1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenACC.h" 30 #include "clang/AST/StmtOpenMP.h" 31 #include "clang/AST/Type.h" 32 #include "clang/Basic/ABI.h" 33 #include "clang/Basic/CapturedStmt.h" 34 #include "clang/Basic/CodeGenOptions.h" 35 #include "clang/Basic/OpenMPKinds.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/MapVector.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/SanitizerStats.h" 46 #include <optional> 47 48 namespace llvm { 49 class BasicBlock; 50 class LLVMContext; 51 class MDNode; 52 class SwitchInst; 53 class Twine; 54 class Value; 55 class CanonicalLoopInfo; 56 } 57 58 namespace clang { 59 class ASTContext; 60 class CXXDestructorDecl; 61 class CXXForRangeStmt; 62 class CXXTryStmt; 63 class Decl; 64 class LabelDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGBlockInfo; 95 class CGCXXABI; 96 class BlockByrefHelpers; 97 class BlockByrefInfo; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 126 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 127 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 128 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 129 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 130 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 131 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 132 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 133 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 134 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 135 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 136 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 137 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 138 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 139 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 140 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ 141 SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) 142 143 enum SanitizerHandler { 144 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 145 LIST_SANITIZER_CHECKS 146 #undef SANITIZER_CHECK 147 }; 148 149 /// Helper class with most of the code for saving a value for a 150 /// conditional expression cleanup. 151 struct DominatingLLVMValue { 152 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 153 154 /// Answer whether the given value needs extra work to be saved. 155 static bool needsSaving(llvm::Value *value) { 156 if (!value) 157 return false; 158 159 // If it's not an instruction, we don't need to save. 160 if (!isa<llvm::Instruction>(value)) return false; 161 162 // If it's an instruction in the entry block, we don't need to save. 163 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 164 return (block != &block->getParent()->getEntryBlock()); 165 } 166 167 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 168 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 169 }; 170 171 /// A partial specialization of DominatingValue for llvm::Values that 172 /// might be llvm::Instructions. 173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 174 typedef T *type; 175 static type restore(CodeGenFunction &CGF, saved_type value) { 176 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 177 } 178 }; 179 180 /// A specialization of DominatingValue for Address. 181 template <> struct DominatingValue<Address> { 182 typedef Address type; 183 184 struct saved_type { 185 DominatingLLVMValue::saved_type BasePtr; 186 llvm::Type *ElementType; 187 CharUnits Alignment; 188 DominatingLLVMValue::saved_type Offset; 189 llvm::PointerType *EffectiveType; 190 }; 191 192 static bool needsSaving(type value) { 193 if (DominatingLLVMValue::needsSaving(value.getBasePointer()) || 194 DominatingLLVMValue::needsSaving(value.getOffset())) 195 return true; 196 return false; 197 } 198 static saved_type save(CodeGenFunction &CGF, type value) { 199 return {DominatingLLVMValue::save(CGF, value.getBasePointer()), 200 value.getElementType(), value.getAlignment(), 201 DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()}; 202 } 203 static type restore(CodeGenFunction &CGF, saved_type value) { 204 return Address(DominatingLLVMValue::restore(CGF, value.BasePtr), 205 value.ElementType, value.Alignment, CGPointerAuthInfo(), 206 DominatingLLVMValue::restore(CGF, value.Offset)); 207 } 208 }; 209 210 /// A specialization of DominatingValue for RValue. 211 template <> struct DominatingValue<RValue> { 212 typedef RValue type; 213 class saved_type { 214 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 215 AggregateAddress, ComplexAddress }; 216 union { 217 struct { 218 DominatingLLVMValue::saved_type first, second; 219 } Vals; 220 DominatingValue<Address>::saved_type AggregateAddr; 221 }; 222 LLVM_PREFERRED_TYPE(Kind) 223 unsigned K : 3; 224 225 saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) 226 : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {} 227 228 saved_type(DominatingLLVMValue::saved_type Val1, 229 DominatingLLVMValue::saved_type Val2) 230 : Vals{Val1, Val2}, K(ComplexAddress) {} 231 232 saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) 233 : AggregateAddr(AggregateAddr), K(K) {} 234 235 public: 236 static bool needsSaving(RValue value); 237 static saved_type save(CodeGenFunction &CGF, RValue value); 238 RValue restore(CodeGenFunction &CGF); 239 240 // implementations in CGCleanup.cpp 241 }; 242 243 static bool needsSaving(type value) { 244 return saved_type::needsSaving(value); 245 } 246 static saved_type save(CodeGenFunction &CGF, type value) { 247 return saved_type::save(CGF, value); 248 } 249 static type restore(CodeGenFunction &CGF, saved_type value) { 250 return value.restore(CGF); 251 } 252 }; 253 254 /// CodeGenFunction - This class organizes the per-function state that is used 255 /// while generating LLVM code. 256 class CodeGenFunction : public CodeGenTypeCache { 257 CodeGenFunction(const CodeGenFunction &) = delete; 258 void operator=(const CodeGenFunction &) = delete; 259 260 friend class CGCXXABI; 261 public: 262 /// A jump destination is an abstract label, branching to which may 263 /// require a jump out through normal cleanups. 264 struct JumpDest { 265 JumpDest() : Block(nullptr), Index(0) {} 266 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 267 unsigned Index) 268 : Block(Block), ScopeDepth(Depth), Index(Index) {} 269 270 bool isValid() const { return Block != nullptr; } 271 llvm::BasicBlock *getBlock() const { return Block; } 272 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 273 unsigned getDestIndex() const { return Index; } 274 275 // This should be used cautiously. 276 void setScopeDepth(EHScopeStack::stable_iterator depth) { 277 ScopeDepth = depth; 278 } 279 280 private: 281 llvm::BasicBlock *Block; 282 EHScopeStack::stable_iterator ScopeDepth; 283 unsigned Index; 284 }; 285 286 CodeGenModule &CGM; // Per-module state. 287 const TargetInfo &Target; 288 289 // For EH/SEH outlined funclets, this field points to parent's CGF 290 CodeGenFunction *ParentCGF = nullptr; 291 292 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 293 LoopInfoStack LoopStack; 294 CGBuilderTy Builder; 295 296 // Stores variables for which we can't generate correct lifetime markers 297 // because of jumps. 298 VarBypassDetector Bypasses; 299 300 /// List of recently emitted OMPCanonicalLoops. 301 /// 302 /// Since OMPCanonicalLoops are nested inside other statements (in particular 303 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 304 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 305 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 306 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 307 /// this stack when done. Entering a new loop requires clearing this list; it 308 /// either means we start parsing a new loop nest (in which case the previous 309 /// loop nest goes out of scope) or a second loop in the same level in which 310 /// case it would be ambiguous into which of the two (or more) loops the loop 311 /// nest would extend. 312 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 313 314 /// Stack to track the Logical Operator recursion nest for MC/DC. 315 SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; 316 317 /// Stack to track the controlled convergence tokens. 318 SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack; 319 320 /// Number of nested loop to be consumed by the last surrounding 321 /// loop-associated directive. 322 int ExpectedOMPLoopDepth = 0; 323 324 // CodeGen lambda for loops and support for ordered clause 325 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 326 JumpDest)> 327 CodeGenLoopTy; 328 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 329 const unsigned, const bool)> 330 CodeGenOrderedTy; 331 332 // Codegen lambda for loop bounds in worksharing loop constructs 333 typedef llvm::function_ref<std::pair<LValue, LValue>( 334 CodeGenFunction &, const OMPExecutableDirective &S)> 335 CodeGenLoopBoundsTy; 336 337 // Codegen lambda for loop bounds in dispatch-based loop implementation 338 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 339 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 340 Address UB)> 341 CodeGenDispatchBoundsTy; 342 343 /// CGBuilder insert helper. This function is called after an 344 /// instruction is created using Builder. 345 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 346 llvm::BasicBlock::iterator InsertPt) const; 347 348 /// CurFuncDecl - Holds the Decl for the current outermost 349 /// non-closure context. 350 const Decl *CurFuncDecl = nullptr; 351 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 352 const Decl *CurCodeDecl = nullptr; 353 const CGFunctionInfo *CurFnInfo = nullptr; 354 QualType FnRetTy; 355 llvm::Function *CurFn = nullptr; 356 357 /// Save Parameter Decl for coroutine. 358 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 359 360 // Holds coroutine data if the current function is a coroutine. We use a 361 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 362 // in this header. 363 struct CGCoroInfo { 364 std::unique_ptr<CGCoroData> Data; 365 bool InSuspendBlock = false; 366 CGCoroInfo(); 367 ~CGCoroInfo(); 368 }; 369 CGCoroInfo CurCoro; 370 371 bool isCoroutine() const { 372 return CurCoro.Data != nullptr; 373 } 374 375 bool inSuspendBlock() const { 376 return isCoroutine() && CurCoro.InSuspendBlock; 377 } 378 379 // Holds FramePtr for await_suspend wrapper generation, 380 // so that __builtin_coro_frame call can be lowered 381 // directly to value of its second argument 382 struct AwaitSuspendWrapperInfo { 383 llvm::Value *FramePtr = nullptr; 384 }; 385 AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; 386 387 // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. 388 // It encapsulates SuspendExpr in a function, to separate it's body 389 // from the main coroutine to avoid miscompilations. Intrinisic 390 // is lowered to this function call in CoroSplit pass 391 // Function signature is: 392 // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) 393 // where type is one of (void, i1, ptr) 394 llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, 395 Twine const &SuspendPointName, 396 CoroutineSuspendExpr const &S); 397 398 /// CurGD - The GlobalDecl for the current function being compiled. 399 GlobalDecl CurGD; 400 401 /// PrologueCleanupDepth - The cleanup depth enclosing all the 402 /// cleanups associated with the parameters. 403 EHScopeStack::stable_iterator PrologueCleanupDepth; 404 405 /// ReturnBlock - Unified return block. 406 JumpDest ReturnBlock; 407 408 /// ReturnValue - The temporary alloca to hold the return 409 /// value. This is invalid iff the function has no return value. 410 Address ReturnValue = Address::invalid(); 411 412 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 413 /// This is invalid if sret is not in use. 414 Address ReturnValuePointer = Address::invalid(); 415 416 /// If a return statement is being visited, this holds the return statment's 417 /// result expression. 418 const Expr *RetExpr = nullptr; 419 420 /// Return true if a label was seen in the current scope. 421 bool hasLabelBeenSeenInCurrentScope() const { 422 if (CurLexicalScope) 423 return CurLexicalScope->hasLabels(); 424 return !LabelMap.empty(); 425 } 426 427 /// AllocaInsertPoint - This is an instruction in the entry block before which 428 /// we prefer to insert allocas. 429 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 430 431 private: 432 /// PostAllocaInsertPt - This is a place in the prologue where code can be 433 /// inserted that will be dominated by all the static allocas. This helps 434 /// achieve two things: 435 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 436 /// 2. All other prologue code (which are dominated by static allocas) do 437 /// appear in the source order immediately after all static allocas. 438 /// 439 /// PostAllocaInsertPt will be lazily created when it is *really* required. 440 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 441 442 public: 443 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 444 /// immediately after AllocaInsertPt. 445 llvm::Instruction *getPostAllocaInsertPoint() { 446 if (!PostAllocaInsertPt) { 447 assert(AllocaInsertPt && 448 "Expected static alloca insertion point at function prologue"); 449 assert(AllocaInsertPt->getParent()->isEntryBlock() && 450 "EBB should be entry block of the current code gen function"); 451 PostAllocaInsertPt = AllocaInsertPt->clone(); 452 PostAllocaInsertPt->setName("postallocapt"); 453 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 454 } 455 456 return PostAllocaInsertPt; 457 } 458 459 /// API for captured statement code generation. 460 class CGCapturedStmtInfo { 461 public: 462 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 464 explicit CGCapturedStmtInfo(const CapturedStmt &S, 465 CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 467 468 RecordDecl::field_iterator Field = 469 S.getCapturedRecordDecl()->field_begin(); 470 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 471 E = S.capture_end(); 472 I != E; ++I, ++Field) { 473 if (I->capturesThis()) 474 CXXThisFieldDecl = *Field; 475 else if (I->capturesVariable()) 476 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 477 else if (I->capturesVariableByCopy()) 478 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 479 } 480 } 481 482 virtual ~CGCapturedStmtInfo(); 483 484 CapturedRegionKind getKind() const { return Kind; } 485 486 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 487 // Retrieve the value of the context parameter. 488 virtual llvm::Value *getContextValue() const { return ThisValue; } 489 490 /// Lookup the captured field decl for a variable. 491 virtual const FieldDecl *lookup(const VarDecl *VD) const { 492 return CaptureFields.lookup(VD->getCanonicalDecl()); 493 } 494 495 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 496 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 497 498 static bool classof(const CGCapturedStmtInfo *) { 499 return true; 500 } 501 502 /// Emit the captured statement body. 503 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 504 CGF.incrementProfileCounter(S); 505 CGF.EmitStmt(S); 506 } 507 508 /// Get the name of the capture helper. 509 virtual StringRef getHelperName() const { return "__captured_stmt"; } 510 511 /// Get the CaptureFields 512 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 513 return CaptureFields; 514 } 515 516 private: 517 /// The kind of captured statement being generated. 518 CapturedRegionKind Kind; 519 520 /// Keep the map between VarDecl and FieldDecl. 521 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 522 523 /// The base address of the captured record, passed in as the first 524 /// argument of the parallel region function. 525 llvm::Value *ThisValue; 526 527 /// Captured 'this' type. 528 FieldDecl *CXXThisFieldDecl; 529 }; 530 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 531 532 /// RAII for correct setting/restoring of CapturedStmtInfo. 533 class CGCapturedStmtRAII { 534 private: 535 CodeGenFunction &CGF; 536 CGCapturedStmtInfo *PrevCapturedStmtInfo; 537 public: 538 CGCapturedStmtRAII(CodeGenFunction &CGF, 539 CGCapturedStmtInfo *NewCapturedStmtInfo) 540 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 541 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 542 } 543 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 544 }; 545 546 /// An abstract representation of regular/ObjC call/message targets. 547 class AbstractCallee { 548 /// The function declaration of the callee. 549 const Decl *CalleeDecl; 550 551 public: 552 AbstractCallee() : CalleeDecl(nullptr) {} 553 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 554 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 555 bool hasFunctionDecl() const { 556 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 557 } 558 const Decl *getDecl() const { return CalleeDecl; } 559 unsigned getNumParams() const { 560 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 561 return FD->getNumParams(); 562 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 563 } 564 const ParmVarDecl *getParamDecl(unsigned I) const { 565 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 566 return FD->getParamDecl(I); 567 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 568 } 569 }; 570 571 /// Sanitizers enabled for this function. 572 SanitizerSet SanOpts; 573 574 /// True if CodeGen currently emits code implementing sanitizer checks. 575 bool IsSanitizerScope = false; 576 577 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 578 class SanitizerScope { 579 CodeGenFunction *CGF; 580 public: 581 SanitizerScope(CodeGenFunction *CGF); 582 ~SanitizerScope(); 583 }; 584 585 /// In C++, whether we are code generating a thunk. This controls whether we 586 /// should emit cleanups. 587 bool CurFuncIsThunk = false; 588 589 /// In ARC, whether we should autorelease the return value. 590 bool AutoreleaseResult = false; 591 592 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 593 /// potentially set the return value. 594 bool SawAsmBlock = false; 595 596 GlobalDecl CurSEHParent; 597 598 /// True if the current function is an outlined SEH helper. This can be a 599 /// finally block or filter expression. 600 bool IsOutlinedSEHHelper = false; 601 602 /// True if CodeGen currently emits code inside presereved access index 603 /// region. 604 bool IsInPreservedAIRegion = false; 605 606 /// True if the current statement has nomerge attribute. 607 bool InNoMergeAttributedStmt = false; 608 609 /// True if the current statement has noinline attribute. 610 bool InNoInlineAttributedStmt = false; 611 612 /// True if the current statement has always_inline attribute. 613 bool InAlwaysInlineAttributedStmt = false; 614 615 /// True if the current statement has noconvergent attribute. 616 bool InNoConvergentAttributedStmt = false; 617 618 /// HLSL Branch attribute. 619 HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr = 620 HLSLControlFlowHintAttr::SpellingNotCalculated; 621 622 // The CallExpr within the current statement that the musttail attribute 623 // applies to. nullptr if there is no 'musttail' on the current statement. 624 const CallExpr *MustTailCall = nullptr; 625 626 /// Returns true if a function must make progress, which means the 627 /// mustprogress attribute can be added. 628 bool checkIfFunctionMustProgress() { 629 if (CGM.getCodeGenOpts().getFiniteLoops() == 630 CodeGenOptions::FiniteLoopsKind::Never) 631 return false; 632 633 // C++11 and later guarantees that a thread eventually will do one of the 634 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 635 // - terminate, 636 // - make a call to a library I/O function, 637 // - perform an access through a volatile glvalue, or 638 // - perform a synchronization operation or an atomic operation. 639 // 640 // Hence each function is 'mustprogress' in C++11 or later. 641 return getLangOpts().CPlusPlus11; 642 } 643 644 /// Returns true if a loop must make progress, which means the mustprogress 645 /// attribute can be added. \p HasConstantCond indicates whether the branch 646 /// condition is a known constant. 647 bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); 648 649 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 650 llvm::Value *BlockPointer = nullptr; 651 652 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 653 FieldDecl *LambdaThisCaptureField = nullptr; 654 655 /// A mapping from NRVO variables to the flags used to indicate 656 /// when the NRVO has been applied to this variable. 657 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 658 659 EHScopeStack EHStack; 660 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 661 662 // A stack of cleanups which were added to EHStack but have to be deactivated 663 // later before being popped or emitted. These are usually deactivated on 664 // exiting a `CleanupDeactivationScope` scope. For instance, after a 665 // full-expr. 666 // 667 // These are specially useful for correctly emitting cleanups while 668 // encountering branches out of expression (through stmt-expr or coroutine 669 // suspensions). 670 struct DeferredDeactivateCleanup { 671 EHScopeStack::stable_iterator Cleanup; 672 llvm::Instruction *DominatingIP; 673 }; 674 llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; 675 676 // Enters a new scope for capturing cleanups which are deferred to be 677 // deactivated, all of which will be deactivated once the scope is exited. 678 struct CleanupDeactivationScope { 679 CodeGenFunction &CGF; 680 size_t OldDeactivateCleanupStackSize; 681 bool Deactivated; 682 CleanupDeactivationScope(CodeGenFunction &CGF) 683 : CGF(CGF), OldDeactivateCleanupStackSize( 684 CGF.DeferredDeactivationCleanupStack.size()), 685 Deactivated(false) {} 686 687 void ForceDeactivate() { 688 assert(!Deactivated && "Deactivating already deactivated scope"); 689 auto &Stack = CGF.DeferredDeactivationCleanupStack; 690 for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { 691 CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup, 692 Stack[I - 1].DominatingIP); 693 Stack[I - 1].DominatingIP->eraseFromParent(); 694 } 695 Stack.resize(OldDeactivateCleanupStackSize); 696 Deactivated = true; 697 } 698 699 ~CleanupDeactivationScope() { 700 if (Deactivated) 701 return; 702 ForceDeactivate(); 703 } 704 }; 705 706 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 707 708 llvm::Instruction *CurrentFuncletPad = nullptr; 709 710 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 711 bool isRedundantBeforeReturn() override { return true; } 712 713 llvm::Value *Addr; 714 llvm::Value *Size; 715 716 public: 717 CallLifetimeEnd(RawAddress addr, llvm::Value *size) 718 : Addr(addr.getPointer()), Size(size) {} 719 720 void Emit(CodeGenFunction &CGF, Flags flags) override { 721 CGF.EmitLifetimeEnd(Size, Addr); 722 } 723 }; 724 725 /// Header for data within LifetimeExtendedCleanupStack. 726 struct LifetimeExtendedCleanupHeader { 727 /// The size of the following cleanup object. 728 unsigned Size; 729 /// The kind of cleanup to push. 730 LLVM_PREFERRED_TYPE(CleanupKind) 731 unsigned Kind : 31; 732 /// Whether this is a conditional cleanup. 733 LLVM_PREFERRED_TYPE(bool) 734 unsigned IsConditional : 1; 735 736 size_t getSize() const { return Size; } 737 CleanupKind getKind() const { return (CleanupKind)Kind; } 738 bool isConditional() const { return IsConditional; } 739 }; 740 741 /// i32s containing the indexes of the cleanup destinations. 742 RawAddress NormalCleanupDest = RawAddress::invalid(); 743 744 unsigned NextCleanupDestIndex = 1; 745 746 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 747 llvm::BasicBlock *EHResumeBlock = nullptr; 748 749 /// The exception slot. All landing pads write the current exception pointer 750 /// into this alloca. 751 llvm::Value *ExceptionSlot = nullptr; 752 753 /// The selector slot. Under the MandatoryCleanup model, all landing pads 754 /// write the current selector value into this alloca. 755 llvm::AllocaInst *EHSelectorSlot = nullptr; 756 757 /// A stack of exception code slots. Entering an __except block pushes a slot 758 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 759 /// a value from the top of the stack. 760 SmallVector<Address, 1> SEHCodeSlotStack; 761 762 /// Value returned by __exception_info intrinsic. 763 llvm::Value *SEHInfo = nullptr; 764 765 /// Emits a landing pad for the current EH stack. 766 llvm::BasicBlock *EmitLandingPad(); 767 768 llvm::BasicBlock *getInvokeDestImpl(); 769 770 /// Parent loop-based directive for scan directive. 771 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 772 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 773 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 774 llvm::BasicBlock *OMPScanExitBlock = nullptr; 775 llvm::BasicBlock *OMPScanDispatch = nullptr; 776 bool OMPFirstScanLoop = false; 777 778 /// Manages parent directive for scan directives. 779 class ParentLoopDirectiveForScanRegion { 780 CodeGenFunction &CGF; 781 const OMPExecutableDirective *ParentLoopDirectiveForScan; 782 783 public: 784 ParentLoopDirectiveForScanRegion( 785 CodeGenFunction &CGF, 786 const OMPExecutableDirective &ParentLoopDirectiveForScan) 787 : CGF(CGF), 788 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 789 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 790 } 791 ~ParentLoopDirectiveForScanRegion() { 792 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 793 } 794 }; 795 796 template <class T> 797 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 798 return DominatingValue<T>::save(*this, value); 799 } 800 801 class CGFPOptionsRAII { 802 public: 803 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 804 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 805 ~CGFPOptionsRAII(); 806 807 private: 808 void ConstructorHelper(FPOptions FPFeatures); 809 CodeGenFunction &CGF; 810 FPOptions OldFPFeatures; 811 llvm::fp::ExceptionBehavior OldExcept; 812 llvm::RoundingMode OldRounding; 813 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 814 }; 815 FPOptions CurFPFeatures; 816 817 public: 818 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 819 /// rethrows. 820 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 821 822 /// A class controlling the emission of a finally block. 823 class FinallyInfo { 824 /// Where the catchall's edge through the cleanup should go. 825 JumpDest RethrowDest; 826 827 /// A function to call to enter the catch. 828 llvm::FunctionCallee BeginCatchFn; 829 830 /// An i1 variable indicating whether or not the @finally is 831 /// running for an exception. 832 llvm::AllocaInst *ForEHVar = nullptr; 833 834 /// An i8* variable into which the exception pointer to rethrow 835 /// has been saved. 836 llvm::AllocaInst *SavedExnVar = nullptr; 837 838 public: 839 void enter(CodeGenFunction &CGF, const Stmt *Finally, 840 llvm::FunctionCallee beginCatchFn, 841 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 842 void exit(CodeGenFunction &CGF); 843 }; 844 845 /// Returns true inside SEH __try blocks. 846 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 847 848 /// Returns true while emitting a cleanuppad. 849 bool isCleanupPadScope() const { 850 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 851 } 852 853 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 854 /// current full-expression. Safe against the possibility that 855 /// we're currently inside a conditionally-evaluated expression. 856 template <class T, class... As> 857 void pushFullExprCleanup(CleanupKind kind, As... A) { 858 // If we're not in a conditional branch, or if none of the 859 // arguments requires saving, then use the unconditional cleanup. 860 if (!isInConditionalBranch()) 861 return EHStack.pushCleanup<T>(kind, A...); 862 863 // Stash values in a tuple so we can guarantee the order of saves. 864 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 865 SavedTuple Saved{saveValueInCond(A)...}; 866 867 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 868 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 869 initFullExprCleanup(); 870 } 871 872 /// Queue a cleanup to be pushed after finishing the current full-expression, 873 /// potentially with an active flag. 874 template <class T, class... As> 875 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 876 if (!isInConditionalBranch()) 877 return pushCleanupAfterFullExprWithActiveFlag<T>( 878 Kind, RawAddress::invalid(), A...); 879 880 RawAddress ActiveFlag = createCleanupActiveFlag(); 881 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 882 "cleanup active flag should never need saving"); 883 884 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 885 SavedTuple Saved{saveValueInCond(A)...}; 886 887 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 888 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 889 } 890 891 template <class T, class... As> 892 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 893 RawAddress ActiveFlag, As... A) { 894 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 895 ActiveFlag.isValid()}; 896 897 size_t OldSize = LifetimeExtendedCleanupStack.size(); 898 LifetimeExtendedCleanupStack.resize( 899 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 900 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 901 902 static_assert(sizeof(Header) % alignof(T) == 0, 903 "Cleanup will be allocated on misaligned address"); 904 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 905 new (Buffer) LifetimeExtendedCleanupHeader(Header); 906 new (Buffer + sizeof(Header)) T(A...); 907 if (Header.IsConditional) 908 new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); 909 } 910 911 // Push a cleanup onto EHStack and deactivate it later. It is usually 912 // deactivated when exiting a `CleanupDeactivationScope` (for example: after a 913 // full expression). 914 template <class T, class... As> 915 void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { 916 // Placeholder dominating IP for this cleanup. 917 llvm::Instruction *DominatingIP = 918 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 919 EHStack.pushCleanup<T>(Kind, A...); 920 DeferredDeactivationCleanupStack.push_back( 921 {EHStack.stable_begin(), DominatingIP}); 922 } 923 924 /// Set up the last cleanup that was pushed as a conditional 925 /// full-expression cleanup. 926 void initFullExprCleanup() { 927 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 928 } 929 930 void initFullExprCleanupWithFlag(RawAddress ActiveFlag); 931 RawAddress createCleanupActiveFlag(); 932 933 /// PushDestructorCleanup - Push a cleanup to call the 934 /// complete-object destructor of an object of the given type at the 935 /// given address. Does nothing if T is not a C++ class type with a 936 /// non-trivial destructor. 937 void PushDestructorCleanup(QualType T, Address Addr); 938 939 /// PushDestructorCleanup - Push a cleanup to call the 940 /// complete-object variant of the given destructor on the object at 941 /// the given address. 942 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 943 Address Addr); 944 945 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 946 /// process all branch fixups. 947 void PopCleanupBlock(bool FallThroughIsBranchThrough = false, 948 bool ForDeactivation = false); 949 950 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 951 /// The block cannot be reactivated. Pops it if it's the top of the 952 /// stack. 953 /// 954 /// \param DominatingIP - An instruction which is known to 955 /// dominate the current IP (if set) and which lies along 956 /// all paths of execution between the current IP and the 957 /// the point at which the cleanup comes into scope. 958 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 959 llvm::Instruction *DominatingIP); 960 961 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 962 /// Cannot be used to resurrect a deactivated cleanup. 963 /// 964 /// \param DominatingIP - An instruction which is known to 965 /// dominate the current IP (if set) and which lies along 966 /// all paths of execution between the current IP and the 967 /// the point at which the cleanup comes into scope. 968 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 969 llvm::Instruction *DominatingIP); 970 971 /// Enters a new scope for capturing cleanups, all of which 972 /// will be executed once the scope is exited. 973 class RunCleanupsScope { 974 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 975 size_t LifetimeExtendedCleanupStackSize; 976 CleanupDeactivationScope DeactivateCleanups; 977 bool OldDidCallStackSave; 978 protected: 979 bool PerformCleanup; 980 private: 981 982 RunCleanupsScope(const RunCleanupsScope &) = delete; 983 void operator=(const RunCleanupsScope &) = delete; 984 985 protected: 986 CodeGenFunction& CGF; 987 988 public: 989 /// Enter a new cleanup scope. 990 explicit RunCleanupsScope(CodeGenFunction &CGF) 991 : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { 992 CleanupStackDepth = CGF.EHStack.stable_begin(); 993 LifetimeExtendedCleanupStackSize = 994 CGF.LifetimeExtendedCleanupStack.size(); 995 OldDidCallStackSave = CGF.DidCallStackSave; 996 CGF.DidCallStackSave = false; 997 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 998 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 999 } 1000 1001 /// Exit this cleanup scope, emitting any accumulated cleanups. 1002 ~RunCleanupsScope() { 1003 if (PerformCleanup) 1004 ForceCleanup(); 1005 } 1006 1007 /// Determine whether this scope requires any cleanups. 1008 bool requiresCleanups() const { 1009 return CGF.EHStack.stable_begin() != CleanupStackDepth; 1010 } 1011 1012 /// Force the emission of cleanups now, instead of waiting 1013 /// until this object is destroyed. 1014 /// \param ValuesToReload - A list of values that need to be available at 1015 /// the insertion point after cleanup emission. If cleanup emission created 1016 /// a shared cleanup block, these value pointers will be rewritten. 1017 /// Otherwise, they not will be modified. 1018 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 1019 assert(PerformCleanup && "Already forced cleanup"); 1020 CGF.DidCallStackSave = OldDidCallStackSave; 1021 DeactivateCleanups.ForceDeactivate(); 1022 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 1023 ValuesToReload); 1024 PerformCleanup = false; 1025 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 1026 } 1027 }; 1028 1029 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 1030 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 1031 EHScopeStack::stable_end(); 1032 1033 class LexicalScope : public RunCleanupsScope { 1034 SourceRange Range; 1035 SmallVector<const LabelDecl*, 4> Labels; 1036 LexicalScope *ParentScope; 1037 1038 LexicalScope(const LexicalScope &) = delete; 1039 void operator=(const LexicalScope &) = delete; 1040 1041 public: 1042 /// Enter a new cleanup scope. 1043 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 1044 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 1045 CGF.CurLexicalScope = this; 1046 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1047 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 1048 } 1049 1050 void addLabel(const LabelDecl *label) { 1051 assert(PerformCleanup && "adding label to dead scope?"); 1052 Labels.push_back(label); 1053 } 1054 1055 /// Exit this cleanup scope, emitting any accumulated 1056 /// cleanups. 1057 ~LexicalScope() { 1058 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1059 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 1060 1061 // If we should perform a cleanup, force them now. Note that 1062 // this ends the cleanup scope before rescoping any labels. 1063 if (PerformCleanup) { 1064 ApplyDebugLocation DL(CGF, Range.getEnd()); 1065 ForceCleanup(); 1066 } 1067 } 1068 1069 /// Force the emission of cleanups now, instead of waiting 1070 /// until this object is destroyed. 1071 void ForceCleanup() { 1072 CGF.CurLexicalScope = ParentScope; 1073 RunCleanupsScope::ForceCleanup(); 1074 1075 if (!Labels.empty()) 1076 rescopeLabels(); 1077 } 1078 1079 bool hasLabels() const { 1080 return !Labels.empty(); 1081 } 1082 1083 void rescopeLabels(); 1084 }; 1085 1086 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 1087 1088 /// The class used to assign some variables some temporarily addresses. 1089 class OMPMapVars { 1090 DeclMapTy SavedLocals; 1091 DeclMapTy SavedTempAddresses; 1092 OMPMapVars(const OMPMapVars &) = delete; 1093 void operator=(const OMPMapVars &) = delete; 1094 1095 public: 1096 explicit OMPMapVars() = default; 1097 ~OMPMapVars() { 1098 assert(SavedLocals.empty() && "Did not restored original addresses."); 1099 }; 1100 1101 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1102 /// function \p CGF. 1103 /// \return true if at least one variable was set already, false otherwise. 1104 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1105 Address TempAddr) { 1106 LocalVD = LocalVD->getCanonicalDecl(); 1107 // Only save it once. 1108 if (SavedLocals.count(LocalVD)) return false; 1109 1110 // Copy the existing local entry to SavedLocals. 1111 auto it = CGF.LocalDeclMap.find(LocalVD); 1112 if (it != CGF.LocalDeclMap.end()) 1113 SavedLocals.try_emplace(LocalVD, it->second); 1114 else 1115 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1116 1117 // Generate the private entry. 1118 QualType VarTy = LocalVD->getType(); 1119 if (VarTy->isReferenceType()) { 1120 Address Temp = CGF.CreateMemTemp(VarTy); 1121 CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp); 1122 TempAddr = Temp; 1123 } 1124 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1125 1126 return true; 1127 } 1128 1129 /// Applies new addresses to the list of the variables. 1130 /// \return true if at least one variable is using new address, false 1131 /// otherwise. 1132 bool apply(CodeGenFunction &CGF) { 1133 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1134 SavedTempAddresses.clear(); 1135 return !SavedLocals.empty(); 1136 } 1137 1138 /// Restores original addresses of the variables. 1139 void restore(CodeGenFunction &CGF) { 1140 if (!SavedLocals.empty()) { 1141 copyInto(SavedLocals, CGF.LocalDeclMap); 1142 SavedLocals.clear(); 1143 } 1144 } 1145 1146 private: 1147 /// Copy all the entries in the source map over the corresponding 1148 /// entries in the destination, which must exist. 1149 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1150 for (auto &[Decl, Addr] : Src) { 1151 if (!Addr.isValid()) 1152 Dest.erase(Decl); 1153 else 1154 Dest.insert_or_assign(Decl, Addr); 1155 } 1156 } 1157 }; 1158 1159 /// The scope used to remap some variables as private in the OpenMP loop body 1160 /// (or other captured region emitted without outlining), and to restore old 1161 /// vars back on exit. 1162 class OMPPrivateScope : public RunCleanupsScope { 1163 OMPMapVars MappedVars; 1164 OMPPrivateScope(const OMPPrivateScope &) = delete; 1165 void operator=(const OMPPrivateScope &) = delete; 1166 1167 public: 1168 /// Enter a new OpenMP private scope. 1169 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1170 1171 /// Registers \p LocalVD variable as a private with \p Addr as the address 1172 /// of the corresponding private variable. \p 1173 /// PrivateGen is the address of the generated private variable. 1174 /// \return true if the variable is registered as private, false if it has 1175 /// been privatized already. 1176 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1177 assert(PerformCleanup && "adding private to dead scope"); 1178 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1179 } 1180 1181 /// Privatizes local variables previously registered as private. 1182 /// Registration is separate from the actual privatization to allow 1183 /// initializers use values of the original variables, not the private one. 1184 /// This is important, for example, if the private variable is a class 1185 /// variable initialized by a constructor that references other private 1186 /// variables. But at initialization original variables must be used, not 1187 /// private copies. 1188 /// \return true if at least one variable was privatized, false otherwise. 1189 bool Privatize() { return MappedVars.apply(CGF); } 1190 1191 void ForceCleanup() { 1192 RunCleanupsScope::ForceCleanup(); 1193 restoreMap(); 1194 } 1195 1196 /// Exit scope - all the mapped variables are restored. 1197 ~OMPPrivateScope() { 1198 if (PerformCleanup) 1199 ForceCleanup(); 1200 } 1201 1202 /// Checks if the global variable is captured in current function. 1203 bool isGlobalVarCaptured(const VarDecl *VD) const { 1204 VD = VD->getCanonicalDecl(); 1205 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1206 } 1207 1208 /// Restore all mapped variables w/o clean up. This is usefully when we want 1209 /// to reference the original variables but don't want the clean up because 1210 /// that could emit lifetime end too early, causing backend issue #56913. 1211 void restoreMap() { MappedVars.restore(CGF); } 1212 }; 1213 1214 /// Save/restore original map of previously emitted local vars in case when we 1215 /// need to duplicate emission of the same code several times in the same 1216 /// function for OpenMP code. 1217 class OMPLocalDeclMapRAII { 1218 CodeGenFunction &CGF; 1219 DeclMapTy SavedMap; 1220 1221 public: 1222 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1223 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1224 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1225 }; 1226 1227 /// Takes the old cleanup stack size and emits the cleanup blocks 1228 /// that have been added. 1229 void 1230 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1231 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1232 1233 /// Takes the old cleanup stack size and emits the cleanup blocks 1234 /// that have been added, then adds all lifetime-extended cleanups from 1235 /// the given position to the stack. 1236 void 1237 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1238 size_t OldLifetimeExtendedStackSize, 1239 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1240 1241 void ResolveBranchFixups(llvm::BasicBlock *Target); 1242 1243 /// The given basic block lies in the current EH scope, but may be a 1244 /// target of a potentially scope-crossing jump; get a stable handle 1245 /// to which we can perform this jump later. 1246 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1247 return JumpDest(Target, 1248 EHStack.getInnermostNormalCleanup(), 1249 NextCleanupDestIndex++); 1250 } 1251 1252 /// The given basic block lies in the current EH scope, but may be a 1253 /// target of a potentially scope-crossing jump; get a stable handle 1254 /// to which we can perform this jump later. 1255 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1256 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1257 } 1258 1259 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1260 /// block through the normal cleanup handling code (if any) and then 1261 /// on to \arg Dest. 1262 void EmitBranchThroughCleanup(JumpDest Dest); 1263 1264 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1265 /// specified destination obviously has no cleanups to run. 'false' is always 1266 /// a conservatively correct answer for this method. 1267 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1268 1269 /// popCatchScope - Pops the catch scope at the top of the EHScope 1270 /// stack, emitting any required code (other than the catch handlers 1271 /// themselves). 1272 void popCatchScope(); 1273 1274 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1275 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1276 llvm::BasicBlock * 1277 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1278 1279 /// An object to manage conditionally-evaluated expressions. 1280 class ConditionalEvaluation { 1281 llvm::BasicBlock *StartBB; 1282 1283 public: 1284 ConditionalEvaluation(CodeGenFunction &CGF) 1285 : StartBB(CGF.Builder.GetInsertBlock()) {} 1286 1287 void begin(CodeGenFunction &CGF) { 1288 assert(CGF.OutermostConditional != this); 1289 if (!CGF.OutermostConditional) 1290 CGF.OutermostConditional = this; 1291 } 1292 1293 void end(CodeGenFunction &CGF) { 1294 assert(CGF.OutermostConditional != nullptr); 1295 if (CGF.OutermostConditional == this) 1296 CGF.OutermostConditional = nullptr; 1297 } 1298 1299 /// Returns a block which will be executed prior to each 1300 /// evaluation of the conditional code. 1301 llvm::BasicBlock *getStartingBlock() const { 1302 return StartBB; 1303 } 1304 }; 1305 1306 /// isInConditionalBranch - Return true if we're currently emitting 1307 /// one branch or the other of a conditional expression. 1308 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1309 1310 void setBeforeOutermostConditional(llvm::Value *value, Address addr, 1311 CodeGenFunction &CGF) { 1312 assert(isInConditionalBranch()); 1313 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1314 auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), 1315 block->back().getIterator()); 1316 store->setAlignment(addr.getAlignment().getAsAlign()); 1317 } 1318 1319 /// An RAII object to record that we're evaluating a statement 1320 /// expression. 1321 class StmtExprEvaluation { 1322 CodeGenFunction &CGF; 1323 1324 /// We have to save the outermost conditional: cleanups in a 1325 /// statement expression aren't conditional just because the 1326 /// StmtExpr is. 1327 ConditionalEvaluation *SavedOutermostConditional; 1328 1329 public: 1330 StmtExprEvaluation(CodeGenFunction &CGF) 1331 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1332 CGF.OutermostConditional = nullptr; 1333 } 1334 1335 ~StmtExprEvaluation() { 1336 CGF.OutermostConditional = SavedOutermostConditional; 1337 CGF.EnsureInsertPoint(); 1338 } 1339 }; 1340 1341 /// An object which temporarily prevents a value from being 1342 /// destroyed by aggressive peephole optimizations that assume that 1343 /// all uses of a value have been realized in the IR. 1344 class PeepholeProtection { 1345 llvm::Instruction *Inst = nullptr; 1346 friend class CodeGenFunction; 1347 1348 public: 1349 PeepholeProtection() = default; 1350 }; 1351 1352 /// A non-RAII class containing all the information about a bound 1353 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1354 /// this which makes individual mappings very simple; using this 1355 /// class directly is useful when you have a variable number of 1356 /// opaque values or don't want the RAII functionality for some 1357 /// reason. 1358 class OpaqueValueMappingData { 1359 const OpaqueValueExpr *OpaqueValue; 1360 bool BoundLValue; 1361 CodeGenFunction::PeepholeProtection Protection; 1362 1363 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1364 bool boundLValue) 1365 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1366 public: 1367 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1368 1369 static bool shouldBindAsLValue(const Expr *expr) { 1370 // gl-values should be bound as l-values for obvious reasons. 1371 // Records should be bound as l-values because IR generation 1372 // always keeps them in memory. Expressions of function type 1373 // act exactly like l-values but are formally required to be 1374 // r-values in C. 1375 return expr->isGLValue() || 1376 expr->getType()->isFunctionType() || 1377 hasAggregateEvaluationKind(expr->getType()); 1378 } 1379 1380 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1381 const OpaqueValueExpr *ov, 1382 const Expr *e) { 1383 if (shouldBindAsLValue(ov)) 1384 return bind(CGF, ov, CGF.EmitLValue(e)); 1385 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1386 } 1387 1388 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1389 const OpaqueValueExpr *ov, 1390 const LValue &lv) { 1391 assert(shouldBindAsLValue(ov)); 1392 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1393 return OpaqueValueMappingData(ov, true); 1394 } 1395 1396 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1397 const OpaqueValueExpr *ov, 1398 const RValue &rv) { 1399 assert(!shouldBindAsLValue(ov)); 1400 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1401 1402 OpaqueValueMappingData data(ov, false); 1403 1404 // Work around an extremely aggressive peephole optimization in 1405 // EmitScalarConversion which assumes that all other uses of a 1406 // value are extant. 1407 data.Protection = CGF.protectFromPeepholes(rv); 1408 1409 return data; 1410 } 1411 1412 bool isValid() const { return OpaqueValue != nullptr; } 1413 void clear() { OpaqueValue = nullptr; } 1414 1415 void unbind(CodeGenFunction &CGF) { 1416 assert(OpaqueValue && "no data to unbind!"); 1417 1418 if (BoundLValue) { 1419 CGF.OpaqueLValues.erase(OpaqueValue); 1420 } else { 1421 CGF.OpaqueRValues.erase(OpaqueValue); 1422 CGF.unprotectFromPeepholes(Protection); 1423 } 1424 } 1425 }; 1426 1427 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1428 class OpaqueValueMapping { 1429 CodeGenFunction &CGF; 1430 OpaqueValueMappingData Data; 1431 1432 public: 1433 static bool shouldBindAsLValue(const Expr *expr) { 1434 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1435 } 1436 1437 /// Build the opaque value mapping for the given conditional 1438 /// operator if it's the GNU ?: extension. This is a common 1439 /// enough pattern that the convenience operator is really 1440 /// helpful. 1441 /// 1442 OpaqueValueMapping(CodeGenFunction &CGF, 1443 const AbstractConditionalOperator *op) : CGF(CGF) { 1444 if (isa<ConditionalOperator>(op)) 1445 // Leave Data empty. 1446 return; 1447 1448 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1449 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1450 e->getCommon()); 1451 } 1452 1453 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1454 /// expression is set to the expression the OVE represents. 1455 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1456 : CGF(CGF) { 1457 if (OV) { 1458 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1459 "for OVE with no source expression"); 1460 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1461 } 1462 } 1463 1464 OpaqueValueMapping(CodeGenFunction &CGF, 1465 const OpaqueValueExpr *opaqueValue, 1466 LValue lvalue) 1467 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1468 } 1469 1470 OpaqueValueMapping(CodeGenFunction &CGF, 1471 const OpaqueValueExpr *opaqueValue, 1472 RValue rvalue) 1473 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1474 } 1475 1476 void pop() { 1477 Data.unbind(CGF); 1478 Data.clear(); 1479 } 1480 1481 ~OpaqueValueMapping() { 1482 if (Data.isValid()) Data.unbind(CGF); 1483 } 1484 }; 1485 1486 private: 1487 CGDebugInfo *DebugInfo; 1488 /// Used to create unique names for artificial VLA size debug info variables. 1489 unsigned VLAExprCounter = 0; 1490 bool DisableDebugInfo = false; 1491 1492 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1493 /// calling llvm.stacksave for multiple VLAs in the same scope. 1494 bool DidCallStackSave = false; 1495 1496 /// IndirectBranch - The first time an indirect goto is seen we create a block 1497 /// with an indirect branch. Every time we see the address of a label taken, 1498 /// we add the label to the indirect goto. Every subsequent indirect goto is 1499 /// codegen'd as a jump to the IndirectBranch's basic block. 1500 llvm::IndirectBrInst *IndirectBranch = nullptr; 1501 1502 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1503 /// decls. 1504 DeclMapTy LocalDeclMap; 1505 1506 // Keep track of the cleanups for callee-destructed parameters pushed to the 1507 // cleanup stack so that they can be deactivated later. 1508 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1509 CalleeDestructedParamCleanups; 1510 1511 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1512 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1513 /// parameter. 1514 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1515 SizeArguments; 1516 1517 /// Track escaped local variables with auto storage. Used during SEH 1518 /// outlining to produce a call to llvm.localescape. 1519 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1520 1521 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1522 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1523 1524 // BreakContinueStack - This keeps track of where break and continue 1525 // statements should jump to. 1526 struct BreakContinue { 1527 BreakContinue(JumpDest Break, JumpDest Continue) 1528 : BreakBlock(Break), ContinueBlock(Continue) {} 1529 1530 JumpDest BreakBlock; 1531 JumpDest ContinueBlock; 1532 }; 1533 SmallVector<BreakContinue, 8> BreakContinueStack; 1534 1535 /// Handles cancellation exit points in OpenMP-related constructs. 1536 class OpenMPCancelExitStack { 1537 /// Tracks cancellation exit point and join point for cancel-related exit 1538 /// and normal exit. 1539 struct CancelExit { 1540 CancelExit() = default; 1541 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1542 JumpDest ContBlock) 1543 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1544 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1545 /// true if the exit block has been emitted already by the special 1546 /// emitExit() call, false if the default codegen is used. 1547 bool HasBeenEmitted = false; 1548 JumpDest ExitBlock; 1549 JumpDest ContBlock; 1550 }; 1551 1552 SmallVector<CancelExit, 8> Stack; 1553 1554 public: 1555 OpenMPCancelExitStack() : Stack(1) {} 1556 ~OpenMPCancelExitStack() = default; 1557 /// Fetches the exit block for the current OpenMP construct. 1558 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1559 /// Emits exit block with special codegen procedure specific for the related 1560 /// OpenMP construct + emits code for normal construct cleanup. 1561 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1562 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1563 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1564 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1565 assert(CGF.HaveInsertPoint()); 1566 assert(!Stack.back().HasBeenEmitted); 1567 auto IP = CGF.Builder.saveAndClearIP(); 1568 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1569 CodeGen(CGF); 1570 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1571 CGF.Builder.restoreIP(IP); 1572 Stack.back().HasBeenEmitted = true; 1573 } 1574 CodeGen(CGF); 1575 } 1576 /// Enter the cancel supporting \a Kind construct. 1577 /// \param Kind OpenMP directive that supports cancel constructs. 1578 /// \param HasCancel true, if the construct has inner cancel directive, 1579 /// false otherwise. 1580 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1581 Stack.push_back({Kind, 1582 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1583 : JumpDest(), 1584 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1585 : JumpDest()}); 1586 } 1587 /// Emits default exit point for the cancel construct (if the special one 1588 /// has not be used) + join point for cancel/normal exits. 1589 void exit(CodeGenFunction &CGF) { 1590 if (getExitBlock().isValid()) { 1591 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1592 bool HaveIP = CGF.HaveInsertPoint(); 1593 if (!Stack.back().HasBeenEmitted) { 1594 if (HaveIP) 1595 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1596 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1597 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1598 } 1599 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1600 if (!HaveIP) { 1601 CGF.Builder.CreateUnreachable(); 1602 CGF.Builder.ClearInsertionPoint(); 1603 } 1604 } 1605 Stack.pop_back(); 1606 } 1607 }; 1608 OpenMPCancelExitStack OMPCancelStack; 1609 1610 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1611 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1612 Stmt::Likelihood LH); 1613 1614 CodeGenPGO PGO; 1615 1616 /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. 1617 Address MCDCCondBitmapAddr = Address::invalid(); 1618 1619 /// Calculate branch weights appropriate for PGO data 1620 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1621 uint64_t FalseCount) const; 1622 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1623 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1624 uint64_t LoopCount) const; 1625 1626 public: 1627 /// Increment the profiler's counter for the given statement by \p StepV. 1628 /// If \p StepV is null, the default increment is 1. 1629 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1630 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1631 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1632 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) { 1633 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1634 PGO.emitCounterSetOrIncrement(Builder, S, StepV); 1635 } 1636 PGO.setCurrentStmt(S); 1637 } 1638 1639 bool isMCDCCoverageEnabled() const { 1640 return (CGM.getCodeGenOpts().hasProfileClangInstr() && 1641 CGM.getCodeGenOpts().MCDCCoverage && 1642 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); 1643 } 1644 1645 /// Allocate a temp value on the stack that MCDC can use to track condition 1646 /// results. 1647 void maybeCreateMCDCCondBitmap() { 1648 if (isMCDCCoverageEnabled()) { 1649 PGO.emitMCDCParameters(Builder); 1650 MCDCCondBitmapAddr = 1651 CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr"); 1652 } 1653 } 1654 1655 bool isBinaryLogicalOp(const Expr *E) const { 1656 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens()); 1657 return (BOp && BOp->isLogicalOp()); 1658 } 1659 1660 /// Zero-init the MCDC temp value. 1661 void maybeResetMCDCCondBitmap(const Expr *E) { 1662 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1663 PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr); 1664 PGO.setCurrentStmt(E); 1665 } 1666 } 1667 1668 /// Increment the profiler's counter for the given expression by \p StepV. 1669 /// If \p StepV is null, the default increment is 1. 1670 void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { 1671 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1672 PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this); 1673 PGO.setCurrentStmt(E); 1674 } 1675 } 1676 1677 /// Update the MCDC temp value with the condition's evaluated result. 1678 void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { 1679 if (isMCDCCoverageEnabled()) { 1680 PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this); 1681 PGO.setCurrentStmt(E); 1682 } 1683 } 1684 1685 /// Get the profiler's count for the given statement. 1686 uint64_t getProfileCount(const Stmt *S) { 1687 return PGO.getStmtCount(S).value_or(0); 1688 } 1689 1690 /// Set the profiler's current count. 1691 void setCurrentProfileCount(uint64_t Count) { 1692 PGO.setCurrentRegionCount(Count); 1693 } 1694 1695 /// Get the profiler's current count. This is generally the count for the most 1696 /// recently incremented counter. 1697 uint64_t getCurrentProfileCount() { 1698 return PGO.getCurrentRegionCount(); 1699 } 1700 1701 private: 1702 1703 /// SwitchInsn - This is nearest current switch instruction. It is null if 1704 /// current context is not in a switch. 1705 llvm::SwitchInst *SwitchInsn = nullptr; 1706 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1707 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1708 1709 /// The likelihood attributes of the SwitchCase. 1710 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1711 1712 /// CaseRangeBlock - This block holds if condition check for last case 1713 /// statement range in current switch instruction. 1714 llvm::BasicBlock *CaseRangeBlock = nullptr; 1715 1716 /// OpaqueLValues - Keeps track of the current set of opaque value 1717 /// expressions. 1718 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1719 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1720 1721 // VLASizeMap - This keeps track of the associated size for each VLA type. 1722 // We track this by the size expression rather than the type itself because 1723 // in certain situations, like a const qualifier applied to an VLA typedef, 1724 // multiple VLA types can share the same size expression. 1725 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1726 // enter/leave scopes. 1727 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1728 1729 /// A block containing a single 'unreachable' instruction. Created 1730 /// lazily by getUnreachableBlock(). 1731 llvm::BasicBlock *UnreachableBlock = nullptr; 1732 1733 /// Counts of the number return expressions in the function. 1734 unsigned NumReturnExprs = 0; 1735 1736 /// Count the number of simple (constant) return expressions in the function. 1737 unsigned NumSimpleReturnExprs = 0; 1738 1739 /// The last regular (non-return) debug location (breakpoint) in the function. 1740 SourceLocation LastStopPoint; 1741 1742 public: 1743 /// Source location information about the default argument or member 1744 /// initializer expression we're evaluating, if any. 1745 CurrentSourceLocExprScope CurSourceLocExprScope; 1746 using SourceLocExprScopeGuard = 1747 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1748 1749 /// A scope within which we are constructing the fields of an object which 1750 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1751 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1752 class FieldConstructionScope { 1753 public: 1754 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1755 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1756 CGF.CXXDefaultInitExprThis = This; 1757 } 1758 ~FieldConstructionScope() { 1759 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1760 } 1761 1762 private: 1763 CodeGenFunction &CGF; 1764 Address OldCXXDefaultInitExprThis; 1765 }; 1766 1767 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1768 /// is overridden to be the object under construction. 1769 class CXXDefaultInitExprScope { 1770 public: 1771 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1772 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1773 OldCXXThisAlignment(CGF.CXXThisAlignment), 1774 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1775 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); 1776 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1777 } 1778 ~CXXDefaultInitExprScope() { 1779 CGF.CXXThisValue = OldCXXThisValue; 1780 CGF.CXXThisAlignment = OldCXXThisAlignment; 1781 } 1782 1783 public: 1784 CodeGenFunction &CGF; 1785 llvm::Value *OldCXXThisValue; 1786 CharUnits OldCXXThisAlignment; 1787 SourceLocExprScopeGuard SourceLocScope; 1788 }; 1789 1790 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1791 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1792 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1793 }; 1794 1795 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1796 /// current loop index is overridden. 1797 class ArrayInitLoopExprScope { 1798 public: 1799 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1800 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1801 CGF.ArrayInitIndex = Index; 1802 } 1803 ~ArrayInitLoopExprScope() { 1804 CGF.ArrayInitIndex = OldArrayInitIndex; 1805 } 1806 1807 private: 1808 CodeGenFunction &CGF; 1809 llvm::Value *OldArrayInitIndex; 1810 }; 1811 1812 class InlinedInheritingConstructorScope { 1813 public: 1814 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1815 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1816 OldCurCodeDecl(CGF.CurCodeDecl), 1817 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1818 OldCXXABIThisValue(CGF.CXXABIThisValue), 1819 OldCXXThisValue(CGF.CXXThisValue), 1820 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1821 OldCXXThisAlignment(CGF.CXXThisAlignment), 1822 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1823 OldCXXInheritedCtorInitExprArgs( 1824 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1825 CGF.CurGD = GD; 1826 CGF.CurFuncDecl = CGF.CurCodeDecl = 1827 cast<CXXConstructorDecl>(GD.getDecl()); 1828 CGF.CXXABIThisDecl = nullptr; 1829 CGF.CXXABIThisValue = nullptr; 1830 CGF.CXXThisValue = nullptr; 1831 CGF.CXXABIThisAlignment = CharUnits(); 1832 CGF.CXXThisAlignment = CharUnits(); 1833 CGF.ReturnValue = Address::invalid(); 1834 CGF.FnRetTy = QualType(); 1835 CGF.CXXInheritedCtorInitExprArgs.clear(); 1836 } 1837 ~InlinedInheritingConstructorScope() { 1838 CGF.CurGD = OldCurGD; 1839 CGF.CurFuncDecl = OldCurFuncDecl; 1840 CGF.CurCodeDecl = OldCurCodeDecl; 1841 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1842 CGF.CXXABIThisValue = OldCXXABIThisValue; 1843 CGF.CXXThisValue = OldCXXThisValue; 1844 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1845 CGF.CXXThisAlignment = OldCXXThisAlignment; 1846 CGF.ReturnValue = OldReturnValue; 1847 CGF.FnRetTy = OldFnRetTy; 1848 CGF.CXXInheritedCtorInitExprArgs = 1849 std::move(OldCXXInheritedCtorInitExprArgs); 1850 } 1851 1852 private: 1853 CodeGenFunction &CGF; 1854 GlobalDecl OldCurGD; 1855 const Decl *OldCurFuncDecl; 1856 const Decl *OldCurCodeDecl; 1857 ImplicitParamDecl *OldCXXABIThisDecl; 1858 llvm::Value *OldCXXABIThisValue; 1859 llvm::Value *OldCXXThisValue; 1860 CharUnits OldCXXABIThisAlignment; 1861 CharUnits OldCXXThisAlignment; 1862 Address OldReturnValue; 1863 QualType OldFnRetTy; 1864 CallArgList OldCXXInheritedCtorInitExprArgs; 1865 }; 1866 1867 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1868 // region body, and finalization codegen callbacks. This will class will also 1869 // contain privatization functions used by the privatization call backs 1870 // 1871 // TODO: this is temporary class for things that are being moved out of 1872 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1873 // utility function for use with the OMPBuilder. Once that move to use the 1874 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1875 // directly, or a new helper class that will contain functions used by both 1876 // this and the OMPBuilder 1877 1878 struct OMPBuilderCBHelpers { 1879 1880 OMPBuilderCBHelpers() = delete; 1881 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1882 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1883 1884 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1885 1886 /// Cleanup action for allocate support. 1887 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1888 1889 private: 1890 llvm::CallInst *RTLFnCI; 1891 1892 public: 1893 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1894 RLFnCI->removeFromParent(); 1895 } 1896 1897 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1898 if (!CGF.HaveInsertPoint()) 1899 return; 1900 CGF.Builder.Insert(RTLFnCI); 1901 } 1902 }; 1903 1904 /// Returns address of the threadprivate variable for the current 1905 /// thread. This Also create any necessary OMP runtime calls. 1906 /// 1907 /// \param VD VarDecl for Threadprivate variable. 1908 /// \param VDAddr Address of the Vardecl 1909 /// \param Loc The location where the barrier directive was encountered 1910 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1911 const VarDecl *VD, Address VDAddr, 1912 SourceLocation Loc); 1913 1914 /// Gets the OpenMP-specific address of the local variable /p VD. 1915 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1916 const VarDecl *VD); 1917 /// Get the platform-specific name separator. 1918 /// \param Parts different parts of the final name that needs separation 1919 /// \param FirstSeparator First separator used between the initial two 1920 /// parts of the name. 1921 /// \param Separator separator used between all of the rest consecutinve 1922 /// parts of the name 1923 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1924 StringRef FirstSeparator = ".", 1925 StringRef Separator = "."); 1926 /// Emit the Finalization for an OMP region 1927 /// \param CGF The Codegen function this belongs to 1928 /// \param IP Insertion point for generating the finalization code. 1929 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1930 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1931 assert(IP.getBlock()->end() != IP.getPoint() && 1932 "OpenMP IR Builder should cause terminated block!"); 1933 1934 llvm::BasicBlock *IPBB = IP.getBlock(); 1935 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1936 assert(DestBB && "Finalization block should have one successor!"); 1937 1938 // erase and replace with cleanup branch. 1939 IPBB->getTerminator()->eraseFromParent(); 1940 CGF.Builder.SetInsertPoint(IPBB); 1941 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1942 CGF.EmitBranchThroughCleanup(Dest); 1943 } 1944 1945 /// Emit the body of an OMP region 1946 /// \param CGF The Codegen function this belongs to 1947 /// \param RegionBodyStmt The body statement for the OpenMP region being 1948 /// generated 1949 /// \param AllocaIP Where to insert alloca instructions 1950 /// \param CodeGenIP Where to insert the region code 1951 /// \param RegionName Name to be used for new blocks 1952 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1953 const Stmt *RegionBodyStmt, 1954 InsertPointTy AllocaIP, 1955 InsertPointTy CodeGenIP, 1956 Twine RegionName); 1957 1958 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1959 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1960 ArrayRef<llvm::Value *> Args) { 1961 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1962 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1963 CodeGenIPBBTI->eraseFromParent(); 1964 1965 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1966 1967 if (Fn->doesNotThrow()) 1968 CGF.EmitNounwindRuntimeCall(Fn, Args); 1969 else 1970 CGF.EmitRuntimeCall(Fn, Args); 1971 1972 if (CGF.Builder.saveIP().isSet()) 1973 CGF.Builder.CreateBr(&FiniBB); 1974 } 1975 1976 /// Emit the body of an OMP region that will be outlined in 1977 /// OpenMPIRBuilder::finalize(). 1978 /// \param CGF The Codegen function this belongs to 1979 /// \param RegionBodyStmt The body statement for the OpenMP region being 1980 /// generated 1981 /// \param AllocaIP Where to insert alloca instructions 1982 /// \param CodeGenIP Where to insert the region code 1983 /// \param RegionName Name to be used for new blocks 1984 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1985 const Stmt *RegionBodyStmt, 1986 InsertPointTy AllocaIP, 1987 InsertPointTy CodeGenIP, 1988 Twine RegionName); 1989 1990 /// RAII for preserving necessary info during Outlined region body codegen. 1991 class OutlinedRegionBodyRAII { 1992 1993 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1994 CodeGenFunction::JumpDest OldReturnBlock; 1995 CodeGenFunction &CGF; 1996 1997 public: 1998 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1999 llvm::BasicBlock &RetBB) 2000 : CGF(cgf) { 2001 assert(AllocaIP.isSet() && 2002 "Must specify Insertion point for allocas of outlined function"); 2003 OldAllocaIP = CGF.AllocaInsertPt; 2004 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2005 2006 OldReturnBlock = CGF.ReturnBlock; 2007 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 2008 } 2009 2010 ~OutlinedRegionBodyRAII() { 2011 CGF.AllocaInsertPt = OldAllocaIP; 2012 CGF.ReturnBlock = OldReturnBlock; 2013 } 2014 }; 2015 2016 /// RAII for preserving necessary info during inlined region body codegen. 2017 class InlinedRegionBodyRAII { 2018 2019 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2020 CodeGenFunction &CGF; 2021 2022 public: 2023 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2024 llvm::BasicBlock &FiniBB) 2025 : CGF(cgf) { 2026 // Alloca insertion block should be in the entry block of the containing 2027 // function so it expects an empty AllocaIP in which case will reuse the 2028 // old alloca insertion point, or a new AllocaIP in the same block as 2029 // the old one 2030 assert((!AllocaIP.isSet() || 2031 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 2032 "Insertion point should be in the entry block of containing " 2033 "function!"); 2034 OldAllocaIP = CGF.AllocaInsertPt; 2035 if (AllocaIP.isSet()) 2036 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2037 2038 // TODO: Remove the call, after making sure the counter is not used by 2039 // the EHStack. 2040 // Since this is an inlined region, it should not modify the 2041 // ReturnBlock, and should reuse the one for the enclosing outlined 2042 // region. So, the JumpDest being return by the function is discarded 2043 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 2044 } 2045 2046 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 2047 }; 2048 }; 2049 2050 private: 2051 /// CXXThisDecl - When generating code for a C++ member function, 2052 /// this will hold the implicit 'this' declaration. 2053 ImplicitParamDecl *CXXABIThisDecl = nullptr; 2054 llvm::Value *CXXABIThisValue = nullptr; 2055 llvm::Value *CXXThisValue = nullptr; 2056 CharUnits CXXABIThisAlignment; 2057 CharUnits CXXThisAlignment; 2058 2059 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 2060 /// this expression. 2061 Address CXXDefaultInitExprThis = Address::invalid(); 2062 2063 /// The current array initialization index when evaluating an 2064 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 2065 llvm::Value *ArrayInitIndex = nullptr; 2066 2067 /// The values of function arguments to use when evaluating 2068 /// CXXInheritedCtorInitExprs within this context. 2069 CallArgList CXXInheritedCtorInitExprArgs; 2070 2071 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 2072 /// destructor, this will hold the implicit argument (e.g. VTT). 2073 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 2074 llvm::Value *CXXStructorImplicitParamValue = nullptr; 2075 2076 /// OutermostConditional - Points to the outermost active 2077 /// conditional control. This is used so that we know if a 2078 /// temporary should be destroyed conditionally. 2079 ConditionalEvaluation *OutermostConditional = nullptr; 2080 2081 /// The current lexical scope. 2082 LexicalScope *CurLexicalScope = nullptr; 2083 2084 /// The current source location that should be used for exception 2085 /// handling code. 2086 SourceLocation CurEHLocation; 2087 2088 /// BlockByrefInfos - For each __block variable, contains 2089 /// information about the layout of the variable. 2090 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 2091 2092 /// Used by -fsanitize=nullability-return to determine whether the return 2093 /// value can be checked. 2094 llvm::Value *RetValNullabilityPrecondition = nullptr; 2095 2096 /// Check if -fsanitize=nullability-return instrumentation is required for 2097 /// this function. 2098 bool requiresReturnValueNullabilityCheck() const { 2099 return RetValNullabilityPrecondition; 2100 } 2101 2102 /// Used to store precise source locations for return statements by the 2103 /// runtime return value checks. 2104 Address ReturnLocation = Address::invalid(); 2105 2106 /// Check if the return value of this function requires sanitization. 2107 bool requiresReturnValueCheck() const; 2108 2109 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 2110 bool hasInAllocaArg(const CXXMethodDecl *MD); 2111 2112 llvm::BasicBlock *TerminateLandingPad = nullptr; 2113 llvm::BasicBlock *TerminateHandler = nullptr; 2114 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 2115 2116 /// Terminate funclets keyed by parent funclet pad. 2117 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 2118 2119 /// Largest vector width used in ths function. Will be used to create a 2120 /// function attribute. 2121 unsigned LargestVectorWidth = 0; 2122 2123 /// True if we need emit the life-time markers. This is initially set in 2124 /// the constructor, but could be overwritten to true if this is a coroutine. 2125 bool ShouldEmitLifetimeMarkers; 2126 2127 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 2128 /// the function metadata. 2129 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 2130 2131 public: 2132 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 2133 ~CodeGenFunction(); 2134 2135 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 2136 ASTContext &getContext() const { return CGM.getContext(); } 2137 CGDebugInfo *getDebugInfo() { 2138 if (DisableDebugInfo) 2139 return nullptr; 2140 return DebugInfo; 2141 } 2142 void disableDebugInfo() { DisableDebugInfo = true; } 2143 void enableDebugInfo() { DisableDebugInfo = false; } 2144 2145 bool shouldUseFusedARCCalls() { 2146 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2147 } 2148 2149 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2150 2151 /// Returns a pointer to the function's exception object and selector slot, 2152 /// which is assigned in every landing pad. 2153 Address getExceptionSlot(); 2154 Address getEHSelectorSlot(); 2155 2156 /// Returns the contents of the function's exception object and selector 2157 /// slots. 2158 llvm::Value *getExceptionFromSlot(); 2159 llvm::Value *getSelectorFromSlot(); 2160 2161 RawAddress getNormalCleanupDestSlot(); 2162 2163 llvm::BasicBlock *getUnreachableBlock() { 2164 if (!UnreachableBlock) { 2165 UnreachableBlock = createBasicBlock("unreachable"); 2166 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2167 } 2168 return UnreachableBlock; 2169 } 2170 2171 llvm::BasicBlock *getInvokeDest() { 2172 if (!EHStack.requiresLandingPad()) return nullptr; 2173 return getInvokeDestImpl(); 2174 } 2175 2176 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2177 2178 const TargetInfo &getTarget() const { return Target; } 2179 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2180 const TargetCodeGenInfo &getTargetHooks() const { 2181 return CGM.getTargetCodeGenInfo(); 2182 } 2183 2184 //===--------------------------------------------------------------------===// 2185 // Cleanups 2186 //===--------------------------------------------------------------------===// 2187 2188 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2189 2190 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2191 Address arrayEndPointer, 2192 QualType elementType, 2193 CharUnits elementAlignment, 2194 Destroyer *destroyer); 2195 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2196 llvm::Value *arrayEnd, 2197 QualType elementType, 2198 CharUnits elementAlignment, 2199 Destroyer *destroyer); 2200 2201 void pushDestroy(QualType::DestructionKind dtorKind, 2202 Address addr, QualType type); 2203 void pushEHDestroy(QualType::DestructionKind dtorKind, 2204 Address addr, QualType type); 2205 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2206 Destroyer *destroyer, bool useEHCleanupForArray); 2207 void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, 2208 Address addr, QualType type); 2209 void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, 2210 QualType type, Destroyer *destroyer, 2211 bool useEHCleanupForArray); 2212 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2213 QualType type, Destroyer *destroyer, 2214 bool useEHCleanupForArray); 2215 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2216 llvm::Value *CompletePtr, 2217 QualType ElementType); 2218 void pushStackRestore(CleanupKind kind, Address SPMem); 2219 void pushKmpcAllocFree(CleanupKind Kind, 2220 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2221 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2222 bool useEHCleanupForArray); 2223 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2224 Destroyer *destroyer, 2225 bool useEHCleanupForArray, 2226 const VarDecl *VD); 2227 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2228 QualType elementType, CharUnits elementAlign, 2229 Destroyer *destroyer, 2230 bool checkZeroLength, bool useEHCleanup); 2231 2232 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2233 2234 /// Determines whether an EH cleanup is required to destroy a type 2235 /// with the given destruction kind. 2236 bool needsEHCleanup(QualType::DestructionKind kind) { 2237 switch (kind) { 2238 case QualType::DK_none: 2239 return false; 2240 case QualType::DK_cxx_destructor: 2241 case QualType::DK_objc_weak_lifetime: 2242 case QualType::DK_nontrivial_c_struct: 2243 return getLangOpts().Exceptions; 2244 case QualType::DK_objc_strong_lifetime: 2245 return getLangOpts().Exceptions && 2246 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2247 } 2248 llvm_unreachable("bad destruction kind"); 2249 } 2250 2251 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2252 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2253 } 2254 2255 //===--------------------------------------------------------------------===// 2256 // Objective-C 2257 //===--------------------------------------------------------------------===// 2258 2259 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2260 2261 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2262 2263 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2264 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2265 const ObjCPropertyImplDecl *PID); 2266 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2267 const ObjCPropertyImplDecl *propImpl, 2268 const ObjCMethodDecl *GetterMothodDecl, 2269 llvm::Constant *AtomicHelperFn); 2270 2271 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2272 ObjCMethodDecl *MD, bool ctor); 2273 2274 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2275 /// for the given property. 2276 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2277 const ObjCPropertyImplDecl *PID); 2278 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2279 const ObjCPropertyImplDecl *propImpl, 2280 llvm::Constant *AtomicHelperFn); 2281 2282 //===--------------------------------------------------------------------===// 2283 // Block Bits 2284 //===--------------------------------------------------------------------===// 2285 2286 /// Emit block literal. 2287 /// \return an LLVM value which is a pointer to a struct which contains 2288 /// information about the block, including the block invoke function, the 2289 /// captured variables, etc. 2290 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2291 2292 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2293 const CGBlockInfo &Info, 2294 const DeclMapTy &ldm, 2295 bool IsLambdaConversionToBlock, 2296 bool BuildGlobalBlock); 2297 2298 /// Check if \p T is a C++ class that has a destructor that can throw. 2299 static bool cxxDestructorCanThrow(QualType T); 2300 2301 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2302 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2303 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2304 const ObjCPropertyImplDecl *PID); 2305 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2306 const ObjCPropertyImplDecl *PID); 2307 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2308 2309 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2310 bool CanThrow); 2311 2312 class AutoVarEmission; 2313 2314 void emitByrefStructureInit(const AutoVarEmission &emission); 2315 2316 /// Enter a cleanup to destroy a __block variable. Note that this 2317 /// cleanup should be a no-op if the variable hasn't left the stack 2318 /// yet; if a cleanup is required for the variable itself, that needs 2319 /// to be done externally. 2320 /// 2321 /// \param Kind Cleanup kind. 2322 /// 2323 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2324 /// structure that will be passed to _Block_object_dispose. When 2325 /// \p LoadBlockVarAddr is true, the address of the field of the block 2326 /// structure that holds the address of the __block structure. 2327 /// 2328 /// \param Flags The flag that will be passed to _Block_object_dispose. 2329 /// 2330 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2331 /// \p Addr to get the address of the __block structure. 2332 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2333 bool LoadBlockVarAddr, bool CanThrow); 2334 2335 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2336 llvm::Value *ptr); 2337 2338 Address LoadBlockStruct(); 2339 Address GetAddrOfBlockDecl(const VarDecl *var); 2340 2341 /// BuildBlockByrefAddress - Computes the location of the 2342 /// data in a variable which is declared as __block. 2343 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2344 bool followForward = true); 2345 Address emitBlockByrefAddress(Address baseAddr, 2346 const BlockByrefInfo &info, 2347 bool followForward, 2348 const llvm::Twine &name); 2349 2350 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2351 2352 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2353 2354 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2355 const CGFunctionInfo &FnInfo); 2356 2357 /// Annotate the function with an attribute that disables TSan checking at 2358 /// runtime. 2359 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2360 2361 /// Emit code for the start of a function. 2362 /// \param Loc The location to be associated with the function. 2363 /// \param StartLoc The location of the function body. 2364 void StartFunction(GlobalDecl GD, 2365 QualType RetTy, 2366 llvm::Function *Fn, 2367 const CGFunctionInfo &FnInfo, 2368 const FunctionArgList &Args, 2369 SourceLocation Loc = SourceLocation(), 2370 SourceLocation StartLoc = SourceLocation()); 2371 2372 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2373 2374 void EmitConstructorBody(FunctionArgList &Args); 2375 void EmitDestructorBody(FunctionArgList &Args); 2376 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2377 void EmitFunctionBody(const Stmt *Body); 2378 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2379 2380 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2381 CallArgList &CallArgs, 2382 const CGFunctionInfo *CallOpFnInfo = nullptr, 2383 llvm::Constant *CallOpFn = nullptr); 2384 void EmitLambdaBlockInvokeBody(); 2385 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2386 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2387 CallArgList &CallArgs); 2388 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2389 const CGFunctionInfo **ImplFnInfo, 2390 llvm::Function **ImplFn); 2391 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2392 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2393 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2394 } 2395 void EmitAsanPrologueOrEpilogue(bool Prologue); 2396 2397 /// Emit the unified return block, trying to avoid its emission when 2398 /// possible. 2399 /// \return The debug location of the user written return statement if the 2400 /// return block is avoided. 2401 llvm::DebugLoc EmitReturnBlock(); 2402 2403 /// FinishFunction - Complete IR generation of the current function. It is 2404 /// legal to call this function even if there is no current insertion point. 2405 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2406 2407 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2408 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2409 2410 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2411 const ThunkInfo *Thunk, bool IsUnprototyped); 2412 2413 void FinishThunk(); 2414 2415 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2416 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2417 llvm::FunctionCallee Callee); 2418 2419 /// Generate a thunk for the given method. 2420 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2421 GlobalDecl GD, const ThunkInfo &Thunk, 2422 bool IsUnprototyped); 2423 2424 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2425 const CGFunctionInfo &FnInfo, 2426 GlobalDecl GD, const ThunkInfo &Thunk); 2427 2428 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2429 FunctionArgList &Args); 2430 2431 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2432 2433 /// Struct with all information about dynamic [sub]class needed to set vptr. 2434 struct VPtr { 2435 BaseSubobject Base; 2436 const CXXRecordDecl *NearestVBase; 2437 CharUnits OffsetFromNearestVBase; 2438 const CXXRecordDecl *VTableClass; 2439 }; 2440 2441 /// Initialize the vtable pointer of the given subobject. 2442 void InitializeVTablePointer(const VPtr &vptr); 2443 2444 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2445 2446 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2447 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2448 2449 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2450 CharUnits OffsetFromNearestVBase, 2451 bool BaseIsNonVirtualPrimaryBase, 2452 const CXXRecordDecl *VTableClass, 2453 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2454 2455 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2456 2457 // VTableTrapMode - whether we guarantee that loading the 2458 // vtable is guaranteed to trap on authentication failure, 2459 // even if the resulting vtable pointer is unused. 2460 enum class VTableAuthMode { 2461 Authenticate, 2462 MustTrap, 2463 UnsafeUbsanStrip // Should only be used for Vptr UBSan check 2464 }; 2465 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2466 /// to by This. 2467 llvm::Value * 2468 GetVTablePtr(Address This, llvm::Type *VTableTy, 2469 const CXXRecordDecl *VTableClass, 2470 VTableAuthMode AuthMode = VTableAuthMode::Authenticate); 2471 2472 enum CFITypeCheckKind { 2473 CFITCK_VCall, 2474 CFITCK_NVCall, 2475 CFITCK_DerivedCast, 2476 CFITCK_UnrelatedCast, 2477 CFITCK_ICall, 2478 CFITCK_NVMFCall, 2479 CFITCK_VMFCall, 2480 }; 2481 2482 /// Derived is the presumed address of an object of type T after a 2483 /// cast. If T is a polymorphic class type, emit a check that the virtual 2484 /// table for Derived belongs to a class derived from T. 2485 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2486 CFITypeCheckKind TCK, SourceLocation Loc); 2487 2488 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2489 /// If vptr CFI is enabled, emit a check that VTable is valid. 2490 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2491 CFITypeCheckKind TCK, SourceLocation Loc); 2492 2493 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2494 /// RD using llvm.type.test. 2495 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2496 CFITypeCheckKind TCK, SourceLocation Loc); 2497 2498 /// If whole-program virtual table optimization is enabled, emit an assumption 2499 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2500 /// enabled, emit a check that VTable is a member of RD's type identifier. 2501 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2502 llvm::Value *VTable, SourceLocation Loc); 2503 2504 /// Returns whether we should perform a type checked load when loading a 2505 /// virtual function for virtual calls to members of RD. This is generally 2506 /// true when both vcall CFI and whole-program-vtables are enabled. 2507 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2508 2509 /// Emit a type checked load from the given vtable. 2510 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2511 llvm::Value *VTable, 2512 llvm::Type *VTableTy, 2513 uint64_t VTableByteOffset); 2514 2515 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2516 /// given phase of destruction for a destructor. The end result 2517 /// should call destructors on members and base classes in reverse 2518 /// order of their construction. 2519 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2520 2521 /// ShouldInstrumentFunction - Return true if the current function should be 2522 /// instrumented with __cyg_profile_func_* calls 2523 bool ShouldInstrumentFunction(); 2524 2525 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2526 /// should not be instrumented with sanitizers. 2527 bool ShouldSkipSanitizerInstrumentation(); 2528 2529 /// ShouldXRayInstrument - Return true if the current function should be 2530 /// instrumented with XRay nop sleds. 2531 bool ShouldXRayInstrumentFunction() const; 2532 2533 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2534 /// XRay custom event handling calls. 2535 bool AlwaysEmitXRayCustomEvents() const; 2536 2537 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2538 /// XRay typed event handling calls. 2539 bool AlwaysEmitXRayTypedEvents() const; 2540 2541 /// Return a type hash constant for a function instrumented by 2542 /// -fsanitize=function. 2543 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2544 2545 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2546 /// arguments for the given function. This is also responsible for naming the 2547 /// LLVM function arguments. 2548 void EmitFunctionProlog(const CGFunctionInfo &FI, 2549 llvm::Function *Fn, 2550 const FunctionArgList &Args); 2551 2552 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2553 /// given temporary. 2554 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2555 SourceLocation EndLoc); 2556 2557 /// Emit a test that checks if the return value \p RV is nonnull. 2558 void EmitReturnValueCheck(llvm::Value *RV); 2559 2560 /// EmitStartEHSpec - Emit the start of the exception spec. 2561 void EmitStartEHSpec(const Decl *D); 2562 2563 /// EmitEndEHSpec - Emit the end of the exception spec. 2564 void EmitEndEHSpec(const Decl *D); 2565 2566 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2567 llvm::BasicBlock *getTerminateLandingPad(); 2568 2569 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2570 /// terminate. 2571 llvm::BasicBlock *getTerminateFunclet(); 2572 2573 /// getTerminateHandler - Return a handler (not a landing pad, just 2574 /// a catch handler) that just calls terminate. This is used when 2575 /// a terminate scope encloses a try. 2576 llvm::BasicBlock *getTerminateHandler(); 2577 2578 llvm::Type *ConvertTypeForMem(QualType T); 2579 llvm::Type *ConvertType(QualType T); 2580 llvm::Type *convertTypeForLoadStore(QualType ASTTy, 2581 llvm::Type *LLVMTy = nullptr); 2582 llvm::Type *ConvertType(const TypeDecl *T) { 2583 return ConvertType(getContext().getTypeDeclType(T)); 2584 } 2585 2586 /// LoadObjCSelf - Load the value of self. This function is only valid while 2587 /// generating code for an Objective-C method. 2588 llvm::Value *LoadObjCSelf(); 2589 2590 /// TypeOfSelfObject - Return type of object that this self represents. 2591 QualType TypeOfSelfObject(); 2592 2593 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2594 static TypeEvaluationKind getEvaluationKind(QualType T); 2595 2596 static bool hasScalarEvaluationKind(QualType T) { 2597 return getEvaluationKind(T) == TEK_Scalar; 2598 } 2599 2600 static bool hasAggregateEvaluationKind(QualType T) { 2601 return getEvaluationKind(T) == TEK_Aggregate; 2602 } 2603 2604 /// createBasicBlock - Create an LLVM basic block. 2605 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2606 llvm::Function *parent = nullptr, 2607 llvm::BasicBlock *before = nullptr) { 2608 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2609 } 2610 2611 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2612 /// label maps to. 2613 JumpDest getJumpDestForLabel(const LabelDecl *S); 2614 2615 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2616 /// another basic block, simplify it. This assumes that no other code could 2617 /// potentially reference the basic block. 2618 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2619 2620 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2621 /// adding a fall-through branch from the current insert block if 2622 /// necessary. It is legal to call this function even if there is no current 2623 /// insertion point. 2624 /// 2625 /// IsFinished - If true, indicates that the caller has finished emitting 2626 /// branches to the given block and does not expect to emit code into it. This 2627 /// means the block can be ignored if it is unreachable. 2628 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2629 2630 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2631 /// near its uses, and leave the insertion point in it. 2632 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2633 2634 /// EmitBranch - Emit a branch to the specified basic block from the current 2635 /// insert block, taking care to avoid creation of branches from dummy 2636 /// blocks. It is legal to call this function even if there is no current 2637 /// insertion point. 2638 /// 2639 /// This function clears the current insertion point. The caller should follow 2640 /// calls to this function with calls to Emit*Block prior to generation new 2641 /// code. 2642 void EmitBranch(llvm::BasicBlock *Block); 2643 2644 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2645 /// indicates that the current code being emitted is unreachable. 2646 bool HaveInsertPoint() const { 2647 return Builder.GetInsertBlock() != nullptr; 2648 } 2649 2650 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2651 /// emitted IR has a place to go. Note that by definition, if this function 2652 /// creates a block then that block is unreachable; callers may do better to 2653 /// detect when no insertion point is defined and simply skip IR generation. 2654 void EnsureInsertPoint() { 2655 if (!HaveInsertPoint()) 2656 EmitBlock(createBasicBlock()); 2657 } 2658 2659 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2660 /// specified stmt yet. 2661 void ErrorUnsupported(const Stmt *S, const char *Type); 2662 2663 //===--------------------------------------------------------------------===// 2664 // Helpers 2665 //===--------------------------------------------------------------------===// 2666 2667 Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, 2668 llvm::BasicBlock *LHSBlock, 2669 llvm::BasicBlock *RHSBlock, 2670 llvm::BasicBlock *MergeBlock, 2671 QualType MergedType) { 2672 Builder.SetInsertPoint(MergeBlock); 2673 llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond"); 2674 PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock); 2675 PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock); 2676 LHS.replaceBasePointer(PtrPhi); 2677 LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment())); 2678 return LHS; 2679 } 2680 2681 /// Construct an address with the natural alignment of T. If a pointer to T 2682 /// is expected to be signed, the pointer passed to this function must have 2683 /// been signed, and the returned Address will have the pointer authentication 2684 /// information needed to authenticate the signed pointer. 2685 Address makeNaturalAddressForPointer( 2686 llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), 2687 bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, 2688 TBAAAccessInfo *TBAAInfo = nullptr, 2689 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 2690 if (Alignment.isZero()) 2691 Alignment = 2692 CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType); 2693 return Address(Ptr, ConvertTypeForMem(T), Alignment, 2694 CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr, 2695 IsKnownNonNull); 2696 } 2697 2698 LValue MakeAddrLValue(Address Addr, QualType T, 2699 AlignmentSource Source = AlignmentSource::Type) { 2700 return MakeAddrLValue(Addr, T, LValueBaseInfo(Source), 2701 CGM.getTBAAAccessInfo(T)); 2702 } 2703 2704 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2705 TBAAAccessInfo TBAAInfo) { 2706 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2707 } 2708 2709 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2710 AlignmentSource Source = AlignmentSource::Type) { 2711 return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T, 2712 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2713 } 2714 2715 /// Same as MakeAddrLValue above except that the pointer is known to be 2716 /// unsigned. 2717 LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2718 AlignmentSource Source = AlignmentSource::Type) { 2719 Address Addr(V, ConvertTypeForMem(T), Alignment); 2720 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2721 CGM.getTBAAAccessInfo(T)); 2722 } 2723 2724 LValue 2725 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2726 AlignmentSource Source = AlignmentSource::Type) { 2727 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2728 TBAAAccessInfo()); 2729 } 2730 2731 /// Given a value of type T* that may not be to a complete object, construct 2732 /// an l-value with the natural pointee alignment of T. 2733 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2734 2735 LValue 2736 MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 2737 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 2738 2739 /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known 2740 /// to be unsigned. 2741 LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); 2742 2743 LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); 2744 2745 Address EmitLoadOfReference(LValue RefLVal, 2746 LValueBaseInfo *PointeeBaseInfo = nullptr, 2747 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2748 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2749 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2750 AlignmentSource Source = 2751 AlignmentSource::Type) { 2752 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2753 CGM.getTBAAAccessInfo(RefTy)); 2754 return EmitLoadOfReferenceLValue(RefLVal); 2755 } 2756 2757 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2758 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2759 /// it is loaded from. 2760 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2761 LValueBaseInfo *BaseInfo = nullptr, 2762 TBAAAccessInfo *TBAAInfo = nullptr); 2763 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2764 2765 private: 2766 struct AllocaTracker { 2767 void Add(llvm::AllocaInst *I) { Allocas.push_back(I); } 2768 llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } 2769 2770 private: 2771 llvm::SmallVector<llvm::AllocaInst *> Allocas; 2772 }; 2773 AllocaTracker *Allocas = nullptr; 2774 2775 public: 2776 // Captures all the allocas created during the scope of its RAII object. 2777 struct AllocaTrackerRAII { 2778 AllocaTrackerRAII(CodeGenFunction &CGF) 2779 : CGF(CGF), OldTracker(CGF.Allocas) { 2780 CGF.Allocas = &Tracker; 2781 } 2782 ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } 2783 2784 llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } 2785 2786 private: 2787 CodeGenFunction &CGF; 2788 AllocaTracker *OldTracker; 2789 AllocaTracker Tracker; 2790 }; 2791 2792 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2793 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2794 /// insertion point of the builder. The caller is responsible for setting an 2795 /// appropriate alignment on 2796 /// the alloca. 2797 /// 2798 /// \p ArraySize is the number of array elements to be allocated if it 2799 /// is not nullptr. 2800 /// 2801 /// LangAS::Default is the address space of pointers to local variables and 2802 /// temporaries, as exposed in the source language. In certain 2803 /// configurations, this is not the same as the alloca address space, and a 2804 /// cast is needed to lift the pointer from the alloca AS into 2805 /// LangAS::Default. This can happen when the target uses a restricted 2806 /// address space for the stack but the source language requires 2807 /// LangAS::Default to be a generic address space. The latter condition is 2808 /// common for most programming languages; OpenCL is an exception in that 2809 /// LangAS::Default is the private address space, which naturally maps 2810 /// to the stack. 2811 /// 2812 /// Because the address of a temporary is often exposed to the program in 2813 /// various ways, this function will perform the cast. The original alloca 2814 /// instruction is returned through \p Alloca if it is not nullptr. 2815 /// 2816 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2817 /// more efficient if the caller knows that the address will not be exposed. 2818 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2819 llvm::Value *ArraySize = nullptr); 2820 RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2821 const Twine &Name = "tmp", 2822 llvm::Value *ArraySize = nullptr, 2823 RawAddress *Alloca = nullptr); 2824 RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2825 const Twine &Name = "tmp", 2826 llvm::Value *ArraySize = nullptr); 2827 2828 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2829 /// default ABI alignment of the given LLVM type. 2830 /// 2831 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2832 /// any given AST type that happens to have been lowered to the 2833 /// given IR type. This should only ever be used for function-local, 2834 /// IR-driven manipulations like saving and restoring a value. Do 2835 /// not hand this address off to arbitrary IRGen routines, and especially 2836 /// do not pass it as an argument to a function that might expect a 2837 /// properly ABI-aligned value. 2838 RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2839 const Twine &Name = "tmp"); 2840 2841 /// CreateIRTemp - Create a temporary IR object of the given type, with 2842 /// appropriate alignment. This routine should only be used when an temporary 2843 /// value needs to be stored into an alloca (for example, to avoid explicit 2844 /// PHI construction), but the type is the IR type, not the type appropriate 2845 /// for storing in memory. 2846 /// 2847 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2848 /// ConvertType instead of ConvertTypeForMem. 2849 RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2850 2851 /// CreateMemTemp - Create a temporary memory object of the given type, with 2852 /// appropriate alignmen and cast it to the default address space. Returns 2853 /// the original alloca instruction by \p Alloca if it is not nullptr. 2854 RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp", 2855 RawAddress *Alloca = nullptr); 2856 RawAddress CreateMemTemp(QualType T, CharUnits Align, 2857 const Twine &Name = "tmp", 2858 RawAddress *Alloca = nullptr); 2859 2860 /// CreateMemTemp - Create a temporary memory object of the given type, with 2861 /// appropriate alignmen without casting it to the default address space. 2862 RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2863 RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, 2864 const Twine &Name = "tmp"); 2865 2866 /// CreateAggTemp - Create a temporary memory object for the given 2867 /// aggregate type. 2868 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2869 RawAddress *Alloca = nullptr) { 2870 return AggValueSlot::forAddr( 2871 CreateMemTemp(T, Name, Alloca), T.getQualifiers(), 2872 AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, 2873 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); 2874 } 2875 2876 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2877 /// expression and compare the result against zero, returning an Int1Ty value. 2878 llvm::Value *EvaluateExprAsBool(const Expr *E); 2879 2880 /// Retrieve the implicit cast expression of the rhs in a binary operator 2881 /// expression by passing pointers to Value and QualType 2882 /// This is used for implicit bitfield conversion checks, which 2883 /// must compare with the value before potential truncation. 2884 llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, 2885 llvm::Value **Previous, 2886 QualType *SrcType); 2887 2888 /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, 2889 /// so we use the value after conversion. 2890 void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, 2891 llvm::Value *Dst, QualType DstType, 2892 const CGBitFieldInfo &Info, 2893 SourceLocation Loc); 2894 2895 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2896 void EmitIgnoredExpr(const Expr *E); 2897 2898 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2899 /// any type. The result is returned as an RValue struct. If this is an 2900 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2901 /// the result should be returned. 2902 /// 2903 /// \param ignoreResult True if the resulting value isn't used. 2904 RValue EmitAnyExpr(const Expr *E, 2905 AggValueSlot aggSlot = AggValueSlot::ignored(), 2906 bool ignoreResult = false); 2907 2908 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2909 // or the value of the expression, depending on how va_list is defined. 2910 Address EmitVAListRef(const Expr *E); 2911 2912 /// Emit a "reference" to a __builtin_ms_va_list; this is 2913 /// always the value of the expression, because a __builtin_ms_va_list is a 2914 /// pointer to a char. 2915 Address EmitMSVAListRef(const Expr *E); 2916 2917 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2918 /// always be accessible even if no aggregate location is provided. 2919 RValue EmitAnyExprToTemp(const Expr *E); 2920 2921 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2922 /// arbitrary expression into the given memory location. 2923 void EmitAnyExprToMem(const Expr *E, Address Location, 2924 Qualifiers Quals, bool IsInitializer); 2925 2926 void EmitAnyExprToExn(const Expr *E, Address Addr); 2927 2928 /// EmitInitializationToLValue - Emit an initializer to an LValue. 2929 void EmitInitializationToLValue( 2930 const Expr *E, LValue LV, 2931 AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); 2932 2933 /// EmitExprAsInit - Emits the code necessary to initialize a 2934 /// location in memory with the given initializer. 2935 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2936 bool capturedByInit); 2937 2938 /// hasVolatileMember - returns true if aggregate type has a volatile 2939 /// member. 2940 bool hasVolatileMember(QualType T) { 2941 if (const RecordType *RT = T->getAs<RecordType>()) { 2942 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2943 return RD->hasVolatileMember(); 2944 } 2945 return false; 2946 } 2947 2948 /// Determine whether a return value slot may overlap some other object. 2949 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2950 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2951 // class subobjects. These cases may need to be revisited depending on the 2952 // resolution of the relevant core issue. 2953 return AggValueSlot::DoesNotOverlap; 2954 } 2955 2956 /// Determine whether a field initialization may overlap some other object. 2957 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2958 2959 /// Determine whether a base class initialization may overlap some other 2960 /// object. 2961 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2962 const CXXRecordDecl *BaseRD, 2963 bool IsVirtual); 2964 2965 /// Emit an aggregate assignment. 2966 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2967 bool IsVolatile = hasVolatileMember(EltTy); 2968 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2969 } 2970 2971 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2972 AggValueSlot::Overlap_t MayOverlap) { 2973 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2974 } 2975 2976 /// EmitAggregateCopy - Emit an aggregate copy. 2977 /// 2978 /// \param isVolatile \c true iff either the source or the destination is 2979 /// volatile. 2980 /// \param MayOverlap Whether the tail padding of the destination might be 2981 /// occupied by some other object. More efficient code can often be 2982 /// generated if not. 2983 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2984 AggValueSlot::Overlap_t MayOverlap, 2985 bool isVolatile = false); 2986 2987 /// GetAddrOfLocalVar - Return the address of a local variable. 2988 Address GetAddrOfLocalVar(const VarDecl *VD) { 2989 auto it = LocalDeclMap.find(VD); 2990 assert(it != LocalDeclMap.end() && 2991 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2992 return it->second; 2993 } 2994 2995 /// Given an opaque value expression, return its LValue mapping if it exists, 2996 /// otherwise create one. 2997 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2998 2999 /// Given an opaque value expression, return its RValue mapping if it exists, 3000 /// otherwise create one. 3001 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 3002 3003 /// Get the index of the current ArrayInitLoopExpr, if any. 3004 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 3005 3006 /// getAccessedFieldNo - Given an encoded value and a result number, return 3007 /// the input field number being accessed. 3008 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 3009 3010 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 3011 llvm::BasicBlock *GetIndirectGotoBlock(); 3012 3013 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 3014 static bool IsWrappedCXXThis(const Expr *E); 3015 3016 /// EmitNullInitialization - Generate code to set a value of the given type to 3017 /// null, If the type contains data member pointers, they will be initialized 3018 /// to -1 in accordance with the Itanium C++ ABI. 3019 void EmitNullInitialization(Address DestPtr, QualType Ty); 3020 3021 /// Emits a call to an LLVM variable-argument intrinsic, either 3022 /// \c llvm.va_start or \c llvm.va_end. 3023 /// \param ArgValue A reference to the \c va_list as emitted by either 3024 /// \c EmitVAListRef or \c EmitMSVAListRef. 3025 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 3026 /// calls \c llvm.va_end. 3027 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 3028 3029 /// Generate code to get an argument from the passed in pointer 3030 /// and update it accordingly. 3031 /// \param VE The \c VAArgExpr for which to generate code. 3032 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 3033 /// either \c EmitVAListRef or \c EmitMSVAListRef. 3034 /// \returns A pointer to the argument. 3035 // FIXME: We should be able to get rid of this method and use the va_arg 3036 // instruction in LLVM instead once it works well enough. 3037 RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 3038 AggValueSlot Slot = AggValueSlot::ignored()); 3039 3040 /// emitArrayLength - Compute the length of an array, even if it's a 3041 /// VLA, and drill down to the base element type. 3042 llvm::Value *emitArrayLength(const ArrayType *arrayType, 3043 QualType &baseType, 3044 Address &addr); 3045 3046 /// EmitVLASize - Capture all the sizes for the VLA expressions in 3047 /// the given variably-modified type and store them in the VLASizeMap. 3048 /// 3049 /// This function can be called with a null (unreachable) insert point. 3050 void EmitVariablyModifiedType(QualType Ty); 3051 3052 struct VlaSizePair { 3053 llvm::Value *NumElts; 3054 QualType Type; 3055 3056 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 3057 }; 3058 3059 /// Return the number of elements for a single dimension 3060 /// for the given array type. 3061 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 3062 VlaSizePair getVLAElements1D(QualType vla); 3063 3064 /// Returns an LLVM value that corresponds to the size, 3065 /// in non-variably-sized elements, of a variable length array type, 3066 /// plus that largest non-variably-sized element type. Assumes that 3067 /// the type has already been emitted with EmitVariablyModifiedType. 3068 VlaSizePair getVLASize(const VariableArrayType *vla); 3069 VlaSizePair getVLASize(QualType vla); 3070 3071 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 3072 /// generating code for an C++ member function. 3073 llvm::Value *LoadCXXThis() { 3074 assert(CXXThisValue && "no 'this' value for this function"); 3075 return CXXThisValue; 3076 } 3077 Address LoadCXXThisAddress(); 3078 3079 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 3080 /// virtual bases. 3081 // FIXME: Every place that calls LoadCXXVTT is something 3082 // that needs to be abstracted properly. 3083 llvm::Value *LoadCXXVTT() { 3084 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 3085 return CXXStructorImplicitParamValue; 3086 } 3087 3088 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 3089 /// complete class to the given direct base. 3090 Address 3091 GetAddressOfDirectBaseInCompleteClass(Address Value, 3092 const CXXRecordDecl *Derived, 3093 const CXXRecordDecl *Base, 3094 bool BaseIsVirtual); 3095 3096 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 3097 3098 /// GetAddressOfBaseClass - This function will add the necessary delta to the 3099 /// load of 'this' and returns address of the base class. 3100 Address GetAddressOfBaseClass(Address Value, 3101 const CXXRecordDecl *Derived, 3102 CastExpr::path_const_iterator PathBegin, 3103 CastExpr::path_const_iterator PathEnd, 3104 bool NullCheckValue, SourceLocation Loc); 3105 3106 Address GetAddressOfDerivedClass(Address Value, 3107 const CXXRecordDecl *Derived, 3108 CastExpr::path_const_iterator PathBegin, 3109 CastExpr::path_const_iterator PathEnd, 3110 bool NullCheckValue); 3111 3112 /// GetVTTParameter - Return the VTT parameter that should be passed to a 3113 /// base constructor/destructor with virtual bases. 3114 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 3115 /// to ItaniumCXXABI.cpp together with all the references to VTT. 3116 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 3117 bool Delegating); 3118 3119 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 3120 CXXCtorType CtorType, 3121 const FunctionArgList &Args, 3122 SourceLocation Loc); 3123 // It's important not to confuse this and the previous function. Delegating 3124 // constructors are the C++0x feature. The constructor delegate optimization 3125 // is used to reduce duplication in the base and complete consturctors where 3126 // they are substantially the same. 3127 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3128 const FunctionArgList &Args); 3129 3130 /// Emit a call to an inheriting constructor (that is, one that invokes a 3131 /// constructor inherited from a base class) by inlining its definition. This 3132 /// is necessary if the ABI does not support forwarding the arguments to the 3133 /// base class constructor (because they're variadic or similar). 3134 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3135 CXXCtorType CtorType, 3136 bool ForVirtualBase, 3137 bool Delegating, 3138 CallArgList &Args); 3139 3140 /// Emit a call to a constructor inherited from a base class, passing the 3141 /// current constructor's arguments along unmodified (without even making 3142 /// a copy). 3143 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 3144 bool ForVirtualBase, Address This, 3145 bool InheritedFromVBase, 3146 const CXXInheritedCtorInitExpr *E); 3147 3148 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3149 bool ForVirtualBase, bool Delegating, 3150 AggValueSlot ThisAVS, const CXXConstructExpr *E); 3151 3152 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3153 bool ForVirtualBase, bool Delegating, 3154 Address This, CallArgList &Args, 3155 AggValueSlot::Overlap_t Overlap, 3156 SourceLocation Loc, bool NewPointerIsChecked, 3157 llvm::CallBase **CallOrInvoke = nullptr); 3158 3159 /// Emit assumption load for all bases. Requires to be called only on 3160 /// most-derived class and not under construction of the object. 3161 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 3162 3163 /// Emit assumption that vptr load == global vtable. 3164 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 3165 3166 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 3167 Address This, Address Src, 3168 const CXXConstructExpr *E); 3169 3170 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3171 const ArrayType *ArrayTy, 3172 Address ArrayPtr, 3173 const CXXConstructExpr *E, 3174 bool NewPointerIsChecked, 3175 bool ZeroInitialization = false); 3176 3177 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3178 llvm::Value *NumElements, 3179 Address ArrayPtr, 3180 const CXXConstructExpr *E, 3181 bool NewPointerIsChecked, 3182 bool ZeroInitialization = false); 3183 3184 static Destroyer destroyCXXObject; 3185 3186 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 3187 bool ForVirtualBase, bool Delegating, Address This, 3188 QualType ThisTy); 3189 3190 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 3191 llvm::Type *ElementTy, Address NewPtr, 3192 llvm::Value *NumElements, 3193 llvm::Value *AllocSizeWithoutCookie); 3194 3195 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 3196 Address Ptr); 3197 3198 void EmitSehCppScopeBegin(); 3199 void EmitSehCppScopeEnd(); 3200 void EmitSehTryScopeBegin(); 3201 void EmitSehTryScopeEnd(); 3202 3203 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 3204 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 3205 3206 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 3207 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 3208 3209 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 3210 QualType DeleteTy, llvm::Value *NumElements = nullptr, 3211 CharUnits CookieSize = CharUnits()); 3212 3213 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 3214 const CallExpr *TheCallExpr, bool IsDelete); 3215 3216 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 3217 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 3218 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 3219 3220 /// Situations in which we might emit a check for the suitability of a 3221 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 3222 /// compiler-rt. 3223 enum TypeCheckKind { 3224 /// Checking the operand of a load. Must be suitably sized and aligned. 3225 TCK_Load, 3226 /// Checking the destination of a store. Must be suitably sized and aligned. 3227 TCK_Store, 3228 /// Checking the bound value in a reference binding. Must be suitably sized 3229 /// and aligned, but is not required to refer to an object (until the 3230 /// reference is used), per core issue 453. 3231 TCK_ReferenceBinding, 3232 /// Checking the object expression in a non-static data member access. Must 3233 /// be an object within its lifetime. 3234 TCK_MemberAccess, 3235 /// Checking the 'this' pointer for a call to a non-static member function. 3236 /// Must be an object within its lifetime. 3237 TCK_MemberCall, 3238 /// Checking the 'this' pointer for a constructor call. 3239 TCK_ConstructorCall, 3240 /// Checking the operand of a static_cast to a derived pointer type. Must be 3241 /// null or an object within its lifetime. 3242 TCK_DowncastPointer, 3243 /// Checking the operand of a static_cast to a derived reference type. Must 3244 /// be an object within its lifetime. 3245 TCK_DowncastReference, 3246 /// Checking the operand of a cast to a base object. Must be suitably sized 3247 /// and aligned. 3248 TCK_Upcast, 3249 /// Checking the operand of a cast to a virtual base object. Must be an 3250 /// object within its lifetime. 3251 TCK_UpcastToVirtualBase, 3252 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 3253 TCK_NonnullAssign, 3254 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 3255 /// null or an object within its lifetime. 3256 TCK_DynamicOperation 3257 }; 3258 3259 /// Determine whether the pointer type check \p TCK permits null pointers. 3260 static bool isNullPointerAllowed(TypeCheckKind TCK); 3261 3262 /// Determine whether the pointer type check \p TCK requires a vptr check. 3263 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3264 3265 /// Whether any type-checking sanitizers are enabled. If \c false, 3266 /// calls to EmitTypeCheck can be skipped. 3267 bool sanitizePerformTypeCheck() const; 3268 3269 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, 3270 QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), 3271 llvm::Value *ArraySize = nullptr) { 3272 if (!sanitizePerformTypeCheck()) 3273 return; 3274 EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(), 3275 SkippedChecks, ArraySize); 3276 } 3277 3278 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, 3279 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3280 SanitizerSet SkippedChecks = SanitizerSet(), 3281 llvm::Value *ArraySize = nullptr) { 3282 if (!sanitizePerformTypeCheck()) 3283 return; 3284 EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment, 3285 SkippedChecks, ArraySize); 3286 } 3287 3288 /// Emit a check that \p V is the address of storage of the 3289 /// appropriate size and alignment for an object of type \p Type 3290 /// (or if ArraySize is provided, for an array of that bound). 3291 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3292 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3293 SanitizerSet SkippedChecks = SanitizerSet(), 3294 llvm::Value *ArraySize = nullptr); 3295 3296 /// Emit a check that \p Base points into an array object, which 3297 /// we can access at index \p Index. \p Accessed should be \c false if we 3298 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3299 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3300 QualType IndexType, bool Accessed); 3301 void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 3302 llvm::Value *Index, QualType IndexType, 3303 QualType IndexedType, bool Accessed); 3304 3305 // Find a struct's flexible array member and get its offset. It may be 3306 // embedded inside multiple sub-structs, but must still be the last field. 3307 const FieldDecl * 3308 FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, 3309 const FieldDecl *FAMDecl, 3310 uint64_t &Offset); 3311 3312 llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, 3313 const FieldDecl *FAMDecl, 3314 const FieldDecl *CountDecl); 3315 3316 /// Build an expression accessing the "counted_by" field. 3317 llvm::Value *EmitLoadOfCountedByField(const Expr *Base, 3318 const FieldDecl *FAMDecl, 3319 const FieldDecl *CountDecl); 3320 3321 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3322 bool isInc, bool isPre); 3323 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3324 bool isInc, bool isPre); 3325 3326 /// Converts Location to a DebugLoc, if debug information is enabled. 3327 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3328 3329 /// Get the record field index as represented in debug info. 3330 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3331 3332 3333 //===--------------------------------------------------------------------===// 3334 // Declaration Emission 3335 //===--------------------------------------------------------------------===// 3336 3337 /// EmitDecl - Emit a declaration. 3338 /// 3339 /// This function can be called with a null (unreachable) insert point. 3340 void EmitDecl(const Decl &D); 3341 3342 /// EmitVarDecl - Emit a local variable declaration. 3343 /// 3344 /// This function can be called with a null (unreachable) insert point. 3345 void EmitVarDecl(const VarDecl &D); 3346 3347 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3348 bool capturedByInit); 3349 3350 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3351 llvm::Value *Address); 3352 3353 /// Determine whether the given initializer is trivial in the sense 3354 /// that it requires no code to be generated. 3355 bool isTrivialInitializer(const Expr *Init); 3356 3357 /// EmitAutoVarDecl - Emit an auto variable declaration. 3358 /// 3359 /// This function can be called with a null (unreachable) insert point. 3360 void EmitAutoVarDecl(const VarDecl &D); 3361 3362 class AutoVarEmission { 3363 friend class CodeGenFunction; 3364 3365 const VarDecl *Variable; 3366 3367 /// The address of the alloca for languages with explicit address space 3368 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3369 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3370 /// as a global constant. 3371 Address Addr; 3372 3373 llvm::Value *NRVOFlag; 3374 3375 /// True if the variable is a __block variable that is captured by an 3376 /// escaping block. 3377 bool IsEscapingByRef; 3378 3379 /// True if the variable is of aggregate type and has a constant 3380 /// initializer. 3381 bool IsConstantAggregate; 3382 3383 /// Non-null if we should use lifetime annotations. 3384 llvm::Value *SizeForLifetimeMarkers; 3385 3386 /// Address with original alloca instruction. Invalid if the variable was 3387 /// emitted as a global constant. 3388 RawAddress AllocaAddr; 3389 3390 struct Invalid {}; 3391 AutoVarEmission(Invalid) 3392 : Variable(nullptr), Addr(Address::invalid()), 3393 AllocaAddr(RawAddress::invalid()) {} 3394 3395 AutoVarEmission(const VarDecl &variable) 3396 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3397 IsEscapingByRef(false), IsConstantAggregate(false), 3398 SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} 3399 3400 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3401 3402 public: 3403 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3404 3405 bool useLifetimeMarkers() const { 3406 return SizeForLifetimeMarkers != nullptr; 3407 } 3408 llvm::Value *getSizeForLifetimeMarkers() const { 3409 assert(useLifetimeMarkers()); 3410 return SizeForLifetimeMarkers; 3411 } 3412 3413 /// Returns the raw, allocated address, which is not necessarily 3414 /// the address of the object itself. It is casted to default 3415 /// address space for address space agnostic languages. 3416 Address getAllocatedAddress() const { 3417 return Addr; 3418 } 3419 3420 /// Returns the address for the original alloca instruction. 3421 RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } 3422 3423 /// Returns the address of the object within this declaration. 3424 /// Note that this does not chase the forwarding pointer for 3425 /// __block decls. 3426 Address getObjectAddress(CodeGenFunction &CGF) const { 3427 if (!IsEscapingByRef) return Addr; 3428 3429 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3430 } 3431 }; 3432 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3433 void EmitAutoVarInit(const AutoVarEmission &emission); 3434 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3435 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3436 QualType::DestructionKind dtorKind); 3437 3438 /// Emits the alloca and debug information for the size expressions for each 3439 /// dimension of an array. It registers the association of its (1-dimensional) 3440 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3441 /// reference this node when creating the DISubrange object to describe the 3442 /// array types. 3443 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3444 const VarDecl &D, 3445 bool EmitDebugInfo); 3446 3447 void EmitStaticVarDecl(const VarDecl &D, 3448 llvm::GlobalValue::LinkageTypes Linkage); 3449 3450 class ParamValue { 3451 union { 3452 Address Addr; 3453 llvm::Value *Value; 3454 }; 3455 3456 bool IsIndirect; 3457 3458 ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} 3459 ParamValue(Address A) : Addr(A), IsIndirect(true) {} 3460 3461 public: 3462 static ParamValue forDirect(llvm::Value *value) { 3463 return ParamValue(value); 3464 } 3465 static ParamValue forIndirect(Address addr) { 3466 assert(!addr.getAlignment().isZero()); 3467 return ParamValue(addr); 3468 } 3469 3470 bool isIndirect() const { return IsIndirect; } 3471 llvm::Value *getAnyValue() const { 3472 if (!isIndirect()) 3473 return Value; 3474 assert(!Addr.hasOffset() && "unexpected offset"); 3475 return Addr.getBasePointer(); 3476 } 3477 3478 llvm::Value *getDirectValue() const { 3479 assert(!isIndirect()); 3480 return Value; 3481 } 3482 3483 Address getIndirectAddress() const { 3484 assert(isIndirect()); 3485 return Addr; 3486 } 3487 }; 3488 3489 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3490 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3491 3492 /// protectFromPeepholes - Protect a value that we're intending to 3493 /// store to the side, but which will probably be used later, from 3494 /// aggressive peepholing optimizations that might delete it. 3495 /// 3496 /// Pass the result to unprotectFromPeepholes to declare that 3497 /// protection is no longer required. 3498 /// 3499 /// There's no particular reason why this shouldn't apply to 3500 /// l-values, it's just that no existing peepholes work on pointers. 3501 PeepholeProtection protectFromPeepholes(RValue rvalue); 3502 void unprotectFromPeepholes(PeepholeProtection protection); 3503 3504 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3505 SourceLocation Loc, 3506 SourceLocation AssumptionLoc, 3507 llvm::Value *Alignment, 3508 llvm::Value *OffsetValue, 3509 llvm::Value *TheCheck, 3510 llvm::Instruction *Assumption); 3511 3512 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3513 SourceLocation Loc, SourceLocation AssumptionLoc, 3514 llvm::Value *Alignment, 3515 llvm::Value *OffsetValue = nullptr); 3516 3517 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3518 SourceLocation AssumptionLoc, 3519 llvm::Value *Alignment, 3520 llvm::Value *OffsetValue = nullptr); 3521 3522 //===--------------------------------------------------------------------===// 3523 // Statement Emission 3524 //===--------------------------------------------------------------------===// 3525 3526 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3527 void EmitStopPoint(const Stmt *S); 3528 3529 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3530 /// this function even if there is no current insertion point. 3531 /// 3532 /// This function may clear the current insertion point; callers should use 3533 /// EnsureInsertPoint if they wish to subsequently generate code without first 3534 /// calling EmitBlock, EmitBranch, or EmitStmt. 3535 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); 3536 3537 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3538 /// necessarily require an insertion point or debug information; typically 3539 /// because the statement amounts to a jump or a container of other 3540 /// statements. 3541 /// 3542 /// \return True if the statement was handled. 3543 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3544 3545 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3546 AggValueSlot AVS = AggValueSlot::ignored()); 3547 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3548 bool GetLast = false, 3549 AggValueSlot AVS = 3550 AggValueSlot::ignored()); 3551 3552 /// EmitLabel - Emit the block for the given label. It is legal to call this 3553 /// function even if there is no current insertion point. 3554 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3555 3556 void EmitLabelStmt(const LabelStmt &S); 3557 void EmitAttributedStmt(const AttributedStmt &S); 3558 void EmitGotoStmt(const GotoStmt &S); 3559 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3560 void EmitIfStmt(const IfStmt &S); 3561 3562 void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); 3563 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); 3564 void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); 3565 void EmitReturnStmt(const ReturnStmt &S); 3566 void EmitDeclStmt(const DeclStmt &S); 3567 void EmitBreakStmt(const BreakStmt &S); 3568 void EmitContinueStmt(const ContinueStmt &S); 3569 void EmitSwitchStmt(const SwitchStmt &S); 3570 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3571 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3572 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3573 void EmitAsmStmt(const AsmStmt &S); 3574 3575 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3576 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3577 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3578 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3579 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3580 3581 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3582 void EmitCoreturnStmt(const CoreturnStmt &S); 3583 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3584 AggValueSlot aggSlot = AggValueSlot::ignored(), 3585 bool ignoreResult = false); 3586 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3587 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3588 AggValueSlot aggSlot = AggValueSlot::ignored(), 3589 bool ignoreResult = false); 3590 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3591 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3592 3593 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3594 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3595 3596 void EmitCXXTryStmt(const CXXTryStmt &S); 3597 void EmitSEHTryStmt(const SEHTryStmt &S); 3598 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3599 void EnterSEHTryStmt(const SEHTryStmt &S); 3600 void ExitSEHTryStmt(const SEHTryStmt &S); 3601 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3602 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3603 3604 void pushSEHCleanup(CleanupKind kind, 3605 llvm::Function *FinallyFunc); 3606 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3607 const Stmt *OutlinedStmt); 3608 3609 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3610 const SEHExceptStmt &Except); 3611 3612 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3613 const SEHFinallyStmt &Finally); 3614 3615 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3616 llvm::Value *ParentFP, 3617 llvm::Value *EntryEBP); 3618 llvm::Value *EmitSEHExceptionCode(); 3619 llvm::Value *EmitSEHExceptionInfo(); 3620 llvm::Value *EmitSEHAbnormalTermination(); 3621 3622 /// Emit simple code for OpenMP directives in Simd-only mode. 3623 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3624 3625 /// Scan the outlined statement for captures from the parent function. For 3626 /// each capture, mark the capture as escaped and emit a call to 3627 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3628 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3629 bool IsFilter); 3630 3631 /// Recovers the address of a local in a parent function. ParentVar is the 3632 /// address of the variable used in the immediate parent function. It can 3633 /// either be an alloca or a call to llvm.localrecover if there are nested 3634 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3635 /// frame. 3636 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3637 Address ParentVar, 3638 llvm::Value *ParentFP); 3639 3640 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3641 ArrayRef<const Attr *> Attrs = {}); 3642 3643 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3644 class OMPCancelStackRAII { 3645 CodeGenFunction &CGF; 3646 3647 public: 3648 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3649 bool HasCancel) 3650 : CGF(CGF) { 3651 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3652 } 3653 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3654 }; 3655 3656 /// Returns calculated size of the specified type. 3657 llvm::Value *getTypeSize(QualType Ty); 3658 LValue InitCapturedStruct(const CapturedStmt &S); 3659 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3660 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3661 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3662 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3663 SourceLocation Loc); 3664 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3665 SmallVectorImpl<llvm::Value *> &CapturedVars); 3666 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3667 SourceLocation Loc); 3668 /// Perform element by element copying of arrays with type \a 3669 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3670 /// generated by \a CopyGen. 3671 /// 3672 /// \param DestAddr Address of the destination array. 3673 /// \param SrcAddr Address of the source array. 3674 /// \param OriginalType Type of destination and source arrays. 3675 /// \param CopyGen Copying procedure that copies value of single array element 3676 /// to another single array element. 3677 void EmitOMPAggregateAssign( 3678 Address DestAddr, Address SrcAddr, QualType OriginalType, 3679 const llvm::function_ref<void(Address, Address)> CopyGen); 3680 /// Emit proper copying of data from one variable to another. 3681 /// 3682 /// \param OriginalType Original type of the copied variables. 3683 /// \param DestAddr Destination address. 3684 /// \param SrcAddr Source address. 3685 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3686 /// type of the base array element). 3687 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3688 /// the base array element). 3689 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3690 /// DestVD. 3691 void EmitOMPCopy(QualType OriginalType, 3692 Address DestAddr, Address SrcAddr, 3693 const VarDecl *DestVD, const VarDecl *SrcVD, 3694 const Expr *Copy); 3695 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3696 /// \a X = \a E \a BO \a E. 3697 /// 3698 /// \param X Value to be updated. 3699 /// \param E Update value. 3700 /// \param BO Binary operation for update operation. 3701 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3702 /// expression, false otherwise. 3703 /// \param AO Atomic ordering of the generated atomic instructions. 3704 /// \param CommonGen Code generator for complex expressions that cannot be 3705 /// expressed through atomicrmw instruction. 3706 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3707 /// generated, <false, RValue::get(nullptr)> otherwise. 3708 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3709 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3710 llvm::AtomicOrdering AO, SourceLocation Loc, 3711 const llvm::function_ref<RValue(RValue)> CommonGen); 3712 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3713 OMPPrivateScope &PrivateScope); 3714 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3715 OMPPrivateScope &PrivateScope); 3716 void EmitOMPUseDevicePtrClause( 3717 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3718 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3719 CaptureDeviceAddrMap); 3720 void EmitOMPUseDeviceAddrClause( 3721 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3722 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3723 CaptureDeviceAddrMap); 3724 /// Emit code for copyin clause in \a D directive. The next code is 3725 /// generated at the start of outlined functions for directives: 3726 /// \code 3727 /// threadprivate_var1 = master_threadprivate_var1; 3728 /// operator=(threadprivate_var2, master_threadprivate_var2); 3729 /// ... 3730 /// __kmpc_barrier(&loc, global_tid); 3731 /// \endcode 3732 /// 3733 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3734 /// \returns true if at least one copyin variable is found, false otherwise. 3735 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3736 /// Emit initial code for lastprivate variables. If some variable is 3737 /// not also firstprivate, then the default initialization is used. Otherwise 3738 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3739 /// method. 3740 /// 3741 /// \param D Directive that may have 'lastprivate' directives. 3742 /// \param PrivateScope Private scope for capturing lastprivate variables for 3743 /// proper codegen in internal captured statement. 3744 /// 3745 /// \returns true if there is at least one lastprivate variable, false 3746 /// otherwise. 3747 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3748 OMPPrivateScope &PrivateScope); 3749 /// Emit final copying of lastprivate values to original variables at 3750 /// the end of the worksharing or simd directive. 3751 /// 3752 /// \param D Directive that has at least one 'lastprivate' directives. 3753 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3754 /// it is the last iteration of the loop code in associated directive, or to 3755 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3756 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3757 bool NoFinals, 3758 llvm::Value *IsLastIterCond = nullptr); 3759 /// Emit initial code for linear clauses. 3760 void EmitOMPLinearClause(const OMPLoopDirective &D, 3761 CodeGenFunction::OMPPrivateScope &PrivateScope); 3762 /// Emit final code for linear clauses. 3763 /// \param CondGen Optional conditional code for final part of codegen for 3764 /// linear clause. 3765 void EmitOMPLinearClauseFinal( 3766 const OMPLoopDirective &D, 3767 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3768 /// Emit initial code for reduction variables. Creates reduction copies 3769 /// and initializes them with the values according to OpenMP standard. 3770 /// 3771 /// \param D Directive (possibly) with the 'reduction' clause. 3772 /// \param PrivateScope Private scope for capturing reduction variables for 3773 /// proper codegen in internal captured statement. 3774 /// 3775 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3776 OMPPrivateScope &PrivateScope, 3777 bool ForInscan = false); 3778 /// Emit final update of reduction values to original variables at 3779 /// the end of the directive. 3780 /// 3781 /// \param D Directive that has at least one 'reduction' directives. 3782 /// \param ReductionKind The kind of reduction to perform. 3783 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3784 const OpenMPDirectiveKind ReductionKind); 3785 /// Emit initial code for linear variables. Creates private copies 3786 /// and initializes them with the values according to OpenMP standard. 3787 /// 3788 /// \param D Directive (possibly) with the 'linear' clause. 3789 /// \return true if at least one linear variable is found that should be 3790 /// initialized with the value of the original variable, false otherwise. 3791 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3792 3793 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3794 llvm::Function * /*OutlinedFn*/, 3795 const OMPTaskDataTy & /*Data*/)> 3796 TaskGenTy; 3797 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3798 const OpenMPDirectiveKind CapturedRegion, 3799 const RegionCodeGenTy &BodyGen, 3800 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3801 struct OMPTargetDataInfo { 3802 Address BasePointersArray = Address::invalid(); 3803 Address PointersArray = Address::invalid(); 3804 Address SizesArray = Address::invalid(); 3805 Address MappersArray = Address::invalid(); 3806 unsigned NumberOfTargetItems = 0; 3807 explicit OMPTargetDataInfo() = default; 3808 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3809 Address SizesArray, Address MappersArray, 3810 unsigned NumberOfTargetItems) 3811 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3812 SizesArray(SizesArray), MappersArray(MappersArray), 3813 NumberOfTargetItems(NumberOfTargetItems) {} 3814 }; 3815 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3816 const RegionCodeGenTy &BodyGen, 3817 OMPTargetDataInfo &InputInfo); 3818 void processInReduction(const OMPExecutableDirective &S, 3819 OMPTaskDataTy &Data, 3820 CodeGenFunction &CGF, 3821 const CapturedStmt *CS, 3822 OMPPrivateScope &Scope); 3823 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3824 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3825 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3826 void EmitOMPTileDirective(const OMPTileDirective &S); 3827 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3828 void EmitOMPReverseDirective(const OMPReverseDirective &S); 3829 void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); 3830 void EmitOMPForDirective(const OMPForDirective &S); 3831 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3832 void EmitOMPScopeDirective(const OMPScopeDirective &S); 3833 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3834 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3835 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3836 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3837 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3838 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3839 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3840 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3841 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3842 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3843 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3844 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3845 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3846 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3847 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3848 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3849 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3850 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3851 void EmitOMPScanDirective(const OMPScanDirective &S); 3852 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3853 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3854 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3855 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3856 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3857 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3858 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3859 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3860 void 3861 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3862 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3863 void 3864 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3865 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3866 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3867 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3868 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3869 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3870 void 3871 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3872 void EmitOMPParallelMasterTaskLoopDirective( 3873 const OMPParallelMasterTaskLoopDirective &S); 3874 void EmitOMPParallelMasterTaskLoopSimdDirective( 3875 const OMPParallelMasterTaskLoopSimdDirective &S); 3876 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3877 void EmitOMPDistributeParallelForDirective( 3878 const OMPDistributeParallelForDirective &S); 3879 void EmitOMPDistributeParallelForSimdDirective( 3880 const OMPDistributeParallelForSimdDirective &S); 3881 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3882 void EmitOMPTargetParallelForSimdDirective( 3883 const OMPTargetParallelForSimdDirective &S); 3884 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3885 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3886 void 3887 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3888 void EmitOMPTeamsDistributeParallelForSimdDirective( 3889 const OMPTeamsDistributeParallelForSimdDirective &S); 3890 void EmitOMPTeamsDistributeParallelForDirective( 3891 const OMPTeamsDistributeParallelForDirective &S); 3892 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3893 void EmitOMPTargetTeamsDistributeDirective( 3894 const OMPTargetTeamsDistributeDirective &S); 3895 void EmitOMPTargetTeamsDistributeParallelForDirective( 3896 const OMPTargetTeamsDistributeParallelForDirective &S); 3897 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3898 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3899 void EmitOMPTargetTeamsDistributeSimdDirective( 3900 const OMPTargetTeamsDistributeSimdDirective &S); 3901 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3902 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3903 void EmitOMPTargetParallelGenericLoopDirective( 3904 const OMPTargetParallelGenericLoopDirective &S); 3905 void EmitOMPTargetTeamsGenericLoopDirective( 3906 const OMPTargetTeamsGenericLoopDirective &S); 3907 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3908 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3909 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3910 void EmitOMPAssumeDirective(const OMPAssumeDirective &S); 3911 3912 /// Emit device code for the target directive. 3913 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3914 StringRef ParentName, 3915 const OMPTargetDirective &S); 3916 static void 3917 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3918 const OMPTargetParallelDirective &S); 3919 /// Emit device code for the target parallel for directive. 3920 static void EmitOMPTargetParallelForDeviceFunction( 3921 CodeGenModule &CGM, StringRef ParentName, 3922 const OMPTargetParallelForDirective &S); 3923 /// Emit device code for the target parallel for simd directive. 3924 static void EmitOMPTargetParallelForSimdDeviceFunction( 3925 CodeGenModule &CGM, StringRef ParentName, 3926 const OMPTargetParallelForSimdDirective &S); 3927 /// Emit device code for the target teams directive. 3928 static void 3929 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3930 const OMPTargetTeamsDirective &S); 3931 /// Emit device code for the target teams distribute directive. 3932 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3933 CodeGenModule &CGM, StringRef ParentName, 3934 const OMPTargetTeamsDistributeDirective &S); 3935 /// Emit device code for the target teams distribute simd directive. 3936 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3937 CodeGenModule &CGM, StringRef ParentName, 3938 const OMPTargetTeamsDistributeSimdDirective &S); 3939 /// Emit device code for the target simd directive. 3940 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3941 StringRef ParentName, 3942 const OMPTargetSimdDirective &S); 3943 /// Emit device code for the target teams distribute parallel for simd 3944 /// directive. 3945 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3946 CodeGenModule &CGM, StringRef ParentName, 3947 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3948 3949 /// Emit device code for the target teams loop directive. 3950 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3951 CodeGenModule &CGM, StringRef ParentName, 3952 const OMPTargetTeamsGenericLoopDirective &S); 3953 3954 /// Emit device code for the target parallel loop directive. 3955 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3956 CodeGenModule &CGM, StringRef ParentName, 3957 const OMPTargetParallelGenericLoopDirective &S); 3958 3959 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3960 CodeGenModule &CGM, StringRef ParentName, 3961 const OMPTargetTeamsDistributeParallelForDirective &S); 3962 3963 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3964 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3965 /// future it is meant to be the number of loops expected in the loop nests 3966 /// (usually specified by the "collapse" clause) that are collapsed to a 3967 /// single loop by this function. 3968 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3969 int Depth); 3970 3971 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3972 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3973 3974 /// Emit inner loop of the worksharing/simd construct. 3975 /// 3976 /// \param S Directive, for which the inner loop must be emitted. 3977 /// \param RequiresCleanup true, if directive has some associated private 3978 /// variables. 3979 /// \param LoopCond Bollean condition for loop continuation. 3980 /// \param IncExpr Increment expression for loop control variable. 3981 /// \param BodyGen Generator for the inner body of the inner loop. 3982 /// \param PostIncGen Genrator for post-increment code (required for ordered 3983 /// loop directvies). 3984 void EmitOMPInnerLoop( 3985 const OMPExecutableDirective &S, bool RequiresCleanup, 3986 const Expr *LoopCond, const Expr *IncExpr, 3987 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3988 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3989 3990 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3991 /// Emit initial code for loop counters of loop-based directives. 3992 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3993 OMPPrivateScope &LoopScope); 3994 3995 /// Helper for the OpenMP loop directives. 3996 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3997 3998 /// Emit code for the worksharing loop-based directive. 3999 /// \return true, if this construct has any lastprivate clause, false - 4000 /// otherwise. 4001 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 4002 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 4003 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4004 4005 /// Emit code for the distribute loop-based directive. 4006 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 4007 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 4008 4009 /// Helpers for the OpenMP loop directives. 4010 void EmitOMPSimdInit(const OMPLoopDirective &D); 4011 void EmitOMPSimdFinal( 4012 const OMPLoopDirective &D, 4013 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 4014 4015 /// Emits the lvalue for the expression with possibly captured variable. 4016 LValue EmitOMPSharedLValue(const Expr *E); 4017 4018 private: 4019 /// Helpers for blocks. 4020 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 4021 4022 /// struct with the values to be passed to the OpenMP loop-related functions 4023 struct OMPLoopArguments { 4024 /// loop lower bound 4025 Address LB = Address::invalid(); 4026 /// loop upper bound 4027 Address UB = Address::invalid(); 4028 /// loop stride 4029 Address ST = Address::invalid(); 4030 /// isLastIteration argument for runtime functions 4031 Address IL = Address::invalid(); 4032 /// Chunk value generated by sema 4033 llvm::Value *Chunk = nullptr; 4034 /// EnsureUpperBound 4035 Expr *EUB = nullptr; 4036 /// IncrementExpression 4037 Expr *IncExpr = nullptr; 4038 /// Loop initialization 4039 Expr *Init = nullptr; 4040 /// Loop exit condition 4041 Expr *Cond = nullptr; 4042 /// Update of LB after a whole chunk has been executed 4043 Expr *NextLB = nullptr; 4044 /// Update of UB after a whole chunk has been executed 4045 Expr *NextUB = nullptr; 4046 /// Distinguish between the for distribute and sections 4047 OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; 4048 OMPLoopArguments() = default; 4049 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 4050 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 4051 Expr *IncExpr = nullptr, Expr *Init = nullptr, 4052 Expr *Cond = nullptr, Expr *NextLB = nullptr, 4053 Expr *NextUB = nullptr) 4054 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 4055 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 4056 NextUB(NextUB) {} 4057 }; 4058 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 4059 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 4060 const OMPLoopArguments &LoopArgs, 4061 const CodeGenLoopTy &CodeGenLoop, 4062 const CodeGenOrderedTy &CodeGenOrdered); 4063 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 4064 bool IsMonotonic, const OMPLoopDirective &S, 4065 OMPPrivateScope &LoopScope, bool Ordered, 4066 const OMPLoopArguments &LoopArgs, 4067 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4068 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 4069 const OMPLoopDirective &S, 4070 OMPPrivateScope &LoopScope, 4071 const OMPLoopArguments &LoopArgs, 4072 const CodeGenLoopTy &CodeGenLoopContent); 4073 /// Emit code for sections directive. 4074 void EmitSections(const OMPExecutableDirective &S); 4075 4076 public: 4077 //===--------------------------------------------------------------------===// 4078 // OpenACC Emission 4079 //===--------------------------------------------------------------------===// 4080 void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { 4081 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4082 // simply emitting its structured block, but in the future we will implement 4083 // some sort of IR. 4084 EmitStmt(S.getStructuredBlock()); 4085 } 4086 4087 void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { 4088 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4089 // simply emitting its loop, but in the future we will implement 4090 // some sort of IR. 4091 EmitStmt(S.getLoop()); 4092 } 4093 4094 void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { 4095 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4096 // simply emitting its loop, but in the future we will implement 4097 // some sort of IR. 4098 EmitStmt(S.getLoop()); 4099 } 4100 4101 void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { 4102 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4103 // simply emitting its structured block, but in the future we will implement 4104 // some sort of IR. 4105 EmitStmt(S.getStructuredBlock()); 4106 } 4107 4108 void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { 4109 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4110 // but in the future we will implement some sort of IR. 4111 } 4112 4113 void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { 4114 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4115 // but in the future we will implement some sort of IR. 4116 } 4117 4118 void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { 4119 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4120 // simply emitting its structured block, but in the future we will implement 4121 // some sort of IR. 4122 EmitStmt(S.getStructuredBlock()); 4123 } 4124 4125 void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { 4126 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4127 // but in the future we will implement some sort of IR. 4128 } 4129 4130 void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) { 4131 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4132 // but in the future we will implement some sort of IR. 4133 } 4134 4135 void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) { 4136 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4137 // but in the future we will implement some sort of IR. 4138 } 4139 4140 void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) { 4141 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4142 // but in the future we will implement some sort of IR. 4143 } 4144 4145 void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) { 4146 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4147 // but in the future we will implement some sort of IR. 4148 } 4149 4150 //===--------------------------------------------------------------------===// 4151 // LValue Expression Emission 4152 //===--------------------------------------------------------------------===// 4153 4154 /// Create a check that a scalar RValue is non-null. 4155 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 4156 4157 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 4158 RValue GetUndefRValue(QualType Ty); 4159 4160 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 4161 /// and issue an ErrorUnsupported style diagnostic (using the 4162 /// provided Name). 4163 RValue EmitUnsupportedRValue(const Expr *E, 4164 const char *Name); 4165 4166 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 4167 /// an ErrorUnsupported style diagnostic (using the provided Name). 4168 LValue EmitUnsupportedLValue(const Expr *E, 4169 const char *Name); 4170 4171 /// EmitLValue - Emit code to compute a designator that specifies the location 4172 /// of the expression. 4173 /// 4174 /// This can return one of two things: a simple address or a bitfield 4175 /// reference. In either case, the LLVM Value* in the LValue structure is 4176 /// guaranteed to be an LLVM pointer type. 4177 /// 4178 /// If this returns a bitfield reference, nothing about the pointee type of 4179 /// the LLVM value is known: For example, it may not be a pointer to an 4180 /// integer. 4181 /// 4182 /// If this returns a normal address, and if the lvalue's C type is fixed 4183 /// size, this method guarantees that the returned pointer type will point to 4184 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 4185 /// variable length type, this is not possible. 4186 /// 4187 LValue EmitLValue(const Expr *E, 4188 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4189 4190 private: 4191 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 4192 4193 public: 4194 /// Same as EmitLValue but additionally we generate checking code to 4195 /// guard against undefined behavior. This is only suitable when we know 4196 /// that the address will be used to access the object. 4197 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 4198 4199 RValue convertTempToRValue(Address addr, QualType type, 4200 SourceLocation Loc); 4201 4202 void EmitAtomicInit(Expr *E, LValue lvalue); 4203 4204 bool LValueIsSuitableForInlineAtomic(LValue Src); 4205 4206 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 4207 AggValueSlot Slot = AggValueSlot::ignored()); 4208 4209 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 4210 llvm::AtomicOrdering AO, bool IsVolatile = false, 4211 AggValueSlot slot = AggValueSlot::ignored()); 4212 4213 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 4214 4215 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 4216 bool IsVolatile, bool isInit); 4217 4218 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 4219 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 4220 llvm::AtomicOrdering Success = 4221 llvm::AtomicOrdering::SequentiallyConsistent, 4222 llvm::AtomicOrdering Failure = 4223 llvm::AtomicOrdering::SequentiallyConsistent, 4224 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 4225 4226 /// Emit an atomicrmw instruction, and applying relevant metadata when 4227 /// applicable. 4228 llvm::AtomicRMWInst *emitAtomicRMWInst( 4229 llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, 4230 llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, 4231 llvm::SyncScope::ID SSID = llvm::SyncScope::System, 4232 const AtomicExpr *AE = nullptr); 4233 4234 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 4235 const llvm::function_ref<RValue(RValue)> &UpdateOp, 4236 bool IsVolatile); 4237 4238 /// EmitToMemory - Change a scalar value from its value 4239 /// representation to its in-memory representation. 4240 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 4241 4242 /// EmitFromMemory - Change a scalar value from its memory 4243 /// representation to its value representation. 4244 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 4245 4246 /// Check if the scalar \p Value is within the valid range for the given 4247 /// type \p Ty. 4248 /// 4249 /// Returns true if a check is needed (even if the range is unknown). 4250 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 4251 SourceLocation Loc); 4252 4253 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4254 /// care to appropriately convert from the memory representation to 4255 /// the LLVM value representation. 4256 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4257 SourceLocation Loc, 4258 AlignmentSource Source = AlignmentSource::Type, 4259 bool isNontemporal = false) { 4260 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 4261 CGM.getTBAAAccessInfo(Ty), isNontemporal); 4262 } 4263 4264 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4265 SourceLocation Loc, LValueBaseInfo BaseInfo, 4266 TBAAAccessInfo TBAAInfo, 4267 bool isNontemporal = false); 4268 4269 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4270 /// care to appropriately convert from the memory representation to 4271 /// the LLVM value representation. The l-value must be a simple 4272 /// l-value. 4273 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 4274 4275 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4276 /// care to appropriately convert from the memory representation to 4277 /// the LLVM value representation. 4278 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4279 bool Volatile, QualType Ty, 4280 AlignmentSource Source = AlignmentSource::Type, 4281 bool isInit = false, bool isNontemporal = false) { 4282 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 4283 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 4284 } 4285 4286 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4287 bool Volatile, QualType Ty, 4288 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 4289 bool isInit = false, bool isNontemporal = false); 4290 4291 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4292 /// care to appropriately convert from the memory representation to 4293 /// the LLVM value representation. The l-value must be a simple 4294 /// l-value. The isInit flag indicates whether this is an initialization. 4295 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 4296 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 4297 4298 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 4299 /// this method emits the address of the lvalue, then loads the result as an 4300 /// rvalue, returning the rvalue. 4301 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 4302 RValue EmitLoadOfExtVectorElementLValue(LValue V); 4303 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 4304 RValue EmitLoadOfGlobalRegLValue(LValue LV); 4305 4306 /// Like EmitLoadOfLValue but also handles complex and aggregate types. 4307 RValue EmitLoadOfAnyValue(LValue V, 4308 AggValueSlot Slot = AggValueSlot::ignored(), 4309 SourceLocation Loc = {}); 4310 4311 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 4312 /// lvalue, where both are guaranteed to the have the same type, and that type 4313 /// is 'Ty'. 4314 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 4315 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 4316 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 4317 4318 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 4319 /// as EmitStoreThroughLValue. 4320 /// 4321 /// \param Result [out] - If non-null, this will be set to a Value* for the 4322 /// bit-field contents after the store, appropriate for use as the result of 4323 /// an assignment to the bit-field. 4324 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 4325 llvm::Value **Result=nullptr); 4326 4327 /// Emit an l-value for an assignment (simple or compound) of complex type. 4328 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 4329 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 4330 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 4331 llvm::Value *&Result); 4332 4333 // Note: only available for agg return types 4334 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 4335 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 4336 // Note: only available for agg return types 4337 LValue EmitCallExprLValue(const CallExpr *E, 4338 llvm::CallBase **CallOrInvoke = nullptr); 4339 // Note: only available for agg return types 4340 LValue EmitVAArgExprLValue(const VAArgExpr *E); 4341 LValue EmitDeclRefLValue(const DeclRefExpr *E); 4342 LValue EmitStringLiteralLValue(const StringLiteral *E); 4343 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 4344 LValue EmitPredefinedLValue(const PredefinedExpr *E); 4345 LValue EmitUnaryOpLValue(const UnaryOperator *E); 4346 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4347 bool Accessed = false); 4348 llvm::Value *EmitMatrixIndexExpr(const Expr *E); 4349 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 4350 LValue EmitArraySectionExpr(const ArraySectionExpr *E, 4351 bool IsLowerBound = true); 4352 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 4353 LValue EmitMemberExpr(const MemberExpr *E); 4354 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 4355 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 4356 LValue EmitInitListLValue(const InitListExpr *E); 4357 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 4358 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 4359 LValue EmitCastLValue(const CastExpr *E); 4360 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4361 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 4362 LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); 4363 4364 std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, 4365 QualType Ty); 4366 LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, 4367 QualType Ty); 4368 4369 Address EmitExtVectorElementLValue(LValue V); 4370 4371 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 4372 4373 Address EmitArrayToPointerDecay(const Expr *Array, 4374 LValueBaseInfo *BaseInfo = nullptr, 4375 TBAAAccessInfo *TBAAInfo = nullptr); 4376 4377 class ConstantEmission { 4378 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 4379 ConstantEmission(llvm::Constant *C, bool isReference) 4380 : ValueAndIsReference(C, isReference) {} 4381 public: 4382 ConstantEmission() {} 4383 static ConstantEmission forReference(llvm::Constant *C) { 4384 return ConstantEmission(C, true); 4385 } 4386 static ConstantEmission forValue(llvm::Constant *C) { 4387 return ConstantEmission(C, false); 4388 } 4389 4390 explicit operator bool() const { 4391 return ValueAndIsReference.getOpaqueValue() != nullptr; 4392 } 4393 4394 bool isReference() const { return ValueAndIsReference.getInt(); } 4395 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 4396 assert(isReference()); 4397 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 4398 refExpr->getType()); 4399 } 4400 4401 llvm::Constant *getValue() const { 4402 assert(!isReference()); 4403 return ValueAndIsReference.getPointer(); 4404 } 4405 }; 4406 4407 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4408 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4409 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4410 4411 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4412 AggValueSlot slot = AggValueSlot::ignored()); 4413 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4414 4415 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4416 const ObjCIvarDecl *Ivar); 4417 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4418 const ObjCIvarDecl *Ivar); 4419 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4420 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4421 LValue EmitLValueForLambdaField(const FieldDecl *Field, 4422 llvm::Value *ThisValue); 4423 4424 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4425 /// if the Field is a reference, this will return the address of the reference 4426 /// and not the address of the value stored in the reference. 4427 LValue EmitLValueForFieldInitialization(LValue Base, 4428 const FieldDecl* Field); 4429 4430 LValue EmitLValueForIvar(QualType ObjectTy, 4431 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4432 unsigned CVRQualifiers); 4433 4434 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4435 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4436 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4437 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4438 4439 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4440 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4441 LValue EmitStmtExprLValue(const StmtExpr *E); 4442 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4443 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4444 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4445 4446 //===--------------------------------------------------------------------===// 4447 // Scalar Expression Emission 4448 //===--------------------------------------------------------------------===// 4449 4450 /// EmitCall - Generate a call of the given function, expecting the given 4451 /// result type, and using the given argument list which specifies both the 4452 /// LLVM arguments and the types they were derived from. 4453 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4454 ReturnValueSlot ReturnValue, const CallArgList &Args, 4455 llvm::CallBase **CallOrInvoke, bool IsMustTail, 4456 SourceLocation Loc, 4457 bool IsVirtualFunctionPointerThunk = false); 4458 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4459 ReturnValueSlot ReturnValue, const CallArgList &Args, 4460 llvm::CallBase **CallOrInvoke = nullptr, 4461 bool IsMustTail = false) { 4462 return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, 4463 IsMustTail, SourceLocation()); 4464 } 4465 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4466 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, 4467 llvm::CallBase **CallOrInvoke = nullptr, 4468 CGFunctionInfo const **ResolvedFnInfo = nullptr); 4469 4470 // If a Call or Invoke instruction was emitted for this CallExpr, this method 4471 // writes the pointer to `CallOrInvoke` if it's not null. 4472 RValue EmitCallExpr(const CallExpr *E, 4473 ReturnValueSlot ReturnValue = ReturnValueSlot(), 4474 llvm::CallBase **CallOrInvoke = nullptr); 4475 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4476 llvm::CallBase **CallOrInvoke = nullptr); 4477 CGCallee EmitCallee(const Expr *E); 4478 4479 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4480 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4481 4482 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4483 const Twine &name = ""); 4484 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4485 ArrayRef<llvm::Value *> args, 4486 const Twine &name = ""); 4487 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4488 const Twine &name = ""); 4489 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4490 ArrayRef<Address> args, 4491 const Twine &name = ""); 4492 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4493 ArrayRef<llvm::Value *> args, 4494 const Twine &name = ""); 4495 4496 SmallVector<llvm::OperandBundleDef, 1> 4497 getBundlesForFunclet(llvm::Value *Callee); 4498 4499 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4500 ArrayRef<llvm::Value *> Args, 4501 const Twine &Name = ""); 4502 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4503 ArrayRef<llvm::Value *> args, 4504 const Twine &name = ""); 4505 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4506 const Twine &name = ""); 4507 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4508 ArrayRef<llvm::Value *> args); 4509 4510 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4511 NestedNameSpecifier *Qual, 4512 llvm::Type *Ty); 4513 4514 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4515 CXXDtorType Type, 4516 const CXXRecordDecl *RD); 4517 4518 bool isPointerKnownNonNull(const Expr *E); 4519 4520 /// Create the discriminator from the storage address and the entity hash. 4521 llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, 4522 llvm::Value *Discriminator); 4523 CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, 4524 llvm::Value *StorageAddress, 4525 GlobalDecl SchemaDecl, 4526 QualType SchemaType); 4527 4528 llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, 4529 llvm::Value *Pointer); 4530 4531 llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, 4532 llvm::Value *Pointer); 4533 4534 llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, 4535 const CGPointerAuthInfo &CurAuthInfo, 4536 const CGPointerAuthInfo &NewAuthInfo, 4537 bool IsKnownNonNull); 4538 llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, 4539 const CGPointerAuthInfo &CurInfo, 4540 const CGPointerAuthInfo &NewInfo); 4541 4542 void EmitPointerAuthOperandBundle( 4543 const CGPointerAuthInfo &Info, 4544 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4545 4546 llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, 4547 QualType SourceType, QualType DestType); 4548 Address authPointerToPointerCast(Address Ptr, QualType SourceType, 4549 QualType DestType); 4550 4551 Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); 4552 4553 llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { 4554 return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer(); 4555 } 4556 4557 // Return the copy constructor name with the prefix "__copy_constructor_" 4558 // removed. 4559 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4560 CharUnits Alignment, 4561 bool IsVolatile, 4562 ASTContext &Ctx); 4563 4564 // Return the destructor name with the prefix "__destructor_" removed. 4565 static std::string getNonTrivialDestructorStr(QualType QT, 4566 CharUnits Alignment, 4567 bool IsVolatile, 4568 ASTContext &Ctx); 4569 4570 // These functions emit calls to the special functions of non-trivial C 4571 // structs. 4572 void defaultInitNonTrivialCStructVar(LValue Dst); 4573 void callCStructDefaultConstructor(LValue Dst); 4574 void callCStructDestructor(LValue Dst); 4575 void callCStructCopyConstructor(LValue Dst, LValue Src); 4576 void callCStructMoveConstructor(LValue Dst, LValue Src); 4577 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4578 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4579 4580 RValue EmitCXXMemberOrOperatorCall( 4581 const CXXMethodDecl *Method, const CGCallee &Callee, 4582 ReturnValueSlot ReturnValue, llvm::Value *This, 4583 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, 4584 CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); 4585 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4586 llvm::Value *This, QualType ThisTy, 4587 llvm::Value *ImplicitParam, 4588 QualType ImplicitParamTy, const CallExpr *E, 4589 llvm::CallBase **CallOrInvoke = nullptr); 4590 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4591 ReturnValueSlot ReturnValue, 4592 llvm::CallBase **CallOrInvoke = nullptr); 4593 RValue EmitCXXMemberOrOperatorMemberCallExpr( 4594 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 4595 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 4596 const Expr *Base, llvm::CallBase **CallOrInvoke); 4597 // Compute the object pointer. 4598 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4599 llvm::Value *memberPtr, 4600 const MemberPointerType *memberPtrType, 4601 LValueBaseInfo *BaseInfo = nullptr, 4602 TBAAAccessInfo *TBAAInfo = nullptr); 4603 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4604 ReturnValueSlot ReturnValue, 4605 llvm::CallBase **CallOrInvoke); 4606 4607 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4608 const CXXMethodDecl *MD, 4609 ReturnValueSlot ReturnValue, 4610 llvm::CallBase **CallOrInvoke); 4611 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4612 4613 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4614 ReturnValueSlot ReturnValue, 4615 llvm::CallBase **CallOrInvoke); 4616 4617 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4618 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4619 4620 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4621 const CallExpr *E, ReturnValueSlot ReturnValue); 4622 4623 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4624 4625 /// Emit IR for __builtin_os_log_format. 4626 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4627 4628 /// Emit IR for __builtin_is_aligned. 4629 RValue EmitBuiltinIsAligned(const CallExpr *E); 4630 /// Emit IR for __builtin_align_up/__builtin_align_down. 4631 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4632 4633 llvm::Function *generateBuiltinOSLogHelperFunction( 4634 const analyze_os_log::OSLogBufferLayout &Layout, 4635 CharUnits BufferAlignment); 4636 4637 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4638 llvm::CallBase **CallOrInvoke); 4639 4640 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4641 /// is unhandled by the current target. 4642 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4643 ReturnValueSlot ReturnValue); 4644 4645 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4646 const llvm::CmpInst::Predicate Fp, 4647 const llvm::CmpInst::Predicate Ip, 4648 const llvm::Twine &Name = ""); 4649 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4650 ReturnValueSlot ReturnValue, 4651 llvm::Triple::ArchType Arch); 4652 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4653 ReturnValueSlot ReturnValue, 4654 llvm::Triple::ArchType Arch); 4655 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4656 ReturnValueSlot ReturnValue, 4657 llvm::Triple::ArchType Arch); 4658 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4659 QualType RTy); 4660 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4661 QualType RTy); 4662 4663 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4664 unsigned LLVMIntrinsic, 4665 unsigned AltLLVMIntrinsic, 4666 const char *NameHint, 4667 unsigned Modifier, 4668 const CallExpr *E, 4669 SmallVectorImpl<llvm::Value *> &Ops, 4670 Address PtrOp0, Address PtrOp1, 4671 llvm::Triple::ArchType Arch); 4672 4673 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4674 unsigned Modifier, llvm::Type *ArgTy, 4675 const CallExpr *E); 4676 llvm::Value *EmitNeonCall(llvm::Function *F, 4677 SmallVectorImpl<llvm::Value*> &O, 4678 const char *name, 4679 unsigned shift = 0, bool rightshift = false); 4680 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4681 const llvm::ElementCount &Count); 4682 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4683 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4684 bool negateForRightShift); 4685 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4686 llvm::Type *Ty, bool usgn, const char *name); 4687 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4688 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4689 /// access builtin. Only required if it can't be inferred from the base 4690 /// pointer operand. 4691 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4692 4693 SmallVector<llvm::Type *, 2> 4694 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4695 ArrayRef<llvm::Value *> Ops); 4696 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4697 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4698 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4699 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4700 ArrayRef<llvm::Value *> Ops); 4701 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4702 llvm::Type *ReturnType, 4703 ArrayRef<llvm::Value *> Ops); 4704 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4705 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4706 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4707 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4708 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4709 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4710 unsigned BuiltinID); 4711 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4712 llvm::ArrayRef<llvm::Value *> Ops, 4713 unsigned BuiltinID); 4714 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4715 llvm::ScalableVectorType *VTy); 4716 llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, 4717 llvm::StructType *Ty); 4718 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4719 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4720 unsigned IntID); 4721 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4722 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4723 unsigned IntID); 4724 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4725 SmallVectorImpl<llvm::Value *> &Ops, 4726 unsigned BuiltinID, bool IsZExtReturn); 4727 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4728 SmallVectorImpl<llvm::Value *> &Ops, 4729 unsigned BuiltinID); 4730 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4731 SmallVectorImpl<llvm::Value *> &Ops, 4732 unsigned BuiltinID); 4733 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4734 SmallVectorImpl<llvm::Value *> &Ops, 4735 unsigned IntID); 4736 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4737 SmallVectorImpl<llvm::Value *> &Ops, 4738 unsigned IntID); 4739 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4740 SmallVectorImpl<llvm::Value *> &Ops, 4741 unsigned IntID); 4742 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4743 4744 llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, 4745 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4746 unsigned IntID); 4747 llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, 4748 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4749 unsigned IntID); 4750 llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, 4751 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4752 unsigned IntID); 4753 llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, 4754 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4755 unsigned IntID); 4756 4757 void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, 4758 SmallVectorImpl<llvm::Value *> &Ops, 4759 SVETypeFlags TypeFlags); 4760 4761 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4762 4763 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4764 llvm::Triple::ArchType Arch); 4765 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4766 4767 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4768 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4769 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4770 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4771 llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4772 ReturnValueSlot ReturnValue); 4773 llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4774 llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, 4775 const CallExpr *E); 4776 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4777 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4778 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4779 const CallExpr *E); 4780 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4781 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4782 ReturnValueSlot ReturnValue); 4783 4784 llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); 4785 llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); 4786 llvm::Value *EmitRISCVCpuInit(); 4787 llvm::Value *EmitRISCVCpuIs(const CallExpr *E); 4788 llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); 4789 4790 void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, 4791 const CallExpr *E); 4792 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4793 llvm::AtomicOrdering &AO, 4794 llvm::SyncScope::ID &SSID); 4795 4796 enum class MSVCIntrin; 4797 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4798 4799 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4800 4801 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4802 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4803 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4804 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4805 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4806 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4807 const ObjCMethodDecl *MethodWithObjects); 4808 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4809 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4810 ReturnValueSlot Return = ReturnValueSlot()); 4811 4812 /// Retrieves the default cleanup kind for an ARC cleanup. 4813 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4814 CleanupKind getARCCleanupKind() { 4815 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4816 ? NormalAndEHCleanup : NormalCleanup; 4817 } 4818 4819 // ARC primitives. 4820 void EmitARCInitWeak(Address addr, llvm::Value *value); 4821 void EmitARCDestroyWeak(Address addr); 4822 llvm::Value *EmitARCLoadWeak(Address addr); 4823 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4824 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4825 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4826 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4827 void EmitARCCopyWeak(Address dst, Address src); 4828 void EmitARCMoveWeak(Address dst, Address src); 4829 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4830 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4831 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4832 bool resultIgnored); 4833 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4834 bool resultIgnored); 4835 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4836 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4837 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4838 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4839 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4840 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4841 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4842 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4843 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4844 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4845 4846 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4847 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4848 llvm::Type *returnType); 4849 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4850 4851 std::pair<LValue,llvm::Value*> 4852 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4853 std::pair<LValue,llvm::Value*> 4854 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4855 std::pair<LValue,llvm::Value*> 4856 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4857 4858 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4859 llvm::Type *returnType); 4860 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4861 llvm::Type *returnType); 4862 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4863 4864 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4865 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4866 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4867 4868 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4869 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4870 bool allowUnsafeClaim); 4871 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4872 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4873 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4874 4875 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4876 4877 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4878 4879 static Destroyer destroyARCStrongImprecise; 4880 static Destroyer destroyARCStrongPrecise; 4881 static Destroyer destroyARCWeak; 4882 static Destroyer emitARCIntrinsicUse; 4883 static Destroyer destroyNonTrivialCStruct; 4884 4885 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4886 llvm::Value *EmitObjCAutoreleasePoolPush(); 4887 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4888 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4889 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4890 4891 /// Emits a reference binding to the passed in expression. 4892 RValue EmitReferenceBindingToExpr(const Expr *E); 4893 4894 //===--------------------------------------------------------------------===// 4895 // Expression Emission 4896 //===--------------------------------------------------------------------===// 4897 4898 // Expressions are broken into three classes: scalar, complex, aggregate. 4899 4900 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4901 /// scalar type, returning the result. 4902 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4903 4904 /// Emit a conversion from the specified type to the specified destination 4905 /// type, both of which are LLVM scalar types. 4906 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4907 QualType DstTy, SourceLocation Loc); 4908 4909 /// Emit a conversion from the specified complex type to the specified 4910 /// destination type, where the destination type is an LLVM scalar type. 4911 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4912 QualType DstTy, 4913 SourceLocation Loc); 4914 4915 /// EmitAggExpr - Emit the computation of the specified expression 4916 /// of aggregate type. The result is computed into the given slot, 4917 /// which may be null to indicate that the value is not needed. 4918 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4919 4920 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4921 /// aggregate type into a temporary LValue. 4922 LValue EmitAggExprToLValue(const Expr *E); 4923 4924 enum ExprValueKind { EVK_RValue, EVK_NonRValue }; 4925 4926 /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into 4927 /// destination address. 4928 void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, 4929 ExprValueKind SrcKind); 4930 4931 /// Create a store to \arg DstPtr from \arg Src, truncating the stored value 4932 /// to at most \arg DstSize bytes. 4933 void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, 4934 bool DstIsVolatile); 4935 4936 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4937 /// make sure it survives garbage collection until this point. 4938 void EmitExtendGCLifetime(llvm::Value *object); 4939 4940 /// EmitComplexExpr - Emit the computation of the specified expression of 4941 /// complex type, returning the result. 4942 ComplexPairTy EmitComplexExpr(const Expr *E, 4943 bool IgnoreReal = false, 4944 bool IgnoreImag = false); 4945 4946 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4947 /// type and place its result into the specified l-value. 4948 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4949 4950 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4951 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4952 4953 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4954 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4955 4956 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4957 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4958 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4959 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4960 4961 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4962 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4963 4964 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4965 /// global variable that has already been created for it. If the initializer 4966 /// has a different type than GV does, this may free GV and return a different 4967 /// one. Otherwise it just returns GV. 4968 llvm::GlobalVariable * 4969 AddInitializerToStaticVarDecl(const VarDecl &D, 4970 llvm::GlobalVariable *GV); 4971 4972 // Emit an @llvm.invariant.start call for the given memory region. 4973 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4974 4975 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4976 /// variable with global storage. 4977 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4978 bool PerformInit); 4979 4980 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4981 llvm::Constant *Addr); 4982 4983 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4984 llvm::FunctionCallee Dtor, 4985 llvm::Constant *Addr, 4986 llvm::FunctionCallee &AtExit); 4987 4988 /// Call atexit() with a function that passes the given argument to 4989 /// the given function. 4990 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4991 llvm::Constant *addr); 4992 4993 /// Registers the dtor using 'llvm.global_dtors' for platforms that do not 4994 /// support an 'atexit()' function. 4995 void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, 4996 llvm::Constant *addr); 4997 4998 /// Call atexit() with function dtorStub. 4999 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 5000 5001 /// Call unatexit() with function dtorStub. 5002 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 5003 5004 /// Emit code in this function to perform a guarded variable 5005 /// initialization. Guarded initializations are used when it's not 5006 /// possible to prove that an initialization will be done exactly 5007 /// once, e.g. with a static local variable or a static data member 5008 /// of a class template. 5009 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 5010 bool PerformInit); 5011 5012 enum class GuardKind { VariableGuard, TlsGuard }; 5013 5014 /// Emit a branch to select whether or not to perform guarded initialization. 5015 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 5016 llvm::BasicBlock *InitBlock, 5017 llvm::BasicBlock *NoInitBlock, 5018 GuardKind Kind, const VarDecl *D); 5019 5020 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 5021 /// variables. 5022 void 5023 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 5024 ArrayRef<llvm::Function *> CXXThreadLocals, 5025 ConstantAddress Guard = ConstantAddress::invalid()); 5026 5027 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 5028 /// variables. 5029 void GenerateCXXGlobalCleanUpFunc( 5030 llvm::Function *Fn, 5031 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 5032 llvm::Constant *>> 5033 DtorsOrStermFinalizers); 5034 5035 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 5036 const VarDecl *D, 5037 llvm::GlobalVariable *Addr, 5038 bool PerformInit); 5039 5040 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 5041 5042 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 5043 5044 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 5045 5046 RValue EmitAtomicExpr(AtomicExpr *E); 5047 5048 //===--------------------------------------------------------------------===// 5049 // Annotations Emission 5050 //===--------------------------------------------------------------------===// 5051 5052 /// Emit an annotation call (intrinsic). 5053 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 5054 llvm::Value *AnnotatedVal, 5055 StringRef AnnotationStr, 5056 SourceLocation Location, 5057 const AnnotateAttr *Attr); 5058 5059 /// Emit local annotations for the local variable V, declared by D. 5060 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 5061 5062 /// Emit field annotations for the given field & value. Returns the 5063 /// annotation result. 5064 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 5065 5066 //===--------------------------------------------------------------------===// 5067 // Internal Helpers 5068 //===--------------------------------------------------------------------===// 5069 5070 /// ContainsLabel - Return true if the statement contains a label in it. If 5071 /// this statement is not executed normally, it not containing a label means 5072 /// that we can just remove the code. 5073 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 5074 5075 /// containsBreak - Return true if the statement contains a break out of it. 5076 /// If the statement (recursively) contains a switch or loop with a break 5077 /// inside of it, this is fine. 5078 static bool containsBreak(const Stmt *S); 5079 5080 /// Determine if the given statement might introduce a declaration into the 5081 /// current scope, by being a (possibly-labelled) DeclStmt. 5082 static bool mightAddDeclToScope(const Stmt *S); 5083 5084 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5085 /// to a constant, or if it does but contains a label, return false. If it 5086 /// constant folds return true and set the boolean result in Result. 5087 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 5088 bool AllowLabels = false); 5089 5090 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5091 /// to a constant, or if it does but contains a label, return false. If it 5092 /// constant folds return true and set the folded value. 5093 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 5094 bool AllowLabels = false); 5095 5096 /// Ignore parentheses and logical-NOT to track conditions consistently. 5097 static const Expr *stripCond(const Expr *C); 5098 5099 /// isInstrumentedCondition - Determine whether the given condition is an 5100 /// instrumentable condition (i.e. no "&&" or "||"). 5101 static bool isInstrumentedCondition(const Expr *C); 5102 5103 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 5104 /// increments a profile counter based on the semantics of the given logical 5105 /// operator opcode. This is used to instrument branch condition coverage 5106 /// for logical operators. 5107 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 5108 llvm::BasicBlock *TrueBlock, 5109 llvm::BasicBlock *FalseBlock, 5110 uint64_t TrueCount = 0, 5111 Stmt::Likelihood LH = Stmt::LH_None, 5112 const Expr *CntrIdx = nullptr); 5113 5114 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 5115 /// if statement) to the specified blocks. Based on the condition, this might 5116 /// try to simplify the codegen of the conditional based on the branch. 5117 /// TrueCount should be the number of times we expect the condition to 5118 /// evaluate to true based on PGO data. 5119 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 5120 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 5121 Stmt::Likelihood LH = Stmt::LH_None, 5122 const Expr *ConditionalOp = nullptr); 5123 5124 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 5125 /// nonnull, if \p LHS is marked _Nonnull. 5126 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 5127 5128 /// An enumeration which makes it easier to specify whether or not an 5129 /// operation is a subtraction. 5130 enum { NotSubtraction = false, IsSubtraction = true }; 5131 5132 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 5133 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 5134 /// \p SignedIndices indicates whether any of the GEP indices are signed. 5135 /// \p IsSubtraction indicates whether the expression used to form the GEP 5136 /// is a subtraction. 5137 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 5138 ArrayRef<llvm::Value *> IdxList, 5139 bool SignedIndices, 5140 bool IsSubtraction, 5141 SourceLocation Loc, 5142 const Twine &Name = ""); 5143 5144 Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, 5145 llvm::Type *elementType, bool SignedIndices, 5146 bool IsSubtraction, SourceLocation Loc, 5147 CharUnits Align, const Twine &Name = ""); 5148 5149 /// Specifies which type of sanitizer check to apply when handling a 5150 /// particular builtin. 5151 enum BuiltinCheckKind { 5152 BCK_CTZPassedZero, 5153 BCK_CLZPassedZero, 5154 BCK_AssumePassedFalse, 5155 }; 5156 5157 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 5158 /// enabled, a runtime check specified by \p Kind is also emitted. 5159 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 5160 5161 /// Emits an argument for a call to a `__builtin_assume`. If the builtin 5162 /// sanitizer is enabled, a runtime check is also emitted. 5163 llvm::Value *EmitCheckedArgForAssume(const Expr *E); 5164 5165 /// Emit a description of a type in a format suitable for passing to 5166 /// a runtime sanitizer handler. 5167 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 5168 5169 /// Convert a value into a format suitable for passing to a runtime 5170 /// sanitizer handler. 5171 llvm::Value *EmitCheckValue(llvm::Value *V); 5172 5173 /// Emit a description of a source location in a format suitable for 5174 /// passing to a runtime sanitizer handler. 5175 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 5176 5177 void EmitKCFIOperandBundle(const CGCallee &Callee, 5178 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 5179 5180 /// Create a basic block that will either trap or call a handler function in 5181 /// the UBSan runtime with the provided arguments, and create a conditional 5182 /// branch to it. 5183 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 5184 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 5185 ArrayRef<llvm::Value *> DynamicArgs); 5186 5187 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 5188 /// if Cond if false. 5189 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 5190 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 5191 ArrayRef<llvm::Constant *> StaticArgs); 5192 5193 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 5194 /// checking is enabled. Otherwise, just emit an unreachable instruction. 5195 void EmitUnreachable(SourceLocation Loc); 5196 5197 /// Create a basic block that will call the trap intrinsic, and emit a 5198 /// conditional branch to it, for the -ftrapv checks. 5199 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, 5200 bool NoMerge = false); 5201 5202 /// Emit a call to trap or debugtrap and attach function attribute 5203 /// "trap-func-name" if specified. 5204 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 5205 5206 /// Emit a stub for the cross-DSO CFI check function. 5207 void EmitCfiCheckStub(); 5208 5209 /// Emit a cross-DSO CFI failure handling function. 5210 void EmitCfiCheckFail(); 5211 5212 /// Create a check for a function parameter that may potentially be 5213 /// declared as non-null. 5214 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 5215 AbstractCallee AC, unsigned ParmNum); 5216 5217 void EmitNonNullArgCheck(Address Addr, QualType ArgType, 5218 SourceLocation ArgLoc, AbstractCallee AC, 5219 unsigned ParmNum); 5220 5221 /// EmitWriteback - Emit callbacks for function. 5222 void EmitWritebacks(const CallArgList &Args); 5223 5224 /// EmitCallArg - Emit a single call argument. 5225 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 5226 5227 /// EmitDelegateCallArg - We are performing a delegate call; that 5228 /// is, the current function is delegating to another one. Produce 5229 /// a r-value suitable for passing the given parameter. 5230 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 5231 SourceLocation loc); 5232 5233 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 5234 /// point operation, expressed as the maximum relative error in ulp. 5235 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 5236 5237 /// Set the minimum required accuracy of the given sqrt operation 5238 /// based on CodeGenOpts. 5239 void SetSqrtFPAccuracy(llvm::Value *Val); 5240 5241 /// Set the minimum required accuracy of the given sqrt operation based on 5242 /// CodeGenOpts. 5243 void SetDivFPAccuracy(llvm::Value *Val); 5244 5245 /// Set the codegen fast-math flags. 5246 void SetFastMathFlags(FPOptions FPFeatures); 5247 5248 // Truncate or extend a boolean vector to the requested number of elements. 5249 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 5250 unsigned NumElementsDst, 5251 const llvm::Twine &Name = ""); 5252 5253 private: 5254 // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| 5255 // as it's parent convergence instr. 5256 llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB); 5257 5258 // Adds a convergence_ctrl token with |ParentToken| as parent convergence 5259 // instr to the call |Input|. 5260 llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input); 5261 5262 // Find the convergence_entry instruction |F|, or emits ones if none exists. 5263 // Returns the convergence instruction. 5264 llvm::ConvergenceControlInst * 5265 getOrEmitConvergenceEntryToken(llvm::Function *F); 5266 5267 private: 5268 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 5269 void EmitReturnOfRValue(RValue RV, QualType Ty); 5270 5271 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 5272 5273 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 5274 DeferredReplacements; 5275 5276 /// Set the address of a local variable. 5277 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 5278 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 5279 LocalDeclMap.insert({VD, Addr}); 5280 } 5281 5282 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 5283 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 5284 /// 5285 /// \param AI - The first function argument of the expansion. 5286 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 5287 llvm::Function::arg_iterator &AI); 5288 5289 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 5290 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 5291 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 5292 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 5293 SmallVectorImpl<llvm::Value *> &IRCallArgs, 5294 unsigned &IRCallArgPos); 5295 5296 std::pair<llvm::Value *, llvm::Type *> 5297 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 5298 std::string &ConstraintStr); 5299 5300 std::pair<llvm::Value *, llvm::Type *> 5301 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 5302 QualType InputType, std::string &ConstraintStr, 5303 SourceLocation Loc); 5304 5305 /// Attempts to statically evaluate the object size of E. If that 5306 /// fails, emits code to figure the size of E out for us. This is 5307 /// pass_object_size aware. 5308 /// 5309 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 5310 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 5311 llvm::IntegerType *ResType, 5312 llvm::Value *EmittedE, 5313 bool IsDynamic); 5314 5315 /// Emits the size of E, as required by __builtin_object_size. This 5316 /// function is aware of pass_object_size parameters, and will act accordingly 5317 /// if E is a parameter with the pass_object_size attribute. 5318 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 5319 llvm::IntegerType *ResType, 5320 llvm::Value *EmittedE, 5321 bool IsDynamic); 5322 5323 llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, 5324 llvm::IntegerType *ResType); 5325 5326 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 5327 Address Loc); 5328 5329 public: 5330 enum class EvaluationOrder { 5331 ///! No language constraints on evaluation order. 5332 Default, 5333 ///! Language semantics require left-to-right evaluation. 5334 ForceLeftToRight, 5335 ///! Language semantics require right-to-left evaluation. 5336 ForceRightToLeft 5337 }; 5338 5339 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 5340 // an ObjCMethodDecl. 5341 struct PrototypeWrapper { 5342 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 5343 5344 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 5345 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 5346 }; 5347 5348 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 5349 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 5350 AbstractCallee AC = AbstractCallee(), 5351 unsigned ParamsToSkip = 0, 5352 EvaluationOrder Order = EvaluationOrder::Default); 5353 5354 /// EmitPointerWithAlignment - Given an expression with a pointer type, 5355 /// emit the value and compute our best estimate of the alignment of the 5356 /// pointee. 5357 /// 5358 /// \param BaseInfo - If non-null, this will be initialized with 5359 /// information about the source of the alignment and the may-alias 5360 /// attribute. Note that this function will conservatively fall back on 5361 /// the type when it doesn't recognize the expression and may-alias will 5362 /// be set to false. 5363 /// 5364 /// One reasonable way to use this information is when there's a language 5365 /// guarantee that the pointer must be aligned to some stricter value, and 5366 /// we're simply trying to ensure that sufficiently obvious uses of under- 5367 /// aligned objects don't get miscompiled; for example, a placement new 5368 /// into the address of a local variable. In such a case, it's quite 5369 /// reasonable to just ignore the returned alignment when it isn't from an 5370 /// explicit source. 5371 Address 5372 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 5373 TBAAAccessInfo *TBAAInfo = nullptr, 5374 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 5375 5376 /// If \p E references a parameter with pass_object_size info or a constant 5377 /// array size modifier, emit the object size divided by the size of \p EltTy. 5378 /// Otherwise return null. 5379 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 5380 5381 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 5382 5383 struct FMVResolverOption { 5384 llvm::Function *Function; 5385 llvm::SmallVector<StringRef, 8> Features; 5386 std::optional<StringRef> Architecture; 5387 5388 FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, 5389 std::optional<StringRef> Arch = std::nullopt) 5390 : Function(F), Features(Feats), Architecture(Arch) {} 5391 }; 5392 5393 // Emits the body of a multiversion function's resolver. Assumes that the 5394 // options are already sorted in the proper order, with the 'default' option 5395 // last (if it exists). 5396 void EmitMultiVersionResolver(llvm::Function *Resolver, 5397 ArrayRef<FMVResolverOption> Options); 5398 void EmitX86MultiVersionResolver(llvm::Function *Resolver, 5399 ArrayRef<FMVResolverOption> Options); 5400 void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 5401 ArrayRef<FMVResolverOption> Options); 5402 void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, 5403 ArrayRef<FMVResolverOption> Options); 5404 5405 private: 5406 QualType getVarArgType(const Expr *Arg); 5407 5408 void EmitDeclMetadata(); 5409 5410 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 5411 const AutoVarEmission &emission); 5412 5413 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 5414 5415 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 5416 llvm::Value *EmitX86CpuIs(const CallExpr *E); 5417 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 5418 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 5419 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 5420 llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); 5421 llvm::Value *EmitX86CpuInit(); 5422 llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); 5423 llvm::Value *EmitAArch64CpuInit(); 5424 llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); 5425 llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); 5426 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 5427 }; 5428 5429 inline DominatingLLVMValue::saved_type 5430 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 5431 if (!needsSaving(value)) return saved_type(value, false); 5432 5433 // Otherwise, we need an alloca. 5434 auto align = CharUnits::fromQuantity( 5435 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 5436 Address alloca = 5437 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 5438 CGF.Builder.CreateStore(value, alloca); 5439 5440 return saved_type(alloca.emitRawPointer(CGF), true); 5441 } 5442 5443 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 5444 saved_type value) { 5445 // If the value says it wasn't saved, trust that it's still dominating. 5446 if (!value.getInt()) return value.getPointer(); 5447 5448 // Otherwise, it should be an alloca instruction, as set up in save(). 5449 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 5450 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 5451 alloca->getAlign()); 5452 } 5453 5454 } // end namespace CodeGen 5455 5456 // Map the LangOption for floating point exception behavior into 5457 // the corresponding enum in the IR. 5458 llvm::fp::ExceptionBehavior 5459 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 5460 } // end namespace clang 5461 5462 #endif 5463