xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision e14962a39cc6476bebba65e5639b74b0318c7fc3)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenACC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/AST/StmtSYCL.h"
32 #include "clang/AST/Type.h"
33 #include "clang/Basic/ABI.h"
34 #include "clang/Basic/CapturedStmt.h"
35 #include "clang/Basic/CodeGenOptions.h"
36 #include "clang/Basic/OpenMPKinds.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Transforms/Utils/SanitizerStats.h"
47 #include <optional>
48 
49 namespace llvm {
50 class BasicBlock;
51 class LLVMContext;
52 class MDNode;
53 class SwitchInst;
54 class Twine;
55 class Value;
56 class CanonicalLoopInfo;
57 }
58 
59 namespace clang {
60 class ASTContext;
61 class CXXDestructorDecl;
62 class CXXForRangeStmt;
63 class CXXTryStmt;
64 class Decl;
65 class LabelDecl;
66 class FunctionDecl;
67 class FunctionProtoType;
68 class LabelStmt;
69 class ObjCContainerDecl;
70 class ObjCInterfaceDecl;
71 class ObjCIvarDecl;
72 class ObjCMethodDecl;
73 class ObjCImplementationDecl;
74 class ObjCPropertyImplDecl;
75 class TargetInfo;
76 class VarDecl;
77 class ObjCForCollectionStmt;
78 class ObjCAtTryStmt;
79 class ObjCAtThrowStmt;
80 class ObjCAtSynchronizedStmt;
81 class ObjCAutoreleasePoolStmt;
82 class OMPUseDevicePtrClause;
83 class OMPUseDeviceAddrClause;
84 class SVETypeFlags;
85 class OMPExecutableDirective;
86 
87 namespace analyze_os_log {
88 class OSLogBufferLayout;
89 }
90 
91 namespace CodeGen {
92 class CodeGenTypes;
93 class CGCallee;
94 class CGFunctionInfo;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFieldFlags;
100 class RegionCodeGenTy;
101 class TargetCodeGenInfo;
102 struct OMPTaskDataTy;
103 struct CGCoroData;
104 
105 /// The kind of evaluation to perform on values of a particular
106 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
107 /// CGExprAgg?
108 ///
109 /// TODO: should vectors maybe be split out into their own thing?
110 enum TypeEvaluationKind {
111   TEK_Scalar,
112   TEK_Complex,
113   TEK_Aggregate
114 };
115 
116 #define LIST_SANITIZER_CHECKS                                                  \
117   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
118   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
119   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
120   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
121   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
122   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
123   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
124   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
125   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
126   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
127   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
128   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
129   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
130   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
131   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
132   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
133   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
134   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
135   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
136   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
137   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
138   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
139   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
140   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
141   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)              \
142   SANITIZER_CHECK(BoundsSafety, bounds_safety, 0)
143 
144 enum SanitizerHandler {
145 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
146   LIST_SANITIZER_CHECKS
147 #undef SANITIZER_CHECK
148 };
149 
150 /// Helper class with most of the code for saving a value for a
151 /// conditional expression cleanup.
152 struct DominatingLLVMValue {
153   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154 
155   /// Answer whether the given value needs extra work to be saved.
156   static bool needsSaving(llvm::Value *value) {
157     if (!value)
158       return false;
159 
160     // If it's not an instruction, we don't need to save.
161     if (!isa<llvm::Instruction>(value)) return false;
162 
163     // If it's an instruction in the entry block, we don't need to save.
164     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
165     return (block != &block->getParent()->getEntryBlock());
166   }
167 
168   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
169   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
170 };
171 
172 /// A partial specialization of DominatingValue for llvm::Values that
173 /// might be llvm::Instructions.
174 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
175   typedef T *type;
176   static type restore(CodeGenFunction &CGF, saved_type value) {
177     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
178   }
179 };
180 
181 /// A specialization of DominatingValue for Address.
182 template <> struct DominatingValue<Address> {
183   typedef Address type;
184 
185   struct saved_type {
186     DominatingLLVMValue::saved_type BasePtr;
187     llvm::Type *ElementType;
188     CharUnits Alignment;
189     DominatingLLVMValue::saved_type Offset;
190     llvm::PointerType *EffectiveType;
191   };
192 
193   static bool needsSaving(type value) {
194     if (DominatingLLVMValue::needsSaving(value.getBasePointer()) ||
195         DominatingLLVMValue::needsSaving(value.getOffset()))
196       return true;
197     return false;
198   }
199   static saved_type save(CodeGenFunction &CGF, type value) {
200     return {DominatingLLVMValue::save(CGF, value.getBasePointer()),
201             value.getElementType(), value.getAlignment(),
202             DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()};
203   }
204   static type restore(CodeGenFunction &CGF, saved_type value) {
205     return Address(DominatingLLVMValue::restore(CGF, value.BasePtr),
206                    value.ElementType, value.Alignment, CGPointerAuthInfo(),
207                    DominatingLLVMValue::restore(CGF, value.Offset));
208   }
209 };
210 
211 /// A specialization of DominatingValue for RValue.
212 template <> struct DominatingValue<RValue> {
213   typedef RValue type;
214   class saved_type {
215     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
216                 AggregateAddress, ComplexAddress };
217     union {
218       struct {
219         DominatingLLVMValue::saved_type first, second;
220       } Vals;
221       DominatingValue<Address>::saved_type AggregateAddr;
222     };
223     LLVM_PREFERRED_TYPE(Kind)
224     unsigned K : 3;
225 
226     saved_type(DominatingLLVMValue::saved_type Val1, unsigned K)
227         : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {}
228 
229     saved_type(DominatingLLVMValue::saved_type Val1,
230                DominatingLLVMValue::saved_type Val2)
231         : Vals{Val1, Val2}, K(ComplexAddress) {}
232 
233     saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K)
234         : AggregateAddr(AggregateAddr), K(K) {}
235 
236   public:
237     static bool needsSaving(RValue value);
238     static saved_type save(CodeGenFunction &CGF, RValue value);
239     RValue restore(CodeGenFunction &CGF);
240 
241     // implementations in CGCleanup.cpp
242   };
243 
244   static bool needsSaving(type value) {
245     return saved_type::needsSaving(value);
246   }
247   static saved_type save(CodeGenFunction &CGF, type value) {
248     return saved_type::save(CGF, value);
249   }
250   static type restore(CodeGenFunction &CGF, saved_type value) {
251     return value.restore(CGF);
252   }
253 };
254 
255 /// CodeGenFunction - This class organizes the per-function state that is used
256 /// while generating LLVM code.
257 class CodeGenFunction : public CodeGenTypeCache {
258   CodeGenFunction(const CodeGenFunction &) = delete;
259   void operator=(const CodeGenFunction &) = delete;
260 
261   friend class CGCXXABI;
262 public:
263   /// A jump destination is an abstract label, branching to which may
264   /// require a jump out through normal cleanups.
265   struct JumpDest {
266     JumpDest() : Block(nullptr), Index(0) {}
267     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
268              unsigned Index)
269         : Block(Block), ScopeDepth(Depth), Index(Index) {}
270 
271     bool isValid() const { return Block != nullptr; }
272     llvm::BasicBlock *getBlock() const { return Block; }
273     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
274     unsigned getDestIndex() const { return Index; }
275 
276     // This should be used cautiously.
277     void setScopeDepth(EHScopeStack::stable_iterator depth) {
278       ScopeDepth = depth;
279     }
280 
281   private:
282     llvm::BasicBlock *Block;
283     EHScopeStack::stable_iterator ScopeDepth;
284     unsigned Index;
285   };
286 
287   CodeGenModule &CGM;  // Per-module state.
288   const TargetInfo &Target;
289 
290   // For EH/SEH outlined funclets, this field points to parent's CGF
291   CodeGenFunction *ParentCGF = nullptr;
292 
293   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
294   LoopInfoStack LoopStack;
295   CGBuilderTy Builder;
296 
297   // Stores variables for which we can't generate correct lifetime markers
298   // because of jumps.
299   VarBypassDetector Bypasses;
300 
301   /// List of recently emitted OMPCanonicalLoops.
302   ///
303   /// Since OMPCanonicalLoops are nested inside other statements (in particular
304   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
305   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
306   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
307   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
308   /// this stack when done. Entering a new loop requires clearing this list; it
309   /// either means we start parsing a new loop nest (in which case the previous
310   /// loop nest goes out of scope) or a second loop in the same level in which
311   /// case it would be ambiguous into which of the two (or more) loops the loop
312   /// nest would extend.
313   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
314 
315   /// Stack to track the Logical Operator recursion nest for MC/DC.
316   SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
317 
318   /// Stack to track the controlled convergence tokens.
319   SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack;
320 
321   /// Number of nested loop to be consumed by the last surrounding
322   /// loop-associated directive.
323   int ExpectedOMPLoopDepth = 0;
324 
325   // CodeGen lambda for loops and support for ordered clause
326   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
327                                   JumpDest)>
328       CodeGenLoopTy;
329   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
330                                   const unsigned, const bool)>
331       CodeGenOrderedTy;
332 
333   // Codegen lambda for loop bounds in worksharing loop constructs
334   typedef llvm::function_ref<std::pair<LValue, LValue>(
335       CodeGenFunction &, const OMPExecutableDirective &S)>
336       CodeGenLoopBoundsTy;
337 
338   // Codegen lambda for loop bounds in dispatch-based loop implementation
339   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
340       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
341       Address UB)>
342       CodeGenDispatchBoundsTy;
343 
344   /// CGBuilder insert helper. This function is called after an
345   /// instruction is created using Builder.
346   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
347                     llvm::BasicBlock::iterator InsertPt) const;
348 
349   /// CurFuncDecl - Holds the Decl for the current outermost
350   /// non-closure context.
351   const Decl *CurFuncDecl = nullptr;
352   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
353   const Decl *CurCodeDecl = nullptr;
354   const CGFunctionInfo *CurFnInfo = nullptr;
355   QualType FnRetTy;
356   llvm::Function *CurFn = nullptr;
357 
358   /// Save Parameter Decl for coroutine.
359   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
360 
361   // Holds coroutine data if the current function is a coroutine. We use a
362   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
363   // in this header.
364   struct CGCoroInfo {
365     std::unique_ptr<CGCoroData> Data;
366     bool InSuspendBlock = false;
367     CGCoroInfo();
368     ~CGCoroInfo();
369   };
370   CGCoroInfo CurCoro;
371 
372   bool isCoroutine() const {
373     return CurCoro.Data != nullptr;
374   }
375 
376   bool inSuspendBlock() const {
377     return isCoroutine() && CurCoro.InSuspendBlock;
378   }
379 
380   // Holds FramePtr for await_suspend wrapper generation,
381   // so that __builtin_coro_frame call can be lowered
382   // directly to value of its second argument
383   struct AwaitSuspendWrapperInfo {
384     llvm::Value *FramePtr = nullptr;
385   };
386   AwaitSuspendWrapperInfo CurAwaitSuspendWrapper;
387 
388   // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics.
389   // It encapsulates SuspendExpr in a function, to separate it's body
390   // from the main coroutine to avoid miscompilations. Intrinisic
391   // is lowered to this function call in CoroSplit pass
392   // Function signature is:
393   // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl)
394   // where type is one of (void, i1, ptr)
395   llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName,
396                                               Twine const &SuspendPointName,
397                                               CoroutineSuspendExpr const &S);
398 
399   /// CurGD - The GlobalDecl for the current function being compiled.
400   GlobalDecl CurGD;
401 
402   /// PrologueCleanupDepth - The cleanup depth enclosing all the
403   /// cleanups associated with the parameters.
404   EHScopeStack::stable_iterator PrologueCleanupDepth;
405 
406   /// ReturnBlock - Unified return block.
407   JumpDest ReturnBlock;
408 
409   /// ReturnValue - The temporary alloca to hold the return
410   /// value. This is invalid iff the function has no return value.
411   Address ReturnValue = Address::invalid();
412 
413   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
414   /// This is invalid if sret is not in use.
415   Address ReturnValuePointer = Address::invalid();
416 
417   /// If a return statement is being visited, this holds the return statment's
418   /// result expression.
419   const Expr *RetExpr = nullptr;
420 
421   /// Return true if a label was seen in the current scope.
422   bool hasLabelBeenSeenInCurrentScope() const {
423     if (CurLexicalScope)
424       return CurLexicalScope->hasLabels();
425     return !LabelMap.empty();
426   }
427 
428   /// AllocaInsertPoint - This is an instruction in the entry block before which
429   /// we prefer to insert allocas.
430   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
431 
432 private:
433   /// PostAllocaInsertPt - This is a place in the prologue where code can be
434   /// inserted that will be dominated by all the static allocas. This helps
435   /// achieve two things:
436   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
437   ///   2. All other prologue code (which are dominated by static allocas) do
438   ///      appear in the source order immediately after all static allocas.
439   ///
440   /// PostAllocaInsertPt will be lazily created when it is *really* required.
441   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
442 
443 public:
444   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
445   /// immediately after AllocaInsertPt.
446   llvm::Instruction *getPostAllocaInsertPoint() {
447     if (!PostAllocaInsertPt) {
448       assert(AllocaInsertPt &&
449              "Expected static alloca insertion point at function prologue");
450       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
451              "EBB should be entry block of the current code gen function");
452       PostAllocaInsertPt = AllocaInsertPt->clone();
453       PostAllocaInsertPt->setName("postallocapt");
454       PostAllocaInsertPt->insertAfter(AllocaInsertPt->getIterator());
455     }
456 
457     return PostAllocaInsertPt;
458   }
459 
460   /// API for captured statement code generation.
461   class CGCapturedStmtInfo {
462   public:
463     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
464         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
465     explicit CGCapturedStmtInfo(const CapturedStmt &S,
466                                 CapturedRegionKind K = CR_Default)
467       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
468 
469       RecordDecl::field_iterator Field =
470         S.getCapturedRecordDecl()->field_begin();
471       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
472                                                 E = S.capture_end();
473            I != E; ++I, ++Field) {
474         if (I->capturesThis())
475           CXXThisFieldDecl = *Field;
476         else if (I->capturesVariable())
477           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
478         else if (I->capturesVariableByCopy())
479           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
480       }
481     }
482 
483     virtual ~CGCapturedStmtInfo();
484 
485     CapturedRegionKind getKind() const { return Kind; }
486 
487     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
488     // Retrieve the value of the context parameter.
489     virtual llvm::Value *getContextValue() const { return ThisValue; }
490 
491     /// Lookup the captured field decl for a variable.
492     virtual const FieldDecl *lookup(const VarDecl *VD) const {
493       return CaptureFields.lookup(VD->getCanonicalDecl());
494     }
495 
496     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
497     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
498 
499     static bool classof(const CGCapturedStmtInfo *) {
500       return true;
501     }
502 
503     /// Emit the captured statement body.
504     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
505       CGF.incrementProfileCounter(S);
506       CGF.EmitStmt(S);
507     }
508 
509     /// Get the name of the capture helper.
510     virtual StringRef getHelperName() const { return "__captured_stmt"; }
511 
512     /// Get the CaptureFields
513     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
514       return CaptureFields;
515     }
516 
517   private:
518     /// The kind of captured statement being generated.
519     CapturedRegionKind Kind;
520 
521     /// Keep the map between VarDecl and FieldDecl.
522     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
523 
524     /// The base address of the captured record, passed in as the first
525     /// argument of the parallel region function.
526     llvm::Value *ThisValue;
527 
528     /// Captured 'this' type.
529     FieldDecl *CXXThisFieldDecl;
530   };
531   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
532 
533   /// RAII for correct setting/restoring of CapturedStmtInfo.
534   class CGCapturedStmtRAII {
535   private:
536     CodeGenFunction &CGF;
537     CGCapturedStmtInfo *PrevCapturedStmtInfo;
538   public:
539     CGCapturedStmtRAII(CodeGenFunction &CGF,
540                        CGCapturedStmtInfo *NewCapturedStmtInfo)
541         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
542       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
543     }
544     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
545   };
546 
547   /// An abstract representation of regular/ObjC call/message targets.
548   class AbstractCallee {
549     /// The function declaration of the callee.
550     const Decl *CalleeDecl;
551 
552   public:
553     AbstractCallee() : CalleeDecl(nullptr) {}
554     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
555     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
556     bool hasFunctionDecl() const {
557       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
558     }
559     const Decl *getDecl() const { return CalleeDecl; }
560     unsigned getNumParams() const {
561       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
562         return FD->getNumParams();
563       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
564     }
565     const ParmVarDecl *getParamDecl(unsigned I) const {
566       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
567         return FD->getParamDecl(I);
568       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
569     }
570   };
571 
572   /// Sanitizers enabled for this function.
573   SanitizerSet SanOpts;
574 
575   /// True if CodeGen currently emits code implementing sanitizer checks.
576   bool IsSanitizerScope = false;
577 
578   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
579   class SanitizerScope {
580     CodeGenFunction *CGF;
581   public:
582     SanitizerScope(CodeGenFunction *CGF);
583     ~SanitizerScope();
584   };
585 
586   /// In C++, whether we are code generating a thunk.  This controls whether we
587   /// should emit cleanups.
588   bool CurFuncIsThunk = false;
589 
590   /// In ARC, whether we should autorelease the return value.
591   bool AutoreleaseResult = false;
592 
593   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
594   /// potentially set the return value.
595   bool SawAsmBlock = false;
596 
597   GlobalDecl CurSEHParent;
598 
599   /// True if the current function is an outlined SEH helper. This can be a
600   /// finally block or filter expression.
601   bool IsOutlinedSEHHelper = false;
602 
603   /// True if CodeGen currently emits code inside presereved access index
604   /// region.
605   bool IsInPreservedAIRegion = false;
606 
607   /// True if the current statement has nomerge attribute.
608   bool InNoMergeAttributedStmt = false;
609 
610   /// True if the current statement has noinline attribute.
611   bool InNoInlineAttributedStmt = false;
612 
613   /// True if the current statement has always_inline attribute.
614   bool InAlwaysInlineAttributedStmt = false;
615 
616   /// True if the current statement has noconvergent attribute.
617   bool InNoConvergentAttributedStmt = false;
618 
619   /// HLSL Branch attribute.
620   HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr =
621       HLSLControlFlowHintAttr::SpellingNotCalculated;
622 
623   // The CallExpr within the current statement that the musttail attribute
624   // applies to.  nullptr if there is no 'musttail' on the current statement.
625   const CallExpr *MustTailCall = nullptr;
626 
627   /// Returns true if a function must make progress, which means the
628   /// mustprogress attribute can be added.
629   bool checkIfFunctionMustProgress() {
630     if (CGM.getCodeGenOpts().getFiniteLoops() ==
631         CodeGenOptions::FiniteLoopsKind::Never)
632       return false;
633 
634     // C++11 and later guarantees that a thread eventually will do one of the
635     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
636     // - terminate,
637     //  - make a call to a library I/O function,
638     //  - perform an access through a volatile glvalue, or
639     //  - perform a synchronization operation or an atomic operation.
640     //
641     // Hence each function is 'mustprogress' in C++11 or later.
642     return getLangOpts().CPlusPlus11;
643   }
644 
645   /// Returns true if a loop must make progress, which means the mustprogress
646   /// attribute can be added. \p HasConstantCond indicates whether the branch
647   /// condition is a known constant.
648   bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody);
649 
650   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
651   llvm::Value *BlockPointer = nullptr;
652 
653   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
654   FieldDecl *LambdaThisCaptureField = nullptr;
655 
656   /// A mapping from NRVO variables to the flags used to indicate
657   /// when the NRVO has been applied to this variable.
658   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
659 
660   EHScopeStack EHStack;
661   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
662 
663   // A stack of cleanups which were added to EHStack but have to be deactivated
664   // later before being popped or emitted. These are usually deactivated on
665   // exiting a `CleanupDeactivationScope` scope. For instance, after a
666   // full-expr.
667   //
668   // These are specially useful for correctly emitting cleanups while
669   // encountering branches out of expression (through stmt-expr or coroutine
670   // suspensions).
671   struct DeferredDeactivateCleanup {
672     EHScopeStack::stable_iterator Cleanup;
673     llvm::Instruction *DominatingIP;
674   };
675   llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack;
676 
677   // Enters a new scope for capturing cleanups which are deferred to be
678   // deactivated, all of which will be deactivated once the scope is exited.
679   struct CleanupDeactivationScope {
680     CodeGenFunction &CGF;
681     size_t OldDeactivateCleanupStackSize;
682     bool Deactivated;
683     CleanupDeactivationScope(CodeGenFunction &CGF)
684         : CGF(CGF), OldDeactivateCleanupStackSize(
685                         CGF.DeferredDeactivationCleanupStack.size()),
686           Deactivated(false) {}
687 
688     void ForceDeactivate() {
689       assert(!Deactivated && "Deactivating already deactivated scope");
690       auto &Stack = CGF.DeferredDeactivationCleanupStack;
691       for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) {
692         CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup,
693                                    Stack[I - 1].DominatingIP);
694         Stack[I - 1].DominatingIP->eraseFromParent();
695       }
696       Stack.resize(OldDeactivateCleanupStackSize);
697       Deactivated = true;
698     }
699 
700     ~CleanupDeactivationScope() {
701       if (Deactivated)
702         return;
703       ForceDeactivate();
704     }
705   };
706 
707   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
708 
709   llvm::Instruction *CurrentFuncletPad = nullptr;
710 
711   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
712     bool isRedundantBeforeReturn() override { return true; }
713 
714     llvm::Value *Addr;
715     llvm::Value *Size;
716 
717   public:
718     CallLifetimeEnd(RawAddress addr, llvm::Value *size)
719         : Addr(addr.getPointer()), Size(size) {}
720 
721     void Emit(CodeGenFunction &CGF, Flags flags) override {
722       CGF.EmitLifetimeEnd(Size, Addr);
723     }
724   };
725 
726   /// Header for data within LifetimeExtendedCleanupStack.
727   struct LifetimeExtendedCleanupHeader {
728     /// The size of the following cleanup object.
729     unsigned Size;
730     /// The kind of cleanup to push.
731     LLVM_PREFERRED_TYPE(CleanupKind)
732     unsigned Kind : 31;
733     /// Whether this is a conditional cleanup.
734     LLVM_PREFERRED_TYPE(bool)
735     unsigned IsConditional : 1;
736 
737     size_t getSize() const { return Size; }
738     CleanupKind getKind() const { return (CleanupKind)Kind; }
739     bool isConditional() const { return IsConditional; }
740   };
741 
742   /// i32s containing the indexes of the cleanup destinations.
743   RawAddress NormalCleanupDest = RawAddress::invalid();
744 
745   unsigned NextCleanupDestIndex = 1;
746 
747   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
748   llvm::BasicBlock *EHResumeBlock = nullptr;
749 
750   /// The exception slot.  All landing pads write the current exception pointer
751   /// into this alloca.
752   llvm::Value *ExceptionSlot = nullptr;
753 
754   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
755   /// write the current selector value into this alloca.
756   llvm::AllocaInst *EHSelectorSlot = nullptr;
757 
758   /// A stack of exception code slots. Entering an __except block pushes a slot
759   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
760   /// a value from the top of the stack.
761   SmallVector<Address, 1> SEHCodeSlotStack;
762 
763   /// Value returned by __exception_info intrinsic.
764   llvm::Value *SEHInfo = nullptr;
765 
766   /// Emits a landing pad for the current EH stack.
767   llvm::BasicBlock *EmitLandingPad();
768 
769   llvm::BasicBlock *getInvokeDestImpl();
770 
771   /// Parent loop-based directive for scan directive.
772   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
773   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
774   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
775   llvm::BasicBlock *OMPScanExitBlock = nullptr;
776   llvm::BasicBlock *OMPScanDispatch = nullptr;
777   bool OMPFirstScanLoop = false;
778 
779   /// Manages parent directive for scan directives.
780   class ParentLoopDirectiveForScanRegion {
781     CodeGenFunction &CGF;
782     const OMPExecutableDirective *ParentLoopDirectiveForScan;
783 
784   public:
785     ParentLoopDirectiveForScanRegion(
786         CodeGenFunction &CGF,
787         const OMPExecutableDirective &ParentLoopDirectiveForScan)
788         : CGF(CGF),
789           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
790       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
791     }
792     ~ParentLoopDirectiveForScanRegion() {
793       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
794     }
795   };
796 
797   template <class T>
798   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
799     return DominatingValue<T>::save(*this, value);
800   }
801 
802   class CGFPOptionsRAII {
803   public:
804     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
805     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
806     ~CGFPOptionsRAII();
807 
808   private:
809     void ConstructorHelper(FPOptions FPFeatures);
810     CodeGenFunction &CGF;
811     FPOptions OldFPFeatures;
812     llvm::fp::ExceptionBehavior OldExcept;
813     llvm::RoundingMode OldRounding;
814     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
815   };
816   FPOptions CurFPFeatures;
817 
818 public:
819   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
820   /// rethrows.
821   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
822 
823   /// A class controlling the emission of a finally block.
824   class FinallyInfo {
825     /// Where the catchall's edge through the cleanup should go.
826     JumpDest RethrowDest;
827 
828     /// A function to call to enter the catch.
829     llvm::FunctionCallee BeginCatchFn;
830 
831     /// An i1 variable indicating whether or not the @finally is
832     /// running for an exception.
833     llvm::AllocaInst *ForEHVar = nullptr;
834 
835     /// An i8* variable into which the exception pointer to rethrow
836     /// has been saved.
837     llvm::AllocaInst *SavedExnVar = nullptr;
838 
839   public:
840     void enter(CodeGenFunction &CGF, const Stmt *Finally,
841                llvm::FunctionCallee beginCatchFn,
842                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
843     void exit(CodeGenFunction &CGF);
844   };
845 
846   /// Returns true inside SEH __try blocks.
847   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
848 
849   /// Returns true while emitting a cleanuppad.
850   bool isCleanupPadScope() const {
851     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
852   }
853 
854   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
855   /// current full-expression.  Safe against the possibility that
856   /// we're currently inside a conditionally-evaluated expression.
857   template <class T, class... As>
858   void pushFullExprCleanup(CleanupKind kind, As... A) {
859     // If we're not in a conditional branch, or if none of the
860     // arguments requires saving, then use the unconditional cleanup.
861     if (!isInConditionalBranch())
862       return EHStack.pushCleanup<T>(kind, A...);
863 
864     // Stash values in a tuple so we can guarantee the order of saves.
865     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
866     SavedTuple Saved{saveValueInCond(A)...};
867 
868     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
869     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
870     initFullExprCleanup();
871   }
872 
873   /// Queue a cleanup to be pushed after finishing the current full-expression,
874   /// potentially with an active flag.
875   template <class T, class... As>
876   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
877     if (!isInConditionalBranch())
878       return pushCleanupAfterFullExprWithActiveFlag<T>(
879           Kind, RawAddress::invalid(), A...);
880 
881     RawAddress ActiveFlag = createCleanupActiveFlag();
882     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
883            "cleanup active flag should never need saving");
884 
885     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
886     SavedTuple Saved{saveValueInCond(A)...};
887 
888     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
889     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
890   }
891 
892   template <class T, class... As>
893   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
894                                               RawAddress ActiveFlag, As... A) {
895     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
896                                             ActiveFlag.isValid()};
897 
898     size_t OldSize = LifetimeExtendedCleanupStack.size();
899     LifetimeExtendedCleanupStack.resize(
900         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
901         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
902 
903     static_assert(sizeof(Header) % alignof(T) == 0,
904                   "Cleanup will be allocated on misaligned address");
905     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
906     new (Buffer) LifetimeExtendedCleanupHeader(Header);
907     new (Buffer + sizeof(Header)) T(A...);
908     if (Header.IsConditional)
909       new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag);
910   }
911 
912   // Push a cleanup onto EHStack and deactivate it later. It is usually
913   // deactivated when exiting a `CleanupDeactivationScope` (for example: after a
914   // full expression).
915   template <class T, class... As>
916   void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) {
917     // Placeholder dominating IP for this cleanup.
918     llvm::Instruction *DominatingIP =
919         Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
920     EHStack.pushCleanup<T>(Kind, A...);
921     DeferredDeactivationCleanupStack.push_back(
922         {EHStack.stable_begin(), DominatingIP});
923   }
924 
925   /// Set up the last cleanup that was pushed as a conditional
926   /// full-expression cleanup.
927   void initFullExprCleanup() {
928     initFullExprCleanupWithFlag(createCleanupActiveFlag());
929   }
930 
931   void initFullExprCleanupWithFlag(RawAddress ActiveFlag);
932   RawAddress createCleanupActiveFlag();
933 
934   /// PushDestructorCleanup - Push a cleanup to call the
935   /// complete-object destructor of an object of the given type at the
936   /// given address.  Does nothing if T is not a C++ class type with a
937   /// non-trivial destructor.
938   void PushDestructorCleanup(QualType T, Address Addr);
939 
940   /// PushDestructorCleanup - Push a cleanup to call the
941   /// complete-object variant of the given destructor on the object at
942   /// the given address.
943   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
944                              Address Addr);
945 
946   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
947   /// process all branch fixups.
948   void PopCleanupBlock(bool FallThroughIsBranchThrough = false,
949                        bool ForDeactivation = false);
950 
951   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
952   /// The block cannot be reactivated.  Pops it if it's the top of the
953   /// stack.
954   ///
955   /// \param DominatingIP - An instruction which is known to
956   ///   dominate the current IP (if set) and which lies along
957   ///   all paths of execution between the current IP and the
958   ///   the point at which the cleanup comes into scope.
959   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
960                               llvm::Instruction *DominatingIP);
961 
962   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
963   /// Cannot be used to resurrect a deactivated cleanup.
964   ///
965   /// \param DominatingIP - An instruction which is known to
966   ///   dominate the current IP (if set) and which lies along
967   ///   all paths of execution between the current IP and the
968   ///   the point at which the cleanup comes into scope.
969   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
970                             llvm::Instruction *DominatingIP);
971 
972   /// Enters a new scope for capturing cleanups, all of which
973   /// will be executed once the scope is exited.
974   class RunCleanupsScope {
975     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
976     size_t LifetimeExtendedCleanupStackSize;
977     CleanupDeactivationScope DeactivateCleanups;
978     bool OldDidCallStackSave;
979   protected:
980     bool PerformCleanup;
981   private:
982 
983     RunCleanupsScope(const RunCleanupsScope &) = delete;
984     void operator=(const RunCleanupsScope &) = delete;
985 
986   protected:
987     CodeGenFunction& CGF;
988 
989   public:
990     /// Enter a new cleanup scope.
991     explicit RunCleanupsScope(CodeGenFunction &CGF)
992         : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) {
993       CleanupStackDepth = CGF.EHStack.stable_begin();
994       LifetimeExtendedCleanupStackSize =
995           CGF.LifetimeExtendedCleanupStack.size();
996       OldDidCallStackSave = CGF.DidCallStackSave;
997       CGF.DidCallStackSave = false;
998       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
999       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
1000     }
1001 
1002     /// Exit this cleanup scope, emitting any accumulated cleanups.
1003     ~RunCleanupsScope() {
1004       if (PerformCleanup)
1005         ForceCleanup();
1006     }
1007 
1008     /// Determine whether this scope requires any cleanups.
1009     bool requiresCleanups() const {
1010       return CGF.EHStack.stable_begin() != CleanupStackDepth;
1011     }
1012 
1013     /// Force the emission of cleanups now, instead of waiting
1014     /// until this object is destroyed.
1015     /// \param ValuesToReload - A list of values that need to be available at
1016     /// the insertion point after cleanup emission. If cleanup emission created
1017     /// a shared cleanup block, these value pointers will be rewritten.
1018     /// Otherwise, they not will be modified.
1019     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
1020       assert(PerformCleanup && "Already forced cleanup");
1021       CGF.DidCallStackSave = OldDidCallStackSave;
1022       DeactivateCleanups.ForceDeactivate();
1023       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
1024                            ValuesToReload);
1025       PerformCleanup = false;
1026       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
1027     }
1028   };
1029 
1030   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
1031   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
1032       EHScopeStack::stable_end();
1033 
1034   class LexicalScope : public RunCleanupsScope {
1035     SourceRange Range;
1036     SmallVector<const LabelDecl*, 4> Labels;
1037     LexicalScope *ParentScope;
1038 
1039     LexicalScope(const LexicalScope &) = delete;
1040     void operator=(const LexicalScope &) = delete;
1041 
1042   public:
1043     /// Enter a new cleanup scope.
1044     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
1045       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
1046       CGF.CurLexicalScope = this;
1047       if (CGDebugInfo *DI = CGF.getDebugInfo())
1048         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
1049     }
1050 
1051     void addLabel(const LabelDecl *label) {
1052       assert(PerformCleanup && "adding label to dead scope?");
1053       Labels.push_back(label);
1054     }
1055 
1056     /// Exit this cleanup scope, emitting any accumulated
1057     /// cleanups.
1058     ~LexicalScope() {
1059       if (CGDebugInfo *DI = CGF.getDebugInfo())
1060         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
1061 
1062       // If we should perform a cleanup, force them now.  Note that
1063       // this ends the cleanup scope before rescoping any labels.
1064       if (PerformCleanup) {
1065         ApplyDebugLocation DL(CGF, Range.getEnd());
1066         ForceCleanup();
1067       }
1068     }
1069 
1070     /// Force the emission of cleanups now, instead of waiting
1071     /// until this object is destroyed.
1072     void ForceCleanup() {
1073       CGF.CurLexicalScope = ParentScope;
1074       RunCleanupsScope::ForceCleanup();
1075 
1076       if (!Labels.empty())
1077         rescopeLabels();
1078     }
1079 
1080     bool hasLabels() const {
1081       return !Labels.empty();
1082     }
1083 
1084     void rescopeLabels();
1085   };
1086 
1087   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
1088 
1089   /// The class used to assign some variables some temporarily addresses.
1090   class OMPMapVars {
1091     DeclMapTy SavedLocals;
1092     DeclMapTy SavedTempAddresses;
1093     OMPMapVars(const OMPMapVars &) = delete;
1094     void operator=(const OMPMapVars &) = delete;
1095 
1096   public:
1097     explicit OMPMapVars() = default;
1098     ~OMPMapVars() {
1099       assert(SavedLocals.empty() && "Did not restored original addresses.");
1100     };
1101 
1102     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1103     /// function \p CGF.
1104     /// \return true if at least one variable was set already, false otherwise.
1105     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1106                     Address TempAddr) {
1107       LocalVD = LocalVD->getCanonicalDecl();
1108       // Only save it once.
1109       if (SavedLocals.count(LocalVD)) return false;
1110 
1111       // Copy the existing local entry to SavedLocals.
1112       auto it = CGF.LocalDeclMap.find(LocalVD);
1113       if (it != CGF.LocalDeclMap.end())
1114         SavedLocals.try_emplace(LocalVD, it->second);
1115       else
1116         SavedLocals.try_emplace(LocalVD, Address::invalid());
1117 
1118       // Generate the private entry.
1119       QualType VarTy = LocalVD->getType();
1120       if (VarTy->isReferenceType()) {
1121         Address Temp = CGF.CreateMemTemp(VarTy);
1122         CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp);
1123         TempAddr = Temp;
1124       }
1125       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1126 
1127       return true;
1128     }
1129 
1130     /// Applies new addresses to the list of the variables.
1131     /// \return true if at least one variable is using new address, false
1132     /// otherwise.
1133     bool apply(CodeGenFunction &CGF) {
1134       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1135       SavedTempAddresses.clear();
1136       return !SavedLocals.empty();
1137     }
1138 
1139     /// Restores original addresses of the variables.
1140     void restore(CodeGenFunction &CGF) {
1141       if (!SavedLocals.empty()) {
1142         copyInto(SavedLocals, CGF.LocalDeclMap);
1143         SavedLocals.clear();
1144       }
1145     }
1146 
1147   private:
1148     /// Copy all the entries in the source map over the corresponding
1149     /// entries in the destination, which must exist.
1150     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1151       for (auto &[Decl, Addr] : Src) {
1152         if (!Addr.isValid())
1153           Dest.erase(Decl);
1154         else
1155           Dest.insert_or_assign(Decl, Addr);
1156       }
1157     }
1158   };
1159 
1160   /// The scope used to remap some variables as private in the OpenMP loop body
1161   /// (or other captured region emitted without outlining), and to restore old
1162   /// vars back on exit.
1163   class OMPPrivateScope : public RunCleanupsScope {
1164     OMPMapVars MappedVars;
1165     OMPPrivateScope(const OMPPrivateScope &) = delete;
1166     void operator=(const OMPPrivateScope &) = delete;
1167 
1168   public:
1169     /// Enter a new OpenMP private scope.
1170     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1171 
1172     /// Registers \p LocalVD variable as a private with \p Addr as the address
1173     /// of the corresponding private variable. \p
1174     /// PrivateGen is the address of the generated private variable.
1175     /// \return true if the variable is registered as private, false if it has
1176     /// been privatized already.
1177     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1178       assert(PerformCleanup && "adding private to dead scope");
1179       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1180     }
1181 
1182     /// Privatizes local variables previously registered as private.
1183     /// Registration is separate from the actual privatization to allow
1184     /// initializers use values of the original variables, not the private one.
1185     /// This is important, for example, if the private variable is a class
1186     /// variable initialized by a constructor that references other private
1187     /// variables. But at initialization original variables must be used, not
1188     /// private copies.
1189     /// \return true if at least one variable was privatized, false otherwise.
1190     bool Privatize() { return MappedVars.apply(CGF); }
1191 
1192     void ForceCleanup() {
1193       RunCleanupsScope::ForceCleanup();
1194       restoreMap();
1195     }
1196 
1197     /// Exit scope - all the mapped variables are restored.
1198     ~OMPPrivateScope() {
1199       if (PerformCleanup)
1200         ForceCleanup();
1201     }
1202 
1203     /// Checks if the global variable is captured in current function.
1204     bool isGlobalVarCaptured(const VarDecl *VD) const {
1205       VD = VD->getCanonicalDecl();
1206       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1207     }
1208 
1209     /// Restore all mapped variables w/o clean up. This is usefully when we want
1210     /// to reference the original variables but don't want the clean up because
1211     /// that could emit lifetime end too early, causing backend issue #56913.
1212     void restoreMap() { MappedVars.restore(CGF); }
1213   };
1214 
1215   /// Save/restore original map of previously emitted local vars in case when we
1216   /// need to duplicate emission of the same code several times in the same
1217   /// function for OpenMP code.
1218   class OMPLocalDeclMapRAII {
1219     CodeGenFunction &CGF;
1220     DeclMapTy SavedMap;
1221 
1222   public:
1223     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1224         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1225     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1226   };
1227 
1228   /// Takes the old cleanup stack size and emits the cleanup blocks
1229   /// that have been added.
1230   void
1231   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1232                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1233 
1234   /// Takes the old cleanup stack size and emits the cleanup blocks
1235   /// that have been added, then adds all lifetime-extended cleanups from
1236   /// the given position to the stack.
1237   void
1238   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1239                    size_t OldLifetimeExtendedStackSize,
1240                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1241 
1242   void ResolveBranchFixups(llvm::BasicBlock *Target);
1243 
1244   /// The given basic block lies in the current EH scope, but may be a
1245   /// target of a potentially scope-crossing jump; get a stable handle
1246   /// to which we can perform this jump later.
1247   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1248     return JumpDest(Target,
1249                     EHStack.getInnermostNormalCleanup(),
1250                     NextCleanupDestIndex++);
1251   }
1252 
1253   /// The given basic block lies in the current EH scope, but may be a
1254   /// target of a potentially scope-crossing jump; get a stable handle
1255   /// to which we can perform this jump later.
1256   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1257     return getJumpDestInCurrentScope(createBasicBlock(Name));
1258   }
1259 
1260   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1261   /// block through the normal cleanup handling code (if any) and then
1262   /// on to \arg Dest.
1263   void EmitBranchThroughCleanup(JumpDest Dest);
1264 
1265   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1266   /// specified destination obviously has no cleanups to run.  'false' is always
1267   /// a conservatively correct answer for this method.
1268   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1269 
1270   /// popCatchScope - Pops the catch scope at the top of the EHScope
1271   /// stack, emitting any required code (other than the catch handlers
1272   /// themselves).
1273   void popCatchScope();
1274 
1275   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1276   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1277   llvm::BasicBlock *
1278   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1279 
1280   /// An object to manage conditionally-evaluated expressions.
1281   class ConditionalEvaluation {
1282     llvm::BasicBlock *StartBB;
1283 
1284   public:
1285     ConditionalEvaluation(CodeGenFunction &CGF)
1286       : StartBB(CGF.Builder.GetInsertBlock()) {}
1287 
1288     void begin(CodeGenFunction &CGF) {
1289       assert(CGF.OutermostConditional != this);
1290       if (!CGF.OutermostConditional)
1291         CGF.OutermostConditional = this;
1292     }
1293 
1294     void end(CodeGenFunction &CGF) {
1295       assert(CGF.OutermostConditional != nullptr);
1296       if (CGF.OutermostConditional == this)
1297         CGF.OutermostConditional = nullptr;
1298     }
1299 
1300     /// Returns a block which will be executed prior to each
1301     /// evaluation of the conditional code.
1302     llvm::BasicBlock *getStartingBlock() const {
1303       return StartBB;
1304     }
1305   };
1306 
1307   /// isInConditionalBranch - Return true if we're currently emitting
1308   /// one branch or the other of a conditional expression.
1309   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1310 
1311   void setBeforeOutermostConditional(llvm::Value *value, Address addr,
1312                                      CodeGenFunction &CGF) {
1313     assert(isInConditionalBranch());
1314     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1315     auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF),
1316                                      block->back().getIterator());
1317     store->setAlignment(addr.getAlignment().getAsAlign());
1318   }
1319 
1320   /// An RAII object to record that we're evaluating a statement
1321   /// expression.
1322   class StmtExprEvaluation {
1323     CodeGenFunction &CGF;
1324 
1325     /// We have to save the outermost conditional: cleanups in a
1326     /// statement expression aren't conditional just because the
1327     /// StmtExpr is.
1328     ConditionalEvaluation *SavedOutermostConditional;
1329 
1330   public:
1331     StmtExprEvaluation(CodeGenFunction &CGF)
1332       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1333       CGF.OutermostConditional = nullptr;
1334     }
1335 
1336     ~StmtExprEvaluation() {
1337       CGF.OutermostConditional = SavedOutermostConditional;
1338       CGF.EnsureInsertPoint();
1339     }
1340   };
1341 
1342   /// An object which temporarily prevents a value from being
1343   /// destroyed by aggressive peephole optimizations that assume that
1344   /// all uses of a value have been realized in the IR.
1345   class PeepholeProtection {
1346     llvm::Instruction *Inst = nullptr;
1347     friend class CodeGenFunction;
1348 
1349   public:
1350     PeepholeProtection() = default;
1351   };
1352 
1353   /// A non-RAII class containing all the information about a bound
1354   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1355   /// this which makes individual mappings very simple; using this
1356   /// class directly is useful when you have a variable number of
1357   /// opaque values or don't want the RAII functionality for some
1358   /// reason.
1359   class OpaqueValueMappingData {
1360     const OpaqueValueExpr *OpaqueValue;
1361     bool BoundLValue;
1362     CodeGenFunction::PeepholeProtection Protection;
1363 
1364     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1365                            bool boundLValue)
1366       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1367   public:
1368     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1369 
1370     static bool shouldBindAsLValue(const Expr *expr) {
1371       // gl-values should be bound as l-values for obvious reasons.
1372       // Records should be bound as l-values because IR generation
1373       // always keeps them in memory.  Expressions of function type
1374       // act exactly like l-values but are formally required to be
1375       // r-values in C.
1376       return expr->isGLValue() ||
1377              expr->getType()->isFunctionType() ||
1378              hasAggregateEvaluationKind(expr->getType());
1379     }
1380 
1381     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1382                                        const OpaqueValueExpr *ov,
1383                                        const Expr *e) {
1384       if (shouldBindAsLValue(ov))
1385         return bind(CGF, ov, CGF.EmitLValue(e));
1386       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1387     }
1388 
1389     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1390                                        const OpaqueValueExpr *ov,
1391                                        const LValue &lv) {
1392       assert(shouldBindAsLValue(ov));
1393       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1394       return OpaqueValueMappingData(ov, true);
1395     }
1396 
1397     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1398                                        const OpaqueValueExpr *ov,
1399                                        const RValue &rv) {
1400       assert(!shouldBindAsLValue(ov));
1401       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1402 
1403       OpaqueValueMappingData data(ov, false);
1404 
1405       // Work around an extremely aggressive peephole optimization in
1406       // EmitScalarConversion which assumes that all other uses of a
1407       // value are extant.
1408       data.Protection = CGF.protectFromPeepholes(rv);
1409 
1410       return data;
1411     }
1412 
1413     bool isValid() const { return OpaqueValue != nullptr; }
1414     void clear() { OpaqueValue = nullptr; }
1415 
1416     void unbind(CodeGenFunction &CGF) {
1417       assert(OpaqueValue && "no data to unbind!");
1418 
1419       if (BoundLValue) {
1420         CGF.OpaqueLValues.erase(OpaqueValue);
1421       } else {
1422         CGF.OpaqueRValues.erase(OpaqueValue);
1423         CGF.unprotectFromPeepholes(Protection);
1424       }
1425     }
1426   };
1427 
1428   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1429   class OpaqueValueMapping {
1430     CodeGenFunction &CGF;
1431     OpaqueValueMappingData Data;
1432 
1433   public:
1434     static bool shouldBindAsLValue(const Expr *expr) {
1435       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1436     }
1437 
1438     /// Build the opaque value mapping for the given conditional
1439     /// operator if it's the GNU ?: extension.  This is a common
1440     /// enough pattern that the convenience operator is really
1441     /// helpful.
1442     ///
1443     OpaqueValueMapping(CodeGenFunction &CGF,
1444                        const AbstractConditionalOperator *op) : CGF(CGF) {
1445       if (isa<ConditionalOperator>(op))
1446         // Leave Data empty.
1447         return;
1448 
1449       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1450       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1451                                           e->getCommon());
1452     }
1453 
1454     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1455     /// expression is set to the expression the OVE represents.
1456     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1457         : CGF(CGF) {
1458       if (OV) {
1459         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1460                                       "for OVE with no source expression");
1461         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1462       }
1463     }
1464 
1465     OpaqueValueMapping(CodeGenFunction &CGF,
1466                        const OpaqueValueExpr *opaqueValue,
1467                        LValue lvalue)
1468       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1469     }
1470 
1471     OpaqueValueMapping(CodeGenFunction &CGF,
1472                        const OpaqueValueExpr *opaqueValue,
1473                        RValue rvalue)
1474       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1475     }
1476 
1477     void pop() {
1478       Data.unbind(CGF);
1479       Data.clear();
1480     }
1481 
1482     ~OpaqueValueMapping() {
1483       if (Data.isValid()) Data.unbind(CGF);
1484     }
1485   };
1486 
1487 private:
1488   CGDebugInfo *DebugInfo;
1489   /// Used to create unique names for artificial VLA size debug info variables.
1490   unsigned VLAExprCounter = 0;
1491   bool DisableDebugInfo = false;
1492 
1493   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1494   /// calling llvm.stacksave for multiple VLAs in the same scope.
1495   bool DidCallStackSave = false;
1496 
1497   /// IndirectBranch - The first time an indirect goto is seen we create a block
1498   /// with an indirect branch.  Every time we see the address of a label taken,
1499   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1500   /// codegen'd as a jump to the IndirectBranch's basic block.
1501   llvm::IndirectBrInst *IndirectBranch = nullptr;
1502 
1503   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1504   /// decls.
1505   DeclMapTy LocalDeclMap;
1506 
1507   // Keep track of the cleanups for callee-destructed parameters pushed to the
1508   // cleanup stack so that they can be deactivated later.
1509   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1510       CalleeDestructedParamCleanups;
1511 
1512   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1513   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1514   /// parameter.
1515   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1516       SizeArguments;
1517 
1518   /// Track escaped local variables with auto storage. Used during SEH
1519   /// outlining to produce a call to llvm.localescape.
1520   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1521 
1522   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1523   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1524 
1525   // BreakContinueStack - This keeps track of where break and continue
1526   // statements should jump to.
1527   struct BreakContinue {
1528     BreakContinue(JumpDest Break, JumpDest Continue)
1529       : BreakBlock(Break), ContinueBlock(Continue) {}
1530 
1531     JumpDest BreakBlock;
1532     JumpDest ContinueBlock;
1533   };
1534   SmallVector<BreakContinue, 8> BreakContinueStack;
1535 
1536   /// Handles cancellation exit points in OpenMP-related constructs.
1537   class OpenMPCancelExitStack {
1538     /// Tracks cancellation exit point and join point for cancel-related exit
1539     /// and normal exit.
1540     struct CancelExit {
1541       CancelExit() = default;
1542       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1543                  JumpDest ContBlock)
1544           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1545       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1546       /// true if the exit block has been emitted already by the special
1547       /// emitExit() call, false if the default codegen is used.
1548       bool HasBeenEmitted = false;
1549       JumpDest ExitBlock;
1550       JumpDest ContBlock;
1551     };
1552 
1553     SmallVector<CancelExit, 8> Stack;
1554 
1555   public:
1556     OpenMPCancelExitStack() : Stack(1) {}
1557     ~OpenMPCancelExitStack() = default;
1558     /// Fetches the exit block for the current OpenMP construct.
1559     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1560     /// Emits exit block with special codegen procedure specific for the related
1561     /// OpenMP construct + emits code for normal construct cleanup.
1562     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1563                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1564       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1565         assert(CGF.getOMPCancelDestination(Kind).isValid());
1566         assert(CGF.HaveInsertPoint());
1567         assert(!Stack.back().HasBeenEmitted);
1568         auto IP = CGF.Builder.saveAndClearIP();
1569         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1570         CodeGen(CGF);
1571         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1572         CGF.Builder.restoreIP(IP);
1573         Stack.back().HasBeenEmitted = true;
1574       }
1575       CodeGen(CGF);
1576     }
1577     /// Enter the cancel supporting \a Kind construct.
1578     /// \param Kind OpenMP directive that supports cancel constructs.
1579     /// \param HasCancel true, if the construct has inner cancel directive,
1580     /// false otherwise.
1581     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1582       Stack.push_back({Kind,
1583                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1584                                  : JumpDest(),
1585                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1586                                  : JumpDest()});
1587     }
1588     /// Emits default exit point for the cancel construct (if the special one
1589     /// has not be used) + join point for cancel/normal exits.
1590     void exit(CodeGenFunction &CGF) {
1591       if (getExitBlock().isValid()) {
1592         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1593         bool HaveIP = CGF.HaveInsertPoint();
1594         if (!Stack.back().HasBeenEmitted) {
1595           if (HaveIP)
1596             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1597           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1598           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1599         }
1600         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1601         if (!HaveIP) {
1602           CGF.Builder.CreateUnreachable();
1603           CGF.Builder.ClearInsertionPoint();
1604         }
1605       }
1606       Stack.pop_back();
1607     }
1608   };
1609   OpenMPCancelExitStack OMPCancelStack;
1610 
1611   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1612   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1613                                                     Stmt::Likelihood LH);
1614 
1615   CodeGenPGO PGO;
1616 
1617   /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1618   Address MCDCCondBitmapAddr = Address::invalid();
1619 
1620   /// Calculate branch weights appropriate for PGO data
1621   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1622                                      uint64_t FalseCount) const;
1623   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1624   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1625                                             uint64_t LoopCount) const;
1626 
1627 public:
1628   auto getIsCounterPair(const Stmt *S) const { return PGO.getIsCounterPair(S); }
1629 
1630   void markStmtAsUsed(bool Skipped, const Stmt *S) {
1631     PGO.markStmtAsUsed(Skipped, S);
1632   }
1633   void markStmtMaybeUsed(const Stmt *S) { PGO.markStmtMaybeUsed(S); }
1634 
1635   /// Increment the profiler's counter for the given statement by \p StepV.
1636   /// If \p StepV is null, the default increment is 1.
1637   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1638     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1639         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1640         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) {
1641       auto AL = ApplyDebugLocation::CreateArtificial(*this);
1642       PGO.emitCounterSetOrIncrement(Builder, S, StepV);
1643     }
1644     PGO.setCurrentStmt(S);
1645   }
1646 
1647   bool isMCDCCoverageEnabled() const {
1648     return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1649             CGM.getCodeGenOpts().MCDCCoverage &&
1650             !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1651   }
1652 
1653   /// Allocate a temp value on the stack that MCDC can use to track condition
1654   /// results.
1655   void maybeCreateMCDCCondBitmap() {
1656     if (isMCDCCoverageEnabled()) {
1657       PGO.emitMCDCParameters(Builder);
1658       MCDCCondBitmapAddr =
1659           CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1660     }
1661   }
1662 
1663   bool isBinaryLogicalOp(const Expr *E) const {
1664     const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1665     return (BOp && BOp->isLogicalOp());
1666   }
1667 
1668   /// Zero-init the MCDC temp value.
1669   void maybeResetMCDCCondBitmap(const Expr *E) {
1670     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1671       PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1672       PGO.setCurrentStmt(E);
1673     }
1674   }
1675 
1676   /// Increment the profiler's counter for the given expression by \p StepV.
1677   /// If \p StepV is null, the default increment is 1.
1678   void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1679     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1680       PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this);
1681       PGO.setCurrentStmt(E);
1682     }
1683   }
1684 
1685   /// Update the MCDC temp value with the condition's evaluated result.
1686   void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1687     if (isMCDCCoverageEnabled()) {
1688       PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this);
1689       PGO.setCurrentStmt(E);
1690     }
1691   }
1692 
1693   /// Get the profiler's count for the given statement.
1694   uint64_t getProfileCount(const Stmt *S) {
1695     return PGO.getStmtCount(S).value_or(0);
1696   }
1697 
1698   /// Set the profiler's current count.
1699   void setCurrentProfileCount(uint64_t Count) {
1700     PGO.setCurrentRegionCount(Count);
1701   }
1702 
1703   /// Get the profiler's current count. This is generally the count for the most
1704   /// recently incremented counter.
1705   uint64_t getCurrentProfileCount() {
1706     return PGO.getCurrentRegionCount();
1707   }
1708 
1709 private:
1710 
1711   /// SwitchInsn - This is nearest current switch instruction. It is null if
1712   /// current context is not in a switch.
1713   llvm::SwitchInst *SwitchInsn = nullptr;
1714   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1715   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1716 
1717   /// The likelihood attributes of the SwitchCase.
1718   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1719 
1720   /// CaseRangeBlock - This block holds if condition check for last case
1721   /// statement range in current switch instruction.
1722   llvm::BasicBlock *CaseRangeBlock = nullptr;
1723 
1724   /// OpaqueLValues - Keeps track of the current set of opaque value
1725   /// expressions.
1726   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1727   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1728 
1729   // VLASizeMap - This keeps track of the associated size for each VLA type.
1730   // We track this by the size expression rather than the type itself because
1731   // in certain situations, like a const qualifier applied to an VLA typedef,
1732   // multiple VLA types can share the same size expression.
1733   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1734   // enter/leave scopes.
1735   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1736 
1737   /// A block containing a single 'unreachable' instruction.  Created
1738   /// lazily by getUnreachableBlock().
1739   llvm::BasicBlock *UnreachableBlock = nullptr;
1740 
1741   /// Counts of the number return expressions in the function.
1742   unsigned NumReturnExprs = 0;
1743 
1744   /// Count the number of simple (constant) return expressions in the function.
1745   unsigned NumSimpleReturnExprs = 0;
1746 
1747   /// The last regular (non-return) debug location (breakpoint) in the function.
1748   SourceLocation LastStopPoint;
1749 
1750 public:
1751   /// Source location information about the default argument or member
1752   /// initializer expression we're evaluating, if any.
1753   CurrentSourceLocExprScope CurSourceLocExprScope;
1754   using SourceLocExprScopeGuard =
1755       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1756 
1757   /// A scope within which we are constructing the fields of an object which
1758   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1759   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1760   class FieldConstructionScope {
1761   public:
1762     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1763         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1764       CGF.CXXDefaultInitExprThis = This;
1765     }
1766     ~FieldConstructionScope() {
1767       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1768     }
1769 
1770   private:
1771     CodeGenFunction &CGF;
1772     Address OldCXXDefaultInitExprThis;
1773   };
1774 
1775   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1776   /// is overridden to be the object under construction.
1777   class CXXDefaultInitExprScope  {
1778   public:
1779     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1780         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1781           OldCXXThisAlignment(CGF.CXXThisAlignment),
1782           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1783       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer();
1784       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1785     }
1786     ~CXXDefaultInitExprScope() {
1787       CGF.CXXThisValue = OldCXXThisValue;
1788       CGF.CXXThisAlignment = OldCXXThisAlignment;
1789     }
1790 
1791   public:
1792     CodeGenFunction &CGF;
1793     llvm::Value *OldCXXThisValue;
1794     CharUnits OldCXXThisAlignment;
1795     SourceLocExprScopeGuard SourceLocScope;
1796   };
1797 
1798   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1799     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1800         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1801   };
1802 
1803   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1804   /// current loop index is overridden.
1805   class ArrayInitLoopExprScope {
1806   public:
1807     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1808       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1809       CGF.ArrayInitIndex = Index;
1810     }
1811     ~ArrayInitLoopExprScope() {
1812       CGF.ArrayInitIndex = OldArrayInitIndex;
1813     }
1814 
1815   private:
1816     CodeGenFunction &CGF;
1817     llvm::Value *OldArrayInitIndex;
1818   };
1819 
1820   class InlinedInheritingConstructorScope {
1821   public:
1822     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1823         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1824           OldCurCodeDecl(CGF.CurCodeDecl),
1825           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1826           OldCXXABIThisValue(CGF.CXXABIThisValue),
1827           OldCXXThisValue(CGF.CXXThisValue),
1828           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1829           OldCXXThisAlignment(CGF.CXXThisAlignment),
1830           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1831           OldCXXInheritedCtorInitExprArgs(
1832               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1833       CGF.CurGD = GD;
1834       CGF.CurFuncDecl = CGF.CurCodeDecl =
1835           cast<CXXConstructorDecl>(GD.getDecl());
1836       CGF.CXXABIThisDecl = nullptr;
1837       CGF.CXXABIThisValue = nullptr;
1838       CGF.CXXThisValue = nullptr;
1839       CGF.CXXABIThisAlignment = CharUnits();
1840       CGF.CXXThisAlignment = CharUnits();
1841       CGF.ReturnValue = Address::invalid();
1842       CGF.FnRetTy = QualType();
1843       CGF.CXXInheritedCtorInitExprArgs.clear();
1844     }
1845     ~InlinedInheritingConstructorScope() {
1846       CGF.CurGD = OldCurGD;
1847       CGF.CurFuncDecl = OldCurFuncDecl;
1848       CGF.CurCodeDecl = OldCurCodeDecl;
1849       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1850       CGF.CXXABIThisValue = OldCXXABIThisValue;
1851       CGF.CXXThisValue = OldCXXThisValue;
1852       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1853       CGF.CXXThisAlignment = OldCXXThisAlignment;
1854       CGF.ReturnValue = OldReturnValue;
1855       CGF.FnRetTy = OldFnRetTy;
1856       CGF.CXXInheritedCtorInitExprArgs =
1857           std::move(OldCXXInheritedCtorInitExprArgs);
1858     }
1859 
1860   private:
1861     CodeGenFunction &CGF;
1862     GlobalDecl OldCurGD;
1863     const Decl *OldCurFuncDecl;
1864     const Decl *OldCurCodeDecl;
1865     ImplicitParamDecl *OldCXXABIThisDecl;
1866     llvm::Value *OldCXXABIThisValue;
1867     llvm::Value *OldCXXThisValue;
1868     CharUnits OldCXXABIThisAlignment;
1869     CharUnits OldCXXThisAlignment;
1870     Address OldReturnValue;
1871     QualType OldFnRetTy;
1872     CallArgList OldCXXInheritedCtorInitExprArgs;
1873   };
1874 
1875   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1876   // region body, and finalization codegen callbacks. This will class will also
1877   // contain privatization functions used by the privatization call backs
1878   //
1879   // TODO: this is temporary class for things that are being moved out of
1880   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1881   // utility function for use with the OMPBuilder. Once that move to use the
1882   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1883   // directly, or a new helper class that will contain functions used by both
1884   // this and the OMPBuilder
1885 
1886   struct OMPBuilderCBHelpers {
1887 
1888     OMPBuilderCBHelpers() = delete;
1889     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1890     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1891 
1892     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1893 
1894     /// Cleanup action for allocate support.
1895     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1896 
1897     private:
1898       llvm::CallInst *RTLFnCI;
1899 
1900     public:
1901       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1902         RLFnCI->removeFromParent();
1903       }
1904 
1905       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1906         if (!CGF.HaveInsertPoint())
1907           return;
1908         CGF.Builder.Insert(RTLFnCI);
1909       }
1910     };
1911 
1912     /// Returns address of the threadprivate variable for the current
1913     /// thread. This Also create any necessary OMP runtime calls.
1914     ///
1915     /// \param VD VarDecl for Threadprivate variable.
1916     /// \param VDAddr Address of the Vardecl
1917     /// \param Loc  The location where the barrier directive was encountered
1918     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1919                                           const VarDecl *VD, Address VDAddr,
1920                                           SourceLocation Loc);
1921 
1922     /// Gets the OpenMP-specific address of the local variable /p VD.
1923     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1924                                              const VarDecl *VD);
1925     /// Get the platform-specific name separator.
1926     /// \param Parts different parts of the final name that needs separation
1927     /// \param FirstSeparator First separator used between the initial two
1928     ///        parts of the name.
1929     /// \param Separator separator used between all of the rest consecutinve
1930     ///        parts of the name
1931     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1932                                              StringRef FirstSeparator = ".",
1933                                              StringRef Separator = ".");
1934     /// Emit the Finalization for an OMP region
1935     /// \param CGF	The Codegen function this belongs to
1936     /// \param IP	Insertion point for generating the finalization code.
1937     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1938       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1939       assert(IP.getBlock()->end() != IP.getPoint() &&
1940              "OpenMP IR Builder should cause terminated block!");
1941 
1942       llvm::BasicBlock *IPBB = IP.getBlock();
1943       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1944       assert(DestBB && "Finalization block should have one successor!");
1945 
1946       // erase and replace with cleanup branch.
1947       IPBB->getTerminator()->eraseFromParent();
1948       CGF.Builder.SetInsertPoint(IPBB);
1949       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1950       CGF.EmitBranchThroughCleanup(Dest);
1951     }
1952 
1953     /// Emit the body of an OMP region
1954     /// \param CGF	          The Codegen function this belongs to
1955     /// \param RegionBodyStmt The body statement for the OpenMP region being
1956     ///                       generated
1957     /// \param AllocaIP       Where to insert alloca instructions
1958     /// \param CodeGenIP      Where to insert the region code
1959     /// \param RegionName     Name to be used for new blocks
1960     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1961                                          const Stmt *RegionBodyStmt,
1962                                          InsertPointTy AllocaIP,
1963                                          InsertPointTy CodeGenIP,
1964                                          Twine RegionName);
1965 
1966     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1967                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1968                                 ArrayRef<llvm::Value *> Args) {
1969       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1970       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1971         CodeGenIPBBTI->eraseFromParent();
1972 
1973       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1974 
1975       if (Fn->doesNotThrow())
1976         CGF.EmitNounwindRuntimeCall(Fn, Args);
1977       else
1978         CGF.EmitRuntimeCall(Fn, Args);
1979 
1980       if (CGF.Builder.saveIP().isSet())
1981         CGF.Builder.CreateBr(&FiniBB);
1982     }
1983 
1984     /// Emit the body of an OMP region that will be outlined in
1985     /// OpenMPIRBuilder::finalize().
1986     /// \param CGF	          The Codegen function this belongs to
1987     /// \param RegionBodyStmt The body statement for the OpenMP region being
1988     ///                       generated
1989     /// \param AllocaIP       Where to insert alloca instructions
1990     /// \param CodeGenIP      Where to insert the region code
1991     /// \param RegionName     Name to be used for new blocks
1992     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1993                                           const Stmt *RegionBodyStmt,
1994                                           InsertPointTy AllocaIP,
1995                                           InsertPointTy CodeGenIP,
1996                                           Twine RegionName);
1997 
1998     /// RAII for preserving necessary info during Outlined region body codegen.
1999     class OutlinedRegionBodyRAII {
2000 
2001       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2002       CodeGenFunction::JumpDest OldReturnBlock;
2003       CodeGenFunction &CGF;
2004 
2005     public:
2006       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2007                              llvm::BasicBlock &RetBB)
2008           : CGF(cgf) {
2009         assert(AllocaIP.isSet() &&
2010                "Must specify Insertion point for allocas of outlined function");
2011         OldAllocaIP = CGF.AllocaInsertPt;
2012         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2013 
2014         OldReturnBlock = CGF.ReturnBlock;
2015         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
2016       }
2017 
2018       ~OutlinedRegionBodyRAII() {
2019         CGF.AllocaInsertPt = OldAllocaIP;
2020         CGF.ReturnBlock = OldReturnBlock;
2021       }
2022     };
2023 
2024     /// RAII for preserving necessary info during inlined region body codegen.
2025     class InlinedRegionBodyRAII {
2026 
2027       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2028       CodeGenFunction &CGF;
2029 
2030     public:
2031       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2032                             llvm::BasicBlock &FiniBB)
2033           : CGF(cgf) {
2034         // Alloca insertion block should be in the entry block of the containing
2035         // function so it expects an empty AllocaIP in which case will reuse the
2036         // old alloca insertion point, or a new AllocaIP in the same block as
2037         // the old one
2038         assert((!AllocaIP.isSet() ||
2039                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
2040                "Insertion point should be in the entry block of containing "
2041                "function!");
2042         OldAllocaIP = CGF.AllocaInsertPt;
2043         if (AllocaIP.isSet())
2044           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2045 
2046         // TODO: Remove the call, after making sure the counter is not used by
2047         //       the EHStack.
2048         // Since this is an inlined region, it should not modify the
2049         // ReturnBlock, and should reuse the one for the enclosing outlined
2050         // region. So, the JumpDest being return by the function is discarded
2051         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
2052       }
2053 
2054       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
2055     };
2056   };
2057 
2058 private:
2059   /// CXXThisDecl - When generating code for a C++ member function,
2060   /// this will hold the implicit 'this' declaration.
2061   ImplicitParamDecl *CXXABIThisDecl = nullptr;
2062   llvm::Value *CXXABIThisValue = nullptr;
2063   llvm::Value *CXXThisValue = nullptr;
2064   CharUnits CXXABIThisAlignment;
2065   CharUnits CXXThisAlignment;
2066 
2067   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
2068   /// this expression.
2069   Address CXXDefaultInitExprThis = Address::invalid();
2070 
2071   /// The current array initialization index when evaluating an
2072   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
2073   llvm::Value *ArrayInitIndex = nullptr;
2074 
2075   /// The values of function arguments to use when evaluating
2076   /// CXXInheritedCtorInitExprs within this context.
2077   CallArgList CXXInheritedCtorInitExprArgs;
2078 
2079   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
2080   /// destructor, this will hold the implicit argument (e.g. VTT).
2081   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
2082   llvm::Value *CXXStructorImplicitParamValue = nullptr;
2083 
2084   /// OutermostConditional - Points to the outermost active
2085   /// conditional control.  This is used so that we know if a
2086   /// temporary should be destroyed conditionally.
2087   ConditionalEvaluation *OutermostConditional = nullptr;
2088 
2089   /// The current lexical scope.
2090   LexicalScope *CurLexicalScope = nullptr;
2091 
2092   /// The current source location that should be used for exception
2093   /// handling code.
2094   SourceLocation CurEHLocation;
2095 
2096   /// BlockByrefInfos - For each __block variable, contains
2097   /// information about the layout of the variable.
2098   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2099 
2100   /// Used by -fsanitize=nullability-return to determine whether the return
2101   /// value can be checked.
2102   llvm::Value *RetValNullabilityPrecondition = nullptr;
2103 
2104   /// Check if -fsanitize=nullability-return instrumentation is required for
2105   /// this function.
2106   bool requiresReturnValueNullabilityCheck() const {
2107     return RetValNullabilityPrecondition;
2108   }
2109 
2110   /// Used to store precise source locations for return statements by the
2111   /// runtime return value checks.
2112   Address ReturnLocation = Address::invalid();
2113 
2114   /// Check if the return value of this function requires sanitization.
2115   bool requiresReturnValueCheck() const;
2116 
2117   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2118   bool hasInAllocaArg(const CXXMethodDecl *MD);
2119 
2120   llvm::BasicBlock *TerminateLandingPad = nullptr;
2121   llvm::BasicBlock *TerminateHandler = nullptr;
2122   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2123 
2124   /// Terminate funclets keyed by parent funclet pad.
2125   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2126 
2127   /// Largest vector width used in ths function. Will be used to create a
2128   /// function attribute.
2129   unsigned LargestVectorWidth = 0;
2130 
2131   /// True if we need emit the life-time markers. This is initially set in
2132   /// the constructor, but could be overwritten to true if this is a coroutine.
2133   bool ShouldEmitLifetimeMarkers;
2134 
2135   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2136   /// the function metadata.
2137   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2138 
2139 public:
2140   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2141   ~CodeGenFunction();
2142 
2143   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2144   ASTContext &getContext() const { return CGM.getContext(); }
2145   CGDebugInfo *getDebugInfo() {
2146     if (DisableDebugInfo)
2147       return nullptr;
2148     return DebugInfo;
2149   }
2150   void disableDebugInfo() { DisableDebugInfo = true; }
2151   void enableDebugInfo() { DisableDebugInfo = false; }
2152 
2153   bool shouldUseFusedARCCalls() {
2154     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2155   }
2156 
2157   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2158 
2159   /// Returns a pointer to the function's exception object and selector slot,
2160   /// which is assigned in every landing pad.
2161   Address getExceptionSlot();
2162   Address getEHSelectorSlot();
2163 
2164   /// Returns the contents of the function's exception object and selector
2165   /// slots.
2166   llvm::Value *getExceptionFromSlot();
2167   llvm::Value *getSelectorFromSlot();
2168 
2169   RawAddress getNormalCleanupDestSlot();
2170 
2171   llvm::BasicBlock *getUnreachableBlock() {
2172     if (!UnreachableBlock) {
2173       UnreachableBlock = createBasicBlock("unreachable");
2174       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2175     }
2176     return UnreachableBlock;
2177   }
2178 
2179   llvm::BasicBlock *getInvokeDest() {
2180     if (!EHStack.requiresLandingPad()) return nullptr;
2181     return getInvokeDestImpl();
2182   }
2183 
2184   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2185 
2186   const TargetInfo &getTarget() const { return Target; }
2187   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2188   const TargetCodeGenInfo &getTargetHooks() const {
2189     return CGM.getTargetCodeGenInfo();
2190   }
2191 
2192   //===--------------------------------------------------------------------===//
2193   //                                  Cleanups
2194   //===--------------------------------------------------------------------===//
2195 
2196   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2197 
2198   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2199                                         Address arrayEndPointer,
2200                                         QualType elementType,
2201                                         CharUnits elementAlignment,
2202                                         Destroyer *destroyer);
2203   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2204                                       llvm::Value *arrayEnd,
2205                                       QualType elementType,
2206                                       CharUnits elementAlignment,
2207                                       Destroyer *destroyer);
2208 
2209   void pushDestroy(QualType::DestructionKind dtorKind,
2210                    Address addr, QualType type);
2211   void pushEHDestroy(QualType::DestructionKind dtorKind,
2212                      Address addr, QualType type);
2213   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2214                    Destroyer *destroyer, bool useEHCleanupForArray);
2215   void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind,
2216                                        Address addr, QualType type);
2217   void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr,
2218                                        QualType type, Destroyer *destroyer,
2219                                        bool useEHCleanupForArray);
2220   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2221                                    QualType type, Destroyer *destroyer,
2222                                    bool useEHCleanupForArray);
2223   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2224                                    llvm::Value *CompletePtr,
2225                                    QualType ElementType);
2226   void pushStackRestore(CleanupKind kind, Address SPMem);
2227   void pushKmpcAllocFree(CleanupKind Kind,
2228                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2229   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2230                    bool useEHCleanupForArray);
2231   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2232                                         Destroyer *destroyer,
2233                                         bool useEHCleanupForArray,
2234                                         const VarDecl *VD);
2235   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2236                         QualType elementType, CharUnits elementAlign,
2237                         Destroyer *destroyer,
2238                         bool checkZeroLength, bool useEHCleanup);
2239 
2240   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2241 
2242   /// Determines whether an EH cleanup is required to destroy a type
2243   /// with the given destruction kind.
2244   bool needsEHCleanup(QualType::DestructionKind kind) {
2245     switch (kind) {
2246     case QualType::DK_none:
2247       return false;
2248     case QualType::DK_cxx_destructor:
2249     case QualType::DK_objc_weak_lifetime:
2250     case QualType::DK_nontrivial_c_struct:
2251       return getLangOpts().Exceptions;
2252     case QualType::DK_objc_strong_lifetime:
2253       return getLangOpts().Exceptions &&
2254              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2255     }
2256     llvm_unreachable("bad destruction kind");
2257   }
2258 
2259   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2260     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2261   }
2262 
2263   //===--------------------------------------------------------------------===//
2264   //                                  Objective-C
2265   //===--------------------------------------------------------------------===//
2266 
2267   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2268 
2269   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2270 
2271   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2272   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2273                           const ObjCPropertyImplDecl *PID);
2274   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2275                               const ObjCPropertyImplDecl *propImpl,
2276                               const ObjCMethodDecl *GetterMothodDecl,
2277                               llvm::Constant *AtomicHelperFn);
2278 
2279   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2280                                   ObjCMethodDecl *MD, bool ctor);
2281 
2282   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2283   /// for the given property.
2284   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2285                           const ObjCPropertyImplDecl *PID);
2286   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2287                               const ObjCPropertyImplDecl *propImpl,
2288                               llvm::Constant *AtomicHelperFn);
2289 
2290   //===--------------------------------------------------------------------===//
2291   //                                  Block Bits
2292   //===--------------------------------------------------------------------===//
2293 
2294   /// Emit block literal.
2295   /// \return an LLVM value which is a pointer to a struct which contains
2296   /// information about the block, including the block invoke function, the
2297   /// captured variables, etc.
2298   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2299 
2300   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2301                                         const CGBlockInfo &Info,
2302                                         const DeclMapTy &ldm,
2303                                         bool IsLambdaConversionToBlock,
2304                                         bool BuildGlobalBlock);
2305 
2306   /// Check if \p T is a C++ class that has a destructor that can throw.
2307   static bool cxxDestructorCanThrow(QualType T);
2308 
2309   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2310   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2311   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2312                                              const ObjCPropertyImplDecl *PID);
2313   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2314                                              const ObjCPropertyImplDecl *PID);
2315   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2316 
2317   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2318                          bool CanThrow);
2319 
2320   class AutoVarEmission;
2321 
2322   void emitByrefStructureInit(const AutoVarEmission &emission);
2323 
2324   /// Enter a cleanup to destroy a __block variable.  Note that this
2325   /// cleanup should be a no-op if the variable hasn't left the stack
2326   /// yet; if a cleanup is required for the variable itself, that needs
2327   /// to be done externally.
2328   ///
2329   /// \param Kind Cleanup kind.
2330   ///
2331   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2332   /// structure that will be passed to _Block_object_dispose. When
2333   /// \p LoadBlockVarAddr is true, the address of the field of the block
2334   /// structure that holds the address of the __block structure.
2335   ///
2336   /// \param Flags The flag that will be passed to _Block_object_dispose.
2337   ///
2338   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2339   /// \p Addr to get the address of the __block structure.
2340   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2341                          bool LoadBlockVarAddr, bool CanThrow);
2342 
2343   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2344                                 llvm::Value *ptr);
2345 
2346   Address LoadBlockStruct();
2347   Address GetAddrOfBlockDecl(const VarDecl *var);
2348 
2349   /// BuildBlockByrefAddress - Computes the location of the
2350   /// data in a variable which is declared as __block.
2351   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2352                                 bool followForward = true);
2353   Address emitBlockByrefAddress(Address baseAddr,
2354                                 const BlockByrefInfo &info,
2355                                 bool followForward,
2356                                 const llvm::Twine &name);
2357 
2358   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2359 
2360   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2361 
2362   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2363                     const CGFunctionInfo &FnInfo);
2364 
2365   /// Annotate the function with an attribute that disables TSan checking at
2366   /// runtime.
2367   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2368 
2369   /// Emit code for the start of a function.
2370   /// \param Loc       The location to be associated with the function.
2371   /// \param StartLoc  The location of the function body.
2372   void StartFunction(GlobalDecl GD,
2373                      QualType RetTy,
2374                      llvm::Function *Fn,
2375                      const CGFunctionInfo &FnInfo,
2376                      const FunctionArgList &Args,
2377                      SourceLocation Loc = SourceLocation(),
2378                      SourceLocation StartLoc = SourceLocation());
2379 
2380   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2381 
2382   void EmitConstructorBody(FunctionArgList &Args);
2383   void EmitDestructorBody(FunctionArgList &Args);
2384   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2385   void EmitFunctionBody(const Stmt *Body);
2386   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2387 
2388   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2389                                   CallArgList &CallArgs,
2390                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2391                                   llvm::Constant *CallOpFn = nullptr);
2392   void EmitLambdaBlockInvokeBody();
2393   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2394   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2395                                       CallArgList &CallArgs);
2396   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2397                                 const CGFunctionInfo **ImplFnInfo,
2398                                 llvm::Function **ImplFn);
2399   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2400   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2401     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2402   }
2403   void EmitAsanPrologueOrEpilogue(bool Prologue);
2404 
2405   /// Emit the unified return block, trying to avoid its emission when
2406   /// possible.
2407   /// \return The debug location of the user written return statement if the
2408   /// return block is avoided.
2409   llvm::DebugLoc EmitReturnBlock();
2410 
2411   /// FinishFunction - Complete IR generation of the current function. It is
2412   /// legal to call this function even if there is no current insertion point.
2413   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2414 
2415   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2416                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2417 
2418   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2419                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2420 
2421   void FinishThunk();
2422 
2423   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2424   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2425                          llvm::FunctionCallee Callee);
2426 
2427   /// Generate a thunk for the given method.
2428   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2429                      GlobalDecl GD, const ThunkInfo &Thunk,
2430                      bool IsUnprototyped);
2431 
2432   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2433                                        const CGFunctionInfo &FnInfo,
2434                                        GlobalDecl GD, const ThunkInfo &Thunk);
2435 
2436   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2437                         FunctionArgList &Args);
2438 
2439   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2440 
2441   /// Struct with all information about dynamic [sub]class needed to set vptr.
2442   struct VPtr {
2443     BaseSubobject Base;
2444     const CXXRecordDecl *NearestVBase;
2445     CharUnits OffsetFromNearestVBase;
2446     const CXXRecordDecl *VTableClass;
2447   };
2448 
2449   /// Initialize the vtable pointer of the given subobject.
2450   void InitializeVTablePointer(const VPtr &vptr);
2451 
2452   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2453 
2454   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2455   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2456 
2457   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2458                          CharUnits OffsetFromNearestVBase,
2459                          bool BaseIsNonVirtualPrimaryBase,
2460                          const CXXRecordDecl *VTableClass,
2461                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2462 
2463   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2464 
2465   // VTableTrapMode - whether we guarantee that loading the
2466   // vtable is guaranteed to trap on authentication failure,
2467   // even if the resulting vtable pointer is unused.
2468   enum class VTableAuthMode {
2469     Authenticate,
2470     MustTrap,
2471     UnsafeUbsanStrip // Should only be used for Vptr UBSan check
2472   };
2473   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2474   /// to by This.
2475   llvm::Value *
2476   GetVTablePtr(Address This, llvm::Type *VTableTy,
2477                const CXXRecordDecl *VTableClass,
2478                VTableAuthMode AuthMode = VTableAuthMode::Authenticate);
2479 
2480   enum CFITypeCheckKind {
2481     CFITCK_VCall,
2482     CFITCK_NVCall,
2483     CFITCK_DerivedCast,
2484     CFITCK_UnrelatedCast,
2485     CFITCK_ICall,
2486     CFITCK_NVMFCall,
2487     CFITCK_VMFCall,
2488   };
2489 
2490   /// Derived is the presumed address of an object of type T after a
2491   /// cast. If T is a polymorphic class type, emit a check that the virtual
2492   /// table for Derived belongs to a class derived from T.
2493   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2494                                  CFITypeCheckKind TCK, SourceLocation Loc);
2495 
2496   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2497   /// If vptr CFI is enabled, emit a check that VTable is valid.
2498   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2499                                  CFITypeCheckKind TCK, SourceLocation Loc);
2500 
2501   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2502   /// RD using llvm.type.test.
2503   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2504                           CFITypeCheckKind TCK, SourceLocation Loc);
2505 
2506   /// If whole-program virtual table optimization is enabled, emit an assumption
2507   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2508   /// enabled, emit a check that VTable is a member of RD's type identifier.
2509   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2510                                     llvm::Value *VTable, SourceLocation Loc);
2511 
2512   /// Returns whether we should perform a type checked load when loading a
2513   /// virtual function for virtual calls to members of RD. This is generally
2514   /// true when both vcall CFI and whole-program-vtables are enabled.
2515   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2516 
2517   /// Emit a type checked load from the given vtable.
2518   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2519                                          llvm::Value *VTable,
2520                                          llvm::Type *VTableTy,
2521                                          uint64_t VTableByteOffset);
2522 
2523   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2524   /// given phase of destruction for a destructor.  The end result
2525   /// should call destructors on members and base classes in reverse
2526   /// order of their construction.
2527   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2528 
2529   /// ShouldInstrumentFunction - Return true if the current function should be
2530   /// instrumented with __cyg_profile_func_* calls
2531   bool ShouldInstrumentFunction();
2532 
2533   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2534   /// should not be instrumented with sanitizers.
2535   bool ShouldSkipSanitizerInstrumentation();
2536 
2537   /// ShouldXRayInstrument - Return true if the current function should be
2538   /// instrumented with XRay nop sleds.
2539   bool ShouldXRayInstrumentFunction() const;
2540 
2541   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2542   /// XRay custom event handling calls.
2543   bool AlwaysEmitXRayCustomEvents() const;
2544 
2545   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2546   /// XRay typed event handling calls.
2547   bool AlwaysEmitXRayTypedEvents() const;
2548 
2549   /// Return a type hash constant for a function instrumented by
2550   /// -fsanitize=function.
2551   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2552 
2553   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2554   /// arguments for the given function. This is also responsible for naming the
2555   /// LLVM function arguments.
2556   void EmitFunctionProlog(const CGFunctionInfo &FI,
2557                           llvm::Function *Fn,
2558                           const FunctionArgList &Args);
2559 
2560   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2561   /// given temporary.
2562   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2563                           SourceLocation EndLoc);
2564 
2565   /// Emit a test that checks if the return value \p RV is nonnull.
2566   void EmitReturnValueCheck(llvm::Value *RV);
2567 
2568   /// EmitStartEHSpec - Emit the start of the exception spec.
2569   void EmitStartEHSpec(const Decl *D);
2570 
2571   /// EmitEndEHSpec - Emit the end of the exception spec.
2572   void EmitEndEHSpec(const Decl *D);
2573 
2574   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2575   llvm::BasicBlock *getTerminateLandingPad();
2576 
2577   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2578   /// terminate.
2579   llvm::BasicBlock *getTerminateFunclet();
2580 
2581   /// getTerminateHandler - Return a handler (not a landing pad, just
2582   /// a catch handler) that just calls terminate.  This is used when
2583   /// a terminate scope encloses a try.
2584   llvm::BasicBlock *getTerminateHandler();
2585 
2586   llvm::Type *ConvertTypeForMem(QualType T);
2587   llvm::Type *ConvertType(QualType T);
2588   llvm::Type *convertTypeForLoadStore(QualType ASTTy,
2589                                       llvm::Type *LLVMTy = nullptr);
2590   llvm::Type *ConvertType(const TypeDecl *T) {
2591     return ConvertType(getContext().getTypeDeclType(T));
2592   }
2593 
2594   /// LoadObjCSelf - Load the value of self. This function is only valid while
2595   /// generating code for an Objective-C method.
2596   llvm::Value *LoadObjCSelf();
2597 
2598   /// TypeOfSelfObject - Return type of object that this self represents.
2599   QualType TypeOfSelfObject();
2600 
2601   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2602   static TypeEvaluationKind getEvaluationKind(QualType T);
2603 
2604   static bool hasScalarEvaluationKind(QualType T) {
2605     return getEvaluationKind(T) == TEK_Scalar;
2606   }
2607 
2608   static bool hasAggregateEvaluationKind(QualType T) {
2609     return getEvaluationKind(T) == TEK_Aggregate;
2610   }
2611 
2612   /// createBasicBlock - Create an LLVM basic block.
2613   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2614                                      llvm::Function *parent = nullptr,
2615                                      llvm::BasicBlock *before = nullptr) {
2616     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2617   }
2618 
2619   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2620   /// label maps to.
2621   JumpDest getJumpDestForLabel(const LabelDecl *S);
2622 
2623   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2624   /// another basic block, simplify it. This assumes that no other code could
2625   /// potentially reference the basic block.
2626   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2627 
2628   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2629   /// adding a fall-through branch from the current insert block if
2630   /// necessary. It is legal to call this function even if there is no current
2631   /// insertion point.
2632   ///
2633   /// IsFinished - If true, indicates that the caller has finished emitting
2634   /// branches to the given block and does not expect to emit code into it. This
2635   /// means the block can be ignored if it is unreachable.
2636   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2637 
2638   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2639   /// near its uses, and leave the insertion point in it.
2640   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2641 
2642   /// EmitBranch - Emit a branch to the specified basic block from the current
2643   /// insert block, taking care to avoid creation of branches from dummy
2644   /// blocks. It is legal to call this function even if there is no current
2645   /// insertion point.
2646   ///
2647   /// This function clears the current insertion point. The caller should follow
2648   /// calls to this function with calls to Emit*Block prior to generation new
2649   /// code.
2650   void EmitBranch(llvm::BasicBlock *Block);
2651 
2652   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2653   /// indicates that the current code being emitted is unreachable.
2654   bool HaveInsertPoint() const {
2655     return Builder.GetInsertBlock() != nullptr;
2656   }
2657 
2658   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2659   /// emitted IR has a place to go. Note that by definition, if this function
2660   /// creates a block then that block is unreachable; callers may do better to
2661   /// detect when no insertion point is defined and simply skip IR generation.
2662   void EnsureInsertPoint() {
2663     if (!HaveInsertPoint())
2664       EmitBlock(createBasicBlock());
2665   }
2666 
2667   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2668   /// specified stmt yet.
2669   void ErrorUnsupported(const Stmt *S, const char *Type);
2670 
2671   //===--------------------------------------------------------------------===//
2672   //                                  Helpers
2673   //===--------------------------------------------------------------------===//
2674 
2675   Address mergeAddressesInConditionalExpr(Address LHS, Address RHS,
2676                                           llvm::BasicBlock *LHSBlock,
2677                                           llvm::BasicBlock *RHSBlock,
2678                                           llvm::BasicBlock *MergeBlock,
2679                                           QualType MergedType) {
2680     Builder.SetInsertPoint(MergeBlock);
2681     llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond");
2682     PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock);
2683     PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock);
2684     LHS.replaceBasePointer(PtrPhi);
2685     LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment()));
2686     return LHS;
2687   }
2688 
2689   /// Construct an address with the natural alignment of T. If a pointer to T
2690   /// is expected to be signed, the pointer passed to this function must have
2691   /// been signed, and the returned Address will have the pointer authentication
2692   /// information needed to authenticate the signed pointer.
2693   Address makeNaturalAddressForPointer(
2694       llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(),
2695       bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr,
2696       TBAAAccessInfo *TBAAInfo = nullptr,
2697       KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
2698     if (Alignment.isZero())
2699       Alignment =
2700           CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType);
2701     return Address(Ptr, ConvertTypeForMem(T), Alignment,
2702                    CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr,
2703                    IsKnownNonNull);
2704   }
2705 
2706   LValue MakeAddrLValue(Address Addr, QualType T,
2707                         AlignmentSource Source = AlignmentSource::Type) {
2708     return MakeAddrLValue(Addr, T, LValueBaseInfo(Source),
2709                           CGM.getTBAAAccessInfo(T));
2710   }
2711 
2712   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2713                         TBAAAccessInfo TBAAInfo) {
2714     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2715   }
2716 
2717   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2718                         AlignmentSource Source = AlignmentSource::Type) {
2719     return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T,
2720                           LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2721   }
2722 
2723   /// Same as MakeAddrLValue above except that the pointer is known to be
2724   /// unsigned.
2725   LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2726                            AlignmentSource Source = AlignmentSource::Type) {
2727     Address Addr(V, ConvertTypeForMem(T), Alignment);
2728     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2729                             CGM.getTBAAAccessInfo(T));
2730   }
2731 
2732   LValue
2733   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2734                             AlignmentSource Source = AlignmentSource::Type) {
2735     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2736                             TBAAAccessInfo());
2737   }
2738 
2739   /// Given a value of type T* that may not be to a complete object, construct
2740   /// an l-value with the natural pointee alignment of T.
2741   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2742 
2743   LValue
2744   MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
2745                              KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
2746 
2747   /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known
2748   /// to be unsigned.
2749   LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T);
2750 
2751   LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T);
2752 
2753   Address EmitLoadOfReference(LValue RefLVal,
2754                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2755                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2756   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2757   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2758                                    AlignmentSource Source =
2759                                        AlignmentSource::Type) {
2760     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2761                                     CGM.getTBAAAccessInfo(RefTy));
2762     return EmitLoadOfReferenceLValue(RefLVal);
2763   }
2764 
2765   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2766   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2767   /// it is loaded from.
2768   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2769                             LValueBaseInfo *BaseInfo = nullptr,
2770                             TBAAAccessInfo *TBAAInfo = nullptr);
2771   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2772 
2773 private:
2774   struct AllocaTracker {
2775     void Add(llvm::AllocaInst *I) { Allocas.push_back(I); }
2776     llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); }
2777 
2778   private:
2779     llvm::SmallVector<llvm::AllocaInst *> Allocas;
2780   };
2781   AllocaTracker *Allocas = nullptr;
2782 
2783 public:
2784   // Captures all the allocas created during the scope of its RAII object.
2785   struct AllocaTrackerRAII {
2786     AllocaTrackerRAII(CodeGenFunction &CGF)
2787         : CGF(CGF), OldTracker(CGF.Allocas) {
2788       CGF.Allocas = &Tracker;
2789     }
2790     ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; }
2791 
2792     llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); }
2793 
2794   private:
2795     CodeGenFunction &CGF;
2796     AllocaTracker *OldTracker;
2797     AllocaTracker Tracker;
2798   };
2799 
2800   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2801   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2802   /// insertion point of the builder. The caller is responsible for setting an
2803   /// appropriate alignment on
2804   /// the alloca.
2805   ///
2806   /// \p ArraySize is the number of array elements to be allocated if it
2807   ///    is not nullptr.
2808   ///
2809   /// LangAS::Default is the address space of pointers to local variables and
2810   /// temporaries, as exposed in the source language. In certain
2811   /// configurations, this is not the same as the alloca address space, and a
2812   /// cast is needed to lift the pointer from the alloca AS into
2813   /// LangAS::Default. This can happen when the target uses a restricted
2814   /// address space for the stack but the source language requires
2815   /// LangAS::Default to be a generic address space. The latter condition is
2816   /// common for most programming languages; OpenCL is an exception in that
2817   /// LangAS::Default is the private address space, which naturally maps
2818   /// to the stack.
2819   ///
2820   /// Because the address of a temporary is often exposed to the program in
2821   /// various ways, this function will perform the cast. The original alloca
2822   /// instruction is returned through \p Alloca if it is not nullptr.
2823   ///
2824   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2825   /// more efficient if the caller knows that the address will not be exposed.
2826   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2827                                      llvm::Value *ArraySize = nullptr);
2828   RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2829                               const Twine &Name = "tmp",
2830                               llvm::Value *ArraySize = nullptr,
2831                               RawAddress *Alloca = nullptr);
2832   RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2833                                          const Twine &Name = "tmp",
2834                                          llvm::Value *ArraySize = nullptr);
2835 
2836   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2837   /// default ABI alignment of the given LLVM type.
2838   ///
2839   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2840   /// any given AST type that happens to have been lowered to the
2841   /// given IR type.  This should only ever be used for function-local,
2842   /// IR-driven manipulations like saving and restoring a value.  Do
2843   /// not hand this address off to arbitrary IRGen routines, and especially
2844   /// do not pass it as an argument to a function that might expect a
2845   /// properly ABI-aligned value.
2846   RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2847                                           const Twine &Name = "tmp");
2848 
2849   /// CreateIRTemp - Create a temporary IR object of the given type, with
2850   /// appropriate alignment. This routine should only be used when an temporary
2851   /// value needs to be stored into an alloca (for example, to avoid explicit
2852   /// PHI construction), but the type is the IR type, not the type appropriate
2853   /// for storing in memory.
2854   ///
2855   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2856   /// ConvertType instead of ConvertTypeForMem.
2857   RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp");
2858 
2859   /// CreateMemTemp - Create a temporary memory object of the given type, with
2860   /// appropriate alignmen and cast it to the default address space. Returns
2861   /// the original alloca instruction by \p Alloca if it is not nullptr.
2862   RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp",
2863                            RawAddress *Alloca = nullptr);
2864   RawAddress CreateMemTemp(QualType T, CharUnits Align,
2865                            const Twine &Name = "tmp",
2866                            RawAddress *Alloca = nullptr);
2867 
2868   /// CreateMemTemp - Create a temporary memory object of the given type, with
2869   /// appropriate alignmen without casting it to the default address space.
2870   RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2871   RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align,
2872                                       const Twine &Name = "tmp");
2873 
2874   /// CreateAggTemp - Create a temporary memory object for the given
2875   /// aggregate type.
2876   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2877                              RawAddress *Alloca = nullptr) {
2878     return AggValueSlot::forAddr(
2879         CreateMemTemp(T, Name, Alloca), T.getQualifiers(),
2880         AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers,
2881         AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap);
2882   }
2883 
2884   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2885   /// expression and compare the result against zero, returning an Int1Ty value.
2886   llvm::Value *EvaluateExprAsBool(const Expr *E);
2887 
2888   /// Retrieve the implicit cast expression of the rhs in a binary operator
2889   /// expression by passing pointers to Value and QualType
2890   /// This is used for implicit bitfield conversion checks, which
2891   /// must compare with the value before potential truncation.
2892   llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E,
2893                                                      llvm::Value **Previous,
2894                                                      QualType *SrcType);
2895 
2896   /// Emit a check that an [implicit] conversion of a bitfield. It is not UB,
2897   /// so we use the value after conversion.
2898   void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType,
2899                                    llvm::Value *Dst, QualType DstType,
2900                                    const CGBitFieldInfo &Info,
2901                                    SourceLocation Loc);
2902 
2903   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2904   void EmitIgnoredExpr(const Expr *E);
2905 
2906   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2907   /// any type.  The result is returned as an RValue struct.  If this is an
2908   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2909   /// the result should be returned.
2910   ///
2911   /// \param ignoreResult True if the resulting value isn't used.
2912   RValue EmitAnyExpr(const Expr *E,
2913                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2914                      bool ignoreResult = false);
2915 
2916   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2917   // or the value of the expression, depending on how va_list is defined.
2918   Address EmitVAListRef(const Expr *E);
2919 
2920   /// Emit a "reference" to a __builtin_ms_va_list; this is
2921   /// always the value of the expression, because a __builtin_ms_va_list is a
2922   /// pointer to a char.
2923   Address EmitMSVAListRef(const Expr *E);
2924 
2925   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2926   /// always be accessible even if no aggregate location is provided.
2927   RValue EmitAnyExprToTemp(const Expr *E);
2928 
2929   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2930   /// arbitrary expression into the given memory location.
2931   void EmitAnyExprToMem(const Expr *E, Address Location,
2932                         Qualifiers Quals, bool IsInitializer);
2933 
2934   void EmitAnyExprToExn(const Expr *E, Address Addr);
2935 
2936   /// EmitInitializationToLValue - Emit an initializer to an LValue.
2937   void EmitInitializationToLValue(
2938       const Expr *E, LValue LV,
2939       AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed);
2940 
2941   /// EmitExprAsInit - Emits the code necessary to initialize a
2942   /// location in memory with the given initializer.
2943   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2944                       bool capturedByInit);
2945 
2946   /// hasVolatileMember - returns true if aggregate type has a volatile
2947   /// member.
2948   bool hasVolatileMember(QualType T) {
2949     if (const RecordType *RT = T->getAs<RecordType>()) {
2950       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2951       return RD->hasVolatileMember();
2952     }
2953     return false;
2954   }
2955 
2956   /// Determine whether a return value slot may overlap some other object.
2957   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2958     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2959     // class subobjects. These cases may need to be revisited depending on the
2960     // resolution of the relevant core issue.
2961     return AggValueSlot::DoesNotOverlap;
2962   }
2963 
2964   /// Determine whether a field initialization may overlap some other object.
2965   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2966 
2967   /// Determine whether a base class initialization may overlap some other
2968   /// object.
2969   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2970                                                 const CXXRecordDecl *BaseRD,
2971                                                 bool IsVirtual);
2972 
2973   /// Emit an aggregate assignment.
2974   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2975     bool IsVolatile = hasVolatileMember(EltTy);
2976     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2977   }
2978 
2979   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2980                              AggValueSlot::Overlap_t MayOverlap) {
2981     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2982   }
2983 
2984   /// EmitAggregateCopy - Emit an aggregate copy.
2985   ///
2986   /// \param isVolatile \c true iff either the source or the destination is
2987   ///        volatile.
2988   /// \param MayOverlap Whether the tail padding of the destination might be
2989   ///        occupied by some other object. More efficient code can often be
2990   ///        generated if not.
2991   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2992                          AggValueSlot::Overlap_t MayOverlap,
2993                          bool isVolatile = false);
2994 
2995   /// GetAddrOfLocalVar - Return the address of a local variable.
2996   Address GetAddrOfLocalVar(const VarDecl *VD) {
2997     auto it = LocalDeclMap.find(VD);
2998     assert(it != LocalDeclMap.end() &&
2999            "Invalid argument to GetAddrOfLocalVar(), no decl!");
3000     return it->second;
3001   }
3002 
3003   /// Given an opaque value expression, return its LValue mapping if it exists,
3004   /// otherwise create one.
3005   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
3006 
3007   /// Given an opaque value expression, return its RValue mapping if it exists,
3008   /// otherwise create one.
3009   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
3010 
3011   /// Get the index of the current ArrayInitLoopExpr, if any.
3012   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
3013 
3014   /// getAccessedFieldNo - Given an encoded value and a result number, return
3015   /// the input field number being accessed.
3016   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
3017 
3018   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
3019   llvm::BasicBlock *GetIndirectGotoBlock();
3020 
3021   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
3022   static bool IsWrappedCXXThis(const Expr *E);
3023 
3024   /// EmitNullInitialization - Generate code to set a value of the given type to
3025   /// null, If the type contains data member pointers, they will be initialized
3026   /// to -1 in accordance with the Itanium C++ ABI.
3027   void EmitNullInitialization(Address DestPtr, QualType Ty);
3028 
3029   /// Emits a call to an LLVM variable-argument intrinsic, either
3030   /// \c llvm.va_start or \c llvm.va_end.
3031   /// \param ArgValue A reference to the \c va_list as emitted by either
3032   /// \c EmitVAListRef or \c EmitMSVAListRef.
3033   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
3034   /// calls \c llvm.va_end.
3035   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
3036 
3037   /// Generate code to get an argument from the passed in pointer
3038   /// and update it accordingly.
3039   /// \param VE The \c VAArgExpr for which to generate code.
3040   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
3041   /// either \c EmitVAListRef or \c EmitMSVAListRef.
3042   /// \returns A pointer to the argument.
3043   // FIXME: We should be able to get rid of this method and use the va_arg
3044   // instruction in LLVM instead once it works well enough.
3045   RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
3046                    AggValueSlot Slot = AggValueSlot::ignored());
3047 
3048   /// emitArrayLength - Compute the length of an array, even if it's a
3049   /// VLA, and drill down to the base element type.
3050   llvm::Value *emitArrayLength(const ArrayType *arrayType,
3051                                QualType &baseType,
3052                                Address &addr);
3053 
3054   /// EmitVLASize - Capture all the sizes for the VLA expressions in
3055   /// the given variably-modified type and store them in the VLASizeMap.
3056   ///
3057   /// This function can be called with a null (unreachable) insert point.
3058   void EmitVariablyModifiedType(QualType Ty);
3059 
3060   struct VlaSizePair {
3061     llvm::Value *NumElts;
3062     QualType Type;
3063 
3064     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
3065   };
3066 
3067   /// Return the number of elements for a single dimension
3068   /// for the given array type.
3069   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
3070   VlaSizePair getVLAElements1D(QualType vla);
3071 
3072   /// Returns an LLVM value that corresponds to the size,
3073   /// in non-variably-sized elements, of a variable length array type,
3074   /// plus that largest non-variably-sized element type.  Assumes that
3075   /// the type has already been emitted with EmitVariablyModifiedType.
3076   VlaSizePair getVLASize(const VariableArrayType *vla);
3077   VlaSizePair getVLASize(QualType vla);
3078 
3079   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
3080   /// generating code for an C++ member function.
3081   llvm::Value *LoadCXXThis() {
3082     assert(CXXThisValue && "no 'this' value for this function");
3083     return CXXThisValue;
3084   }
3085   Address LoadCXXThisAddress();
3086 
3087   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
3088   /// virtual bases.
3089   // FIXME: Every place that calls LoadCXXVTT is something
3090   // that needs to be abstracted properly.
3091   llvm::Value *LoadCXXVTT() {
3092     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
3093     return CXXStructorImplicitParamValue;
3094   }
3095 
3096   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
3097   /// complete class to the given direct base.
3098   Address
3099   GetAddressOfDirectBaseInCompleteClass(Address Value,
3100                                         const CXXRecordDecl *Derived,
3101                                         const CXXRecordDecl *Base,
3102                                         bool BaseIsVirtual);
3103 
3104   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
3105 
3106   /// GetAddressOfBaseClass - This function will add the necessary delta to the
3107   /// load of 'this' and returns address of the base class.
3108   Address GetAddressOfBaseClass(Address Value,
3109                                 const CXXRecordDecl *Derived,
3110                                 CastExpr::path_const_iterator PathBegin,
3111                                 CastExpr::path_const_iterator PathEnd,
3112                                 bool NullCheckValue, SourceLocation Loc);
3113 
3114   Address GetAddressOfDerivedClass(Address Value,
3115                                    const CXXRecordDecl *Derived,
3116                                    CastExpr::path_const_iterator PathBegin,
3117                                    CastExpr::path_const_iterator PathEnd,
3118                                    bool NullCheckValue);
3119 
3120   /// GetVTTParameter - Return the VTT parameter that should be passed to a
3121   /// base constructor/destructor with virtual bases.
3122   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
3123   /// to ItaniumCXXABI.cpp together with all the references to VTT.
3124   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
3125                                bool Delegating);
3126 
3127   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
3128                                       CXXCtorType CtorType,
3129                                       const FunctionArgList &Args,
3130                                       SourceLocation Loc);
3131   // It's important not to confuse this and the previous function. Delegating
3132   // constructors are the C++0x feature. The constructor delegate optimization
3133   // is used to reduce duplication in the base and complete consturctors where
3134   // they are substantially the same.
3135   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3136                                         const FunctionArgList &Args);
3137 
3138   /// Emit a call to an inheriting constructor (that is, one that invokes a
3139   /// constructor inherited from a base class) by inlining its definition. This
3140   /// is necessary if the ABI does not support forwarding the arguments to the
3141   /// base class constructor (because they're variadic or similar).
3142   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3143                                                CXXCtorType CtorType,
3144                                                bool ForVirtualBase,
3145                                                bool Delegating,
3146                                                CallArgList &Args);
3147 
3148   /// Emit a call to a constructor inherited from a base class, passing the
3149   /// current constructor's arguments along unmodified (without even making
3150   /// a copy).
3151   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
3152                                        bool ForVirtualBase, Address This,
3153                                        bool InheritedFromVBase,
3154                                        const CXXInheritedCtorInitExpr *E);
3155 
3156   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3157                               bool ForVirtualBase, bool Delegating,
3158                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
3159 
3160   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3161                               bool ForVirtualBase, bool Delegating,
3162                               Address This, CallArgList &Args,
3163                               AggValueSlot::Overlap_t Overlap,
3164                               SourceLocation Loc, bool NewPointerIsChecked,
3165                               llvm::CallBase **CallOrInvoke = nullptr);
3166 
3167   /// Emit assumption load for all bases. Requires to be called only on
3168   /// most-derived class and not under construction of the object.
3169   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
3170 
3171   /// Emit assumption that vptr load == global vtable.
3172   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
3173 
3174   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
3175                                       Address This, Address Src,
3176                                       const CXXConstructExpr *E);
3177 
3178   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3179                                   const ArrayType *ArrayTy,
3180                                   Address ArrayPtr,
3181                                   const CXXConstructExpr *E,
3182                                   bool NewPointerIsChecked,
3183                                   bool ZeroInitialization = false);
3184 
3185   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3186                                   llvm::Value *NumElements,
3187                                   Address ArrayPtr,
3188                                   const CXXConstructExpr *E,
3189                                   bool NewPointerIsChecked,
3190                                   bool ZeroInitialization = false);
3191 
3192   static Destroyer destroyCXXObject;
3193 
3194   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
3195                              bool ForVirtualBase, bool Delegating, Address This,
3196                              QualType ThisTy);
3197 
3198   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
3199                                llvm::Type *ElementTy, Address NewPtr,
3200                                llvm::Value *NumElements,
3201                                llvm::Value *AllocSizeWithoutCookie);
3202 
3203   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
3204                         Address Ptr);
3205 
3206   void EmitSehCppScopeBegin();
3207   void EmitSehCppScopeEnd();
3208   void EmitSehTryScopeBegin();
3209   void EmitSehTryScopeEnd();
3210 
3211   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
3212   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
3213 
3214   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3215   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3216 
3217   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3218                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
3219                       CharUnits CookieSize = CharUnits());
3220 
3221   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3222                                   const CallExpr *TheCallExpr, bool IsDelete);
3223 
3224   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3225   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3226   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3227 
3228   /// Situations in which we might emit a check for the suitability of a
3229   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3230   /// compiler-rt.
3231   enum TypeCheckKind {
3232     /// Checking the operand of a load. Must be suitably sized and aligned.
3233     TCK_Load,
3234     /// Checking the destination of a store. Must be suitably sized and aligned.
3235     TCK_Store,
3236     /// Checking the bound value in a reference binding. Must be suitably sized
3237     /// and aligned, but is not required to refer to an object (until the
3238     /// reference is used), per core issue 453.
3239     TCK_ReferenceBinding,
3240     /// Checking the object expression in a non-static data member access. Must
3241     /// be an object within its lifetime.
3242     TCK_MemberAccess,
3243     /// Checking the 'this' pointer for a call to a non-static member function.
3244     /// Must be an object within its lifetime.
3245     TCK_MemberCall,
3246     /// Checking the 'this' pointer for a constructor call.
3247     TCK_ConstructorCall,
3248     /// Checking the operand of a static_cast to a derived pointer type. Must be
3249     /// null or an object within its lifetime.
3250     TCK_DowncastPointer,
3251     /// Checking the operand of a static_cast to a derived reference type. Must
3252     /// be an object within its lifetime.
3253     TCK_DowncastReference,
3254     /// Checking the operand of a cast to a base object. Must be suitably sized
3255     /// and aligned.
3256     TCK_Upcast,
3257     /// Checking the operand of a cast to a virtual base object. Must be an
3258     /// object within its lifetime.
3259     TCK_UpcastToVirtualBase,
3260     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3261     TCK_NonnullAssign,
3262     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3263     /// null or an object within its lifetime.
3264     TCK_DynamicOperation
3265   };
3266 
3267   /// Determine whether the pointer type check \p TCK permits null pointers.
3268   static bool isNullPointerAllowed(TypeCheckKind TCK);
3269 
3270   /// Determine whether the pointer type check \p TCK requires a vptr check.
3271   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3272 
3273   /// Whether any type-checking sanitizers are enabled. If \c false,
3274   /// calls to EmitTypeCheck can be skipped.
3275   bool sanitizePerformTypeCheck() const;
3276 
3277   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV,
3278                      QualType Type, SanitizerSet SkippedChecks = SanitizerSet(),
3279                      llvm::Value *ArraySize = nullptr) {
3280     if (!sanitizePerformTypeCheck())
3281       return;
3282     EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(),
3283                   SkippedChecks, ArraySize);
3284   }
3285 
3286   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr,
3287                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3288                      SanitizerSet SkippedChecks = SanitizerSet(),
3289                      llvm::Value *ArraySize = nullptr) {
3290     if (!sanitizePerformTypeCheck())
3291       return;
3292     EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment,
3293                   SkippedChecks, ArraySize);
3294   }
3295 
3296   /// Emit a check that \p V is the address of storage of the
3297   /// appropriate size and alignment for an object of type \p Type
3298   /// (or if ArraySize is provided, for an array of that bound).
3299   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3300                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3301                      SanitizerSet SkippedChecks = SanitizerSet(),
3302                      llvm::Value *ArraySize = nullptr);
3303 
3304   /// Emit a check that \p Base points into an array object, which
3305   /// we can access at index \p Index. \p Accessed should be \c false if we
3306   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3307   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3308                        QualType IndexType, bool Accessed);
3309   void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3310                            llvm::Value *Index, QualType IndexType,
3311                            QualType IndexedType, bool Accessed);
3312 
3313   // Find a struct's flexible array member and get its offset. It may be
3314   // embedded inside multiple sub-structs, but must still be the last field.
3315   const FieldDecl *
3316   FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD,
3317                                         const FieldDecl *FAMDecl,
3318                                         uint64_t &Offset);
3319 
3320   llvm::Value *GetCountedByFieldExprGEP(const Expr *Base,
3321                                         const FieldDecl *FAMDecl,
3322                                         const FieldDecl *CountDecl);
3323 
3324   /// Build an expression accessing the "counted_by" field.
3325   llvm::Value *EmitLoadOfCountedByField(const Expr *Base,
3326                                         const FieldDecl *FAMDecl,
3327                                         const FieldDecl *CountDecl);
3328 
3329   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3330                                        bool isInc, bool isPre);
3331   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3332                                          bool isInc, bool isPre);
3333 
3334   /// Converts Location to a DebugLoc, if debug information is enabled.
3335   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3336 
3337   /// Get the record field index as represented in debug info.
3338   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3339 
3340 
3341   //===--------------------------------------------------------------------===//
3342   //                            Declaration Emission
3343   //===--------------------------------------------------------------------===//
3344 
3345   /// EmitDecl - Emit a declaration.
3346   ///
3347   /// This function can be called with a null (unreachable) insert point.
3348   void EmitDecl(const Decl &D);
3349 
3350   /// EmitVarDecl - Emit a local variable declaration.
3351   ///
3352   /// This function can be called with a null (unreachable) insert point.
3353   void EmitVarDecl(const VarDecl &D);
3354 
3355   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3356                       bool capturedByInit);
3357 
3358   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3359                              llvm::Value *Address);
3360 
3361   /// Determine whether the given initializer is trivial in the sense
3362   /// that it requires no code to be generated.
3363   bool isTrivialInitializer(const Expr *Init);
3364 
3365   /// EmitAutoVarDecl - Emit an auto variable declaration.
3366   ///
3367   /// This function can be called with a null (unreachable) insert point.
3368   void EmitAutoVarDecl(const VarDecl &D);
3369 
3370   class AutoVarEmission {
3371     friend class CodeGenFunction;
3372 
3373     const VarDecl *Variable;
3374 
3375     /// The address of the alloca for languages with explicit address space
3376     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3377     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3378     /// as a global constant.
3379     Address Addr;
3380 
3381     llvm::Value *NRVOFlag;
3382 
3383     /// True if the variable is a __block variable that is captured by an
3384     /// escaping block.
3385     bool IsEscapingByRef;
3386 
3387     /// True if the variable is of aggregate type and has a constant
3388     /// initializer.
3389     bool IsConstantAggregate;
3390 
3391     /// Non-null if we should use lifetime annotations.
3392     llvm::Value *SizeForLifetimeMarkers;
3393 
3394     /// Address with original alloca instruction. Invalid if the variable was
3395     /// emitted as a global constant.
3396     RawAddress AllocaAddr;
3397 
3398     struct Invalid {};
3399     AutoVarEmission(Invalid)
3400         : Variable(nullptr), Addr(Address::invalid()),
3401           AllocaAddr(RawAddress::invalid()) {}
3402 
3403     AutoVarEmission(const VarDecl &variable)
3404         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3405           IsEscapingByRef(false), IsConstantAggregate(false),
3406           SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {}
3407 
3408     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3409 
3410   public:
3411     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3412 
3413     bool useLifetimeMarkers() const {
3414       return SizeForLifetimeMarkers != nullptr;
3415     }
3416     llvm::Value *getSizeForLifetimeMarkers() const {
3417       assert(useLifetimeMarkers());
3418       return SizeForLifetimeMarkers;
3419     }
3420 
3421     /// Returns the raw, allocated address, which is not necessarily
3422     /// the address of the object itself. It is casted to default
3423     /// address space for address space agnostic languages.
3424     Address getAllocatedAddress() const {
3425       return Addr;
3426     }
3427 
3428     /// Returns the address for the original alloca instruction.
3429     RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; }
3430 
3431     /// Returns the address of the object within this declaration.
3432     /// Note that this does not chase the forwarding pointer for
3433     /// __block decls.
3434     Address getObjectAddress(CodeGenFunction &CGF) const {
3435       if (!IsEscapingByRef) return Addr;
3436 
3437       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3438     }
3439   };
3440   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3441   void EmitAutoVarInit(const AutoVarEmission &emission);
3442   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3443   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3444                               QualType::DestructionKind dtorKind);
3445 
3446   /// Emits the alloca and debug information for the size expressions for each
3447   /// dimension of an array. It registers the association of its (1-dimensional)
3448   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3449   /// reference this node when creating the DISubrange object to describe the
3450   /// array types.
3451   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3452                                               const VarDecl &D,
3453                                               bool EmitDebugInfo);
3454 
3455   void EmitStaticVarDecl(const VarDecl &D,
3456                          llvm::GlobalValue::LinkageTypes Linkage);
3457 
3458   class ParamValue {
3459     union {
3460       Address Addr;
3461       llvm::Value *Value;
3462     };
3463 
3464     bool IsIndirect;
3465 
3466     ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {}
3467     ParamValue(Address A) : Addr(A), IsIndirect(true) {}
3468 
3469   public:
3470     static ParamValue forDirect(llvm::Value *value) {
3471       return ParamValue(value);
3472     }
3473     static ParamValue forIndirect(Address addr) {
3474       assert(!addr.getAlignment().isZero());
3475       return ParamValue(addr);
3476     }
3477 
3478     bool isIndirect() const { return IsIndirect; }
3479     llvm::Value *getAnyValue() const {
3480       if (!isIndirect())
3481         return Value;
3482       assert(!Addr.hasOffset() && "unexpected offset");
3483       return Addr.getBasePointer();
3484     }
3485 
3486     llvm::Value *getDirectValue() const {
3487       assert(!isIndirect());
3488       return Value;
3489     }
3490 
3491     Address getIndirectAddress() const {
3492       assert(isIndirect());
3493       return Addr;
3494     }
3495   };
3496 
3497   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3498   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3499 
3500   /// protectFromPeepholes - Protect a value that we're intending to
3501   /// store to the side, but which will probably be used later, from
3502   /// aggressive peepholing optimizations that might delete it.
3503   ///
3504   /// Pass the result to unprotectFromPeepholes to declare that
3505   /// protection is no longer required.
3506   ///
3507   /// There's no particular reason why this shouldn't apply to
3508   /// l-values, it's just that no existing peepholes work on pointers.
3509   PeepholeProtection protectFromPeepholes(RValue rvalue);
3510   void unprotectFromPeepholes(PeepholeProtection protection);
3511 
3512   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3513                                     SourceLocation Loc,
3514                                     SourceLocation AssumptionLoc,
3515                                     llvm::Value *Alignment,
3516                                     llvm::Value *OffsetValue,
3517                                     llvm::Value *TheCheck,
3518                                     llvm::Instruction *Assumption);
3519 
3520   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3521                                SourceLocation Loc, SourceLocation AssumptionLoc,
3522                                llvm::Value *Alignment,
3523                                llvm::Value *OffsetValue = nullptr);
3524 
3525   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3526                                SourceLocation AssumptionLoc,
3527                                llvm::Value *Alignment,
3528                                llvm::Value *OffsetValue = nullptr);
3529 
3530   //===--------------------------------------------------------------------===//
3531   //                             Statement Emission
3532   //===--------------------------------------------------------------------===//
3533 
3534   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3535   void EmitStopPoint(const Stmt *S);
3536 
3537   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3538   /// this function even if there is no current insertion point.
3539   ///
3540   /// This function may clear the current insertion point; callers should use
3541   /// EnsureInsertPoint if they wish to subsequently generate code without first
3542   /// calling EmitBlock, EmitBranch, or EmitStmt.
3543   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {});
3544 
3545   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3546   /// necessarily require an insertion point or debug information; typically
3547   /// because the statement amounts to a jump or a container of other
3548   /// statements.
3549   ///
3550   /// \return True if the statement was handled.
3551   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3552 
3553   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3554                            AggValueSlot AVS = AggValueSlot::ignored());
3555   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3556                                        bool GetLast = false,
3557                                        AggValueSlot AVS =
3558                                                 AggValueSlot::ignored());
3559 
3560   /// EmitLabel - Emit the block for the given label. It is legal to call this
3561   /// function even if there is no current insertion point.
3562   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3563 
3564   void EmitLabelStmt(const LabelStmt &S);
3565   void EmitAttributedStmt(const AttributedStmt &S);
3566   void EmitGotoStmt(const GotoStmt &S);
3567   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3568   void EmitIfStmt(const IfStmt &S);
3569 
3570   void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {});
3571   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {});
3572   void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {});
3573   void EmitReturnStmt(const ReturnStmt &S);
3574   void EmitDeclStmt(const DeclStmt &S);
3575   void EmitBreakStmt(const BreakStmt &S);
3576   void EmitContinueStmt(const ContinueStmt &S);
3577   void EmitSwitchStmt(const SwitchStmt &S);
3578   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3579   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3580   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3581   void EmitAsmStmt(const AsmStmt &S);
3582 
3583   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3584   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3585   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3586   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3587   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3588 
3589   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3590   void EmitCoreturnStmt(const CoreturnStmt &S);
3591   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3592                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3593                          bool ignoreResult = false);
3594   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3595   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3596                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3597                          bool ignoreResult = false);
3598   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3599   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3600 
3601   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3602   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3603 
3604   void EmitCXXTryStmt(const CXXTryStmt &S);
3605   void EmitSEHTryStmt(const SEHTryStmt &S);
3606   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3607   void EnterSEHTryStmt(const SEHTryStmt &S);
3608   void ExitSEHTryStmt(const SEHTryStmt &S);
3609   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3610                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3611 
3612   void pushSEHCleanup(CleanupKind kind,
3613                       llvm::Function *FinallyFunc);
3614   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3615                               const Stmt *OutlinedStmt);
3616 
3617   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3618                                             const SEHExceptStmt &Except);
3619 
3620   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3621                                              const SEHFinallyStmt &Finally);
3622 
3623   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3624                                 llvm::Value *ParentFP,
3625                                 llvm::Value *EntryEBP);
3626   llvm::Value *EmitSEHExceptionCode();
3627   llvm::Value *EmitSEHExceptionInfo();
3628   llvm::Value *EmitSEHAbnormalTermination();
3629 
3630   /// Emit simple code for OpenMP directives in Simd-only mode.
3631   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3632 
3633   /// Scan the outlined statement for captures from the parent function. For
3634   /// each capture, mark the capture as escaped and emit a call to
3635   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3636   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3637                           bool IsFilter);
3638 
3639   /// Recovers the address of a local in a parent function. ParentVar is the
3640   /// address of the variable used in the immediate parent function. It can
3641   /// either be an alloca or a call to llvm.localrecover if there are nested
3642   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3643   /// frame.
3644   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3645                                     Address ParentVar,
3646                                     llvm::Value *ParentFP);
3647 
3648   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3649                            ArrayRef<const Attr *> Attrs = {});
3650 
3651   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3652   class OMPCancelStackRAII {
3653     CodeGenFunction &CGF;
3654 
3655   public:
3656     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3657                        bool HasCancel)
3658         : CGF(CGF) {
3659       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3660     }
3661     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3662   };
3663 
3664   /// Returns calculated size of the specified type.
3665   llvm::Value *getTypeSize(QualType Ty);
3666   LValue InitCapturedStruct(const CapturedStmt &S);
3667   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3668   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3669   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3670   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3671                                                      SourceLocation Loc);
3672   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3673                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3674   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3675                           SourceLocation Loc);
3676   /// Perform element by element copying of arrays with type \a
3677   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3678   /// generated by \a CopyGen.
3679   ///
3680   /// \param DestAddr Address of the destination array.
3681   /// \param SrcAddr Address of the source array.
3682   /// \param OriginalType Type of destination and source arrays.
3683   /// \param CopyGen Copying procedure that copies value of single array element
3684   /// to another single array element.
3685   void EmitOMPAggregateAssign(
3686       Address DestAddr, Address SrcAddr, QualType OriginalType,
3687       const llvm::function_ref<void(Address, Address)> CopyGen);
3688   /// Emit proper copying of data from one variable to another.
3689   ///
3690   /// \param OriginalType Original type of the copied variables.
3691   /// \param DestAddr Destination address.
3692   /// \param SrcAddr Source address.
3693   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3694   /// type of the base array element).
3695   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3696   /// the base array element).
3697   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3698   /// DestVD.
3699   void EmitOMPCopy(QualType OriginalType,
3700                    Address DestAddr, Address SrcAddr,
3701                    const VarDecl *DestVD, const VarDecl *SrcVD,
3702                    const Expr *Copy);
3703   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3704   /// \a X = \a E \a BO \a E.
3705   ///
3706   /// \param X Value to be updated.
3707   /// \param E Update value.
3708   /// \param BO Binary operation for update operation.
3709   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3710   /// expression, false otherwise.
3711   /// \param AO Atomic ordering of the generated atomic instructions.
3712   /// \param CommonGen Code generator for complex expressions that cannot be
3713   /// expressed through atomicrmw instruction.
3714   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3715   /// generated, <false, RValue::get(nullptr)> otherwise.
3716   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3717       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3718       llvm::AtomicOrdering AO, SourceLocation Loc,
3719       const llvm::function_ref<RValue(RValue)> CommonGen);
3720   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3721                                  OMPPrivateScope &PrivateScope);
3722   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3723                             OMPPrivateScope &PrivateScope);
3724   void EmitOMPUseDevicePtrClause(
3725       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3726       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3727           CaptureDeviceAddrMap);
3728   void EmitOMPUseDeviceAddrClause(
3729       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3730       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3731           CaptureDeviceAddrMap);
3732   /// Emit code for copyin clause in \a D directive. The next code is
3733   /// generated at the start of outlined functions for directives:
3734   /// \code
3735   /// threadprivate_var1 = master_threadprivate_var1;
3736   /// operator=(threadprivate_var2, master_threadprivate_var2);
3737   /// ...
3738   /// __kmpc_barrier(&loc, global_tid);
3739   /// \endcode
3740   ///
3741   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3742   /// \returns true if at least one copyin variable is found, false otherwise.
3743   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3744   /// Emit initial code for lastprivate variables. If some variable is
3745   /// not also firstprivate, then the default initialization is used. Otherwise
3746   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3747   /// method.
3748   ///
3749   /// \param D Directive that may have 'lastprivate' directives.
3750   /// \param PrivateScope Private scope for capturing lastprivate variables for
3751   /// proper codegen in internal captured statement.
3752   ///
3753   /// \returns true if there is at least one lastprivate variable, false
3754   /// otherwise.
3755   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3756                                     OMPPrivateScope &PrivateScope);
3757   /// Emit final copying of lastprivate values to original variables at
3758   /// the end of the worksharing or simd directive.
3759   ///
3760   /// \param D Directive that has at least one 'lastprivate' directives.
3761   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3762   /// it is the last iteration of the loop code in associated directive, or to
3763   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3764   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3765                                      bool NoFinals,
3766                                      llvm::Value *IsLastIterCond = nullptr);
3767   /// Emit initial code for linear clauses.
3768   void EmitOMPLinearClause(const OMPLoopDirective &D,
3769                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3770   /// Emit final code for linear clauses.
3771   /// \param CondGen Optional conditional code for final part of codegen for
3772   /// linear clause.
3773   void EmitOMPLinearClauseFinal(
3774       const OMPLoopDirective &D,
3775       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3776   /// Emit initial code for reduction variables. Creates reduction copies
3777   /// and initializes them with the values according to OpenMP standard.
3778   ///
3779   /// \param D Directive (possibly) with the 'reduction' clause.
3780   /// \param PrivateScope Private scope for capturing reduction variables for
3781   /// proper codegen in internal captured statement.
3782   ///
3783   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3784                                   OMPPrivateScope &PrivateScope,
3785                                   bool ForInscan = false);
3786   /// Emit final update of reduction values to original variables at
3787   /// the end of the directive.
3788   ///
3789   /// \param D Directive that has at least one 'reduction' directives.
3790   /// \param ReductionKind The kind of reduction to perform.
3791   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3792                                    const OpenMPDirectiveKind ReductionKind);
3793   /// Emit initial code for linear variables. Creates private copies
3794   /// and initializes them with the values according to OpenMP standard.
3795   ///
3796   /// \param D Directive (possibly) with the 'linear' clause.
3797   /// \return true if at least one linear variable is found that should be
3798   /// initialized with the value of the original variable, false otherwise.
3799   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3800 
3801   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3802                                         llvm::Function * /*OutlinedFn*/,
3803                                         const OMPTaskDataTy & /*Data*/)>
3804       TaskGenTy;
3805   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3806                                  const OpenMPDirectiveKind CapturedRegion,
3807                                  const RegionCodeGenTy &BodyGen,
3808                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3809   struct OMPTargetDataInfo {
3810     Address BasePointersArray = Address::invalid();
3811     Address PointersArray = Address::invalid();
3812     Address SizesArray = Address::invalid();
3813     Address MappersArray = Address::invalid();
3814     unsigned NumberOfTargetItems = 0;
3815     explicit OMPTargetDataInfo() = default;
3816     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3817                       Address SizesArray, Address MappersArray,
3818                       unsigned NumberOfTargetItems)
3819         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3820           SizesArray(SizesArray), MappersArray(MappersArray),
3821           NumberOfTargetItems(NumberOfTargetItems) {}
3822   };
3823   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3824                                        const RegionCodeGenTy &BodyGen,
3825                                        OMPTargetDataInfo &InputInfo);
3826   void processInReduction(const OMPExecutableDirective &S,
3827                           OMPTaskDataTy &Data,
3828                           CodeGenFunction &CGF,
3829                           const CapturedStmt *CS,
3830                           OMPPrivateScope &Scope);
3831   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3832   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3833   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3834   void EmitOMPTileDirective(const OMPTileDirective &S);
3835   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3836   void EmitOMPReverseDirective(const OMPReverseDirective &S);
3837   void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S);
3838   void EmitOMPForDirective(const OMPForDirective &S);
3839   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3840   void EmitOMPScopeDirective(const OMPScopeDirective &S);
3841   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3842   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3843   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3844   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3845   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3846   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3847   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3848   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3849   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3850   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3851   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3852   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3853   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3854   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3855   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3856   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3857   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3858   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3859   void EmitOMPScanDirective(const OMPScanDirective &S);
3860   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3861   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3862   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3863   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3864   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3865   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3866   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3867   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3868   void
3869   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3870   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3871   void
3872   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3873   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3874   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3875   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3876   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3877   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3878   void EmitOMPMaskedTaskLoopDirective(const OMPMaskedTaskLoopDirective &S);
3879   void
3880   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3881   void
3882   EmitOMPMaskedTaskLoopSimdDirective(const OMPMaskedTaskLoopSimdDirective &S);
3883   void EmitOMPParallelMasterTaskLoopDirective(
3884       const OMPParallelMasterTaskLoopDirective &S);
3885   void EmitOMPParallelMaskedTaskLoopDirective(
3886       const OMPParallelMaskedTaskLoopDirective &S);
3887   void EmitOMPParallelMasterTaskLoopSimdDirective(
3888       const OMPParallelMasterTaskLoopSimdDirective &S);
3889   void EmitOMPParallelMaskedTaskLoopSimdDirective(
3890       const OMPParallelMaskedTaskLoopSimdDirective &S);
3891   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3892   void EmitOMPDistributeParallelForDirective(
3893       const OMPDistributeParallelForDirective &S);
3894   void EmitOMPDistributeParallelForSimdDirective(
3895       const OMPDistributeParallelForSimdDirective &S);
3896   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3897   void EmitOMPTargetParallelForSimdDirective(
3898       const OMPTargetParallelForSimdDirective &S);
3899   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3900   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3901   void
3902   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3903   void EmitOMPTeamsDistributeParallelForSimdDirective(
3904       const OMPTeamsDistributeParallelForSimdDirective &S);
3905   void EmitOMPTeamsDistributeParallelForDirective(
3906       const OMPTeamsDistributeParallelForDirective &S);
3907   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3908   void EmitOMPTargetTeamsDistributeDirective(
3909       const OMPTargetTeamsDistributeDirective &S);
3910   void EmitOMPTargetTeamsDistributeParallelForDirective(
3911       const OMPTargetTeamsDistributeParallelForDirective &S);
3912   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3913       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3914   void EmitOMPTargetTeamsDistributeSimdDirective(
3915       const OMPTargetTeamsDistributeSimdDirective &S);
3916   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3917   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3918   void EmitOMPTargetParallelGenericLoopDirective(
3919       const OMPTargetParallelGenericLoopDirective &S);
3920   void EmitOMPTargetTeamsGenericLoopDirective(
3921       const OMPTargetTeamsGenericLoopDirective &S);
3922   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3923   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3924   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3925   void EmitOMPAssumeDirective(const OMPAssumeDirective &S);
3926 
3927   /// Emit device code for the target directive.
3928   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3929                                           StringRef ParentName,
3930                                           const OMPTargetDirective &S);
3931   static void
3932   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3933                                       const OMPTargetParallelDirective &S);
3934   /// Emit device code for the target parallel for directive.
3935   static void EmitOMPTargetParallelForDeviceFunction(
3936       CodeGenModule &CGM, StringRef ParentName,
3937       const OMPTargetParallelForDirective &S);
3938   /// Emit device code for the target parallel for simd directive.
3939   static void EmitOMPTargetParallelForSimdDeviceFunction(
3940       CodeGenModule &CGM, StringRef ParentName,
3941       const OMPTargetParallelForSimdDirective &S);
3942   /// Emit device code for the target teams directive.
3943   static void
3944   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3945                                    const OMPTargetTeamsDirective &S);
3946   /// Emit device code for the target teams distribute directive.
3947   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3948       CodeGenModule &CGM, StringRef ParentName,
3949       const OMPTargetTeamsDistributeDirective &S);
3950   /// Emit device code for the target teams distribute simd directive.
3951   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3952       CodeGenModule &CGM, StringRef ParentName,
3953       const OMPTargetTeamsDistributeSimdDirective &S);
3954   /// Emit device code for the target simd directive.
3955   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3956                                               StringRef ParentName,
3957                                               const OMPTargetSimdDirective &S);
3958   /// Emit device code for the target teams distribute parallel for simd
3959   /// directive.
3960   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3961       CodeGenModule &CGM, StringRef ParentName,
3962       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3963 
3964   /// Emit device code for the target teams loop directive.
3965   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3966       CodeGenModule &CGM, StringRef ParentName,
3967       const OMPTargetTeamsGenericLoopDirective &S);
3968 
3969   /// Emit device code for the target parallel loop directive.
3970   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3971       CodeGenModule &CGM, StringRef ParentName,
3972       const OMPTargetParallelGenericLoopDirective &S);
3973 
3974   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3975       CodeGenModule &CGM, StringRef ParentName,
3976       const OMPTargetTeamsDistributeParallelForDirective &S);
3977 
3978   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3979   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3980   /// future it is meant to be the number of loops expected in the loop nests
3981   /// (usually specified by the "collapse" clause) that are collapsed to a
3982   /// single loop by this function.
3983   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3984                                                              int Depth);
3985 
3986   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3987   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3988 
3989   /// Emit inner loop of the worksharing/simd construct.
3990   ///
3991   /// \param S Directive, for which the inner loop must be emitted.
3992   /// \param RequiresCleanup true, if directive has some associated private
3993   /// variables.
3994   /// \param LoopCond Bollean condition for loop continuation.
3995   /// \param IncExpr Increment expression for loop control variable.
3996   /// \param BodyGen Generator for the inner body of the inner loop.
3997   /// \param PostIncGen Genrator for post-increment code (required for ordered
3998   /// loop directvies).
3999   void EmitOMPInnerLoop(
4000       const OMPExecutableDirective &S, bool RequiresCleanup,
4001       const Expr *LoopCond, const Expr *IncExpr,
4002       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
4003       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
4004 
4005   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
4006   /// Emit initial code for loop counters of loop-based directives.
4007   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
4008                                   OMPPrivateScope &LoopScope);
4009 
4010   /// Helper for the OpenMP loop directives.
4011   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
4012 
4013   /// Emit code for the worksharing loop-based directive.
4014   /// \return true, if this construct has any lastprivate clause, false -
4015   /// otherwise.
4016   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
4017                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
4018                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
4019 
4020   /// Emit code for the distribute loop-based directive.
4021   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
4022                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
4023 
4024   /// Helpers for the OpenMP loop directives.
4025   void EmitOMPSimdInit(const OMPLoopDirective &D);
4026   void EmitOMPSimdFinal(
4027       const OMPLoopDirective &D,
4028       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
4029 
4030   /// Emits the lvalue for the expression with possibly captured variable.
4031   LValue EmitOMPSharedLValue(const Expr *E);
4032 
4033 private:
4034   /// Helpers for blocks.
4035   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
4036 
4037   /// struct with the values to be passed to the OpenMP loop-related functions
4038   struct OMPLoopArguments {
4039     /// loop lower bound
4040     Address LB = Address::invalid();
4041     /// loop upper bound
4042     Address UB = Address::invalid();
4043     /// loop stride
4044     Address ST = Address::invalid();
4045     /// isLastIteration argument for runtime functions
4046     Address IL = Address::invalid();
4047     /// Chunk value generated by sema
4048     llvm::Value *Chunk = nullptr;
4049     /// EnsureUpperBound
4050     Expr *EUB = nullptr;
4051     /// IncrementExpression
4052     Expr *IncExpr = nullptr;
4053     /// Loop initialization
4054     Expr *Init = nullptr;
4055     /// Loop exit condition
4056     Expr *Cond = nullptr;
4057     /// Update of LB after a whole chunk has been executed
4058     Expr *NextLB = nullptr;
4059     /// Update of UB after a whole chunk has been executed
4060     Expr *NextUB = nullptr;
4061     /// Distinguish between the for distribute and sections
4062     OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown;
4063     OMPLoopArguments() = default;
4064     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
4065                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
4066                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
4067                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
4068                      Expr *NextUB = nullptr)
4069         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
4070           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
4071           NextUB(NextUB) {}
4072   };
4073   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
4074                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
4075                         const OMPLoopArguments &LoopArgs,
4076                         const CodeGenLoopTy &CodeGenLoop,
4077                         const CodeGenOrderedTy &CodeGenOrdered);
4078   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
4079                            bool IsMonotonic, const OMPLoopDirective &S,
4080                            OMPPrivateScope &LoopScope, bool Ordered,
4081                            const OMPLoopArguments &LoopArgs,
4082                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
4083   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
4084                                   const OMPLoopDirective &S,
4085                                   OMPPrivateScope &LoopScope,
4086                                   const OMPLoopArguments &LoopArgs,
4087                                   const CodeGenLoopTy &CodeGenLoopContent);
4088   /// Emit code for sections directive.
4089   void EmitSections(const OMPExecutableDirective &S);
4090 
4091 public:
4092   //===--------------------------------------------------------------------===//
4093   //                         OpenACC Emission
4094   //===--------------------------------------------------------------------===//
4095   void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) {
4096     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4097     // simply emitting its structured block, but in the future we will implement
4098     // some sort of IR.
4099     EmitStmt(S.getStructuredBlock());
4100   }
4101 
4102   void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) {
4103     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4104     // simply emitting its loop, but in the future we will implement
4105     // some sort of IR.
4106     EmitStmt(S.getLoop());
4107   }
4108 
4109   void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) {
4110     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4111     // simply emitting its loop, but in the future we will implement
4112     // some sort of IR.
4113     EmitStmt(S.getLoop());
4114   }
4115 
4116   void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) {
4117     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4118     // simply emitting its structured block, but in the future we will implement
4119     // some sort of IR.
4120     EmitStmt(S.getStructuredBlock());
4121   }
4122 
4123   void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) {
4124     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4125     // but in the future we will implement some sort of IR.
4126   }
4127 
4128   void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) {
4129     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4130     // but in the future we will implement some sort of IR.
4131   }
4132 
4133   void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) {
4134     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4135     // simply emitting its structured block, but in the future we will implement
4136     // some sort of IR.
4137     EmitStmt(S.getStructuredBlock());
4138   }
4139 
4140   void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) {
4141     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4142     // but in the future we will implement some sort of IR.
4143   }
4144 
4145   void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) {
4146     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4147     // but in the future we will implement some sort of IR.
4148   }
4149 
4150   void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) {
4151     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4152     // but in the future we will implement some sort of IR.
4153   }
4154 
4155   void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) {
4156     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4157     // but in the future we will implement some sort of IR.
4158   }
4159 
4160   void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) {
4161     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4162     // but in the future we will implement some sort of IR.
4163   }
4164 
4165   //===--------------------------------------------------------------------===//
4166   //                         LValue Expression Emission
4167   //===--------------------------------------------------------------------===//
4168 
4169   /// Create a check that a scalar RValue is non-null.
4170   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
4171 
4172   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
4173   RValue GetUndefRValue(QualType Ty);
4174 
4175   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
4176   /// and issue an ErrorUnsupported style diagnostic (using the
4177   /// provided Name).
4178   RValue EmitUnsupportedRValue(const Expr *E,
4179                                const char *Name);
4180 
4181   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
4182   /// an ErrorUnsupported style diagnostic (using the provided Name).
4183   LValue EmitUnsupportedLValue(const Expr *E,
4184                                const char *Name);
4185 
4186   /// EmitLValue - Emit code to compute a designator that specifies the location
4187   /// of the expression.
4188   ///
4189   /// This can return one of two things: a simple address or a bitfield
4190   /// reference.  In either case, the LLVM Value* in the LValue structure is
4191   /// guaranteed to be an LLVM pointer type.
4192   ///
4193   /// If this returns a bitfield reference, nothing about the pointee type of
4194   /// the LLVM value is known: For example, it may not be a pointer to an
4195   /// integer.
4196   ///
4197   /// If this returns a normal address, and if the lvalue's C type is fixed
4198   /// size, this method guarantees that the returned pointer type will point to
4199   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
4200   /// variable length type, this is not possible.
4201   ///
4202   LValue EmitLValue(const Expr *E,
4203                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4204 
4205 private:
4206   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
4207 
4208 public:
4209   /// Same as EmitLValue but additionally we generate checking code to
4210   /// guard against undefined behavior.  This is only suitable when we know
4211   /// that the address will be used to access the object.
4212   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
4213 
4214   RValue convertTempToRValue(Address addr, QualType type,
4215                              SourceLocation Loc);
4216 
4217   void EmitAtomicInit(Expr *E, LValue lvalue);
4218 
4219   bool LValueIsSuitableForInlineAtomic(LValue Src);
4220 
4221   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
4222                         AggValueSlot Slot = AggValueSlot::ignored());
4223 
4224   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
4225                         llvm::AtomicOrdering AO, bool IsVolatile = false,
4226                         AggValueSlot slot = AggValueSlot::ignored());
4227 
4228   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
4229 
4230   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
4231                        bool IsVolatile, bool isInit);
4232 
4233   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
4234       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
4235       llvm::AtomicOrdering Success =
4236           llvm::AtomicOrdering::SequentiallyConsistent,
4237       llvm::AtomicOrdering Failure =
4238           llvm::AtomicOrdering::SequentiallyConsistent,
4239       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
4240 
4241   /// Emit an atomicrmw instruction, and applying relevant metadata when
4242   /// applicable.
4243   llvm::AtomicRMWInst *emitAtomicRMWInst(
4244       llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val,
4245       llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent,
4246       llvm::SyncScope::ID SSID = llvm::SyncScope::System,
4247       const AtomicExpr *AE = nullptr);
4248 
4249   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
4250                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
4251                         bool IsVolatile);
4252 
4253   /// EmitToMemory - Change a scalar value from its value
4254   /// representation to its in-memory representation.
4255   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
4256 
4257   /// EmitFromMemory - Change a scalar value from its memory
4258   /// representation to its value representation.
4259   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
4260 
4261   /// Check if the scalar \p Value is within the valid range for the given
4262   /// type \p Ty.
4263   ///
4264   /// Returns true if a check is needed (even if the range is unknown).
4265   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
4266                             SourceLocation Loc);
4267 
4268   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4269   /// care to appropriately convert from the memory representation to
4270   /// the LLVM value representation.
4271   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4272                                 SourceLocation Loc,
4273                                 AlignmentSource Source = AlignmentSource::Type,
4274                                 bool isNontemporal = false) {
4275     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
4276                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
4277   }
4278 
4279   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4280                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
4281                                 TBAAAccessInfo TBAAInfo,
4282                                 bool isNontemporal = false);
4283 
4284   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4285   /// care to appropriately convert from the memory representation to
4286   /// the LLVM value representation.  The l-value must be a simple
4287   /// l-value.
4288   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
4289 
4290   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4291   /// care to appropriately convert from the memory representation to
4292   /// the LLVM value representation.
4293   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4294                          bool Volatile, QualType Ty,
4295                          AlignmentSource Source = AlignmentSource::Type,
4296                          bool isInit = false, bool isNontemporal = false) {
4297     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
4298                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
4299   }
4300 
4301   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4302                          bool Volatile, QualType Ty,
4303                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
4304                          bool isInit = false, bool isNontemporal = false);
4305 
4306   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4307   /// care to appropriately convert from the memory representation to
4308   /// the LLVM value representation.  The l-value must be a simple
4309   /// l-value.  The isInit flag indicates whether this is an initialization.
4310   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
4311   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
4312 
4313   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
4314   /// this method emits the address of the lvalue, then loads the result as an
4315   /// rvalue, returning the rvalue.
4316   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
4317   RValue EmitLoadOfExtVectorElementLValue(LValue V);
4318   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
4319   RValue EmitLoadOfGlobalRegLValue(LValue LV);
4320 
4321   /// Like EmitLoadOfLValue but also handles complex and aggregate types.
4322   RValue EmitLoadOfAnyValue(LValue V,
4323                             AggValueSlot Slot = AggValueSlot::ignored(),
4324                             SourceLocation Loc = {});
4325 
4326   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
4327   /// lvalue, where both are guaranteed to the have the same type, and that type
4328   /// is 'Ty'.
4329   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
4330   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
4331   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
4332 
4333   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
4334   /// as EmitStoreThroughLValue.
4335   ///
4336   /// \param Result [out] - If non-null, this will be set to a Value* for the
4337   /// bit-field contents after the store, appropriate for use as the result of
4338   /// an assignment to the bit-field.
4339   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4340                                       llvm::Value **Result=nullptr);
4341 
4342   /// Emit an l-value for an assignment (simple or compound) of complex type.
4343   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4344   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4345   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4346                                              llvm::Value *&Result);
4347 
4348   // Note: only available for agg return types
4349   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4350   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4351   // Note: only available for agg return types
4352   LValue EmitCallExprLValue(const CallExpr *E,
4353                             llvm::CallBase **CallOrInvoke = nullptr);
4354   // Note: only available for agg return types
4355   LValue EmitVAArgExprLValue(const VAArgExpr *E);
4356   LValue EmitDeclRefLValue(const DeclRefExpr *E);
4357   LValue EmitStringLiteralLValue(const StringLiteral *E);
4358   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4359   LValue EmitPredefinedLValue(const PredefinedExpr *E);
4360   LValue EmitUnaryOpLValue(const UnaryOperator *E);
4361   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4362                                 bool Accessed = false);
4363   llvm::Value *EmitMatrixIndexExpr(const Expr *E);
4364   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4365   LValue EmitArraySectionExpr(const ArraySectionExpr *E,
4366                               bool IsLowerBound = true);
4367   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4368   LValue EmitMemberExpr(const MemberExpr *E);
4369   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4370   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4371   LValue EmitInitListLValue(const InitListExpr *E);
4372   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4373   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4374   LValue EmitCastLValue(const CastExpr *E);
4375   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4376   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4377   LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E);
4378 
4379   std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E,
4380                                                   QualType Ty);
4381   LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args,
4382                             QualType Ty);
4383 
4384   Address EmitExtVectorElementLValue(LValue V);
4385 
4386   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4387 
4388   Address EmitArrayToPointerDecay(const Expr *Array,
4389                                   LValueBaseInfo *BaseInfo = nullptr,
4390                                   TBAAAccessInfo *TBAAInfo = nullptr);
4391 
4392   class ConstantEmission {
4393     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4394     ConstantEmission(llvm::Constant *C, bool isReference)
4395       : ValueAndIsReference(C, isReference) {}
4396   public:
4397     ConstantEmission() {}
4398     static ConstantEmission forReference(llvm::Constant *C) {
4399       return ConstantEmission(C, true);
4400     }
4401     static ConstantEmission forValue(llvm::Constant *C) {
4402       return ConstantEmission(C, false);
4403     }
4404 
4405     explicit operator bool() const {
4406       return ValueAndIsReference.getOpaqueValue() != nullptr;
4407     }
4408 
4409     bool isReference() const { return ValueAndIsReference.getInt(); }
4410     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4411       assert(isReference());
4412       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4413                                             refExpr->getType());
4414     }
4415 
4416     llvm::Constant *getValue() const {
4417       assert(!isReference());
4418       return ValueAndIsReference.getPointer();
4419     }
4420   };
4421 
4422   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4423   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4424   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4425 
4426   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4427                                 AggValueSlot slot = AggValueSlot::ignored());
4428   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4429 
4430   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4431                               const ObjCIvarDecl *Ivar);
4432   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4433                                            const ObjCIvarDecl *Ivar);
4434   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4435   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4436   LValue EmitLValueForLambdaField(const FieldDecl *Field,
4437                                   llvm::Value *ThisValue);
4438 
4439   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4440   /// if the Field is a reference, this will return the address of the reference
4441   /// and not the address of the value stored in the reference.
4442   LValue EmitLValueForFieldInitialization(LValue Base,
4443                                           const FieldDecl* Field);
4444 
4445   LValue EmitLValueForIvar(QualType ObjectTy,
4446                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4447                            unsigned CVRQualifiers);
4448 
4449   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4450   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4451   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4452   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4453 
4454   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4455   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4456   LValue EmitStmtExprLValue(const StmtExpr *E);
4457   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4458   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4459   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4460 
4461   //===--------------------------------------------------------------------===//
4462   //                         Scalar Expression Emission
4463   //===--------------------------------------------------------------------===//
4464 
4465   /// EmitCall - Generate a call of the given function, expecting the given
4466   /// result type, and using the given argument list which specifies both the
4467   /// LLVM arguments and the types they were derived from.
4468   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4469                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4470                   llvm::CallBase **CallOrInvoke, bool IsMustTail,
4471                   SourceLocation Loc,
4472                   bool IsVirtualFunctionPointerThunk = false);
4473   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4474                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4475                   llvm::CallBase **CallOrInvoke = nullptr,
4476                   bool IsMustTail = false) {
4477     return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke,
4478                     IsMustTail, SourceLocation());
4479   }
4480   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4481                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr,
4482                   llvm::CallBase **CallOrInvoke = nullptr,
4483                   CGFunctionInfo const **ResolvedFnInfo = nullptr);
4484 
4485   // If a Call or Invoke instruction was emitted for this CallExpr, this method
4486   // writes the pointer to `CallOrInvoke` if it's not null.
4487   RValue EmitCallExpr(const CallExpr *E,
4488                       ReturnValueSlot ReturnValue = ReturnValueSlot(),
4489                       llvm::CallBase **CallOrInvoke = nullptr);
4490   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4491                             llvm::CallBase **CallOrInvoke = nullptr);
4492   CGCallee EmitCallee(const Expr *E);
4493 
4494   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4495   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4496 
4497   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4498                                   const Twine &name = "");
4499   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4500                                   ArrayRef<llvm::Value *> args,
4501                                   const Twine &name = "");
4502   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4503                                           const Twine &name = "");
4504   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4505                                           ArrayRef<Address> args,
4506                                           const Twine &name = "");
4507   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4508                                           ArrayRef<llvm::Value *> args,
4509                                           const Twine &name = "");
4510 
4511   SmallVector<llvm::OperandBundleDef, 1>
4512   getBundlesForFunclet(llvm::Value *Callee);
4513 
4514   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4515                                    ArrayRef<llvm::Value *> Args,
4516                                    const Twine &Name = "");
4517   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4518                                           ArrayRef<llvm::Value *> args,
4519                                           const Twine &name = "");
4520   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4521                                           const Twine &name = "");
4522   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4523                                        ArrayRef<llvm::Value *> args);
4524 
4525   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4526                                      NestedNameSpecifier *Qual,
4527                                      llvm::Type *Ty);
4528 
4529   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4530                                                CXXDtorType Type,
4531                                                const CXXRecordDecl *RD);
4532 
4533   bool isPointerKnownNonNull(const Expr *E);
4534 
4535   /// Create the discriminator from the storage address and the entity hash.
4536   llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress,
4537                                                  llvm::Value *Discriminator);
4538   CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema,
4539                                         llvm::Value *StorageAddress,
4540                                         GlobalDecl SchemaDecl,
4541                                         QualType SchemaType);
4542 
4543   llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info,
4544                                    llvm::Value *Pointer);
4545 
4546   llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info,
4547                                    llvm::Value *Pointer);
4548 
4549   llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType,
4550                                      const CGPointerAuthInfo &CurAuthInfo,
4551                                      const CGPointerAuthInfo &NewAuthInfo,
4552                                      bool IsKnownNonNull);
4553   llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer,
4554                                          const CGPointerAuthInfo &CurInfo,
4555                                          const CGPointerAuthInfo &NewInfo);
4556 
4557   void EmitPointerAuthOperandBundle(
4558       const CGPointerAuthInfo &Info,
4559       SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4560 
4561   llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr,
4562                                         QualType SourceType, QualType DestType);
4563   Address authPointerToPointerCast(Address Ptr, QualType SourceType,
4564                                    QualType DestType);
4565 
4566   Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy);
4567 
4568   llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) {
4569     return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer();
4570   }
4571 
4572   // Return the copy constructor name with the prefix "__copy_constructor_"
4573   // removed.
4574   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4575                                                      CharUnits Alignment,
4576                                                      bool IsVolatile,
4577                                                      ASTContext &Ctx);
4578 
4579   // Return the destructor name with the prefix "__destructor_" removed.
4580   static std::string getNonTrivialDestructorStr(QualType QT,
4581                                                 CharUnits Alignment,
4582                                                 bool IsVolatile,
4583                                                 ASTContext &Ctx);
4584 
4585   // These functions emit calls to the special functions of non-trivial C
4586   // structs.
4587   void defaultInitNonTrivialCStructVar(LValue Dst);
4588   void callCStructDefaultConstructor(LValue Dst);
4589   void callCStructDestructor(LValue Dst);
4590   void callCStructCopyConstructor(LValue Dst, LValue Src);
4591   void callCStructMoveConstructor(LValue Dst, LValue Src);
4592   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4593   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4594 
4595   RValue EmitCXXMemberOrOperatorCall(
4596       const CXXMethodDecl *Method, const CGCallee &Callee,
4597       ReturnValueSlot ReturnValue, llvm::Value *This,
4598       llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E,
4599       CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke);
4600   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4601                                llvm::Value *This, QualType ThisTy,
4602                                llvm::Value *ImplicitParam,
4603                                QualType ImplicitParamTy, const CallExpr *E,
4604                                llvm::CallBase **CallOrInvoke = nullptr);
4605   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4606                                ReturnValueSlot ReturnValue,
4607                                llvm::CallBase **CallOrInvoke = nullptr);
4608   RValue EmitCXXMemberOrOperatorMemberCallExpr(
4609       const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
4610       bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
4611       const Expr *Base, llvm::CallBase **CallOrInvoke);
4612   // Compute the object pointer.
4613   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4614                                           llvm::Value *memberPtr,
4615                                           const MemberPointerType *memberPtrType,
4616                                           LValueBaseInfo *BaseInfo = nullptr,
4617                                           TBAAAccessInfo *TBAAInfo = nullptr);
4618   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4619                                       ReturnValueSlot ReturnValue,
4620                                       llvm::CallBase **CallOrInvoke);
4621 
4622   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4623                                        const CXXMethodDecl *MD,
4624                                        ReturnValueSlot ReturnValue,
4625                                        llvm::CallBase **CallOrInvoke);
4626   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4627 
4628   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4629                                 ReturnValueSlot ReturnValue,
4630                                 llvm::CallBase **CallOrInvoke);
4631 
4632   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4633   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4634 
4635   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4636                          const CallExpr *E, ReturnValueSlot ReturnValue);
4637 
4638   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4639 
4640   /// Emit IR for __builtin_os_log_format.
4641   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4642 
4643   /// Emit IR for __builtin_is_aligned.
4644   RValue EmitBuiltinIsAligned(const CallExpr *E);
4645   /// Emit IR for __builtin_align_up/__builtin_align_down.
4646   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4647 
4648   llvm::Function *generateBuiltinOSLogHelperFunction(
4649       const analyze_os_log::OSLogBufferLayout &Layout,
4650       CharUnits BufferAlignment);
4651 
4652   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4653                            llvm::CallBase **CallOrInvoke);
4654 
4655   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4656   /// is unhandled by the current target.
4657   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4658                                      ReturnValueSlot ReturnValue);
4659 
4660   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4661                                              const llvm::CmpInst::Predicate Fp,
4662                                              const llvm::CmpInst::Predicate Ip,
4663                                              const llvm::Twine &Name = "");
4664   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4665                                   ReturnValueSlot ReturnValue,
4666                                   llvm::Triple::ArchType Arch);
4667   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4668                                      ReturnValueSlot ReturnValue,
4669                                      llvm::Triple::ArchType Arch);
4670   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4671                                      ReturnValueSlot ReturnValue,
4672                                      llvm::Triple::ArchType Arch);
4673   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4674                                    QualType RTy);
4675   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4676                                    QualType RTy);
4677 
4678   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4679                                          unsigned LLVMIntrinsic,
4680                                          unsigned AltLLVMIntrinsic,
4681                                          const char *NameHint,
4682                                          unsigned Modifier,
4683                                          const CallExpr *E,
4684                                          SmallVectorImpl<llvm::Value *> &Ops,
4685                                          Address PtrOp0, Address PtrOp1,
4686                                          llvm::Triple::ArchType Arch);
4687 
4688   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4689                                           unsigned Modifier, llvm::Type *ArgTy,
4690                                           const CallExpr *E);
4691   llvm::Value *EmitNeonCall(llvm::Function *F,
4692                             SmallVectorImpl<llvm::Value*> &O,
4693                             const char *name,
4694                             unsigned shift = 0, bool rightshift = false);
4695   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4696                              const llvm::ElementCount &Count);
4697   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4698   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4699                                    bool negateForRightShift);
4700   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4701                                  llvm::Type *Ty, bool usgn, const char *name);
4702   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4703   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4704   /// access builtin.  Only required if it can't be inferred from the base
4705   /// pointer operand.
4706   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4707 
4708   SmallVector<llvm::Type *, 2>
4709   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4710                       ArrayRef<llvm::Value *> Ops);
4711   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4712   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4713   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4714   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4715                                     ArrayRef<llvm::Value *> Ops);
4716   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4717                                   llvm::Type *ReturnType,
4718                                   ArrayRef<llvm::Value *> Ops);
4719   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4720   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4721   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4722   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4723   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4724                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4725                             unsigned BuiltinID);
4726   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4727                            llvm::ArrayRef<llvm::Value *> Ops,
4728                            unsigned BuiltinID);
4729   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4730                                     llvm::ScalableVectorType *VTy);
4731   llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple,
4732                                          llvm::StructType *Ty);
4733   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4734                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4735                                  unsigned IntID);
4736   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4737                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4738                                    unsigned IntID);
4739   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4740                                  SmallVectorImpl<llvm::Value *> &Ops,
4741                                  unsigned BuiltinID, bool IsZExtReturn);
4742   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4743                                   SmallVectorImpl<llvm::Value *> &Ops,
4744                                   unsigned BuiltinID);
4745   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4746                                    SmallVectorImpl<llvm::Value *> &Ops,
4747                                    unsigned BuiltinID);
4748   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4749                                      SmallVectorImpl<llvm::Value *> &Ops,
4750                                      unsigned IntID);
4751   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4752                                  SmallVectorImpl<llvm::Value *> &Ops,
4753                                  unsigned IntID);
4754   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4755                                   SmallVectorImpl<llvm::Value *> &Ops,
4756                                   unsigned IntID);
4757   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4758 
4759   llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4760                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4761                              unsigned IntID);
4762   llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4763                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4764                                 unsigned IntID);
4765   llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4766                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4767                            unsigned IntID);
4768   llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4769                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4770                              unsigned IntID);
4771 
4772   void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4773                                       SmallVectorImpl<llvm::Value *> &Ops,
4774                                       SVETypeFlags TypeFlags);
4775 
4776   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4777 
4778   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4779                                       llvm::Triple::ArchType Arch);
4780   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4781 
4782   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4783   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4784   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4785   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4786   llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4787                                    ReturnValueSlot ReturnValue);
4788   llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4789   llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4790                                            const CallExpr *E);
4791   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4792   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4793   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4794                                           const CallExpr *E);
4795   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4796   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4797                                     ReturnValueSlot ReturnValue);
4798 
4799   llvm::Value *EmitRISCVCpuSupports(const CallExpr *E);
4800   llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs);
4801   llvm::Value *EmitRISCVCpuInit();
4802   llvm::Value *EmitRISCVCpuIs(const CallExpr *E);
4803   llvm::Value *EmitRISCVCpuIs(StringRef CPUStr);
4804 
4805   void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
4806                                       const CallExpr *E);
4807   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4808                                llvm::AtomicOrdering &AO,
4809                                llvm::SyncScope::ID &SSID);
4810 
4811   enum class MSVCIntrin;
4812   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4813 
4814   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4815 
4816   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4817   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4818   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4819   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4820   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4821   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4822                                 const ObjCMethodDecl *MethodWithObjects);
4823   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4824   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4825                              ReturnValueSlot Return = ReturnValueSlot());
4826 
4827   /// Retrieves the default cleanup kind for an ARC cleanup.
4828   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4829   CleanupKind getARCCleanupKind() {
4830     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4831              ? NormalAndEHCleanup : NormalCleanup;
4832   }
4833 
4834   // ARC primitives.
4835   void EmitARCInitWeak(Address addr, llvm::Value *value);
4836   void EmitARCDestroyWeak(Address addr);
4837   llvm::Value *EmitARCLoadWeak(Address addr);
4838   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4839   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4840   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4841   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4842   void EmitARCCopyWeak(Address dst, Address src);
4843   void EmitARCMoveWeak(Address dst, Address src);
4844   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4845   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4846   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4847                                   bool resultIgnored);
4848   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4849                                       bool resultIgnored);
4850   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4851   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4852   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4853   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4854   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4855   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4856   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4857   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4858   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4859   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4860 
4861   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4862   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4863                                       llvm::Type *returnType);
4864   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4865 
4866   std::pair<LValue,llvm::Value*>
4867   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4868   std::pair<LValue,llvm::Value*>
4869   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4870   std::pair<LValue,llvm::Value*>
4871   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4872 
4873   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4874                              llvm::Type *returnType);
4875   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4876                                      llvm::Type *returnType);
4877   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4878 
4879   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4880   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4881   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4882 
4883   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4884   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4885                                             bool allowUnsafeClaim);
4886   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4887   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4888   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4889 
4890   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4891 
4892   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4893 
4894   static Destroyer destroyARCStrongImprecise;
4895   static Destroyer destroyARCStrongPrecise;
4896   static Destroyer destroyARCWeak;
4897   static Destroyer emitARCIntrinsicUse;
4898   static Destroyer destroyNonTrivialCStruct;
4899 
4900   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4901   llvm::Value *EmitObjCAutoreleasePoolPush();
4902   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4903   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4904   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4905 
4906   /// Emits a reference binding to the passed in expression.
4907   RValue EmitReferenceBindingToExpr(const Expr *E);
4908 
4909   //===--------------------------------------------------------------------===//
4910   //                           Expression Emission
4911   //===--------------------------------------------------------------------===//
4912 
4913   // Expressions are broken into three classes: scalar, complex, aggregate.
4914 
4915   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4916   /// scalar type, returning the result.
4917   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4918 
4919   /// Emit a conversion from the specified type to the specified destination
4920   /// type, both of which are LLVM scalar types.
4921   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4922                                     QualType DstTy, SourceLocation Loc);
4923 
4924   /// Emit a conversion from the specified complex type to the specified
4925   /// destination type, where the destination type is an LLVM scalar type.
4926   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4927                                              QualType DstTy,
4928                                              SourceLocation Loc);
4929 
4930   /// EmitAggExpr - Emit the computation of the specified expression
4931   /// of aggregate type.  The result is computed into the given slot,
4932   /// which may be null to indicate that the value is not needed.
4933   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4934 
4935   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4936   /// aggregate type into a temporary LValue.
4937   LValue EmitAggExprToLValue(const Expr *E);
4938 
4939   enum ExprValueKind { EVK_RValue, EVK_NonRValue };
4940 
4941   /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into
4942   /// destination address.
4943   void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src,
4944                             ExprValueKind SrcKind);
4945 
4946   /// Create a store to \arg DstPtr from \arg Src, truncating the stored value
4947   /// to at most \arg DstSize bytes.
4948   void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize,
4949                           bool DstIsVolatile);
4950 
4951   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4952   /// make sure it survives garbage collection until this point.
4953   void EmitExtendGCLifetime(llvm::Value *object);
4954 
4955   /// EmitComplexExpr - Emit the computation of the specified expression of
4956   /// complex type, returning the result.
4957   ComplexPairTy EmitComplexExpr(const Expr *E,
4958                                 bool IgnoreReal = false,
4959                                 bool IgnoreImag = false);
4960 
4961   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4962   /// type and place its result into the specified l-value.
4963   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4964 
4965   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4966   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4967 
4968   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4969   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4970 
4971   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4972   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4973   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4974   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4975 
4976   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4977   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4978 
4979   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4980   /// global variable that has already been created for it.  If the initializer
4981   /// has a different type than GV does, this may free GV and return a different
4982   /// one.  Otherwise it just returns GV.
4983   llvm::GlobalVariable *
4984   AddInitializerToStaticVarDecl(const VarDecl &D,
4985                                 llvm::GlobalVariable *GV);
4986 
4987   // Emit an @llvm.invariant.start call for the given memory region.
4988   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4989 
4990   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4991   /// variable with global storage.
4992   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4993                                 bool PerformInit);
4994 
4995   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4996                                    llvm::Constant *Addr);
4997 
4998   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4999                                       llvm::FunctionCallee Dtor,
5000                                       llvm::Constant *Addr,
5001                                       llvm::FunctionCallee &AtExit);
5002 
5003   /// Call atexit() with a function that passes the given argument to
5004   /// the given function.
5005   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
5006                                     llvm::Constant *addr);
5007 
5008   /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
5009   /// support an 'atexit()' function.
5010   void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
5011                                   llvm::Constant *addr);
5012 
5013   /// Call atexit() with function dtorStub.
5014   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
5015 
5016   /// Call unatexit() with function dtorStub.
5017   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
5018 
5019   /// Emit code in this function to perform a guarded variable
5020   /// initialization.  Guarded initializations are used when it's not
5021   /// possible to prove that an initialization will be done exactly
5022   /// once, e.g. with a static local variable or a static data member
5023   /// of a class template.
5024   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
5025                           bool PerformInit);
5026 
5027   enum class GuardKind { VariableGuard, TlsGuard };
5028 
5029   /// Emit a branch to select whether or not to perform guarded initialization.
5030   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
5031                                 llvm::BasicBlock *InitBlock,
5032                                 llvm::BasicBlock *NoInitBlock,
5033                                 GuardKind Kind, const VarDecl *D);
5034 
5035   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
5036   /// variables.
5037   void
5038   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
5039                             ArrayRef<llvm::Function *> CXXThreadLocals,
5040                             ConstantAddress Guard = ConstantAddress::invalid());
5041 
5042   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
5043   /// variables.
5044   void GenerateCXXGlobalCleanUpFunc(
5045       llvm::Function *Fn,
5046       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
5047                           llvm::Constant *>>
5048           DtorsOrStermFinalizers);
5049 
5050   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
5051                                         const VarDecl *D,
5052                                         llvm::GlobalVariable *Addr,
5053                                         bool PerformInit);
5054 
5055   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
5056 
5057   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
5058 
5059   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
5060 
5061   RValue EmitAtomicExpr(AtomicExpr *E);
5062 
5063   //===--------------------------------------------------------------------===//
5064   //                         Annotations Emission
5065   //===--------------------------------------------------------------------===//
5066 
5067   /// Emit an annotation call (intrinsic).
5068   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
5069                                   llvm::Value *AnnotatedVal,
5070                                   StringRef AnnotationStr,
5071                                   SourceLocation Location,
5072                                   const AnnotateAttr *Attr);
5073 
5074   /// Emit local annotations for the local variable V, declared by D.
5075   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
5076 
5077   /// Emit field annotations for the given field & value. Returns the
5078   /// annotation result.
5079   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
5080 
5081   //===--------------------------------------------------------------------===//
5082   //                             Internal Helpers
5083   //===--------------------------------------------------------------------===//
5084 
5085   /// ContainsLabel - Return true if the statement contains a label in it.  If
5086   /// this statement is not executed normally, it not containing a label means
5087   /// that we can just remove the code.
5088   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
5089 
5090   /// containsBreak - Return true if the statement contains a break out of it.
5091   /// If the statement (recursively) contains a switch or loop with a break
5092   /// inside of it, this is fine.
5093   static bool containsBreak(const Stmt *S);
5094 
5095   /// Determine if the given statement might introduce a declaration into the
5096   /// current scope, by being a (possibly-labelled) DeclStmt.
5097   static bool mightAddDeclToScope(const Stmt *S);
5098 
5099   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5100   /// to a constant, or if it does but contains a label, return false.  If it
5101   /// constant folds return true and set the boolean result in Result.
5102   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
5103                                     bool AllowLabels = false);
5104 
5105   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5106   /// to a constant, or if it does but contains a label, return false.  If it
5107   /// constant folds return true and set the folded value.
5108   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
5109                                     bool AllowLabels = false);
5110 
5111   /// Ignore parentheses and logical-NOT to track conditions consistently.
5112   static const Expr *stripCond(const Expr *C);
5113 
5114   /// isInstrumentedCondition - Determine whether the given condition is an
5115   /// instrumentable condition (i.e. no "&&" or "||").
5116   static bool isInstrumentedCondition(const Expr *C);
5117 
5118   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
5119   /// increments a profile counter based on the semantics of the given logical
5120   /// operator opcode.  This is used to instrument branch condition coverage
5121   /// for logical operators.
5122   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
5123                                 llvm::BasicBlock *TrueBlock,
5124                                 llvm::BasicBlock *FalseBlock,
5125                                 uint64_t TrueCount = 0,
5126                                 Stmt::Likelihood LH = Stmt::LH_None,
5127                                 const Expr *CntrIdx = nullptr);
5128 
5129   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
5130   /// if statement) to the specified blocks.  Based on the condition, this might
5131   /// try to simplify the codegen of the conditional based on the branch.
5132   /// TrueCount should be the number of times we expect the condition to
5133   /// evaluate to true based on PGO data.
5134   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
5135                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
5136                             Stmt::Likelihood LH = Stmt::LH_None,
5137                             const Expr *ConditionalOp = nullptr);
5138 
5139   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
5140   /// nonnull, if \p LHS is marked _Nonnull.
5141   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
5142 
5143   /// An enumeration which makes it easier to specify whether or not an
5144   /// operation is a subtraction.
5145   enum { NotSubtraction = false, IsSubtraction = true };
5146 
5147   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
5148   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
5149   /// \p SignedIndices indicates whether any of the GEP indices are signed.
5150   /// \p IsSubtraction indicates whether the expression used to form the GEP
5151   /// is a subtraction.
5152   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
5153                                       ArrayRef<llvm::Value *> IdxList,
5154                                       bool SignedIndices,
5155                                       bool IsSubtraction,
5156                                       SourceLocation Loc,
5157                                       const Twine &Name = "");
5158 
5159   Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList,
5160                                  llvm::Type *elementType, bool SignedIndices,
5161                                  bool IsSubtraction, SourceLocation Loc,
5162                                  CharUnits Align, const Twine &Name = "");
5163 
5164   /// Specifies which type of sanitizer check to apply when handling a
5165   /// particular builtin.
5166   enum BuiltinCheckKind {
5167     BCK_CTZPassedZero,
5168     BCK_CLZPassedZero,
5169     BCK_AssumePassedFalse,
5170   };
5171 
5172   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
5173   /// enabled, a runtime check specified by \p Kind is also emitted.
5174   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
5175 
5176   /// Emits an argument for a call to a `__builtin_assume`. If the builtin
5177   /// sanitizer is enabled, a runtime check is also emitted.
5178   llvm::Value *EmitCheckedArgForAssume(const Expr *E);
5179 
5180   /// Emit a description of a type in a format suitable for passing to
5181   /// a runtime sanitizer handler.
5182   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
5183 
5184   /// Convert a value into a format suitable for passing to a runtime
5185   /// sanitizer handler.
5186   llvm::Value *EmitCheckValue(llvm::Value *V);
5187 
5188   /// Emit a description of a source location in a format suitable for
5189   /// passing to a runtime sanitizer handler.
5190   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
5191 
5192   void EmitKCFIOperandBundle(const CGCallee &Callee,
5193                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
5194 
5195   /// Create a basic block that will either trap or call a handler function in
5196   /// the UBSan runtime with the provided arguments, and create a conditional
5197   /// branch to it.
5198   void
5199   EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
5200                 Checked,
5201             SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
5202             ArrayRef<llvm::Value *> DynamicArgs);
5203 
5204   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
5205   /// if Cond if false.
5206   void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal,
5207                             llvm::Value *Cond, llvm::ConstantInt *TypeId,
5208                             llvm::Value *Ptr,
5209                             ArrayRef<llvm::Constant *> StaticArgs);
5210 
5211   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
5212   /// checking is enabled. Otherwise, just emit an unreachable instruction.
5213   void EmitUnreachable(SourceLocation Loc);
5214 
5215   /// Create a basic block that will call the trap intrinsic, and emit a
5216   /// conditional branch to it, for the -ftrapv checks.
5217   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID,
5218                      bool NoMerge = false);
5219 
5220   /// Emit a call to trap or debugtrap and attach function attribute
5221   /// "trap-func-name" if specified.
5222   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
5223 
5224   /// Emit a stub for the cross-DSO CFI check function.
5225   void EmitCfiCheckStub();
5226 
5227   /// Emit a cross-DSO CFI failure handling function.
5228   void EmitCfiCheckFail();
5229 
5230   /// Create a check for a function parameter that may potentially be
5231   /// declared as non-null.
5232   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
5233                            AbstractCallee AC, unsigned ParmNum);
5234 
5235   void EmitNonNullArgCheck(Address Addr, QualType ArgType,
5236                            SourceLocation ArgLoc, AbstractCallee AC,
5237                            unsigned ParmNum);
5238 
5239   /// EmitWriteback - Emit callbacks for function.
5240   void EmitWritebacks(const CallArgList &Args);
5241 
5242   /// EmitCallArg - Emit a single call argument.
5243   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
5244 
5245   /// EmitDelegateCallArg - We are performing a delegate call; that
5246   /// is, the current function is delegating to another one.  Produce
5247   /// a r-value suitable for passing the given parameter.
5248   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
5249                            SourceLocation loc);
5250 
5251   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
5252   /// point operation, expressed as the maximum relative error in ulp.
5253   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
5254 
5255   /// Set the minimum required accuracy of the given sqrt operation
5256   /// based on CodeGenOpts.
5257   void SetSqrtFPAccuracy(llvm::Value *Val);
5258 
5259   /// Set the minimum required accuracy of the given sqrt operation based on
5260   /// CodeGenOpts.
5261   void SetDivFPAccuracy(llvm::Value *Val);
5262 
5263   /// Set the codegen fast-math flags.
5264   void SetFastMathFlags(FPOptions FPFeatures);
5265 
5266   // Truncate or extend a boolean vector to the requested number of elements.
5267   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
5268                                      unsigned NumElementsDst,
5269                                      const llvm::Twine &Name = "");
5270 
5271 private:
5272   // Emits a convergence_loop instruction for the given |BB|, with |ParentToken|
5273   // as it's parent convergence instr.
5274   llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB);
5275 
5276   // Adds a convergence_ctrl token with |ParentToken| as parent convergence
5277   // instr to the call |Input|.
5278   llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input);
5279 
5280   // Find the convergence_entry instruction |F|, or emits ones if none exists.
5281   // Returns the convergence instruction.
5282   llvm::ConvergenceControlInst *
5283   getOrEmitConvergenceEntryToken(llvm::Function *F);
5284 
5285 private:
5286   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
5287   void EmitReturnOfRValue(RValue RV, QualType Ty);
5288 
5289   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
5290 
5291   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
5292       DeferredReplacements;
5293 
5294   /// Set the address of a local variable.
5295   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
5296     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
5297     LocalDeclMap.insert({VD, Addr});
5298   }
5299 
5300   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
5301   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
5302   ///
5303   /// \param AI - The first function argument of the expansion.
5304   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
5305                           llvm::Function::arg_iterator &AI);
5306 
5307   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
5308   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
5309   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
5310   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
5311                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
5312                         unsigned &IRCallArgPos);
5313 
5314   std::pair<llvm::Value *, llvm::Type *>
5315   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
5316                std::string &ConstraintStr);
5317 
5318   std::pair<llvm::Value *, llvm::Type *>
5319   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
5320                      QualType InputType, std::string &ConstraintStr,
5321                      SourceLocation Loc);
5322 
5323   /// Attempts to statically evaluate the object size of E. If that
5324   /// fails, emits code to figure the size of E out for us. This is
5325   /// pass_object_size aware.
5326   ///
5327   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
5328   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
5329                                                llvm::IntegerType *ResType,
5330                                                llvm::Value *EmittedE,
5331                                                bool IsDynamic);
5332 
5333   /// Emits the size of E, as required by __builtin_object_size. This
5334   /// function is aware of pass_object_size parameters, and will act accordingly
5335   /// if E is a parameter with the pass_object_size attribute.
5336   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
5337                                      llvm::IntegerType *ResType,
5338                                      llvm::Value *EmittedE,
5339                                      bool IsDynamic);
5340 
5341   llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
5342                                            llvm::IntegerType *ResType);
5343 
5344   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
5345                                        Address Loc);
5346 
5347 public:
5348   enum class EvaluationOrder {
5349     ///! No language constraints on evaluation order.
5350     Default,
5351     ///! Language semantics require left-to-right evaluation.
5352     ForceLeftToRight,
5353     ///! Language semantics require right-to-left evaluation.
5354     ForceRightToLeft
5355   };
5356 
5357   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
5358   // an ObjCMethodDecl.
5359   struct PrototypeWrapper {
5360     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
5361 
5362     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
5363     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
5364   };
5365 
5366   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
5367                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
5368                     AbstractCallee AC = AbstractCallee(),
5369                     unsigned ParamsToSkip = 0,
5370                     EvaluationOrder Order = EvaluationOrder::Default);
5371 
5372   /// EmitPointerWithAlignment - Given an expression with a pointer type,
5373   /// emit the value and compute our best estimate of the alignment of the
5374   /// pointee.
5375   ///
5376   /// \param BaseInfo - If non-null, this will be initialized with
5377   /// information about the source of the alignment and the may-alias
5378   /// attribute.  Note that this function will conservatively fall back on
5379   /// the type when it doesn't recognize the expression and may-alias will
5380   /// be set to false.
5381   ///
5382   /// One reasonable way to use this information is when there's a language
5383   /// guarantee that the pointer must be aligned to some stricter value, and
5384   /// we're simply trying to ensure that sufficiently obvious uses of under-
5385   /// aligned objects don't get miscompiled; for example, a placement new
5386   /// into the address of a local variable.  In such a case, it's quite
5387   /// reasonable to just ignore the returned alignment when it isn't from an
5388   /// explicit source.
5389   Address
5390   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
5391                            TBAAAccessInfo *TBAAInfo = nullptr,
5392                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
5393 
5394   /// If \p E references a parameter with pass_object_size info or a constant
5395   /// array size modifier, emit the object size divided by the size of \p EltTy.
5396   /// Otherwise return null.
5397   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
5398 
5399   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
5400 
5401   struct FMVResolverOption {
5402     llvm::Function *Function;
5403     llvm::SmallVector<StringRef, 8> Features;
5404     std::optional<StringRef> Architecture;
5405 
5406     FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats,
5407                       std::optional<StringRef> Arch = std::nullopt)
5408         : Function(F), Features(Feats), Architecture(Arch) {}
5409   };
5410 
5411   // Emits the body of a multiversion function's resolver. Assumes that the
5412   // options are already sorted in the proper order, with the 'default' option
5413   // last (if it exists).
5414   void EmitMultiVersionResolver(llvm::Function *Resolver,
5415                                 ArrayRef<FMVResolverOption> Options);
5416   void EmitX86MultiVersionResolver(llvm::Function *Resolver,
5417                                    ArrayRef<FMVResolverOption> Options);
5418   void EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
5419                                        ArrayRef<FMVResolverOption> Options);
5420   void EmitRISCVMultiVersionResolver(llvm::Function *Resolver,
5421                                      ArrayRef<FMVResolverOption> Options);
5422 
5423 private:
5424   QualType getVarArgType(const Expr *Arg);
5425 
5426   void EmitDeclMetadata();
5427 
5428   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
5429                                   const AutoVarEmission &emission);
5430 
5431   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
5432 
5433   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
5434   llvm::Value *EmitX86CpuIs(const CallExpr *E);
5435   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
5436   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
5437   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
5438   llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
5439   llvm::Value *EmitX86CpuInit();
5440   llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO);
5441   llvm::Value *EmitAArch64CpuInit();
5442   llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO);
5443   llvm::Value *EmitAArch64CpuSupports(const CallExpr *E);
5444   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5445 };
5446 
5447 inline DominatingLLVMValue::saved_type
5448 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5449   if (!needsSaving(value)) return saved_type(value, false);
5450 
5451   // Otherwise, we need an alloca.
5452   auto align = CharUnits::fromQuantity(
5453       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5454   Address alloca =
5455       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5456   CGF.Builder.CreateStore(value, alloca);
5457 
5458   return saved_type(alloca.emitRawPointer(CGF), true);
5459 }
5460 
5461 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5462                                                  saved_type value) {
5463   // If the value says it wasn't saved, trust that it's still dominating.
5464   if (!value.getInt()) return value.getPointer();
5465 
5466   // Otherwise, it should be an alloca instruction, as set up in save().
5467   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5468   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5469                                        alloca->getAlign());
5470 }
5471 
5472 }  // end namespace CodeGen
5473 
5474 // Map the LangOption for floating point exception behavior into
5475 // the corresponding enum in the IR.
5476 llvm::fp::ExceptionBehavior
5477 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5478 }  // end namespace clang
5479 
5480 #endif
5481