethodDecl::Required); 3012 D->addInstanceMethod(CTORMethod); 3013 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3014 D->setHasNonZeroConstructors(true); 3015 } 3016 3017 /// EmitNamespace - Emit all declarations in a namespace. 3018 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3019 for (auto *I : ND->decls()) { 3020 if (const auto *VD = dyn_cast<VarDecl>(I)) 3021 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3022 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3023 continue; 3024 EmitTopLevelDecl(I); 3025 } 3026 } 3027 3028 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3029 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3030 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3031 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3032 ErrorUnsupported(LSD, "linkage spec"); 3033 return; 3034 } 3035 3036 for (auto *I : LSD->decls()) { 3037 // Meta-data for ObjC class includes references to implemented methods. 3038 // Generate class's method definitions first. 3039 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3040 for (auto *M : OID->methods()) 3041 EmitTopLevelDecl(M); 3042 } 3043 EmitTopLevelDecl(I); 3044 } 3045 } 3046 3047 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3048 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3049 // Ignore dependent declarations. 3050 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3051 return; 3052 3053 switch (D->getKind()) { 3054 case Decl::CXXConversion: 3055 case Decl::CXXMethod: 3056 case Decl::Function: 3057 // Skip function templates 3058 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3059 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3060 return; 3061 3062 EmitGlobal(cast<FunctionDecl>(D)); 3063 break; 3064 3065 case Decl::Var: 3066 // Skip variable templates 3067 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3068 return; 3069 case Decl::VarTemplateSpecialization: 3070 EmitGlobal(cast<VarDecl>(D)); 3071 break; 3072 3073 // Indirect fields from global anonymous structs and unions can be 3074 // ignored; only the actual variable requires IR gen support. 3075 case Decl::IndirectField: 3076 break; 3077 3078 // C++ Decls 3079 case Decl::Namespace: 3080 EmitNamespace(cast<NamespaceDecl>(D)); 3081 break; 3082 // No code generation needed. 3083 case Decl::UsingShadow: 3084 case Decl::ClassTemplate: 3085 case Decl::VarTemplate: 3086 case Decl::VarTemplatePartialSpecialization: 3087 case Decl::FunctionTemplate: 3088 case Decl::TypeAliasTemplate: 3089 case Decl::Block: 3090 case Decl::Empty: 3091 break; 3092 case Decl::Using: // using X; [C++] 3093 if (CGDebugInfo *DI = getModuleDebugInfo()) 3094 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3095 return; 3096 case Decl::NamespaceAlias: 3097 if (CGDebugInfo *DI = getModuleDebugInfo()) 3098 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3099 return; 3100 case Decl::UsingDirective: // using namespace X; [C++] 3101 if (CGDebugInfo *DI = getModuleDebugInfo()) 3102 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3103 return; 3104 case Decl::CXXConstructor: 3105 // Skip function templates 3106 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3107 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3108 return; 3109 3110 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3111 break; 3112 case Decl::CXXDestructor: 3113 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3114 return; 3115 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3116 break; 3117 3118 case Decl::StaticAssert: 3119 // Nothing to do. 3120 break; 3121 3122 // Objective-C Decls 3123 3124 // Forward declarations, no (immediate) code generation. 3125 case Decl::ObjCInterface: 3126 case Decl::ObjCCategory: 3127 break; 3128 3129 case Decl::ObjCProtocol: { 3130 auto *Proto = cast<ObjCProtocolDecl>(D); 3131 if (Proto->isThisDeclarationADefinition()) 3132 ObjCRuntime->GenerateProtocol(Proto); 3133 break; 3134 } 3135 3136 case Decl::ObjCCategoryImpl: 3137 // Categories have properties but don't support synthesize so we 3138 // can ignore them here. 3139 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3140 break; 3141 3142 case Decl::ObjCImplementation: { 3143 auto *OMD = cast<ObjCImplementationDecl>(D); 3144 EmitObjCPropertyImplementations(OMD); 3145 EmitObjCIvarInitializations(OMD); 3146 ObjCRuntime->GenerateClass(OMD); 3147 // Emit global variable debug information. 3148 if (CGDebugInfo *DI = getModuleDebugInfo()) 3149 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3150 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3151 OMD->getClassInterface()), OMD->getLocation()); 3152 break; 3153 } 3154 case Decl::ObjCMethod: { 3155 auto *OMD = cast<ObjCMethodDecl>(D); 3156 // If this is not a prototype, emit the body. 3157 if (OMD->getBody()) 3158 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3159 break; 3160 } 3161 case Decl::ObjCCompatibleAlias: 3162 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3163 break; 3164 3165 case Decl::LinkageSpec: 3166 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3167 break; 3168 3169 case Decl::FileScopeAsm: { 3170 auto *AD = cast<FileScopeAsmDecl>(D); 3171 StringRef AsmString = AD->getAsmString()->getString(); 3172 3173 const std::string &S = getModule().getModuleInlineAsm(); 3174 if (S.empty()) 3175 getModule().setModuleInlineAsm(AsmString); 3176 else if (S.end()[-1] == '\n') 3177 getModule().setModuleInlineAsm(S + AsmString.str()); 3178 else 3179 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3180 break; 3181 } 3182 3183 case Decl::Import: { 3184 auto *Import = cast<ImportDecl>(D); 3185 3186 // Ignore import declarations that come from imported modules. 3187 if (clang::Module *Owner = Import->getOwningModule()) { 3188 if (getLangOpts().CurrentModule.empty() || 3189 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3190 break; 3191 } 3192 3193 ImportedModules.insert(Import->getImportedModule()); 3194 break; 3195 } 3196 3197 case Decl::ClassTemplateSpecialization: { 3198 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3199 if (DebugInfo && 3200 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3201 DebugInfo->completeTemplateDefinition(*Spec); 3202 } 3203 3204 default: 3205 // Make sure we handled everything we should, every other kind is a 3206 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3207 // function. Need to recode Decl::Kind to do that easily. 3208 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3209 } 3210 } 3211 3212 /// Turns the given pointer into a constant. 3213 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3214 const void *Ptr) { 3215 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3216 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3217 return llvm::ConstantInt::get(i64, PtrInt); 3218 } 3219 3220 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3221 llvm::NamedMDNode *&GlobalMetadata, 3222 GlobalDecl D, 3223 llvm::GlobalValue *Addr) { 3224 if (!GlobalMetadata) 3225 GlobalMetadata = 3226 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3227 3228 // TODO: should we report variant information for ctors/dtors? 3229 llvm::Value *Ops[] = { 3230 Addr, 3231 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3232 }; 3233 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3234 } 3235 3236 /// For each function which is declared within an extern "C" region and marked 3237 /// as 'used', but has internal linkage, create an alias from the unmangled 3238 /// name to the mangled name if possible. People expect to be able to refer 3239 /// to such functions with an unmangled name from inline assembly within the 3240 /// same translation unit. 3241 void CodeGenModule::EmitStaticExternCAliases() { 3242 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3243 E = StaticExternCValues.end(); 3244 I != E; ++I) { 3245 IdentifierInfo *Name = I->first; 3246 llvm::GlobalValue *Val = I->second; 3247 if (Val && !getModule().getNamedValue(Name->getName())) 3248 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3249 } 3250 } 3251 3252 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3253 GlobalDecl &Result) const { 3254 auto Res = Manglings.find(MangledName); 3255 if (Res == Manglings.end()) 3256 return false; 3257 Result = Res->getValue(); 3258 return true; 3259 } 3260 3261 /// Emits metadata nodes associating all the global values in the 3262 /// current module with the Decls they came from. This is useful for 3263 /// projects using IR gen as a subroutine. 3264 /// 3265 /// Since there's currently no way to associate an MDNode directly 3266 /// with an llvm::GlobalValue, we create a global named metadata 3267 /// with the name 'clang.global.decl.ptrs'. 3268 void CodeGenModule::EmitDeclMetadata() { 3269 llvm::NamedMDNode *GlobalMetadata = nullptr; 3270 3271 // StaticLocalDeclMap 3272 for (auto &I : MangledDeclNames) { 3273 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3274 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3275 } 3276 } 3277 3278 /// Emits metadata nodes for all the local variables in the current 3279 /// function. 3280 void CodeGenFunction::EmitDeclMetadata() { 3281 if (LocalDeclMap.empty()) return; 3282 3283 llvm::LLVMContext &Context = getLLVMContext(); 3284 3285 // Find the unique metadata ID for this name. 3286 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3287 3288 llvm::NamedMDNode *GlobalMetadata = nullptr; 3289 3290 for (auto &I : LocalDeclMap) { 3291 const Decl *D = I.first; 3292 llvm::Value *Addr = I.second; 3293 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3294 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3295 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3296 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3297 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3298 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3299 } 3300 } 3301 } 3302 3303 void CodeGenModule::EmitVersionIdentMetadata() { 3304 llvm::NamedMDNode *IdentMetadata = 3305 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3306 std::string Version = getClangFullVersion(); 3307 llvm::LLVMContext &Ctx = TheModule.getContext(); 3308 3309 llvm::Value *IdentNode[] = { 3310 llvm::MDString::get(Ctx, Version) 3311 }; 3312 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3313 } 3314 3315 void CodeGenModule::EmitTargetMetadata() { 3316 for (auto &I : MangledDeclNames) { 3317 const Decl *D = I.first.getDecl()->getMostRecentDecl(); 3318 llvm::GlobalValue *GV = GetGlobalValue(I.second); 3319 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3320 } 3321 } 3322 3323 void CodeGenModule::EmitCoverageFile() { 3324 if (!getCodeGenOpts().CoverageFile.empty()) { 3325 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3326 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3327 llvm::LLVMContext &Ctx = TheModule.getContext(); 3328 llvm::MDString *CoverageFile = 3329 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3330 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3331 llvm::MDNode *CU = CUNode->getOperand(i); 3332 llvm::Value *node[] = { CoverageFile, CU }; 3333 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3334 GCov->addOperand(N); 3335 } 3336 } 3337 } 3338 } 3339 3340 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3341 QualType GuidType) { 3342 // Sema has checked that all uuid strings are of the form 3343 // "12345678-1234-1234-1234-1234567890ab". 3344 assert(Uuid.size() == 36); 3345 for (unsigned i = 0; i < 36; ++i) { 3346 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3347 else assert(isHexDigit(Uuid[i])); 3348 } 3349 3350 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3351 3352 llvm::Constant *Field3[8]; 3353 for (unsigned Idx = 0; Idx < 8; ++Idx) 3354 Field3[Idx] = llvm::ConstantInt::get( 3355 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3356 3357 llvm::Constant *Fields[4] = { 3358 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3359 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3360 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3361 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3362 }; 3363 3364 return llvm::ConstantStruct::getAnon(Fields); 3365 } 3366 3367 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3368 bool ForEH) { 3369 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3370 // FIXME: should we even be calling this method if RTTI is disabled 3371 // and it's not for EH? 3372 if (!ForEH && !getLangOpts().RTTI) 3373 return llvm::Constant::getNullValue(Int8PtrTy); 3374 3375 if (ForEH && Ty->isObjCObjectPointerType() && 3376 LangOpts.ObjCRuntime.isGNUFamily()) 3377 return ObjCRuntime->GetEHType(Ty); 3378 3379 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3380 } 3381 3382