1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenACC.h" 30 #include "clang/AST/StmtOpenMP.h" 31 #include "clang/AST/Type.h" 32 #include "clang/Basic/ABI.h" 33 #include "clang/Basic/CapturedStmt.h" 34 #include "clang/Basic/CodeGenOptions.h" 35 #include "clang/Basic/OpenMPKinds.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/MapVector.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/SanitizerStats.h" 46 #include <optional> 47 48 namespace llvm { 49 class BasicBlock; 50 class LLVMContext; 51 class MDNode; 52 class SwitchInst; 53 class Twine; 54 class Value; 55 class CanonicalLoopInfo; 56 } 57 58 namespace clang { 59 class ASTContext; 60 class CXXDestructorDecl; 61 class CXXForRangeStmt; 62 class CXXTryStmt; 63 class Decl; 64 class LabelDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGBlockInfo; 95 class CGCXXABI; 96 class BlockByrefHelpers; 97 class BlockByrefInfo; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 126 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 127 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 128 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 129 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 130 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 131 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 132 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 133 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 134 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 135 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 136 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 137 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 138 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 139 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 140 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ 141 SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) 142 143 enum SanitizerHandler { 144 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 145 LIST_SANITIZER_CHECKS 146 #undef SANITIZER_CHECK 147 }; 148 149 /// Helper class with most of the code for saving a value for a 150 /// conditional expression cleanup. 151 struct DominatingLLVMValue { 152 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 153 154 /// Answer whether the given value needs extra work to be saved. 155 static bool needsSaving(llvm::Value *value) { 156 if (!value) 157 return false; 158 159 // If it's not an instruction, we don't need to save. 160 if (!isa<llvm::Instruction>(value)) return false; 161 162 // If it's an instruction in the entry block, we don't need to save. 163 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 164 return (block != &block->getParent()->getEntryBlock()); 165 } 166 167 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 168 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 169 }; 170 171 /// A partial specialization of DominatingValue for llvm::Values that 172 /// might be llvm::Instructions. 173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 174 typedef T *type; 175 static type restore(CodeGenFunction &CGF, saved_type value) { 176 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 177 } 178 }; 179 180 /// A specialization of DominatingValue for Address. 181 template <> struct DominatingValue<Address> { 182 typedef Address type; 183 184 struct saved_type { 185 DominatingLLVMValue::saved_type BasePtr; 186 llvm::Type *ElementType; 187 CharUnits Alignment; 188 DominatingLLVMValue::saved_type Offset; 189 llvm::PointerType *EffectiveType; 190 }; 191 192 static bool needsSaving(type value) { 193 if (DominatingLLVMValue::needsSaving(value.getBasePointer()) || 194 DominatingLLVMValue::needsSaving(value.getOffset())) 195 return true; 196 return false; 197 } 198 static saved_type save(CodeGenFunction &CGF, type value) { 199 return {DominatingLLVMValue::save(CGF, value.getBasePointer()), 200 value.getElementType(), value.getAlignment(), 201 DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()}; 202 } 203 static type restore(CodeGenFunction &CGF, saved_type value) { 204 return Address(DominatingLLVMValue::restore(CGF, value.BasePtr), 205 value.ElementType, value.Alignment, CGPointerAuthInfo(), 206 DominatingLLVMValue::restore(CGF, value.Offset)); 207 } 208 }; 209 210 /// A specialization of DominatingValue for RValue. 211 template <> struct DominatingValue<RValue> { 212 typedef RValue type; 213 class saved_type { 214 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 215 AggregateAddress, ComplexAddress }; 216 union { 217 struct { 218 DominatingLLVMValue::saved_type first, second; 219 } Vals; 220 DominatingValue<Address>::saved_type AggregateAddr; 221 }; 222 LLVM_PREFERRED_TYPE(Kind) 223 unsigned K : 3; 224 225 saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) 226 : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {} 227 228 saved_type(DominatingLLVMValue::saved_type Val1, 229 DominatingLLVMValue::saved_type Val2) 230 : Vals{Val1, Val2}, K(ComplexAddress) {} 231 232 saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) 233 : AggregateAddr(AggregateAddr), K(K) {} 234 235 public: 236 static bool needsSaving(RValue value); 237 static saved_type save(CodeGenFunction &CGF, RValue value); 238 RValue restore(CodeGenFunction &CGF); 239 240 // implementations in CGCleanup.cpp 241 }; 242 243 static bool needsSaving(type value) { 244 return saved_type::needsSaving(value); 245 } 246 static saved_type save(CodeGenFunction &CGF, type value) { 247 return saved_type::save(CGF, value); 248 } 249 static type restore(CodeGenFunction &CGF, saved_type value) { 250 return value.restore(CGF); 251 } 252 }; 253 254 /// CodeGenFunction - This class organizes the per-function state that is used 255 /// while generating LLVM code. 256 class CodeGenFunction : public CodeGenTypeCache { 257 CodeGenFunction(const CodeGenFunction &) = delete; 258 void operator=(const CodeGenFunction &) = delete; 259 260 friend class CGCXXABI; 261 public: 262 /// A jump destination is an abstract label, branching to which may 263 /// require a jump out through normal cleanups. 264 struct JumpDest { 265 JumpDest() : Block(nullptr), Index(0) {} 266 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 267 unsigned Index) 268 : Block(Block), ScopeDepth(Depth), Index(Index) {} 269 270 bool isValid() const { return Block != nullptr; } 271 llvm::BasicBlock *getBlock() const { return Block; } 272 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 273 unsigned getDestIndex() const { return Index; } 274 275 // This should be used cautiously. 276 void setScopeDepth(EHScopeStack::stable_iterator depth) { 277 ScopeDepth = depth; 278 } 279 280 private: 281 llvm::BasicBlock *Block; 282 EHScopeStack::stable_iterator ScopeDepth; 283 unsigned Index; 284 }; 285 286 CodeGenModule &CGM; // Per-module state. 287 const TargetInfo &Target; 288 289 // For EH/SEH outlined funclets, this field points to parent's CGF 290 CodeGenFunction *ParentCGF = nullptr; 291 292 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 293 LoopInfoStack LoopStack; 294 CGBuilderTy Builder; 295 296 // Stores variables for which we can't generate correct lifetime markers 297 // because of jumps. 298 VarBypassDetector Bypasses; 299 300 /// List of recently emitted OMPCanonicalLoops. 301 /// 302 /// Since OMPCanonicalLoops are nested inside other statements (in particular 303 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 304 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 305 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 306 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 307 /// this stack when done. Entering a new loop requires clearing this list; it 308 /// either means we start parsing a new loop nest (in which case the previous 309 /// loop nest goes out of scope) or a second loop in the same level in which 310 /// case it would be ambiguous into which of the two (or more) loops the loop 311 /// nest would extend. 312 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 313 314 /// Stack to track the Logical Operator recursion nest for MC/DC. 315 SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; 316 317 /// Stack to track the controlled convergence tokens. 318 SmallVector<llvm::IntrinsicInst *, 4> ConvergenceTokenStack; 319 320 /// Number of nested loop to be consumed by the last surrounding 321 /// loop-associated directive. 322 int ExpectedOMPLoopDepth = 0; 323 324 // CodeGen lambda for loops and support for ordered clause 325 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 326 JumpDest)> 327 CodeGenLoopTy; 328 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 329 const unsigned, const bool)> 330 CodeGenOrderedTy; 331 332 // Codegen lambda for loop bounds in worksharing loop constructs 333 typedef llvm::function_ref<std::pair<LValue, LValue>( 334 CodeGenFunction &, const OMPExecutableDirective &S)> 335 CodeGenLoopBoundsTy; 336 337 // Codegen lambda for loop bounds in dispatch-based loop implementation 338 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 339 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 340 Address UB)> 341 CodeGenDispatchBoundsTy; 342 343 /// CGBuilder insert helper. This function is called after an 344 /// instruction is created using Builder. 345 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 346 llvm::BasicBlock::iterator InsertPt) const; 347 348 /// CurFuncDecl - Holds the Decl for the current outermost 349 /// non-closure context. 350 const Decl *CurFuncDecl = nullptr; 351 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 352 const Decl *CurCodeDecl = nullptr; 353 const CGFunctionInfo *CurFnInfo = nullptr; 354 QualType FnRetTy; 355 llvm::Function *CurFn = nullptr; 356 357 /// Save Parameter Decl for coroutine. 358 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 359 360 // Holds coroutine data if the current function is a coroutine. We use a 361 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 362 // in this header. 363 struct CGCoroInfo { 364 std::unique_ptr<CGCoroData> Data; 365 bool InSuspendBlock = false; 366 CGCoroInfo(); 367 ~CGCoroInfo(); 368 }; 369 CGCoroInfo CurCoro; 370 371 bool isCoroutine() const { 372 return CurCoro.Data != nullptr; 373 } 374 375 bool inSuspendBlock() const { 376 return isCoroutine() && CurCoro.InSuspendBlock; 377 } 378 379 // Holds FramePtr for await_suspend wrapper generation, 380 // so that __builtin_coro_frame call can be lowered 381 // directly to value of its second argument 382 struct AwaitSuspendWrapperInfo { 383 llvm::Value *FramePtr = nullptr; 384 }; 385 AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; 386 387 // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. 388 // It encapsulates SuspendExpr in a function, to separate it's body 389 // from the main coroutine to avoid miscompilations. Intrinisic 390 // is lowered to this function call in CoroSplit pass 391 // Function signature is: 392 // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) 393 // where type is one of (void, i1, ptr) 394 llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, 395 Twine const &SuspendPointName, 396 CoroutineSuspendExpr const &S); 397 398 /// CurGD - The GlobalDecl for the current function being compiled. 399 GlobalDecl CurGD; 400 401 /// PrologueCleanupDepth - The cleanup depth enclosing all the 402 /// cleanups associated with the parameters. 403 EHScopeStack::stable_iterator PrologueCleanupDepth; 404 405 /// ReturnBlock - Unified return block. 406 JumpDest ReturnBlock; 407 408 /// ReturnValue - The temporary alloca to hold the return 409 /// value. This is invalid iff the function has no return value. 410 Address ReturnValue = Address::invalid(); 411 412 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 413 /// This is invalid if sret is not in use. 414 Address ReturnValuePointer = Address::invalid(); 415 416 /// If a return statement is being visited, this holds the return statment's 417 /// result expression. 418 const Expr *RetExpr = nullptr; 419 420 /// Return true if a label was seen in the current scope. 421 bool hasLabelBeenSeenInCurrentScope() const { 422 if (CurLexicalScope) 423 return CurLexicalScope->hasLabels(); 424 return !LabelMap.empty(); 425 } 426 427 /// AllocaInsertPoint - This is an instruction in the entry block before which 428 /// we prefer to insert allocas. 429 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 430 431 private: 432 /// PostAllocaInsertPt - This is a place in the prologue where code can be 433 /// inserted that will be dominated by all the static allocas. This helps 434 /// achieve two things: 435 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 436 /// 2. All other prologue code (which are dominated by static allocas) do 437 /// appear in the source order immediately after all static allocas. 438 /// 439 /// PostAllocaInsertPt will be lazily created when it is *really* required. 440 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 441 442 public: 443 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 444 /// immediately after AllocaInsertPt. 445 llvm::Instruction *getPostAllocaInsertPoint() { 446 if (!PostAllocaInsertPt) { 447 assert(AllocaInsertPt && 448 "Expected static alloca insertion point at function prologue"); 449 assert(AllocaInsertPt->getParent()->isEntryBlock() && 450 "EBB should be entry block of the current code gen function"); 451 PostAllocaInsertPt = AllocaInsertPt->clone(); 452 PostAllocaInsertPt->setName("postallocapt"); 453 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 454 } 455 456 return PostAllocaInsertPt; 457 } 458 459 /// API for captured statement code generation. 460 class CGCapturedStmtInfo { 461 public: 462 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 464 explicit CGCapturedStmtInfo(const CapturedStmt &S, 465 CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 467 468 RecordDecl::field_iterator Field = 469 S.getCapturedRecordDecl()->field_begin(); 470 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 471 E = S.capture_end(); 472 I != E; ++I, ++Field) { 473 if (I->capturesThis()) 474 CXXThisFieldDecl = *Field; 475 else if (I->capturesVariable()) 476 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 477 else if (I->capturesVariableByCopy()) 478 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 479 } 480 } 481 482 virtual ~CGCapturedStmtInfo(); 483 484 CapturedRegionKind getKind() const { return Kind; } 485 486 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 487 // Retrieve the value of the context parameter. 488 virtual llvm::Value *getContextValue() const { return ThisValue; } 489 490 /// Lookup the captured field decl for a variable. 491 virtual const FieldDecl *lookup(const VarDecl *VD) const { 492 return CaptureFields.lookup(VD->getCanonicalDecl()); 493 } 494 495 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 496 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 497 498 static bool classof(const CGCapturedStmtInfo *) { 499 return true; 500 } 501 502 /// Emit the captured statement body. 503 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 504 CGF.incrementProfileCounter(S); 505 CGF.EmitStmt(S); 506 } 507 508 /// Get the name of the capture helper. 509 virtual StringRef getHelperName() const { return "__captured_stmt"; } 510 511 /// Get the CaptureFields 512 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 513 return CaptureFields; 514 } 515 516 private: 517 /// The kind of captured statement being generated. 518 CapturedRegionKind Kind; 519 520 /// Keep the map between VarDecl and FieldDecl. 521 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 522 523 /// The base address of the captured record, passed in as the first 524 /// argument of the parallel region function. 525 llvm::Value *ThisValue; 526 527 /// Captured 'this' type. 528 FieldDecl *CXXThisFieldDecl; 529 }; 530 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 531 532 /// RAII for correct setting/restoring of CapturedStmtInfo. 533 class CGCapturedStmtRAII { 534 private: 535 CodeGenFunction &CGF; 536 CGCapturedStmtInfo *PrevCapturedStmtInfo; 537 public: 538 CGCapturedStmtRAII(CodeGenFunction &CGF, 539 CGCapturedStmtInfo *NewCapturedStmtInfo) 540 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 541 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 542 } 543 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 544 }; 545 546 /// An abstract representation of regular/ObjC call/message targets. 547 class AbstractCallee { 548 /// The function declaration of the callee. 549 const Decl *CalleeDecl; 550 551 public: 552 AbstractCallee() : CalleeDecl(nullptr) {} 553 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 554 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 555 bool hasFunctionDecl() const { 556 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 557 } 558 const Decl *getDecl() const { return CalleeDecl; } 559 unsigned getNumParams() const { 560 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 561 return FD->getNumParams(); 562 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 563 } 564 const ParmVarDecl *getParamDecl(unsigned I) const { 565 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 566 return FD->getParamDecl(I); 567 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 568 } 569 }; 570 571 /// Sanitizers enabled for this function. 572 SanitizerSet SanOpts; 573 574 /// True if CodeGen currently emits code implementing sanitizer checks. 575 bool IsSanitizerScope = false; 576 577 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 578 class SanitizerScope { 579 CodeGenFunction *CGF; 580 public: 581 SanitizerScope(CodeGenFunction *CGF); 582 ~SanitizerScope(); 583 }; 584 585 /// In C++, whether we are code generating a thunk. This controls whether we 586 /// should emit cleanups. 587 bool CurFuncIsThunk = false; 588 589 /// In ARC, whether we should autorelease the return value. 590 bool AutoreleaseResult = false; 591 592 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 593 /// potentially set the return value. 594 bool SawAsmBlock = false; 595 596 GlobalDecl CurSEHParent; 597 598 /// True if the current function is an outlined SEH helper. This can be a 599 /// finally block or filter expression. 600 bool IsOutlinedSEHHelper = false; 601 602 /// True if CodeGen currently emits code inside presereved access index 603 /// region. 604 bool IsInPreservedAIRegion = false; 605 606 /// True if the current statement has nomerge attribute. 607 bool InNoMergeAttributedStmt = false; 608 609 /// True if the current statement has noinline attribute. 610 bool InNoInlineAttributedStmt = false; 611 612 /// True if the current statement has always_inline attribute. 613 bool InAlwaysInlineAttributedStmt = false; 614 615 /// True if the current statement has noconvergent attribute. 616 bool InNoConvergentAttributedStmt = false; 617 618 // The CallExpr within the current statement that the musttail attribute 619 // applies to. nullptr if there is no 'musttail' on the current statement. 620 const CallExpr *MustTailCall = nullptr; 621 622 /// Returns true if a function must make progress, which means the 623 /// mustprogress attribute can be added. 624 bool checkIfFunctionMustProgress() { 625 if (CGM.getCodeGenOpts().getFiniteLoops() == 626 CodeGenOptions::FiniteLoopsKind::Never) 627 return false; 628 629 // C++11 and later guarantees that a thread eventually will do one of the 630 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 631 // - terminate, 632 // - make a call to a library I/O function, 633 // - perform an access through a volatile glvalue, or 634 // - perform a synchronization operation or an atomic operation. 635 // 636 // Hence each function is 'mustprogress' in C++11 or later. 637 return getLangOpts().CPlusPlus11; 638 } 639 640 /// Returns true if a loop must make progress, which means the mustprogress 641 /// attribute can be added. \p HasConstantCond indicates whether the branch 642 /// condition is a known constant. 643 bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); 644 645 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 646 llvm::Value *BlockPointer = nullptr; 647 648 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 649 FieldDecl *LambdaThisCaptureField = nullptr; 650 651 /// A mapping from NRVO variables to the flags used to indicate 652 /// when the NRVO has been applied to this variable. 653 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 654 655 EHScopeStack EHStack; 656 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 657 658 // A stack of cleanups which were added to EHStack but have to be deactivated 659 // later before being popped or emitted. These are usually deactivated on 660 // exiting a `CleanupDeactivationScope` scope. For instance, after a 661 // full-expr. 662 // 663 // These are specially useful for correctly emitting cleanups while 664 // encountering branches out of expression (through stmt-expr or coroutine 665 // suspensions). 666 struct DeferredDeactivateCleanup { 667 EHScopeStack::stable_iterator Cleanup; 668 llvm::Instruction *DominatingIP; 669 }; 670 llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; 671 672 // Enters a new scope for capturing cleanups which are deferred to be 673 // deactivated, all of which will be deactivated once the scope is exited. 674 struct CleanupDeactivationScope { 675 CodeGenFunction &CGF; 676 size_t OldDeactivateCleanupStackSize; 677 bool Deactivated; 678 CleanupDeactivationScope(CodeGenFunction &CGF) 679 : CGF(CGF), OldDeactivateCleanupStackSize( 680 CGF.DeferredDeactivationCleanupStack.size()), 681 Deactivated(false) {} 682 683 void ForceDeactivate() { 684 assert(!Deactivated && "Deactivating already deactivated scope"); 685 auto &Stack = CGF.DeferredDeactivationCleanupStack; 686 for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { 687 CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup, 688 Stack[I - 1].DominatingIP); 689 Stack[I - 1].DominatingIP->eraseFromParent(); 690 } 691 Stack.resize(OldDeactivateCleanupStackSize); 692 Deactivated = true; 693 } 694 695 ~CleanupDeactivationScope() { 696 if (Deactivated) 697 return; 698 ForceDeactivate(); 699 } 700 }; 701 702 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 703 704 llvm::Instruction *CurrentFuncletPad = nullptr; 705 706 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 707 bool isRedundantBeforeReturn() override { return true; } 708 709 llvm::Value *Addr; 710 llvm::Value *Size; 711 712 public: 713 CallLifetimeEnd(RawAddress addr, llvm::Value *size) 714 : Addr(addr.getPointer()), Size(size) {} 715 716 void Emit(CodeGenFunction &CGF, Flags flags) override { 717 CGF.EmitLifetimeEnd(Size, Addr); 718 } 719 }; 720 721 /// Header for data within LifetimeExtendedCleanupStack. 722 struct LifetimeExtendedCleanupHeader { 723 /// The size of the following cleanup object. 724 unsigned Size; 725 /// The kind of cleanup to push. 726 LLVM_PREFERRED_TYPE(CleanupKind) 727 unsigned Kind : 31; 728 /// Whether this is a conditional cleanup. 729 LLVM_PREFERRED_TYPE(bool) 730 unsigned IsConditional : 1; 731 732 size_t getSize() const { return Size; } 733 CleanupKind getKind() const { return (CleanupKind)Kind; } 734 bool isConditional() const { return IsConditional; } 735 }; 736 737 /// i32s containing the indexes of the cleanup destinations. 738 RawAddress NormalCleanupDest = RawAddress::invalid(); 739 740 unsigned NextCleanupDestIndex = 1; 741 742 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 743 llvm::BasicBlock *EHResumeBlock = nullptr; 744 745 /// The exception slot. All landing pads write the current exception pointer 746 /// into this alloca. 747 llvm::Value *ExceptionSlot = nullptr; 748 749 /// The selector slot. Under the MandatoryCleanup model, all landing pads 750 /// write the current selector value into this alloca. 751 llvm::AllocaInst *EHSelectorSlot = nullptr; 752 753 /// A stack of exception code slots. Entering an __except block pushes a slot 754 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 755 /// a value from the top of the stack. 756 SmallVector<Address, 1> SEHCodeSlotStack; 757 758 /// Value returned by __exception_info intrinsic. 759 llvm::Value *SEHInfo = nullptr; 760 761 /// Emits a landing pad for the current EH stack. 762 llvm::BasicBlock *EmitLandingPad(); 763 764 llvm::BasicBlock *getInvokeDestImpl(); 765 766 /// Parent loop-based directive for scan directive. 767 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 768 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 769 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 770 llvm::BasicBlock *OMPScanExitBlock = nullptr; 771 llvm::BasicBlock *OMPScanDispatch = nullptr; 772 bool OMPFirstScanLoop = false; 773 774 /// Manages parent directive for scan directives. 775 class ParentLoopDirectiveForScanRegion { 776 CodeGenFunction &CGF; 777 const OMPExecutableDirective *ParentLoopDirectiveForScan; 778 779 public: 780 ParentLoopDirectiveForScanRegion( 781 CodeGenFunction &CGF, 782 const OMPExecutableDirective &ParentLoopDirectiveForScan) 783 : CGF(CGF), 784 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 785 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 786 } 787 ~ParentLoopDirectiveForScanRegion() { 788 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 789 } 790 }; 791 792 template <class T> 793 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 794 return DominatingValue<T>::save(*this, value); 795 } 796 797 class CGFPOptionsRAII { 798 public: 799 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 800 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 801 ~CGFPOptionsRAII(); 802 803 private: 804 void ConstructorHelper(FPOptions FPFeatures); 805 CodeGenFunction &CGF; 806 FPOptions OldFPFeatures; 807 llvm::fp::ExceptionBehavior OldExcept; 808 llvm::RoundingMode OldRounding; 809 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 810 }; 811 FPOptions CurFPFeatures; 812 813 public: 814 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 815 /// rethrows. 816 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 817 818 /// A class controlling the emission of a finally block. 819 class FinallyInfo { 820 /// Where the catchall's edge through the cleanup should go. 821 JumpDest RethrowDest; 822 823 /// A function to call to enter the catch. 824 llvm::FunctionCallee BeginCatchFn; 825 826 /// An i1 variable indicating whether or not the @finally is 827 /// running for an exception. 828 llvm::AllocaInst *ForEHVar = nullptr; 829 830 /// An i8* variable into which the exception pointer to rethrow 831 /// has been saved. 832 llvm::AllocaInst *SavedExnVar = nullptr; 833 834 public: 835 void enter(CodeGenFunction &CGF, const Stmt *Finally, 836 llvm::FunctionCallee beginCatchFn, 837 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 838 void exit(CodeGenFunction &CGF); 839 }; 840 841 /// Returns true inside SEH __try blocks. 842 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 843 844 /// Returns true while emitting a cleanuppad. 845 bool isCleanupPadScope() const { 846 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 847 } 848 849 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 850 /// current full-expression. Safe against the possibility that 851 /// we're currently inside a conditionally-evaluated expression. 852 template <class T, class... As> 853 void pushFullExprCleanup(CleanupKind kind, As... A) { 854 // If we're not in a conditional branch, or if none of the 855 // arguments requires saving, then use the unconditional cleanup. 856 if (!isInConditionalBranch()) 857 return EHStack.pushCleanup<T>(kind, A...); 858 859 // Stash values in a tuple so we can guarantee the order of saves. 860 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 861 SavedTuple Saved{saveValueInCond(A)...}; 862 863 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 864 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 865 initFullExprCleanup(); 866 } 867 868 /// Queue a cleanup to be pushed after finishing the current full-expression, 869 /// potentially with an active flag. 870 template <class T, class... As> 871 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 872 if (!isInConditionalBranch()) 873 return pushCleanupAfterFullExprWithActiveFlag<T>( 874 Kind, RawAddress::invalid(), A...); 875 876 RawAddress ActiveFlag = createCleanupActiveFlag(); 877 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 878 "cleanup active flag should never need saving"); 879 880 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 881 SavedTuple Saved{saveValueInCond(A)...}; 882 883 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 884 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 885 } 886 887 template <class T, class... As> 888 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 889 RawAddress ActiveFlag, As... A) { 890 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 891 ActiveFlag.isValid()}; 892 893 size_t OldSize = LifetimeExtendedCleanupStack.size(); 894 LifetimeExtendedCleanupStack.resize( 895 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 896 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 897 898 static_assert(sizeof(Header) % alignof(T) == 0, 899 "Cleanup will be allocated on misaligned address"); 900 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 901 new (Buffer) LifetimeExtendedCleanupHeader(Header); 902 new (Buffer + sizeof(Header)) T(A...); 903 if (Header.IsConditional) 904 new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); 905 } 906 907 // Push a cleanup onto EHStack and deactivate it later. It is usually 908 // deactivated when exiting a `CleanupDeactivationScope` (for example: after a 909 // full expression). 910 template <class T, class... As> 911 void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { 912 // Placeholder dominating IP for this cleanup. 913 llvm::Instruction *DominatingIP = 914 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 915 EHStack.pushCleanup<T>(Kind, A...); 916 DeferredDeactivationCleanupStack.push_back( 917 {EHStack.stable_begin(), DominatingIP}); 918 } 919 920 /// Set up the last cleanup that was pushed as a conditional 921 /// full-expression cleanup. 922 void initFullExprCleanup() { 923 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 924 } 925 926 void initFullExprCleanupWithFlag(RawAddress ActiveFlag); 927 RawAddress createCleanupActiveFlag(); 928 929 /// PushDestructorCleanup - Push a cleanup to call the 930 /// complete-object destructor of an object of the given type at the 931 /// given address. Does nothing if T is not a C++ class type with a 932 /// non-trivial destructor. 933 void PushDestructorCleanup(QualType T, Address Addr); 934 935 /// PushDestructorCleanup - Push a cleanup to call the 936 /// complete-object variant of the given destructor on the object at 937 /// the given address. 938 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 939 Address Addr); 940 941 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 942 /// process all branch fixups. 943 void PopCleanupBlock(bool FallThroughIsBranchThrough = false, 944 bool ForDeactivation = false); 945 946 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 947 /// The block cannot be reactivated. Pops it if it's the top of the 948 /// stack. 949 /// 950 /// \param DominatingIP - An instruction which is known to 951 /// dominate the current IP (if set) and which lies along 952 /// all paths of execution between the current IP and the 953 /// the point at which the cleanup comes into scope. 954 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 955 llvm::Instruction *DominatingIP); 956 957 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 958 /// Cannot be used to resurrect a deactivated cleanup. 959 /// 960 /// \param DominatingIP - An instruction which is known to 961 /// dominate the current IP (if set) and which lies along 962 /// all paths of execution between the current IP and the 963 /// the point at which the cleanup comes into scope. 964 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 965 llvm::Instruction *DominatingIP); 966 967 /// Enters a new scope for capturing cleanups, all of which 968 /// will be executed once the scope is exited. 969 class RunCleanupsScope { 970 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 971 size_t LifetimeExtendedCleanupStackSize; 972 CleanupDeactivationScope DeactivateCleanups; 973 bool OldDidCallStackSave; 974 protected: 975 bool PerformCleanup; 976 private: 977 978 RunCleanupsScope(const RunCleanupsScope &) = delete; 979 void operator=(const RunCleanupsScope &) = delete; 980 981 protected: 982 CodeGenFunction& CGF; 983 984 public: 985 /// Enter a new cleanup scope. 986 explicit RunCleanupsScope(CodeGenFunction &CGF) 987 : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { 988 CleanupStackDepth = CGF.EHStack.stable_begin(); 989 LifetimeExtendedCleanupStackSize = 990 CGF.LifetimeExtendedCleanupStack.size(); 991 OldDidCallStackSave = CGF.DidCallStackSave; 992 CGF.DidCallStackSave = false; 993 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 994 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 995 } 996 997 /// Exit this cleanup scope, emitting any accumulated cleanups. 998 ~RunCleanupsScope() { 999 if (PerformCleanup) 1000 ForceCleanup(); 1001 } 1002 1003 /// Determine whether this scope requires any cleanups. 1004 bool requiresCleanups() const { 1005 return CGF.EHStack.stable_begin() != CleanupStackDepth; 1006 } 1007 1008 /// Force the emission of cleanups now, instead of waiting 1009 /// until this object is destroyed. 1010 /// \param ValuesToReload - A list of values that need to be available at 1011 /// the insertion point after cleanup emission. If cleanup emission created 1012 /// a shared cleanup block, these value pointers will be rewritten. 1013 /// Otherwise, they not will be modified. 1014 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 1015 assert(PerformCleanup && "Already forced cleanup"); 1016 CGF.DidCallStackSave = OldDidCallStackSave; 1017 DeactivateCleanups.ForceDeactivate(); 1018 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 1019 ValuesToReload); 1020 PerformCleanup = false; 1021 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 1022 } 1023 }; 1024 1025 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 1026 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 1027 EHScopeStack::stable_end(); 1028 1029 class LexicalScope : public RunCleanupsScope { 1030 SourceRange Range; 1031 SmallVector<const LabelDecl*, 4> Labels; 1032 LexicalScope *ParentScope; 1033 1034 LexicalScope(const LexicalScope &) = delete; 1035 void operator=(const LexicalScope &) = delete; 1036 1037 public: 1038 /// Enter a new cleanup scope. 1039 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 1040 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 1041 CGF.CurLexicalScope = this; 1042 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1043 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 1044 } 1045 1046 void addLabel(const LabelDecl *label) { 1047 assert(PerformCleanup && "adding label to dead scope?"); 1048 Labels.push_back(label); 1049 } 1050 1051 /// Exit this cleanup scope, emitting any accumulated 1052 /// cleanups. 1053 ~LexicalScope() { 1054 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1055 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 1056 1057 // If we should perform a cleanup, force them now. Note that 1058 // this ends the cleanup scope before rescoping any labels. 1059 if (PerformCleanup) { 1060 ApplyDebugLocation DL(CGF, Range.getEnd()); 1061 ForceCleanup(); 1062 } 1063 } 1064 1065 /// Force the emission of cleanups now, instead of waiting 1066 /// until this object is destroyed. 1067 void ForceCleanup() { 1068 CGF.CurLexicalScope = ParentScope; 1069 RunCleanupsScope::ForceCleanup(); 1070 1071 if (!Labels.empty()) 1072 rescopeLabels(); 1073 } 1074 1075 bool hasLabels() const { 1076 return !Labels.empty(); 1077 } 1078 1079 void rescopeLabels(); 1080 }; 1081 1082 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 1083 1084 /// The class used to assign some variables some temporarily addresses. 1085 class OMPMapVars { 1086 DeclMapTy SavedLocals; 1087 DeclMapTy SavedTempAddresses; 1088 OMPMapVars(const OMPMapVars &) = delete; 1089 void operator=(const OMPMapVars &) = delete; 1090 1091 public: 1092 explicit OMPMapVars() = default; 1093 ~OMPMapVars() { 1094 assert(SavedLocals.empty() && "Did not restored original addresses."); 1095 }; 1096 1097 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1098 /// function \p CGF. 1099 /// \return true if at least one variable was set already, false otherwise. 1100 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1101 Address TempAddr) { 1102 LocalVD = LocalVD->getCanonicalDecl(); 1103 // Only save it once. 1104 if (SavedLocals.count(LocalVD)) return false; 1105 1106 // Copy the existing local entry to SavedLocals. 1107 auto it = CGF.LocalDeclMap.find(LocalVD); 1108 if (it != CGF.LocalDeclMap.end()) 1109 SavedLocals.try_emplace(LocalVD, it->second); 1110 else 1111 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1112 1113 // Generate the private entry. 1114 QualType VarTy = LocalVD->getType(); 1115 if (VarTy->isReferenceType()) { 1116 Address Temp = CGF.CreateMemTemp(VarTy); 1117 CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp); 1118 TempAddr = Temp; 1119 } 1120 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1121 1122 return true; 1123 } 1124 1125 /// Applies new addresses to the list of the variables. 1126 /// \return true if at least one variable is using new address, false 1127 /// otherwise. 1128 bool apply(CodeGenFunction &CGF) { 1129 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1130 SavedTempAddresses.clear(); 1131 return !SavedLocals.empty(); 1132 } 1133 1134 /// Restores original addresses of the variables. 1135 void restore(CodeGenFunction &CGF) { 1136 if (!SavedLocals.empty()) { 1137 copyInto(SavedLocals, CGF.LocalDeclMap); 1138 SavedLocals.clear(); 1139 } 1140 } 1141 1142 private: 1143 /// Copy all the entries in the source map over the corresponding 1144 /// entries in the destination, which must exist. 1145 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1146 for (auto &[Decl, Addr] : Src) { 1147 if (!Addr.isValid()) 1148 Dest.erase(Decl); 1149 else 1150 Dest.insert_or_assign(Decl, Addr); 1151 } 1152 } 1153 }; 1154 1155 /// The scope used to remap some variables as private in the OpenMP loop body 1156 /// (or other captured region emitted without outlining), and to restore old 1157 /// vars back on exit. 1158 class OMPPrivateScope : public RunCleanupsScope { 1159 OMPMapVars MappedVars; 1160 OMPPrivateScope(const OMPPrivateScope &) = delete; 1161 void operator=(const OMPPrivateScope &) = delete; 1162 1163 public: 1164 /// Enter a new OpenMP private scope. 1165 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1166 1167 /// Registers \p LocalVD variable as a private with \p Addr as the address 1168 /// of the corresponding private variable. \p 1169 /// PrivateGen is the address of the generated private variable. 1170 /// \return true if the variable is registered as private, false if it has 1171 /// been privatized already. 1172 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1173 assert(PerformCleanup && "adding private to dead scope"); 1174 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1175 } 1176 1177 /// Privatizes local variables previously registered as private. 1178 /// Registration is separate from the actual privatization to allow 1179 /// initializers use values of the original variables, not the private one. 1180 /// This is important, for example, if the private variable is a class 1181 /// variable initialized by a constructor that references other private 1182 /// variables. But at initialization original variables must be used, not 1183 /// private copies. 1184 /// \return true if at least one variable was privatized, false otherwise. 1185 bool Privatize() { return MappedVars.apply(CGF); } 1186 1187 void ForceCleanup() { 1188 RunCleanupsScope::ForceCleanup(); 1189 restoreMap(); 1190 } 1191 1192 /// Exit scope - all the mapped variables are restored. 1193 ~OMPPrivateScope() { 1194 if (PerformCleanup) 1195 ForceCleanup(); 1196 } 1197 1198 /// Checks if the global variable is captured in current function. 1199 bool isGlobalVarCaptured(const VarDecl *VD) const { 1200 VD = VD->getCanonicalDecl(); 1201 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1202 } 1203 1204 /// Restore all mapped variables w/o clean up. This is usefully when we want 1205 /// to reference the original variables but don't want the clean up because 1206 /// that could emit lifetime end too early, causing backend issue #56913. 1207 void restoreMap() { MappedVars.restore(CGF); } 1208 }; 1209 1210 /// Save/restore original map of previously emitted local vars in case when we 1211 /// need to duplicate emission of the same code several times in the same 1212 /// function for OpenMP code. 1213 class OMPLocalDeclMapRAII { 1214 CodeGenFunction &CGF; 1215 DeclMapTy SavedMap; 1216 1217 public: 1218 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1219 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1220 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1221 }; 1222 1223 /// Takes the old cleanup stack size and emits the cleanup blocks 1224 /// that have been added. 1225 void 1226 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1227 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1228 1229 /// Takes the old cleanup stack size and emits the cleanup blocks 1230 /// that have been added, then adds all lifetime-extended cleanups from 1231 /// the given position to the stack. 1232 void 1233 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1234 size_t OldLifetimeExtendedStackSize, 1235 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1236 1237 void ResolveBranchFixups(llvm::BasicBlock *Target); 1238 1239 /// The given basic block lies in the current EH scope, but may be a 1240 /// target of a potentially scope-crossing jump; get a stable handle 1241 /// to which we can perform this jump later. 1242 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1243 return JumpDest(Target, 1244 EHStack.getInnermostNormalCleanup(), 1245 NextCleanupDestIndex++); 1246 } 1247 1248 /// The given basic block lies in the current EH scope, but may be a 1249 /// target of a potentially scope-crossing jump; get a stable handle 1250 /// to which we can perform this jump later. 1251 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1252 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1253 } 1254 1255 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1256 /// block through the normal cleanup handling code (if any) and then 1257 /// on to \arg Dest. 1258 void EmitBranchThroughCleanup(JumpDest Dest); 1259 1260 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1261 /// specified destination obviously has no cleanups to run. 'false' is always 1262 /// a conservatively correct answer for this method. 1263 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1264 1265 /// popCatchScope - Pops the catch scope at the top of the EHScope 1266 /// stack, emitting any required code (other than the catch handlers 1267 /// themselves). 1268 void popCatchScope(); 1269 1270 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1271 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1272 llvm::BasicBlock * 1273 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1274 1275 /// An object to manage conditionally-evaluated expressions. 1276 class ConditionalEvaluation { 1277 llvm::BasicBlock *StartBB; 1278 1279 public: 1280 ConditionalEvaluation(CodeGenFunction &CGF) 1281 : StartBB(CGF.Builder.GetInsertBlock()) {} 1282 1283 void begin(CodeGenFunction &CGF) { 1284 assert(CGF.OutermostConditional != this); 1285 if (!CGF.OutermostConditional) 1286 CGF.OutermostConditional = this; 1287 } 1288 1289 void end(CodeGenFunction &CGF) { 1290 assert(CGF.OutermostConditional != nullptr); 1291 if (CGF.OutermostConditional == this) 1292 CGF.OutermostConditional = nullptr; 1293 } 1294 1295 /// Returns a block which will be executed prior to each 1296 /// evaluation of the conditional code. 1297 llvm::BasicBlock *getStartingBlock() const { 1298 return StartBB; 1299 } 1300 }; 1301 1302 /// isInConditionalBranch - Return true if we're currently emitting 1303 /// one branch or the other of a conditional expression. 1304 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1305 1306 void setBeforeOutermostConditional(llvm::Value *value, Address addr, 1307 CodeGenFunction &CGF) { 1308 assert(isInConditionalBranch()); 1309 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1310 auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), 1311 block->back().getIterator()); 1312 store->setAlignment(addr.getAlignment().getAsAlign()); 1313 } 1314 1315 /// An RAII object to record that we're evaluating a statement 1316 /// expression. 1317 class StmtExprEvaluation { 1318 CodeGenFunction &CGF; 1319 1320 /// We have to save the outermost conditional: cleanups in a 1321 /// statement expression aren't conditional just because the 1322 /// StmtExpr is. 1323 ConditionalEvaluation *SavedOutermostConditional; 1324 1325 public: 1326 StmtExprEvaluation(CodeGenFunction &CGF) 1327 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1328 CGF.OutermostConditional = nullptr; 1329 } 1330 1331 ~StmtExprEvaluation() { 1332 CGF.OutermostConditional = SavedOutermostConditional; 1333 CGF.EnsureInsertPoint(); 1334 } 1335 }; 1336 1337 /// An object which temporarily prevents a value from being 1338 /// destroyed by aggressive peephole optimizations that assume that 1339 /// all uses of a value have been realized in the IR. 1340 class PeepholeProtection { 1341 llvm::Instruction *Inst = nullptr; 1342 friend class CodeGenFunction; 1343 1344 public: 1345 PeepholeProtection() = default; 1346 }; 1347 1348 /// A non-RAII class containing all the information about a bound 1349 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1350 /// this which makes individual mappings very simple; using this 1351 /// class directly is useful when you have a variable number of 1352 /// opaque values or don't want the RAII functionality for some 1353 /// reason. 1354 class OpaqueValueMappingData { 1355 const OpaqueValueExpr *OpaqueValue; 1356 bool BoundLValue; 1357 CodeGenFunction::PeepholeProtection Protection; 1358 1359 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1360 bool boundLValue) 1361 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1362 public: 1363 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1364 1365 static bool shouldBindAsLValue(const Expr *expr) { 1366 // gl-values should be bound as l-values for obvious reasons. 1367 // Records should be bound as l-values because IR generation 1368 // always keeps them in memory. Expressions of function type 1369 // act exactly like l-values but are formally required to be 1370 // r-values in C. 1371 return expr->isGLValue() || 1372 expr->getType()->isFunctionType() || 1373 hasAggregateEvaluationKind(expr->getType()); 1374 } 1375 1376 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1377 const OpaqueValueExpr *ov, 1378 const Expr *e) { 1379 if (shouldBindAsLValue(ov)) 1380 return bind(CGF, ov, CGF.EmitLValue(e)); 1381 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1382 } 1383 1384 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1385 const OpaqueValueExpr *ov, 1386 const LValue &lv) { 1387 assert(shouldBindAsLValue(ov)); 1388 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1389 return OpaqueValueMappingData(ov, true); 1390 } 1391 1392 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1393 const OpaqueValueExpr *ov, 1394 const RValue &rv) { 1395 assert(!shouldBindAsLValue(ov)); 1396 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1397 1398 OpaqueValueMappingData data(ov, false); 1399 1400 // Work around an extremely aggressive peephole optimization in 1401 // EmitScalarConversion which assumes that all other uses of a 1402 // value are extant. 1403 data.Protection = CGF.protectFromPeepholes(rv); 1404 1405 return data; 1406 } 1407 1408 bool isValid() const { return OpaqueValue != nullptr; } 1409 void clear() { OpaqueValue = nullptr; } 1410 1411 void unbind(CodeGenFunction &CGF) { 1412 assert(OpaqueValue && "no data to unbind!"); 1413 1414 if (BoundLValue) { 1415 CGF.OpaqueLValues.erase(OpaqueValue); 1416 } else { 1417 CGF.OpaqueRValues.erase(OpaqueValue); 1418 CGF.unprotectFromPeepholes(Protection); 1419 } 1420 } 1421 }; 1422 1423 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1424 class OpaqueValueMapping { 1425 CodeGenFunction &CGF; 1426 OpaqueValueMappingData Data; 1427 1428 public: 1429 static bool shouldBindAsLValue(const Expr *expr) { 1430 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1431 } 1432 1433 /// Build the opaque value mapping for the given conditional 1434 /// operator if it's the GNU ?: extension. This is a common 1435 /// enough pattern that the convenience operator is really 1436 /// helpful. 1437 /// 1438 OpaqueValueMapping(CodeGenFunction &CGF, 1439 const AbstractConditionalOperator *op) : CGF(CGF) { 1440 if (isa<ConditionalOperator>(op)) 1441 // Leave Data empty. 1442 return; 1443 1444 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1445 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1446 e->getCommon()); 1447 } 1448 1449 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1450 /// expression is set to the expression the OVE represents. 1451 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1452 : CGF(CGF) { 1453 if (OV) { 1454 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1455 "for OVE with no source expression"); 1456 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1457 } 1458 } 1459 1460 OpaqueValueMapping(CodeGenFunction &CGF, 1461 const OpaqueValueExpr *opaqueValue, 1462 LValue lvalue) 1463 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1464 } 1465 1466 OpaqueValueMapping(CodeGenFunction &CGF, 1467 const OpaqueValueExpr *opaqueValue, 1468 RValue rvalue) 1469 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1470 } 1471 1472 void pop() { 1473 Data.unbind(CGF); 1474 Data.clear(); 1475 } 1476 1477 ~OpaqueValueMapping() { 1478 if (Data.isValid()) Data.unbind(CGF); 1479 } 1480 }; 1481 1482 private: 1483 CGDebugInfo *DebugInfo; 1484 /// Used to create unique names for artificial VLA size debug info variables. 1485 unsigned VLAExprCounter = 0; 1486 bool DisableDebugInfo = false; 1487 1488 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1489 /// calling llvm.stacksave for multiple VLAs in the same scope. 1490 bool DidCallStackSave = false; 1491 1492 /// IndirectBranch - The first time an indirect goto is seen we create a block 1493 /// with an indirect branch. Every time we see the address of a label taken, 1494 /// we add the label to the indirect goto. Every subsequent indirect goto is 1495 /// codegen'd as a jump to the IndirectBranch's basic block. 1496 llvm::IndirectBrInst *IndirectBranch = nullptr; 1497 1498 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1499 /// decls. 1500 DeclMapTy LocalDeclMap; 1501 1502 // Keep track of the cleanups for callee-destructed parameters pushed to the 1503 // cleanup stack so that they can be deactivated later. 1504 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1505 CalleeDestructedParamCleanups; 1506 1507 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1508 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1509 /// parameter. 1510 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1511 SizeArguments; 1512 1513 /// Track escaped local variables with auto storage. Used during SEH 1514 /// outlining to produce a call to llvm.localescape. 1515 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1516 1517 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1518 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1519 1520 // BreakContinueStack - This keeps track of where break and continue 1521 // statements should jump to. 1522 struct BreakContinue { 1523 BreakContinue(JumpDest Break, JumpDest Continue) 1524 : BreakBlock(Break), ContinueBlock(Continue) {} 1525 1526 JumpDest BreakBlock; 1527 JumpDest ContinueBlock; 1528 }; 1529 SmallVector<BreakContinue, 8> BreakContinueStack; 1530 1531 /// Handles cancellation exit points in OpenMP-related constructs. 1532 class OpenMPCancelExitStack { 1533 /// Tracks cancellation exit point and join point for cancel-related exit 1534 /// and normal exit. 1535 struct CancelExit { 1536 CancelExit() = default; 1537 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1538 JumpDest ContBlock) 1539 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1540 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1541 /// true if the exit block has been emitted already by the special 1542 /// emitExit() call, false if the default codegen is used. 1543 bool HasBeenEmitted = false; 1544 JumpDest ExitBlock; 1545 JumpDest ContBlock; 1546 }; 1547 1548 SmallVector<CancelExit, 8> Stack; 1549 1550 public: 1551 OpenMPCancelExitStack() : Stack(1) {} 1552 ~OpenMPCancelExitStack() = default; 1553 /// Fetches the exit block for the current OpenMP construct. 1554 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1555 /// Emits exit block with special codegen procedure specific for the related 1556 /// OpenMP construct + emits code for normal construct cleanup. 1557 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1558 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1559 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1560 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1561 assert(CGF.HaveInsertPoint()); 1562 assert(!Stack.back().HasBeenEmitted); 1563 auto IP = CGF.Builder.saveAndClearIP(); 1564 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1565 CodeGen(CGF); 1566 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1567 CGF.Builder.restoreIP(IP); 1568 Stack.back().HasBeenEmitted = true; 1569 } 1570 CodeGen(CGF); 1571 } 1572 /// Enter the cancel supporting \a Kind construct. 1573 /// \param Kind OpenMP directive that supports cancel constructs. 1574 /// \param HasCancel true, if the construct has inner cancel directive, 1575 /// false otherwise. 1576 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1577 Stack.push_back({Kind, 1578 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1579 : JumpDest(), 1580 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1581 : JumpDest()}); 1582 } 1583 /// Emits default exit point for the cancel construct (if the special one 1584 /// has not be used) + join point for cancel/normal exits. 1585 void exit(CodeGenFunction &CGF) { 1586 if (getExitBlock().isValid()) { 1587 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1588 bool HaveIP = CGF.HaveInsertPoint(); 1589 if (!Stack.back().HasBeenEmitted) { 1590 if (HaveIP) 1591 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1592 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1593 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1594 } 1595 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1596 if (!HaveIP) { 1597 CGF.Builder.CreateUnreachable(); 1598 CGF.Builder.ClearInsertionPoint(); 1599 } 1600 } 1601 Stack.pop_back(); 1602 } 1603 }; 1604 OpenMPCancelExitStack OMPCancelStack; 1605 1606 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1607 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1608 Stmt::Likelihood LH); 1609 1610 CodeGenPGO PGO; 1611 1612 /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. 1613 Address MCDCCondBitmapAddr = Address::invalid(); 1614 1615 /// Calculate branch weights appropriate for PGO data 1616 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1617 uint64_t FalseCount) const; 1618 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1619 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1620 uint64_t LoopCount) const; 1621 1622 public: 1623 /// Increment the profiler's counter for the given statement by \p StepV. 1624 /// If \p StepV is null, the default increment is 1. 1625 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1626 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1627 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1628 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) { 1629 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1630 PGO.emitCounterSetOrIncrement(Builder, S, StepV); 1631 } 1632 PGO.setCurrentStmt(S); 1633 } 1634 1635 bool isMCDCCoverageEnabled() const { 1636 return (CGM.getCodeGenOpts().hasProfileClangInstr() && 1637 CGM.getCodeGenOpts().MCDCCoverage && 1638 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); 1639 } 1640 1641 /// Allocate a temp value on the stack that MCDC can use to track condition 1642 /// results. 1643 void maybeCreateMCDCCondBitmap() { 1644 if (isMCDCCoverageEnabled()) { 1645 PGO.emitMCDCParameters(Builder); 1646 MCDCCondBitmapAddr = 1647 CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr"); 1648 } 1649 } 1650 1651 bool isBinaryLogicalOp(const Expr *E) const { 1652 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens()); 1653 return (BOp && BOp->isLogicalOp()); 1654 } 1655 1656 /// Zero-init the MCDC temp value. 1657 void maybeResetMCDCCondBitmap(const Expr *E) { 1658 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1659 PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr); 1660 PGO.setCurrentStmt(E); 1661 } 1662 } 1663 1664 /// Increment the profiler's counter for the given expression by \p StepV. 1665 /// If \p StepV is null, the default increment is 1. 1666 void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { 1667 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1668 PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this); 1669 PGO.setCurrentStmt(E); 1670 } 1671 } 1672 1673 /// Update the MCDC temp value with the condition's evaluated result. 1674 void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { 1675 if (isMCDCCoverageEnabled()) { 1676 PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this); 1677 PGO.setCurrentStmt(E); 1678 } 1679 } 1680 1681 /// Get the profiler's count for the given statement. 1682 uint64_t getProfileCount(const Stmt *S) { 1683 return PGO.getStmtCount(S).value_or(0); 1684 } 1685 1686 /// Set the profiler's current count. 1687 void setCurrentProfileCount(uint64_t Count) { 1688 PGO.setCurrentRegionCount(Count); 1689 } 1690 1691 /// Get the profiler's current count. This is generally the count for the most 1692 /// recently incremented counter. 1693 uint64_t getCurrentProfileCount() { 1694 return PGO.getCurrentRegionCount(); 1695 } 1696 1697 private: 1698 1699 /// SwitchInsn - This is nearest current switch instruction. It is null if 1700 /// current context is not in a switch. 1701 llvm::SwitchInst *SwitchInsn = nullptr; 1702 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1703 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1704 1705 /// The likelihood attributes of the SwitchCase. 1706 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1707 1708 /// CaseRangeBlock - This block holds if condition check for last case 1709 /// statement range in current switch instruction. 1710 llvm::BasicBlock *CaseRangeBlock = nullptr; 1711 1712 /// OpaqueLValues - Keeps track of the current set of opaque value 1713 /// expressions. 1714 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1715 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1716 1717 // VLASizeMap - This keeps track of the associated size for each VLA type. 1718 // We track this by the size expression rather than the type itself because 1719 // in certain situations, like a const qualifier applied to an VLA typedef, 1720 // multiple VLA types can share the same size expression. 1721 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1722 // enter/leave scopes. 1723 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1724 1725 /// A block containing a single 'unreachable' instruction. Created 1726 /// lazily by getUnreachableBlock(). 1727 llvm::BasicBlock *UnreachableBlock = nullptr; 1728 1729 /// Counts of the number return expressions in the function. 1730 unsigned NumReturnExprs = 0; 1731 1732 /// Count the number of simple (constant) return expressions in the function. 1733 unsigned NumSimpleReturnExprs = 0; 1734 1735 /// The last regular (non-return) debug location (breakpoint) in the function. 1736 SourceLocation LastStopPoint; 1737 1738 public: 1739 /// Source location information about the default argument or member 1740 /// initializer expression we're evaluating, if any. 1741 CurrentSourceLocExprScope CurSourceLocExprScope; 1742 using SourceLocExprScopeGuard = 1743 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1744 1745 /// A scope within which we are constructing the fields of an object which 1746 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1747 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1748 class FieldConstructionScope { 1749 public: 1750 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1751 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1752 CGF.CXXDefaultInitExprThis = This; 1753 } 1754 ~FieldConstructionScope() { 1755 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1756 } 1757 1758 private: 1759 CodeGenFunction &CGF; 1760 Address OldCXXDefaultInitExprThis; 1761 }; 1762 1763 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1764 /// is overridden to be the object under construction. 1765 class CXXDefaultInitExprScope { 1766 public: 1767 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1768 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1769 OldCXXThisAlignment(CGF.CXXThisAlignment), 1770 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1771 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); 1772 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1773 } 1774 ~CXXDefaultInitExprScope() { 1775 CGF.CXXThisValue = OldCXXThisValue; 1776 CGF.CXXThisAlignment = OldCXXThisAlignment; 1777 } 1778 1779 public: 1780 CodeGenFunction &CGF; 1781 llvm::Value *OldCXXThisValue; 1782 CharUnits OldCXXThisAlignment; 1783 SourceLocExprScopeGuard SourceLocScope; 1784 }; 1785 1786 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1787 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1788 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1789 }; 1790 1791 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1792 /// current loop index is overridden. 1793 class ArrayInitLoopExprScope { 1794 public: 1795 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1796 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1797 CGF.ArrayInitIndex = Index; 1798 } 1799 ~ArrayInitLoopExprScope() { 1800 CGF.ArrayInitIndex = OldArrayInitIndex; 1801 } 1802 1803 private: 1804 CodeGenFunction &CGF; 1805 llvm::Value *OldArrayInitIndex; 1806 }; 1807 1808 class InlinedInheritingConstructorScope { 1809 public: 1810 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1811 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1812 OldCurCodeDecl(CGF.CurCodeDecl), 1813 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1814 OldCXXABIThisValue(CGF.CXXABIThisValue), 1815 OldCXXThisValue(CGF.CXXThisValue), 1816 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1817 OldCXXThisAlignment(CGF.CXXThisAlignment), 1818 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1819 OldCXXInheritedCtorInitExprArgs( 1820 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1821 CGF.CurGD = GD; 1822 CGF.CurFuncDecl = CGF.CurCodeDecl = 1823 cast<CXXConstructorDecl>(GD.getDecl()); 1824 CGF.CXXABIThisDecl = nullptr; 1825 CGF.CXXABIThisValue = nullptr; 1826 CGF.CXXThisValue = nullptr; 1827 CGF.CXXABIThisAlignment = CharUnits(); 1828 CGF.CXXThisAlignment = CharUnits(); 1829 CGF.ReturnValue = Address::invalid(); 1830 CGF.FnRetTy = QualType(); 1831 CGF.CXXInheritedCtorInitExprArgs.clear(); 1832 } 1833 ~InlinedInheritingConstructorScope() { 1834 CGF.CurGD = OldCurGD; 1835 CGF.CurFuncDecl = OldCurFuncDecl; 1836 CGF.CurCodeDecl = OldCurCodeDecl; 1837 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1838 CGF.CXXABIThisValue = OldCXXABIThisValue; 1839 CGF.CXXThisValue = OldCXXThisValue; 1840 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1841 CGF.CXXThisAlignment = OldCXXThisAlignment; 1842 CGF.ReturnValue = OldReturnValue; 1843 CGF.FnRetTy = OldFnRetTy; 1844 CGF.CXXInheritedCtorInitExprArgs = 1845 std::move(OldCXXInheritedCtorInitExprArgs); 1846 } 1847 1848 private: 1849 CodeGenFunction &CGF; 1850 GlobalDecl OldCurGD; 1851 const Decl *OldCurFuncDecl; 1852 const Decl *OldCurCodeDecl; 1853 ImplicitParamDecl *OldCXXABIThisDecl; 1854 llvm::Value *OldCXXABIThisValue; 1855 llvm::Value *OldCXXThisValue; 1856 CharUnits OldCXXABIThisAlignment; 1857 CharUnits OldCXXThisAlignment; 1858 Address OldReturnValue; 1859 QualType OldFnRetTy; 1860 CallArgList OldCXXInheritedCtorInitExprArgs; 1861 }; 1862 1863 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1864 // region body, and finalization codegen callbacks. This will class will also 1865 // contain privatization functions used by the privatization call backs 1866 // 1867 // TODO: this is temporary class for things that are being moved out of 1868 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1869 // utility function for use with the OMPBuilder. Once that move to use the 1870 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1871 // directly, or a new helper class that will contain functions used by both 1872 // this and the OMPBuilder 1873 1874 struct OMPBuilderCBHelpers { 1875 1876 OMPBuilderCBHelpers() = delete; 1877 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1878 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1879 1880 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1881 1882 /// Cleanup action for allocate support. 1883 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1884 1885 private: 1886 llvm::CallInst *RTLFnCI; 1887 1888 public: 1889 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1890 RLFnCI->removeFromParent(); 1891 } 1892 1893 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1894 if (!CGF.HaveInsertPoint()) 1895 return; 1896 CGF.Builder.Insert(RTLFnCI); 1897 } 1898 }; 1899 1900 /// Returns address of the threadprivate variable for the current 1901 /// thread. This Also create any necessary OMP runtime calls. 1902 /// 1903 /// \param VD VarDecl for Threadprivate variable. 1904 /// \param VDAddr Address of the Vardecl 1905 /// \param Loc The location where the barrier directive was encountered 1906 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1907 const VarDecl *VD, Address VDAddr, 1908 SourceLocation Loc); 1909 1910 /// Gets the OpenMP-specific address of the local variable /p VD. 1911 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1912 const VarDecl *VD); 1913 /// Get the platform-specific name separator. 1914 /// \param Parts different parts of the final name that needs separation 1915 /// \param FirstSeparator First separator used between the initial two 1916 /// parts of the name. 1917 /// \param Separator separator used between all of the rest consecutinve 1918 /// parts of the name 1919 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1920 StringRef FirstSeparator = ".", 1921 StringRef Separator = "."); 1922 /// Emit the Finalization for an OMP region 1923 /// \param CGF The Codegen function this belongs to 1924 /// \param IP Insertion point for generating the finalization code. 1925 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1926 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1927 assert(IP.getBlock()->end() != IP.getPoint() && 1928 "OpenMP IR Builder should cause terminated block!"); 1929 1930 llvm::BasicBlock *IPBB = IP.getBlock(); 1931 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1932 assert(DestBB && "Finalization block should have one successor!"); 1933 1934 // erase and replace with cleanup branch. 1935 IPBB->getTerminator()->eraseFromParent(); 1936 CGF.Builder.SetInsertPoint(IPBB); 1937 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1938 CGF.EmitBranchThroughCleanup(Dest); 1939 } 1940 1941 /// Emit the body of an OMP region 1942 /// \param CGF The Codegen function this belongs to 1943 /// \param RegionBodyStmt The body statement for the OpenMP region being 1944 /// generated 1945 /// \param AllocaIP Where to insert alloca instructions 1946 /// \param CodeGenIP Where to insert the region code 1947 /// \param RegionName Name to be used for new blocks 1948 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1949 const Stmt *RegionBodyStmt, 1950 InsertPointTy AllocaIP, 1951 InsertPointTy CodeGenIP, 1952 Twine RegionName); 1953 1954 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1955 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1956 ArrayRef<llvm::Value *> Args) { 1957 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1958 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1959 CodeGenIPBBTI->eraseFromParent(); 1960 1961 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1962 1963 if (Fn->doesNotThrow()) 1964 CGF.EmitNounwindRuntimeCall(Fn, Args); 1965 else 1966 CGF.EmitRuntimeCall(Fn, Args); 1967 1968 if (CGF.Builder.saveIP().isSet()) 1969 CGF.Builder.CreateBr(&FiniBB); 1970 } 1971 1972 /// Emit the body of an OMP region that will be outlined in 1973 /// OpenMPIRBuilder::finalize(). 1974 /// \param CGF The Codegen function this belongs to 1975 /// \param RegionBodyStmt The body statement for the OpenMP region being 1976 /// generated 1977 /// \param AllocaIP Where to insert alloca instructions 1978 /// \param CodeGenIP Where to insert the region code 1979 /// \param RegionName Name to be used for new blocks 1980 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1981 const Stmt *RegionBodyStmt, 1982 InsertPointTy AllocaIP, 1983 InsertPointTy CodeGenIP, 1984 Twine RegionName); 1985 1986 /// RAII for preserving necessary info during Outlined region body codegen. 1987 class OutlinedRegionBodyRAII { 1988 1989 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1990 CodeGenFunction::JumpDest OldReturnBlock; 1991 CodeGenFunction &CGF; 1992 1993 public: 1994 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1995 llvm::BasicBlock &RetBB) 1996 : CGF(cgf) { 1997 assert(AllocaIP.isSet() && 1998 "Must specify Insertion point for allocas of outlined function"); 1999 OldAllocaIP = CGF.AllocaInsertPt; 2000 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2001 2002 OldReturnBlock = CGF.ReturnBlock; 2003 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 2004 } 2005 2006 ~OutlinedRegionBodyRAII() { 2007 CGF.AllocaInsertPt = OldAllocaIP; 2008 CGF.ReturnBlock = OldReturnBlock; 2009 } 2010 }; 2011 2012 /// RAII for preserving necessary info during inlined region body codegen. 2013 class InlinedRegionBodyRAII { 2014 2015 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2016 CodeGenFunction &CGF; 2017 2018 public: 2019 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2020 llvm::BasicBlock &FiniBB) 2021 : CGF(cgf) { 2022 // Alloca insertion block should be in the entry block of the containing 2023 // function so it expects an empty AllocaIP in which case will reuse the 2024 // old alloca insertion point, or a new AllocaIP in the same block as 2025 // the old one 2026 assert((!AllocaIP.isSet() || 2027 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 2028 "Insertion point should be in the entry block of containing " 2029 "function!"); 2030 OldAllocaIP = CGF.AllocaInsertPt; 2031 if (AllocaIP.isSet()) 2032 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2033 2034 // TODO: Remove the call, after making sure the counter is not used by 2035 // the EHStack. 2036 // Since this is an inlined region, it should not modify the 2037 // ReturnBlock, and should reuse the one for the enclosing outlined 2038 // region. So, the JumpDest being return by the function is discarded 2039 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 2040 } 2041 2042 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 2043 }; 2044 }; 2045 2046 private: 2047 /// CXXThisDecl - When generating code for a C++ member function, 2048 /// this will hold the implicit 'this' declaration. 2049 ImplicitParamDecl *CXXABIThisDecl = nullptr; 2050 llvm::Value *CXXABIThisValue = nullptr; 2051 llvm::Value *CXXThisValue = nullptr; 2052 CharUnits CXXABIThisAlignment; 2053 CharUnits CXXThisAlignment; 2054 2055 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 2056 /// this expression. 2057 Address CXXDefaultInitExprThis = Address::invalid(); 2058 2059 /// The current array initialization index when evaluating an 2060 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 2061 llvm::Value *ArrayInitIndex = nullptr; 2062 2063 /// The values of function arguments to use when evaluating 2064 /// CXXInheritedCtorInitExprs within this context. 2065 CallArgList CXXInheritedCtorInitExprArgs; 2066 2067 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 2068 /// destructor, this will hold the implicit argument (e.g. VTT). 2069 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 2070 llvm::Value *CXXStructorImplicitParamValue = nullptr; 2071 2072 /// OutermostConditional - Points to the outermost active 2073 /// conditional control. This is used so that we know if a 2074 /// temporary should be destroyed conditionally. 2075 ConditionalEvaluation *OutermostConditional = nullptr; 2076 2077 /// The current lexical scope. 2078 LexicalScope *CurLexicalScope = nullptr; 2079 2080 /// The current source location that should be used for exception 2081 /// handling code. 2082 SourceLocation CurEHLocation; 2083 2084 /// BlockByrefInfos - For each __block variable, contains 2085 /// information about the layout of the variable. 2086 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 2087 2088 /// Used by -fsanitize=nullability-return to determine whether the return 2089 /// value can be checked. 2090 llvm::Value *RetValNullabilityPrecondition = nullptr; 2091 2092 /// Check if -fsanitize=nullability-return instrumentation is required for 2093 /// this function. 2094 bool requiresReturnValueNullabilityCheck() const { 2095 return RetValNullabilityPrecondition; 2096 } 2097 2098 /// Used to store precise source locations for return statements by the 2099 /// runtime return value checks. 2100 Address ReturnLocation = Address::invalid(); 2101 2102 /// Check if the return value of this function requires sanitization. 2103 bool requiresReturnValueCheck() const; 2104 2105 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 2106 bool hasInAllocaArg(const CXXMethodDecl *MD); 2107 2108 llvm::BasicBlock *TerminateLandingPad = nullptr; 2109 llvm::BasicBlock *TerminateHandler = nullptr; 2110 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 2111 2112 /// Terminate funclets keyed by parent funclet pad. 2113 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 2114 2115 /// Largest vector width used in ths function. Will be used to create a 2116 /// function attribute. 2117 unsigned LargestVectorWidth = 0; 2118 2119 /// True if we need emit the life-time markers. This is initially set in 2120 /// the constructor, but could be overwritten to true if this is a coroutine. 2121 bool ShouldEmitLifetimeMarkers; 2122 2123 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 2124 /// the function metadata. 2125 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 2126 2127 public: 2128 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 2129 ~CodeGenFunction(); 2130 2131 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 2132 ASTContext &getContext() const { return CGM.getContext(); } 2133 CGDebugInfo *getDebugInfo() { 2134 if (DisableDebugInfo) 2135 return nullptr; 2136 return DebugInfo; 2137 } 2138 void disableDebugInfo() { DisableDebugInfo = true; } 2139 void enableDebugInfo() { DisableDebugInfo = false; } 2140 2141 bool shouldUseFusedARCCalls() { 2142 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2143 } 2144 2145 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2146 2147 /// Returns a pointer to the function's exception object and selector slot, 2148 /// which is assigned in every landing pad. 2149 Address getExceptionSlot(); 2150 Address getEHSelectorSlot(); 2151 2152 /// Returns the contents of the function's exception object and selector 2153 /// slots. 2154 llvm::Value *getExceptionFromSlot(); 2155 llvm::Value *getSelectorFromSlot(); 2156 2157 RawAddress getNormalCleanupDestSlot(); 2158 2159 llvm::BasicBlock *getUnreachableBlock() { 2160 if (!UnreachableBlock) { 2161 UnreachableBlock = createBasicBlock("unreachable"); 2162 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2163 } 2164 return UnreachableBlock; 2165 } 2166 2167 llvm::BasicBlock *getInvokeDest() { 2168 if (!EHStack.requiresLandingPad()) return nullptr; 2169 return getInvokeDestImpl(); 2170 } 2171 2172 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2173 2174 const TargetInfo &getTarget() const { return Target; } 2175 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2176 const TargetCodeGenInfo &getTargetHooks() const { 2177 return CGM.getTargetCodeGenInfo(); 2178 } 2179 2180 //===--------------------------------------------------------------------===// 2181 // Cleanups 2182 //===--------------------------------------------------------------------===// 2183 2184 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2185 2186 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2187 Address arrayEndPointer, 2188 QualType elementType, 2189 CharUnits elementAlignment, 2190 Destroyer *destroyer); 2191 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2192 llvm::Value *arrayEnd, 2193 QualType elementType, 2194 CharUnits elementAlignment, 2195 Destroyer *destroyer); 2196 2197 void pushDestroy(QualType::DestructionKind dtorKind, 2198 Address addr, QualType type); 2199 void pushEHDestroy(QualType::DestructionKind dtorKind, 2200 Address addr, QualType type); 2201 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2202 Destroyer *destroyer, bool useEHCleanupForArray); 2203 void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, 2204 Address addr, QualType type); 2205 void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, 2206 QualType type, Destroyer *destroyer, 2207 bool useEHCleanupForArray); 2208 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2209 QualType type, Destroyer *destroyer, 2210 bool useEHCleanupForArray); 2211 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2212 llvm::Value *CompletePtr, 2213 QualType ElementType); 2214 void pushStackRestore(CleanupKind kind, Address SPMem); 2215 void pushKmpcAllocFree(CleanupKind Kind, 2216 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2217 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2218 bool useEHCleanupForArray); 2219 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2220 Destroyer *destroyer, 2221 bool useEHCleanupForArray, 2222 const VarDecl *VD); 2223 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2224 QualType elementType, CharUnits elementAlign, 2225 Destroyer *destroyer, 2226 bool checkZeroLength, bool useEHCleanup); 2227 2228 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2229 2230 /// Determines whether an EH cleanup is required to destroy a type 2231 /// with the given destruction kind. 2232 bool needsEHCleanup(QualType::DestructionKind kind) { 2233 switch (kind) { 2234 case QualType::DK_none: 2235 return false; 2236 case QualType::DK_cxx_destructor: 2237 case QualType::DK_objc_weak_lifetime: 2238 case QualType::DK_nontrivial_c_struct: 2239 return getLangOpts().Exceptions; 2240 case QualType::DK_objc_strong_lifetime: 2241 return getLangOpts().Exceptions && 2242 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2243 } 2244 llvm_unreachable("bad destruction kind"); 2245 } 2246 2247 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2248 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2249 } 2250 2251 //===--------------------------------------------------------------------===// 2252 // Objective-C 2253 //===--------------------------------------------------------------------===// 2254 2255 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2256 2257 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2258 2259 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2260 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2261 const ObjCPropertyImplDecl *PID); 2262 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2263 const ObjCPropertyImplDecl *propImpl, 2264 const ObjCMethodDecl *GetterMothodDecl, 2265 llvm::Constant *AtomicHelperFn); 2266 2267 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2268 ObjCMethodDecl *MD, bool ctor); 2269 2270 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2271 /// for the given property. 2272 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2273 const ObjCPropertyImplDecl *PID); 2274 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2275 const ObjCPropertyImplDecl *propImpl, 2276 llvm::Constant *AtomicHelperFn); 2277 2278 //===--------------------------------------------------------------------===// 2279 // Block Bits 2280 //===--------------------------------------------------------------------===// 2281 2282 /// Emit block literal. 2283 /// \return an LLVM value which is a pointer to a struct which contains 2284 /// information about the block, including the block invoke function, the 2285 /// captured variables, etc. 2286 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2287 2288 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2289 const CGBlockInfo &Info, 2290 const DeclMapTy &ldm, 2291 bool IsLambdaConversionToBlock, 2292 bool BuildGlobalBlock); 2293 2294 /// Check if \p T is a C++ class that has a destructor that can throw. 2295 static bool cxxDestructorCanThrow(QualType T); 2296 2297 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2298 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2299 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2300 const ObjCPropertyImplDecl *PID); 2301 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2302 const ObjCPropertyImplDecl *PID); 2303 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2304 2305 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2306 bool CanThrow); 2307 2308 class AutoVarEmission; 2309 2310 void emitByrefStructureInit(const AutoVarEmission &emission); 2311 2312 /// Enter a cleanup to destroy a __block variable. Note that this 2313 /// cleanup should be a no-op if the variable hasn't left the stack 2314 /// yet; if a cleanup is required for the variable itself, that needs 2315 /// to be done externally. 2316 /// 2317 /// \param Kind Cleanup kind. 2318 /// 2319 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2320 /// structure that will be passed to _Block_object_dispose. When 2321 /// \p LoadBlockVarAddr is true, the address of the field of the block 2322 /// structure that holds the address of the __block structure. 2323 /// 2324 /// \param Flags The flag that will be passed to _Block_object_dispose. 2325 /// 2326 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2327 /// \p Addr to get the address of the __block structure. 2328 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2329 bool LoadBlockVarAddr, bool CanThrow); 2330 2331 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2332 llvm::Value *ptr); 2333 2334 Address LoadBlockStruct(); 2335 Address GetAddrOfBlockDecl(const VarDecl *var); 2336 2337 /// BuildBlockByrefAddress - Computes the location of the 2338 /// data in a variable which is declared as __block. 2339 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2340 bool followForward = true); 2341 Address emitBlockByrefAddress(Address baseAddr, 2342 const BlockByrefInfo &info, 2343 bool followForward, 2344 const llvm::Twine &name); 2345 2346 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2347 2348 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2349 2350 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2351 const CGFunctionInfo &FnInfo); 2352 2353 /// Annotate the function with an attribute that disables TSan checking at 2354 /// runtime. 2355 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2356 2357 /// Emit code for the start of a function. 2358 /// \param Loc The location to be associated with the function. 2359 /// \param StartLoc The location of the function body. 2360 void StartFunction(GlobalDecl GD, 2361 QualType RetTy, 2362 llvm::Function *Fn, 2363 const CGFunctionInfo &FnInfo, 2364 const FunctionArgList &Args, 2365 SourceLocation Loc = SourceLocation(), 2366 SourceLocation StartLoc = SourceLocation()); 2367 2368 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2369 2370 void EmitConstructorBody(FunctionArgList &Args); 2371 void EmitDestructorBody(FunctionArgList &Args); 2372 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2373 void EmitFunctionBody(const Stmt *Body); 2374 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2375 2376 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2377 CallArgList &CallArgs, 2378 const CGFunctionInfo *CallOpFnInfo = nullptr, 2379 llvm::Constant *CallOpFn = nullptr); 2380 void EmitLambdaBlockInvokeBody(); 2381 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2382 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2383 CallArgList &CallArgs); 2384 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2385 const CGFunctionInfo **ImplFnInfo, 2386 llvm::Function **ImplFn); 2387 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2388 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2389 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2390 } 2391 void EmitAsanPrologueOrEpilogue(bool Prologue); 2392 2393 /// Emit the unified return block, trying to avoid its emission when 2394 /// possible. 2395 /// \return The debug location of the user written return statement if the 2396 /// return block is avoided. 2397 llvm::DebugLoc EmitReturnBlock(); 2398 2399 /// FinishFunction - Complete IR generation of the current function. It is 2400 /// legal to call this function even if there is no current insertion point. 2401 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2402 2403 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2404 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2405 2406 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2407 const ThunkInfo *Thunk, bool IsUnprototyped); 2408 2409 void FinishThunk(); 2410 2411 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2412 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2413 llvm::FunctionCallee Callee); 2414 2415 /// Generate a thunk for the given method. 2416 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2417 GlobalDecl GD, const ThunkInfo &Thunk, 2418 bool IsUnprototyped); 2419 2420 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2421 const CGFunctionInfo &FnInfo, 2422 GlobalDecl GD, const ThunkInfo &Thunk); 2423 2424 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2425 FunctionArgList &Args); 2426 2427 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2428 2429 /// Struct with all information about dynamic [sub]class needed to set vptr. 2430 struct VPtr { 2431 BaseSubobject Base; 2432 const CXXRecordDecl *NearestVBase; 2433 CharUnits OffsetFromNearestVBase; 2434 const CXXRecordDecl *VTableClass; 2435 }; 2436 2437 /// Initialize the vtable pointer of the given subobject. 2438 void InitializeVTablePointer(const VPtr &vptr); 2439 2440 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2441 2442 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2443 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2444 2445 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2446 CharUnits OffsetFromNearestVBase, 2447 bool BaseIsNonVirtualPrimaryBase, 2448 const CXXRecordDecl *VTableClass, 2449 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2450 2451 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2452 2453 // VTableTrapMode - whether we guarantee that loading the 2454 // vtable is guaranteed to trap on authentication failure, 2455 // even if the resulting vtable pointer is unused. 2456 enum class VTableAuthMode { 2457 Authenticate, 2458 MustTrap, 2459 UnsafeUbsanStrip // Should only be used for Vptr UBSan check 2460 }; 2461 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2462 /// to by This. 2463 llvm::Value * 2464 GetVTablePtr(Address This, llvm::Type *VTableTy, 2465 const CXXRecordDecl *VTableClass, 2466 VTableAuthMode AuthMode = VTableAuthMode::Authenticate); 2467 2468 enum CFITypeCheckKind { 2469 CFITCK_VCall, 2470 CFITCK_NVCall, 2471 CFITCK_DerivedCast, 2472 CFITCK_UnrelatedCast, 2473 CFITCK_ICall, 2474 CFITCK_NVMFCall, 2475 CFITCK_VMFCall, 2476 }; 2477 2478 /// Derived is the presumed address of an object of type T after a 2479 /// cast. If T is a polymorphic class type, emit a check that the virtual 2480 /// table for Derived belongs to a class derived from T. 2481 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2482 CFITypeCheckKind TCK, SourceLocation Loc); 2483 2484 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2485 /// If vptr CFI is enabled, emit a check that VTable is valid. 2486 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2487 CFITypeCheckKind TCK, SourceLocation Loc); 2488 2489 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2490 /// RD using llvm.type.test. 2491 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2492 CFITypeCheckKind TCK, SourceLocation Loc); 2493 2494 /// If whole-program virtual table optimization is enabled, emit an assumption 2495 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2496 /// enabled, emit a check that VTable is a member of RD's type identifier. 2497 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2498 llvm::Value *VTable, SourceLocation Loc); 2499 2500 /// Returns whether we should perform a type checked load when loading a 2501 /// virtual function for virtual calls to members of RD. This is generally 2502 /// true when both vcall CFI and whole-program-vtables are enabled. 2503 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2504 2505 /// Emit a type checked load from the given vtable. 2506 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2507 llvm::Value *VTable, 2508 llvm::Type *VTableTy, 2509 uint64_t VTableByteOffset); 2510 2511 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2512 /// given phase of destruction for a destructor. The end result 2513 /// should call destructors on members and base classes in reverse 2514 /// order of their construction. 2515 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2516 2517 /// ShouldInstrumentFunction - Return true if the current function should be 2518 /// instrumented with __cyg_profile_func_* calls 2519 bool ShouldInstrumentFunction(); 2520 2521 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2522 /// should not be instrumented with sanitizers. 2523 bool ShouldSkipSanitizerInstrumentation(); 2524 2525 /// ShouldXRayInstrument - Return true if the current function should be 2526 /// instrumented with XRay nop sleds. 2527 bool ShouldXRayInstrumentFunction() const; 2528 2529 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2530 /// XRay custom event handling calls. 2531 bool AlwaysEmitXRayCustomEvents() const; 2532 2533 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2534 /// XRay typed event handling calls. 2535 bool AlwaysEmitXRayTypedEvents() const; 2536 2537 /// Return a type hash constant for a function instrumented by 2538 /// -fsanitize=function. 2539 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2540 2541 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2542 /// arguments for the given function. This is also responsible for naming the 2543 /// LLVM function arguments. 2544 void EmitFunctionProlog(const CGFunctionInfo &FI, 2545 llvm::Function *Fn, 2546 const FunctionArgList &Args); 2547 2548 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2549 /// given temporary. 2550 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2551 SourceLocation EndLoc); 2552 2553 /// Emit a test that checks if the return value \p RV is nonnull. 2554 void EmitReturnValueCheck(llvm::Value *RV); 2555 2556 /// EmitStartEHSpec - Emit the start of the exception spec. 2557 void EmitStartEHSpec(const Decl *D); 2558 2559 /// EmitEndEHSpec - Emit the end of the exception spec. 2560 void EmitEndEHSpec(const Decl *D); 2561 2562 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2563 llvm::BasicBlock *getTerminateLandingPad(); 2564 2565 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2566 /// terminate. 2567 llvm::BasicBlock *getTerminateFunclet(); 2568 2569 /// getTerminateHandler - Return a handler (not a landing pad, just 2570 /// a catch handler) that just calls terminate. This is used when 2571 /// a terminate scope encloses a try. 2572 llvm::BasicBlock *getTerminateHandler(); 2573 2574 llvm::Type *ConvertTypeForMem(QualType T); 2575 llvm::Type *ConvertType(QualType T); 2576 llvm::Type *convertTypeForLoadStore(QualType ASTTy, 2577 llvm::Type *LLVMTy = nullptr); 2578 llvm::Type *ConvertType(const TypeDecl *T) { 2579 return ConvertType(getContext().getTypeDeclType(T)); 2580 } 2581 2582 /// LoadObjCSelf - Load the value of self. This function is only valid while 2583 /// generating code for an Objective-C method. 2584 llvm::Value *LoadObjCSelf(); 2585 2586 /// TypeOfSelfObject - Return type of object that this self represents. 2587 QualType TypeOfSelfObject(); 2588 2589 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2590 static TypeEvaluationKind getEvaluationKind(QualType T); 2591 2592 static bool hasScalarEvaluationKind(QualType T) { 2593 return getEvaluationKind(T) == TEK_Scalar; 2594 } 2595 2596 static bool hasAggregateEvaluationKind(QualType T) { 2597 return getEvaluationKind(T) == TEK_Aggregate; 2598 } 2599 2600 /// createBasicBlock - Create an LLVM basic block. 2601 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2602 llvm::Function *parent = nullptr, 2603 llvm::BasicBlock *before = nullptr) { 2604 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2605 } 2606 2607 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2608 /// label maps to. 2609 JumpDest getJumpDestForLabel(const LabelDecl *S); 2610 2611 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2612 /// another basic block, simplify it. This assumes that no other code could 2613 /// potentially reference the basic block. 2614 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2615 2616 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2617 /// adding a fall-through branch from the current insert block if 2618 /// necessary. It is legal to call this function even if there is no current 2619 /// insertion point. 2620 /// 2621 /// IsFinished - If true, indicates that the caller has finished emitting 2622 /// branches to the given block and does not expect to emit code into it. This 2623 /// means the block can be ignored if it is unreachable. 2624 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2625 2626 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2627 /// near its uses, and leave the insertion point in it. 2628 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2629 2630 /// EmitBranch - Emit a branch to the specified basic block from the current 2631 /// insert block, taking care to avoid creation of branches from dummy 2632 /// blocks. It is legal to call this function even if there is no current 2633 /// insertion point. 2634 /// 2635 /// This function clears the current insertion point. The caller should follow 2636 /// calls to this function with calls to Emit*Block prior to generation new 2637 /// code. 2638 void EmitBranch(llvm::BasicBlock *Block); 2639 2640 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2641 /// indicates that the current code being emitted is unreachable. 2642 bool HaveInsertPoint() const { 2643 return Builder.GetInsertBlock() != nullptr; 2644 } 2645 2646 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2647 /// emitted IR has a place to go. Note that by definition, if this function 2648 /// creates a block then that block is unreachable; callers may do better to 2649 /// detect when no insertion point is defined and simply skip IR generation. 2650 void EnsureInsertPoint() { 2651 if (!HaveInsertPoint()) 2652 EmitBlock(createBasicBlock()); 2653 } 2654 2655 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2656 /// specified stmt yet. 2657 void ErrorUnsupported(const Stmt *S, const char *Type); 2658 2659 //===--------------------------------------------------------------------===// 2660 // Helpers 2661 //===--------------------------------------------------------------------===// 2662 2663 Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, 2664 llvm::BasicBlock *LHSBlock, 2665 llvm::BasicBlock *RHSBlock, 2666 llvm::BasicBlock *MergeBlock, 2667 QualType MergedType) { 2668 Builder.SetInsertPoint(MergeBlock); 2669 llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond"); 2670 PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock); 2671 PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock); 2672 LHS.replaceBasePointer(PtrPhi); 2673 LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment())); 2674 return LHS; 2675 } 2676 2677 /// Construct an address with the natural alignment of T. If a pointer to T 2678 /// is expected to be signed, the pointer passed to this function must have 2679 /// been signed, and the returned Address will have the pointer authentication 2680 /// information needed to authenticate the signed pointer. 2681 Address makeNaturalAddressForPointer( 2682 llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), 2683 bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, 2684 TBAAAccessInfo *TBAAInfo = nullptr, 2685 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 2686 if (Alignment.isZero()) 2687 Alignment = 2688 CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType); 2689 return Address(Ptr, ConvertTypeForMem(T), Alignment, 2690 CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr, 2691 IsKnownNonNull); 2692 } 2693 2694 LValue MakeAddrLValue(Address Addr, QualType T, 2695 AlignmentSource Source = AlignmentSource::Type) { 2696 return MakeAddrLValue(Addr, T, LValueBaseInfo(Source), 2697 CGM.getTBAAAccessInfo(T)); 2698 } 2699 2700 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2701 TBAAAccessInfo TBAAInfo) { 2702 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2703 } 2704 2705 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2706 AlignmentSource Source = AlignmentSource::Type) { 2707 return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T, 2708 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2709 } 2710 2711 /// Same as MakeAddrLValue above except that the pointer is known to be 2712 /// unsigned. 2713 LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2714 AlignmentSource Source = AlignmentSource::Type) { 2715 Address Addr(V, ConvertTypeForMem(T), Alignment); 2716 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2717 CGM.getTBAAAccessInfo(T)); 2718 } 2719 2720 LValue 2721 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2722 AlignmentSource Source = AlignmentSource::Type) { 2723 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2724 TBAAAccessInfo()); 2725 } 2726 2727 /// Given a value of type T* that may not be to a complete object, construct 2728 /// an l-value with the natural pointee alignment of T. 2729 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2730 2731 LValue 2732 MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 2733 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 2734 2735 /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known 2736 /// to be unsigned. 2737 LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); 2738 2739 LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); 2740 2741 Address EmitLoadOfReference(LValue RefLVal, 2742 LValueBaseInfo *PointeeBaseInfo = nullptr, 2743 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2744 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2745 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2746 AlignmentSource Source = 2747 AlignmentSource::Type) { 2748 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2749 CGM.getTBAAAccessInfo(RefTy)); 2750 return EmitLoadOfReferenceLValue(RefLVal); 2751 } 2752 2753 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2754 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2755 /// it is loaded from. 2756 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2757 LValueBaseInfo *BaseInfo = nullptr, 2758 TBAAAccessInfo *TBAAInfo = nullptr); 2759 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2760 2761 private: 2762 struct AllocaTracker { 2763 void Add(llvm::AllocaInst *I) { Allocas.push_back(I); } 2764 llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } 2765 2766 private: 2767 llvm::SmallVector<llvm::AllocaInst *> Allocas; 2768 }; 2769 AllocaTracker *Allocas = nullptr; 2770 2771 public: 2772 // Captures all the allocas created during the scope of its RAII object. 2773 struct AllocaTrackerRAII { 2774 AllocaTrackerRAII(CodeGenFunction &CGF) 2775 : CGF(CGF), OldTracker(CGF.Allocas) { 2776 CGF.Allocas = &Tracker; 2777 } 2778 ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } 2779 2780 llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } 2781 2782 private: 2783 CodeGenFunction &CGF; 2784 AllocaTracker *OldTracker; 2785 AllocaTracker Tracker; 2786 }; 2787 2788 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2789 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2790 /// insertion point of the builder. The caller is responsible for setting an 2791 /// appropriate alignment on 2792 /// the alloca. 2793 /// 2794 /// \p ArraySize is the number of array elements to be allocated if it 2795 /// is not nullptr. 2796 /// 2797 /// LangAS::Default is the address space of pointers to local variables and 2798 /// temporaries, as exposed in the source language. In certain 2799 /// configurations, this is not the same as the alloca address space, and a 2800 /// cast is needed to lift the pointer from the alloca AS into 2801 /// LangAS::Default. This can happen when the target uses a restricted 2802 /// address space for the stack but the source language requires 2803 /// LangAS::Default to be a generic address space. The latter condition is 2804 /// common for most programming languages; OpenCL is an exception in that 2805 /// LangAS::Default is the private address space, which naturally maps 2806 /// to the stack. 2807 /// 2808 /// Because the address of a temporary is often exposed to the program in 2809 /// various ways, this function will perform the cast. The original alloca 2810 /// instruction is returned through \p Alloca if it is not nullptr. 2811 /// 2812 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2813 /// more efficient if the caller knows that the address will not be exposed. 2814 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2815 llvm::Value *ArraySize = nullptr); 2816 RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2817 const Twine &Name = "tmp", 2818 llvm::Value *ArraySize = nullptr, 2819 RawAddress *Alloca = nullptr); 2820 RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2821 const Twine &Name = "tmp", 2822 llvm::Value *ArraySize = nullptr); 2823 2824 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2825 /// default ABI alignment of the given LLVM type. 2826 /// 2827 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2828 /// any given AST type that happens to have been lowered to the 2829 /// given IR type. This should only ever be used for function-local, 2830 /// IR-driven manipulations like saving and restoring a value. Do 2831 /// not hand this address off to arbitrary IRGen routines, and especially 2832 /// do not pass it as an argument to a function that might expect a 2833 /// properly ABI-aligned value. 2834 RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2835 const Twine &Name = "tmp"); 2836 2837 /// CreateIRTemp - Create a temporary IR object of the given type, with 2838 /// appropriate alignment. This routine should only be used when an temporary 2839 /// value needs to be stored into an alloca (for example, to avoid explicit 2840 /// PHI construction), but the type is the IR type, not the type appropriate 2841 /// for storing in memory. 2842 /// 2843 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2844 /// ConvertType instead of ConvertTypeForMem. 2845 RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2846 2847 /// CreateMemTemp - Create a temporary memory object of the given type, with 2848 /// appropriate alignmen and cast it to the default address space. Returns 2849 /// the original alloca instruction by \p Alloca if it is not nullptr. 2850 RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp", 2851 RawAddress *Alloca = nullptr); 2852 RawAddress CreateMemTemp(QualType T, CharUnits Align, 2853 const Twine &Name = "tmp", 2854 RawAddress *Alloca = nullptr); 2855 2856 /// CreateMemTemp - Create a temporary memory object of the given type, with 2857 /// appropriate alignmen without casting it to the default address space. 2858 RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2859 RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, 2860 const Twine &Name = "tmp"); 2861 2862 /// CreateAggTemp - Create a temporary memory object for the given 2863 /// aggregate type. 2864 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2865 RawAddress *Alloca = nullptr) { 2866 return AggValueSlot::forAddr( 2867 CreateMemTemp(T, Name, Alloca), T.getQualifiers(), 2868 AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, 2869 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); 2870 } 2871 2872 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2873 /// expression and compare the result against zero, returning an Int1Ty value. 2874 llvm::Value *EvaluateExprAsBool(const Expr *E); 2875 2876 /// Retrieve the implicit cast expression of the rhs in a binary operator 2877 /// expression by passing pointers to Value and QualType 2878 /// This is used for implicit bitfield conversion checks, which 2879 /// must compare with the value before potential truncation. 2880 llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, 2881 llvm::Value **Previous, 2882 QualType *SrcType); 2883 2884 /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, 2885 /// so we use the value after conversion. 2886 void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, 2887 llvm::Value *Dst, QualType DstType, 2888 const CGBitFieldInfo &Info, 2889 SourceLocation Loc); 2890 2891 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2892 void EmitIgnoredExpr(const Expr *E); 2893 2894 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2895 /// any type. The result is returned as an RValue struct. If this is an 2896 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2897 /// the result should be returned. 2898 /// 2899 /// \param ignoreResult True if the resulting value isn't used. 2900 RValue EmitAnyExpr(const Expr *E, 2901 AggValueSlot aggSlot = AggValueSlot::ignored(), 2902 bool ignoreResult = false); 2903 2904 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2905 // or the value of the expression, depending on how va_list is defined. 2906 Address EmitVAListRef(const Expr *E); 2907 2908 /// Emit a "reference" to a __builtin_ms_va_list; this is 2909 /// always the value of the expression, because a __builtin_ms_va_list is a 2910 /// pointer to a char. 2911 Address EmitMSVAListRef(const Expr *E); 2912 2913 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2914 /// always be accessible even if no aggregate location is provided. 2915 RValue EmitAnyExprToTemp(const Expr *E); 2916 2917 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2918 /// arbitrary expression into the given memory location. 2919 void EmitAnyExprToMem(const Expr *E, Address Location, 2920 Qualifiers Quals, bool IsInitializer); 2921 2922 void EmitAnyExprToExn(const Expr *E, Address Addr); 2923 2924 /// EmitInitializationToLValue - Emit an initializer to an LValue. 2925 void EmitInitializationToLValue( 2926 const Expr *E, LValue LV, 2927 AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); 2928 2929 /// EmitExprAsInit - Emits the code necessary to initialize a 2930 /// location in memory with the given initializer. 2931 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2932 bool capturedByInit); 2933 2934 /// hasVolatileMember - returns true if aggregate type has a volatile 2935 /// member. 2936 bool hasVolatileMember(QualType T) { 2937 if (const RecordType *RT = T->getAs<RecordType>()) { 2938 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2939 return RD->hasVolatileMember(); 2940 } 2941 return false; 2942 } 2943 2944 /// Determine whether a return value slot may overlap some other object. 2945 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2946 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2947 // class subobjects. These cases may need to be revisited depending on the 2948 // resolution of the relevant core issue. 2949 return AggValueSlot::DoesNotOverlap; 2950 } 2951 2952 /// Determine whether a field initialization may overlap some other object. 2953 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2954 2955 /// Determine whether a base class initialization may overlap some other 2956 /// object. 2957 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2958 const CXXRecordDecl *BaseRD, 2959 bool IsVirtual); 2960 2961 /// Emit an aggregate assignment. 2962 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2963 bool IsVolatile = hasVolatileMember(EltTy); 2964 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2965 } 2966 2967 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2968 AggValueSlot::Overlap_t MayOverlap) { 2969 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2970 } 2971 2972 /// EmitAggregateCopy - Emit an aggregate copy. 2973 /// 2974 /// \param isVolatile \c true iff either the source or the destination is 2975 /// volatile. 2976 /// \param MayOverlap Whether the tail padding of the destination might be 2977 /// occupied by some other object. More efficient code can often be 2978 /// generated if not. 2979 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2980 AggValueSlot::Overlap_t MayOverlap, 2981 bool isVolatile = false); 2982 2983 /// GetAddrOfLocalVar - Return the address of a local variable. 2984 Address GetAddrOfLocalVar(const VarDecl *VD) { 2985 auto it = LocalDeclMap.find(VD); 2986 assert(it != LocalDeclMap.end() && 2987 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2988 return it->second; 2989 } 2990 2991 /// Given an opaque value expression, return its LValue mapping if it exists, 2992 /// otherwise create one. 2993 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2994 2995 /// Given an opaque value expression, return its RValue mapping if it exists, 2996 /// otherwise create one. 2997 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2998 2999 /// Get the index of the current ArrayInitLoopExpr, if any. 3000 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 3001 3002 /// getAccessedFieldNo - Given an encoded value and a result number, return 3003 /// the input field number being accessed. 3004 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 3005 3006 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 3007 llvm::BasicBlock *GetIndirectGotoBlock(); 3008 3009 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 3010 static bool IsWrappedCXXThis(const Expr *E); 3011 3012 /// EmitNullInitialization - Generate code to set a value of the given type to 3013 /// null, If the type contains data member pointers, they will be initialized 3014 /// to -1 in accordance with the Itanium C++ ABI. 3015 void EmitNullInitialization(Address DestPtr, QualType Ty); 3016 3017 /// Emits a call to an LLVM variable-argument intrinsic, either 3018 /// \c llvm.va_start or \c llvm.va_end. 3019 /// \param ArgValue A reference to the \c va_list as emitted by either 3020 /// \c EmitVAListRef or \c EmitMSVAListRef. 3021 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 3022 /// calls \c llvm.va_end. 3023 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 3024 3025 /// Generate code to get an argument from the passed in pointer 3026 /// and update it accordingly. 3027 /// \param VE The \c VAArgExpr for which to generate code. 3028 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 3029 /// either \c EmitVAListRef or \c EmitMSVAListRef. 3030 /// \returns A pointer to the argument. 3031 // FIXME: We should be able to get rid of this method and use the va_arg 3032 // instruction in LLVM instead once it works well enough. 3033 RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 3034 AggValueSlot Slot = AggValueSlot::ignored()); 3035 3036 /// emitArrayLength - Compute the length of an array, even if it's a 3037 /// VLA, and drill down to the base element type. 3038 llvm::Value *emitArrayLength(const ArrayType *arrayType, 3039 QualType &baseType, 3040 Address &addr); 3041 3042 /// EmitVLASize - Capture all the sizes for the VLA expressions in 3043 /// the given variably-modified type and store them in the VLASizeMap. 3044 /// 3045 /// This function can be called with a null (unreachable) insert point. 3046 void EmitVariablyModifiedType(QualType Ty); 3047 3048 struct VlaSizePair { 3049 llvm::Value *NumElts; 3050 QualType Type; 3051 3052 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 3053 }; 3054 3055 /// Return the number of elements for a single dimension 3056 /// for the given array type. 3057 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 3058 VlaSizePair getVLAElements1D(QualType vla); 3059 3060 /// Returns an LLVM value that corresponds to the size, 3061 /// in non-variably-sized elements, of a variable length array type, 3062 /// plus that largest non-variably-sized element type. Assumes that 3063 /// the type has already been emitted with EmitVariablyModifiedType. 3064 VlaSizePair getVLASize(const VariableArrayType *vla); 3065 VlaSizePair getVLASize(QualType vla); 3066 3067 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 3068 /// generating code for an C++ member function. 3069 llvm::Value *LoadCXXThis() { 3070 assert(CXXThisValue && "no 'this' value for this function"); 3071 return CXXThisValue; 3072 } 3073 Address LoadCXXThisAddress(); 3074 3075 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 3076 /// virtual bases. 3077 // FIXME: Every place that calls LoadCXXVTT is something 3078 // that needs to be abstracted properly. 3079 llvm::Value *LoadCXXVTT() { 3080 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 3081 return CXXStructorImplicitParamValue; 3082 } 3083 3084 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 3085 /// complete class to the given direct base. 3086 Address 3087 GetAddressOfDirectBaseInCompleteClass(Address Value, 3088 const CXXRecordDecl *Derived, 3089 const CXXRecordDecl *Base, 3090 bool BaseIsVirtual); 3091 3092 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 3093 3094 /// GetAddressOfBaseClass - This function will add the necessary delta to the 3095 /// load of 'this' and returns address of the base class. 3096 Address GetAddressOfBaseClass(Address Value, 3097 const CXXRecordDecl *Derived, 3098 CastExpr::path_const_iterator PathBegin, 3099 CastExpr::path_const_iterator PathEnd, 3100 bool NullCheckValue, SourceLocation Loc); 3101 3102 Address GetAddressOfDerivedClass(Address Value, 3103 const CXXRecordDecl *Derived, 3104 CastExpr::path_const_iterator PathBegin, 3105 CastExpr::path_const_iterator PathEnd, 3106 bool NullCheckValue); 3107 3108 /// GetVTTParameter - Return the VTT parameter that should be passed to a 3109 /// base constructor/destructor with virtual bases. 3110 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 3111 /// to ItaniumCXXABI.cpp together with all the references to VTT. 3112 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 3113 bool Delegating); 3114 3115 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 3116 CXXCtorType CtorType, 3117 const FunctionArgList &Args, 3118 SourceLocation Loc); 3119 // It's important not to confuse this and the previous function. Delegating 3120 // constructors are the C++0x feature. The constructor delegate optimization 3121 // is used to reduce duplication in the base and complete consturctors where 3122 // they are substantially the same. 3123 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3124 const FunctionArgList &Args); 3125 3126 /// Emit a call to an inheriting constructor (that is, one that invokes a 3127 /// constructor inherited from a base class) by inlining its definition. This 3128 /// is necessary if the ABI does not support forwarding the arguments to the 3129 /// base class constructor (because they're variadic or similar). 3130 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3131 CXXCtorType CtorType, 3132 bool ForVirtualBase, 3133 bool Delegating, 3134 CallArgList &Args); 3135 3136 /// Emit a call to a constructor inherited from a base class, passing the 3137 /// current constructor's arguments along unmodified (without even making 3138 /// a copy). 3139 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 3140 bool ForVirtualBase, Address This, 3141 bool InheritedFromVBase, 3142 const CXXInheritedCtorInitExpr *E); 3143 3144 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3145 bool ForVirtualBase, bool Delegating, 3146 AggValueSlot ThisAVS, const CXXConstructExpr *E); 3147 3148 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3149 bool ForVirtualBase, bool Delegating, 3150 Address This, CallArgList &Args, 3151 AggValueSlot::Overlap_t Overlap, 3152 SourceLocation Loc, bool NewPointerIsChecked, 3153 llvm::CallBase **CallOrInvoke = nullptr); 3154 3155 /// Emit assumption load for all bases. Requires to be called only on 3156 /// most-derived class and not under construction of the object. 3157 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 3158 3159 /// Emit assumption that vptr load == global vtable. 3160 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 3161 3162 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 3163 Address This, Address Src, 3164 const CXXConstructExpr *E); 3165 3166 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3167 const ArrayType *ArrayTy, 3168 Address ArrayPtr, 3169 const CXXConstructExpr *E, 3170 bool NewPointerIsChecked, 3171 bool ZeroInitialization = false); 3172 3173 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3174 llvm::Value *NumElements, 3175 Address ArrayPtr, 3176 const CXXConstructExpr *E, 3177 bool NewPointerIsChecked, 3178 bool ZeroInitialization = false); 3179 3180 static Destroyer destroyCXXObject; 3181 3182 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 3183 bool ForVirtualBase, bool Delegating, Address This, 3184 QualType ThisTy); 3185 3186 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 3187 llvm::Type *ElementTy, Address NewPtr, 3188 llvm::Value *NumElements, 3189 llvm::Value *AllocSizeWithoutCookie); 3190 3191 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 3192 Address Ptr); 3193 3194 void EmitSehCppScopeBegin(); 3195 void EmitSehCppScopeEnd(); 3196 void EmitSehTryScopeBegin(); 3197 void EmitSehTryScopeEnd(); 3198 3199 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 3200 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 3201 3202 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 3203 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 3204 3205 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 3206 QualType DeleteTy, llvm::Value *NumElements = nullptr, 3207 CharUnits CookieSize = CharUnits()); 3208 3209 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 3210 const CallExpr *TheCallExpr, bool IsDelete); 3211 3212 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 3213 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 3214 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 3215 3216 /// Situations in which we might emit a check for the suitability of a 3217 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 3218 /// compiler-rt. 3219 enum TypeCheckKind { 3220 /// Checking the operand of a load. Must be suitably sized and aligned. 3221 TCK_Load, 3222 /// Checking the destination of a store. Must be suitably sized and aligned. 3223 TCK_Store, 3224 /// Checking the bound value in a reference binding. Must be suitably sized 3225 /// and aligned, but is not required to refer to an object (until the 3226 /// reference is used), per core issue 453. 3227 TCK_ReferenceBinding, 3228 /// Checking the object expression in a non-static data member access. Must 3229 /// be an object within its lifetime. 3230 TCK_MemberAccess, 3231 /// Checking the 'this' pointer for a call to a non-static member function. 3232 /// Must be an object within its lifetime. 3233 TCK_MemberCall, 3234 /// Checking the 'this' pointer for a constructor call. 3235 TCK_ConstructorCall, 3236 /// Checking the operand of a static_cast to a derived pointer type. Must be 3237 /// null or an object within its lifetime. 3238 TCK_DowncastPointer, 3239 /// Checking the operand of a static_cast to a derived reference type. Must 3240 /// be an object within its lifetime. 3241 TCK_DowncastReference, 3242 /// Checking the operand of a cast to a base object. Must be suitably sized 3243 /// and aligned. 3244 TCK_Upcast, 3245 /// Checking the operand of a cast to a virtual base object. Must be an 3246 /// object within its lifetime. 3247 TCK_UpcastToVirtualBase, 3248 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 3249 TCK_NonnullAssign, 3250 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 3251 /// null or an object within its lifetime. 3252 TCK_DynamicOperation 3253 }; 3254 3255 /// Determine whether the pointer type check \p TCK permits null pointers. 3256 static bool isNullPointerAllowed(TypeCheckKind TCK); 3257 3258 /// Determine whether the pointer type check \p TCK requires a vptr check. 3259 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3260 3261 /// Whether any type-checking sanitizers are enabled. If \c false, 3262 /// calls to EmitTypeCheck can be skipped. 3263 bool sanitizePerformTypeCheck() const; 3264 3265 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, 3266 QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), 3267 llvm::Value *ArraySize = nullptr) { 3268 if (!sanitizePerformTypeCheck()) 3269 return; 3270 EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(), 3271 SkippedChecks, ArraySize); 3272 } 3273 3274 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, 3275 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3276 SanitizerSet SkippedChecks = SanitizerSet(), 3277 llvm::Value *ArraySize = nullptr) { 3278 if (!sanitizePerformTypeCheck()) 3279 return; 3280 EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment, 3281 SkippedChecks, ArraySize); 3282 } 3283 3284 /// Emit a check that \p V is the address of storage of the 3285 /// appropriate size and alignment for an object of type \p Type 3286 /// (or if ArraySize is provided, for an array of that bound). 3287 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3288 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3289 SanitizerSet SkippedChecks = SanitizerSet(), 3290 llvm::Value *ArraySize = nullptr); 3291 3292 /// Emit a check that \p Base points into an array object, which 3293 /// we can access at index \p Index. \p Accessed should be \c false if we 3294 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3295 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3296 QualType IndexType, bool Accessed); 3297 void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 3298 llvm::Value *Index, QualType IndexType, 3299 QualType IndexedType, bool Accessed); 3300 3301 // Find a struct's flexible array member and get its offset. It may be 3302 // embedded inside multiple sub-structs, but must still be the last field. 3303 const FieldDecl * 3304 FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, 3305 const FieldDecl *FAMDecl, 3306 uint64_t &Offset); 3307 3308 llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, 3309 const FieldDecl *FAMDecl, 3310 const FieldDecl *CountDecl); 3311 3312 /// Build an expression accessing the "counted_by" field. 3313 llvm::Value *EmitLoadOfCountedByField(const Expr *Base, 3314 const FieldDecl *FAMDecl, 3315 const FieldDecl *CountDecl); 3316 3317 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3318 bool isInc, bool isPre); 3319 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3320 bool isInc, bool isPre); 3321 3322 /// Converts Location to a DebugLoc, if debug information is enabled. 3323 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3324 3325 /// Get the record field index as represented in debug info. 3326 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3327 3328 3329 //===--------------------------------------------------------------------===// 3330 // Declaration Emission 3331 //===--------------------------------------------------------------------===// 3332 3333 /// EmitDecl - Emit a declaration. 3334 /// 3335 /// This function can be called with a null (unreachable) insert point. 3336 void EmitDecl(const Decl &D); 3337 3338 /// EmitVarDecl - Emit a local variable declaration. 3339 /// 3340 /// This function can be called with a null (unreachable) insert point. 3341 void EmitVarDecl(const VarDecl &D); 3342 3343 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3344 bool capturedByInit); 3345 3346 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3347 llvm::Value *Address); 3348 3349 /// Determine whether the given initializer is trivial in the sense 3350 /// that it requires no code to be generated. 3351 bool isTrivialInitializer(const Expr *Init); 3352 3353 /// EmitAutoVarDecl - Emit an auto variable declaration. 3354 /// 3355 /// This function can be called with a null (unreachable) insert point. 3356 void EmitAutoVarDecl(const VarDecl &D); 3357 3358 class AutoVarEmission { 3359 friend class CodeGenFunction; 3360 3361 const VarDecl *Variable; 3362 3363 /// The address of the alloca for languages with explicit address space 3364 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3365 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3366 /// as a global constant. 3367 Address Addr; 3368 3369 llvm::Value *NRVOFlag; 3370 3371 /// True if the variable is a __block variable that is captured by an 3372 /// escaping block. 3373 bool IsEscapingByRef; 3374 3375 /// True if the variable is of aggregate type and has a constant 3376 /// initializer. 3377 bool IsConstantAggregate; 3378 3379 /// Non-null if we should use lifetime annotations. 3380 llvm::Value *SizeForLifetimeMarkers; 3381 3382 /// Address with original alloca instruction. Invalid if the variable was 3383 /// emitted as a global constant. 3384 RawAddress AllocaAddr; 3385 3386 struct Invalid {}; 3387 AutoVarEmission(Invalid) 3388 : Variable(nullptr), Addr(Address::invalid()), 3389 AllocaAddr(RawAddress::invalid()) {} 3390 3391 AutoVarEmission(const VarDecl &variable) 3392 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3393 IsEscapingByRef(false), IsConstantAggregate(false), 3394 SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} 3395 3396 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3397 3398 public: 3399 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3400 3401 bool useLifetimeMarkers() const { 3402 return SizeForLifetimeMarkers != nullptr; 3403 } 3404 llvm::Value *getSizeForLifetimeMarkers() const { 3405 assert(useLifetimeMarkers()); 3406 return SizeForLifetimeMarkers; 3407 } 3408 3409 /// Returns the raw, allocated address, which is not necessarily 3410 /// the address of the object itself. It is casted to default 3411 /// address space for address space agnostic languages. 3412 Address getAllocatedAddress() const { 3413 return Addr; 3414 } 3415 3416 /// Returns the address for the original alloca instruction. 3417 RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } 3418 3419 /// Returns the address of the object within this declaration. 3420 /// Note that this does not chase the forwarding pointer for 3421 /// __block decls. 3422 Address getObjectAddress(CodeGenFunction &CGF) const { 3423 if (!IsEscapingByRef) return Addr; 3424 3425 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3426 } 3427 }; 3428 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3429 void EmitAutoVarInit(const AutoVarEmission &emission); 3430 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3431 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3432 QualType::DestructionKind dtorKind); 3433 3434 /// Emits the alloca and debug information for the size expressions for each 3435 /// dimension of an array. It registers the association of its (1-dimensional) 3436 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3437 /// reference this node when creating the DISubrange object to describe the 3438 /// array types. 3439 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3440 const VarDecl &D, 3441 bool EmitDebugInfo); 3442 3443 void EmitStaticVarDecl(const VarDecl &D, 3444 llvm::GlobalValue::LinkageTypes Linkage); 3445 3446 class ParamValue { 3447 union { 3448 Address Addr; 3449 llvm::Value *Value; 3450 }; 3451 3452 bool IsIndirect; 3453 3454 ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} 3455 ParamValue(Address A) : Addr(A), IsIndirect(true) {} 3456 3457 public: 3458 static ParamValue forDirect(llvm::Value *value) { 3459 return ParamValue(value); 3460 } 3461 static ParamValue forIndirect(Address addr) { 3462 assert(!addr.getAlignment().isZero()); 3463 return ParamValue(addr); 3464 } 3465 3466 bool isIndirect() const { return IsIndirect; } 3467 llvm::Value *getAnyValue() const { 3468 if (!isIndirect()) 3469 return Value; 3470 assert(!Addr.hasOffset() && "unexpected offset"); 3471 return Addr.getBasePointer(); 3472 } 3473 3474 llvm::Value *getDirectValue() const { 3475 assert(!isIndirect()); 3476 return Value; 3477 } 3478 3479 Address getIndirectAddress() const { 3480 assert(isIndirect()); 3481 return Addr; 3482 } 3483 }; 3484 3485 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3486 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3487 3488 /// protectFromPeepholes - Protect a value that we're intending to 3489 /// store to the side, but which will probably be used later, from 3490 /// aggressive peepholing optimizations that might delete it. 3491 /// 3492 /// Pass the result to unprotectFromPeepholes to declare that 3493 /// protection is no longer required. 3494 /// 3495 /// There's no particular reason why this shouldn't apply to 3496 /// l-values, it's just that no existing peepholes work on pointers. 3497 PeepholeProtection protectFromPeepholes(RValue rvalue); 3498 void unprotectFromPeepholes(PeepholeProtection protection); 3499 3500 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3501 SourceLocation Loc, 3502 SourceLocation AssumptionLoc, 3503 llvm::Value *Alignment, 3504 llvm::Value *OffsetValue, 3505 llvm::Value *TheCheck, 3506 llvm::Instruction *Assumption); 3507 3508 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3509 SourceLocation Loc, SourceLocation AssumptionLoc, 3510 llvm::Value *Alignment, 3511 llvm::Value *OffsetValue = nullptr); 3512 3513 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3514 SourceLocation AssumptionLoc, 3515 llvm::Value *Alignment, 3516 llvm::Value *OffsetValue = nullptr); 3517 3518 //===--------------------------------------------------------------------===// 3519 // Statement Emission 3520 //===--------------------------------------------------------------------===// 3521 3522 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3523 void EmitStopPoint(const Stmt *S); 3524 3525 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3526 /// this function even if there is no current insertion point. 3527 /// 3528 /// This function may clear the current insertion point; callers should use 3529 /// EnsureInsertPoint if they wish to subsequently generate code without first 3530 /// calling EmitBlock, EmitBranch, or EmitStmt. 3531 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); 3532 3533 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3534 /// necessarily require an insertion point or debug information; typically 3535 /// because the statement amounts to a jump or a container of other 3536 /// statements. 3537 /// 3538 /// \return True if the statement was handled. 3539 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3540 3541 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3542 AggValueSlot AVS = AggValueSlot::ignored()); 3543 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3544 bool GetLast = false, 3545 AggValueSlot AVS = 3546 AggValueSlot::ignored()); 3547 3548 /// EmitLabel - Emit the block for the given label. It is legal to call this 3549 /// function even if there is no current insertion point. 3550 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3551 3552 void EmitLabelStmt(const LabelStmt &S); 3553 void EmitAttributedStmt(const AttributedStmt &S); 3554 void EmitGotoStmt(const GotoStmt &S); 3555 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3556 void EmitIfStmt(const IfStmt &S); 3557 3558 void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); 3559 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); 3560 void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); 3561 void EmitReturnStmt(const ReturnStmt &S); 3562 void EmitDeclStmt(const DeclStmt &S); 3563 void EmitBreakStmt(const BreakStmt &S); 3564 void EmitContinueStmt(const ContinueStmt &S); 3565 void EmitSwitchStmt(const SwitchStmt &S); 3566 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3567 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3568 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3569 void EmitAsmStmt(const AsmStmt &S); 3570 3571 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3572 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3573 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3574 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3575 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3576 3577 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3578 void EmitCoreturnStmt(const CoreturnStmt &S); 3579 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3580 AggValueSlot aggSlot = AggValueSlot::ignored(), 3581 bool ignoreResult = false); 3582 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3583 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3584 AggValueSlot aggSlot = AggValueSlot::ignored(), 3585 bool ignoreResult = false); 3586 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3587 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3588 3589 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3590 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3591 3592 void EmitCXXTryStmt(const CXXTryStmt &S); 3593 void EmitSEHTryStmt(const SEHTryStmt &S); 3594 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3595 void EnterSEHTryStmt(const SEHTryStmt &S); 3596 void ExitSEHTryStmt(const SEHTryStmt &S); 3597 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3598 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3599 3600 void pushSEHCleanup(CleanupKind kind, 3601 llvm::Function *FinallyFunc); 3602 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3603 const Stmt *OutlinedStmt); 3604 3605 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3606 const SEHExceptStmt &Except); 3607 3608 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3609 const SEHFinallyStmt &Finally); 3610 3611 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3612 llvm::Value *ParentFP, 3613 llvm::Value *EntryEBP); 3614 llvm::Value *EmitSEHExceptionCode(); 3615 llvm::Value *EmitSEHExceptionInfo(); 3616 llvm::Value *EmitSEHAbnormalTermination(); 3617 3618 /// Emit simple code for OpenMP directives in Simd-only mode. 3619 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3620 3621 /// Scan the outlined statement for captures from the parent function. For 3622 /// each capture, mark the capture as escaped and emit a call to 3623 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3624 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3625 bool IsFilter); 3626 3627 /// Recovers the address of a local in a parent function. ParentVar is the 3628 /// address of the variable used in the immediate parent function. It can 3629 /// either be an alloca or a call to llvm.localrecover if there are nested 3630 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3631 /// frame. 3632 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3633 Address ParentVar, 3634 llvm::Value *ParentFP); 3635 3636 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3637 ArrayRef<const Attr *> Attrs = {}); 3638 3639 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3640 class OMPCancelStackRAII { 3641 CodeGenFunction &CGF; 3642 3643 public: 3644 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3645 bool HasCancel) 3646 : CGF(CGF) { 3647 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3648 } 3649 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3650 }; 3651 3652 /// Returns calculated size of the specified type. 3653 llvm::Value *getTypeSize(QualType Ty); 3654 LValue InitCapturedStruct(const CapturedStmt &S); 3655 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3656 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3657 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3658 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3659 SourceLocation Loc); 3660 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3661 SmallVectorImpl<llvm::Value *> &CapturedVars); 3662 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3663 SourceLocation Loc); 3664 /// Perform element by element copying of arrays with type \a 3665 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3666 /// generated by \a CopyGen. 3667 /// 3668 /// \param DestAddr Address of the destination array. 3669 /// \param SrcAddr Address of the source array. 3670 /// \param OriginalType Type of destination and source arrays. 3671 /// \param CopyGen Copying procedure that copies value of single array element 3672 /// to another single array element. 3673 void EmitOMPAggregateAssign( 3674 Address DestAddr, Address SrcAddr, QualType OriginalType, 3675 const llvm::function_ref<void(Address, Address)> CopyGen); 3676 /// Emit proper copying of data from one variable to another. 3677 /// 3678 /// \param OriginalType Original type of the copied variables. 3679 /// \param DestAddr Destination address. 3680 /// \param SrcAddr Source address. 3681 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3682 /// type of the base array element). 3683 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3684 /// the base array element). 3685 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3686 /// DestVD. 3687 void EmitOMPCopy(QualType OriginalType, 3688 Address DestAddr, Address SrcAddr, 3689 const VarDecl *DestVD, const VarDecl *SrcVD, 3690 const Expr *Copy); 3691 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3692 /// \a X = \a E \a BO \a E. 3693 /// 3694 /// \param X Value to be updated. 3695 /// \param E Update value. 3696 /// \param BO Binary operation for update operation. 3697 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3698 /// expression, false otherwise. 3699 /// \param AO Atomic ordering of the generated atomic instructions. 3700 /// \param CommonGen Code generator for complex expressions that cannot be 3701 /// expressed through atomicrmw instruction. 3702 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3703 /// generated, <false, RValue::get(nullptr)> otherwise. 3704 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3705 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3706 llvm::AtomicOrdering AO, SourceLocation Loc, 3707 const llvm::function_ref<RValue(RValue)> CommonGen); 3708 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3709 OMPPrivateScope &PrivateScope); 3710 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3711 OMPPrivateScope &PrivateScope); 3712 void EmitOMPUseDevicePtrClause( 3713 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3714 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3715 CaptureDeviceAddrMap); 3716 void EmitOMPUseDeviceAddrClause( 3717 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3718 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3719 CaptureDeviceAddrMap); 3720 /// Emit code for copyin clause in \a D directive. The next code is 3721 /// generated at the start of outlined functions for directives: 3722 /// \code 3723 /// threadprivate_var1 = master_threadprivate_var1; 3724 /// operator=(threadprivate_var2, master_threadprivate_var2); 3725 /// ... 3726 /// __kmpc_barrier(&loc, global_tid); 3727 /// \endcode 3728 /// 3729 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3730 /// \returns true if at least one copyin variable is found, false otherwise. 3731 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3732 /// Emit initial code for lastprivate variables. If some variable is 3733 /// not also firstprivate, then the default initialization is used. Otherwise 3734 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3735 /// method. 3736 /// 3737 /// \param D Directive that may have 'lastprivate' directives. 3738 /// \param PrivateScope Private scope for capturing lastprivate variables for 3739 /// proper codegen in internal captured statement. 3740 /// 3741 /// \returns true if there is at least one lastprivate variable, false 3742 /// otherwise. 3743 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3744 OMPPrivateScope &PrivateScope); 3745 /// Emit final copying of lastprivate values to original variables at 3746 /// the end of the worksharing or simd directive. 3747 /// 3748 /// \param D Directive that has at least one 'lastprivate' directives. 3749 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3750 /// it is the last iteration of the loop code in associated directive, or to 3751 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3752 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3753 bool NoFinals, 3754 llvm::Value *IsLastIterCond = nullptr); 3755 /// Emit initial code for linear clauses. 3756 void EmitOMPLinearClause(const OMPLoopDirective &D, 3757 CodeGenFunction::OMPPrivateScope &PrivateScope); 3758 /// Emit final code for linear clauses. 3759 /// \param CondGen Optional conditional code for final part of codegen for 3760 /// linear clause. 3761 void EmitOMPLinearClauseFinal( 3762 const OMPLoopDirective &D, 3763 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3764 /// Emit initial code for reduction variables. Creates reduction copies 3765 /// and initializes them with the values according to OpenMP standard. 3766 /// 3767 /// \param D Directive (possibly) with the 'reduction' clause. 3768 /// \param PrivateScope Private scope for capturing reduction variables for 3769 /// proper codegen in internal captured statement. 3770 /// 3771 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3772 OMPPrivateScope &PrivateScope, 3773 bool ForInscan = false); 3774 /// Emit final update of reduction values to original variables at 3775 /// the end of the directive. 3776 /// 3777 /// \param D Directive that has at least one 'reduction' directives. 3778 /// \param ReductionKind The kind of reduction to perform. 3779 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3780 const OpenMPDirectiveKind ReductionKind); 3781 /// Emit initial code for linear variables. Creates private copies 3782 /// and initializes them with the values according to OpenMP standard. 3783 /// 3784 /// \param D Directive (possibly) with the 'linear' clause. 3785 /// \return true if at least one linear variable is found that should be 3786 /// initialized with the value of the original variable, false otherwise. 3787 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3788 3789 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3790 llvm::Function * /*OutlinedFn*/, 3791 const OMPTaskDataTy & /*Data*/)> 3792 TaskGenTy; 3793 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3794 const OpenMPDirectiveKind CapturedRegion, 3795 const RegionCodeGenTy &BodyGen, 3796 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3797 struct OMPTargetDataInfo { 3798 Address BasePointersArray = Address::invalid(); 3799 Address PointersArray = Address::invalid(); 3800 Address SizesArray = Address::invalid(); 3801 Address MappersArray = Address::invalid(); 3802 unsigned NumberOfTargetItems = 0; 3803 explicit OMPTargetDataInfo() = default; 3804 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3805 Address SizesArray, Address MappersArray, 3806 unsigned NumberOfTargetItems) 3807 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3808 SizesArray(SizesArray), MappersArray(MappersArray), 3809 NumberOfTargetItems(NumberOfTargetItems) {} 3810 }; 3811 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3812 const RegionCodeGenTy &BodyGen, 3813 OMPTargetDataInfo &InputInfo); 3814 void processInReduction(const OMPExecutableDirective &S, 3815 OMPTaskDataTy &Data, 3816 CodeGenFunction &CGF, 3817 const CapturedStmt *CS, 3818 OMPPrivateScope &Scope); 3819 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3820 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3821 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3822 void EmitOMPTileDirective(const OMPTileDirective &S); 3823 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3824 void EmitOMPReverseDirective(const OMPReverseDirective &S); 3825 void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); 3826 void EmitOMPForDirective(const OMPForDirective &S); 3827 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3828 void EmitOMPScopeDirective(const OMPScopeDirective &S); 3829 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3830 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3831 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3832 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3833 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3834 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3835 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3836 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3837 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3838 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3839 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3840 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3841 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3842 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3843 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3844 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3845 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3846 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3847 void EmitOMPScanDirective(const OMPScanDirective &S); 3848 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3849 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3850 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3851 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3852 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3853 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3854 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3855 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3856 void 3857 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3858 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3859 void 3860 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3861 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3862 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3863 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3864 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3865 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3866 void 3867 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3868 void EmitOMPParallelMasterTaskLoopDirective( 3869 const OMPParallelMasterTaskLoopDirective &S); 3870 void EmitOMPParallelMasterTaskLoopSimdDirective( 3871 const OMPParallelMasterTaskLoopSimdDirective &S); 3872 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3873 void EmitOMPDistributeParallelForDirective( 3874 const OMPDistributeParallelForDirective &S); 3875 void EmitOMPDistributeParallelForSimdDirective( 3876 const OMPDistributeParallelForSimdDirective &S); 3877 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3878 void EmitOMPTargetParallelForSimdDirective( 3879 const OMPTargetParallelForSimdDirective &S); 3880 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3881 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3882 void 3883 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3884 void EmitOMPTeamsDistributeParallelForSimdDirective( 3885 const OMPTeamsDistributeParallelForSimdDirective &S); 3886 void EmitOMPTeamsDistributeParallelForDirective( 3887 const OMPTeamsDistributeParallelForDirective &S); 3888 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3889 void EmitOMPTargetTeamsDistributeDirective( 3890 const OMPTargetTeamsDistributeDirective &S); 3891 void EmitOMPTargetTeamsDistributeParallelForDirective( 3892 const OMPTargetTeamsDistributeParallelForDirective &S); 3893 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3894 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3895 void EmitOMPTargetTeamsDistributeSimdDirective( 3896 const OMPTargetTeamsDistributeSimdDirective &S); 3897 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3898 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3899 void EmitOMPTargetParallelGenericLoopDirective( 3900 const OMPTargetParallelGenericLoopDirective &S); 3901 void EmitOMPTargetTeamsGenericLoopDirective( 3902 const OMPTargetTeamsGenericLoopDirective &S); 3903 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3904 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3905 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3906 void EmitOMPAssumeDirective(const OMPAssumeDirective &S); 3907 3908 /// Emit device code for the target directive. 3909 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3910 StringRef ParentName, 3911 const OMPTargetDirective &S); 3912 static void 3913 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3914 const OMPTargetParallelDirective &S); 3915 /// Emit device code for the target parallel for directive. 3916 static void EmitOMPTargetParallelForDeviceFunction( 3917 CodeGenModule &CGM, StringRef ParentName, 3918 const OMPTargetParallelForDirective &S); 3919 /// Emit device code for the target parallel for simd directive. 3920 static void EmitOMPTargetParallelForSimdDeviceFunction( 3921 CodeGenModule &CGM, StringRef ParentName, 3922 const OMPTargetParallelForSimdDirective &S); 3923 /// Emit device code for the target teams directive. 3924 static void 3925 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3926 const OMPTargetTeamsDirective &S); 3927 /// Emit device code for the target teams distribute directive. 3928 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3929 CodeGenModule &CGM, StringRef ParentName, 3930 const OMPTargetTeamsDistributeDirective &S); 3931 /// Emit device code for the target teams distribute simd directive. 3932 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3933 CodeGenModule &CGM, StringRef ParentName, 3934 const OMPTargetTeamsDistributeSimdDirective &S); 3935 /// Emit device code for the target simd directive. 3936 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3937 StringRef ParentName, 3938 const OMPTargetSimdDirective &S); 3939 /// Emit device code for the target teams distribute parallel for simd 3940 /// directive. 3941 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3942 CodeGenModule &CGM, StringRef ParentName, 3943 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3944 3945 /// Emit device code for the target teams loop directive. 3946 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3947 CodeGenModule &CGM, StringRef ParentName, 3948 const OMPTargetTeamsGenericLoopDirective &S); 3949 3950 /// Emit device code for the target parallel loop directive. 3951 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3952 CodeGenModule &CGM, StringRef ParentName, 3953 const OMPTargetParallelGenericLoopDirective &S); 3954 3955 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3956 CodeGenModule &CGM, StringRef ParentName, 3957 const OMPTargetTeamsDistributeParallelForDirective &S); 3958 3959 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3960 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3961 /// future it is meant to be the number of loops expected in the loop nests 3962 /// (usually specified by the "collapse" clause) that are collapsed to a 3963 /// single loop by this function. 3964 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3965 int Depth); 3966 3967 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3968 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3969 3970 /// Emit inner loop of the worksharing/simd construct. 3971 /// 3972 /// \param S Directive, for which the inner loop must be emitted. 3973 /// \param RequiresCleanup true, if directive has some associated private 3974 /// variables. 3975 /// \param LoopCond Bollean condition for loop continuation. 3976 /// \param IncExpr Increment expression for loop control variable. 3977 /// \param BodyGen Generator for the inner body of the inner loop. 3978 /// \param PostIncGen Genrator for post-increment code (required for ordered 3979 /// loop directvies). 3980 void EmitOMPInnerLoop( 3981 const OMPExecutableDirective &S, bool RequiresCleanup, 3982 const Expr *LoopCond, const Expr *IncExpr, 3983 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3984 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3985 3986 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3987 /// Emit initial code for loop counters of loop-based directives. 3988 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3989 OMPPrivateScope &LoopScope); 3990 3991 /// Helper for the OpenMP loop directives. 3992 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3993 3994 /// Emit code for the worksharing loop-based directive. 3995 /// \return true, if this construct has any lastprivate clause, false - 3996 /// otherwise. 3997 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3998 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3999 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4000 4001 /// Emit code for the distribute loop-based directive. 4002 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 4003 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 4004 4005 /// Helpers for the OpenMP loop directives. 4006 void EmitOMPSimdInit(const OMPLoopDirective &D); 4007 void EmitOMPSimdFinal( 4008 const OMPLoopDirective &D, 4009 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 4010 4011 /// Emits the lvalue for the expression with possibly captured variable. 4012 LValue EmitOMPSharedLValue(const Expr *E); 4013 4014 private: 4015 /// Helpers for blocks. 4016 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 4017 4018 /// struct with the values to be passed to the OpenMP loop-related functions 4019 struct OMPLoopArguments { 4020 /// loop lower bound 4021 Address LB = Address::invalid(); 4022 /// loop upper bound 4023 Address UB = Address::invalid(); 4024 /// loop stride 4025 Address ST = Address::invalid(); 4026 /// isLastIteration argument for runtime functions 4027 Address IL = Address::invalid(); 4028 /// Chunk value generated by sema 4029 llvm::Value *Chunk = nullptr; 4030 /// EnsureUpperBound 4031 Expr *EUB = nullptr; 4032 /// IncrementExpression 4033 Expr *IncExpr = nullptr; 4034 /// Loop initialization 4035 Expr *Init = nullptr; 4036 /// Loop exit condition 4037 Expr *Cond = nullptr; 4038 /// Update of LB after a whole chunk has been executed 4039 Expr *NextLB = nullptr; 4040 /// Update of UB after a whole chunk has been executed 4041 Expr *NextUB = nullptr; 4042 /// Distinguish between the for distribute and sections 4043 OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; 4044 OMPLoopArguments() = default; 4045 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 4046 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 4047 Expr *IncExpr = nullptr, Expr *Init = nullptr, 4048 Expr *Cond = nullptr, Expr *NextLB = nullptr, 4049 Expr *NextUB = nullptr) 4050 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 4051 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 4052 NextUB(NextUB) {} 4053 }; 4054 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 4055 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 4056 const OMPLoopArguments &LoopArgs, 4057 const CodeGenLoopTy &CodeGenLoop, 4058 const CodeGenOrderedTy &CodeGenOrdered); 4059 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 4060 bool IsMonotonic, const OMPLoopDirective &S, 4061 OMPPrivateScope &LoopScope, bool Ordered, 4062 const OMPLoopArguments &LoopArgs, 4063 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4064 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 4065 const OMPLoopDirective &S, 4066 OMPPrivateScope &LoopScope, 4067 const OMPLoopArguments &LoopArgs, 4068 const CodeGenLoopTy &CodeGenLoopContent); 4069 /// Emit code for sections directive. 4070 void EmitSections(const OMPExecutableDirective &S); 4071 4072 public: 4073 //===--------------------------------------------------------------------===// 4074 // OpenACC Emission 4075 //===--------------------------------------------------------------------===// 4076 void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { 4077 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4078 // simply emitting its structured block, but in the future we will implement 4079 // some sort of IR. 4080 EmitStmt(S.getStructuredBlock()); 4081 } 4082 4083 void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { 4084 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4085 // simply emitting its loop, but in the future we will implement 4086 // some sort of IR. 4087 EmitStmt(S.getLoop()); 4088 } 4089 4090 void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { 4091 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4092 // simply emitting its loop, but in the future we will implement 4093 // some sort of IR. 4094 EmitStmt(S.getLoop()); 4095 } 4096 4097 void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { 4098 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4099 // simply emitting its structured block, but in the future we will implement 4100 // some sort of IR. 4101 EmitStmt(S.getStructuredBlock()); 4102 } 4103 4104 void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { 4105 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4106 // but in the future we will implement some sort of IR. 4107 } 4108 4109 void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { 4110 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4111 // but in the future we will implement some sort of IR. 4112 } 4113 4114 void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { 4115 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4116 // simply emitting its structured block, but in the future we will implement 4117 // some sort of IR. 4118 EmitStmt(S.getStructuredBlock()); 4119 } 4120 4121 void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { 4122 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4123 // but in the future we will implement some sort of IR. 4124 } 4125 4126 //===--------------------------------------------------------------------===// 4127 // LValue Expression Emission 4128 //===--------------------------------------------------------------------===// 4129 4130 /// Create a check that a scalar RValue is non-null. 4131 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 4132 4133 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 4134 RValue GetUndefRValue(QualType Ty); 4135 4136 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 4137 /// and issue an ErrorUnsupported style diagnostic (using the 4138 /// provided Name). 4139 RValue EmitUnsupportedRValue(const Expr *E, 4140 const char *Name); 4141 4142 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 4143 /// an ErrorUnsupported style diagnostic (using the provided Name). 4144 LValue EmitUnsupportedLValue(const Expr *E, 4145 const char *Name); 4146 4147 /// EmitLValue - Emit code to compute a designator that specifies the location 4148 /// of the expression. 4149 /// 4150 /// This can return one of two things: a simple address or a bitfield 4151 /// reference. In either case, the LLVM Value* in the LValue structure is 4152 /// guaranteed to be an LLVM pointer type. 4153 /// 4154 /// If this returns a bitfield reference, nothing about the pointee type of 4155 /// the LLVM value is known: For example, it may not be a pointer to an 4156 /// integer. 4157 /// 4158 /// If this returns a normal address, and if the lvalue's C type is fixed 4159 /// size, this method guarantees that the returned pointer type will point to 4160 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 4161 /// variable length type, this is not possible. 4162 /// 4163 LValue EmitLValue(const Expr *E, 4164 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4165 4166 private: 4167 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 4168 4169 public: 4170 /// Same as EmitLValue but additionally we generate checking code to 4171 /// guard against undefined behavior. This is only suitable when we know 4172 /// that the address will be used to access the object. 4173 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 4174 4175 RValue convertTempToRValue(Address addr, QualType type, 4176 SourceLocation Loc); 4177 4178 void EmitAtomicInit(Expr *E, LValue lvalue); 4179 4180 bool LValueIsSuitableForInlineAtomic(LValue Src); 4181 4182 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 4183 AggValueSlot Slot = AggValueSlot::ignored()); 4184 4185 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 4186 llvm::AtomicOrdering AO, bool IsVolatile = false, 4187 AggValueSlot slot = AggValueSlot::ignored()); 4188 4189 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 4190 4191 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 4192 bool IsVolatile, bool isInit); 4193 4194 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 4195 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 4196 llvm::AtomicOrdering Success = 4197 llvm::AtomicOrdering::SequentiallyConsistent, 4198 llvm::AtomicOrdering Failure = 4199 llvm::AtomicOrdering::SequentiallyConsistent, 4200 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 4201 4202 /// Emit an atomicrmw instruction, and applying relevant metadata when 4203 /// applicable. 4204 llvm::AtomicRMWInst *emitAtomicRMWInst( 4205 llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, 4206 llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, 4207 llvm::SyncScope::ID SSID = llvm::SyncScope::System, 4208 const AtomicExpr *AE = nullptr); 4209 4210 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 4211 const llvm::function_ref<RValue(RValue)> &UpdateOp, 4212 bool IsVolatile); 4213 4214 /// EmitToMemory - Change a scalar value from its value 4215 /// representation to its in-memory representation. 4216 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 4217 4218 /// EmitFromMemory - Change a scalar value from its memory 4219 /// representation to its value representation. 4220 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 4221 4222 /// Check if the scalar \p Value is within the valid range for the given 4223 /// type \p Ty. 4224 /// 4225 /// Returns true if a check is needed (even if the range is unknown). 4226 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 4227 SourceLocation Loc); 4228 4229 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4230 /// care to appropriately convert from the memory representation to 4231 /// the LLVM value representation. 4232 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4233 SourceLocation Loc, 4234 AlignmentSource Source = AlignmentSource::Type, 4235 bool isNontemporal = false) { 4236 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 4237 CGM.getTBAAAccessInfo(Ty), isNontemporal); 4238 } 4239 4240 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4241 SourceLocation Loc, LValueBaseInfo BaseInfo, 4242 TBAAAccessInfo TBAAInfo, 4243 bool isNontemporal = false); 4244 4245 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4246 /// care to appropriately convert from the memory representation to 4247 /// the LLVM value representation. The l-value must be a simple 4248 /// l-value. 4249 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 4250 4251 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4252 /// care to appropriately convert from the memory representation to 4253 /// the LLVM value representation. 4254 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4255 bool Volatile, QualType Ty, 4256 AlignmentSource Source = AlignmentSource::Type, 4257 bool isInit = false, bool isNontemporal = false) { 4258 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 4259 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 4260 } 4261 4262 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4263 bool Volatile, QualType Ty, 4264 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 4265 bool isInit = false, bool isNontemporal = false); 4266 4267 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4268 /// care to appropriately convert from the memory representation to 4269 /// the LLVM value representation. The l-value must be a simple 4270 /// l-value. The isInit flag indicates whether this is an initialization. 4271 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 4272 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 4273 4274 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 4275 /// this method emits the address of the lvalue, then loads the result as an 4276 /// rvalue, returning the rvalue. 4277 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 4278 RValue EmitLoadOfExtVectorElementLValue(LValue V); 4279 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 4280 RValue EmitLoadOfGlobalRegLValue(LValue LV); 4281 4282 /// Like EmitLoadOfLValue but also handles complex and aggregate types. 4283 RValue EmitLoadOfAnyValue(LValue V, 4284 AggValueSlot Slot = AggValueSlot::ignored(), 4285 SourceLocation Loc = {}); 4286 4287 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 4288 /// lvalue, where both are guaranteed to the have the same type, and that type 4289 /// is 'Ty'. 4290 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 4291 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 4292 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 4293 4294 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 4295 /// as EmitStoreThroughLValue. 4296 /// 4297 /// \param Result [out] - If non-null, this will be set to a Value* for the 4298 /// bit-field contents after the store, appropriate for use as the result of 4299 /// an assignment to the bit-field. 4300 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 4301 llvm::Value **Result=nullptr); 4302 4303 /// Emit an l-value for an assignment (simple or compound) of complex type. 4304 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 4305 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 4306 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 4307 llvm::Value *&Result); 4308 4309 // Note: only available for agg return types 4310 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 4311 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 4312 // Note: only available for agg return types 4313 LValue EmitCallExprLValue(const CallExpr *E, 4314 llvm::CallBase **CallOrInvoke = nullptr); 4315 // Note: only available for agg return types 4316 LValue EmitVAArgExprLValue(const VAArgExpr *E); 4317 LValue EmitDeclRefLValue(const DeclRefExpr *E); 4318 LValue EmitStringLiteralLValue(const StringLiteral *E); 4319 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 4320 LValue EmitPredefinedLValue(const PredefinedExpr *E); 4321 LValue EmitUnaryOpLValue(const UnaryOperator *E); 4322 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4323 bool Accessed = false); 4324 llvm::Value *EmitMatrixIndexExpr(const Expr *E); 4325 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 4326 LValue EmitArraySectionExpr(const ArraySectionExpr *E, 4327 bool IsLowerBound = true); 4328 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 4329 LValue EmitMemberExpr(const MemberExpr *E); 4330 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 4331 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 4332 LValue EmitInitListLValue(const InitListExpr *E); 4333 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 4334 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 4335 LValue EmitCastLValue(const CastExpr *E); 4336 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4337 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 4338 LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); 4339 4340 std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, 4341 QualType Ty); 4342 LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, 4343 QualType Ty); 4344 4345 Address EmitExtVectorElementLValue(LValue V); 4346 4347 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 4348 4349 Address EmitArrayToPointerDecay(const Expr *Array, 4350 LValueBaseInfo *BaseInfo = nullptr, 4351 TBAAAccessInfo *TBAAInfo = nullptr); 4352 4353 class ConstantEmission { 4354 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 4355 ConstantEmission(llvm::Constant *C, bool isReference) 4356 : ValueAndIsReference(C, isReference) {} 4357 public: 4358 ConstantEmission() {} 4359 static ConstantEmission forReference(llvm::Constant *C) { 4360 return ConstantEmission(C, true); 4361 } 4362 static ConstantEmission forValue(llvm::Constant *C) { 4363 return ConstantEmission(C, false); 4364 } 4365 4366 explicit operator bool() const { 4367 return ValueAndIsReference.getOpaqueValue() != nullptr; 4368 } 4369 4370 bool isReference() const { return ValueAndIsReference.getInt(); } 4371 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 4372 assert(isReference()); 4373 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 4374 refExpr->getType()); 4375 } 4376 4377 llvm::Constant *getValue() const { 4378 assert(!isReference()); 4379 return ValueAndIsReference.getPointer(); 4380 } 4381 }; 4382 4383 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4384 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4385 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4386 4387 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4388 AggValueSlot slot = AggValueSlot::ignored()); 4389 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4390 4391 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4392 const ObjCIvarDecl *Ivar); 4393 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4394 const ObjCIvarDecl *Ivar); 4395 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4396 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4397 LValue EmitLValueForLambdaField(const FieldDecl *Field, 4398 llvm::Value *ThisValue); 4399 4400 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4401 /// if the Field is a reference, this will return the address of the reference 4402 /// and not the address of the value stored in the reference. 4403 LValue EmitLValueForFieldInitialization(LValue Base, 4404 const FieldDecl* Field); 4405 4406 LValue EmitLValueForIvar(QualType ObjectTy, 4407 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4408 unsigned CVRQualifiers); 4409 4410 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4411 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4412 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4413 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4414 4415 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4416 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4417 LValue EmitStmtExprLValue(const StmtExpr *E); 4418 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4419 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4420 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4421 4422 //===--------------------------------------------------------------------===// 4423 // Scalar Expression Emission 4424 //===--------------------------------------------------------------------===// 4425 4426 /// EmitCall - Generate a call of the given function, expecting the given 4427 /// result type, and using the given argument list which specifies both the 4428 /// LLVM arguments and the types they were derived from. 4429 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4430 ReturnValueSlot ReturnValue, const CallArgList &Args, 4431 llvm::CallBase **CallOrInvoke, bool IsMustTail, 4432 SourceLocation Loc, 4433 bool IsVirtualFunctionPointerThunk = false); 4434 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4435 ReturnValueSlot ReturnValue, const CallArgList &Args, 4436 llvm::CallBase **CallOrInvoke = nullptr, 4437 bool IsMustTail = false) { 4438 return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, 4439 IsMustTail, SourceLocation()); 4440 } 4441 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4442 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, 4443 llvm::CallBase **CallOrInvoke = nullptr, 4444 CGFunctionInfo const **ResolvedFnInfo = nullptr); 4445 4446 // If a Call or Invoke instruction was emitted for this CallExpr, this method 4447 // writes the pointer to `CallOrInvoke` if it's not null. 4448 RValue EmitCallExpr(const CallExpr *E, 4449 ReturnValueSlot ReturnValue = ReturnValueSlot(), 4450 llvm::CallBase **CallOrInvoke = nullptr); 4451 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4452 llvm::CallBase **CallOrInvoke = nullptr); 4453 CGCallee EmitCallee(const Expr *E); 4454 4455 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4456 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4457 4458 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4459 const Twine &name = ""); 4460 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4461 ArrayRef<llvm::Value *> args, 4462 const Twine &name = ""); 4463 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4464 const Twine &name = ""); 4465 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4466 ArrayRef<Address> args, 4467 const Twine &name = ""); 4468 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4469 ArrayRef<llvm::Value *> args, 4470 const Twine &name = ""); 4471 4472 SmallVector<llvm::OperandBundleDef, 1> 4473 getBundlesForFunclet(llvm::Value *Callee); 4474 4475 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4476 ArrayRef<llvm::Value *> Args, 4477 const Twine &Name = ""); 4478 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4479 ArrayRef<llvm::Value *> args, 4480 const Twine &name = ""); 4481 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4482 const Twine &name = ""); 4483 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4484 ArrayRef<llvm::Value *> args); 4485 4486 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4487 NestedNameSpecifier *Qual, 4488 llvm::Type *Ty); 4489 4490 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4491 CXXDtorType Type, 4492 const CXXRecordDecl *RD); 4493 4494 bool isPointerKnownNonNull(const Expr *E); 4495 4496 /// Create the discriminator from the storage address and the entity hash. 4497 llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, 4498 llvm::Value *Discriminator); 4499 CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, 4500 llvm::Value *StorageAddress, 4501 GlobalDecl SchemaDecl, 4502 QualType SchemaType); 4503 4504 llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, 4505 llvm::Value *Pointer); 4506 4507 llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, 4508 llvm::Value *Pointer); 4509 4510 llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, 4511 const CGPointerAuthInfo &CurAuthInfo, 4512 const CGPointerAuthInfo &NewAuthInfo, 4513 bool IsKnownNonNull); 4514 llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, 4515 const CGPointerAuthInfo &CurInfo, 4516 const CGPointerAuthInfo &NewInfo); 4517 4518 void EmitPointerAuthOperandBundle( 4519 const CGPointerAuthInfo &Info, 4520 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4521 4522 llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, 4523 QualType SourceType, QualType DestType); 4524 Address authPointerToPointerCast(Address Ptr, QualType SourceType, 4525 QualType DestType); 4526 4527 Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); 4528 4529 llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { 4530 return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer(); 4531 } 4532 4533 // Return the copy constructor name with the prefix "__copy_constructor_" 4534 // removed. 4535 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4536 CharUnits Alignment, 4537 bool IsVolatile, 4538 ASTContext &Ctx); 4539 4540 // Return the destructor name with the prefix "__destructor_" removed. 4541 static std::string getNonTrivialDestructorStr(QualType QT, 4542 CharUnits Alignment, 4543 bool IsVolatile, 4544 ASTContext &Ctx); 4545 4546 // These functions emit calls to the special functions of non-trivial C 4547 // structs. 4548 void defaultInitNonTrivialCStructVar(LValue Dst); 4549 void callCStructDefaultConstructor(LValue Dst); 4550 void callCStructDestructor(LValue Dst); 4551 void callCStructCopyConstructor(LValue Dst, LValue Src); 4552 void callCStructMoveConstructor(LValue Dst, LValue Src); 4553 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4554 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4555 4556 RValue EmitCXXMemberOrOperatorCall( 4557 const CXXMethodDecl *Method, const CGCallee &Callee, 4558 ReturnValueSlot ReturnValue, llvm::Value *This, 4559 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, 4560 CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); 4561 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4562 llvm::Value *This, QualType ThisTy, 4563 llvm::Value *ImplicitParam, 4564 QualType ImplicitParamTy, const CallExpr *E, 4565 llvm::CallBase **CallOrInvoke = nullptr); 4566 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4567 ReturnValueSlot ReturnValue, 4568 llvm::CallBase **CallOrInvoke = nullptr); 4569 RValue EmitCXXMemberOrOperatorMemberCallExpr( 4570 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 4571 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 4572 const Expr *Base, llvm::CallBase **CallOrInvoke); 4573 // Compute the object pointer. 4574 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4575 llvm::Value *memberPtr, 4576 const MemberPointerType *memberPtrType, 4577 LValueBaseInfo *BaseInfo = nullptr, 4578 TBAAAccessInfo *TBAAInfo = nullptr); 4579 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4580 ReturnValueSlot ReturnValue, 4581 llvm::CallBase **CallOrInvoke); 4582 4583 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4584 const CXXMethodDecl *MD, 4585 ReturnValueSlot ReturnValue, 4586 llvm::CallBase **CallOrInvoke); 4587 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4588 4589 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4590 ReturnValueSlot ReturnValue, 4591 llvm::CallBase **CallOrInvoke); 4592 4593 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4594 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4595 4596 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4597 const CallExpr *E, ReturnValueSlot ReturnValue); 4598 4599 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4600 4601 /// Emit IR for __builtin_os_log_format. 4602 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4603 4604 /// Emit IR for __builtin_is_aligned. 4605 RValue EmitBuiltinIsAligned(const CallExpr *E); 4606 /// Emit IR for __builtin_align_up/__builtin_align_down. 4607 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4608 4609 llvm::Function *generateBuiltinOSLogHelperFunction( 4610 const analyze_os_log::OSLogBufferLayout &Layout, 4611 CharUnits BufferAlignment); 4612 4613 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4614 llvm::CallBase **CallOrInvoke); 4615 4616 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4617 /// is unhandled by the current target. 4618 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4619 ReturnValueSlot ReturnValue); 4620 4621 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4622 const llvm::CmpInst::Predicate Fp, 4623 const llvm::CmpInst::Predicate Ip, 4624 const llvm::Twine &Name = ""); 4625 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4626 ReturnValueSlot ReturnValue, 4627 llvm::Triple::ArchType Arch); 4628 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4629 ReturnValueSlot ReturnValue, 4630 llvm::Triple::ArchType Arch); 4631 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4632 ReturnValueSlot ReturnValue, 4633 llvm::Triple::ArchType Arch); 4634 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4635 QualType RTy); 4636 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4637 QualType RTy); 4638 4639 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4640 unsigned LLVMIntrinsic, 4641 unsigned AltLLVMIntrinsic, 4642 const char *NameHint, 4643 unsigned Modifier, 4644 const CallExpr *E, 4645 SmallVectorImpl<llvm::Value *> &Ops, 4646 Address PtrOp0, Address PtrOp1, 4647 llvm::Triple::ArchType Arch); 4648 4649 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4650 unsigned Modifier, llvm::Type *ArgTy, 4651 const CallExpr *E); 4652 llvm::Value *EmitNeonCall(llvm::Function *F, 4653 SmallVectorImpl<llvm::Value*> &O, 4654 const char *name, 4655 unsigned shift = 0, bool rightshift = false); 4656 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4657 const llvm::ElementCount &Count); 4658 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4659 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4660 bool negateForRightShift); 4661 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4662 llvm::Type *Ty, bool usgn, const char *name); 4663 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4664 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4665 /// access builtin. Only required if it can't be inferred from the base 4666 /// pointer operand. 4667 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4668 4669 SmallVector<llvm::Type *, 2> 4670 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4671 ArrayRef<llvm::Value *> Ops); 4672 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4673 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4674 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4675 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4676 ArrayRef<llvm::Value *> Ops); 4677 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4678 llvm::Type *ReturnType, 4679 ArrayRef<llvm::Value *> Ops); 4680 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4681 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4682 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4683 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4684 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4685 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4686 unsigned BuiltinID); 4687 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4688 llvm::ArrayRef<llvm::Value *> Ops, 4689 unsigned BuiltinID); 4690 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4691 llvm::ScalableVectorType *VTy); 4692 llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, 4693 llvm::StructType *Ty); 4694 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4695 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4696 unsigned IntID); 4697 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4698 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4699 unsigned IntID); 4700 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4701 SmallVectorImpl<llvm::Value *> &Ops, 4702 unsigned BuiltinID, bool IsZExtReturn); 4703 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4704 SmallVectorImpl<llvm::Value *> &Ops, 4705 unsigned BuiltinID); 4706 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4707 SmallVectorImpl<llvm::Value *> &Ops, 4708 unsigned BuiltinID); 4709 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4710 SmallVectorImpl<llvm::Value *> &Ops, 4711 unsigned IntID); 4712 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4713 SmallVectorImpl<llvm::Value *> &Ops, 4714 unsigned IntID); 4715 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4716 SmallVectorImpl<llvm::Value *> &Ops, 4717 unsigned IntID); 4718 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4719 4720 llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, 4721 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4722 unsigned IntID); 4723 llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, 4724 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4725 unsigned IntID); 4726 llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, 4727 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4728 unsigned IntID); 4729 llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, 4730 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4731 unsigned IntID); 4732 4733 void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, 4734 SmallVectorImpl<llvm::Value *> &Ops, 4735 SVETypeFlags TypeFlags); 4736 4737 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4738 4739 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4740 llvm::Triple::ArchType Arch); 4741 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4742 4743 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4744 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4745 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4746 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4747 llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4748 ReturnValueSlot ReturnValue); 4749 llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, 4750 const CallExpr *E); 4751 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4752 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4753 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4754 const CallExpr *E); 4755 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4756 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4757 ReturnValueSlot ReturnValue); 4758 4759 llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); 4760 llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); 4761 llvm::Value *EmitRISCVCpuInit(); 4762 llvm::Value *EmitRISCVCpuIs(const CallExpr *E); 4763 llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); 4764 4765 void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, 4766 const CallExpr *E); 4767 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4768 llvm::AtomicOrdering &AO, 4769 llvm::SyncScope::ID &SSID); 4770 4771 enum class MSVCIntrin; 4772 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4773 4774 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4775 4776 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4777 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4778 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4779 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4780 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4781 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4782 const ObjCMethodDecl *MethodWithObjects); 4783 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4784 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4785 ReturnValueSlot Return = ReturnValueSlot()); 4786 4787 /// Retrieves the default cleanup kind for an ARC cleanup. 4788 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4789 CleanupKind getARCCleanupKind() { 4790 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4791 ? NormalAndEHCleanup : NormalCleanup; 4792 } 4793 4794 // ARC primitives. 4795 void EmitARCInitWeak(Address addr, llvm::Value *value); 4796 void EmitARCDestroyWeak(Address addr); 4797 llvm::Value *EmitARCLoadWeak(Address addr); 4798 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4799 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4800 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4801 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4802 void EmitARCCopyWeak(Address dst, Address src); 4803 void EmitARCMoveWeak(Address dst, Address src); 4804 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4805 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4806 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4807 bool resultIgnored); 4808 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4809 bool resultIgnored); 4810 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4811 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4812 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4813 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4814 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4815 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4816 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4817 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4818 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4819 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4820 4821 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4822 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4823 llvm::Type *returnType); 4824 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4825 4826 std::pair<LValue,llvm::Value*> 4827 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4828 std::pair<LValue,llvm::Value*> 4829 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4830 std::pair<LValue,llvm::Value*> 4831 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4832 4833 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4834 llvm::Type *returnType); 4835 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4836 llvm::Type *returnType); 4837 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4838 4839 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4840 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4841 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4842 4843 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4844 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4845 bool allowUnsafeClaim); 4846 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4847 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4848 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4849 4850 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4851 4852 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4853 4854 static Destroyer destroyARCStrongImprecise; 4855 static Destroyer destroyARCStrongPrecise; 4856 static Destroyer destroyARCWeak; 4857 static Destroyer emitARCIntrinsicUse; 4858 static Destroyer destroyNonTrivialCStruct; 4859 4860 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4861 llvm::Value *EmitObjCAutoreleasePoolPush(); 4862 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4863 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4864 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4865 4866 /// Emits a reference binding to the passed in expression. 4867 RValue EmitReferenceBindingToExpr(const Expr *E); 4868 4869 //===--------------------------------------------------------------------===// 4870 // Expression Emission 4871 //===--------------------------------------------------------------------===// 4872 4873 // Expressions are broken into three classes: scalar, complex, aggregate. 4874 4875 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4876 /// scalar type, returning the result. 4877 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4878 4879 /// Emit a conversion from the specified type to the specified destination 4880 /// type, both of which are LLVM scalar types. 4881 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4882 QualType DstTy, SourceLocation Loc); 4883 4884 /// Emit a conversion from the specified complex type to the specified 4885 /// destination type, where the destination type is an LLVM scalar type. 4886 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4887 QualType DstTy, 4888 SourceLocation Loc); 4889 4890 /// EmitAggExpr - Emit the computation of the specified expression 4891 /// of aggregate type. The result is computed into the given slot, 4892 /// which may be null to indicate that the value is not needed. 4893 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4894 4895 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4896 /// aggregate type into a temporary LValue. 4897 LValue EmitAggExprToLValue(const Expr *E); 4898 4899 enum ExprValueKind { EVK_RValue, EVK_NonRValue }; 4900 4901 /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into 4902 /// destination address. 4903 void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, 4904 ExprValueKind SrcKind); 4905 4906 /// Create a store to \arg DstPtr from \arg Src, truncating the stored value 4907 /// to at most \arg DstSize bytes. 4908 void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, 4909 bool DstIsVolatile); 4910 4911 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4912 /// make sure it survives garbage collection until this point. 4913 void EmitExtendGCLifetime(llvm::Value *object); 4914 4915 /// EmitComplexExpr - Emit the computation of the specified expression of 4916 /// complex type, returning the result. 4917 ComplexPairTy EmitComplexExpr(const Expr *E, 4918 bool IgnoreReal = false, 4919 bool IgnoreImag = false); 4920 4921 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4922 /// type and place its result into the specified l-value. 4923 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4924 4925 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4926 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4927 4928 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4929 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4930 4931 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4932 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4933 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4934 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4935 4936 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4937 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4938 4939 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4940 /// global variable that has already been created for it. If the initializer 4941 /// has a different type than GV does, this may free GV and return a different 4942 /// one. Otherwise it just returns GV. 4943 llvm::GlobalVariable * 4944 AddInitializerToStaticVarDecl(const VarDecl &D, 4945 llvm::GlobalVariable *GV); 4946 4947 // Emit an @llvm.invariant.start call for the given memory region. 4948 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4949 4950 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4951 /// variable with global storage. 4952 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4953 bool PerformInit); 4954 4955 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4956 llvm::Constant *Addr); 4957 4958 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4959 llvm::FunctionCallee Dtor, 4960 llvm::Constant *Addr, 4961 llvm::FunctionCallee &AtExit); 4962 4963 /// Call atexit() with a function that passes the given argument to 4964 /// the given function. 4965 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4966 llvm::Constant *addr); 4967 4968 /// Registers the dtor using 'llvm.global_dtors' for platforms that do not 4969 /// support an 'atexit()' function. 4970 void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, 4971 llvm::Constant *addr); 4972 4973 /// Call atexit() with function dtorStub. 4974 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4975 4976 /// Call unatexit() with function dtorStub. 4977 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4978 4979 /// Emit code in this function to perform a guarded variable 4980 /// initialization. Guarded initializations are used when it's not 4981 /// possible to prove that an initialization will be done exactly 4982 /// once, e.g. with a static local variable or a static data member 4983 /// of a class template. 4984 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4985 bool PerformInit); 4986 4987 enum class GuardKind { VariableGuard, TlsGuard }; 4988 4989 /// Emit a branch to select whether or not to perform guarded initialization. 4990 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4991 llvm::BasicBlock *InitBlock, 4992 llvm::BasicBlock *NoInitBlock, 4993 GuardKind Kind, const VarDecl *D); 4994 4995 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4996 /// variables. 4997 void 4998 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4999 ArrayRef<llvm::Function *> CXXThreadLocals, 5000 ConstantAddress Guard = ConstantAddress::invalid()); 5001 5002 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 5003 /// variables. 5004 void GenerateCXXGlobalCleanUpFunc( 5005 llvm::Function *Fn, 5006 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 5007 llvm::Constant *>> 5008 DtorsOrStermFinalizers); 5009 5010 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 5011 const VarDecl *D, 5012 llvm::GlobalVariable *Addr, 5013 bool PerformInit); 5014 5015 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 5016 5017 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 5018 5019 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 5020 5021 RValue EmitAtomicExpr(AtomicExpr *E); 5022 5023 //===--------------------------------------------------------------------===// 5024 // Annotations Emission 5025 //===--------------------------------------------------------------------===// 5026 5027 /// Emit an annotation call (intrinsic). 5028 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 5029 llvm::Value *AnnotatedVal, 5030 StringRef AnnotationStr, 5031 SourceLocation Location, 5032 const AnnotateAttr *Attr); 5033 5034 /// Emit local annotations for the local variable V, declared by D. 5035 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 5036 5037 /// Emit field annotations for the given field & value. Returns the 5038 /// annotation result. 5039 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 5040 5041 //===--------------------------------------------------------------------===// 5042 // Internal Helpers 5043 //===--------------------------------------------------------------------===// 5044 5045 /// ContainsLabel - Return true if the statement contains a label in it. If 5046 /// this statement is not executed normally, it not containing a label means 5047 /// that we can just remove the code. 5048 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 5049 5050 /// containsBreak - Return true if the statement contains a break out of it. 5051 /// If the statement (recursively) contains a switch or loop with a break 5052 /// inside of it, this is fine. 5053 static bool containsBreak(const Stmt *S); 5054 5055 /// Determine if the given statement might introduce a declaration into the 5056 /// current scope, by being a (possibly-labelled) DeclStmt. 5057 static bool mightAddDeclToScope(const Stmt *S); 5058 5059 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5060 /// to a constant, or if it does but contains a label, return false. If it 5061 /// constant folds return true and set the boolean result in Result. 5062 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 5063 bool AllowLabels = false); 5064 5065 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5066 /// to a constant, or if it does but contains a label, return false. If it 5067 /// constant folds return true and set the folded value. 5068 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 5069 bool AllowLabels = false); 5070 5071 /// Ignore parentheses and logical-NOT to track conditions consistently. 5072 static const Expr *stripCond(const Expr *C); 5073 5074 /// isInstrumentedCondition - Determine whether the given condition is an 5075 /// instrumentable condition (i.e. no "&&" or "||"). 5076 static bool isInstrumentedCondition(const Expr *C); 5077 5078 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 5079 /// increments a profile counter based on the semantics of the given logical 5080 /// operator opcode. This is used to instrument branch condition coverage 5081 /// for logical operators. 5082 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 5083 llvm::BasicBlock *TrueBlock, 5084 llvm::BasicBlock *FalseBlock, 5085 uint64_t TrueCount = 0, 5086 Stmt::Likelihood LH = Stmt::LH_None, 5087 const Expr *CntrIdx = nullptr); 5088 5089 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 5090 /// if statement) to the specified blocks. Based on the condition, this might 5091 /// try to simplify the codegen of the conditional based on the branch. 5092 /// TrueCount should be the number of times we expect the condition to 5093 /// evaluate to true based on PGO data. 5094 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 5095 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 5096 Stmt::Likelihood LH = Stmt::LH_None, 5097 const Expr *ConditionalOp = nullptr); 5098 5099 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 5100 /// nonnull, if \p LHS is marked _Nonnull. 5101 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 5102 5103 /// An enumeration which makes it easier to specify whether or not an 5104 /// operation is a subtraction. 5105 enum { NotSubtraction = false, IsSubtraction = true }; 5106 5107 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 5108 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 5109 /// \p SignedIndices indicates whether any of the GEP indices are signed. 5110 /// \p IsSubtraction indicates whether the expression used to form the GEP 5111 /// is a subtraction. 5112 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 5113 ArrayRef<llvm::Value *> IdxList, 5114 bool SignedIndices, 5115 bool IsSubtraction, 5116 SourceLocation Loc, 5117 const Twine &Name = ""); 5118 5119 Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, 5120 llvm::Type *elementType, bool SignedIndices, 5121 bool IsSubtraction, SourceLocation Loc, 5122 CharUnits Align, const Twine &Name = ""); 5123 5124 /// Specifies which type of sanitizer check to apply when handling a 5125 /// particular builtin. 5126 enum BuiltinCheckKind { 5127 BCK_CTZPassedZero, 5128 BCK_CLZPassedZero, 5129 BCK_AssumePassedFalse, 5130 }; 5131 5132 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 5133 /// enabled, a runtime check specified by \p Kind is also emitted. 5134 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 5135 5136 /// Emits an argument for a call to a `__builtin_assume`. If the builtin 5137 /// sanitizer is enabled, a runtime check is also emitted. 5138 llvm::Value *EmitCheckedArgForAssume(const Expr *E); 5139 5140 /// Emit a description of a type in a format suitable for passing to 5141 /// a runtime sanitizer handler. 5142 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 5143 5144 /// Convert a value into a format suitable for passing to a runtime 5145 /// sanitizer handler. 5146 llvm::Value *EmitCheckValue(llvm::Value *V); 5147 5148 /// Emit a description of a source location in a format suitable for 5149 /// passing to a runtime sanitizer handler. 5150 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 5151 5152 void EmitKCFIOperandBundle(const CGCallee &Callee, 5153 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 5154 5155 /// Create a basic block that will either trap or call a handler function in 5156 /// the UBSan runtime with the provided arguments, and create a conditional 5157 /// branch to it. 5158 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 5159 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 5160 ArrayRef<llvm::Value *> DynamicArgs); 5161 5162 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 5163 /// if Cond if false. 5164 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 5165 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 5166 ArrayRef<llvm::Constant *> StaticArgs); 5167 5168 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 5169 /// checking is enabled. Otherwise, just emit an unreachable instruction. 5170 void EmitUnreachable(SourceLocation Loc); 5171 5172 /// Create a basic block that will call the trap intrinsic, and emit a 5173 /// conditional branch to it, for the -ftrapv checks. 5174 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 5175 5176 /// Emit a call to trap or debugtrap and attach function attribute 5177 /// "trap-func-name" if specified. 5178 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 5179 5180 /// Emit a stub for the cross-DSO CFI check function. 5181 void EmitCfiCheckStub(); 5182 5183 /// Emit a cross-DSO CFI failure handling function. 5184 void EmitCfiCheckFail(); 5185 5186 /// Create a check for a function parameter that may potentially be 5187 /// declared as non-null. 5188 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 5189 AbstractCallee AC, unsigned ParmNum); 5190 5191 void EmitNonNullArgCheck(Address Addr, QualType ArgType, 5192 SourceLocation ArgLoc, AbstractCallee AC, 5193 unsigned ParmNum); 5194 5195 /// EmitWriteback - Emit callbacks for function. 5196 void EmitWritebacks(const CallArgList &Args); 5197 5198 /// EmitCallArg - Emit a single call argument. 5199 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 5200 5201 /// EmitDelegateCallArg - We are performing a delegate call; that 5202 /// is, the current function is delegating to another one. Produce 5203 /// a r-value suitable for passing the given parameter. 5204 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 5205 SourceLocation loc); 5206 5207 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 5208 /// point operation, expressed as the maximum relative error in ulp. 5209 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 5210 5211 /// Set the minimum required accuracy of the given sqrt operation 5212 /// based on CodeGenOpts. 5213 void SetSqrtFPAccuracy(llvm::Value *Val); 5214 5215 /// Set the minimum required accuracy of the given sqrt operation based on 5216 /// CodeGenOpts. 5217 void SetDivFPAccuracy(llvm::Value *Val); 5218 5219 /// Set the codegen fast-math flags. 5220 void SetFastMathFlags(FPOptions FPFeatures); 5221 5222 // Truncate or extend a boolean vector to the requested number of elements. 5223 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 5224 unsigned NumElementsDst, 5225 const llvm::Twine &Name = ""); 5226 // Adds a convergence_ctrl token to |Input| and emits the required parent 5227 // convergence instructions. 5228 template <typename CallType> 5229 CallType *addControlledConvergenceToken(CallType *Input) { 5230 return cast<CallType>( 5231 addConvergenceControlToken(Input, ConvergenceTokenStack.back())); 5232 } 5233 5234 private: 5235 // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| 5236 // as it's parent convergence instr. 5237 llvm::IntrinsicInst *emitConvergenceLoopToken(llvm::BasicBlock *BB, 5238 llvm::Value *ParentToken); 5239 // Adds a convergence_ctrl token with |ParentToken| as parent convergence 5240 // instr to the call |Input|. 5241 llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input, 5242 llvm::Value *ParentToken); 5243 // Find the convergence_entry instruction |F|, or emits ones if none exists. 5244 // Returns the convergence instruction. 5245 llvm::IntrinsicInst *getOrEmitConvergenceEntryToken(llvm::Function *F); 5246 // Find the convergence_loop instruction for the loop defined by |LI|, or 5247 // emits one if none exists. Returns the convergence instruction. 5248 llvm::IntrinsicInst *getOrEmitConvergenceLoopToken(const LoopInfo *LI); 5249 5250 private: 5251 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 5252 void EmitReturnOfRValue(RValue RV, QualType Ty); 5253 5254 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 5255 5256 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 5257 DeferredReplacements; 5258 5259 /// Set the address of a local variable. 5260 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 5261 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 5262 LocalDeclMap.insert({VD, Addr}); 5263 } 5264 5265 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 5266 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 5267 /// 5268 /// \param AI - The first function argument of the expansion. 5269 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 5270 llvm::Function::arg_iterator &AI); 5271 5272 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 5273 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 5274 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 5275 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 5276 SmallVectorImpl<llvm::Value *> &IRCallArgs, 5277 unsigned &IRCallArgPos); 5278 5279 std::pair<llvm::Value *, llvm::Type *> 5280 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 5281 std::string &ConstraintStr); 5282 5283 std::pair<llvm::Value *, llvm::Type *> 5284 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 5285 QualType InputType, std::string &ConstraintStr, 5286 SourceLocation Loc); 5287 5288 /// Attempts to statically evaluate the object size of E. If that 5289 /// fails, emits code to figure the size of E out for us. This is 5290 /// pass_object_size aware. 5291 /// 5292 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 5293 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 5294 llvm::IntegerType *ResType, 5295 llvm::Value *EmittedE, 5296 bool IsDynamic); 5297 5298 /// Emits the size of E, as required by __builtin_object_size. This 5299 /// function is aware of pass_object_size parameters, and will act accordingly 5300 /// if E is a parameter with the pass_object_size attribute. 5301 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 5302 llvm::IntegerType *ResType, 5303 llvm::Value *EmittedE, 5304 bool IsDynamic); 5305 5306 llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, 5307 llvm::IntegerType *ResType); 5308 5309 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 5310 Address Loc); 5311 5312 public: 5313 enum class EvaluationOrder { 5314 ///! No language constraints on evaluation order. 5315 Default, 5316 ///! Language semantics require left-to-right evaluation. 5317 ForceLeftToRight, 5318 ///! Language semantics require right-to-left evaluation. 5319 ForceRightToLeft 5320 }; 5321 5322 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 5323 // an ObjCMethodDecl. 5324 struct PrototypeWrapper { 5325 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 5326 5327 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 5328 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 5329 }; 5330 5331 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 5332 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 5333 AbstractCallee AC = AbstractCallee(), 5334 unsigned ParamsToSkip = 0, 5335 EvaluationOrder Order = EvaluationOrder::Default); 5336 5337 /// EmitPointerWithAlignment - Given an expression with a pointer type, 5338 /// emit the value and compute our best estimate of the alignment of the 5339 /// pointee. 5340 /// 5341 /// \param BaseInfo - If non-null, this will be initialized with 5342 /// information about the source of the alignment and the may-alias 5343 /// attribute. Note that this function will conservatively fall back on 5344 /// the type when it doesn't recognize the expression and may-alias will 5345 /// be set to false. 5346 /// 5347 /// One reasonable way to use this information is when there's a language 5348 /// guarantee that the pointer must be aligned to some stricter value, and 5349 /// we're simply trying to ensure that sufficiently obvious uses of under- 5350 /// aligned objects don't get miscompiled; for example, a placement new 5351 /// into the address of a local variable. In such a case, it's quite 5352 /// reasonable to just ignore the returned alignment when it isn't from an 5353 /// explicit source. 5354 Address 5355 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 5356 TBAAAccessInfo *TBAAInfo = nullptr, 5357 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 5358 5359 /// If \p E references a parameter with pass_object_size info or a constant 5360 /// array size modifier, emit the object size divided by the size of \p EltTy. 5361 /// Otherwise return null. 5362 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 5363 5364 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 5365 5366 struct FMVResolverOption { 5367 llvm::Function *Function; 5368 llvm::SmallVector<StringRef, 8> Features; 5369 std::optional<StringRef> Architecture; 5370 5371 FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, 5372 std::optional<StringRef> Arch = std::nullopt) 5373 : Function(F), Features(Feats), Architecture(Arch) {} 5374 }; 5375 5376 // Emits the body of a multiversion function's resolver. Assumes that the 5377 // options are already sorted in the proper order, with the 'default' option 5378 // last (if it exists). 5379 void EmitMultiVersionResolver(llvm::Function *Resolver, 5380 ArrayRef<FMVResolverOption> Options); 5381 void EmitX86MultiVersionResolver(llvm::Function *Resolver, 5382 ArrayRef<FMVResolverOption> Options); 5383 void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 5384 ArrayRef<FMVResolverOption> Options); 5385 void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, 5386 ArrayRef<FMVResolverOption> Options); 5387 5388 private: 5389 QualType getVarArgType(const Expr *Arg); 5390 5391 void EmitDeclMetadata(); 5392 5393 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 5394 const AutoVarEmission &emission); 5395 5396 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 5397 5398 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 5399 llvm::Value *EmitX86CpuIs(const CallExpr *E); 5400 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 5401 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 5402 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 5403 llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); 5404 llvm::Value *EmitX86CpuInit(); 5405 llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); 5406 llvm::Value *EmitAArch64CpuInit(); 5407 llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); 5408 llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); 5409 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 5410 }; 5411 5412 inline DominatingLLVMValue::saved_type 5413 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 5414 if (!needsSaving(value)) return saved_type(value, false); 5415 5416 // Otherwise, we need an alloca. 5417 auto align = CharUnits::fromQuantity( 5418 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 5419 Address alloca = 5420 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 5421 CGF.Builder.CreateStore(value, alloca); 5422 5423 return saved_type(alloca.emitRawPointer(CGF), true); 5424 } 5425 5426 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 5427 saved_type value) { 5428 // If the value says it wasn't saved, trust that it's still dominating. 5429 if (!value.getInt()) return value.getPointer(); 5430 5431 // Otherwise, it should be an alloca instruction, as set up in save(). 5432 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 5433 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 5434 alloca->getAlign()); 5435 } 5436 5437 } // end namespace CodeGen 5438 5439 // Map the LangOption for floating point exception behavior into 5440 // the corresponding enum in the IR. 5441 llvm::fp::ExceptionBehavior 5442 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 5443 } // end namespace clang 5444 5445 #endif 5446