xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision db81e8c42e121e62a00587b12d2b972dfcfb98c0)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenACC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/AST/Type.h"
32 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/CapturedStmt.h"
34 #include "clang/Basic/CodeGenOptions.h"
35 #include "clang/Basic/OpenMPKinds.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/MapVector.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/ValueHandle.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/SanitizerStats.h"
46 #include <optional>
47 
48 namespace llvm {
49 class BasicBlock;
50 class LLVMContext;
51 class MDNode;
52 class SwitchInst;
53 class Twine;
54 class Value;
55 class CanonicalLoopInfo;
56 }
57 
58 namespace clang {
59 class ASTContext;
60 class CXXDestructorDecl;
61 class CXXForRangeStmt;
62 class CXXTryStmt;
63 class Decl;
64 class LabelDecl;
65 class FunctionDecl;
66 class FunctionProtoType;
67 class LabelStmt;
68 class ObjCContainerDecl;
69 class ObjCInterfaceDecl;
70 class ObjCIvarDecl;
71 class ObjCMethodDecl;
72 class ObjCImplementationDecl;
73 class ObjCPropertyImplDecl;
74 class TargetInfo;
75 class VarDecl;
76 class ObjCForCollectionStmt;
77 class ObjCAtTryStmt;
78 class ObjCAtThrowStmt;
79 class ObjCAtSynchronizedStmt;
80 class ObjCAutoreleasePoolStmt;
81 class OMPUseDevicePtrClause;
82 class OMPUseDeviceAddrClause;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGBlockInfo;
95 class CGCXXABI;
96 class BlockByrefHelpers;
97 class BlockByrefInfo;
98 class BlockFieldFlags;
99 class RegionCodeGenTy;
100 class TargetCodeGenInfo;
101 struct OMPTaskDataTy;
102 struct CGCoroData;
103 
104 /// The kind of evaluation to perform on values of a particular
105 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
106 /// CGExprAgg?
107 ///
108 /// TODO: should vectors maybe be split out into their own thing?
109 enum TypeEvaluationKind {
110   TEK_Scalar,
111   TEK_Complex,
112   TEK_Aggregate
113 };
114 
115 #define LIST_SANITIZER_CHECKS                                                  \
116   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
117   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
118   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
119   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
120   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
121   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
122   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
123   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
124   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
125   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
126   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
127   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
128   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
129   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
130   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
131   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
132   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
133   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
134   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
135   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
136   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
137   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
138   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
139   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
140   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)              \
141   SANITIZER_CHECK(BoundsSafety, bounds_safety, 0)
142 
143 enum SanitizerHandler {
144 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
145   LIST_SANITIZER_CHECKS
146 #undef SANITIZER_CHECK
147 };
148 
149 /// Helper class with most of the code for saving a value for a
150 /// conditional expression cleanup.
151 struct DominatingLLVMValue {
152   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
153 
154   /// Answer whether the given value needs extra work to be saved.
155   static bool needsSaving(llvm::Value *value) {
156     if (!value)
157       return false;
158 
159     // If it's not an instruction, we don't need to save.
160     if (!isa<llvm::Instruction>(value)) return false;
161 
162     // If it's an instruction in the entry block, we don't need to save.
163     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
164     return (block != &block->getParent()->getEntryBlock());
165   }
166 
167   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
168   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
169 };
170 
171 /// A partial specialization of DominatingValue for llvm::Values that
172 /// might be llvm::Instructions.
173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
174   typedef T *type;
175   static type restore(CodeGenFunction &CGF, saved_type value) {
176     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
177   }
178 };
179 
180 /// A specialization of DominatingValue for Address.
181 template <> struct DominatingValue<Address> {
182   typedef Address type;
183 
184   struct saved_type {
185     DominatingLLVMValue::saved_type BasePtr;
186     llvm::Type *ElementType;
187     CharUnits Alignment;
188     DominatingLLVMValue::saved_type Offset;
189     llvm::PointerType *EffectiveType;
190   };
191 
192   static bool needsSaving(type value) {
193     if (DominatingLLVMValue::needsSaving(value.getBasePointer()) ||
194         DominatingLLVMValue::needsSaving(value.getOffset()))
195       return true;
196     return false;
197   }
198   static saved_type save(CodeGenFunction &CGF, type value) {
199     return {DominatingLLVMValue::save(CGF, value.getBasePointer()),
200             value.getElementType(), value.getAlignment(),
201             DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()};
202   }
203   static type restore(CodeGenFunction &CGF, saved_type value) {
204     return Address(DominatingLLVMValue::restore(CGF, value.BasePtr),
205                    value.ElementType, value.Alignment, CGPointerAuthInfo(),
206                    DominatingLLVMValue::restore(CGF, value.Offset));
207   }
208 };
209 
210 /// A specialization of DominatingValue for RValue.
211 template <> struct DominatingValue<RValue> {
212   typedef RValue type;
213   class saved_type {
214     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
215                 AggregateAddress, ComplexAddress };
216     union {
217       struct {
218         DominatingLLVMValue::saved_type first, second;
219       } Vals;
220       DominatingValue<Address>::saved_type AggregateAddr;
221     };
222     LLVM_PREFERRED_TYPE(Kind)
223     unsigned K : 3;
224 
225     saved_type(DominatingLLVMValue::saved_type Val1, unsigned K)
226         : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {}
227 
228     saved_type(DominatingLLVMValue::saved_type Val1,
229                DominatingLLVMValue::saved_type Val2)
230         : Vals{Val1, Val2}, K(ComplexAddress) {}
231 
232     saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K)
233         : AggregateAddr(AggregateAddr), K(K) {}
234 
235   public:
236     static bool needsSaving(RValue value);
237     static saved_type save(CodeGenFunction &CGF, RValue value);
238     RValue restore(CodeGenFunction &CGF);
239 
240     // implementations in CGCleanup.cpp
241   };
242 
243   static bool needsSaving(type value) {
244     return saved_type::needsSaving(value);
245   }
246   static saved_type save(CodeGenFunction &CGF, type value) {
247     return saved_type::save(CGF, value);
248   }
249   static type restore(CodeGenFunction &CGF, saved_type value) {
250     return value.restore(CGF);
251   }
252 };
253 
254 /// CodeGenFunction - This class organizes the per-function state that is used
255 /// while generating LLVM code.
256 class CodeGenFunction : public CodeGenTypeCache {
257   CodeGenFunction(const CodeGenFunction &) = delete;
258   void operator=(const CodeGenFunction &) = delete;
259 
260   friend class CGCXXABI;
261 public:
262   /// A jump destination is an abstract label, branching to which may
263   /// require a jump out through normal cleanups.
264   struct JumpDest {
265     JumpDest() : Block(nullptr), Index(0) {}
266     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
267              unsigned Index)
268         : Block(Block), ScopeDepth(Depth), Index(Index) {}
269 
270     bool isValid() const { return Block != nullptr; }
271     llvm::BasicBlock *getBlock() const { return Block; }
272     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
273     unsigned getDestIndex() const { return Index; }
274 
275     // This should be used cautiously.
276     void setScopeDepth(EHScopeStack::stable_iterator depth) {
277       ScopeDepth = depth;
278     }
279 
280   private:
281     llvm::BasicBlock *Block;
282     EHScopeStack::stable_iterator ScopeDepth;
283     unsigned Index;
284   };
285 
286   CodeGenModule &CGM;  // Per-module state.
287   const TargetInfo &Target;
288 
289   // For EH/SEH outlined funclets, this field points to parent's CGF
290   CodeGenFunction *ParentCGF = nullptr;
291 
292   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
293   LoopInfoStack LoopStack;
294   CGBuilderTy Builder;
295 
296   // Stores variables for which we can't generate correct lifetime markers
297   // because of jumps.
298   VarBypassDetector Bypasses;
299 
300   /// List of recently emitted OMPCanonicalLoops.
301   ///
302   /// Since OMPCanonicalLoops are nested inside other statements (in particular
303   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
304   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
305   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
306   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
307   /// this stack when done. Entering a new loop requires clearing this list; it
308   /// either means we start parsing a new loop nest (in which case the previous
309   /// loop nest goes out of scope) or a second loop in the same level in which
310   /// case it would be ambiguous into which of the two (or more) loops the loop
311   /// nest would extend.
312   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
313 
314   /// Stack to track the Logical Operator recursion nest for MC/DC.
315   SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
316 
317   /// Stack to track the controlled convergence tokens.
318   SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack;
319 
320   /// Number of nested loop to be consumed by the last surrounding
321   /// loop-associated directive.
322   int ExpectedOMPLoopDepth = 0;
323 
324   // CodeGen lambda for loops and support for ordered clause
325   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
326                                   JumpDest)>
327       CodeGenLoopTy;
328   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
329                                   const unsigned, const bool)>
330       CodeGenOrderedTy;
331 
332   // Codegen lambda for loop bounds in worksharing loop constructs
333   typedef llvm::function_ref<std::pair<LValue, LValue>(
334       CodeGenFunction &, const OMPExecutableDirective &S)>
335       CodeGenLoopBoundsTy;
336 
337   // Codegen lambda for loop bounds in dispatch-based loop implementation
338   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
339       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
340       Address UB)>
341       CodeGenDispatchBoundsTy;
342 
343   /// CGBuilder insert helper. This function is called after an
344   /// instruction is created using Builder.
345   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
346                     llvm::BasicBlock::iterator InsertPt) const;
347 
348   /// CurFuncDecl - Holds the Decl for the current outermost
349   /// non-closure context.
350   const Decl *CurFuncDecl = nullptr;
351   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
352   const Decl *CurCodeDecl = nullptr;
353   const CGFunctionInfo *CurFnInfo = nullptr;
354   QualType FnRetTy;
355   llvm::Function *CurFn = nullptr;
356 
357   /// Save Parameter Decl for coroutine.
358   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
359 
360   // Holds coroutine data if the current function is a coroutine. We use a
361   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
362   // in this header.
363   struct CGCoroInfo {
364     std::unique_ptr<CGCoroData> Data;
365     bool InSuspendBlock = false;
366     CGCoroInfo();
367     ~CGCoroInfo();
368   };
369   CGCoroInfo CurCoro;
370 
371   bool isCoroutine() const {
372     return CurCoro.Data != nullptr;
373   }
374 
375   bool inSuspendBlock() const {
376     return isCoroutine() && CurCoro.InSuspendBlock;
377   }
378 
379   // Holds FramePtr for await_suspend wrapper generation,
380   // so that __builtin_coro_frame call can be lowered
381   // directly to value of its second argument
382   struct AwaitSuspendWrapperInfo {
383     llvm::Value *FramePtr = nullptr;
384   };
385   AwaitSuspendWrapperInfo CurAwaitSuspendWrapper;
386 
387   // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics.
388   // It encapsulates SuspendExpr in a function, to separate it's body
389   // from the main coroutine to avoid miscompilations. Intrinisic
390   // is lowered to this function call in CoroSplit pass
391   // Function signature is:
392   // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl)
393   // where type is one of (void, i1, ptr)
394   llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName,
395                                               Twine const &SuspendPointName,
396                                               CoroutineSuspendExpr const &S);
397 
398   /// CurGD - The GlobalDecl for the current function being compiled.
399   GlobalDecl CurGD;
400 
401   /// PrologueCleanupDepth - The cleanup depth enclosing all the
402   /// cleanups associated with the parameters.
403   EHScopeStack::stable_iterator PrologueCleanupDepth;
404 
405   /// ReturnBlock - Unified return block.
406   JumpDest ReturnBlock;
407 
408   /// ReturnValue - The temporary alloca to hold the return
409   /// value. This is invalid iff the function has no return value.
410   Address ReturnValue = Address::invalid();
411 
412   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
413   /// This is invalid if sret is not in use.
414   Address ReturnValuePointer = Address::invalid();
415 
416   /// If a return statement is being visited, this holds the return statment's
417   /// result expression.
418   const Expr *RetExpr = nullptr;
419 
420   /// Return true if a label was seen in the current scope.
421   bool hasLabelBeenSeenInCurrentScope() const {
422     if (CurLexicalScope)
423       return CurLexicalScope->hasLabels();
424     return !LabelMap.empty();
425   }
426 
427   /// AllocaInsertPoint - This is an instruction in the entry block before which
428   /// we prefer to insert allocas.
429   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
430 
431 private:
432   /// PostAllocaInsertPt - This is a place in the prologue where code can be
433   /// inserted that will be dominated by all the static allocas. This helps
434   /// achieve two things:
435   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
436   ///   2. All other prologue code (which are dominated by static allocas) do
437   ///      appear in the source order immediately after all static allocas.
438   ///
439   /// PostAllocaInsertPt will be lazily created when it is *really* required.
440   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
441 
442 public:
443   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
444   /// immediately after AllocaInsertPt.
445   llvm::Instruction *getPostAllocaInsertPoint() {
446     if (!PostAllocaInsertPt) {
447       assert(AllocaInsertPt &&
448              "Expected static alloca insertion point at function prologue");
449       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
450              "EBB should be entry block of the current code gen function");
451       PostAllocaInsertPt = AllocaInsertPt->clone();
452       PostAllocaInsertPt->setName("postallocapt");
453       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
454     }
455 
456     return PostAllocaInsertPt;
457   }
458 
459   /// API for captured statement code generation.
460   class CGCapturedStmtInfo {
461   public:
462     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
463         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
464     explicit CGCapturedStmtInfo(const CapturedStmt &S,
465                                 CapturedRegionKind K = CR_Default)
466       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
467 
468       RecordDecl::field_iterator Field =
469         S.getCapturedRecordDecl()->field_begin();
470       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
471                                                 E = S.capture_end();
472            I != E; ++I, ++Field) {
473         if (I->capturesThis())
474           CXXThisFieldDecl = *Field;
475         else if (I->capturesVariable())
476           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
477         else if (I->capturesVariableByCopy())
478           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
479       }
480     }
481 
482     virtual ~CGCapturedStmtInfo();
483 
484     CapturedRegionKind getKind() const { return Kind; }
485 
486     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
487     // Retrieve the value of the context parameter.
488     virtual llvm::Value *getContextValue() const { return ThisValue; }
489 
490     /// Lookup the captured field decl for a variable.
491     virtual const FieldDecl *lookup(const VarDecl *VD) const {
492       return CaptureFields.lookup(VD->getCanonicalDecl());
493     }
494 
495     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
496     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
497 
498     static bool classof(const CGCapturedStmtInfo *) {
499       return true;
500     }
501 
502     /// Emit the captured statement body.
503     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
504       CGF.incrementProfileCounter(S);
505       CGF.EmitStmt(S);
506     }
507 
508     /// Get the name of the capture helper.
509     virtual StringRef getHelperName() const { return "__captured_stmt"; }
510 
511     /// Get the CaptureFields
512     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
513       return CaptureFields;
514     }
515 
516   private:
517     /// The kind of captured statement being generated.
518     CapturedRegionKind Kind;
519 
520     /// Keep the map between VarDecl and FieldDecl.
521     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
522 
523     /// The base address of the captured record, passed in as the first
524     /// argument of the parallel region function.
525     llvm::Value *ThisValue;
526 
527     /// Captured 'this' type.
528     FieldDecl *CXXThisFieldDecl;
529   };
530   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
531 
532   /// RAII for correct setting/restoring of CapturedStmtInfo.
533   class CGCapturedStmtRAII {
534   private:
535     CodeGenFunction &CGF;
536     CGCapturedStmtInfo *PrevCapturedStmtInfo;
537   public:
538     CGCapturedStmtRAII(CodeGenFunction &CGF,
539                        CGCapturedStmtInfo *NewCapturedStmtInfo)
540         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
541       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
542     }
543     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
544   };
545 
546   /// An abstract representation of regular/ObjC call/message targets.
547   class AbstractCallee {
548     /// The function declaration of the callee.
549     const Decl *CalleeDecl;
550 
551   public:
552     AbstractCallee() : CalleeDecl(nullptr) {}
553     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
554     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
555     bool hasFunctionDecl() const {
556       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
557     }
558     const Decl *getDecl() const { return CalleeDecl; }
559     unsigned getNumParams() const {
560       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
561         return FD->getNumParams();
562       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
563     }
564     const ParmVarDecl *getParamDecl(unsigned I) const {
565       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
566         return FD->getParamDecl(I);
567       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
568     }
569   };
570 
571   /// Sanitizers enabled for this function.
572   SanitizerSet SanOpts;
573 
574   /// True if CodeGen currently emits code implementing sanitizer checks.
575   bool IsSanitizerScope = false;
576 
577   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
578   class SanitizerScope {
579     CodeGenFunction *CGF;
580   public:
581     SanitizerScope(CodeGenFunction *CGF);
582     ~SanitizerScope();
583   };
584 
585   /// In C++, whether we are code generating a thunk.  This controls whether we
586   /// should emit cleanups.
587   bool CurFuncIsThunk = false;
588 
589   /// In ARC, whether we should autorelease the return value.
590   bool AutoreleaseResult = false;
591 
592   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
593   /// potentially set the return value.
594   bool SawAsmBlock = false;
595 
596   GlobalDecl CurSEHParent;
597 
598   /// True if the current function is an outlined SEH helper. This can be a
599   /// finally block or filter expression.
600   bool IsOutlinedSEHHelper = false;
601 
602   /// True if CodeGen currently emits code inside presereved access index
603   /// region.
604   bool IsInPreservedAIRegion = false;
605 
606   /// True if the current statement has nomerge attribute.
607   bool InNoMergeAttributedStmt = false;
608 
609   /// True if the current statement has noinline attribute.
610   bool InNoInlineAttributedStmt = false;
611 
612   /// True if the current statement has always_inline attribute.
613   bool InAlwaysInlineAttributedStmt = false;
614 
615   /// True if the current statement has noconvergent attribute.
616   bool InNoConvergentAttributedStmt = false;
617 
618   /// HLSL Branch attribute.
619   HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr =
620       HLSLControlFlowHintAttr::SpellingNotCalculated;
621 
622   // The CallExpr within the current statement that the musttail attribute
623   // applies to.  nullptr if there is no 'musttail' on the current statement.
624   const CallExpr *MustTailCall = nullptr;
625 
626   /// Returns true if a function must make progress, which means the
627   /// mustprogress attribute can be added.
628   bool checkIfFunctionMustProgress() {
629     if (CGM.getCodeGenOpts().getFiniteLoops() ==
630         CodeGenOptions::FiniteLoopsKind::Never)
631       return false;
632 
633     // C++11 and later guarantees that a thread eventually will do one of the
634     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
635     // - terminate,
636     //  - make a call to a library I/O function,
637     //  - perform an access through a volatile glvalue, or
638     //  - perform a synchronization operation or an atomic operation.
639     //
640     // Hence each function is 'mustprogress' in C++11 or later.
641     return getLangOpts().CPlusPlus11;
642   }
643 
644   /// Returns true if a loop must make progress, which means the mustprogress
645   /// attribute can be added. \p HasConstantCond indicates whether the branch
646   /// condition is a known constant.
647   bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody);
648 
649   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
650   llvm::Value *BlockPointer = nullptr;
651 
652   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
653   FieldDecl *LambdaThisCaptureField = nullptr;
654 
655   /// A mapping from NRVO variables to the flags used to indicate
656   /// when the NRVO has been applied to this variable.
657   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
658 
659   EHScopeStack EHStack;
660   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
661 
662   // A stack of cleanups which were added to EHStack but have to be deactivated
663   // later before being popped or emitted. These are usually deactivated on
664   // exiting a `CleanupDeactivationScope` scope. For instance, after a
665   // full-expr.
666   //
667   // These are specially useful for correctly emitting cleanups while
668   // encountering branches out of expression (through stmt-expr or coroutine
669   // suspensions).
670   struct DeferredDeactivateCleanup {
671     EHScopeStack::stable_iterator Cleanup;
672     llvm::Instruction *DominatingIP;
673   };
674   llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack;
675 
676   // Enters a new scope for capturing cleanups which are deferred to be
677   // deactivated, all of which will be deactivated once the scope is exited.
678   struct CleanupDeactivationScope {
679     CodeGenFunction &CGF;
680     size_t OldDeactivateCleanupStackSize;
681     bool Deactivated;
682     CleanupDeactivationScope(CodeGenFunction &CGF)
683         : CGF(CGF), OldDeactivateCleanupStackSize(
684                         CGF.DeferredDeactivationCleanupStack.size()),
685           Deactivated(false) {}
686 
687     void ForceDeactivate() {
688       assert(!Deactivated && "Deactivating already deactivated scope");
689       auto &Stack = CGF.DeferredDeactivationCleanupStack;
690       for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) {
691         CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup,
692                                    Stack[I - 1].DominatingIP);
693         Stack[I - 1].DominatingIP->eraseFromParent();
694       }
695       Stack.resize(OldDeactivateCleanupStackSize);
696       Deactivated = true;
697     }
698 
699     ~CleanupDeactivationScope() {
700       if (Deactivated)
701         return;
702       ForceDeactivate();
703     }
704   };
705 
706   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
707 
708   llvm::Instruction *CurrentFuncletPad = nullptr;
709 
710   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
711     bool isRedundantBeforeReturn() override { return true; }
712 
713     llvm::Value *Addr;
714     llvm::Value *Size;
715 
716   public:
717     CallLifetimeEnd(RawAddress addr, llvm::Value *size)
718         : Addr(addr.getPointer()), Size(size) {}
719 
720     void Emit(CodeGenFunction &CGF, Flags flags) override {
721       CGF.EmitLifetimeEnd(Size, Addr);
722     }
723   };
724 
725   /// Header for data within LifetimeExtendedCleanupStack.
726   struct LifetimeExtendedCleanupHeader {
727     /// The size of the following cleanup object.
728     unsigned Size;
729     /// The kind of cleanup to push.
730     LLVM_PREFERRED_TYPE(CleanupKind)
731     unsigned Kind : 31;
732     /// Whether this is a conditional cleanup.
733     LLVM_PREFERRED_TYPE(bool)
734     unsigned IsConditional : 1;
735 
736     size_t getSize() const { return Size; }
737     CleanupKind getKind() const { return (CleanupKind)Kind; }
738     bool isConditional() const { return IsConditional; }
739   };
740 
741   /// i32s containing the indexes of the cleanup destinations.
742   RawAddress NormalCleanupDest = RawAddress::invalid();
743 
744   unsigned NextCleanupDestIndex = 1;
745 
746   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
747   llvm::BasicBlock *EHResumeBlock = nullptr;
748 
749   /// The exception slot.  All landing pads write the current exception pointer
750   /// into this alloca.
751   llvm::Value *ExceptionSlot = nullptr;
752 
753   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
754   /// write the current selector value into this alloca.
755   llvm::AllocaInst *EHSelectorSlot = nullptr;
756 
757   /// A stack of exception code slots. Entering an __except block pushes a slot
758   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
759   /// a value from the top of the stack.
760   SmallVector<Address, 1> SEHCodeSlotStack;
761 
762   /// Value returned by __exception_info intrinsic.
763   llvm::Value *SEHInfo = nullptr;
764 
765   /// Emits a landing pad for the current EH stack.
766   llvm::BasicBlock *EmitLandingPad();
767 
768   llvm::BasicBlock *getInvokeDestImpl();
769 
770   /// Parent loop-based directive for scan directive.
771   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
772   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
773   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
774   llvm::BasicBlock *OMPScanExitBlock = nullptr;
775   llvm::BasicBlock *OMPScanDispatch = nullptr;
776   bool OMPFirstScanLoop = false;
777 
778   /// Manages parent directive for scan directives.
779   class ParentLoopDirectiveForScanRegion {
780     CodeGenFunction &CGF;
781     const OMPExecutableDirective *ParentLoopDirectiveForScan;
782 
783   public:
784     ParentLoopDirectiveForScanRegion(
785         CodeGenFunction &CGF,
786         const OMPExecutableDirective &ParentLoopDirectiveForScan)
787         : CGF(CGF),
788           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
789       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
790     }
791     ~ParentLoopDirectiveForScanRegion() {
792       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
793     }
794   };
795 
796   template <class T>
797   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
798     return DominatingValue<T>::save(*this, value);
799   }
800 
801   class CGFPOptionsRAII {
802   public:
803     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
804     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
805     ~CGFPOptionsRAII();
806 
807   private:
808     void ConstructorHelper(FPOptions FPFeatures);
809     CodeGenFunction &CGF;
810     FPOptions OldFPFeatures;
811     llvm::fp::ExceptionBehavior OldExcept;
812     llvm::RoundingMode OldRounding;
813     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
814   };
815   FPOptions CurFPFeatures;
816 
817 public:
818   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
819   /// rethrows.
820   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
821 
822   /// A class controlling the emission of a finally block.
823   class FinallyInfo {
824     /// Where the catchall's edge through the cleanup should go.
825     JumpDest RethrowDest;
826 
827     /// A function to call to enter the catch.
828     llvm::FunctionCallee BeginCatchFn;
829 
830     /// An i1 variable indicating whether or not the @finally is
831     /// running for an exception.
832     llvm::AllocaInst *ForEHVar = nullptr;
833 
834     /// An i8* variable into which the exception pointer to rethrow
835     /// has been saved.
836     llvm::AllocaInst *SavedExnVar = nullptr;
837 
838   public:
839     void enter(CodeGenFunction &CGF, const Stmt *Finally,
840                llvm::FunctionCallee beginCatchFn,
841                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
842     void exit(CodeGenFunction &CGF);
843   };
844 
845   /// Returns true inside SEH __try blocks.
846   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
847 
848   /// Returns true while emitting a cleanuppad.
849   bool isCleanupPadScope() const {
850     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
851   }
852 
853   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
854   /// current full-expression.  Safe against the possibility that
855   /// we're currently inside a conditionally-evaluated expression.
856   template <class T, class... As>
857   void pushFullExprCleanup(CleanupKind kind, As... A) {
858     // If we're not in a conditional branch, or if none of the
859     // arguments requires saving, then use the unconditional cleanup.
860     if (!isInConditionalBranch())
861       return EHStack.pushCleanup<T>(kind, A...);
862 
863     // Stash values in a tuple so we can guarantee the order of saves.
864     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
865     SavedTuple Saved{saveValueInCond(A)...};
866 
867     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
868     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
869     initFullExprCleanup();
870   }
871 
872   /// Queue a cleanup to be pushed after finishing the current full-expression,
873   /// potentially with an active flag.
874   template <class T, class... As>
875   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
876     if (!isInConditionalBranch())
877       return pushCleanupAfterFullExprWithActiveFlag<T>(
878           Kind, RawAddress::invalid(), A...);
879 
880     RawAddress ActiveFlag = createCleanupActiveFlag();
881     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
882            "cleanup active flag should never need saving");
883 
884     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
885     SavedTuple Saved{saveValueInCond(A)...};
886 
887     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
888     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
889   }
890 
891   template <class T, class... As>
892   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
893                                               RawAddress ActiveFlag, As... A) {
894     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
895                                             ActiveFlag.isValid()};
896 
897     size_t OldSize = LifetimeExtendedCleanupStack.size();
898     LifetimeExtendedCleanupStack.resize(
899         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
900         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
901 
902     static_assert(sizeof(Header) % alignof(T) == 0,
903                   "Cleanup will be allocated on misaligned address");
904     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
905     new (Buffer) LifetimeExtendedCleanupHeader(Header);
906     new (Buffer + sizeof(Header)) T(A...);
907     if (Header.IsConditional)
908       new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag);
909   }
910 
911   // Push a cleanup onto EHStack and deactivate it later. It is usually
912   // deactivated when exiting a `CleanupDeactivationScope` (for example: after a
913   // full expression).
914   template <class T, class... As>
915   void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) {
916     // Placeholder dominating IP for this cleanup.
917     llvm::Instruction *DominatingIP =
918         Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
919     EHStack.pushCleanup<T>(Kind, A...);
920     DeferredDeactivationCleanupStack.push_back(
921         {EHStack.stable_begin(), DominatingIP});
922   }
923 
924   /// Set up the last cleanup that was pushed as a conditional
925   /// full-expression cleanup.
926   void initFullExprCleanup() {
927     initFullExprCleanupWithFlag(createCleanupActiveFlag());
928   }
929 
930   void initFullExprCleanupWithFlag(RawAddress ActiveFlag);
931   RawAddress createCleanupActiveFlag();
932 
933   /// PushDestructorCleanup - Push a cleanup to call the
934   /// complete-object destructor of an object of the given type at the
935   /// given address.  Does nothing if T is not a C++ class type with a
936   /// non-trivial destructor.
937   void PushDestructorCleanup(QualType T, Address Addr);
938 
939   /// PushDestructorCleanup - Push a cleanup to call the
940   /// complete-object variant of the given destructor on the object at
941   /// the given address.
942   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
943                              Address Addr);
944 
945   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
946   /// process all branch fixups.
947   void PopCleanupBlock(bool FallThroughIsBranchThrough = false,
948                        bool ForDeactivation = false);
949 
950   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
951   /// The block cannot be reactivated.  Pops it if it's the top of the
952   /// stack.
953   ///
954   /// \param DominatingIP - An instruction which is known to
955   ///   dominate the current IP (if set) and which lies along
956   ///   all paths of execution between the current IP and the
957   ///   the point at which the cleanup comes into scope.
958   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
959                               llvm::Instruction *DominatingIP);
960 
961   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
962   /// Cannot be used to resurrect a deactivated cleanup.
963   ///
964   /// \param DominatingIP - An instruction which is known to
965   ///   dominate the current IP (if set) and which lies along
966   ///   all paths of execution between the current IP and the
967   ///   the point at which the cleanup comes into scope.
968   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
969                             llvm::Instruction *DominatingIP);
970 
971   /// Enters a new scope for capturing cleanups, all of which
972   /// will be executed once the scope is exited.
973   class RunCleanupsScope {
974     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
975     size_t LifetimeExtendedCleanupStackSize;
976     CleanupDeactivationScope DeactivateCleanups;
977     bool OldDidCallStackSave;
978   protected:
979     bool PerformCleanup;
980   private:
981 
982     RunCleanupsScope(const RunCleanupsScope &) = delete;
983     void operator=(const RunCleanupsScope &) = delete;
984 
985   protected:
986     CodeGenFunction& CGF;
987 
988   public:
989     /// Enter a new cleanup scope.
990     explicit RunCleanupsScope(CodeGenFunction &CGF)
991         : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) {
992       CleanupStackDepth = CGF.EHStack.stable_begin();
993       LifetimeExtendedCleanupStackSize =
994           CGF.LifetimeExtendedCleanupStack.size();
995       OldDidCallStackSave = CGF.DidCallStackSave;
996       CGF.DidCallStackSave = false;
997       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
998       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
999     }
1000 
1001     /// Exit this cleanup scope, emitting any accumulated cleanups.
1002     ~RunCleanupsScope() {
1003       if (PerformCleanup)
1004         ForceCleanup();
1005     }
1006 
1007     /// Determine whether this scope requires any cleanups.
1008     bool requiresCleanups() const {
1009       return CGF.EHStack.stable_begin() != CleanupStackDepth;
1010     }
1011 
1012     /// Force the emission of cleanups now, instead of waiting
1013     /// until this object is destroyed.
1014     /// \param ValuesToReload - A list of values that need to be available at
1015     /// the insertion point after cleanup emission. If cleanup emission created
1016     /// a shared cleanup block, these value pointers will be rewritten.
1017     /// Otherwise, they not will be modified.
1018     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
1019       assert(PerformCleanup && "Already forced cleanup");
1020       CGF.DidCallStackSave = OldDidCallStackSave;
1021       DeactivateCleanups.ForceDeactivate();
1022       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
1023                            ValuesToReload);
1024       PerformCleanup = false;
1025       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
1026     }
1027   };
1028 
1029   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
1030   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
1031       EHScopeStack::stable_end();
1032 
1033   class LexicalScope : public RunCleanupsScope {
1034     SourceRange Range;
1035     SmallVector<const LabelDecl*, 4> Labels;
1036     LexicalScope *ParentScope;
1037 
1038     LexicalScope(const LexicalScope &) = delete;
1039     void operator=(const LexicalScope &) = delete;
1040 
1041   public:
1042     /// Enter a new cleanup scope.
1043     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
1044       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
1045       CGF.CurLexicalScope = this;
1046       if (CGDebugInfo *DI = CGF.getDebugInfo())
1047         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
1048     }
1049 
1050     void addLabel(const LabelDecl *label) {
1051       assert(PerformCleanup && "adding label to dead scope?");
1052       Labels.push_back(label);
1053     }
1054 
1055     /// Exit this cleanup scope, emitting any accumulated
1056     /// cleanups.
1057     ~LexicalScope() {
1058       if (CGDebugInfo *DI = CGF.getDebugInfo())
1059         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
1060 
1061       // If we should perform a cleanup, force them now.  Note that
1062       // this ends the cleanup scope before rescoping any labels.
1063       if (PerformCleanup) {
1064         ApplyDebugLocation DL(CGF, Range.getEnd());
1065         ForceCleanup();
1066       }
1067     }
1068 
1069     /// Force the emission of cleanups now, instead of waiting
1070     /// until this object is destroyed.
1071     void ForceCleanup() {
1072       CGF.CurLexicalScope = ParentScope;
1073       RunCleanupsScope::ForceCleanup();
1074 
1075       if (!Labels.empty())
1076         rescopeLabels();
1077     }
1078 
1079     bool hasLabels() const {
1080       return !Labels.empty();
1081     }
1082 
1083     void rescopeLabels();
1084   };
1085 
1086   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
1087 
1088   /// The class used to assign some variables some temporarily addresses.
1089   class OMPMapVars {
1090     DeclMapTy SavedLocals;
1091     DeclMapTy SavedTempAddresses;
1092     OMPMapVars(const OMPMapVars &) = delete;
1093     void operator=(const OMPMapVars &) = delete;
1094 
1095   public:
1096     explicit OMPMapVars() = default;
1097     ~OMPMapVars() {
1098       assert(SavedLocals.empty() && "Did not restored original addresses.");
1099     };
1100 
1101     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1102     /// function \p CGF.
1103     /// \return true if at least one variable was set already, false otherwise.
1104     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1105                     Address TempAddr) {
1106       LocalVD = LocalVD->getCanonicalDecl();
1107       // Only save it once.
1108       if (SavedLocals.count(LocalVD)) return false;
1109 
1110       // Copy the existing local entry to SavedLocals.
1111       auto it = CGF.LocalDeclMap.find(LocalVD);
1112       if (it != CGF.LocalDeclMap.end())
1113         SavedLocals.try_emplace(LocalVD, it->second);
1114       else
1115         SavedLocals.try_emplace(LocalVD, Address::invalid());
1116 
1117       // Generate the private entry.
1118       QualType VarTy = LocalVD->getType();
1119       if (VarTy->isReferenceType()) {
1120         Address Temp = CGF.CreateMemTemp(VarTy);
1121         CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp);
1122         TempAddr = Temp;
1123       }
1124       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1125 
1126       return true;
1127     }
1128 
1129     /// Applies new addresses to the list of the variables.
1130     /// \return true if at least one variable is using new address, false
1131     /// otherwise.
1132     bool apply(CodeGenFunction &CGF) {
1133       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1134       SavedTempAddresses.clear();
1135       return !SavedLocals.empty();
1136     }
1137 
1138     /// Restores original addresses of the variables.
1139     void restore(CodeGenFunction &CGF) {
1140       if (!SavedLocals.empty()) {
1141         copyInto(SavedLocals, CGF.LocalDeclMap);
1142         SavedLocals.clear();
1143       }
1144     }
1145 
1146   private:
1147     /// Copy all the entries in the source map over the corresponding
1148     /// entries in the destination, which must exist.
1149     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1150       for (auto &[Decl, Addr] : Src) {
1151         if (!Addr.isValid())
1152           Dest.erase(Decl);
1153         else
1154           Dest.insert_or_assign(Decl, Addr);
1155       }
1156     }
1157   };
1158 
1159   /// The scope used to remap some variables as private in the OpenMP loop body
1160   /// (or other captured region emitted without outlining), and to restore old
1161   /// vars back on exit.
1162   class OMPPrivateScope : public RunCleanupsScope {
1163     OMPMapVars MappedVars;
1164     OMPPrivateScope(const OMPPrivateScope &) = delete;
1165     void operator=(const OMPPrivateScope &) = delete;
1166 
1167   public:
1168     /// Enter a new OpenMP private scope.
1169     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1170 
1171     /// Registers \p LocalVD variable as a private with \p Addr as the address
1172     /// of the corresponding private variable. \p
1173     /// PrivateGen is the address of the generated private variable.
1174     /// \return true if the variable is registered as private, false if it has
1175     /// been privatized already.
1176     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1177       assert(PerformCleanup && "adding private to dead scope");
1178       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1179     }
1180 
1181     /// Privatizes local variables previously registered as private.
1182     /// Registration is separate from the actual privatization to allow
1183     /// initializers use values of the original variables, not the private one.
1184     /// This is important, for example, if the private variable is a class
1185     /// variable initialized by a constructor that references other private
1186     /// variables. But at initialization original variables must be used, not
1187     /// private copies.
1188     /// \return true if at least one variable was privatized, false otherwise.
1189     bool Privatize() { return MappedVars.apply(CGF); }
1190 
1191     void ForceCleanup() {
1192       RunCleanupsScope::ForceCleanup();
1193       restoreMap();
1194     }
1195 
1196     /// Exit scope - all the mapped variables are restored.
1197     ~OMPPrivateScope() {
1198       if (PerformCleanup)
1199         ForceCleanup();
1200     }
1201 
1202     /// Checks if the global variable is captured in current function.
1203     bool isGlobalVarCaptured(const VarDecl *VD) const {
1204       VD = VD->getCanonicalDecl();
1205       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1206     }
1207 
1208     /// Restore all mapped variables w/o clean up. This is usefully when we want
1209     /// to reference the original variables but don't want the clean up because
1210     /// that could emit lifetime end too early, causing backend issue #56913.
1211     void restoreMap() { MappedVars.restore(CGF); }
1212   };
1213 
1214   /// Save/restore original map of previously emitted local vars in case when we
1215   /// need to duplicate emission of the same code several times in the same
1216   /// function for OpenMP code.
1217   class OMPLocalDeclMapRAII {
1218     CodeGenFunction &CGF;
1219     DeclMapTy SavedMap;
1220 
1221   public:
1222     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1223         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1224     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1225   };
1226 
1227   /// Takes the old cleanup stack size and emits the cleanup blocks
1228   /// that have been added.
1229   void
1230   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1231                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1232 
1233   /// Takes the old cleanup stack size and emits the cleanup blocks
1234   /// that have been added, then adds all lifetime-extended cleanups from
1235   /// the given position to the stack.
1236   void
1237   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1238                    size_t OldLifetimeExtendedStackSize,
1239                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1240 
1241   void ResolveBranchFixups(llvm::BasicBlock *Target);
1242 
1243   /// The given basic block lies in the current EH scope, but may be a
1244   /// target of a potentially scope-crossing jump; get a stable handle
1245   /// to which we can perform this jump later.
1246   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1247     return JumpDest(Target,
1248                     EHStack.getInnermostNormalCleanup(),
1249                     NextCleanupDestIndex++);
1250   }
1251 
1252   /// The given basic block lies in the current EH scope, but may be a
1253   /// target of a potentially scope-crossing jump; get a stable handle
1254   /// to which we can perform this jump later.
1255   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1256     return getJumpDestInCurrentScope(createBasicBlock(Name));
1257   }
1258 
1259   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1260   /// block through the normal cleanup handling code (if any) and then
1261   /// on to \arg Dest.
1262   void EmitBranchThroughCleanup(JumpDest Dest);
1263 
1264   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1265   /// specified destination obviously has no cleanups to run.  'false' is always
1266   /// a conservatively correct answer for this method.
1267   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1268 
1269   /// popCatchScope - Pops the catch scope at the top of the EHScope
1270   /// stack, emitting any required code (other than the catch handlers
1271   /// themselves).
1272   void popCatchScope();
1273 
1274   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1275   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1276   llvm::BasicBlock *
1277   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1278 
1279   /// An object to manage conditionally-evaluated expressions.
1280   class ConditionalEvaluation {
1281     llvm::BasicBlock *StartBB;
1282 
1283   public:
1284     ConditionalEvaluation(CodeGenFunction &CGF)
1285       : StartBB(CGF.Builder.GetInsertBlock()) {}
1286 
1287     void begin(CodeGenFunction &CGF) {
1288       assert(CGF.OutermostConditional != this);
1289       if (!CGF.OutermostConditional)
1290         CGF.OutermostConditional = this;
1291     }
1292 
1293     void end(CodeGenFunction &CGF) {
1294       assert(CGF.OutermostConditional != nullptr);
1295       if (CGF.OutermostConditional == this)
1296         CGF.OutermostConditional = nullptr;
1297     }
1298 
1299     /// Returns a block which will be executed prior to each
1300     /// evaluation of the conditional code.
1301     llvm::BasicBlock *getStartingBlock() const {
1302       return StartBB;
1303     }
1304   };
1305 
1306   /// isInConditionalBranch - Return true if we're currently emitting
1307   /// one branch or the other of a conditional expression.
1308   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1309 
1310   void setBeforeOutermostConditional(llvm::Value *value, Address addr,
1311                                      CodeGenFunction &CGF) {
1312     assert(isInConditionalBranch());
1313     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1314     auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF),
1315                                      block->back().getIterator());
1316     store->setAlignment(addr.getAlignment().getAsAlign());
1317   }
1318 
1319   /// An RAII object to record that we're evaluating a statement
1320   /// expression.
1321   class StmtExprEvaluation {
1322     CodeGenFunction &CGF;
1323 
1324     /// We have to save the outermost conditional: cleanups in a
1325     /// statement expression aren't conditional just because the
1326     /// StmtExpr is.
1327     ConditionalEvaluation *SavedOutermostConditional;
1328 
1329   public:
1330     StmtExprEvaluation(CodeGenFunction &CGF)
1331       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1332       CGF.OutermostConditional = nullptr;
1333     }
1334 
1335     ~StmtExprEvaluation() {
1336       CGF.OutermostConditional = SavedOutermostConditional;
1337       CGF.EnsureInsertPoint();
1338     }
1339   };
1340 
1341   /// An object which temporarily prevents a value from being
1342   /// destroyed by aggressive peephole optimizations that assume that
1343   /// all uses of a value have been realized in the IR.
1344   class PeepholeProtection {
1345     llvm::Instruction *Inst = nullptr;
1346     friend class CodeGenFunction;
1347 
1348   public:
1349     PeepholeProtection() = default;
1350   };
1351 
1352   /// A non-RAII class containing all the information about a bound
1353   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1354   /// this which makes individual mappings very simple; using this
1355   /// class directly is useful when you have a variable number of
1356   /// opaque values or don't want the RAII functionality for some
1357   /// reason.
1358   class OpaqueValueMappingData {
1359     const OpaqueValueExpr *OpaqueValue;
1360     bool BoundLValue;
1361     CodeGenFunction::PeepholeProtection Protection;
1362 
1363     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1364                            bool boundLValue)
1365       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1366   public:
1367     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1368 
1369     static bool shouldBindAsLValue(const Expr *expr) {
1370       // gl-values should be bound as l-values for obvious reasons.
1371       // Records should be bound as l-values because IR generation
1372       // always keeps them in memory.  Expressions of function type
1373       // act exactly like l-values but are formally required to be
1374       // r-values in C.
1375       return expr->isGLValue() ||
1376              expr->getType()->isFunctionType() ||
1377              hasAggregateEvaluationKind(expr->getType());
1378     }
1379 
1380     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1381                                        const OpaqueValueExpr *ov,
1382                                        const Expr *e) {
1383       if (shouldBindAsLValue(ov))
1384         return bind(CGF, ov, CGF.EmitLValue(e));
1385       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1386     }
1387 
1388     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1389                                        const OpaqueValueExpr *ov,
1390                                        const LValue &lv) {
1391       assert(shouldBindAsLValue(ov));
1392       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1393       return OpaqueValueMappingData(ov, true);
1394     }
1395 
1396     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1397                                        const OpaqueValueExpr *ov,
1398                                        const RValue &rv) {
1399       assert(!shouldBindAsLValue(ov));
1400       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1401 
1402       OpaqueValueMappingData data(ov, false);
1403 
1404       // Work around an extremely aggressive peephole optimization in
1405       // EmitScalarConversion which assumes that all other uses of a
1406       // value are extant.
1407       data.Protection = CGF.protectFromPeepholes(rv);
1408 
1409       return data;
1410     }
1411 
1412     bool isValid() const { return OpaqueValue != nullptr; }
1413     void clear() { OpaqueValue = nullptr; }
1414 
1415     void unbind(CodeGenFunction &CGF) {
1416       assert(OpaqueValue && "no data to unbind!");
1417 
1418       if (BoundLValue) {
1419         CGF.OpaqueLValues.erase(OpaqueValue);
1420       } else {
1421         CGF.OpaqueRValues.erase(OpaqueValue);
1422         CGF.unprotectFromPeepholes(Protection);
1423       }
1424     }
1425   };
1426 
1427   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1428   class OpaqueValueMapping {
1429     CodeGenFunction &CGF;
1430     OpaqueValueMappingData Data;
1431 
1432   public:
1433     static bool shouldBindAsLValue(const Expr *expr) {
1434       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1435     }
1436 
1437     /// Build the opaque value mapping for the given conditional
1438     /// operator if it's the GNU ?: extension.  This is a common
1439     /// enough pattern that the convenience operator is really
1440     /// helpful.
1441     ///
1442     OpaqueValueMapping(CodeGenFunction &CGF,
1443                        const AbstractConditionalOperator *op) : CGF(CGF) {
1444       if (isa<ConditionalOperator>(op))
1445         // Leave Data empty.
1446         return;
1447 
1448       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1449       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1450                                           e->getCommon());
1451     }
1452 
1453     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1454     /// expression is set to the expression the OVE represents.
1455     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1456         : CGF(CGF) {
1457       if (OV) {
1458         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1459                                       "for OVE with no source expression");
1460         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1461       }
1462     }
1463 
1464     OpaqueValueMapping(CodeGenFunction &CGF,
1465                        const OpaqueValueExpr *opaqueValue,
1466                        LValue lvalue)
1467       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1468     }
1469 
1470     OpaqueValueMapping(CodeGenFunction &CGF,
1471                        const OpaqueValueExpr *opaqueValue,
1472                        RValue rvalue)
1473       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1474     }
1475 
1476     void pop() {
1477       Data.unbind(CGF);
1478       Data.clear();
1479     }
1480 
1481     ~OpaqueValueMapping() {
1482       if (Data.isValid()) Data.unbind(CGF);
1483     }
1484   };
1485 
1486 private:
1487   CGDebugInfo *DebugInfo;
1488   /// Used to create unique names for artificial VLA size debug info variables.
1489   unsigned VLAExprCounter = 0;
1490   bool DisableDebugInfo = false;
1491 
1492   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1493   /// calling llvm.stacksave for multiple VLAs in the same scope.
1494   bool DidCallStackSave = false;
1495 
1496   /// IndirectBranch - The first time an indirect goto is seen we create a block
1497   /// with an indirect branch.  Every time we see the address of a label taken,
1498   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1499   /// codegen'd as a jump to the IndirectBranch's basic block.
1500   llvm::IndirectBrInst *IndirectBranch = nullptr;
1501 
1502   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1503   /// decls.
1504   DeclMapTy LocalDeclMap;
1505 
1506   // Keep track of the cleanups for callee-destructed parameters pushed to the
1507   // cleanup stack so that they can be deactivated later.
1508   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1509       CalleeDestructedParamCleanups;
1510 
1511   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1512   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1513   /// parameter.
1514   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1515       SizeArguments;
1516 
1517   /// Track escaped local variables with auto storage. Used during SEH
1518   /// outlining to produce a call to llvm.localescape.
1519   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1520 
1521   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1522   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1523 
1524   // BreakContinueStack - This keeps track of where break and continue
1525   // statements should jump to.
1526   struct BreakContinue {
1527     BreakContinue(JumpDest Break, JumpDest Continue)
1528       : BreakBlock(Break), ContinueBlock(Continue) {}
1529 
1530     JumpDest BreakBlock;
1531     JumpDest ContinueBlock;
1532   };
1533   SmallVector<BreakContinue, 8> BreakContinueStack;
1534 
1535   /// Handles cancellation exit points in OpenMP-related constructs.
1536   class OpenMPCancelExitStack {
1537     /// Tracks cancellation exit point and join point for cancel-related exit
1538     /// and normal exit.
1539     struct CancelExit {
1540       CancelExit() = default;
1541       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1542                  JumpDest ContBlock)
1543           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1544       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1545       /// true if the exit block has been emitted already by the special
1546       /// emitExit() call, false if the default codegen is used.
1547       bool HasBeenEmitted = false;
1548       JumpDest ExitBlock;
1549       JumpDest ContBlock;
1550     };
1551 
1552     SmallVector<CancelExit, 8> Stack;
1553 
1554   public:
1555     OpenMPCancelExitStack() : Stack(1) {}
1556     ~OpenMPCancelExitStack() = default;
1557     /// Fetches the exit block for the current OpenMP construct.
1558     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1559     /// Emits exit block with special codegen procedure specific for the related
1560     /// OpenMP construct + emits code for normal construct cleanup.
1561     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1562                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1563       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1564         assert(CGF.getOMPCancelDestination(Kind).isValid());
1565         assert(CGF.HaveInsertPoint());
1566         assert(!Stack.back().HasBeenEmitted);
1567         auto IP = CGF.Builder.saveAndClearIP();
1568         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1569         CodeGen(CGF);
1570         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1571         CGF.Builder.restoreIP(IP);
1572         Stack.back().HasBeenEmitted = true;
1573       }
1574       CodeGen(CGF);
1575     }
1576     /// Enter the cancel supporting \a Kind construct.
1577     /// \param Kind OpenMP directive that supports cancel constructs.
1578     /// \param HasCancel true, if the construct has inner cancel directive,
1579     /// false otherwise.
1580     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1581       Stack.push_back({Kind,
1582                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1583                                  : JumpDest(),
1584                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1585                                  : JumpDest()});
1586     }
1587     /// Emits default exit point for the cancel construct (if the special one
1588     /// has not be used) + join point for cancel/normal exits.
1589     void exit(CodeGenFunction &CGF) {
1590       if (getExitBlock().isValid()) {
1591         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1592         bool HaveIP = CGF.HaveInsertPoint();
1593         if (!Stack.back().HasBeenEmitted) {
1594           if (HaveIP)
1595             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1596           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1597           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1598         }
1599         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1600         if (!HaveIP) {
1601           CGF.Builder.CreateUnreachable();
1602           CGF.Builder.ClearInsertionPoint();
1603         }
1604       }
1605       Stack.pop_back();
1606     }
1607   };
1608   OpenMPCancelExitStack OMPCancelStack;
1609 
1610   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1611   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1612                                                     Stmt::Likelihood LH);
1613 
1614   CodeGenPGO PGO;
1615 
1616   /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1617   Address MCDCCondBitmapAddr = Address::invalid();
1618 
1619   /// Calculate branch weights appropriate for PGO data
1620   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1621                                      uint64_t FalseCount) const;
1622   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1623   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1624                                             uint64_t LoopCount) const;
1625 
1626 public:
1627   /// Increment the profiler's counter for the given statement by \p StepV.
1628   /// If \p StepV is null, the default increment is 1.
1629   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1630     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1631         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1632         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) {
1633       auto AL = ApplyDebugLocation::CreateArtificial(*this);
1634       PGO.emitCounterSetOrIncrement(Builder, S, StepV);
1635     }
1636     PGO.setCurrentStmt(S);
1637   }
1638 
1639   bool isMCDCCoverageEnabled() const {
1640     return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1641             CGM.getCodeGenOpts().MCDCCoverage &&
1642             !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1643   }
1644 
1645   /// Allocate a temp value on the stack that MCDC can use to track condition
1646   /// results.
1647   void maybeCreateMCDCCondBitmap() {
1648     if (isMCDCCoverageEnabled()) {
1649       PGO.emitMCDCParameters(Builder);
1650       MCDCCondBitmapAddr =
1651           CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1652     }
1653   }
1654 
1655   bool isBinaryLogicalOp(const Expr *E) const {
1656     const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1657     return (BOp && BOp->isLogicalOp());
1658   }
1659 
1660   /// Zero-init the MCDC temp value.
1661   void maybeResetMCDCCondBitmap(const Expr *E) {
1662     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1663       PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1664       PGO.setCurrentStmt(E);
1665     }
1666   }
1667 
1668   /// Increment the profiler's counter for the given expression by \p StepV.
1669   /// If \p StepV is null, the default increment is 1.
1670   void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1671     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1672       PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this);
1673       PGO.setCurrentStmt(E);
1674     }
1675   }
1676 
1677   /// Update the MCDC temp value with the condition's evaluated result.
1678   void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1679     if (isMCDCCoverageEnabled()) {
1680       PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this);
1681       PGO.setCurrentStmt(E);
1682     }
1683   }
1684 
1685   /// Get the profiler's count for the given statement.
1686   uint64_t getProfileCount(const Stmt *S) {
1687     return PGO.getStmtCount(S).value_or(0);
1688   }
1689 
1690   /// Set the profiler's current count.
1691   void setCurrentProfileCount(uint64_t Count) {
1692     PGO.setCurrentRegionCount(Count);
1693   }
1694 
1695   /// Get the profiler's current count. This is generally the count for the most
1696   /// recently incremented counter.
1697   uint64_t getCurrentProfileCount() {
1698     return PGO.getCurrentRegionCount();
1699   }
1700 
1701 private:
1702 
1703   /// SwitchInsn - This is nearest current switch instruction. It is null if
1704   /// current context is not in a switch.
1705   llvm::SwitchInst *SwitchInsn = nullptr;
1706   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1707   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1708 
1709   /// The likelihood attributes of the SwitchCase.
1710   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1711 
1712   /// CaseRangeBlock - This block holds if condition check for last case
1713   /// statement range in current switch instruction.
1714   llvm::BasicBlock *CaseRangeBlock = nullptr;
1715 
1716   /// OpaqueLValues - Keeps track of the current set of opaque value
1717   /// expressions.
1718   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1719   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1720 
1721   // VLASizeMap - This keeps track of the associated size for each VLA type.
1722   // We track this by the size expression rather than the type itself because
1723   // in certain situations, like a const qualifier applied to an VLA typedef,
1724   // multiple VLA types can share the same size expression.
1725   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1726   // enter/leave scopes.
1727   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1728 
1729   /// A block containing a single 'unreachable' instruction.  Created
1730   /// lazily by getUnreachableBlock().
1731   llvm::BasicBlock *UnreachableBlock = nullptr;
1732 
1733   /// Counts of the number return expressions in the function.
1734   unsigned NumReturnExprs = 0;
1735 
1736   /// Count the number of simple (constant) return expressions in the function.
1737   unsigned NumSimpleReturnExprs = 0;
1738 
1739   /// The last regular (non-return) debug location (breakpoint) in the function.
1740   SourceLocation LastStopPoint;
1741 
1742 public:
1743   /// Source location information about the default argument or member
1744   /// initializer expression we're evaluating, if any.
1745   CurrentSourceLocExprScope CurSourceLocExprScope;
1746   using SourceLocExprScopeGuard =
1747       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1748 
1749   /// A scope within which we are constructing the fields of an object which
1750   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1751   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1752   class FieldConstructionScope {
1753   public:
1754     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1755         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1756       CGF.CXXDefaultInitExprThis = This;
1757     }
1758     ~FieldConstructionScope() {
1759       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1760     }
1761 
1762   private:
1763     CodeGenFunction &CGF;
1764     Address OldCXXDefaultInitExprThis;
1765   };
1766 
1767   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1768   /// is overridden to be the object under construction.
1769   class CXXDefaultInitExprScope  {
1770   public:
1771     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1772         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1773           OldCXXThisAlignment(CGF.CXXThisAlignment),
1774           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1775       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer();
1776       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1777     }
1778     ~CXXDefaultInitExprScope() {
1779       CGF.CXXThisValue = OldCXXThisValue;
1780       CGF.CXXThisAlignment = OldCXXThisAlignment;
1781     }
1782 
1783   public:
1784     CodeGenFunction &CGF;
1785     llvm::Value *OldCXXThisValue;
1786     CharUnits OldCXXThisAlignment;
1787     SourceLocExprScopeGuard SourceLocScope;
1788   };
1789 
1790   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1791     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1792         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1793   };
1794 
1795   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1796   /// current loop index is overridden.
1797   class ArrayInitLoopExprScope {
1798   public:
1799     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1800       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1801       CGF.ArrayInitIndex = Index;
1802     }
1803     ~ArrayInitLoopExprScope() {
1804       CGF.ArrayInitIndex = OldArrayInitIndex;
1805     }
1806 
1807   private:
1808     CodeGenFunction &CGF;
1809     llvm::Value *OldArrayInitIndex;
1810   };
1811 
1812   class InlinedInheritingConstructorScope {
1813   public:
1814     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1815         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1816           OldCurCodeDecl(CGF.CurCodeDecl),
1817           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1818           OldCXXABIThisValue(CGF.CXXABIThisValue),
1819           OldCXXThisValue(CGF.CXXThisValue),
1820           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1821           OldCXXThisAlignment(CGF.CXXThisAlignment),
1822           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1823           OldCXXInheritedCtorInitExprArgs(
1824               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1825       CGF.CurGD = GD;
1826       CGF.CurFuncDecl = CGF.CurCodeDecl =
1827           cast<CXXConstructorDecl>(GD.getDecl());
1828       CGF.CXXABIThisDecl = nullptr;
1829       CGF.CXXABIThisValue = nullptr;
1830       CGF.CXXThisValue = nullptr;
1831       CGF.CXXABIThisAlignment = CharUnits();
1832       CGF.CXXThisAlignment = CharUnits();
1833       CGF.ReturnValue = Address::invalid();
1834       CGF.FnRetTy = QualType();
1835       CGF.CXXInheritedCtorInitExprArgs.clear();
1836     }
1837     ~InlinedInheritingConstructorScope() {
1838       CGF.CurGD = OldCurGD;
1839       CGF.CurFuncDecl = OldCurFuncDecl;
1840       CGF.CurCodeDecl = OldCurCodeDecl;
1841       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1842       CGF.CXXABIThisValue = OldCXXABIThisValue;
1843       CGF.CXXThisValue = OldCXXThisValue;
1844       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1845       CGF.CXXThisAlignment = OldCXXThisAlignment;
1846       CGF.ReturnValue = OldReturnValue;
1847       CGF.FnRetTy = OldFnRetTy;
1848       CGF.CXXInheritedCtorInitExprArgs =
1849           std::move(OldCXXInheritedCtorInitExprArgs);
1850     }
1851 
1852   private:
1853     CodeGenFunction &CGF;
1854     GlobalDecl OldCurGD;
1855     const Decl *OldCurFuncDecl;
1856     const Decl *OldCurCodeDecl;
1857     ImplicitParamDecl *OldCXXABIThisDecl;
1858     llvm::Value *OldCXXABIThisValue;
1859     llvm::Value *OldCXXThisValue;
1860     CharUnits OldCXXABIThisAlignment;
1861     CharUnits OldCXXThisAlignment;
1862     Address OldReturnValue;
1863     QualType OldFnRetTy;
1864     CallArgList OldCXXInheritedCtorInitExprArgs;
1865   };
1866 
1867   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1868   // region body, and finalization codegen callbacks. This will class will also
1869   // contain privatization functions used by the privatization call backs
1870   //
1871   // TODO: this is temporary class for things that are being moved out of
1872   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1873   // utility function for use with the OMPBuilder. Once that move to use the
1874   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1875   // directly, or a new helper class that will contain functions used by both
1876   // this and the OMPBuilder
1877 
1878   struct OMPBuilderCBHelpers {
1879 
1880     OMPBuilderCBHelpers() = delete;
1881     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1882     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1883 
1884     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1885 
1886     /// Cleanup action for allocate support.
1887     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1888 
1889     private:
1890       llvm::CallInst *RTLFnCI;
1891 
1892     public:
1893       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1894         RLFnCI->removeFromParent();
1895       }
1896 
1897       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1898         if (!CGF.HaveInsertPoint())
1899           return;
1900         CGF.Builder.Insert(RTLFnCI);
1901       }
1902     };
1903 
1904     /// Returns address of the threadprivate variable for the current
1905     /// thread. This Also create any necessary OMP runtime calls.
1906     ///
1907     /// \param VD VarDecl for Threadprivate variable.
1908     /// \param VDAddr Address of the Vardecl
1909     /// \param Loc  The location where the barrier directive was encountered
1910     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1911                                           const VarDecl *VD, Address VDAddr,
1912                                           SourceLocation Loc);
1913 
1914     /// Gets the OpenMP-specific address of the local variable /p VD.
1915     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1916                                              const VarDecl *VD);
1917     /// Get the platform-specific name separator.
1918     /// \param Parts different parts of the final name that needs separation
1919     /// \param FirstSeparator First separator used between the initial two
1920     ///        parts of the name.
1921     /// \param Separator separator used between all of the rest consecutinve
1922     ///        parts of the name
1923     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1924                                              StringRef FirstSeparator = ".",
1925                                              StringRef Separator = ".");
1926     /// Emit the Finalization for an OMP region
1927     /// \param CGF	The Codegen function this belongs to
1928     /// \param IP	Insertion point for generating the finalization code.
1929     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1930       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1931       assert(IP.getBlock()->end() != IP.getPoint() &&
1932              "OpenMP IR Builder should cause terminated block!");
1933 
1934       llvm::BasicBlock *IPBB = IP.getBlock();
1935       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1936       assert(DestBB && "Finalization block should have one successor!");
1937 
1938       // erase and replace with cleanup branch.
1939       IPBB->getTerminator()->eraseFromParent();
1940       CGF.Builder.SetInsertPoint(IPBB);
1941       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1942       CGF.EmitBranchThroughCleanup(Dest);
1943     }
1944 
1945     /// Emit the body of an OMP region
1946     /// \param CGF	          The Codegen function this belongs to
1947     /// \param RegionBodyStmt The body statement for the OpenMP region being
1948     ///                       generated
1949     /// \param AllocaIP       Where to insert alloca instructions
1950     /// \param CodeGenIP      Where to insert the region code
1951     /// \param RegionName     Name to be used for new blocks
1952     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1953                                          const Stmt *RegionBodyStmt,
1954                                          InsertPointTy AllocaIP,
1955                                          InsertPointTy CodeGenIP,
1956                                          Twine RegionName);
1957 
1958     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1959                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1960                                 ArrayRef<llvm::Value *> Args) {
1961       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1962       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1963         CodeGenIPBBTI->eraseFromParent();
1964 
1965       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1966 
1967       if (Fn->doesNotThrow())
1968         CGF.EmitNounwindRuntimeCall(Fn, Args);
1969       else
1970         CGF.EmitRuntimeCall(Fn, Args);
1971 
1972       if (CGF.Builder.saveIP().isSet())
1973         CGF.Builder.CreateBr(&FiniBB);
1974     }
1975 
1976     /// Emit the body of an OMP region that will be outlined in
1977     /// OpenMPIRBuilder::finalize().
1978     /// \param CGF	          The Codegen function this belongs to
1979     /// \param RegionBodyStmt The body statement for the OpenMP region being
1980     ///                       generated
1981     /// \param AllocaIP       Where to insert alloca instructions
1982     /// \param CodeGenIP      Where to insert the region code
1983     /// \param RegionName     Name to be used for new blocks
1984     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1985                                           const Stmt *RegionBodyStmt,
1986                                           InsertPointTy AllocaIP,
1987                                           InsertPointTy CodeGenIP,
1988                                           Twine RegionName);
1989 
1990     /// RAII for preserving necessary info during Outlined region body codegen.
1991     class OutlinedRegionBodyRAII {
1992 
1993       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1994       CodeGenFunction::JumpDest OldReturnBlock;
1995       CodeGenFunction &CGF;
1996 
1997     public:
1998       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1999                              llvm::BasicBlock &RetBB)
2000           : CGF(cgf) {
2001         assert(AllocaIP.isSet() &&
2002                "Must specify Insertion point for allocas of outlined function");
2003         OldAllocaIP = CGF.AllocaInsertPt;
2004         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2005 
2006         OldReturnBlock = CGF.ReturnBlock;
2007         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
2008       }
2009 
2010       ~OutlinedRegionBodyRAII() {
2011         CGF.AllocaInsertPt = OldAllocaIP;
2012         CGF.ReturnBlock = OldReturnBlock;
2013       }
2014     };
2015 
2016     /// RAII for preserving necessary info during inlined region body codegen.
2017     class InlinedRegionBodyRAII {
2018 
2019       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2020       CodeGenFunction &CGF;
2021 
2022     public:
2023       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2024                             llvm::BasicBlock &FiniBB)
2025           : CGF(cgf) {
2026         // Alloca insertion block should be in the entry block of the containing
2027         // function so it expects an empty AllocaIP in which case will reuse the
2028         // old alloca insertion point, or a new AllocaIP in the same block as
2029         // the old one
2030         assert((!AllocaIP.isSet() ||
2031                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
2032                "Insertion point should be in the entry block of containing "
2033                "function!");
2034         OldAllocaIP = CGF.AllocaInsertPt;
2035         if (AllocaIP.isSet())
2036           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2037 
2038         // TODO: Remove the call, after making sure the counter is not used by
2039         //       the EHStack.
2040         // Since this is an inlined region, it should not modify the
2041         // ReturnBlock, and should reuse the one for the enclosing outlined
2042         // region. So, the JumpDest being return by the function is discarded
2043         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
2044       }
2045 
2046       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
2047     };
2048   };
2049 
2050 private:
2051   /// CXXThisDecl - When generating code for a C++ member function,
2052   /// this will hold the implicit 'this' declaration.
2053   ImplicitParamDecl *CXXABIThisDecl = nullptr;
2054   llvm::Value *CXXABIThisValue = nullptr;
2055   llvm::Value *CXXThisValue = nullptr;
2056   CharUnits CXXABIThisAlignment;
2057   CharUnits CXXThisAlignment;
2058 
2059   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
2060   /// this expression.
2061   Address CXXDefaultInitExprThis = Address::invalid();
2062 
2063   /// The current array initialization index when evaluating an
2064   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
2065   llvm::Value *ArrayInitIndex = nullptr;
2066 
2067   /// The values of function arguments to use when evaluating
2068   /// CXXInheritedCtorInitExprs within this context.
2069   CallArgList CXXInheritedCtorInitExprArgs;
2070 
2071   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
2072   /// destructor, this will hold the implicit argument (e.g. VTT).
2073   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
2074   llvm::Value *CXXStructorImplicitParamValue = nullptr;
2075 
2076   /// OutermostConditional - Points to the outermost active
2077   /// conditional control.  This is used so that we know if a
2078   /// temporary should be destroyed conditionally.
2079   ConditionalEvaluation *OutermostConditional = nullptr;
2080 
2081   /// The current lexical scope.
2082   LexicalScope *CurLexicalScope = nullptr;
2083 
2084   /// The current source location that should be used for exception
2085   /// handling code.
2086   SourceLocation CurEHLocation;
2087 
2088   /// BlockByrefInfos - For each __block variable, contains
2089   /// information about the layout of the variable.
2090   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2091 
2092   /// Used by -fsanitize=nullability-return to determine whether the return
2093   /// value can be checked.
2094   llvm::Value *RetValNullabilityPrecondition = nullptr;
2095 
2096   /// Check if -fsanitize=nullability-return instrumentation is required for
2097   /// this function.
2098   bool requiresReturnValueNullabilityCheck() const {
2099     return RetValNullabilityPrecondition;
2100   }
2101 
2102   /// Used to store precise source locations for return statements by the
2103   /// runtime return value checks.
2104   Address ReturnLocation = Address::invalid();
2105 
2106   /// Check if the return value of this function requires sanitization.
2107   bool requiresReturnValueCheck() const;
2108 
2109   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2110   bool hasInAllocaArg(const CXXMethodDecl *MD);
2111 
2112   llvm::BasicBlock *TerminateLandingPad = nullptr;
2113   llvm::BasicBlock *TerminateHandler = nullptr;
2114   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2115 
2116   /// Terminate funclets keyed by parent funclet pad.
2117   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2118 
2119   /// Largest vector width used in ths function. Will be used to create a
2120   /// function attribute.
2121   unsigned LargestVectorWidth = 0;
2122 
2123   /// True if we need emit the life-time markers. This is initially set in
2124   /// the constructor, but could be overwritten to true if this is a coroutine.
2125   bool ShouldEmitLifetimeMarkers;
2126 
2127   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2128   /// the function metadata.
2129   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2130 
2131 public:
2132   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2133   ~CodeGenFunction();
2134 
2135   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2136   ASTContext &getContext() const { return CGM.getContext(); }
2137   CGDebugInfo *getDebugInfo() {
2138     if (DisableDebugInfo)
2139       return nullptr;
2140     return DebugInfo;
2141   }
2142   void disableDebugInfo() { DisableDebugInfo = true; }
2143   void enableDebugInfo() { DisableDebugInfo = false; }
2144 
2145   bool shouldUseFusedARCCalls() {
2146     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2147   }
2148 
2149   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2150 
2151   /// Returns a pointer to the function's exception object and selector slot,
2152   /// which is assigned in every landing pad.
2153   Address getExceptionSlot();
2154   Address getEHSelectorSlot();
2155 
2156   /// Returns the contents of the function's exception object and selector
2157   /// slots.
2158   llvm::Value *getExceptionFromSlot();
2159   llvm::Value *getSelectorFromSlot();
2160 
2161   RawAddress getNormalCleanupDestSlot();
2162 
2163   llvm::BasicBlock *getUnreachableBlock() {
2164     if (!UnreachableBlock) {
2165       UnreachableBlock = createBasicBlock("unreachable");
2166       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2167     }
2168     return UnreachableBlock;
2169   }
2170 
2171   llvm::BasicBlock *getInvokeDest() {
2172     if (!EHStack.requiresLandingPad()) return nullptr;
2173     return getInvokeDestImpl();
2174   }
2175 
2176   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2177 
2178   const TargetInfo &getTarget() const { return Target; }
2179   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2180   const TargetCodeGenInfo &getTargetHooks() const {
2181     return CGM.getTargetCodeGenInfo();
2182   }
2183 
2184   //===--------------------------------------------------------------------===//
2185   //                                  Cleanups
2186   //===--------------------------------------------------------------------===//
2187 
2188   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2189 
2190   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2191                                         Address arrayEndPointer,
2192                                         QualType elementType,
2193                                         CharUnits elementAlignment,
2194                                         Destroyer *destroyer);
2195   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2196                                       llvm::Value *arrayEnd,
2197                                       QualType elementType,
2198                                       CharUnits elementAlignment,
2199                                       Destroyer *destroyer);
2200 
2201   void pushDestroy(QualType::DestructionKind dtorKind,
2202                    Address addr, QualType type);
2203   void pushEHDestroy(QualType::DestructionKind dtorKind,
2204                      Address addr, QualType type);
2205   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2206                    Destroyer *destroyer, bool useEHCleanupForArray);
2207   void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind,
2208                                        Address addr, QualType type);
2209   void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr,
2210                                        QualType type, Destroyer *destroyer,
2211                                        bool useEHCleanupForArray);
2212   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2213                                    QualType type, Destroyer *destroyer,
2214                                    bool useEHCleanupForArray);
2215   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2216                                    llvm::Value *CompletePtr,
2217                                    QualType ElementType);
2218   void pushStackRestore(CleanupKind kind, Address SPMem);
2219   void pushKmpcAllocFree(CleanupKind Kind,
2220                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2221   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2222                    bool useEHCleanupForArray);
2223   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2224                                         Destroyer *destroyer,
2225                                         bool useEHCleanupForArray,
2226                                         const VarDecl *VD);
2227   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2228                         QualType elementType, CharUnits elementAlign,
2229                         Destroyer *destroyer,
2230                         bool checkZeroLength, bool useEHCleanup);
2231 
2232   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2233 
2234   /// Determines whether an EH cleanup is required to destroy a type
2235   /// with the given destruction kind.
2236   bool needsEHCleanup(QualType::DestructionKind kind) {
2237     switch (kind) {
2238     case QualType::DK_none:
2239       return false;
2240     case QualType::DK_cxx_destructor:
2241     case QualType::DK_objc_weak_lifetime:
2242     case QualType::DK_nontrivial_c_struct:
2243       return getLangOpts().Exceptions;
2244     case QualType::DK_objc_strong_lifetime:
2245       return getLangOpts().Exceptions &&
2246              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2247     }
2248     llvm_unreachable("bad destruction kind");
2249   }
2250 
2251   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2252     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2253   }
2254 
2255   //===--------------------------------------------------------------------===//
2256   //                                  Objective-C
2257   //===--------------------------------------------------------------------===//
2258 
2259   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2260 
2261   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2262 
2263   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2264   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2265                           const ObjCPropertyImplDecl *PID);
2266   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2267                               const ObjCPropertyImplDecl *propImpl,
2268                               const ObjCMethodDecl *GetterMothodDecl,
2269                               llvm::Constant *AtomicHelperFn);
2270 
2271   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2272                                   ObjCMethodDecl *MD, bool ctor);
2273 
2274   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2275   /// for the given property.
2276   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2277                           const ObjCPropertyImplDecl *PID);
2278   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2279                               const ObjCPropertyImplDecl *propImpl,
2280                               llvm::Constant *AtomicHelperFn);
2281 
2282   //===--------------------------------------------------------------------===//
2283   //                                  Block Bits
2284   //===--------------------------------------------------------------------===//
2285 
2286   /// Emit block literal.
2287   /// \return an LLVM value which is a pointer to a struct which contains
2288   /// information about the block, including the block invoke function, the
2289   /// captured variables, etc.
2290   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2291 
2292   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2293                                         const CGBlockInfo &Info,
2294                                         const DeclMapTy &ldm,
2295                                         bool IsLambdaConversionToBlock,
2296                                         bool BuildGlobalBlock);
2297 
2298   /// Check if \p T is a C++ class that has a destructor that can throw.
2299   static bool cxxDestructorCanThrow(QualType T);
2300 
2301   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2302   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2303   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2304                                              const ObjCPropertyImplDecl *PID);
2305   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2306                                              const ObjCPropertyImplDecl *PID);
2307   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2308 
2309   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2310                          bool CanThrow);
2311 
2312   class AutoVarEmission;
2313 
2314   void emitByrefStructureInit(const AutoVarEmission &emission);
2315 
2316   /// Enter a cleanup to destroy a __block variable.  Note that this
2317   /// cleanup should be a no-op if the variable hasn't left the stack
2318   /// yet; if a cleanup is required for the variable itself, that needs
2319   /// to be done externally.
2320   ///
2321   /// \param Kind Cleanup kind.
2322   ///
2323   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2324   /// structure that will be passed to _Block_object_dispose. When
2325   /// \p LoadBlockVarAddr is true, the address of the field of the block
2326   /// structure that holds the address of the __block structure.
2327   ///
2328   /// \param Flags The flag that will be passed to _Block_object_dispose.
2329   ///
2330   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2331   /// \p Addr to get the address of the __block structure.
2332   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2333                          bool LoadBlockVarAddr, bool CanThrow);
2334 
2335   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2336                                 llvm::Value *ptr);
2337 
2338   Address LoadBlockStruct();
2339   Address GetAddrOfBlockDecl(const VarDecl *var);
2340 
2341   /// BuildBlockByrefAddress - Computes the location of the
2342   /// data in a variable which is declared as __block.
2343   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2344                                 bool followForward = true);
2345   Address emitBlockByrefAddress(Address baseAddr,
2346                                 const BlockByrefInfo &info,
2347                                 bool followForward,
2348                                 const llvm::Twine &name);
2349 
2350   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2351 
2352   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2353 
2354   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2355                     const CGFunctionInfo &FnInfo);
2356 
2357   /// Annotate the function with an attribute that disables TSan checking at
2358   /// runtime.
2359   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2360 
2361   /// Emit code for the start of a function.
2362   /// \param Loc       The location to be associated with the function.
2363   /// \param StartLoc  The location of the function body.
2364   void StartFunction(GlobalDecl GD,
2365                      QualType RetTy,
2366                      llvm::Function *Fn,
2367                      const CGFunctionInfo &FnInfo,
2368                      const FunctionArgList &Args,
2369                      SourceLocation Loc = SourceLocation(),
2370                      SourceLocation StartLoc = SourceLocation());
2371 
2372   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2373 
2374   void EmitConstructorBody(FunctionArgList &Args);
2375   void EmitDestructorBody(FunctionArgList &Args);
2376   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2377   void EmitFunctionBody(const Stmt *Body);
2378   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2379 
2380   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2381                                   CallArgList &CallArgs,
2382                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2383                                   llvm::Constant *CallOpFn = nullptr);
2384   void EmitLambdaBlockInvokeBody();
2385   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2386   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2387                                       CallArgList &CallArgs);
2388   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2389                                 const CGFunctionInfo **ImplFnInfo,
2390                                 llvm::Function **ImplFn);
2391   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2392   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2393     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2394   }
2395   void EmitAsanPrologueOrEpilogue(bool Prologue);
2396 
2397   /// Emit the unified return block, trying to avoid its emission when
2398   /// possible.
2399   /// \return The debug location of the user written return statement if the
2400   /// return block is avoided.
2401   llvm::DebugLoc EmitReturnBlock();
2402 
2403   /// FinishFunction - Complete IR generation of the current function. It is
2404   /// legal to call this function even if there is no current insertion point.
2405   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2406 
2407   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2408                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2409 
2410   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2411                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2412 
2413   void FinishThunk();
2414 
2415   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2416   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2417                          llvm::FunctionCallee Callee);
2418 
2419   /// Generate a thunk for the given method.
2420   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2421                      GlobalDecl GD, const ThunkInfo &Thunk,
2422                      bool IsUnprototyped);
2423 
2424   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2425                                        const CGFunctionInfo &FnInfo,
2426                                        GlobalDecl GD, const ThunkInfo &Thunk);
2427 
2428   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2429                         FunctionArgList &Args);
2430 
2431   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2432 
2433   /// Struct with all information about dynamic [sub]class needed to set vptr.
2434   struct VPtr {
2435     BaseSubobject Base;
2436     const CXXRecordDecl *NearestVBase;
2437     CharUnits OffsetFromNearestVBase;
2438     const CXXRecordDecl *VTableClass;
2439   };
2440 
2441   /// Initialize the vtable pointer of the given subobject.
2442   void InitializeVTablePointer(const VPtr &vptr);
2443 
2444   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2445 
2446   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2447   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2448 
2449   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2450                          CharUnits OffsetFromNearestVBase,
2451                          bool BaseIsNonVirtualPrimaryBase,
2452                          const CXXRecordDecl *VTableClass,
2453                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2454 
2455   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2456 
2457   // VTableTrapMode - whether we guarantee that loading the
2458   // vtable is guaranteed to trap on authentication failure,
2459   // even if the resulting vtable pointer is unused.
2460   enum class VTableAuthMode {
2461     Authenticate,
2462     MustTrap,
2463     UnsafeUbsanStrip // Should only be used for Vptr UBSan check
2464   };
2465   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2466   /// to by This.
2467   llvm::Value *
2468   GetVTablePtr(Address This, llvm::Type *VTableTy,
2469                const CXXRecordDecl *VTableClass,
2470                VTableAuthMode AuthMode = VTableAuthMode::Authenticate);
2471 
2472   enum CFITypeCheckKind {
2473     CFITCK_VCall,
2474     CFITCK_NVCall,
2475     CFITCK_DerivedCast,
2476     CFITCK_UnrelatedCast,
2477     CFITCK_ICall,
2478     CFITCK_NVMFCall,
2479     CFITCK_VMFCall,
2480   };
2481 
2482   /// Derived is the presumed address of an object of type T after a
2483   /// cast. If T is a polymorphic class type, emit a check that the virtual
2484   /// table for Derived belongs to a class derived from T.
2485   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2486                                  CFITypeCheckKind TCK, SourceLocation Loc);
2487 
2488   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2489   /// If vptr CFI is enabled, emit a check that VTable is valid.
2490   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2491                                  CFITypeCheckKind TCK, SourceLocation Loc);
2492 
2493   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2494   /// RD using llvm.type.test.
2495   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2496                           CFITypeCheckKind TCK, SourceLocation Loc);
2497 
2498   /// If whole-program virtual table optimization is enabled, emit an assumption
2499   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2500   /// enabled, emit a check that VTable is a member of RD's type identifier.
2501   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2502                                     llvm::Value *VTable, SourceLocation Loc);
2503 
2504   /// Returns whether we should perform a type checked load when loading a
2505   /// virtual function for virtual calls to members of RD. This is generally
2506   /// true when both vcall CFI and whole-program-vtables are enabled.
2507   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2508 
2509   /// Emit a type checked load from the given vtable.
2510   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2511                                          llvm::Value *VTable,
2512                                          llvm::Type *VTableTy,
2513                                          uint64_t VTableByteOffset);
2514 
2515   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2516   /// given phase of destruction for a destructor.  The end result
2517   /// should call destructors on members and base classes in reverse
2518   /// order of their construction.
2519   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2520 
2521   /// ShouldInstrumentFunction - Return true if the current function should be
2522   /// instrumented with __cyg_profile_func_* calls
2523   bool ShouldInstrumentFunction();
2524 
2525   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2526   /// should not be instrumented with sanitizers.
2527   bool ShouldSkipSanitizerInstrumentation();
2528 
2529   /// ShouldXRayInstrument - Return true if the current function should be
2530   /// instrumented with XRay nop sleds.
2531   bool ShouldXRayInstrumentFunction() const;
2532 
2533   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2534   /// XRay custom event handling calls.
2535   bool AlwaysEmitXRayCustomEvents() const;
2536 
2537   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2538   /// XRay typed event handling calls.
2539   bool AlwaysEmitXRayTypedEvents() const;
2540 
2541   /// Return a type hash constant for a function instrumented by
2542   /// -fsanitize=function.
2543   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2544 
2545   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2546   /// arguments for the given function. This is also responsible for naming the
2547   /// LLVM function arguments.
2548   void EmitFunctionProlog(const CGFunctionInfo &FI,
2549                           llvm::Function *Fn,
2550                           const FunctionArgList &Args);
2551 
2552   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2553   /// given temporary.
2554   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2555                           SourceLocation EndLoc);
2556 
2557   /// Emit a test that checks if the return value \p RV is nonnull.
2558   void EmitReturnValueCheck(llvm::Value *RV);
2559 
2560   /// EmitStartEHSpec - Emit the start of the exception spec.
2561   void EmitStartEHSpec(const Decl *D);
2562 
2563   /// EmitEndEHSpec - Emit the end of the exception spec.
2564   void EmitEndEHSpec(const Decl *D);
2565 
2566   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2567   llvm::BasicBlock *getTerminateLandingPad();
2568 
2569   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2570   /// terminate.
2571   llvm::BasicBlock *getTerminateFunclet();
2572 
2573   /// getTerminateHandler - Return a handler (not a landing pad, just
2574   /// a catch handler) that just calls terminate.  This is used when
2575   /// a terminate scope encloses a try.
2576   llvm::BasicBlock *getTerminateHandler();
2577 
2578   llvm::Type *ConvertTypeForMem(QualType T);
2579   llvm::Type *ConvertType(QualType T);
2580   llvm::Type *convertTypeForLoadStore(QualType ASTTy,
2581                                       llvm::Type *LLVMTy = nullptr);
2582   llvm::Type *ConvertType(const TypeDecl *T) {
2583     return ConvertType(getContext().getTypeDeclType(T));
2584   }
2585 
2586   /// LoadObjCSelf - Load the value of self. This function is only valid while
2587   /// generating code for an Objective-C method.
2588   llvm::Value *LoadObjCSelf();
2589 
2590   /// TypeOfSelfObject - Return type of object that this self represents.
2591   QualType TypeOfSelfObject();
2592 
2593   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2594   static TypeEvaluationKind getEvaluationKind(QualType T);
2595 
2596   static bool hasScalarEvaluationKind(QualType T) {
2597     return getEvaluationKind(T) == TEK_Scalar;
2598   }
2599 
2600   static bool hasAggregateEvaluationKind(QualType T) {
2601     return getEvaluationKind(T) == TEK_Aggregate;
2602   }
2603 
2604   /// createBasicBlock - Create an LLVM basic block.
2605   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2606                                      llvm::Function *parent = nullptr,
2607                                      llvm::BasicBlock *before = nullptr) {
2608     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2609   }
2610 
2611   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2612   /// label maps to.
2613   JumpDest getJumpDestForLabel(const LabelDecl *S);
2614 
2615   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2616   /// another basic block, simplify it. This assumes that no other code could
2617   /// potentially reference the basic block.
2618   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2619 
2620   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2621   /// adding a fall-through branch from the current insert block if
2622   /// necessary. It is legal to call this function even if there is no current
2623   /// insertion point.
2624   ///
2625   /// IsFinished - If true, indicates that the caller has finished emitting
2626   /// branches to the given block and does not expect to emit code into it. This
2627   /// means the block can be ignored if it is unreachable.
2628   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2629 
2630   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2631   /// near its uses, and leave the insertion point in it.
2632   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2633 
2634   /// EmitBranch - Emit a branch to the specified basic block from the current
2635   /// insert block, taking care to avoid creation of branches from dummy
2636   /// blocks. It is legal to call this function even if there is no current
2637   /// insertion point.
2638   ///
2639   /// This function clears the current insertion point. The caller should follow
2640   /// calls to this function with calls to Emit*Block prior to generation new
2641   /// code.
2642   void EmitBranch(llvm::BasicBlock *Block);
2643 
2644   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2645   /// indicates that the current code being emitted is unreachable.
2646   bool HaveInsertPoint() const {
2647     return Builder.GetInsertBlock() != nullptr;
2648   }
2649 
2650   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2651   /// emitted IR has a place to go. Note that by definition, if this function
2652   /// creates a block then that block is unreachable; callers may do better to
2653   /// detect when no insertion point is defined and simply skip IR generation.
2654   void EnsureInsertPoint() {
2655     if (!HaveInsertPoint())
2656       EmitBlock(createBasicBlock());
2657   }
2658 
2659   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2660   /// specified stmt yet.
2661   void ErrorUnsupported(const Stmt *S, const char *Type);
2662 
2663   //===--------------------------------------------------------------------===//
2664   //                                  Helpers
2665   //===--------------------------------------------------------------------===//
2666 
2667   Address mergeAddressesInConditionalExpr(Address LHS, Address RHS,
2668                                           llvm::BasicBlock *LHSBlock,
2669                                           llvm::BasicBlock *RHSBlock,
2670                                           llvm::BasicBlock *MergeBlock,
2671                                           QualType MergedType) {
2672     Builder.SetInsertPoint(MergeBlock);
2673     llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond");
2674     PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock);
2675     PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock);
2676     LHS.replaceBasePointer(PtrPhi);
2677     LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment()));
2678     return LHS;
2679   }
2680 
2681   /// Construct an address with the natural alignment of T. If a pointer to T
2682   /// is expected to be signed, the pointer passed to this function must have
2683   /// been signed, and the returned Address will have the pointer authentication
2684   /// information needed to authenticate the signed pointer.
2685   Address makeNaturalAddressForPointer(
2686       llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(),
2687       bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr,
2688       TBAAAccessInfo *TBAAInfo = nullptr,
2689       KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
2690     if (Alignment.isZero())
2691       Alignment =
2692           CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType);
2693     return Address(Ptr, ConvertTypeForMem(T), Alignment,
2694                    CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr,
2695                    IsKnownNonNull);
2696   }
2697 
2698   LValue MakeAddrLValue(Address Addr, QualType T,
2699                         AlignmentSource Source = AlignmentSource::Type) {
2700     return MakeAddrLValue(Addr, T, LValueBaseInfo(Source),
2701                           CGM.getTBAAAccessInfo(T));
2702   }
2703 
2704   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2705                         TBAAAccessInfo TBAAInfo) {
2706     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2707   }
2708 
2709   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2710                         AlignmentSource Source = AlignmentSource::Type) {
2711     return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T,
2712                           LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2713   }
2714 
2715   /// Same as MakeAddrLValue above except that the pointer is known to be
2716   /// unsigned.
2717   LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2718                            AlignmentSource Source = AlignmentSource::Type) {
2719     Address Addr(V, ConvertTypeForMem(T), Alignment);
2720     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2721                             CGM.getTBAAAccessInfo(T));
2722   }
2723 
2724   LValue
2725   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2726                             AlignmentSource Source = AlignmentSource::Type) {
2727     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2728                             TBAAAccessInfo());
2729   }
2730 
2731   /// Given a value of type T* that may not be to a complete object, construct
2732   /// an l-value with the natural pointee alignment of T.
2733   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2734 
2735   LValue
2736   MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
2737                              KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
2738 
2739   /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known
2740   /// to be unsigned.
2741   LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T);
2742 
2743   LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T);
2744 
2745   Address EmitLoadOfReference(LValue RefLVal,
2746                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2747                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2748   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2749   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2750                                    AlignmentSource Source =
2751                                        AlignmentSource::Type) {
2752     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2753                                     CGM.getTBAAAccessInfo(RefTy));
2754     return EmitLoadOfReferenceLValue(RefLVal);
2755   }
2756 
2757   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2758   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2759   /// it is loaded from.
2760   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2761                             LValueBaseInfo *BaseInfo = nullptr,
2762                             TBAAAccessInfo *TBAAInfo = nullptr);
2763   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2764 
2765 private:
2766   struct AllocaTracker {
2767     void Add(llvm::AllocaInst *I) { Allocas.push_back(I); }
2768     llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); }
2769 
2770   private:
2771     llvm::SmallVector<llvm::AllocaInst *> Allocas;
2772   };
2773   AllocaTracker *Allocas = nullptr;
2774 
2775 public:
2776   // Captures all the allocas created during the scope of its RAII object.
2777   struct AllocaTrackerRAII {
2778     AllocaTrackerRAII(CodeGenFunction &CGF)
2779         : CGF(CGF), OldTracker(CGF.Allocas) {
2780       CGF.Allocas = &Tracker;
2781     }
2782     ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; }
2783 
2784     llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); }
2785 
2786   private:
2787     CodeGenFunction &CGF;
2788     AllocaTracker *OldTracker;
2789     AllocaTracker Tracker;
2790   };
2791 
2792   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2793   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2794   /// insertion point of the builder. The caller is responsible for setting an
2795   /// appropriate alignment on
2796   /// the alloca.
2797   ///
2798   /// \p ArraySize is the number of array elements to be allocated if it
2799   ///    is not nullptr.
2800   ///
2801   /// LangAS::Default is the address space of pointers to local variables and
2802   /// temporaries, as exposed in the source language. In certain
2803   /// configurations, this is not the same as the alloca address space, and a
2804   /// cast is needed to lift the pointer from the alloca AS into
2805   /// LangAS::Default. This can happen when the target uses a restricted
2806   /// address space for the stack but the source language requires
2807   /// LangAS::Default to be a generic address space. The latter condition is
2808   /// common for most programming languages; OpenCL is an exception in that
2809   /// LangAS::Default is the private address space, which naturally maps
2810   /// to the stack.
2811   ///
2812   /// Because the address of a temporary is often exposed to the program in
2813   /// various ways, this function will perform the cast. The original alloca
2814   /// instruction is returned through \p Alloca if it is not nullptr.
2815   ///
2816   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2817   /// more efficient if the caller knows that the address will not be exposed.
2818   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2819                                      llvm::Value *ArraySize = nullptr);
2820   RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2821                               const Twine &Name = "tmp",
2822                               llvm::Value *ArraySize = nullptr,
2823                               RawAddress *Alloca = nullptr);
2824   RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2825                                          const Twine &Name = "tmp",
2826                                          llvm::Value *ArraySize = nullptr);
2827 
2828   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2829   /// default ABI alignment of the given LLVM type.
2830   ///
2831   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2832   /// any given AST type that happens to have been lowered to the
2833   /// given IR type.  This should only ever be used for function-local,
2834   /// IR-driven manipulations like saving and restoring a value.  Do
2835   /// not hand this address off to arbitrary IRGen routines, and especially
2836   /// do not pass it as an argument to a function that might expect a
2837   /// properly ABI-aligned value.
2838   RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2839                                           const Twine &Name = "tmp");
2840 
2841   /// CreateIRTemp - Create a temporary IR object of the given type, with
2842   /// appropriate alignment. This routine should only be used when an temporary
2843   /// value needs to be stored into an alloca (for example, to avoid explicit
2844   /// PHI construction), but the type is the IR type, not the type appropriate
2845   /// for storing in memory.
2846   ///
2847   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2848   /// ConvertType instead of ConvertTypeForMem.
2849   RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp");
2850 
2851   /// CreateMemTemp - Create a temporary memory object of the given type, with
2852   /// appropriate alignmen and cast it to the default address space. Returns
2853   /// the original alloca instruction by \p Alloca if it is not nullptr.
2854   RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp",
2855                            RawAddress *Alloca = nullptr);
2856   RawAddress CreateMemTemp(QualType T, CharUnits Align,
2857                            const Twine &Name = "tmp",
2858                            RawAddress *Alloca = nullptr);
2859 
2860   /// CreateMemTemp - Create a temporary memory object of the given type, with
2861   /// appropriate alignmen without casting it to the default address space.
2862   RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2863   RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align,
2864                                       const Twine &Name = "tmp");
2865 
2866   /// CreateAggTemp - Create a temporary memory object for the given
2867   /// aggregate type.
2868   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2869                              RawAddress *Alloca = nullptr) {
2870     return AggValueSlot::forAddr(
2871         CreateMemTemp(T, Name, Alloca), T.getQualifiers(),
2872         AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers,
2873         AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap);
2874   }
2875 
2876   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2877   /// expression and compare the result against zero, returning an Int1Ty value.
2878   llvm::Value *EvaluateExprAsBool(const Expr *E);
2879 
2880   /// Retrieve the implicit cast expression of the rhs in a binary operator
2881   /// expression by passing pointers to Value and QualType
2882   /// This is used for implicit bitfield conversion checks, which
2883   /// must compare with the value before potential truncation.
2884   llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E,
2885                                                      llvm::Value **Previous,
2886                                                      QualType *SrcType);
2887 
2888   /// Emit a check that an [implicit] conversion of a bitfield. It is not UB,
2889   /// so we use the value after conversion.
2890   void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType,
2891                                    llvm::Value *Dst, QualType DstType,
2892                                    const CGBitFieldInfo &Info,
2893                                    SourceLocation Loc);
2894 
2895   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2896   void EmitIgnoredExpr(const Expr *E);
2897 
2898   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2899   /// any type.  The result is returned as an RValue struct.  If this is an
2900   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2901   /// the result should be returned.
2902   ///
2903   /// \param ignoreResult True if the resulting value isn't used.
2904   RValue EmitAnyExpr(const Expr *E,
2905                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2906                      bool ignoreResult = false);
2907 
2908   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2909   // or the value of the expression, depending on how va_list is defined.
2910   Address EmitVAListRef(const Expr *E);
2911 
2912   /// Emit a "reference" to a __builtin_ms_va_list; this is
2913   /// always the value of the expression, because a __builtin_ms_va_list is a
2914   /// pointer to a char.
2915   Address EmitMSVAListRef(const Expr *E);
2916 
2917   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2918   /// always be accessible even if no aggregate location is provided.
2919   RValue EmitAnyExprToTemp(const Expr *E);
2920 
2921   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2922   /// arbitrary expression into the given memory location.
2923   void EmitAnyExprToMem(const Expr *E, Address Location,
2924                         Qualifiers Quals, bool IsInitializer);
2925 
2926   void EmitAnyExprToExn(const Expr *E, Address Addr);
2927 
2928   /// EmitInitializationToLValue - Emit an initializer to an LValue.
2929   void EmitInitializationToLValue(
2930       const Expr *E, LValue LV,
2931       AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed);
2932 
2933   /// EmitExprAsInit - Emits the code necessary to initialize a
2934   /// location in memory with the given initializer.
2935   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2936                       bool capturedByInit);
2937 
2938   /// hasVolatileMember - returns true if aggregate type has a volatile
2939   /// member.
2940   bool hasVolatileMember(QualType T) {
2941     if (const RecordType *RT = T->getAs<RecordType>()) {
2942       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2943       return RD->hasVolatileMember();
2944     }
2945     return false;
2946   }
2947 
2948   /// Determine whether a return value slot may overlap some other object.
2949   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2950     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2951     // class subobjects. These cases may need to be revisited depending on the
2952     // resolution of the relevant core issue.
2953     return AggValueSlot::DoesNotOverlap;
2954   }
2955 
2956   /// Determine whether a field initialization may overlap some other object.
2957   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2958 
2959   /// Determine whether a base class initialization may overlap some other
2960   /// object.
2961   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2962                                                 const CXXRecordDecl *BaseRD,
2963                                                 bool IsVirtual);
2964 
2965   /// Emit an aggregate assignment.
2966   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2967     bool IsVolatile = hasVolatileMember(EltTy);
2968     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2969   }
2970 
2971   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2972                              AggValueSlot::Overlap_t MayOverlap) {
2973     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2974   }
2975 
2976   /// EmitAggregateCopy - Emit an aggregate copy.
2977   ///
2978   /// \param isVolatile \c true iff either the source or the destination is
2979   ///        volatile.
2980   /// \param MayOverlap Whether the tail padding of the destination might be
2981   ///        occupied by some other object. More efficient code can often be
2982   ///        generated if not.
2983   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2984                          AggValueSlot::Overlap_t MayOverlap,
2985                          bool isVolatile = false);
2986 
2987   /// GetAddrOfLocalVar - Return the address of a local variable.
2988   Address GetAddrOfLocalVar(const VarDecl *VD) {
2989     auto it = LocalDeclMap.find(VD);
2990     assert(it != LocalDeclMap.end() &&
2991            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2992     return it->second;
2993   }
2994 
2995   /// Given an opaque value expression, return its LValue mapping if it exists,
2996   /// otherwise create one.
2997   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2998 
2999   /// Given an opaque value expression, return its RValue mapping if it exists,
3000   /// otherwise create one.
3001   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
3002 
3003   /// Get the index of the current ArrayInitLoopExpr, if any.
3004   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
3005 
3006   /// getAccessedFieldNo - Given an encoded value and a result number, return
3007   /// the input field number being accessed.
3008   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
3009 
3010   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
3011   llvm::BasicBlock *GetIndirectGotoBlock();
3012 
3013   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
3014   static bool IsWrappedCXXThis(const Expr *E);
3015 
3016   /// EmitNullInitialization - Generate code to set a value of the given type to
3017   /// null, If the type contains data member pointers, they will be initialized
3018   /// to -1 in accordance with the Itanium C++ ABI.
3019   void EmitNullInitialization(Address DestPtr, QualType Ty);
3020 
3021   /// Emits a call to an LLVM variable-argument intrinsic, either
3022   /// \c llvm.va_start or \c llvm.va_end.
3023   /// \param ArgValue A reference to the \c va_list as emitted by either
3024   /// \c EmitVAListRef or \c EmitMSVAListRef.
3025   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
3026   /// calls \c llvm.va_end.
3027   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
3028 
3029   /// Generate code to get an argument from the passed in pointer
3030   /// and update it accordingly.
3031   /// \param VE The \c VAArgExpr for which to generate code.
3032   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
3033   /// either \c EmitVAListRef or \c EmitMSVAListRef.
3034   /// \returns A pointer to the argument.
3035   // FIXME: We should be able to get rid of this method and use the va_arg
3036   // instruction in LLVM instead once it works well enough.
3037   RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
3038                    AggValueSlot Slot = AggValueSlot::ignored());
3039 
3040   /// emitArrayLength - Compute the length of an array, even if it's a
3041   /// VLA, and drill down to the base element type.
3042   llvm::Value *emitArrayLength(const ArrayType *arrayType,
3043                                QualType &baseType,
3044                                Address &addr);
3045 
3046   /// EmitVLASize - Capture all the sizes for the VLA expressions in
3047   /// the given variably-modified type and store them in the VLASizeMap.
3048   ///
3049   /// This function can be called with a null (unreachable) insert point.
3050   void EmitVariablyModifiedType(QualType Ty);
3051 
3052   struct VlaSizePair {
3053     llvm::Value *NumElts;
3054     QualType Type;
3055 
3056     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
3057   };
3058 
3059   /// Return the number of elements for a single dimension
3060   /// for the given array type.
3061   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
3062   VlaSizePair getVLAElements1D(QualType vla);
3063 
3064   /// Returns an LLVM value that corresponds to the size,
3065   /// in non-variably-sized elements, of a variable length array type,
3066   /// plus that largest non-variably-sized element type.  Assumes that
3067   /// the type has already been emitted with EmitVariablyModifiedType.
3068   VlaSizePair getVLASize(const VariableArrayType *vla);
3069   VlaSizePair getVLASize(QualType vla);
3070 
3071   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
3072   /// generating code for an C++ member function.
3073   llvm::Value *LoadCXXThis() {
3074     assert(CXXThisValue && "no 'this' value for this function");
3075     return CXXThisValue;
3076   }
3077   Address LoadCXXThisAddress();
3078 
3079   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
3080   /// virtual bases.
3081   // FIXME: Every place that calls LoadCXXVTT is something
3082   // that needs to be abstracted properly.
3083   llvm::Value *LoadCXXVTT() {
3084     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
3085     return CXXStructorImplicitParamValue;
3086   }
3087 
3088   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
3089   /// complete class to the given direct base.
3090   Address
3091   GetAddressOfDirectBaseInCompleteClass(Address Value,
3092                                         const CXXRecordDecl *Derived,
3093                                         const CXXRecordDecl *Base,
3094                                         bool BaseIsVirtual);
3095 
3096   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
3097 
3098   /// GetAddressOfBaseClass - This function will add the necessary delta to the
3099   /// load of 'this' and returns address of the base class.
3100   Address GetAddressOfBaseClass(Address Value,
3101                                 const CXXRecordDecl *Derived,
3102                                 CastExpr::path_const_iterator PathBegin,
3103                                 CastExpr::path_const_iterator PathEnd,
3104                                 bool NullCheckValue, SourceLocation Loc);
3105 
3106   Address GetAddressOfDerivedClass(Address Value,
3107                                    const CXXRecordDecl *Derived,
3108                                    CastExpr::path_const_iterator PathBegin,
3109                                    CastExpr::path_const_iterator PathEnd,
3110                                    bool NullCheckValue);
3111 
3112   /// GetVTTParameter - Return the VTT parameter that should be passed to a
3113   /// base constructor/destructor with virtual bases.
3114   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
3115   /// to ItaniumCXXABI.cpp together with all the references to VTT.
3116   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
3117                                bool Delegating);
3118 
3119   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
3120                                       CXXCtorType CtorType,
3121                                       const FunctionArgList &Args,
3122                                       SourceLocation Loc);
3123   // It's important not to confuse this and the previous function. Delegating
3124   // constructors are the C++0x feature. The constructor delegate optimization
3125   // is used to reduce duplication in the base and complete consturctors where
3126   // they are substantially the same.
3127   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3128                                         const FunctionArgList &Args);
3129 
3130   /// Emit a call to an inheriting constructor (that is, one that invokes a
3131   /// constructor inherited from a base class) by inlining its definition. This
3132   /// is necessary if the ABI does not support forwarding the arguments to the
3133   /// base class constructor (because they're variadic or similar).
3134   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3135                                                CXXCtorType CtorType,
3136                                                bool ForVirtualBase,
3137                                                bool Delegating,
3138                                                CallArgList &Args);
3139 
3140   /// Emit a call to a constructor inherited from a base class, passing the
3141   /// current constructor's arguments along unmodified (without even making
3142   /// a copy).
3143   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
3144                                        bool ForVirtualBase, Address This,
3145                                        bool InheritedFromVBase,
3146                                        const CXXInheritedCtorInitExpr *E);
3147 
3148   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3149                               bool ForVirtualBase, bool Delegating,
3150                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
3151 
3152   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3153                               bool ForVirtualBase, bool Delegating,
3154                               Address This, CallArgList &Args,
3155                               AggValueSlot::Overlap_t Overlap,
3156                               SourceLocation Loc, bool NewPointerIsChecked,
3157                               llvm::CallBase **CallOrInvoke = nullptr);
3158 
3159   /// Emit assumption load for all bases. Requires to be called only on
3160   /// most-derived class and not under construction of the object.
3161   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
3162 
3163   /// Emit assumption that vptr load == global vtable.
3164   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
3165 
3166   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
3167                                       Address This, Address Src,
3168                                       const CXXConstructExpr *E);
3169 
3170   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3171                                   const ArrayType *ArrayTy,
3172                                   Address ArrayPtr,
3173                                   const CXXConstructExpr *E,
3174                                   bool NewPointerIsChecked,
3175                                   bool ZeroInitialization = false);
3176 
3177   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3178                                   llvm::Value *NumElements,
3179                                   Address ArrayPtr,
3180                                   const CXXConstructExpr *E,
3181                                   bool NewPointerIsChecked,
3182                                   bool ZeroInitialization = false);
3183 
3184   static Destroyer destroyCXXObject;
3185 
3186   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
3187                              bool ForVirtualBase, bool Delegating, Address This,
3188                              QualType ThisTy);
3189 
3190   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
3191                                llvm::Type *ElementTy, Address NewPtr,
3192                                llvm::Value *NumElements,
3193                                llvm::Value *AllocSizeWithoutCookie);
3194 
3195   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
3196                         Address Ptr);
3197 
3198   void EmitSehCppScopeBegin();
3199   void EmitSehCppScopeEnd();
3200   void EmitSehTryScopeBegin();
3201   void EmitSehTryScopeEnd();
3202 
3203   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
3204   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
3205 
3206   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3207   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3208 
3209   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3210                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
3211                       CharUnits CookieSize = CharUnits());
3212 
3213   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3214                                   const CallExpr *TheCallExpr, bool IsDelete);
3215 
3216   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3217   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3218   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3219 
3220   /// Situations in which we might emit a check for the suitability of a
3221   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3222   /// compiler-rt.
3223   enum TypeCheckKind {
3224     /// Checking the operand of a load. Must be suitably sized and aligned.
3225     TCK_Load,
3226     /// Checking the destination of a store. Must be suitably sized and aligned.
3227     TCK_Store,
3228     /// Checking the bound value in a reference binding. Must be suitably sized
3229     /// and aligned, but is not required to refer to an object (until the
3230     /// reference is used), per core issue 453.
3231     TCK_ReferenceBinding,
3232     /// Checking the object expression in a non-static data member access. Must
3233     /// be an object within its lifetime.
3234     TCK_MemberAccess,
3235     /// Checking the 'this' pointer for a call to a non-static member function.
3236     /// Must be an object within its lifetime.
3237     TCK_MemberCall,
3238     /// Checking the 'this' pointer for a constructor call.
3239     TCK_ConstructorCall,
3240     /// Checking the operand of a static_cast to a derived pointer type. Must be
3241     /// null or an object within its lifetime.
3242     TCK_DowncastPointer,
3243     /// Checking the operand of a static_cast to a derived reference type. Must
3244     /// be an object within its lifetime.
3245     TCK_DowncastReference,
3246     /// Checking the operand of a cast to a base object. Must be suitably sized
3247     /// and aligned.
3248     TCK_Upcast,
3249     /// Checking the operand of a cast to a virtual base object. Must be an
3250     /// object within its lifetime.
3251     TCK_UpcastToVirtualBase,
3252     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3253     TCK_NonnullAssign,
3254     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3255     /// null or an object within its lifetime.
3256     TCK_DynamicOperation
3257   };
3258 
3259   /// Determine whether the pointer type check \p TCK permits null pointers.
3260   static bool isNullPointerAllowed(TypeCheckKind TCK);
3261 
3262   /// Determine whether the pointer type check \p TCK requires a vptr check.
3263   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3264 
3265   /// Whether any type-checking sanitizers are enabled. If \c false,
3266   /// calls to EmitTypeCheck can be skipped.
3267   bool sanitizePerformTypeCheck() const;
3268 
3269   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV,
3270                      QualType Type, SanitizerSet SkippedChecks = SanitizerSet(),
3271                      llvm::Value *ArraySize = nullptr) {
3272     if (!sanitizePerformTypeCheck())
3273       return;
3274     EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(),
3275                   SkippedChecks, ArraySize);
3276   }
3277 
3278   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr,
3279                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3280                      SanitizerSet SkippedChecks = SanitizerSet(),
3281                      llvm::Value *ArraySize = nullptr) {
3282     if (!sanitizePerformTypeCheck())
3283       return;
3284     EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment,
3285                   SkippedChecks, ArraySize);
3286   }
3287 
3288   /// Emit a check that \p V is the address of storage of the
3289   /// appropriate size and alignment for an object of type \p Type
3290   /// (or if ArraySize is provided, for an array of that bound).
3291   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3292                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3293                      SanitizerSet SkippedChecks = SanitizerSet(),
3294                      llvm::Value *ArraySize = nullptr);
3295 
3296   /// Emit a check that \p Base points into an array object, which
3297   /// we can access at index \p Index. \p Accessed should be \c false if we
3298   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3299   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3300                        QualType IndexType, bool Accessed);
3301   void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3302                            llvm::Value *Index, QualType IndexType,
3303                            QualType IndexedType, bool Accessed);
3304 
3305   // Find a struct's flexible array member and get its offset. It may be
3306   // embedded inside multiple sub-structs, but must still be the last field.
3307   const FieldDecl *
3308   FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD,
3309                                         const FieldDecl *FAMDecl,
3310                                         uint64_t &Offset);
3311 
3312   llvm::Value *GetCountedByFieldExprGEP(const Expr *Base,
3313                                         const FieldDecl *FAMDecl,
3314                                         const FieldDecl *CountDecl);
3315 
3316   /// Build an expression accessing the "counted_by" field.
3317   llvm::Value *EmitLoadOfCountedByField(const Expr *Base,
3318                                         const FieldDecl *FAMDecl,
3319                                         const FieldDecl *CountDecl);
3320 
3321   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3322                                        bool isInc, bool isPre);
3323   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3324                                          bool isInc, bool isPre);
3325 
3326   /// Converts Location to a DebugLoc, if debug information is enabled.
3327   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3328 
3329   /// Get the record field index as represented in debug info.
3330   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3331 
3332 
3333   //===--------------------------------------------------------------------===//
3334   //                            Declaration Emission
3335   //===--------------------------------------------------------------------===//
3336 
3337   /// EmitDecl - Emit a declaration.
3338   ///
3339   /// This function can be called with a null (unreachable) insert point.
3340   void EmitDecl(const Decl &D);
3341 
3342   /// EmitVarDecl - Emit a local variable declaration.
3343   ///
3344   /// This function can be called with a null (unreachable) insert point.
3345   void EmitVarDecl(const VarDecl &D);
3346 
3347   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3348                       bool capturedByInit);
3349 
3350   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3351                              llvm::Value *Address);
3352 
3353   /// Determine whether the given initializer is trivial in the sense
3354   /// that it requires no code to be generated.
3355   bool isTrivialInitializer(const Expr *Init);
3356 
3357   /// EmitAutoVarDecl - Emit an auto variable declaration.
3358   ///
3359   /// This function can be called with a null (unreachable) insert point.
3360   void EmitAutoVarDecl(const VarDecl &D);
3361 
3362   class AutoVarEmission {
3363     friend class CodeGenFunction;
3364 
3365     const VarDecl *Variable;
3366 
3367     /// The address of the alloca for languages with explicit address space
3368     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3369     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3370     /// as a global constant.
3371     Address Addr;
3372 
3373     llvm::Value *NRVOFlag;
3374 
3375     /// True if the variable is a __block variable that is captured by an
3376     /// escaping block.
3377     bool IsEscapingByRef;
3378 
3379     /// True if the variable is of aggregate type and has a constant
3380     /// initializer.
3381     bool IsConstantAggregate;
3382 
3383     /// Non-null if we should use lifetime annotations.
3384     llvm::Value *SizeForLifetimeMarkers;
3385 
3386     /// Address with original alloca instruction. Invalid if the variable was
3387     /// emitted as a global constant.
3388     RawAddress AllocaAddr;
3389 
3390     struct Invalid {};
3391     AutoVarEmission(Invalid)
3392         : Variable(nullptr), Addr(Address::invalid()),
3393           AllocaAddr(RawAddress::invalid()) {}
3394 
3395     AutoVarEmission(const VarDecl &variable)
3396         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3397           IsEscapingByRef(false), IsConstantAggregate(false),
3398           SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {}
3399 
3400     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3401 
3402   public:
3403     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3404 
3405     bool useLifetimeMarkers() const {
3406       return SizeForLifetimeMarkers != nullptr;
3407     }
3408     llvm::Value *getSizeForLifetimeMarkers() const {
3409       assert(useLifetimeMarkers());
3410       return SizeForLifetimeMarkers;
3411     }
3412 
3413     /// Returns the raw, allocated address, which is not necessarily
3414     /// the address of the object itself. It is casted to default
3415     /// address space for address space agnostic languages.
3416     Address getAllocatedAddress() const {
3417       return Addr;
3418     }
3419 
3420     /// Returns the address for the original alloca instruction.
3421     RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; }
3422 
3423     /// Returns the address of the object within this declaration.
3424     /// Note that this does not chase the forwarding pointer for
3425     /// __block decls.
3426     Address getObjectAddress(CodeGenFunction &CGF) const {
3427       if (!IsEscapingByRef) return Addr;
3428 
3429       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3430     }
3431   };
3432   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3433   void EmitAutoVarInit(const AutoVarEmission &emission);
3434   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3435   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3436                               QualType::DestructionKind dtorKind);
3437 
3438   /// Emits the alloca and debug information for the size expressions for each
3439   /// dimension of an array. It registers the association of its (1-dimensional)
3440   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3441   /// reference this node when creating the DISubrange object to describe the
3442   /// array types.
3443   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3444                                               const VarDecl &D,
3445                                               bool EmitDebugInfo);
3446 
3447   void EmitStaticVarDecl(const VarDecl &D,
3448                          llvm::GlobalValue::LinkageTypes Linkage);
3449 
3450   class ParamValue {
3451     union {
3452       Address Addr;
3453       llvm::Value *Value;
3454     };
3455 
3456     bool IsIndirect;
3457 
3458     ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {}
3459     ParamValue(Address A) : Addr(A), IsIndirect(true) {}
3460 
3461   public:
3462     static ParamValue forDirect(llvm::Value *value) {
3463       return ParamValue(value);
3464     }
3465     static ParamValue forIndirect(Address addr) {
3466       assert(!addr.getAlignment().isZero());
3467       return ParamValue(addr);
3468     }
3469 
3470     bool isIndirect() const { return IsIndirect; }
3471     llvm::Value *getAnyValue() const {
3472       if (!isIndirect())
3473         return Value;
3474       assert(!Addr.hasOffset() && "unexpected offset");
3475       return Addr.getBasePointer();
3476     }
3477 
3478     llvm::Value *getDirectValue() const {
3479       assert(!isIndirect());
3480       return Value;
3481     }
3482 
3483     Address getIndirectAddress() const {
3484       assert(isIndirect());
3485       return Addr;
3486     }
3487   };
3488 
3489   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3490   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3491 
3492   /// protectFromPeepholes - Protect a value that we're intending to
3493   /// store to the side, but which will probably be used later, from
3494   /// aggressive peepholing optimizations that might delete it.
3495   ///
3496   /// Pass the result to unprotectFromPeepholes to declare that
3497   /// protection is no longer required.
3498   ///
3499   /// There's no particular reason why this shouldn't apply to
3500   /// l-values, it's just that no existing peepholes work on pointers.
3501   PeepholeProtection protectFromPeepholes(RValue rvalue);
3502   void unprotectFromPeepholes(PeepholeProtection protection);
3503 
3504   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3505                                     SourceLocation Loc,
3506                                     SourceLocation AssumptionLoc,
3507                                     llvm::Value *Alignment,
3508                                     llvm::Value *OffsetValue,
3509                                     llvm::Value *TheCheck,
3510                                     llvm::Instruction *Assumption);
3511 
3512   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3513                                SourceLocation Loc, SourceLocation AssumptionLoc,
3514                                llvm::Value *Alignment,
3515                                llvm::Value *OffsetValue = nullptr);
3516 
3517   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3518                                SourceLocation AssumptionLoc,
3519                                llvm::Value *Alignment,
3520                                llvm::Value *OffsetValue = nullptr);
3521 
3522   //===--------------------------------------------------------------------===//
3523   //                             Statement Emission
3524   //===--------------------------------------------------------------------===//
3525 
3526   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3527   void EmitStopPoint(const Stmt *S);
3528 
3529   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3530   /// this function even if there is no current insertion point.
3531   ///
3532   /// This function may clear the current insertion point; callers should use
3533   /// EnsureInsertPoint if they wish to subsequently generate code without first
3534   /// calling EmitBlock, EmitBranch, or EmitStmt.
3535   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {});
3536 
3537   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3538   /// necessarily require an insertion point or debug information; typically
3539   /// because the statement amounts to a jump or a container of other
3540   /// statements.
3541   ///
3542   /// \return True if the statement was handled.
3543   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3544 
3545   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3546                            AggValueSlot AVS = AggValueSlot::ignored());
3547   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3548                                        bool GetLast = false,
3549                                        AggValueSlot AVS =
3550                                                 AggValueSlot::ignored());
3551 
3552   /// EmitLabel - Emit the block for the given label. It is legal to call this
3553   /// function even if there is no current insertion point.
3554   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3555 
3556   void EmitLabelStmt(const LabelStmt &S);
3557   void EmitAttributedStmt(const AttributedStmt &S);
3558   void EmitGotoStmt(const GotoStmt &S);
3559   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3560   void EmitIfStmt(const IfStmt &S);
3561 
3562   void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {});
3563   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {});
3564   void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {});
3565   void EmitReturnStmt(const ReturnStmt &S);
3566   void EmitDeclStmt(const DeclStmt &S);
3567   void EmitBreakStmt(const BreakStmt &S);
3568   void EmitContinueStmt(const ContinueStmt &S);
3569   void EmitSwitchStmt(const SwitchStmt &S);
3570   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3571   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3572   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3573   void EmitAsmStmt(const AsmStmt &S);
3574 
3575   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3576   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3577   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3578   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3579   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3580 
3581   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3582   void EmitCoreturnStmt(const CoreturnStmt &S);
3583   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3584                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3585                          bool ignoreResult = false);
3586   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3587   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3588                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3589                          bool ignoreResult = false);
3590   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3591   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3592 
3593   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3594   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3595 
3596   void EmitCXXTryStmt(const CXXTryStmt &S);
3597   void EmitSEHTryStmt(const SEHTryStmt &S);
3598   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3599   void EnterSEHTryStmt(const SEHTryStmt &S);
3600   void ExitSEHTryStmt(const SEHTryStmt &S);
3601   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3602                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3603 
3604   void pushSEHCleanup(CleanupKind kind,
3605                       llvm::Function *FinallyFunc);
3606   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3607                               const Stmt *OutlinedStmt);
3608 
3609   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3610                                             const SEHExceptStmt &Except);
3611 
3612   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3613                                              const SEHFinallyStmt &Finally);
3614 
3615   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3616                                 llvm::Value *ParentFP,
3617                                 llvm::Value *EntryEBP);
3618   llvm::Value *EmitSEHExceptionCode();
3619   llvm::Value *EmitSEHExceptionInfo();
3620   llvm::Value *EmitSEHAbnormalTermination();
3621 
3622   /// Emit simple code for OpenMP directives in Simd-only mode.
3623   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3624 
3625   /// Scan the outlined statement for captures from the parent function. For
3626   /// each capture, mark the capture as escaped and emit a call to
3627   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3628   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3629                           bool IsFilter);
3630 
3631   /// Recovers the address of a local in a parent function. ParentVar is the
3632   /// address of the variable used in the immediate parent function. It can
3633   /// either be an alloca or a call to llvm.localrecover if there are nested
3634   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3635   /// frame.
3636   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3637                                     Address ParentVar,
3638                                     llvm::Value *ParentFP);
3639 
3640   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3641                            ArrayRef<const Attr *> Attrs = {});
3642 
3643   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3644   class OMPCancelStackRAII {
3645     CodeGenFunction &CGF;
3646 
3647   public:
3648     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3649                        bool HasCancel)
3650         : CGF(CGF) {
3651       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3652     }
3653     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3654   };
3655 
3656   /// Returns calculated size of the specified type.
3657   llvm::Value *getTypeSize(QualType Ty);
3658   LValue InitCapturedStruct(const CapturedStmt &S);
3659   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3660   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3661   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3662   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3663                                                      SourceLocation Loc);
3664   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3665                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3666   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3667                           SourceLocation Loc);
3668   /// Perform element by element copying of arrays with type \a
3669   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3670   /// generated by \a CopyGen.
3671   ///
3672   /// \param DestAddr Address of the destination array.
3673   /// \param SrcAddr Address of the source array.
3674   /// \param OriginalType Type of destination and source arrays.
3675   /// \param CopyGen Copying procedure that copies value of single array element
3676   /// to another single array element.
3677   void EmitOMPAggregateAssign(
3678       Address DestAddr, Address SrcAddr, QualType OriginalType,
3679       const llvm::function_ref<void(Address, Address)> CopyGen);
3680   /// Emit proper copying of data from one variable to another.
3681   ///
3682   /// \param OriginalType Original type of the copied variables.
3683   /// \param DestAddr Destination address.
3684   /// \param SrcAddr Source address.
3685   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3686   /// type of the base array element).
3687   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3688   /// the base array element).
3689   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3690   /// DestVD.
3691   void EmitOMPCopy(QualType OriginalType,
3692                    Address DestAddr, Address SrcAddr,
3693                    const VarDecl *DestVD, const VarDecl *SrcVD,
3694                    const Expr *Copy);
3695   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3696   /// \a X = \a E \a BO \a E.
3697   ///
3698   /// \param X Value to be updated.
3699   /// \param E Update value.
3700   /// \param BO Binary operation for update operation.
3701   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3702   /// expression, false otherwise.
3703   /// \param AO Atomic ordering of the generated atomic instructions.
3704   /// \param CommonGen Code generator for complex expressions that cannot be
3705   /// expressed through atomicrmw instruction.
3706   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3707   /// generated, <false, RValue::get(nullptr)> otherwise.
3708   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3709       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3710       llvm::AtomicOrdering AO, SourceLocation Loc,
3711       const llvm::function_ref<RValue(RValue)> CommonGen);
3712   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3713                                  OMPPrivateScope &PrivateScope);
3714   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3715                             OMPPrivateScope &PrivateScope);
3716   void EmitOMPUseDevicePtrClause(
3717       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3718       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3719           CaptureDeviceAddrMap);
3720   void EmitOMPUseDeviceAddrClause(
3721       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3722       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3723           CaptureDeviceAddrMap);
3724   /// Emit code for copyin clause in \a D directive. The next code is
3725   /// generated at the start of outlined functions for directives:
3726   /// \code
3727   /// threadprivate_var1 = master_threadprivate_var1;
3728   /// operator=(threadprivate_var2, master_threadprivate_var2);
3729   /// ...
3730   /// __kmpc_barrier(&loc, global_tid);
3731   /// \endcode
3732   ///
3733   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3734   /// \returns true if at least one copyin variable is found, false otherwise.
3735   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3736   /// Emit initial code for lastprivate variables. If some variable is
3737   /// not also firstprivate, then the default initialization is used. Otherwise
3738   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3739   /// method.
3740   ///
3741   /// \param D Directive that may have 'lastprivate' directives.
3742   /// \param PrivateScope Private scope for capturing lastprivate variables for
3743   /// proper codegen in internal captured statement.
3744   ///
3745   /// \returns true if there is at least one lastprivate variable, false
3746   /// otherwise.
3747   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3748                                     OMPPrivateScope &PrivateScope);
3749   /// Emit final copying of lastprivate values to original variables at
3750   /// the end of the worksharing or simd directive.
3751   ///
3752   /// \param D Directive that has at least one 'lastprivate' directives.
3753   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3754   /// it is the last iteration of the loop code in associated directive, or to
3755   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3756   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3757                                      bool NoFinals,
3758                                      llvm::Value *IsLastIterCond = nullptr);
3759   /// Emit initial code for linear clauses.
3760   void EmitOMPLinearClause(const OMPLoopDirective &D,
3761                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3762   /// Emit final code for linear clauses.
3763   /// \param CondGen Optional conditional code for final part of codegen for
3764   /// linear clause.
3765   void EmitOMPLinearClauseFinal(
3766       const OMPLoopDirective &D,
3767       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3768   /// Emit initial code for reduction variables. Creates reduction copies
3769   /// and initializes them with the values according to OpenMP standard.
3770   ///
3771   /// \param D Directive (possibly) with the 'reduction' clause.
3772   /// \param PrivateScope Private scope for capturing reduction variables for
3773   /// proper codegen in internal captured statement.
3774   ///
3775   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3776                                   OMPPrivateScope &PrivateScope,
3777                                   bool ForInscan = false);
3778   /// Emit final update of reduction values to original variables at
3779   /// the end of the directive.
3780   ///
3781   /// \param D Directive that has at least one 'reduction' directives.
3782   /// \param ReductionKind The kind of reduction to perform.
3783   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3784                                    const OpenMPDirectiveKind ReductionKind);
3785   /// Emit initial code for linear variables. Creates private copies
3786   /// and initializes them with the values according to OpenMP standard.
3787   ///
3788   /// \param D Directive (possibly) with the 'linear' clause.
3789   /// \return true if at least one linear variable is found that should be
3790   /// initialized with the value of the original variable, false otherwise.
3791   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3792 
3793   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3794                                         llvm::Function * /*OutlinedFn*/,
3795                                         const OMPTaskDataTy & /*Data*/)>
3796       TaskGenTy;
3797   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3798                                  const OpenMPDirectiveKind CapturedRegion,
3799                                  const RegionCodeGenTy &BodyGen,
3800                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3801   struct OMPTargetDataInfo {
3802     Address BasePointersArray = Address::invalid();
3803     Address PointersArray = Address::invalid();
3804     Address SizesArray = Address::invalid();
3805     Address MappersArray = Address::invalid();
3806     unsigned NumberOfTargetItems = 0;
3807     explicit OMPTargetDataInfo() = default;
3808     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3809                       Address SizesArray, Address MappersArray,
3810                       unsigned NumberOfTargetItems)
3811         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3812           SizesArray(SizesArray), MappersArray(MappersArray),
3813           NumberOfTargetItems(NumberOfTargetItems) {}
3814   };
3815   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3816                                        const RegionCodeGenTy &BodyGen,
3817                                        OMPTargetDataInfo &InputInfo);
3818   void processInReduction(const OMPExecutableDirective &S,
3819                           OMPTaskDataTy &Data,
3820                           CodeGenFunction &CGF,
3821                           const CapturedStmt *CS,
3822                           OMPPrivateScope &Scope);
3823   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3824   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3825   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3826   void EmitOMPTileDirective(const OMPTileDirective &S);
3827   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3828   void EmitOMPReverseDirective(const OMPReverseDirective &S);
3829   void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S);
3830   void EmitOMPForDirective(const OMPForDirective &S);
3831   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3832   void EmitOMPScopeDirective(const OMPScopeDirective &S);
3833   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3834   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3835   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3836   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3837   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3838   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3839   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3840   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3841   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3842   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3843   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3844   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3845   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3846   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3847   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3848   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3849   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3850   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3851   void EmitOMPScanDirective(const OMPScanDirective &S);
3852   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3853   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3854   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3855   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3856   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3857   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3858   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3859   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3860   void
3861   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3862   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3863   void
3864   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3865   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3866   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3867   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3868   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3869   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3870   void
3871   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3872   void EmitOMPParallelMasterTaskLoopDirective(
3873       const OMPParallelMasterTaskLoopDirective &S);
3874   void EmitOMPParallelMasterTaskLoopSimdDirective(
3875       const OMPParallelMasterTaskLoopSimdDirective &S);
3876   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3877   void EmitOMPDistributeParallelForDirective(
3878       const OMPDistributeParallelForDirective &S);
3879   void EmitOMPDistributeParallelForSimdDirective(
3880       const OMPDistributeParallelForSimdDirective &S);
3881   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3882   void EmitOMPTargetParallelForSimdDirective(
3883       const OMPTargetParallelForSimdDirective &S);
3884   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3885   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3886   void
3887   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3888   void EmitOMPTeamsDistributeParallelForSimdDirective(
3889       const OMPTeamsDistributeParallelForSimdDirective &S);
3890   void EmitOMPTeamsDistributeParallelForDirective(
3891       const OMPTeamsDistributeParallelForDirective &S);
3892   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3893   void EmitOMPTargetTeamsDistributeDirective(
3894       const OMPTargetTeamsDistributeDirective &S);
3895   void EmitOMPTargetTeamsDistributeParallelForDirective(
3896       const OMPTargetTeamsDistributeParallelForDirective &S);
3897   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3898       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3899   void EmitOMPTargetTeamsDistributeSimdDirective(
3900       const OMPTargetTeamsDistributeSimdDirective &S);
3901   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3902   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3903   void EmitOMPTargetParallelGenericLoopDirective(
3904       const OMPTargetParallelGenericLoopDirective &S);
3905   void EmitOMPTargetTeamsGenericLoopDirective(
3906       const OMPTargetTeamsGenericLoopDirective &S);
3907   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3908   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3909   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3910   void EmitOMPAssumeDirective(const OMPAssumeDirective &S);
3911 
3912   /// Emit device code for the target directive.
3913   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3914                                           StringRef ParentName,
3915                                           const OMPTargetDirective &S);
3916   static void
3917   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3918                                       const OMPTargetParallelDirective &S);
3919   /// Emit device code for the target parallel for directive.
3920   static void EmitOMPTargetParallelForDeviceFunction(
3921       CodeGenModule &CGM, StringRef ParentName,
3922       const OMPTargetParallelForDirective &S);
3923   /// Emit device code for the target parallel for simd directive.
3924   static void EmitOMPTargetParallelForSimdDeviceFunction(
3925       CodeGenModule &CGM, StringRef ParentName,
3926       const OMPTargetParallelForSimdDirective &S);
3927   /// Emit device code for the target teams directive.
3928   static void
3929   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3930                                    const OMPTargetTeamsDirective &S);
3931   /// Emit device code for the target teams distribute directive.
3932   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3933       CodeGenModule &CGM, StringRef ParentName,
3934       const OMPTargetTeamsDistributeDirective &S);
3935   /// Emit device code for the target teams distribute simd directive.
3936   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3937       CodeGenModule &CGM, StringRef ParentName,
3938       const OMPTargetTeamsDistributeSimdDirective &S);
3939   /// Emit device code for the target simd directive.
3940   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3941                                               StringRef ParentName,
3942                                               const OMPTargetSimdDirective &S);
3943   /// Emit device code for the target teams distribute parallel for simd
3944   /// directive.
3945   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3946       CodeGenModule &CGM, StringRef ParentName,
3947       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3948 
3949   /// Emit device code for the target teams loop directive.
3950   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3951       CodeGenModule &CGM, StringRef ParentName,
3952       const OMPTargetTeamsGenericLoopDirective &S);
3953 
3954   /// Emit device code for the target parallel loop directive.
3955   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3956       CodeGenModule &CGM, StringRef ParentName,
3957       const OMPTargetParallelGenericLoopDirective &S);
3958 
3959   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3960       CodeGenModule &CGM, StringRef ParentName,
3961       const OMPTargetTeamsDistributeParallelForDirective &S);
3962 
3963   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3964   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3965   /// future it is meant to be the number of loops expected in the loop nests
3966   /// (usually specified by the "collapse" clause) that are collapsed to a
3967   /// single loop by this function.
3968   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3969                                                              int Depth);
3970 
3971   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3972   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3973 
3974   /// Emit inner loop of the worksharing/simd construct.
3975   ///
3976   /// \param S Directive, for which the inner loop must be emitted.
3977   /// \param RequiresCleanup true, if directive has some associated private
3978   /// variables.
3979   /// \param LoopCond Bollean condition for loop continuation.
3980   /// \param IncExpr Increment expression for loop control variable.
3981   /// \param BodyGen Generator for the inner body of the inner loop.
3982   /// \param PostIncGen Genrator for post-increment code (required for ordered
3983   /// loop directvies).
3984   void EmitOMPInnerLoop(
3985       const OMPExecutableDirective &S, bool RequiresCleanup,
3986       const Expr *LoopCond, const Expr *IncExpr,
3987       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3988       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3989 
3990   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3991   /// Emit initial code for loop counters of loop-based directives.
3992   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3993                                   OMPPrivateScope &LoopScope);
3994 
3995   /// Helper for the OpenMP loop directives.
3996   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3997 
3998   /// Emit code for the worksharing loop-based directive.
3999   /// \return true, if this construct has any lastprivate clause, false -
4000   /// otherwise.
4001   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
4002                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
4003                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
4004 
4005   /// Emit code for the distribute loop-based directive.
4006   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
4007                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
4008 
4009   /// Helpers for the OpenMP loop directives.
4010   void EmitOMPSimdInit(const OMPLoopDirective &D);
4011   void EmitOMPSimdFinal(
4012       const OMPLoopDirective &D,
4013       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
4014 
4015   /// Emits the lvalue for the expression with possibly captured variable.
4016   LValue EmitOMPSharedLValue(const Expr *E);
4017 
4018 private:
4019   /// Helpers for blocks.
4020   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
4021 
4022   /// struct with the values to be passed to the OpenMP loop-related functions
4023   struct OMPLoopArguments {
4024     /// loop lower bound
4025     Address LB = Address::invalid();
4026     /// loop upper bound
4027     Address UB = Address::invalid();
4028     /// loop stride
4029     Address ST = Address::invalid();
4030     /// isLastIteration argument for runtime functions
4031     Address IL = Address::invalid();
4032     /// Chunk value generated by sema
4033     llvm::Value *Chunk = nullptr;
4034     /// EnsureUpperBound
4035     Expr *EUB = nullptr;
4036     /// IncrementExpression
4037     Expr *IncExpr = nullptr;
4038     /// Loop initialization
4039     Expr *Init = nullptr;
4040     /// Loop exit condition
4041     Expr *Cond = nullptr;
4042     /// Update of LB after a whole chunk has been executed
4043     Expr *NextLB = nullptr;
4044     /// Update of UB after a whole chunk has been executed
4045     Expr *NextUB = nullptr;
4046     /// Distinguish between the for distribute and sections
4047     OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown;
4048     OMPLoopArguments() = default;
4049     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
4050                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
4051                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
4052                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
4053                      Expr *NextUB = nullptr)
4054         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
4055           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
4056           NextUB(NextUB) {}
4057   };
4058   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
4059                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
4060                         const OMPLoopArguments &LoopArgs,
4061                         const CodeGenLoopTy &CodeGenLoop,
4062                         const CodeGenOrderedTy &CodeGenOrdered);
4063   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
4064                            bool IsMonotonic, const OMPLoopDirective &S,
4065                            OMPPrivateScope &LoopScope, bool Ordered,
4066                            const OMPLoopArguments &LoopArgs,
4067                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
4068   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
4069                                   const OMPLoopDirective &S,
4070                                   OMPPrivateScope &LoopScope,
4071                                   const OMPLoopArguments &LoopArgs,
4072                                   const CodeGenLoopTy &CodeGenLoopContent);
4073   /// Emit code for sections directive.
4074   void EmitSections(const OMPExecutableDirective &S);
4075 
4076 public:
4077   //===--------------------------------------------------------------------===//
4078   //                         OpenACC Emission
4079   //===--------------------------------------------------------------------===//
4080   void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) {
4081     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4082     // simply emitting its structured block, but in the future we will implement
4083     // some sort of IR.
4084     EmitStmt(S.getStructuredBlock());
4085   }
4086 
4087   void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) {
4088     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4089     // simply emitting its loop, but in the future we will implement
4090     // some sort of IR.
4091     EmitStmt(S.getLoop());
4092   }
4093 
4094   void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) {
4095     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4096     // simply emitting its loop, but in the future we will implement
4097     // some sort of IR.
4098     EmitStmt(S.getLoop());
4099   }
4100 
4101   void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) {
4102     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4103     // simply emitting its structured block, but in the future we will implement
4104     // some sort of IR.
4105     EmitStmt(S.getStructuredBlock());
4106   }
4107 
4108   void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) {
4109     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4110     // but in the future we will implement some sort of IR.
4111   }
4112 
4113   void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) {
4114     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4115     // but in the future we will implement some sort of IR.
4116   }
4117 
4118   void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) {
4119     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4120     // simply emitting its structured block, but in the future we will implement
4121     // some sort of IR.
4122     EmitStmt(S.getStructuredBlock());
4123   }
4124 
4125   void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) {
4126     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4127     // but in the future we will implement some sort of IR.
4128   }
4129 
4130   void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) {
4131     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4132     // but in the future we will implement some sort of IR.
4133   }
4134 
4135   void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) {
4136     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4137     // but in the future we will implement some sort of IR.
4138   }
4139 
4140   void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) {
4141     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4142     // but in the future we will implement some sort of IR.
4143   }
4144 
4145   void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) {
4146     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4147     // but in the future we will implement some sort of IR.
4148   }
4149 
4150   //===--------------------------------------------------------------------===//
4151   //                         LValue Expression Emission
4152   //===--------------------------------------------------------------------===//
4153 
4154   /// Create a check that a scalar RValue is non-null.
4155   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
4156 
4157   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
4158   RValue GetUndefRValue(QualType Ty);
4159 
4160   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
4161   /// and issue an ErrorUnsupported style diagnostic (using the
4162   /// provided Name).
4163   RValue EmitUnsupportedRValue(const Expr *E,
4164                                const char *Name);
4165 
4166   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
4167   /// an ErrorUnsupported style diagnostic (using the provided Name).
4168   LValue EmitUnsupportedLValue(const Expr *E,
4169                                const char *Name);
4170 
4171   /// EmitLValue - Emit code to compute a designator that specifies the location
4172   /// of the expression.
4173   ///
4174   /// This can return one of two things: a simple address or a bitfield
4175   /// reference.  In either case, the LLVM Value* in the LValue structure is
4176   /// guaranteed to be an LLVM pointer type.
4177   ///
4178   /// If this returns a bitfield reference, nothing about the pointee type of
4179   /// the LLVM value is known: For example, it may not be a pointer to an
4180   /// integer.
4181   ///
4182   /// If this returns a normal address, and if the lvalue's C type is fixed
4183   /// size, this method guarantees that the returned pointer type will point to
4184   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
4185   /// variable length type, this is not possible.
4186   ///
4187   LValue EmitLValue(const Expr *E,
4188                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4189 
4190 private:
4191   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
4192 
4193 public:
4194   /// Same as EmitLValue but additionally we generate checking code to
4195   /// guard against undefined behavior.  This is only suitable when we know
4196   /// that the address will be used to access the object.
4197   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
4198 
4199   RValue convertTempToRValue(Address addr, QualType type,
4200                              SourceLocation Loc);
4201 
4202   void EmitAtomicInit(Expr *E, LValue lvalue);
4203 
4204   bool LValueIsSuitableForInlineAtomic(LValue Src);
4205 
4206   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
4207                         AggValueSlot Slot = AggValueSlot::ignored());
4208 
4209   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
4210                         llvm::AtomicOrdering AO, bool IsVolatile = false,
4211                         AggValueSlot slot = AggValueSlot::ignored());
4212 
4213   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
4214 
4215   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
4216                        bool IsVolatile, bool isInit);
4217 
4218   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
4219       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
4220       llvm::AtomicOrdering Success =
4221           llvm::AtomicOrdering::SequentiallyConsistent,
4222       llvm::AtomicOrdering Failure =
4223           llvm::AtomicOrdering::SequentiallyConsistent,
4224       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
4225 
4226   /// Emit an atomicrmw instruction, and applying relevant metadata when
4227   /// applicable.
4228   llvm::AtomicRMWInst *emitAtomicRMWInst(
4229       llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val,
4230       llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent,
4231       llvm::SyncScope::ID SSID = llvm::SyncScope::System,
4232       const AtomicExpr *AE = nullptr);
4233 
4234   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
4235                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
4236                         bool IsVolatile);
4237 
4238   /// EmitToMemory - Change a scalar value from its value
4239   /// representation to its in-memory representation.
4240   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
4241 
4242   /// EmitFromMemory - Change a scalar value from its memory
4243   /// representation to its value representation.
4244   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
4245 
4246   /// Check if the scalar \p Value is within the valid range for the given
4247   /// type \p Ty.
4248   ///
4249   /// Returns true if a check is needed (even if the range is unknown).
4250   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
4251                             SourceLocation Loc);
4252 
4253   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4254   /// care to appropriately convert from the memory representation to
4255   /// the LLVM value representation.
4256   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4257                                 SourceLocation Loc,
4258                                 AlignmentSource Source = AlignmentSource::Type,
4259                                 bool isNontemporal = false) {
4260     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
4261                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
4262   }
4263 
4264   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4265                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
4266                                 TBAAAccessInfo TBAAInfo,
4267                                 bool isNontemporal = false);
4268 
4269   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4270   /// care to appropriately convert from the memory representation to
4271   /// the LLVM value representation.  The l-value must be a simple
4272   /// l-value.
4273   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
4274 
4275   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4276   /// care to appropriately convert from the memory representation to
4277   /// the LLVM value representation.
4278   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4279                          bool Volatile, QualType Ty,
4280                          AlignmentSource Source = AlignmentSource::Type,
4281                          bool isInit = false, bool isNontemporal = false) {
4282     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
4283                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
4284   }
4285 
4286   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4287                          bool Volatile, QualType Ty,
4288                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
4289                          bool isInit = false, bool isNontemporal = false);
4290 
4291   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4292   /// care to appropriately convert from the memory representation to
4293   /// the LLVM value representation.  The l-value must be a simple
4294   /// l-value.  The isInit flag indicates whether this is an initialization.
4295   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
4296   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
4297 
4298   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
4299   /// this method emits the address of the lvalue, then loads the result as an
4300   /// rvalue, returning the rvalue.
4301   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
4302   RValue EmitLoadOfExtVectorElementLValue(LValue V);
4303   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
4304   RValue EmitLoadOfGlobalRegLValue(LValue LV);
4305 
4306   /// Like EmitLoadOfLValue but also handles complex and aggregate types.
4307   RValue EmitLoadOfAnyValue(LValue V,
4308                             AggValueSlot Slot = AggValueSlot::ignored(),
4309                             SourceLocation Loc = {});
4310 
4311   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
4312   /// lvalue, where both are guaranteed to the have the same type, and that type
4313   /// is 'Ty'.
4314   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
4315   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
4316   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
4317 
4318   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
4319   /// as EmitStoreThroughLValue.
4320   ///
4321   /// \param Result [out] - If non-null, this will be set to a Value* for the
4322   /// bit-field contents after the store, appropriate for use as the result of
4323   /// an assignment to the bit-field.
4324   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4325                                       llvm::Value **Result=nullptr);
4326 
4327   /// Emit an l-value for an assignment (simple or compound) of complex type.
4328   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4329   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4330   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4331                                              llvm::Value *&Result);
4332 
4333   // Note: only available for agg return types
4334   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4335   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4336   // Note: only available for agg return types
4337   LValue EmitCallExprLValue(const CallExpr *E,
4338                             llvm::CallBase **CallOrInvoke = nullptr);
4339   // Note: only available for agg return types
4340   LValue EmitVAArgExprLValue(const VAArgExpr *E);
4341   LValue EmitDeclRefLValue(const DeclRefExpr *E);
4342   LValue EmitStringLiteralLValue(const StringLiteral *E);
4343   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4344   LValue EmitPredefinedLValue(const PredefinedExpr *E);
4345   LValue EmitUnaryOpLValue(const UnaryOperator *E);
4346   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4347                                 bool Accessed = false);
4348   llvm::Value *EmitMatrixIndexExpr(const Expr *E);
4349   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4350   LValue EmitArraySectionExpr(const ArraySectionExpr *E,
4351                               bool IsLowerBound = true);
4352   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4353   LValue EmitMemberExpr(const MemberExpr *E);
4354   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4355   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4356   LValue EmitInitListLValue(const InitListExpr *E);
4357   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4358   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4359   LValue EmitCastLValue(const CastExpr *E);
4360   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4361   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4362   LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E);
4363 
4364   std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E,
4365                                                   QualType Ty);
4366   LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args,
4367                             QualType Ty);
4368 
4369   Address EmitExtVectorElementLValue(LValue V);
4370 
4371   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4372 
4373   Address EmitArrayToPointerDecay(const Expr *Array,
4374                                   LValueBaseInfo *BaseInfo = nullptr,
4375                                   TBAAAccessInfo *TBAAInfo = nullptr);
4376 
4377   class ConstantEmission {
4378     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4379     ConstantEmission(llvm::Constant *C, bool isReference)
4380       : ValueAndIsReference(C, isReference) {}
4381   public:
4382     ConstantEmission() {}
4383     static ConstantEmission forReference(llvm::Constant *C) {
4384       return ConstantEmission(C, true);
4385     }
4386     static ConstantEmission forValue(llvm::Constant *C) {
4387       return ConstantEmission(C, false);
4388     }
4389 
4390     explicit operator bool() const {
4391       return ValueAndIsReference.getOpaqueValue() != nullptr;
4392     }
4393 
4394     bool isReference() const { return ValueAndIsReference.getInt(); }
4395     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4396       assert(isReference());
4397       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4398                                             refExpr->getType());
4399     }
4400 
4401     llvm::Constant *getValue() const {
4402       assert(!isReference());
4403       return ValueAndIsReference.getPointer();
4404     }
4405   };
4406 
4407   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4408   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4409   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4410 
4411   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4412                                 AggValueSlot slot = AggValueSlot::ignored());
4413   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4414 
4415   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4416                               const ObjCIvarDecl *Ivar);
4417   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4418                                            const ObjCIvarDecl *Ivar);
4419   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4420   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4421   LValue EmitLValueForLambdaField(const FieldDecl *Field,
4422                                   llvm::Value *ThisValue);
4423 
4424   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4425   /// if the Field is a reference, this will return the address of the reference
4426   /// and not the address of the value stored in the reference.
4427   LValue EmitLValueForFieldInitialization(LValue Base,
4428                                           const FieldDecl* Field);
4429 
4430   LValue EmitLValueForIvar(QualType ObjectTy,
4431                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4432                            unsigned CVRQualifiers);
4433 
4434   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4435   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4436   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4437   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4438 
4439   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4440   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4441   LValue EmitStmtExprLValue(const StmtExpr *E);
4442   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4443   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4444   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4445 
4446   //===--------------------------------------------------------------------===//
4447   //                         Scalar Expression Emission
4448   //===--------------------------------------------------------------------===//
4449 
4450   /// EmitCall - Generate a call of the given function, expecting the given
4451   /// result type, and using the given argument list which specifies both the
4452   /// LLVM arguments and the types they were derived from.
4453   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4454                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4455                   llvm::CallBase **CallOrInvoke, bool IsMustTail,
4456                   SourceLocation Loc,
4457                   bool IsVirtualFunctionPointerThunk = false);
4458   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4459                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4460                   llvm::CallBase **CallOrInvoke = nullptr,
4461                   bool IsMustTail = false) {
4462     return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke,
4463                     IsMustTail, SourceLocation());
4464   }
4465   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4466                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr,
4467                   llvm::CallBase **CallOrInvoke = nullptr,
4468                   CGFunctionInfo const **ResolvedFnInfo = nullptr);
4469 
4470   // If a Call or Invoke instruction was emitted for this CallExpr, this method
4471   // writes the pointer to `CallOrInvoke` if it's not null.
4472   RValue EmitCallExpr(const CallExpr *E,
4473                       ReturnValueSlot ReturnValue = ReturnValueSlot(),
4474                       llvm::CallBase **CallOrInvoke = nullptr);
4475   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4476                             llvm::CallBase **CallOrInvoke = nullptr);
4477   CGCallee EmitCallee(const Expr *E);
4478 
4479   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4480   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4481 
4482   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4483                                   const Twine &name = "");
4484   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4485                                   ArrayRef<llvm::Value *> args,
4486                                   const Twine &name = "");
4487   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4488                                           const Twine &name = "");
4489   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4490                                           ArrayRef<Address> args,
4491                                           const Twine &name = "");
4492   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4493                                           ArrayRef<llvm::Value *> args,
4494                                           const Twine &name = "");
4495 
4496   SmallVector<llvm::OperandBundleDef, 1>
4497   getBundlesForFunclet(llvm::Value *Callee);
4498 
4499   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4500                                    ArrayRef<llvm::Value *> Args,
4501                                    const Twine &Name = "");
4502   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4503                                           ArrayRef<llvm::Value *> args,
4504                                           const Twine &name = "");
4505   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4506                                           const Twine &name = "");
4507   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4508                                        ArrayRef<llvm::Value *> args);
4509 
4510   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4511                                      NestedNameSpecifier *Qual,
4512                                      llvm::Type *Ty);
4513 
4514   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4515                                                CXXDtorType Type,
4516                                                const CXXRecordDecl *RD);
4517 
4518   bool isPointerKnownNonNull(const Expr *E);
4519 
4520   /// Create the discriminator from the storage address and the entity hash.
4521   llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress,
4522                                                  llvm::Value *Discriminator);
4523   CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema,
4524                                         llvm::Value *StorageAddress,
4525                                         GlobalDecl SchemaDecl,
4526                                         QualType SchemaType);
4527 
4528   llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info,
4529                                    llvm::Value *Pointer);
4530 
4531   llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info,
4532                                    llvm::Value *Pointer);
4533 
4534   llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType,
4535                                      const CGPointerAuthInfo &CurAuthInfo,
4536                                      const CGPointerAuthInfo &NewAuthInfo,
4537                                      bool IsKnownNonNull);
4538   llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer,
4539                                          const CGPointerAuthInfo &CurInfo,
4540                                          const CGPointerAuthInfo &NewInfo);
4541 
4542   void EmitPointerAuthOperandBundle(
4543       const CGPointerAuthInfo &Info,
4544       SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4545 
4546   llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr,
4547                                         QualType SourceType, QualType DestType);
4548   Address authPointerToPointerCast(Address Ptr, QualType SourceType,
4549                                    QualType DestType);
4550 
4551   Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy);
4552 
4553   llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) {
4554     return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer();
4555   }
4556 
4557   // Return the copy constructor name with the prefix "__copy_constructor_"
4558   // removed.
4559   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4560                                                      CharUnits Alignment,
4561                                                      bool IsVolatile,
4562                                                      ASTContext &Ctx);
4563 
4564   // Return the destructor name with the prefix "__destructor_" removed.
4565   static std::string getNonTrivialDestructorStr(QualType QT,
4566                                                 CharUnits Alignment,
4567                                                 bool IsVolatile,
4568                                                 ASTContext &Ctx);
4569 
4570   // These functions emit calls to the special functions of non-trivial C
4571   // structs.
4572   void defaultInitNonTrivialCStructVar(LValue Dst);
4573   void callCStructDefaultConstructor(LValue Dst);
4574   void callCStructDestructor(LValue Dst);
4575   void callCStructCopyConstructor(LValue Dst, LValue Src);
4576   void callCStructMoveConstructor(LValue Dst, LValue Src);
4577   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4578   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4579 
4580   RValue EmitCXXMemberOrOperatorCall(
4581       const CXXMethodDecl *Method, const CGCallee &Callee,
4582       ReturnValueSlot ReturnValue, llvm::Value *This,
4583       llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E,
4584       CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke);
4585   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4586                                llvm::Value *This, QualType ThisTy,
4587                                llvm::Value *ImplicitParam,
4588                                QualType ImplicitParamTy, const CallExpr *E,
4589                                llvm::CallBase **CallOrInvoke = nullptr);
4590   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4591                                ReturnValueSlot ReturnValue,
4592                                llvm::CallBase **CallOrInvoke = nullptr);
4593   RValue EmitCXXMemberOrOperatorMemberCallExpr(
4594       const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
4595       bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
4596       const Expr *Base, llvm::CallBase **CallOrInvoke);
4597   // Compute the object pointer.
4598   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4599                                           llvm::Value *memberPtr,
4600                                           const MemberPointerType *memberPtrType,
4601                                           LValueBaseInfo *BaseInfo = nullptr,
4602                                           TBAAAccessInfo *TBAAInfo = nullptr);
4603   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4604                                       ReturnValueSlot ReturnValue,
4605                                       llvm::CallBase **CallOrInvoke);
4606 
4607   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4608                                        const CXXMethodDecl *MD,
4609                                        ReturnValueSlot ReturnValue,
4610                                        llvm::CallBase **CallOrInvoke);
4611   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4612 
4613   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4614                                 ReturnValueSlot ReturnValue,
4615                                 llvm::CallBase **CallOrInvoke);
4616 
4617   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4618   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4619 
4620   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4621                          const CallExpr *E, ReturnValueSlot ReturnValue);
4622 
4623   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4624 
4625   /// Emit IR for __builtin_os_log_format.
4626   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4627 
4628   /// Emit IR for __builtin_is_aligned.
4629   RValue EmitBuiltinIsAligned(const CallExpr *E);
4630   /// Emit IR for __builtin_align_up/__builtin_align_down.
4631   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4632 
4633   llvm::Function *generateBuiltinOSLogHelperFunction(
4634       const analyze_os_log::OSLogBufferLayout &Layout,
4635       CharUnits BufferAlignment);
4636 
4637   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4638                            llvm::CallBase **CallOrInvoke);
4639 
4640   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4641   /// is unhandled by the current target.
4642   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4643                                      ReturnValueSlot ReturnValue);
4644 
4645   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4646                                              const llvm::CmpInst::Predicate Fp,
4647                                              const llvm::CmpInst::Predicate Ip,
4648                                              const llvm::Twine &Name = "");
4649   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4650                                   ReturnValueSlot ReturnValue,
4651                                   llvm::Triple::ArchType Arch);
4652   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4653                                      ReturnValueSlot ReturnValue,
4654                                      llvm::Triple::ArchType Arch);
4655   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4656                                      ReturnValueSlot ReturnValue,
4657                                      llvm::Triple::ArchType Arch);
4658   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4659                                    QualType RTy);
4660   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4661                                    QualType RTy);
4662 
4663   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4664                                          unsigned LLVMIntrinsic,
4665                                          unsigned AltLLVMIntrinsic,
4666                                          const char *NameHint,
4667                                          unsigned Modifier,
4668                                          const CallExpr *E,
4669                                          SmallVectorImpl<llvm::Value *> &Ops,
4670                                          Address PtrOp0, Address PtrOp1,
4671                                          llvm::Triple::ArchType Arch);
4672 
4673   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4674                                           unsigned Modifier, llvm::Type *ArgTy,
4675                                           const CallExpr *E);
4676   llvm::Value *EmitNeonCall(llvm::Function *F,
4677                             SmallVectorImpl<llvm::Value*> &O,
4678                             const char *name,
4679                             unsigned shift = 0, bool rightshift = false);
4680   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4681                              const llvm::ElementCount &Count);
4682   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4683   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4684                                    bool negateForRightShift);
4685   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4686                                  llvm::Type *Ty, bool usgn, const char *name);
4687   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4688   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4689   /// access builtin.  Only required if it can't be inferred from the base
4690   /// pointer operand.
4691   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4692 
4693   SmallVector<llvm::Type *, 2>
4694   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4695                       ArrayRef<llvm::Value *> Ops);
4696   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4697   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4698   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4699   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4700                                     ArrayRef<llvm::Value *> Ops);
4701   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4702                                   llvm::Type *ReturnType,
4703                                   ArrayRef<llvm::Value *> Ops);
4704   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4705   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4706   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4707   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4708   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4709                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4710                             unsigned BuiltinID);
4711   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4712                            llvm::ArrayRef<llvm::Value *> Ops,
4713                            unsigned BuiltinID);
4714   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4715                                     llvm::ScalableVectorType *VTy);
4716   llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple,
4717                                          llvm::StructType *Ty);
4718   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4719                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4720                                  unsigned IntID);
4721   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4722                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4723                                    unsigned IntID);
4724   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4725                                  SmallVectorImpl<llvm::Value *> &Ops,
4726                                  unsigned BuiltinID, bool IsZExtReturn);
4727   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4728                                   SmallVectorImpl<llvm::Value *> &Ops,
4729                                   unsigned BuiltinID);
4730   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4731                                    SmallVectorImpl<llvm::Value *> &Ops,
4732                                    unsigned BuiltinID);
4733   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4734                                      SmallVectorImpl<llvm::Value *> &Ops,
4735                                      unsigned IntID);
4736   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4737                                  SmallVectorImpl<llvm::Value *> &Ops,
4738                                  unsigned IntID);
4739   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4740                                   SmallVectorImpl<llvm::Value *> &Ops,
4741                                   unsigned IntID);
4742   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4743 
4744   llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4745                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4746                              unsigned IntID);
4747   llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4748                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4749                                 unsigned IntID);
4750   llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4751                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4752                            unsigned IntID);
4753   llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4754                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4755                              unsigned IntID);
4756 
4757   void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4758                                       SmallVectorImpl<llvm::Value *> &Ops,
4759                                       SVETypeFlags TypeFlags);
4760 
4761   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4762 
4763   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4764                                       llvm::Triple::ArchType Arch);
4765   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4766 
4767   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4768   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4769   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4770   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4771   llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4772                                    ReturnValueSlot ReturnValue);
4773   llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4774   llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4775                                            const CallExpr *E);
4776   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4777   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4778   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4779                                           const CallExpr *E);
4780   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4781   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4782                                     ReturnValueSlot ReturnValue);
4783 
4784   llvm::Value *EmitRISCVCpuSupports(const CallExpr *E);
4785   llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs);
4786   llvm::Value *EmitRISCVCpuInit();
4787   llvm::Value *EmitRISCVCpuIs(const CallExpr *E);
4788   llvm::Value *EmitRISCVCpuIs(StringRef CPUStr);
4789 
4790   void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
4791                                       const CallExpr *E);
4792   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4793                                llvm::AtomicOrdering &AO,
4794                                llvm::SyncScope::ID &SSID);
4795 
4796   enum class MSVCIntrin;
4797   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4798 
4799   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4800 
4801   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4802   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4803   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4804   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4805   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4806   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4807                                 const ObjCMethodDecl *MethodWithObjects);
4808   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4809   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4810                              ReturnValueSlot Return = ReturnValueSlot());
4811 
4812   /// Retrieves the default cleanup kind for an ARC cleanup.
4813   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4814   CleanupKind getARCCleanupKind() {
4815     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4816              ? NormalAndEHCleanup : NormalCleanup;
4817   }
4818 
4819   // ARC primitives.
4820   void EmitARCInitWeak(Address addr, llvm::Value *value);
4821   void EmitARCDestroyWeak(Address addr);
4822   llvm::Value *EmitARCLoadWeak(Address addr);
4823   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4824   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4825   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4826   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4827   void EmitARCCopyWeak(Address dst, Address src);
4828   void EmitARCMoveWeak(Address dst, Address src);
4829   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4830   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4831   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4832                                   bool resultIgnored);
4833   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4834                                       bool resultIgnored);
4835   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4836   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4837   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4838   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4839   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4840   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4841   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4842   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4843   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4844   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4845 
4846   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4847   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4848                                       llvm::Type *returnType);
4849   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4850 
4851   std::pair<LValue,llvm::Value*>
4852   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4853   std::pair<LValue,llvm::Value*>
4854   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4855   std::pair<LValue,llvm::Value*>
4856   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4857 
4858   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4859                              llvm::Type *returnType);
4860   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4861                                      llvm::Type *returnType);
4862   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4863 
4864   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4865   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4866   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4867 
4868   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4869   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4870                                             bool allowUnsafeClaim);
4871   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4872   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4873   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4874 
4875   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4876 
4877   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4878 
4879   static Destroyer destroyARCStrongImprecise;
4880   static Destroyer destroyARCStrongPrecise;
4881   static Destroyer destroyARCWeak;
4882   static Destroyer emitARCIntrinsicUse;
4883   static Destroyer destroyNonTrivialCStruct;
4884 
4885   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4886   llvm::Value *EmitObjCAutoreleasePoolPush();
4887   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4888   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4889   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4890 
4891   /// Emits a reference binding to the passed in expression.
4892   RValue EmitReferenceBindingToExpr(const Expr *E);
4893 
4894   //===--------------------------------------------------------------------===//
4895   //                           Expression Emission
4896   //===--------------------------------------------------------------------===//
4897 
4898   // Expressions are broken into three classes: scalar, complex, aggregate.
4899 
4900   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4901   /// scalar type, returning the result.
4902   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4903 
4904   /// Emit a conversion from the specified type to the specified destination
4905   /// type, both of which are LLVM scalar types.
4906   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4907                                     QualType DstTy, SourceLocation Loc);
4908 
4909   /// Emit a conversion from the specified complex type to the specified
4910   /// destination type, where the destination type is an LLVM scalar type.
4911   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4912                                              QualType DstTy,
4913                                              SourceLocation Loc);
4914 
4915   /// EmitAggExpr - Emit the computation of the specified expression
4916   /// of aggregate type.  The result is computed into the given slot,
4917   /// which may be null to indicate that the value is not needed.
4918   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4919 
4920   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4921   /// aggregate type into a temporary LValue.
4922   LValue EmitAggExprToLValue(const Expr *E);
4923 
4924   enum ExprValueKind { EVK_RValue, EVK_NonRValue };
4925 
4926   /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into
4927   /// destination address.
4928   void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src,
4929                             ExprValueKind SrcKind);
4930 
4931   /// Create a store to \arg DstPtr from \arg Src, truncating the stored value
4932   /// to at most \arg DstSize bytes.
4933   void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize,
4934                           bool DstIsVolatile);
4935 
4936   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4937   /// make sure it survives garbage collection until this point.
4938   void EmitExtendGCLifetime(llvm::Value *object);
4939 
4940   /// EmitComplexExpr - Emit the computation of the specified expression of
4941   /// complex type, returning the result.
4942   ComplexPairTy EmitComplexExpr(const Expr *E,
4943                                 bool IgnoreReal = false,
4944                                 bool IgnoreImag = false);
4945 
4946   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4947   /// type and place its result into the specified l-value.
4948   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4949 
4950   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4951   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4952 
4953   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4954   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4955 
4956   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4957   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4958   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4959   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4960 
4961   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4962   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4963 
4964   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4965   /// global variable that has already been created for it.  If the initializer
4966   /// has a different type than GV does, this may free GV and return a different
4967   /// one.  Otherwise it just returns GV.
4968   llvm::GlobalVariable *
4969   AddInitializerToStaticVarDecl(const VarDecl &D,
4970                                 llvm::GlobalVariable *GV);
4971 
4972   // Emit an @llvm.invariant.start call for the given memory region.
4973   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4974 
4975   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4976   /// variable with global storage.
4977   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4978                                 bool PerformInit);
4979 
4980   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4981                                    llvm::Constant *Addr);
4982 
4983   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4984                                       llvm::FunctionCallee Dtor,
4985                                       llvm::Constant *Addr,
4986                                       llvm::FunctionCallee &AtExit);
4987 
4988   /// Call atexit() with a function that passes the given argument to
4989   /// the given function.
4990   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4991                                     llvm::Constant *addr);
4992 
4993   /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
4994   /// support an 'atexit()' function.
4995   void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
4996                                   llvm::Constant *addr);
4997 
4998   /// Call atexit() with function dtorStub.
4999   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
5000 
5001   /// Call unatexit() with function dtorStub.
5002   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
5003 
5004   /// Emit code in this function to perform a guarded variable
5005   /// initialization.  Guarded initializations are used when it's not
5006   /// possible to prove that an initialization will be done exactly
5007   /// once, e.g. with a static local variable or a static data member
5008   /// of a class template.
5009   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
5010                           bool PerformInit);
5011 
5012   enum class GuardKind { VariableGuard, TlsGuard };
5013 
5014   /// Emit a branch to select whether or not to perform guarded initialization.
5015   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
5016                                 llvm::BasicBlock *InitBlock,
5017                                 llvm::BasicBlock *NoInitBlock,
5018                                 GuardKind Kind, const VarDecl *D);
5019 
5020   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
5021   /// variables.
5022   void
5023   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
5024                             ArrayRef<llvm::Function *> CXXThreadLocals,
5025                             ConstantAddress Guard = ConstantAddress::invalid());
5026 
5027   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
5028   /// variables.
5029   void GenerateCXXGlobalCleanUpFunc(
5030       llvm::Function *Fn,
5031       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
5032                           llvm::Constant *>>
5033           DtorsOrStermFinalizers);
5034 
5035   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
5036                                         const VarDecl *D,
5037                                         llvm::GlobalVariable *Addr,
5038                                         bool PerformInit);
5039 
5040   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
5041 
5042   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
5043 
5044   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
5045 
5046   RValue EmitAtomicExpr(AtomicExpr *E);
5047 
5048   //===--------------------------------------------------------------------===//
5049   //                         Annotations Emission
5050   //===--------------------------------------------------------------------===//
5051 
5052   /// Emit an annotation call (intrinsic).
5053   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
5054                                   llvm::Value *AnnotatedVal,
5055                                   StringRef AnnotationStr,
5056                                   SourceLocation Location,
5057                                   const AnnotateAttr *Attr);
5058 
5059   /// Emit local annotations for the local variable V, declared by D.
5060   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
5061 
5062   /// Emit field annotations for the given field & value. Returns the
5063   /// annotation result.
5064   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
5065 
5066   //===--------------------------------------------------------------------===//
5067   //                             Internal Helpers
5068   //===--------------------------------------------------------------------===//
5069 
5070   /// ContainsLabel - Return true if the statement contains a label in it.  If
5071   /// this statement is not executed normally, it not containing a label means
5072   /// that we can just remove the code.
5073   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
5074 
5075   /// containsBreak - Return true if the statement contains a break out of it.
5076   /// If the statement (recursively) contains a switch or loop with a break
5077   /// inside of it, this is fine.
5078   static bool containsBreak(const Stmt *S);
5079 
5080   /// Determine if the given statement might introduce a declaration into the
5081   /// current scope, by being a (possibly-labelled) DeclStmt.
5082   static bool mightAddDeclToScope(const Stmt *S);
5083 
5084   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5085   /// to a constant, or if it does but contains a label, return false.  If it
5086   /// constant folds return true and set the boolean result in Result.
5087   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
5088                                     bool AllowLabels = false);
5089 
5090   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5091   /// to a constant, or if it does but contains a label, return false.  If it
5092   /// constant folds return true and set the folded value.
5093   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
5094                                     bool AllowLabels = false);
5095 
5096   /// Ignore parentheses and logical-NOT to track conditions consistently.
5097   static const Expr *stripCond(const Expr *C);
5098 
5099   /// isInstrumentedCondition - Determine whether the given condition is an
5100   /// instrumentable condition (i.e. no "&&" or "||").
5101   static bool isInstrumentedCondition(const Expr *C);
5102 
5103   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
5104   /// increments a profile counter based on the semantics of the given logical
5105   /// operator opcode.  This is used to instrument branch condition coverage
5106   /// for logical operators.
5107   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
5108                                 llvm::BasicBlock *TrueBlock,
5109                                 llvm::BasicBlock *FalseBlock,
5110                                 uint64_t TrueCount = 0,
5111                                 Stmt::Likelihood LH = Stmt::LH_None,
5112                                 const Expr *CntrIdx = nullptr);
5113 
5114   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
5115   /// if statement) to the specified blocks.  Based on the condition, this might
5116   /// try to simplify the codegen of the conditional based on the branch.
5117   /// TrueCount should be the number of times we expect the condition to
5118   /// evaluate to true based on PGO data.
5119   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
5120                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
5121                             Stmt::Likelihood LH = Stmt::LH_None,
5122                             const Expr *ConditionalOp = nullptr);
5123 
5124   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
5125   /// nonnull, if \p LHS is marked _Nonnull.
5126   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
5127 
5128   /// An enumeration which makes it easier to specify whether or not an
5129   /// operation is a subtraction.
5130   enum { NotSubtraction = false, IsSubtraction = true };
5131 
5132   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
5133   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
5134   /// \p SignedIndices indicates whether any of the GEP indices are signed.
5135   /// \p IsSubtraction indicates whether the expression used to form the GEP
5136   /// is a subtraction.
5137   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
5138                                       ArrayRef<llvm::Value *> IdxList,
5139                                       bool SignedIndices,
5140                                       bool IsSubtraction,
5141                                       SourceLocation Loc,
5142                                       const Twine &Name = "");
5143 
5144   Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList,
5145                                  llvm::Type *elementType, bool SignedIndices,
5146                                  bool IsSubtraction, SourceLocation Loc,
5147                                  CharUnits Align, const Twine &Name = "");
5148 
5149   /// Specifies which type of sanitizer check to apply when handling a
5150   /// particular builtin.
5151   enum BuiltinCheckKind {
5152     BCK_CTZPassedZero,
5153     BCK_CLZPassedZero,
5154     BCK_AssumePassedFalse,
5155   };
5156 
5157   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
5158   /// enabled, a runtime check specified by \p Kind is also emitted.
5159   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
5160 
5161   /// Emits an argument for a call to a `__builtin_assume`. If the builtin
5162   /// sanitizer is enabled, a runtime check is also emitted.
5163   llvm::Value *EmitCheckedArgForAssume(const Expr *E);
5164 
5165   /// Emit a description of a type in a format suitable for passing to
5166   /// a runtime sanitizer handler.
5167   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
5168 
5169   /// Convert a value into a format suitable for passing to a runtime
5170   /// sanitizer handler.
5171   llvm::Value *EmitCheckValue(llvm::Value *V);
5172 
5173   /// Emit a description of a source location in a format suitable for
5174   /// passing to a runtime sanitizer handler.
5175   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
5176 
5177   void EmitKCFIOperandBundle(const CGCallee &Callee,
5178                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
5179 
5180   /// Create a basic block that will either trap or call a handler function in
5181   /// the UBSan runtime with the provided arguments, and create a conditional
5182   /// branch to it.
5183   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
5184                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
5185                  ArrayRef<llvm::Value *> DynamicArgs);
5186 
5187   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
5188   /// if Cond if false.
5189   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
5190                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
5191                             ArrayRef<llvm::Constant *> StaticArgs);
5192 
5193   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
5194   /// checking is enabled. Otherwise, just emit an unreachable instruction.
5195   void EmitUnreachable(SourceLocation Loc);
5196 
5197   /// Create a basic block that will call the trap intrinsic, and emit a
5198   /// conditional branch to it, for the -ftrapv checks.
5199   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID,
5200                      bool NoMerge = false);
5201 
5202   /// Emit a call to trap or debugtrap and attach function attribute
5203   /// "trap-func-name" if specified.
5204   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
5205 
5206   /// Emit a stub for the cross-DSO CFI check function.
5207   void EmitCfiCheckStub();
5208 
5209   /// Emit a cross-DSO CFI failure handling function.
5210   void EmitCfiCheckFail();
5211 
5212   /// Create a check for a function parameter that may potentially be
5213   /// declared as non-null.
5214   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
5215                            AbstractCallee AC, unsigned ParmNum);
5216 
5217   void EmitNonNullArgCheck(Address Addr, QualType ArgType,
5218                            SourceLocation ArgLoc, AbstractCallee AC,
5219                            unsigned ParmNum);
5220 
5221   /// EmitWriteback - Emit callbacks for function.
5222   void EmitWritebacks(const CallArgList &Args);
5223 
5224   /// EmitCallArg - Emit a single call argument.
5225   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
5226 
5227   /// EmitDelegateCallArg - We are performing a delegate call; that
5228   /// is, the current function is delegating to another one.  Produce
5229   /// a r-value suitable for passing the given parameter.
5230   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
5231                            SourceLocation loc);
5232 
5233   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
5234   /// point operation, expressed as the maximum relative error in ulp.
5235   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
5236 
5237   /// Set the minimum required accuracy of the given sqrt operation
5238   /// based on CodeGenOpts.
5239   void SetSqrtFPAccuracy(llvm::Value *Val);
5240 
5241   /// Set the minimum required accuracy of the given sqrt operation based on
5242   /// CodeGenOpts.
5243   void SetDivFPAccuracy(llvm::Value *Val);
5244 
5245   /// Set the codegen fast-math flags.
5246   void SetFastMathFlags(FPOptions FPFeatures);
5247 
5248   // Truncate or extend a boolean vector to the requested number of elements.
5249   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
5250                                      unsigned NumElementsDst,
5251                                      const llvm::Twine &Name = "");
5252 
5253 private:
5254   // Emits a convergence_loop instruction for the given |BB|, with |ParentToken|
5255   // as it's parent convergence instr.
5256   llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB);
5257 
5258   // Adds a convergence_ctrl token with |ParentToken| as parent convergence
5259   // instr to the call |Input|.
5260   llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input);
5261 
5262   // Find the convergence_entry instruction |F|, or emits ones if none exists.
5263   // Returns the convergence instruction.
5264   llvm::ConvergenceControlInst *
5265   getOrEmitConvergenceEntryToken(llvm::Function *F);
5266 
5267 private:
5268   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
5269   void EmitReturnOfRValue(RValue RV, QualType Ty);
5270 
5271   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
5272 
5273   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
5274       DeferredReplacements;
5275 
5276   /// Set the address of a local variable.
5277   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
5278     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
5279     LocalDeclMap.insert({VD, Addr});
5280   }
5281 
5282   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
5283   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
5284   ///
5285   /// \param AI - The first function argument of the expansion.
5286   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
5287                           llvm::Function::arg_iterator &AI);
5288 
5289   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
5290   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
5291   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
5292   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
5293                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
5294                         unsigned &IRCallArgPos);
5295 
5296   std::pair<llvm::Value *, llvm::Type *>
5297   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
5298                std::string &ConstraintStr);
5299 
5300   std::pair<llvm::Value *, llvm::Type *>
5301   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
5302                      QualType InputType, std::string &ConstraintStr,
5303                      SourceLocation Loc);
5304 
5305   /// Attempts to statically evaluate the object size of E. If that
5306   /// fails, emits code to figure the size of E out for us. This is
5307   /// pass_object_size aware.
5308   ///
5309   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
5310   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
5311                                                llvm::IntegerType *ResType,
5312                                                llvm::Value *EmittedE,
5313                                                bool IsDynamic);
5314 
5315   /// Emits the size of E, as required by __builtin_object_size. This
5316   /// function is aware of pass_object_size parameters, and will act accordingly
5317   /// if E is a parameter with the pass_object_size attribute.
5318   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
5319                                      llvm::IntegerType *ResType,
5320                                      llvm::Value *EmittedE,
5321                                      bool IsDynamic);
5322 
5323   llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
5324                                            llvm::IntegerType *ResType);
5325 
5326   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
5327                                        Address Loc);
5328 
5329 public:
5330   enum class EvaluationOrder {
5331     ///! No language constraints on evaluation order.
5332     Default,
5333     ///! Language semantics require left-to-right evaluation.
5334     ForceLeftToRight,
5335     ///! Language semantics require right-to-left evaluation.
5336     ForceRightToLeft
5337   };
5338 
5339   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
5340   // an ObjCMethodDecl.
5341   struct PrototypeWrapper {
5342     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
5343 
5344     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
5345     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
5346   };
5347 
5348   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
5349                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
5350                     AbstractCallee AC = AbstractCallee(),
5351                     unsigned ParamsToSkip = 0,
5352                     EvaluationOrder Order = EvaluationOrder::Default);
5353 
5354   /// EmitPointerWithAlignment - Given an expression with a pointer type,
5355   /// emit the value and compute our best estimate of the alignment of the
5356   /// pointee.
5357   ///
5358   /// \param BaseInfo - If non-null, this will be initialized with
5359   /// information about the source of the alignment and the may-alias
5360   /// attribute.  Note that this function will conservatively fall back on
5361   /// the type when it doesn't recognize the expression and may-alias will
5362   /// be set to false.
5363   ///
5364   /// One reasonable way to use this information is when there's a language
5365   /// guarantee that the pointer must be aligned to some stricter value, and
5366   /// we're simply trying to ensure that sufficiently obvious uses of under-
5367   /// aligned objects don't get miscompiled; for example, a placement new
5368   /// into the address of a local variable.  In such a case, it's quite
5369   /// reasonable to just ignore the returned alignment when it isn't from an
5370   /// explicit source.
5371   Address
5372   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
5373                            TBAAAccessInfo *TBAAInfo = nullptr,
5374                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
5375 
5376   /// If \p E references a parameter with pass_object_size info or a constant
5377   /// array size modifier, emit the object size divided by the size of \p EltTy.
5378   /// Otherwise return null.
5379   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
5380 
5381   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
5382 
5383   struct FMVResolverOption {
5384     llvm::Function *Function;
5385     llvm::SmallVector<StringRef, 8> Features;
5386     std::optional<StringRef> Architecture;
5387 
5388     FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats,
5389                       std::optional<StringRef> Arch = std::nullopt)
5390         : Function(F), Features(Feats), Architecture(Arch) {}
5391   };
5392 
5393   // Emits the body of a multiversion function's resolver. Assumes that the
5394   // options are already sorted in the proper order, with the 'default' option
5395   // last (if it exists).
5396   void EmitMultiVersionResolver(llvm::Function *Resolver,
5397                                 ArrayRef<FMVResolverOption> Options);
5398   void EmitX86MultiVersionResolver(llvm::Function *Resolver,
5399                                    ArrayRef<FMVResolverOption> Options);
5400   void EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
5401                                        ArrayRef<FMVResolverOption> Options);
5402   void EmitRISCVMultiVersionResolver(llvm::Function *Resolver,
5403                                      ArrayRef<FMVResolverOption> Options);
5404 
5405 private:
5406   QualType getVarArgType(const Expr *Arg);
5407 
5408   void EmitDeclMetadata();
5409 
5410   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
5411                                   const AutoVarEmission &emission);
5412 
5413   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
5414 
5415   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
5416   llvm::Value *EmitX86CpuIs(const CallExpr *E);
5417   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
5418   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
5419   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
5420   llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
5421   llvm::Value *EmitX86CpuInit();
5422   llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO);
5423   llvm::Value *EmitAArch64CpuInit();
5424   llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO);
5425   llvm::Value *EmitAArch64CpuSupports(const CallExpr *E);
5426   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5427 };
5428 
5429 inline DominatingLLVMValue::saved_type
5430 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5431   if (!needsSaving(value)) return saved_type(value, false);
5432 
5433   // Otherwise, we need an alloca.
5434   auto align = CharUnits::fromQuantity(
5435       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5436   Address alloca =
5437       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5438   CGF.Builder.CreateStore(value, alloca);
5439 
5440   return saved_type(alloca.emitRawPointer(CGF), true);
5441 }
5442 
5443 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5444                                                  saved_type value) {
5445   // If the value says it wasn't saved, trust that it's still dominating.
5446   if (!value.getInt()) return value.getPointer();
5447 
5448   // Otherwise, it should be an alloca instruction, as set up in save().
5449   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5450   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5451                                        alloca->getAlign());
5452 }
5453 
5454 }  // end namespace CodeGen
5455 
5456 // Map the LangOption for floating point exception behavior into
5457 // the corresponding enum in the IR.
5458 llvm::fp::ExceptionBehavior
5459 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5460 }  // end namespace clang
5461 
5462 #endif
5463