1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenACC.h" 30 #include "clang/AST/StmtOpenMP.h" 31 #include "clang/AST/Type.h" 32 #include "clang/Basic/ABI.h" 33 #include "clang/Basic/CapturedStmt.h" 34 #include "clang/Basic/CodeGenOptions.h" 35 #include "clang/Basic/OpenMPKinds.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/MapVector.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/SanitizerStats.h" 46 #include <optional> 47 48 namespace llvm { 49 class BasicBlock; 50 class LLVMContext; 51 class MDNode; 52 class SwitchInst; 53 class Twine; 54 class Value; 55 class CanonicalLoopInfo; 56 } 57 58 namespace clang { 59 class ASTContext; 60 class CXXDestructorDecl; 61 class CXXForRangeStmt; 62 class CXXTryStmt; 63 class Decl; 64 class LabelDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGBlockInfo; 95 class CGCXXABI; 96 class BlockByrefHelpers; 97 class BlockByrefInfo; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 126 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 127 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 128 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 129 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 130 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 131 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 132 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 133 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 134 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 135 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 136 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 137 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 138 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 139 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 140 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ 141 SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) 142 143 enum SanitizerHandler { 144 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 145 LIST_SANITIZER_CHECKS 146 #undef SANITIZER_CHECK 147 }; 148 149 /// Helper class with most of the code for saving a value for a 150 /// conditional expression cleanup. 151 struct DominatingLLVMValue { 152 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 153 154 /// Answer whether the given value needs extra work to be saved. 155 static bool needsSaving(llvm::Value *value) { 156 if (!value) 157 return false; 158 159 // If it's not an instruction, we don't need to save. 160 if (!isa<llvm::Instruction>(value)) return false; 161 162 // If it's an instruction in the entry block, we don't need to save. 163 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 164 return (block != &block->getParent()->getEntryBlock()); 165 } 166 167 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 168 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 169 }; 170 171 /// A partial specialization of DominatingValue for llvm::Values that 172 /// might be llvm::Instructions. 173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 174 typedef T *type; 175 static type restore(CodeGenFunction &CGF, saved_type value) { 176 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 177 } 178 }; 179 180 /// A specialization of DominatingValue for Address. 181 template <> struct DominatingValue<Address> { 182 typedef Address type; 183 184 struct saved_type { 185 DominatingLLVMValue::saved_type BasePtr; 186 llvm::Type *ElementType; 187 CharUnits Alignment; 188 DominatingLLVMValue::saved_type Offset; 189 llvm::PointerType *EffectiveType; 190 }; 191 192 static bool needsSaving(type value) { 193 if (DominatingLLVMValue::needsSaving(value.getBasePointer()) || 194 DominatingLLVMValue::needsSaving(value.getOffset())) 195 return true; 196 return false; 197 } 198 static saved_type save(CodeGenFunction &CGF, type value) { 199 return {DominatingLLVMValue::save(CGF, value.getBasePointer()), 200 value.getElementType(), value.getAlignment(), 201 DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()}; 202 } 203 static type restore(CodeGenFunction &CGF, saved_type value) { 204 return Address(DominatingLLVMValue::restore(CGF, value.BasePtr), 205 value.ElementType, value.Alignment, CGPointerAuthInfo(), 206 DominatingLLVMValue::restore(CGF, value.Offset)); 207 } 208 }; 209 210 /// A specialization of DominatingValue for RValue. 211 template <> struct DominatingValue<RValue> { 212 typedef RValue type; 213 class saved_type { 214 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 215 AggregateAddress, ComplexAddress }; 216 union { 217 struct { 218 DominatingLLVMValue::saved_type first, second; 219 } Vals; 220 DominatingValue<Address>::saved_type AggregateAddr; 221 }; 222 LLVM_PREFERRED_TYPE(Kind) 223 unsigned K : 3; 224 225 saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) 226 : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {} 227 228 saved_type(DominatingLLVMValue::saved_type Val1, 229 DominatingLLVMValue::saved_type Val2) 230 : Vals{Val1, Val2}, K(ComplexAddress) {} 231 232 saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) 233 : AggregateAddr(AggregateAddr), K(K) {} 234 235 public: 236 static bool needsSaving(RValue value); 237 static saved_type save(CodeGenFunction &CGF, RValue value); 238 RValue restore(CodeGenFunction &CGF); 239 240 // implementations in CGCleanup.cpp 241 }; 242 243 static bool needsSaving(type value) { 244 return saved_type::needsSaving(value); 245 } 246 static saved_type save(CodeGenFunction &CGF, type value) { 247 return saved_type::save(CGF, value); 248 } 249 static type restore(CodeGenFunction &CGF, saved_type value) { 250 return value.restore(CGF); 251 } 252 }; 253 254 /// CodeGenFunction - This class organizes the per-function state that is used 255 /// while generating LLVM code. 256 class CodeGenFunction : public CodeGenTypeCache { 257 CodeGenFunction(const CodeGenFunction &) = delete; 258 void operator=(const CodeGenFunction &) = delete; 259 260 friend class CGCXXABI; 261 public: 262 /// A jump destination is an abstract label, branching to which may 263 /// require a jump out through normal cleanups. 264 struct JumpDest { 265 JumpDest() : Block(nullptr), Index(0) {} 266 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 267 unsigned Index) 268 : Block(Block), ScopeDepth(Depth), Index(Index) {} 269 270 bool isValid() const { return Block != nullptr; } 271 llvm::BasicBlock *getBlock() const { return Block; } 272 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 273 unsigned getDestIndex() const { return Index; } 274 275 // This should be used cautiously. 276 void setScopeDepth(EHScopeStack::stable_iterator depth) { 277 ScopeDepth = depth; 278 } 279 280 private: 281 llvm::BasicBlock *Block; 282 EHScopeStack::stable_iterator ScopeDepth; 283 unsigned Index; 284 }; 285 286 CodeGenModule &CGM; // Per-module state. 287 const TargetInfo &Target; 288 289 // For EH/SEH outlined funclets, this field points to parent's CGF 290 CodeGenFunction *ParentCGF = nullptr; 291 292 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 293 LoopInfoStack LoopStack; 294 CGBuilderTy Builder; 295 296 // Stores variables for which we can't generate correct lifetime markers 297 // because of jumps. 298 VarBypassDetector Bypasses; 299 300 /// List of recently emitted OMPCanonicalLoops. 301 /// 302 /// Since OMPCanonicalLoops are nested inside other statements (in particular 303 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 304 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 305 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 306 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 307 /// this stack when done. Entering a new loop requires clearing this list; it 308 /// either means we start parsing a new loop nest (in which case the previous 309 /// loop nest goes out of scope) or a second loop in the same level in which 310 /// case it would be ambiguous into which of the two (or more) loops the loop 311 /// nest would extend. 312 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 313 314 /// Stack to track the Logical Operator recursion nest for MC/DC. 315 SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; 316 317 /// Stack to track the controlled convergence tokens. 318 SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack; 319 320 /// Number of nested loop to be consumed by the last surrounding 321 /// loop-associated directive. 322 int ExpectedOMPLoopDepth = 0; 323 324 // CodeGen lambda for loops and support for ordered clause 325 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 326 JumpDest)> 327 CodeGenLoopTy; 328 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 329 const unsigned, const bool)> 330 CodeGenOrderedTy; 331 332 // Codegen lambda for loop bounds in worksharing loop constructs 333 typedef llvm::function_ref<std::pair<LValue, LValue>( 334 CodeGenFunction &, const OMPExecutableDirective &S)> 335 CodeGenLoopBoundsTy; 336 337 // Codegen lambda for loop bounds in dispatch-based loop implementation 338 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 339 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 340 Address UB)> 341 CodeGenDispatchBoundsTy; 342 343 /// CGBuilder insert helper. This function is called after an 344 /// instruction is created using Builder. 345 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 346 llvm::BasicBlock::iterator InsertPt) const; 347 348 /// CurFuncDecl - Holds the Decl for the current outermost 349 /// non-closure context. 350 const Decl *CurFuncDecl = nullptr; 351 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 352 const Decl *CurCodeDecl = nullptr; 353 const CGFunctionInfo *CurFnInfo = nullptr; 354 QualType FnRetTy; 355 llvm::Function *CurFn = nullptr; 356 357 /// Save Parameter Decl for coroutine. 358 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 359 360 // Holds coroutine data if the current function is a coroutine. We use a 361 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 362 // in this header. 363 struct CGCoroInfo { 364 std::unique_ptr<CGCoroData> Data; 365 bool InSuspendBlock = false; 366 CGCoroInfo(); 367 ~CGCoroInfo(); 368 }; 369 CGCoroInfo CurCoro; 370 371 bool isCoroutine() const { 372 return CurCoro.Data != nullptr; 373 } 374 375 bool inSuspendBlock() const { 376 return isCoroutine() && CurCoro.InSuspendBlock; 377 } 378 379 // Holds FramePtr for await_suspend wrapper generation, 380 // so that __builtin_coro_frame call can be lowered 381 // directly to value of its second argument 382 struct AwaitSuspendWrapperInfo { 383 llvm::Value *FramePtr = nullptr; 384 }; 385 AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; 386 387 // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. 388 // It encapsulates SuspendExpr in a function, to separate it's body 389 // from the main coroutine to avoid miscompilations. Intrinisic 390 // is lowered to this function call in CoroSplit pass 391 // Function signature is: 392 // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) 393 // where type is one of (void, i1, ptr) 394 llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, 395 Twine const &SuspendPointName, 396 CoroutineSuspendExpr const &S); 397 398 /// CurGD - The GlobalDecl for the current function being compiled. 399 GlobalDecl CurGD; 400 401 /// PrologueCleanupDepth - The cleanup depth enclosing all the 402 /// cleanups associated with the parameters. 403 EHScopeStack::stable_iterator PrologueCleanupDepth; 404 405 /// ReturnBlock - Unified return block. 406 JumpDest ReturnBlock; 407 408 /// ReturnValue - The temporary alloca to hold the return 409 /// value. This is invalid iff the function has no return value. 410 Address ReturnValue = Address::invalid(); 411 412 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 413 /// This is invalid if sret is not in use. 414 Address ReturnValuePointer = Address::invalid(); 415 416 /// If a return statement is being visited, this holds the return statment's 417 /// result expression. 418 const Expr *RetExpr = nullptr; 419 420 /// Return true if a label was seen in the current scope. 421 bool hasLabelBeenSeenInCurrentScope() const { 422 if (CurLexicalScope) 423 return CurLexicalScope->hasLabels(); 424 return !LabelMap.empty(); 425 } 426 427 /// AllocaInsertPoint - This is an instruction in the entry block before which 428 /// we prefer to insert allocas. 429 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 430 431 private: 432 /// PostAllocaInsertPt - This is a place in the prologue where code can be 433 /// inserted that will be dominated by all the static allocas. This helps 434 /// achieve two things: 435 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 436 /// 2. All other prologue code (which are dominated by static allocas) do 437 /// appear in the source order immediately after all static allocas. 438 /// 439 /// PostAllocaInsertPt will be lazily created when it is *really* required. 440 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 441 442 public: 443 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 444 /// immediately after AllocaInsertPt. 445 llvm::Instruction *getPostAllocaInsertPoint() { 446 if (!PostAllocaInsertPt) { 447 assert(AllocaInsertPt && 448 "Expected static alloca insertion point at function prologue"); 449 assert(AllocaInsertPt->getParent()->isEntryBlock() && 450 "EBB should be entry block of the current code gen function"); 451 PostAllocaInsertPt = AllocaInsertPt->clone(); 452 PostAllocaInsertPt->setName("postallocapt"); 453 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 454 } 455 456 return PostAllocaInsertPt; 457 } 458 459 /// API for captured statement code generation. 460 class CGCapturedStmtInfo { 461 public: 462 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 464 explicit CGCapturedStmtInfo(const CapturedStmt &S, 465 CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 467 468 RecordDecl::field_iterator Field = 469 S.getCapturedRecordDecl()->field_begin(); 470 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 471 E = S.capture_end(); 472 I != E; ++I, ++Field) { 473 if (I->capturesThis()) 474 CXXThisFieldDecl = *Field; 475 else if (I->capturesVariable()) 476 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 477 else if (I->capturesVariableByCopy()) 478 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 479 } 480 } 481 482 virtual ~CGCapturedStmtInfo(); 483 484 CapturedRegionKind getKind() const { return Kind; } 485 486 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 487 // Retrieve the value of the context parameter. 488 virtual llvm::Value *getContextValue() const { return ThisValue; } 489 490 /// Lookup the captured field decl for a variable. 491 virtual const FieldDecl *lookup(const VarDecl *VD) const { 492 return CaptureFields.lookup(VD->getCanonicalDecl()); 493 } 494 495 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 496 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 497 498 static bool classof(const CGCapturedStmtInfo *) { 499 return true; 500 } 501 502 /// Emit the captured statement body. 503 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 504 CGF.incrementProfileCounter(S); 505 CGF.EmitStmt(S); 506 } 507 508 /// Get the name of the capture helper. 509 virtual StringRef getHelperName() const { return "__captured_stmt"; } 510 511 /// Get the CaptureFields 512 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 513 return CaptureFields; 514 } 515 516 private: 517 /// The kind of captured statement being generated. 518 CapturedRegionKind Kind; 519 520 /// Keep the map between VarDecl and FieldDecl. 521 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 522 523 /// The base address of the captured record, passed in as the first 524 /// argument of the parallel region function. 525 llvm::Value *ThisValue; 526 527 /// Captured 'this' type. 528 FieldDecl *CXXThisFieldDecl; 529 }; 530 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 531 532 /// RAII for correct setting/restoring of CapturedStmtInfo. 533 class CGCapturedStmtRAII { 534 private: 535 CodeGenFunction &CGF; 536 CGCapturedStmtInfo *PrevCapturedStmtInfo; 537 public: 538 CGCapturedStmtRAII(CodeGenFunction &CGF, 539 CGCapturedStmtInfo *NewCapturedStmtInfo) 540 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 541 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 542 } 543 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 544 }; 545 546 /// An abstract representation of regular/ObjC call/message targets. 547 class AbstractCallee { 548 /// The function declaration of the callee. 549 const Decl *CalleeDecl; 550 551 public: 552 AbstractCallee() : CalleeDecl(nullptr) {} 553 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 554 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 555 bool hasFunctionDecl() const { 556 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 557 } 558 const Decl *getDecl() const { return CalleeDecl; } 559 unsigned getNumParams() const { 560 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 561 return FD->getNumParams(); 562 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 563 } 564 const ParmVarDecl *getParamDecl(unsigned I) const { 565 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 566 return FD->getParamDecl(I); 567 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 568 } 569 }; 570 571 /// Sanitizers enabled for this function. 572 SanitizerSet SanOpts; 573 574 /// True if CodeGen currently emits code implementing sanitizer checks. 575 bool IsSanitizerScope = false; 576 577 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 578 class SanitizerScope { 579 CodeGenFunction *CGF; 580 public: 581 SanitizerScope(CodeGenFunction *CGF); 582 ~SanitizerScope(); 583 }; 584 585 /// In C++, whether we are code generating a thunk. This controls whether we 586 /// should emit cleanups. 587 bool CurFuncIsThunk = false; 588 589 /// In ARC, whether we should autorelease the return value. 590 bool AutoreleaseResult = false; 591 592 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 593 /// potentially set the return value. 594 bool SawAsmBlock = false; 595 596 GlobalDecl CurSEHParent; 597 598 /// True if the current function is an outlined SEH helper. This can be a 599 /// finally block or filter expression. 600 bool IsOutlinedSEHHelper = false; 601 602 /// True if CodeGen currently emits code inside presereved access index 603 /// region. 604 bool IsInPreservedAIRegion = false; 605 606 /// True if the current statement has nomerge attribute. 607 bool InNoMergeAttributedStmt = false; 608 609 /// True if the current statement has noinline attribute. 610 bool InNoInlineAttributedStmt = false; 611 612 /// True if the current statement has always_inline attribute. 613 bool InAlwaysInlineAttributedStmt = false; 614 615 /// True if the current statement has noconvergent attribute. 616 bool InNoConvergentAttributedStmt = false; 617 618 // The CallExpr within the current statement that the musttail attribute 619 // applies to. nullptr if there is no 'musttail' on the current statement. 620 const CallExpr *MustTailCall = nullptr; 621 622 /// Returns true if a function must make progress, which means the 623 /// mustprogress attribute can be added. 624 bool checkIfFunctionMustProgress() { 625 if (CGM.getCodeGenOpts().getFiniteLoops() == 626 CodeGenOptions::FiniteLoopsKind::Never) 627 return false; 628 629 // C++11 and later guarantees that a thread eventually will do one of the 630 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 631 // - terminate, 632 // - make a call to a library I/O function, 633 // - perform an access through a volatile glvalue, or 634 // - perform a synchronization operation or an atomic operation. 635 // 636 // Hence each function is 'mustprogress' in C++11 or later. 637 return getLangOpts().CPlusPlus11; 638 } 639 640 /// Returns true if a loop must make progress, which means the mustprogress 641 /// attribute can be added. \p HasConstantCond indicates whether the branch 642 /// condition is a known constant. 643 bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); 644 645 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 646 llvm::Value *BlockPointer = nullptr; 647 648 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 649 FieldDecl *LambdaThisCaptureField = nullptr; 650 651 /// A mapping from NRVO variables to the flags used to indicate 652 /// when the NRVO has been applied to this variable. 653 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 654 655 EHScopeStack EHStack; 656 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 657 658 // A stack of cleanups which were added to EHStack but have to be deactivated 659 // later before being popped or emitted. These are usually deactivated on 660 // exiting a `CleanupDeactivationScope` scope. For instance, after a 661 // full-expr. 662 // 663 // These are specially useful for correctly emitting cleanups while 664 // encountering branches out of expression (through stmt-expr or coroutine 665 // suspensions). 666 struct DeferredDeactivateCleanup { 667 EHScopeStack::stable_iterator Cleanup; 668 llvm::Instruction *DominatingIP; 669 }; 670 llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; 671 672 // Enters a new scope for capturing cleanups which are deferred to be 673 // deactivated, all of which will be deactivated once the scope is exited. 674 struct CleanupDeactivationScope { 675 CodeGenFunction &CGF; 676 size_t OldDeactivateCleanupStackSize; 677 bool Deactivated; 678 CleanupDeactivationScope(CodeGenFunction &CGF) 679 : CGF(CGF), OldDeactivateCleanupStackSize( 680 CGF.DeferredDeactivationCleanupStack.size()), 681 Deactivated(false) {} 682 683 void ForceDeactivate() { 684 assert(!Deactivated && "Deactivating already deactivated scope"); 685 auto &Stack = CGF.DeferredDeactivationCleanupStack; 686 for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { 687 CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup, 688 Stack[I - 1].DominatingIP); 689 Stack[I - 1].DominatingIP->eraseFromParent(); 690 } 691 Stack.resize(OldDeactivateCleanupStackSize); 692 Deactivated = true; 693 } 694 695 ~CleanupDeactivationScope() { 696 if (Deactivated) 697 return; 698 ForceDeactivate(); 699 } 700 }; 701 702 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 703 704 llvm::Instruction *CurrentFuncletPad = nullptr; 705 706 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 707 bool isRedundantBeforeReturn() override { return true; } 708 709 llvm::Value *Addr; 710 llvm::Value *Size; 711 712 public: 713 CallLifetimeEnd(RawAddress addr, llvm::Value *size) 714 : Addr(addr.getPointer()), Size(size) {} 715 716 void Emit(CodeGenFunction &CGF, Flags flags) override { 717 CGF.EmitLifetimeEnd(Size, Addr); 718 } 719 }; 720 721 /// Header for data within LifetimeExtendedCleanupStack. 722 struct LifetimeExtendedCleanupHeader { 723 /// The size of the following cleanup object. 724 unsigned Size; 725 /// The kind of cleanup to push. 726 LLVM_PREFERRED_TYPE(CleanupKind) 727 unsigned Kind : 31; 728 /// Whether this is a conditional cleanup. 729 LLVM_PREFERRED_TYPE(bool) 730 unsigned IsConditional : 1; 731 732 size_t getSize() const { return Size; } 733 CleanupKind getKind() const { return (CleanupKind)Kind; } 734 bool isConditional() const { return IsConditional; } 735 }; 736 737 /// i32s containing the indexes of the cleanup destinations. 738 RawAddress NormalCleanupDest = RawAddress::invalid(); 739 740 unsigned NextCleanupDestIndex = 1; 741 742 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 743 llvm::BasicBlock *EHResumeBlock = nullptr; 744 745 /// The exception slot. All landing pads write the current exception pointer 746 /// into this alloca. 747 llvm::Value *ExceptionSlot = nullptr; 748 749 /// The selector slot. Under the MandatoryCleanup model, all landing pads 750 /// write the current selector value into this alloca. 751 llvm::AllocaInst *EHSelectorSlot = nullptr; 752 753 /// A stack of exception code slots. Entering an __except block pushes a slot 754 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 755 /// a value from the top of the stack. 756 SmallVector<Address, 1> SEHCodeSlotStack; 757 758 /// Value returned by __exception_info intrinsic. 759 llvm::Value *SEHInfo = nullptr; 760 761 /// Emits a landing pad for the current EH stack. 762 llvm::BasicBlock *EmitLandingPad(); 763 764 llvm::BasicBlock *getInvokeDestImpl(); 765 766 /// Parent loop-based directive for scan directive. 767 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 768 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 769 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 770 llvm::BasicBlock *OMPScanExitBlock = nullptr; 771 llvm::BasicBlock *OMPScanDispatch = nullptr; 772 bool OMPFirstScanLoop = false; 773 774 /// Manages parent directive for scan directives. 775 class ParentLoopDirectiveForScanRegion { 776 CodeGenFunction &CGF; 777 const OMPExecutableDirective *ParentLoopDirectiveForScan; 778 779 public: 780 ParentLoopDirectiveForScanRegion( 781 CodeGenFunction &CGF, 782 const OMPExecutableDirective &ParentLoopDirectiveForScan) 783 : CGF(CGF), 784 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 785 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 786 } 787 ~ParentLoopDirectiveForScanRegion() { 788 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 789 } 790 }; 791 792 template <class T> 793 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 794 return DominatingValue<T>::save(*this, value); 795 } 796 797 class CGFPOptionsRAII { 798 public: 799 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 800 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 801 ~CGFPOptionsRAII(); 802 803 private: 804 void ConstructorHelper(FPOptions FPFeatures); 805 CodeGenFunction &CGF; 806 FPOptions OldFPFeatures; 807 llvm::fp::ExceptionBehavior OldExcept; 808 llvm::RoundingMode OldRounding; 809 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 810 }; 811 FPOptions CurFPFeatures; 812 813 public: 814 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 815 /// rethrows. 816 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 817 818 /// A class controlling the emission of a finally block. 819 class FinallyInfo { 820 /// Where the catchall's edge through the cleanup should go. 821 JumpDest RethrowDest; 822 823 /// A function to call to enter the catch. 824 llvm::FunctionCallee BeginCatchFn; 825 826 /// An i1 variable indicating whether or not the @finally is 827 /// running for an exception. 828 llvm::AllocaInst *ForEHVar = nullptr; 829 830 /// An i8* variable into which the exception pointer to rethrow 831 /// has been saved. 832 llvm::AllocaInst *SavedExnVar = nullptr; 833 834 public: 835 void enter(CodeGenFunction &CGF, const Stmt *Finally, 836 llvm::FunctionCallee beginCatchFn, 837 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 838 void exit(CodeGenFunction &CGF); 839 }; 840 841 /// Returns true inside SEH __try blocks. 842 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 843 844 /// Returns true while emitting a cleanuppad. 845 bool isCleanupPadScope() const { 846 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 847 } 848 849 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 850 /// current full-expression. Safe against the possibility that 851 /// we're currently inside a conditionally-evaluated expression. 852 template <class T, class... As> 853 void pushFullExprCleanup(CleanupKind kind, As... A) { 854 // If we're not in a conditional branch, or if none of the 855 // arguments requires saving, then use the unconditional cleanup. 856 if (!isInConditionalBranch()) 857 return EHStack.pushCleanup<T>(kind, A...); 858 859 // Stash values in a tuple so we can guarantee the order of saves. 860 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 861 SavedTuple Saved{saveValueInCond(A)...}; 862 863 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 864 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 865 initFullExprCleanup(); 866 } 867 868 /// Queue a cleanup to be pushed after finishing the current full-expression, 869 /// potentially with an active flag. 870 template <class T, class... As> 871 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 872 if (!isInConditionalBranch()) 873 return pushCleanupAfterFullExprWithActiveFlag<T>( 874 Kind, RawAddress::invalid(), A...); 875 876 RawAddress ActiveFlag = createCleanupActiveFlag(); 877 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 878 "cleanup active flag should never need saving"); 879 880 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 881 SavedTuple Saved{saveValueInCond(A)...}; 882 883 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 884 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 885 } 886 887 template <class T, class... As> 888 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 889 RawAddress ActiveFlag, As... A) { 890 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 891 ActiveFlag.isValid()}; 892 893 size_t OldSize = LifetimeExtendedCleanupStack.size(); 894 LifetimeExtendedCleanupStack.resize( 895 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 896 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 897 898 static_assert(sizeof(Header) % alignof(T) == 0, 899 "Cleanup will be allocated on misaligned address"); 900 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 901 new (Buffer) LifetimeExtendedCleanupHeader(Header); 902 new (Buffer + sizeof(Header)) T(A...); 903 if (Header.IsConditional) 904 new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); 905 } 906 907 // Push a cleanup onto EHStack and deactivate it later. It is usually 908 // deactivated when exiting a `CleanupDeactivationScope` (for example: after a 909 // full expression). 910 template <class T, class... As> 911 void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { 912 // Placeholder dominating IP for this cleanup. 913 llvm::Instruction *DominatingIP = 914 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 915 EHStack.pushCleanup<T>(Kind, A...); 916 DeferredDeactivationCleanupStack.push_back( 917 {EHStack.stable_begin(), DominatingIP}); 918 } 919 920 /// Set up the last cleanup that was pushed as a conditional 921 /// full-expression cleanup. 922 void initFullExprCleanup() { 923 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 924 } 925 926 void initFullExprCleanupWithFlag(RawAddress ActiveFlag); 927 RawAddress createCleanupActiveFlag(); 928 929 /// PushDestructorCleanup - Push a cleanup to call the 930 /// complete-object destructor of an object of the given type at the 931 /// given address. Does nothing if T is not a C++ class type with a 932 /// non-trivial destructor. 933 void PushDestructorCleanup(QualType T, Address Addr); 934 935 /// PushDestructorCleanup - Push a cleanup to call the 936 /// complete-object variant of the given destructor on the object at 937 /// the given address. 938 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 939 Address Addr); 940 941 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 942 /// process all branch fixups. 943 void PopCleanupBlock(bool FallThroughIsBranchThrough = false, 944 bool ForDeactivation = false); 945 946 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 947 /// The block cannot be reactivated. Pops it if it's the top of the 948 /// stack. 949 /// 950 /// \param DominatingIP - An instruction which is known to 951 /// dominate the current IP (if set) and which lies along 952 /// all paths of execution between the current IP and the 953 /// the point at which the cleanup comes into scope. 954 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 955 llvm::Instruction *DominatingIP); 956 957 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 958 /// Cannot be used to resurrect a deactivated cleanup. 959 /// 960 /// \param DominatingIP - An instruction which is known to 961 /// dominate the current IP (if set) and which lies along 962 /// all paths of execution between the current IP and the 963 /// the point at which the cleanup comes into scope. 964 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 965 llvm::Instruction *DominatingIP); 966 967 /// Enters a new scope for capturing cleanups, all of which 968 /// will be executed once the scope is exited. 969 class RunCleanupsScope { 970 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 971 size_t LifetimeExtendedCleanupStackSize; 972 CleanupDeactivationScope DeactivateCleanups; 973 bool OldDidCallStackSave; 974 protected: 975 bool PerformCleanup; 976 private: 977 978 RunCleanupsScope(const RunCleanupsScope &) = delete; 979 void operator=(const RunCleanupsScope &) = delete; 980 981 protected: 982 CodeGenFunction& CGF; 983 984 public: 985 /// Enter a new cleanup scope. 986 explicit RunCleanupsScope(CodeGenFunction &CGF) 987 : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { 988 CleanupStackDepth = CGF.EHStack.stable_begin(); 989 LifetimeExtendedCleanupStackSize = 990 CGF.LifetimeExtendedCleanupStack.size(); 991 OldDidCallStackSave = CGF.DidCallStackSave; 992 CGF.DidCallStackSave = false; 993 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 994 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 995 } 996 997 /// Exit this cleanup scope, emitting any accumulated cleanups. 998 ~RunCleanupsScope() { 999 if (PerformCleanup) 1000 ForceCleanup(); 1001 } 1002 1003 /// Determine whether this scope requires any cleanups. 1004 bool requiresCleanups() const { 1005 return CGF.EHStack.stable_begin() != CleanupStackDepth; 1006 } 1007 1008 /// Force the emission of cleanups now, instead of waiting 1009 /// until this object is destroyed. 1010 /// \param ValuesToReload - A list of values that need to be available at 1011 /// the insertion point after cleanup emission. If cleanup emission created 1012 /// a shared cleanup block, these value pointers will be rewritten. 1013 /// Otherwise, they not will be modified. 1014 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 1015 assert(PerformCleanup && "Already forced cleanup"); 1016 CGF.DidCallStackSave = OldDidCallStackSave; 1017 DeactivateCleanups.ForceDeactivate(); 1018 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 1019 ValuesToReload); 1020 PerformCleanup = false; 1021 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 1022 } 1023 }; 1024 1025 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 1026 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 1027 EHScopeStack::stable_end(); 1028 1029 class LexicalScope : public RunCleanupsScope { 1030 SourceRange Range; 1031 SmallVector<const LabelDecl*, 4> Labels; 1032 LexicalScope *ParentScope; 1033 1034 LexicalScope(const LexicalScope &) = delete; 1035 void operator=(const LexicalScope &) = delete; 1036 1037 public: 1038 /// Enter a new cleanup scope. 1039 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 1040 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 1041 CGF.CurLexicalScope = this; 1042 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1043 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 1044 } 1045 1046 void addLabel(const LabelDecl *label) { 1047 assert(PerformCleanup && "adding label to dead scope?"); 1048 Labels.push_back(label); 1049 } 1050 1051 /// Exit this cleanup scope, emitting any accumulated 1052 /// cleanups. 1053 ~LexicalScope() { 1054 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1055 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 1056 1057 // If we should perform a cleanup, force them now. Note that 1058 // this ends the cleanup scope before rescoping any labels. 1059 if (PerformCleanup) { 1060 ApplyDebugLocation DL(CGF, Range.getEnd()); 1061 ForceCleanup(); 1062 } 1063 } 1064 1065 /// Force the emission of cleanups now, instead of waiting 1066 /// until this object is destroyed. 1067 void ForceCleanup() { 1068 CGF.CurLexicalScope = ParentScope; 1069 RunCleanupsScope::ForceCleanup(); 1070 1071 if (!Labels.empty()) 1072 rescopeLabels(); 1073 } 1074 1075 bool hasLabels() const { 1076 return !Labels.empty(); 1077 } 1078 1079 void rescopeLabels(); 1080 }; 1081 1082 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 1083 1084 /// The class used to assign some variables some temporarily addresses. 1085 class OMPMapVars { 1086 DeclMapTy SavedLocals; 1087 DeclMapTy SavedTempAddresses; 1088 OMPMapVars(const OMPMapVars &) = delete; 1089 void operator=(const OMPMapVars &) = delete; 1090 1091 public: 1092 explicit OMPMapVars() = default; 1093 ~OMPMapVars() { 1094 assert(SavedLocals.empty() && "Did not restored original addresses."); 1095 }; 1096 1097 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1098 /// function \p CGF. 1099 /// \return true if at least one variable was set already, false otherwise. 1100 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1101 Address TempAddr) { 1102 LocalVD = LocalVD->getCanonicalDecl(); 1103 // Only save it once. 1104 if (SavedLocals.count(LocalVD)) return false; 1105 1106 // Copy the existing local entry to SavedLocals. 1107 auto it = CGF.LocalDeclMap.find(LocalVD); 1108 if (it != CGF.LocalDeclMap.end()) 1109 SavedLocals.try_emplace(LocalVD, it->second); 1110 else 1111 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1112 1113 // Generate the private entry. 1114 QualType VarTy = LocalVD->getType(); 1115 if (VarTy->isReferenceType()) { 1116 Address Temp = CGF.CreateMemTemp(VarTy); 1117 CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp); 1118 TempAddr = Temp; 1119 } 1120 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1121 1122 return true; 1123 } 1124 1125 /// Applies new addresses to the list of the variables. 1126 /// \return true if at least one variable is using new address, false 1127 /// otherwise. 1128 bool apply(CodeGenFunction &CGF) { 1129 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1130 SavedTempAddresses.clear(); 1131 return !SavedLocals.empty(); 1132 } 1133 1134 /// Restores original addresses of the variables. 1135 void restore(CodeGenFunction &CGF) { 1136 if (!SavedLocals.empty()) { 1137 copyInto(SavedLocals, CGF.LocalDeclMap); 1138 SavedLocals.clear(); 1139 } 1140 } 1141 1142 private: 1143 /// Copy all the entries in the source map over the corresponding 1144 /// entries in the destination, which must exist. 1145 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1146 for (auto &[Decl, Addr] : Src) { 1147 if (!Addr.isValid()) 1148 Dest.erase(Decl); 1149 else 1150 Dest.insert_or_assign(Decl, Addr); 1151 } 1152 } 1153 }; 1154 1155 /// The scope used to remap some variables as private in the OpenMP loop body 1156 /// (or other captured region emitted without outlining), and to restore old 1157 /// vars back on exit. 1158 class OMPPrivateScope : public RunCleanupsScope { 1159 OMPMapVars MappedVars; 1160 OMPPrivateScope(const OMPPrivateScope &) = delete; 1161 void operator=(const OMPPrivateScope &) = delete; 1162 1163 public: 1164 /// Enter a new OpenMP private scope. 1165 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1166 1167 /// Registers \p LocalVD variable as a private with \p Addr as the address 1168 /// of the corresponding private variable. \p 1169 /// PrivateGen is the address of the generated private variable. 1170 /// \return true if the variable is registered as private, false if it has 1171 /// been privatized already. 1172 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1173 assert(PerformCleanup && "adding private to dead scope"); 1174 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1175 } 1176 1177 /// Privatizes local variables previously registered as private. 1178 /// Registration is separate from the actual privatization to allow 1179 /// initializers use values of the original variables, not the private one. 1180 /// This is important, for example, if the private variable is a class 1181 /// variable initialized by a constructor that references other private 1182 /// variables. But at initialization original variables must be used, not 1183 /// private copies. 1184 /// \return true if at least one variable was privatized, false otherwise. 1185 bool Privatize() { return MappedVars.apply(CGF); } 1186 1187 void ForceCleanup() { 1188 RunCleanupsScope::ForceCleanup(); 1189 restoreMap(); 1190 } 1191 1192 /// Exit scope - all the mapped variables are restored. 1193 ~OMPPrivateScope() { 1194 if (PerformCleanup) 1195 ForceCleanup(); 1196 } 1197 1198 /// Checks if the global variable is captured in current function. 1199 bool isGlobalVarCaptured(const VarDecl *VD) const { 1200 VD = VD->getCanonicalDecl(); 1201 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1202 } 1203 1204 /// Restore all mapped variables w/o clean up. This is usefully when we want 1205 /// to reference the original variables but don't want the clean up because 1206 /// that could emit lifetime end too early, causing backend issue #56913. 1207 void restoreMap() { MappedVars.restore(CGF); } 1208 }; 1209 1210 /// Save/restore original map of previously emitted local vars in case when we 1211 /// need to duplicate emission of the same code several times in the same 1212 /// function for OpenMP code. 1213 class OMPLocalDeclMapRAII { 1214 CodeGenFunction &CGF; 1215 DeclMapTy SavedMap; 1216 1217 public: 1218 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1219 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1220 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1221 }; 1222 1223 /// Takes the old cleanup stack size and emits the cleanup blocks 1224 /// that have been added. 1225 void 1226 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1227 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1228 1229 /// Takes the old cleanup stack size and emits the cleanup blocks 1230 /// that have been added, then adds all lifetime-extended cleanups from 1231 /// the given position to the stack. 1232 void 1233 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1234 size_t OldLifetimeExtendedStackSize, 1235 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1236 1237 void ResolveBranchFixups(llvm::BasicBlock *Target); 1238 1239 /// The given basic block lies in the current EH scope, but may be a 1240 /// target of a potentially scope-crossing jump; get a stable handle 1241 /// to which we can perform this jump later. 1242 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1243 return JumpDest(Target, 1244 EHStack.getInnermostNormalCleanup(), 1245 NextCleanupDestIndex++); 1246 } 1247 1248 /// The given basic block lies in the current EH scope, but may be a 1249 /// target of a potentially scope-crossing jump; get a stable handle 1250 /// to which we can perform this jump later. 1251 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1252 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1253 } 1254 1255 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1256 /// block through the normal cleanup handling code (if any) and then 1257 /// on to \arg Dest. 1258 void EmitBranchThroughCleanup(JumpDest Dest); 1259 1260 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1261 /// specified destination obviously has no cleanups to run. 'false' is always 1262 /// a conservatively correct answer for this method. 1263 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1264 1265 /// popCatchScope - Pops the catch scope at the top of the EHScope 1266 /// stack, emitting any required code (other than the catch handlers 1267 /// themselves). 1268 void popCatchScope(); 1269 1270 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1271 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1272 llvm::BasicBlock * 1273 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1274 1275 /// An object to manage conditionally-evaluated expressions. 1276 class ConditionalEvaluation { 1277 llvm::BasicBlock *StartBB; 1278 1279 public: 1280 ConditionalEvaluation(CodeGenFunction &CGF) 1281 : StartBB(CGF.Builder.GetInsertBlock()) {} 1282 1283 void begin(CodeGenFunction &CGF) { 1284 assert(CGF.OutermostConditional != this); 1285 if (!CGF.OutermostConditional) 1286 CGF.OutermostConditional = this; 1287 } 1288 1289 void end(CodeGenFunction &CGF) { 1290 assert(CGF.OutermostConditional != nullptr); 1291 if (CGF.OutermostConditional == this) 1292 CGF.OutermostConditional = nullptr; 1293 } 1294 1295 /// Returns a block which will be executed prior to each 1296 /// evaluation of the conditional code. 1297 llvm::BasicBlock *getStartingBlock() const { 1298 return StartBB; 1299 } 1300 }; 1301 1302 /// isInConditionalBranch - Return true if we're currently emitting 1303 /// one branch or the other of a conditional expression. 1304 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1305 1306 void setBeforeOutermostConditional(llvm::Value *value, Address addr, 1307 CodeGenFunction &CGF) { 1308 assert(isInConditionalBranch()); 1309 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1310 auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), 1311 block->back().getIterator()); 1312 store->setAlignment(addr.getAlignment().getAsAlign()); 1313 } 1314 1315 /// An RAII object to record that we're evaluating a statement 1316 /// expression. 1317 class StmtExprEvaluation { 1318 CodeGenFunction &CGF; 1319 1320 /// We have to save the outermost conditional: cleanups in a 1321 /// statement expression aren't conditional just because the 1322 /// StmtExpr is. 1323 ConditionalEvaluation *SavedOutermostConditional; 1324 1325 public: 1326 StmtExprEvaluation(CodeGenFunction &CGF) 1327 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1328 CGF.OutermostConditional = nullptr; 1329 } 1330 1331 ~StmtExprEvaluation() { 1332 CGF.OutermostConditional = SavedOutermostConditional; 1333 CGF.EnsureInsertPoint(); 1334 } 1335 }; 1336 1337 /// An object which temporarily prevents a value from being 1338 /// destroyed by aggressive peephole optimizations that assume that 1339 /// all uses of a value have been realized in the IR. 1340 class PeepholeProtection { 1341 llvm::Instruction *Inst = nullptr; 1342 friend class CodeGenFunction; 1343 1344 public: 1345 PeepholeProtection() = default; 1346 }; 1347 1348 /// A non-RAII class containing all the information about a bound 1349 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1350 /// this which makes individual mappings very simple; using this 1351 /// class directly is useful when you have a variable number of 1352 /// opaque values or don't want the RAII functionality for some 1353 /// reason. 1354 class OpaqueValueMappingData { 1355 const OpaqueValueExpr *OpaqueValue; 1356 bool BoundLValue; 1357 CodeGenFunction::PeepholeProtection Protection; 1358 1359 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1360 bool boundLValue) 1361 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1362 public: 1363 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1364 1365 static bool shouldBindAsLValue(const Expr *expr) { 1366 // gl-values should be bound as l-values for obvious reasons. 1367 // Records should be bound as l-values because IR generation 1368 // always keeps them in memory. Expressions of function type 1369 // act exactly like l-values but are formally required to be 1370 // r-values in C. 1371 return expr->isGLValue() || 1372 expr->getType()->isFunctionType() || 1373 hasAggregateEvaluationKind(expr->getType()); 1374 } 1375 1376 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1377 const OpaqueValueExpr *ov, 1378 const Expr *e) { 1379 if (shouldBindAsLValue(ov)) 1380 return bind(CGF, ov, CGF.EmitLValue(e)); 1381 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1382 } 1383 1384 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1385 const OpaqueValueExpr *ov, 1386 const LValue &lv) { 1387 assert(shouldBindAsLValue(ov)); 1388 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1389 return OpaqueValueMappingData(ov, true); 1390 } 1391 1392 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1393 const OpaqueValueExpr *ov, 1394 const RValue &rv) { 1395 assert(!shouldBindAsLValue(ov)); 1396 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1397 1398 OpaqueValueMappingData data(ov, false); 1399 1400 // Work around an extremely aggressive peephole optimization in 1401 // EmitScalarConversion which assumes that all other uses of a 1402 // value are extant. 1403 data.Protection = CGF.protectFromPeepholes(rv); 1404 1405 return data; 1406 } 1407 1408 bool isValid() const { return OpaqueValue != nullptr; } 1409 void clear() { OpaqueValue = nullptr; } 1410 1411 void unbind(CodeGenFunction &CGF) { 1412 assert(OpaqueValue && "no data to unbind!"); 1413 1414 if (BoundLValue) { 1415 CGF.OpaqueLValues.erase(OpaqueValue); 1416 } else { 1417 CGF.OpaqueRValues.erase(OpaqueValue); 1418 CGF.unprotectFromPeepholes(Protection); 1419 } 1420 } 1421 }; 1422 1423 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1424 class OpaqueValueMapping { 1425 CodeGenFunction &CGF; 1426 OpaqueValueMappingData Data; 1427 1428 public: 1429 static bool shouldBindAsLValue(const Expr *expr) { 1430 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1431 } 1432 1433 /// Build the opaque value mapping for the given conditional 1434 /// operator if it's the GNU ?: extension. This is a common 1435 /// enough pattern that the convenience operator is really 1436 /// helpful. 1437 /// 1438 OpaqueValueMapping(CodeGenFunction &CGF, 1439 const AbstractConditionalOperator *op) : CGF(CGF) { 1440 if (isa<ConditionalOperator>(op)) 1441 // Leave Data empty. 1442 return; 1443 1444 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1445 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1446 e->getCommon()); 1447 } 1448 1449 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1450 /// expression is set to the expression the OVE represents. 1451 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1452 : CGF(CGF) { 1453 if (OV) { 1454 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1455 "for OVE with no source expression"); 1456 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1457 } 1458 } 1459 1460 OpaqueValueMapping(CodeGenFunction &CGF, 1461 const OpaqueValueExpr *opaqueValue, 1462 LValue lvalue) 1463 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1464 } 1465 1466 OpaqueValueMapping(CodeGenFunction &CGF, 1467 const OpaqueValueExpr *opaqueValue, 1468 RValue rvalue) 1469 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1470 } 1471 1472 void pop() { 1473 Data.unbind(CGF); 1474 Data.clear(); 1475 } 1476 1477 ~OpaqueValueMapping() { 1478 if (Data.isValid()) Data.unbind(CGF); 1479 } 1480 }; 1481 1482 private: 1483 CGDebugInfo *DebugInfo; 1484 /// Used to create unique names for artificial VLA size debug info variables. 1485 unsigned VLAExprCounter = 0; 1486 bool DisableDebugInfo = false; 1487 1488 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1489 /// calling llvm.stacksave for multiple VLAs in the same scope. 1490 bool DidCallStackSave = false; 1491 1492 /// IndirectBranch - The first time an indirect goto is seen we create a block 1493 /// with an indirect branch. Every time we see the address of a label taken, 1494 /// we add the label to the indirect goto. Every subsequent indirect goto is 1495 /// codegen'd as a jump to the IndirectBranch's basic block. 1496 llvm::IndirectBrInst *IndirectBranch = nullptr; 1497 1498 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1499 /// decls. 1500 DeclMapTy LocalDeclMap; 1501 1502 // Keep track of the cleanups for callee-destructed parameters pushed to the 1503 // cleanup stack so that they can be deactivated later. 1504 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1505 CalleeDestructedParamCleanups; 1506 1507 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1508 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1509 /// parameter. 1510 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1511 SizeArguments; 1512 1513 /// Track escaped local variables with auto storage. Used during SEH 1514 /// outlining to produce a call to llvm.localescape. 1515 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1516 1517 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1518 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1519 1520 // BreakContinueStack - This keeps track of where break and continue 1521 // statements should jump to. 1522 struct BreakContinue { 1523 BreakContinue(JumpDest Break, JumpDest Continue) 1524 : BreakBlock(Break), ContinueBlock(Continue) {} 1525 1526 JumpDest BreakBlock; 1527 JumpDest ContinueBlock; 1528 }; 1529 SmallVector<BreakContinue, 8> BreakContinueStack; 1530 1531 /// Handles cancellation exit points in OpenMP-related constructs. 1532 class OpenMPCancelExitStack { 1533 /// Tracks cancellation exit point and join point for cancel-related exit 1534 /// and normal exit. 1535 struct CancelExit { 1536 CancelExit() = default; 1537 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1538 JumpDest ContBlock) 1539 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1540 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1541 /// true if the exit block has been emitted already by the special 1542 /// emitExit() call, false if the default codegen is used. 1543 bool HasBeenEmitted = false; 1544 JumpDest ExitBlock; 1545 JumpDest ContBlock; 1546 }; 1547 1548 SmallVector<CancelExit, 8> Stack; 1549 1550 public: 1551 OpenMPCancelExitStack() : Stack(1) {} 1552 ~OpenMPCancelExitStack() = default; 1553 /// Fetches the exit block for the current OpenMP construct. 1554 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1555 /// Emits exit block with special codegen procedure specific for the related 1556 /// OpenMP construct + emits code for normal construct cleanup. 1557 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1558 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1559 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1560 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1561 assert(CGF.HaveInsertPoint()); 1562 assert(!Stack.back().HasBeenEmitted); 1563 auto IP = CGF.Builder.saveAndClearIP(); 1564 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1565 CodeGen(CGF); 1566 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1567 CGF.Builder.restoreIP(IP); 1568 Stack.back().HasBeenEmitted = true; 1569 } 1570 CodeGen(CGF); 1571 } 1572 /// Enter the cancel supporting \a Kind construct. 1573 /// \param Kind OpenMP directive that supports cancel constructs. 1574 /// \param HasCancel true, if the construct has inner cancel directive, 1575 /// false otherwise. 1576 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1577 Stack.push_back({Kind, 1578 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1579 : JumpDest(), 1580 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1581 : JumpDest()}); 1582 } 1583 /// Emits default exit point for the cancel construct (if the special one 1584 /// has not be used) + join point for cancel/normal exits. 1585 void exit(CodeGenFunction &CGF) { 1586 if (getExitBlock().isValid()) { 1587 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1588 bool HaveIP = CGF.HaveInsertPoint(); 1589 if (!Stack.back().HasBeenEmitted) { 1590 if (HaveIP) 1591 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1592 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1593 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1594 } 1595 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1596 if (!HaveIP) { 1597 CGF.Builder.CreateUnreachable(); 1598 CGF.Builder.ClearInsertionPoint(); 1599 } 1600 } 1601 Stack.pop_back(); 1602 } 1603 }; 1604 OpenMPCancelExitStack OMPCancelStack; 1605 1606 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1607 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1608 Stmt::Likelihood LH); 1609 1610 CodeGenPGO PGO; 1611 1612 /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. 1613 Address MCDCCondBitmapAddr = Address::invalid(); 1614 1615 /// Calculate branch weights appropriate for PGO data 1616 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1617 uint64_t FalseCount) const; 1618 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1619 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1620 uint64_t LoopCount) const; 1621 1622 public: 1623 auto getIsCounterPair(const Stmt *S) const { return PGO.getIsCounterPair(S); } 1624 1625 void markStmtAsUsed(bool Skipped, const Stmt *S) { 1626 PGO.markStmtAsUsed(Skipped, S); 1627 } 1628 void markStmtMaybeUsed(const Stmt *S) { PGO.markStmtMaybeUsed(S); } 1629 1630 /// Increment the profiler's counter for the given statement by \p StepV. 1631 /// If \p StepV is null, the default increment is 1. 1632 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1633 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1634 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1635 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) { 1636 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1637 PGO.emitCounterSetOrIncrement(Builder, S, StepV); 1638 } 1639 PGO.setCurrentStmt(S); 1640 } 1641 1642 bool isMCDCCoverageEnabled() const { 1643 return (CGM.getCodeGenOpts().hasProfileClangInstr() && 1644 CGM.getCodeGenOpts().MCDCCoverage && 1645 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); 1646 } 1647 1648 /// Allocate a temp value on the stack that MCDC can use to track condition 1649 /// results. 1650 void maybeCreateMCDCCondBitmap() { 1651 if (isMCDCCoverageEnabled()) { 1652 PGO.emitMCDCParameters(Builder); 1653 MCDCCondBitmapAddr = 1654 CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr"); 1655 } 1656 } 1657 1658 bool isBinaryLogicalOp(const Expr *E) const { 1659 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens()); 1660 return (BOp && BOp->isLogicalOp()); 1661 } 1662 1663 /// Zero-init the MCDC temp value. 1664 void maybeResetMCDCCondBitmap(const Expr *E) { 1665 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1666 PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr); 1667 PGO.setCurrentStmt(E); 1668 } 1669 } 1670 1671 /// Increment the profiler's counter for the given expression by \p StepV. 1672 /// If \p StepV is null, the default increment is 1. 1673 void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { 1674 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1675 PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this); 1676 PGO.setCurrentStmt(E); 1677 } 1678 } 1679 1680 /// Update the MCDC temp value with the condition's evaluated result. 1681 void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { 1682 if (isMCDCCoverageEnabled()) { 1683 PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this); 1684 PGO.setCurrentStmt(E); 1685 } 1686 } 1687 1688 /// Get the profiler's count for the given statement. 1689 uint64_t getProfileCount(const Stmt *S) { 1690 return PGO.getStmtCount(S).value_or(0); 1691 } 1692 1693 /// Set the profiler's current count. 1694 void setCurrentProfileCount(uint64_t Count) { 1695 PGO.setCurrentRegionCount(Count); 1696 } 1697 1698 /// Get the profiler's current count. This is generally the count for the most 1699 /// recently incremented counter. 1700 uint64_t getCurrentProfileCount() { 1701 return PGO.getCurrentRegionCount(); 1702 } 1703 1704 private: 1705 1706 /// SwitchInsn - This is nearest current switch instruction. It is null if 1707 /// current context is not in a switch. 1708 llvm::SwitchInst *SwitchInsn = nullptr; 1709 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1710 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1711 1712 /// The likelihood attributes of the SwitchCase. 1713 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1714 1715 /// CaseRangeBlock - This block holds if condition check for last case 1716 /// statement range in current switch instruction. 1717 llvm::BasicBlock *CaseRangeBlock = nullptr; 1718 1719 /// OpaqueLValues - Keeps track of the current set of opaque value 1720 /// expressions. 1721 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1722 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1723 1724 // VLASizeMap - This keeps track of the associated size for each VLA type. 1725 // We track this by the size expression rather than the type itself because 1726 // in certain situations, like a const qualifier applied to an VLA typedef, 1727 // multiple VLA types can share the same size expression. 1728 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1729 // enter/leave scopes. 1730 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1731 1732 /// A block containing a single 'unreachable' instruction. Created 1733 /// lazily by getUnreachableBlock(). 1734 llvm::BasicBlock *UnreachableBlock = nullptr; 1735 1736 /// Counts of the number return expressions in the function. 1737 unsigned NumReturnExprs = 0; 1738 1739 /// Count the number of simple (constant) return expressions in the function. 1740 unsigned NumSimpleReturnExprs = 0; 1741 1742 /// The last regular (non-return) debug location (breakpoint) in the function. 1743 SourceLocation LastStopPoint; 1744 1745 public: 1746 /// Source location information about the default argument or member 1747 /// initializer expression we're evaluating, if any. 1748 CurrentSourceLocExprScope CurSourceLocExprScope; 1749 using SourceLocExprScopeGuard = 1750 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1751 1752 /// A scope within which we are constructing the fields of an object which 1753 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1754 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1755 class FieldConstructionScope { 1756 public: 1757 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1758 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1759 CGF.CXXDefaultInitExprThis = This; 1760 } 1761 ~FieldConstructionScope() { 1762 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1763 } 1764 1765 private: 1766 CodeGenFunction &CGF; 1767 Address OldCXXDefaultInitExprThis; 1768 }; 1769 1770 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1771 /// is overridden to be the object under construction. 1772 class CXXDefaultInitExprScope { 1773 public: 1774 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1775 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1776 OldCXXThisAlignment(CGF.CXXThisAlignment), 1777 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1778 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); 1779 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1780 } 1781 ~CXXDefaultInitExprScope() { 1782 CGF.CXXThisValue = OldCXXThisValue; 1783 CGF.CXXThisAlignment = OldCXXThisAlignment; 1784 } 1785 1786 public: 1787 CodeGenFunction &CGF; 1788 llvm::Value *OldCXXThisValue; 1789 CharUnits OldCXXThisAlignment; 1790 SourceLocExprScopeGuard SourceLocScope; 1791 }; 1792 1793 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1794 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1795 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1796 }; 1797 1798 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1799 /// current loop index is overridden. 1800 class ArrayInitLoopExprScope { 1801 public: 1802 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1803 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1804 CGF.ArrayInitIndex = Index; 1805 } 1806 ~ArrayInitLoopExprScope() { 1807 CGF.ArrayInitIndex = OldArrayInitIndex; 1808 } 1809 1810 private: 1811 CodeGenFunction &CGF; 1812 llvm::Value *OldArrayInitIndex; 1813 }; 1814 1815 class InlinedInheritingConstructorScope { 1816 public: 1817 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1818 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1819 OldCurCodeDecl(CGF.CurCodeDecl), 1820 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1821 OldCXXABIThisValue(CGF.CXXABIThisValue), 1822 OldCXXThisValue(CGF.CXXThisValue), 1823 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1824 OldCXXThisAlignment(CGF.CXXThisAlignment), 1825 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1826 OldCXXInheritedCtorInitExprArgs( 1827 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1828 CGF.CurGD = GD; 1829 CGF.CurFuncDecl = CGF.CurCodeDecl = 1830 cast<CXXConstructorDecl>(GD.getDecl()); 1831 CGF.CXXABIThisDecl = nullptr; 1832 CGF.CXXABIThisValue = nullptr; 1833 CGF.CXXThisValue = nullptr; 1834 CGF.CXXABIThisAlignment = CharUnits(); 1835 CGF.CXXThisAlignment = CharUnits(); 1836 CGF.ReturnValue = Address::invalid(); 1837 CGF.FnRetTy = QualType(); 1838 CGF.CXXInheritedCtorInitExprArgs.clear(); 1839 } 1840 ~InlinedInheritingConstructorScope() { 1841 CGF.CurGD = OldCurGD; 1842 CGF.CurFuncDecl = OldCurFuncDecl; 1843 CGF.CurCodeDecl = OldCurCodeDecl; 1844 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1845 CGF.CXXABIThisValue = OldCXXABIThisValue; 1846 CGF.CXXThisValue = OldCXXThisValue; 1847 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1848 CGF.CXXThisAlignment = OldCXXThisAlignment; 1849 CGF.ReturnValue = OldReturnValue; 1850 CGF.FnRetTy = OldFnRetTy; 1851 CGF.CXXInheritedCtorInitExprArgs = 1852 std::move(OldCXXInheritedCtorInitExprArgs); 1853 } 1854 1855 private: 1856 CodeGenFunction &CGF; 1857 GlobalDecl OldCurGD; 1858 const Decl *OldCurFuncDecl; 1859 const Decl *OldCurCodeDecl; 1860 ImplicitParamDecl *OldCXXABIThisDecl; 1861 llvm::Value *OldCXXABIThisValue; 1862 llvm::Value *OldCXXThisValue; 1863 CharUnits OldCXXABIThisAlignment; 1864 CharUnits OldCXXThisAlignment; 1865 Address OldReturnValue; 1866 QualType OldFnRetTy; 1867 CallArgList OldCXXInheritedCtorInitExprArgs; 1868 }; 1869 1870 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1871 // region body, and finalization codegen callbacks. This will class will also 1872 // contain privatization functions used by the privatization call backs 1873 // 1874 // TODO: this is temporary class for things that are being moved out of 1875 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1876 // utility function for use with the OMPBuilder. Once that move to use the 1877 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1878 // directly, or a new helper class that will contain functions used by both 1879 // this and the OMPBuilder 1880 1881 struct OMPBuilderCBHelpers { 1882 1883 OMPBuilderCBHelpers() = delete; 1884 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1885 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1886 1887 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1888 1889 /// Cleanup action for allocate support. 1890 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1891 1892 private: 1893 llvm::CallInst *RTLFnCI; 1894 1895 public: 1896 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1897 RLFnCI->removeFromParent(); 1898 } 1899 1900 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1901 if (!CGF.HaveInsertPoint()) 1902 return; 1903 CGF.Builder.Insert(RTLFnCI); 1904 } 1905 }; 1906 1907 /// Returns address of the threadprivate variable for the current 1908 /// thread. This Also create any necessary OMP runtime calls. 1909 /// 1910 /// \param VD VarDecl for Threadprivate variable. 1911 /// \param VDAddr Address of the Vardecl 1912 /// \param Loc The location where the barrier directive was encountered 1913 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1914 const VarDecl *VD, Address VDAddr, 1915 SourceLocation Loc); 1916 1917 /// Gets the OpenMP-specific address of the local variable /p VD. 1918 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1919 const VarDecl *VD); 1920 /// Get the platform-specific name separator. 1921 /// \param Parts different parts of the final name that needs separation 1922 /// \param FirstSeparator First separator used between the initial two 1923 /// parts of the name. 1924 /// \param Separator separator used between all of the rest consecutinve 1925 /// parts of the name 1926 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1927 StringRef FirstSeparator = ".", 1928 StringRef Separator = "."); 1929 /// Emit the Finalization for an OMP region 1930 /// \param CGF The Codegen function this belongs to 1931 /// \param IP Insertion point for generating the finalization code. 1932 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1933 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1934 assert(IP.getBlock()->end() != IP.getPoint() && 1935 "OpenMP IR Builder should cause terminated block!"); 1936 1937 llvm::BasicBlock *IPBB = IP.getBlock(); 1938 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1939 assert(DestBB && "Finalization block should have one successor!"); 1940 1941 // erase and replace with cleanup branch. 1942 IPBB->getTerminator()->eraseFromParent(); 1943 CGF.Builder.SetInsertPoint(IPBB); 1944 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1945 CGF.EmitBranchThroughCleanup(Dest); 1946 } 1947 1948 /// Emit the body of an OMP region 1949 /// \param CGF The Codegen function this belongs to 1950 /// \param RegionBodyStmt The body statement for the OpenMP region being 1951 /// generated 1952 /// \param AllocaIP Where to insert alloca instructions 1953 /// \param CodeGenIP Where to insert the region code 1954 /// \param RegionName Name to be used for new blocks 1955 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1956 const Stmt *RegionBodyStmt, 1957 InsertPointTy AllocaIP, 1958 InsertPointTy CodeGenIP, 1959 Twine RegionName); 1960 1961 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1962 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1963 ArrayRef<llvm::Value *> Args) { 1964 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1965 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1966 CodeGenIPBBTI->eraseFromParent(); 1967 1968 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1969 1970 if (Fn->doesNotThrow()) 1971 CGF.EmitNounwindRuntimeCall(Fn, Args); 1972 else 1973 CGF.EmitRuntimeCall(Fn, Args); 1974 1975 if (CGF.Builder.saveIP().isSet()) 1976 CGF.Builder.CreateBr(&FiniBB); 1977 } 1978 1979 /// Emit the body of an OMP region that will be outlined in 1980 /// OpenMPIRBuilder::finalize(). 1981 /// \param CGF The Codegen function this belongs to 1982 /// \param RegionBodyStmt The body statement for the OpenMP region being 1983 /// generated 1984 /// \param AllocaIP Where to insert alloca instructions 1985 /// \param CodeGenIP Where to insert the region code 1986 /// \param RegionName Name to be used for new blocks 1987 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1988 const Stmt *RegionBodyStmt, 1989 InsertPointTy AllocaIP, 1990 InsertPointTy CodeGenIP, 1991 Twine RegionName); 1992 1993 /// RAII for preserving necessary info during Outlined region body codegen. 1994 class OutlinedRegionBodyRAII { 1995 1996 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1997 CodeGenFunction::JumpDest OldReturnBlock; 1998 CodeGenFunction &CGF; 1999 2000 public: 2001 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2002 llvm::BasicBlock &RetBB) 2003 : CGF(cgf) { 2004 assert(AllocaIP.isSet() && 2005 "Must specify Insertion point for allocas of outlined function"); 2006 OldAllocaIP = CGF.AllocaInsertPt; 2007 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2008 2009 OldReturnBlock = CGF.ReturnBlock; 2010 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 2011 } 2012 2013 ~OutlinedRegionBodyRAII() { 2014 CGF.AllocaInsertPt = OldAllocaIP; 2015 CGF.ReturnBlock = OldReturnBlock; 2016 } 2017 }; 2018 2019 /// RAII for preserving necessary info during inlined region body codegen. 2020 class InlinedRegionBodyRAII { 2021 2022 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2023 CodeGenFunction &CGF; 2024 2025 public: 2026 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2027 llvm::BasicBlock &FiniBB) 2028 : CGF(cgf) { 2029 // Alloca insertion block should be in the entry block of the containing 2030 // function so it expects an empty AllocaIP in which case will reuse the 2031 // old alloca insertion point, or a new AllocaIP in the same block as 2032 // the old one 2033 assert((!AllocaIP.isSet() || 2034 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 2035 "Insertion point should be in the entry block of containing " 2036 "function!"); 2037 OldAllocaIP = CGF.AllocaInsertPt; 2038 if (AllocaIP.isSet()) 2039 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2040 2041 // TODO: Remove the call, after making sure the counter is not used by 2042 // the EHStack. 2043 // Since this is an inlined region, it should not modify the 2044 // ReturnBlock, and should reuse the one for the enclosing outlined 2045 // region. So, the JumpDest being return by the function is discarded 2046 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 2047 } 2048 2049 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 2050 }; 2051 }; 2052 2053 private: 2054 /// CXXThisDecl - When generating code for a C++ member function, 2055 /// this will hold the implicit 'this' declaration. 2056 ImplicitParamDecl *CXXABIThisDecl = nullptr; 2057 llvm::Value *CXXABIThisValue = nullptr; 2058 llvm::Value *CXXThisValue = nullptr; 2059 CharUnits CXXABIThisAlignment; 2060 CharUnits CXXThisAlignment; 2061 2062 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 2063 /// this expression. 2064 Address CXXDefaultInitExprThis = Address::invalid(); 2065 2066 /// The current array initialization index when evaluating an 2067 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 2068 llvm::Value *ArrayInitIndex = nullptr; 2069 2070 /// The values of function arguments to use when evaluating 2071 /// CXXInheritedCtorInitExprs within this context. 2072 CallArgList CXXInheritedCtorInitExprArgs; 2073 2074 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 2075 /// destructor, this will hold the implicit argument (e.g. VTT). 2076 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 2077 llvm::Value *CXXStructorImplicitParamValue = nullptr; 2078 2079 /// OutermostConditional - Points to the outermost active 2080 /// conditional control. This is used so that we know if a 2081 /// temporary should be destroyed conditionally. 2082 ConditionalEvaluation *OutermostConditional = nullptr; 2083 2084 /// The current lexical scope. 2085 LexicalScope *CurLexicalScope = nullptr; 2086 2087 /// The current source location that should be used for exception 2088 /// handling code. 2089 SourceLocation CurEHLocation; 2090 2091 /// BlockByrefInfos - For each __block variable, contains 2092 /// information about the layout of the variable. 2093 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 2094 2095 /// Used by -fsanitize=nullability-return to determine whether the return 2096 /// value can be checked. 2097 llvm::Value *RetValNullabilityPrecondition = nullptr; 2098 2099 /// Check if -fsanitize=nullability-return instrumentation is required for 2100 /// this function. 2101 bool requiresReturnValueNullabilityCheck() const { 2102 return RetValNullabilityPrecondition; 2103 } 2104 2105 /// Used to store precise source locations for return statements by the 2106 /// runtime return value checks. 2107 Address ReturnLocation = Address::invalid(); 2108 2109 /// Check if the return value of this function requires sanitization. 2110 bool requiresReturnValueCheck() const; 2111 2112 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 2113 bool hasInAllocaArg(const CXXMethodDecl *MD); 2114 2115 llvm::BasicBlock *TerminateLandingPad = nullptr; 2116 llvm::BasicBlock *TerminateHandler = nullptr; 2117 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 2118 2119 /// Terminate funclets keyed by parent funclet pad. 2120 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 2121 2122 /// Largest vector width used in ths function. Will be used to create a 2123 /// function attribute. 2124 unsigned LargestVectorWidth = 0; 2125 2126 /// True if we need emit the life-time markers. This is initially set in 2127 /// the constructor, but could be overwritten to true if this is a coroutine. 2128 bool ShouldEmitLifetimeMarkers; 2129 2130 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 2131 /// the function metadata. 2132 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 2133 2134 public: 2135 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 2136 ~CodeGenFunction(); 2137 2138 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 2139 ASTContext &getContext() const { return CGM.getContext(); } 2140 CGDebugInfo *getDebugInfo() { 2141 if (DisableDebugInfo) 2142 return nullptr; 2143 return DebugInfo; 2144 } 2145 void disableDebugInfo() { DisableDebugInfo = true; } 2146 void enableDebugInfo() { DisableDebugInfo = false; } 2147 2148 bool shouldUseFusedARCCalls() { 2149 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2150 } 2151 2152 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2153 2154 /// Returns a pointer to the function's exception object and selector slot, 2155 /// which is assigned in every landing pad. 2156 Address getExceptionSlot(); 2157 Address getEHSelectorSlot(); 2158 2159 /// Returns the contents of the function's exception object and selector 2160 /// slots. 2161 llvm::Value *getExceptionFromSlot(); 2162 llvm::Value *getSelectorFromSlot(); 2163 2164 RawAddress getNormalCleanupDestSlot(); 2165 2166 llvm::BasicBlock *getUnreachableBlock() { 2167 if (!UnreachableBlock) { 2168 UnreachableBlock = createBasicBlock("unreachable"); 2169 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2170 } 2171 return UnreachableBlock; 2172 } 2173 2174 llvm::BasicBlock *getInvokeDest() { 2175 if (!EHStack.requiresLandingPad()) return nullptr; 2176 return getInvokeDestImpl(); 2177 } 2178 2179 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2180 2181 const TargetInfo &getTarget() const { return Target; } 2182 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2183 const TargetCodeGenInfo &getTargetHooks() const { 2184 return CGM.getTargetCodeGenInfo(); 2185 } 2186 2187 //===--------------------------------------------------------------------===// 2188 // Cleanups 2189 //===--------------------------------------------------------------------===// 2190 2191 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2192 2193 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2194 Address arrayEndPointer, 2195 QualType elementType, 2196 CharUnits elementAlignment, 2197 Destroyer *destroyer); 2198 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2199 llvm::Value *arrayEnd, 2200 QualType elementType, 2201 CharUnits elementAlignment, 2202 Destroyer *destroyer); 2203 2204 void pushDestroy(QualType::DestructionKind dtorKind, 2205 Address addr, QualType type); 2206 void pushEHDestroy(QualType::DestructionKind dtorKind, 2207 Address addr, QualType type); 2208 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2209 Destroyer *destroyer, bool useEHCleanupForArray); 2210 void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, 2211 Address addr, QualType type); 2212 void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, 2213 QualType type, Destroyer *destroyer, 2214 bool useEHCleanupForArray); 2215 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2216 QualType type, Destroyer *destroyer, 2217 bool useEHCleanupForArray); 2218 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2219 llvm::Value *CompletePtr, 2220 QualType ElementType); 2221 void pushStackRestore(CleanupKind kind, Address SPMem); 2222 void pushKmpcAllocFree(CleanupKind Kind, 2223 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2224 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2225 bool useEHCleanupForArray); 2226 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2227 Destroyer *destroyer, 2228 bool useEHCleanupForArray, 2229 const VarDecl *VD); 2230 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2231 QualType elementType, CharUnits elementAlign, 2232 Destroyer *destroyer, 2233 bool checkZeroLength, bool useEHCleanup); 2234 2235 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2236 2237 /// Determines whether an EH cleanup is required to destroy a type 2238 /// with the given destruction kind. 2239 bool needsEHCleanup(QualType::DestructionKind kind) { 2240 switch (kind) { 2241 case QualType::DK_none: 2242 return false; 2243 case QualType::DK_cxx_destructor: 2244 case QualType::DK_objc_weak_lifetime: 2245 case QualType::DK_nontrivial_c_struct: 2246 return getLangOpts().Exceptions; 2247 case QualType::DK_objc_strong_lifetime: 2248 return getLangOpts().Exceptions && 2249 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2250 } 2251 llvm_unreachable("bad destruction kind"); 2252 } 2253 2254 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2255 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2256 } 2257 2258 //===--------------------------------------------------------------------===// 2259 // Objective-C 2260 //===--------------------------------------------------------------------===// 2261 2262 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2263 2264 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2265 2266 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2267 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2268 const ObjCPropertyImplDecl *PID); 2269 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2270 const ObjCPropertyImplDecl *propImpl, 2271 const ObjCMethodDecl *GetterMothodDecl, 2272 llvm::Constant *AtomicHelperFn); 2273 2274 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2275 ObjCMethodDecl *MD, bool ctor); 2276 2277 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2278 /// for the given property. 2279 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2280 const ObjCPropertyImplDecl *PID); 2281 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2282 const ObjCPropertyImplDecl *propImpl, 2283 llvm::Constant *AtomicHelperFn); 2284 2285 //===--------------------------------------------------------------------===// 2286 // Block Bits 2287 //===--------------------------------------------------------------------===// 2288 2289 /// Emit block literal. 2290 /// \return an LLVM value which is a pointer to a struct which contains 2291 /// information about the block, including the block invoke function, the 2292 /// captured variables, etc. 2293 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2294 2295 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2296 const CGBlockInfo &Info, 2297 const DeclMapTy &ldm, 2298 bool IsLambdaConversionToBlock, 2299 bool BuildGlobalBlock); 2300 2301 /// Check if \p T is a C++ class that has a destructor that can throw. 2302 static bool cxxDestructorCanThrow(QualType T); 2303 2304 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2305 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2306 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2307 const ObjCPropertyImplDecl *PID); 2308 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2309 const ObjCPropertyImplDecl *PID); 2310 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2311 2312 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2313 bool CanThrow); 2314 2315 class AutoVarEmission; 2316 2317 void emitByrefStructureInit(const AutoVarEmission &emission); 2318 2319 /// Enter a cleanup to destroy a __block variable. Note that this 2320 /// cleanup should be a no-op if the variable hasn't left the stack 2321 /// yet; if a cleanup is required for the variable itself, that needs 2322 /// to be done externally. 2323 /// 2324 /// \param Kind Cleanup kind. 2325 /// 2326 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2327 /// structure that will be passed to _Block_object_dispose. When 2328 /// \p LoadBlockVarAddr is true, the address of the field of the block 2329 /// structure that holds the address of the __block structure. 2330 /// 2331 /// \param Flags The flag that will be passed to _Block_object_dispose. 2332 /// 2333 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2334 /// \p Addr to get the address of the __block structure. 2335 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2336 bool LoadBlockVarAddr, bool CanThrow); 2337 2338 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2339 llvm::Value *ptr); 2340 2341 Address LoadBlockStruct(); 2342 Address GetAddrOfBlockDecl(const VarDecl *var); 2343 2344 /// BuildBlockByrefAddress - Computes the location of the 2345 /// data in a variable which is declared as __block. 2346 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2347 bool followForward = true); 2348 Address emitBlockByrefAddress(Address baseAddr, 2349 const BlockByrefInfo &info, 2350 bool followForward, 2351 const llvm::Twine &name); 2352 2353 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2354 2355 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2356 2357 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2358 const CGFunctionInfo &FnInfo); 2359 2360 /// Annotate the function with an attribute that disables TSan checking at 2361 /// runtime. 2362 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2363 2364 /// Emit code for the start of a function. 2365 /// \param Loc The location to be associated with the function. 2366 /// \param StartLoc The location of the function body. 2367 void StartFunction(GlobalDecl GD, 2368 QualType RetTy, 2369 llvm::Function *Fn, 2370 const CGFunctionInfo &FnInfo, 2371 const FunctionArgList &Args, 2372 SourceLocation Loc = SourceLocation(), 2373 SourceLocation StartLoc = SourceLocation()); 2374 2375 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2376 2377 void EmitConstructorBody(FunctionArgList &Args); 2378 void EmitDestructorBody(FunctionArgList &Args); 2379 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2380 void EmitFunctionBody(const Stmt *Body); 2381 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2382 2383 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2384 CallArgList &CallArgs, 2385 const CGFunctionInfo *CallOpFnInfo = nullptr, 2386 llvm::Constant *CallOpFn = nullptr); 2387 void EmitLambdaBlockInvokeBody(); 2388 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2389 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2390 CallArgList &CallArgs); 2391 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2392 const CGFunctionInfo **ImplFnInfo, 2393 llvm::Function **ImplFn); 2394 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2395 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2396 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2397 } 2398 void EmitAsanPrologueOrEpilogue(bool Prologue); 2399 2400 /// Emit the unified return block, trying to avoid its emission when 2401 /// possible. 2402 /// \return The debug location of the user written return statement if the 2403 /// return block is avoided. 2404 llvm::DebugLoc EmitReturnBlock(); 2405 2406 /// FinishFunction - Complete IR generation of the current function. It is 2407 /// legal to call this function even if there is no current insertion point. 2408 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2409 2410 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2411 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2412 2413 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2414 const ThunkInfo *Thunk, bool IsUnprototyped); 2415 2416 void FinishThunk(); 2417 2418 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2419 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2420 llvm::FunctionCallee Callee); 2421 2422 /// Generate a thunk for the given method. 2423 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2424 GlobalDecl GD, const ThunkInfo &Thunk, 2425 bool IsUnprototyped); 2426 2427 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2428 const CGFunctionInfo &FnInfo, 2429 GlobalDecl GD, const ThunkInfo &Thunk); 2430 2431 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2432 FunctionArgList &Args); 2433 2434 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2435 2436 /// Struct with all information about dynamic [sub]class needed to set vptr. 2437 struct VPtr { 2438 BaseSubobject Base; 2439 const CXXRecordDecl *NearestVBase; 2440 CharUnits OffsetFromNearestVBase; 2441 const CXXRecordDecl *VTableClass; 2442 }; 2443 2444 /// Initialize the vtable pointer of the given subobject. 2445 void InitializeVTablePointer(const VPtr &vptr); 2446 2447 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2448 2449 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2450 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2451 2452 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2453 CharUnits OffsetFromNearestVBase, 2454 bool BaseIsNonVirtualPrimaryBase, 2455 const CXXRecordDecl *VTableClass, 2456 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2457 2458 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2459 2460 // VTableTrapMode - whether we guarantee that loading the 2461 // vtable is guaranteed to trap on authentication failure, 2462 // even if the resulting vtable pointer is unused. 2463 enum class VTableAuthMode { 2464 Authenticate, 2465 MustTrap, 2466 UnsafeUbsanStrip // Should only be used for Vptr UBSan check 2467 }; 2468 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2469 /// to by This. 2470 llvm::Value * 2471 GetVTablePtr(Address This, llvm::Type *VTableTy, 2472 const CXXRecordDecl *VTableClass, 2473 VTableAuthMode AuthMode = VTableAuthMode::Authenticate); 2474 2475 enum CFITypeCheckKind { 2476 CFITCK_VCall, 2477 CFITCK_NVCall, 2478 CFITCK_DerivedCast, 2479 CFITCK_UnrelatedCast, 2480 CFITCK_ICall, 2481 CFITCK_NVMFCall, 2482 CFITCK_VMFCall, 2483 }; 2484 2485 /// Derived is the presumed address of an object of type T after a 2486 /// cast. If T is a polymorphic class type, emit a check that the virtual 2487 /// table for Derived belongs to a class derived from T. 2488 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2489 CFITypeCheckKind TCK, SourceLocation Loc); 2490 2491 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2492 /// If vptr CFI is enabled, emit a check that VTable is valid. 2493 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2494 CFITypeCheckKind TCK, SourceLocation Loc); 2495 2496 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2497 /// RD using llvm.type.test. 2498 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2499 CFITypeCheckKind TCK, SourceLocation Loc); 2500 2501 /// If whole-program virtual table optimization is enabled, emit an assumption 2502 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2503 /// enabled, emit a check that VTable is a member of RD's type identifier. 2504 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2505 llvm::Value *VTable, SourceLocation Loc); 2506 2507 /// Returns whether we should perform a type checked load when loading a 2508 /// virtual function for virtual calls to members of RD. This is generally 2509 /// true when both vcall CFI and whole-program-vtables are enabled. 2510 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2511 2512 /// Emit a type checked load from the given vtable. 2513 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2514 llvm::Value *VTable, 2515 llvm::Type *VTableTy, 2516 uint64_t VTableByteOffset); 2517 2518 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2519 /// given phase of destruction for a destructor. The end result 2520 /// should call destructors on members and base classes in reverse 2521 /// order of their construction. 2522 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2523 2524 /// ShouldInstrumentFunction - Return true if the current function should be 2525 /// instrumented with __cyg_profile_func_* calls 2526 bool ShouldInstrumentFunction(); 2527 2528 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2529 /// should not be instrumented with sanitizers. 2530 bool ShouldSkipSanitizerInstrumentation(); 2531 2532 /// ShouldXRayInstrument - Return true if the current function should be 2533 /// instrumented with XRay nop sleds. 2534 bool ShouldXRayInstrumentFunction() const; 2535 2536 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2537 /// XRay custom event handling calls. 2538 bool AlwaysEmitXRayCustomEvents() const; 2539 2540 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2541 /// XRay typed event handling calls. 2542 bool AlwaysEmitXRayTypedEvents() const; 2543 2544 /// Return a type hash constant for a function instrumented by 2545 /// -fsanitize=function. 2546 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2547 2548 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2549 /// arguments for the given function. This is also responsible for naming the 2550 /// LLVM function arguments. 2551 void EmitFunctionProlog(const CGFunctionInfo &FI, 2552 llvm::Function *Fn, 2553 const FunctionArgList &Args); 2554 2555 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2556 /// given temporary. 2557 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2558 SourceLocation EndLoc); 2559 2560 /// Emit a test that checks if the return value \p RV is nonnull. 2561 void EmitReturnValueCheck(llvm::Value *RV); 2562 2563 /// EmitStartEHSpec - Emit the start of the exception spec. 2564 void EmitStartEHSpec(const Decl *D); 2565 2566 /// EmitEndEHSpec - Emit the end of the exception spec. 2567 void EmitEndEHSpec(const Decl *D); 2568 2569 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2570 llvm::BasicBlock *getTerminateLandingPad(); 2571 2572 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2573 /// terminate. 2574 llvm::BasicBlock *getTerminateFunclet(); 2575 2576 /// getTerminateHandler - Return a handler (not a landing pad, just 2577 /// a catch handler) that just calls terminate. This is used when 2578 /// a terminate scope encloses a try. 2579 llvm::BasicBlock *getTerminateHandler(); 2580 2581 llvm::Type *ConvertTypeForMem(QualType T); 2582 llvm::Type *ConvertType(QualType T); 2583 llvm::Type *convertTypeForLoadStore(QualType ASTTy, 2584 llvm::Type *LLVMTy = nullptr); 2585 llvm::Type *ConvertType(const TypeDecl *T) { 2586 return ConvertType(getContext().getTypeDeclType(T)); 2587 } 2588 2589 /// LoadObjCSelf - Load the value of self. This function is only valid while 2590 /// generating code for an Objective-C method. 2591 llvm::Value *LoadObjCSelf(); 2592 2593 /// TypeOfSelfObject - Return type of object that this self represents. 2594 QualType TypeOfSelfObject(); 2595 2596 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2597 static TypeEvaluationKind getEvaluationKind(QualType T); 2598 2599 static bool hasScalarEvaluationKind(QualType T) { 2600 return getEvaluationKind(T) == TEK_Scalar; 2601 } 2602 2603 static bool hasAggregateEvaluationKind(QualType T) { 2604 return getEvaluationKind(T) == TEK_Aggregate; 2605 } 2606 2607 /// createBasicBlock - Create an LLVM basic block. 2608 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2609 llvm::Function *parent = nullptr, 2610 llvm::BasicBlock *before = nullptr) { 2611 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2612 } 2613 2614 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2615 /// label maps to. 2616 JumpDest getJumpDestForLabel(const LabelDecl *S); 2617 2618 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2619 /// another basic block, simplify it. This assumes that no other code could 2620 /// potentially reference the basic block. 2621 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2622 2623 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2624 /// adding a fall-through branch from the current insert block if 2625 /// necessary. It is legal to call this function even if there is no current 2626 /// insertion point. 2627 /// 2628 /// IsFinished - If true, indicates that the caller has finished emitting 2629 /// branches to the given block and does not expect to emit code into it. This 2630 /// means the block can be ignored if it is unreachable. 2631 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2632 2633 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2634 /// near its uses, and leave the insertion point in it. 2635 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2636 2637 /// EmitBranch - Emit a branch to the specified basic block from the current 2638 /// insert block, taking care to avoid creation of branches from dummy 2639 /// blocks. It is legal to call this function even if there is no current 2640 /// insertion point. 2641 /// 2642 /// This function clears the current insertion point. The caller should follow 2643 /// calls to this function with calls to Emit*Block prior to generation new 2644 /// code. 2645 void EmitBranch(llvm::BasicBlock *Block); 2646 2647 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2648 /// indicates that the current code being emitted is unreachable. 2649 bool HaveInsertPoint() const { 2650 return Builder.GetInsertBlock() != nullptr; 2651 } 2652 2653 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2654 /// emitted IR has a place to go. Note that by definition, if this function 2655 /// creates a block then that block is unreachable; callers may do better to 2656 /// detect when no insertion point is defined and simply skip IR generation. 2657 void EnsureInsertPoint() { 2658 if (!HaveInsertPoint()) 2659 EmitBlock(createBasicBlock()); 2660 } 2661 2662 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2663 /// specified stmt yet. 2664 void ErrorUnsupported(const Stmt *S, const char *Type); 2665 2666 //===--------------------------------------------------------------------===// 2667 // Helpers 2668 //===--------------------------------------------------------------------===// 2669 2670 Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, 2671 llvm::BasicBlock *LHSBlock, 2672 llvm::BasicBlock *RHSBlock, 2673 llvm::BasicBlock *MergeBlock, 2674 QualType MergedType) { 2675 Builder.SetInsertPoint(MergeBlock); 2676 llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond"); 2677 PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock); 2678 PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock); 2679 LHS.replaceBasePointer(PtrPhi); 2680 LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment())); 2681 return LHS; 2682 } 2683 2684 /// Construct an address with the natural alignment of T. If a pointer to T 2685 /// is expected to be signed, the pointer passed to this function must have 2686 /// been signed, and the returned Address will have the pointer authentication 2687 /// information needed to authenticate the signed pointer. 2688 Address makeNaturalAddressForPointer( 2689 llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), 2690 bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, 2691 TBAAAccessInfo *TBAAInfo = nullptr, 2692 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 2693 if (Alignment.isZero()) 2694 Alignment = 2695 CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType); 2696 return Address(Ptr, ConvertTypeForMem(T), Alignment, 2697 CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr, 2698 IsKnownNonNull); 2699 } 2700 2701 LValue MakeAddrLValue(Address Addr, QualType T, 2702 AlignmentSource Source = AlignmentSource::Type) { 2703 return MakeAddrLValue(Addr, T, LValueBaseInfo(Source), 2704 CGM.getTBAAAccessInfo(T)); 2705 } 2706 2707 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2708 TBAAAccessInfo TBAAInfo) { 2709 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2710 } 2711 2712 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2713 AlignmentSource Source = AlignmentSource::Type) { 2714 return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T, 2715 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2716 } 2717 2718 /// Same as MakeAddrLValue above except that the pointer is known to be 2719 /// unsigned. 2720 LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2721 AlignmentSource Source = AlignmentSource::Type) { 2722 Address Addr(V, ConvertTypeForMem(T), Alignment); 2723 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2724 CGM.getTBAAAccessInfo(T)); 2725 } 2726 2727 LValue 2728 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2729 AlignmentSource Source = AlignmentSource::Type) { 2730 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2731 TBAAAccessInfo()); 2732 } 2733 2734 /// Given a value of type T* that may not be to a complete object, construct 2735 /// an l-value with the natural pointee alignment of T. 2736 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2737 2738 LValue 2739 MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 2740 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 2741 2742 /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known 2743 /// to be unsigned. 2744 LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); 2745 2746 LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); 2747 2748 Address EmitLoadOfReference(LValue RefLVal, 2749 LValueBaseInfo *PointeeBaseInfo = nullptr, 2750 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2751 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2752 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2753 AlignmentSource Source = 2754 AlignmentSource::Type) { 2755 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2756 CGM.getTBAAAccessInfo(RefTy)); 2757 return EmitLoadOfReferenceLValue(RefLVal); 2758 } 2759 2760 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2761 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2762 /// it is loaded from. 2763 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2764 LValueBaseInfo *BaseInfo = nullptr, 2765 TBAAAccessInfo *TBAAInfo = nullptr); 2766 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2767 2768 private: 2769 struct AllocaTracker { 2770 void Add(llvm::AllocaInst *I) { Allocas.push_back(I); } 2771 llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } 2772 2773 private: 2774 llvm::SmallVector<llvm::AllocaInst *> Allocas; 2775 }; 2776 AllocaTracker *Allocas = nullptr; 2777 2778 public: 2779 // Captures all the allocas created during the scope of its RAII object. 2780 struct AllocaTrackerRAII { 2781 AllocaTrackerRAII(CodeGenFunction &CGF) 2782 : CGF(CGF), OldTracker(CGF.Allocas) { 2783 CGF.Allocas = &Tracker; 2784 } 2785 ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } 2786 2787 llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } 2788 2789 private: 2790 CodeGenFunction &CGF; 2791 AllocaTracker *OldTracker; 2792 AllocaTracker Tracker; 2793 }; 2794 2795 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2796 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2797 /// insertion point of the builder. The caller is responsible for setting an 2798 /// appropriate alignment on 2799 /// the alloca. 2800 /// 2801 /// \p ArraySize is the number of array elements to be allocated if it 2802 /// is not nullptr. 2803 /// 2804 /// LangAS::Default is the address space of pointers to local variables and 2805 /// temporaries, as exposed in the source language. In certain 2806 /// configurations, this is not the same as the alloca address space, and a 2807 /// cast is needed to lift the pointer from the alloca AS into 2808 /// LangAS::Default. This can happen when the target uses a restricted 2809 /// address space for the stack but the source language requires 2810 /// LangAS::Default to be a generic address space. The latter condition is 2811 /// common for most programming languages; OpenCL is an exception in that 2812 /// LangAS::Default is the private address space, which naturally maps 2813 /// to the stack. 2814 /// 2815 /// Because the address of a temporary is often exposed to the program in 2816 /// various ways, this function will perform the cast. The original alloca 2817 /// instruction is returned through \p Alloca if it is not nullptr. 2818 /// 2819 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2820 /// more efficient if the caller knows that the address will not be exposed. 2821 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2822 llvm::Value *ArraySize = nullptr); 2823 RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2824 const Twine &Name = "tmp", 2825 llvm::Value *ArraySize = nullptr, 2826 RawAddress *Alloca = nullptr); 2827 RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2828 const Twine &Name = "tmp", 2829 llvm::Value *ArraySize = nullptr); 2830 2831 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2832 /// default ABI alignment of the given LLVM type. 2833 /// 2834 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2835 /// any given AST type that happens to have been lowered to the 2836 /// given IR type. This should only ever be used for function-local, 2837 /// IR-driven manipulations like saving and restoring a value. Do 2838 /// not hand this address off to arbitrary IRGen routines, and especially 2839 /// do not pass it as an argument to a function that might expect a 2840 /// properly ABI-aligned value. 2841 RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2842 const Twine &Name = "tmp"); 2843 2844 /// CreateIRTemp - Create a temporary IR object of the given type, with 2845 /// appropriate alignment. This routine should only be used when an temporary 2846 /// value needs to be stored into an alloca (for example, to avoid explicit 2847 /// PHI construction), but the type is the IR type, not the type appropriate 2848 /// for storing in memory. 2849 /// 2850 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2851 /// ConvertType instead of ConvertTypeForMem. 2852 RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2853 2854 /// CreateMemTemp - Create a temporary memory object of the given type, with 2855 /// appropriate alignmen and cast it to the default address space. Returns 2856 /// the original alloca instruction by \p Alloca if it is not nullptr. 2857 RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp", 2858 RawAddress *Alloca = nullptr); 2859 RawAddress CreateMemTemp(QualType T, CharUnits Align, 2860 const Twine &Name = "tmp", 2861 RawAddress *Alloca = nullptr); 2862 2863 /// CreateMemTemp - Create a temporary memory object of the given type, with 2864 /// appropriate alignmen without casting it to the default address space. 2865 RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2866 RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, 2867 const Twine &Name = "tmp"); 2868 2869 /// CreateAggTemp - Create a temporary memory object for the given 2870 /// aggregate type. 2871 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2872 RawAddress *Alloca = nullptr) { 2873 return AggValueSlot::forAddr( 2874 CreateMemTemp(T, Name, Alloca), T.getQualifiers(), 2875 AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, 2876 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); 2877 } 2878 2879 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2880 /// expression and compare the result against zero, returning an Int1Ty value. 2881 llvm::Value *EvaluateExprAsBool(const Expr *E); 2882 2883 /// Retrieve the implicit cast expression of the rhs in a binary operator 2884 /// expression by passing pointers to Value and QualType 2885 /// This is used for implicit bitfield conversion checks, which 2886 /// must compare with the value before potential truncation. 2887 llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, 2888 llvm::Value **Previous, 2889 QualType *SrcType); 2890 2891 /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, 2892 /// so we use the value after conversion. 2893 void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, 2894 llvm::Value *Dst, QualType DstType, 2895 const CGBitFieldInfo &Info, 2896 SourceLocation Loc); 2897 2898 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2899 void EmitIgnoredExpr(const Expr *E); 2900 2901 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2902 /// any type. The result is returned as an RValue struct. If this is an 2903 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2904 /// the result should be returned. 2905 /// 2906 /// \param ignoreResult True if the resulting value isn't used. 2907 RValue EmitAnyExpr(const Expr *E, 2908 AggValueSlot aggSlot = AggValueSlot::ignored(), 2909 bool ignoreResult = false); 2910 2911 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2912 // or the value of the expression, depending on how va_list is defined. 2913 Address EmitVAListRef(const Expr *E); 2914 2915 /// Emit a "reference" to a __builtin_ms_va_list; this is 2916 /// always the value of the expression, because a __builtin_ms_va_list is a 2917 /// pointer to a char. 2918 Address EmitMSVAListRef(const Expr *E); 2919 2920 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2921 /// always be accessible even if no aggregate location is provided. 2922 RValue EmitAnyExprToTemp(const Expr *E); 2923 2924 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2925 /// arbitrary expression into the given memory location. 2926 void EmitAnyExprToMem(const Expr *E, Address Location, 2927 Qualifiers Quals, bool IsInitializer); 2928 2929 void EmitAnyExprToExn(const Expr *E, Address Addr); 2930 2931 /// EmitInitializationToLValue - Emit an initializer to an LValue. 2932 void EmitInitializationToLValue( 2933 const Expr *E, LValue LV, 2934 AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); 2935 2936 /// EmitExprAsInit - Emits the code necessary to initialize a 2937 /// location in memory with the given initializer. 2938 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2939 bool capturedByInit); 2940 2941 /// hasVolatileMember - returns true if aggregate type has a volatile 2942 /// member. 2943 bool hasVolatileMember(QualType T) { 2944 if (const RecordType *RT = T->getAs<RecordType>()) { 2945 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2946 return RD->hasVolatileMember(); 2947 } 2948 return false; 2949 } 2950 2951 /// Determine whether a return value slot may overlap some other object. 2952 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2953 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2954 // class subobjects. These cases may need to be revisited depending on the 2955 // resolution of the relevant core issue. 2956 return AggValueSlot::DoesNotOverlap; 2957 } 2958 2959 /// Determine whether a field initialization may overlap some other object. 2960 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2961 2962 /// Determine whether a base class initialization may overlap some other 2963 /// object. 2964 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2965 const CXXRecordDecl *BaseRD, 2966 bool IsVirtual); 2967 2968 /// Emit an aggregate assignment. 2969 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2970 bool IsVolatile = hasVolatileMember(EltTy); 2971 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2972 } 2973 2974 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2975 AggValueSlot::Overlap_t MayOverlap) { 2976 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2977 } 2978 2979 /// EmitAggregateCopy - Emit an aggregate copy. 2980 /// 2981 /// \param isVolatile \c true iff either the source or the destination is 2982 /// volatile. 2983 /// \param MayOverlap Whether the tail padding of the destination might be 2984 /// occupied by some other object. More efficient code can often be 2985 /// generated if not. 2986 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2987 AggValueSlot::Overlap_t MayOverlap, 2988 bool isVolatile = false); 2989 2990 /// GetAddrOfLocalVar - Return the address of a local variable. 2991 Address GetAddrOfLocalVar(const VarDecl *VD) { 2992 auto it = LocalDeclMap.find(VD); 2993 assert(it != LocalDeclMap.end() && 2994 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2995 return it->second; 2996 } 2997 2998 /// Given an opaque value expression, return its LValue mapping if it exists, 2999 /// otherwise create one. 3000 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 3001 3002 /// Given an opaque value expression, return its RValue mapping if it exists, 3003 /// otherwise create one. 3004 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 3005 3006 /// Get the index of the current ArrayInitLoopExpr, if any. 3007 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 3008 3009 /// getAccessedFieldNo - Given an encoded value and a result number, return 3010 /// the input field number being accessed. 3011 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 3012 3013 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 3014 llvm::BasicBlock *GetIndirectGotoBlock(); 3015 3016 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 3017 static bool IsWrappedCXXThis(const Expr *E); 3018 3019 /// EmitNullInitialization - Generate code to set a value of the given type to 3020 /// null, If the type contains data member pointers, they will be initialized 3021 /// to -1 in accordance with the Itanium C++ ABI. 3022 void EmitNullInitialization(Address DestPtr, QualType Ty); 3023 3024 /// Emits a call to an LLVM variable-argument intrinsic, either 3025 /// \c llvm.va_start or \c llvm.va_end. 3026 /// \param ArgValue A reference to the \c va_list as emitted by either 3027 /// \c EmitVAListRef or \c EmitMSVAListRef. 3028 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 3029 /// calls \c llvm.va_end. 3030 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 3031 3032 /// Generate code to get an argument from the passed in pointer 3033 /// and update it accordingly. 3034 /// \param VE The \c VAArgExpr for which to generate code. 3035 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 3036 /// either \c EmitVAListRef or \c EmitMSVAListRef. 3037 /// \returns A pointer to the argument. 3038 // FIXME: We should be able to get rid of this method and use the va_arg 3039 // instruction in LLVM instead once it works well enough. 3040 RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 3041 AggValueSlot Slot = AggValueSlot::ignored()); 3042 3043 /// emitArrayLength - Compute the length of an array, even if it's a 3044 /// VLA, and drill down to the base element type. 3045 llvm::Value *emitArrayLength(const ArrayType *arrayType, 3046 QualType &baseType, 3047 Address &addr); 3048 3049 /// EmitVLASize - Capture all the sizes for the VLA expressions in 3050 /// the given variably-modified type and store them in the VLASizeMap. 3051 /// 3052 /// This function can be called with a null (unreachable) insert point. 3053 void EmitVariablyModifiedType(QualType Ty); 3054 3055 struct VlaSizePair { 3056 llvm::Value *NumElts; 3057 QualType Type; 3058 3059 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 3060 }; 3061 3062 /// Return the number of elements for a single dimension 3063 /// for the given array type. 3064 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 3065 VlaSizePair getVLAElements1D(QualType vla); 3066 3067 /// Returns an LLVM value that corresponds to the size, 3068 /// in non-variably-sized elements, of a variable length array type, 3069 /// plus that largest non-variably-sized element type. Assumes that 3070 /// the type has already been emitted with EmitVariablyModifiedType. 3071 VlaSizePair getVLASize(const VariableArrayType *vla); 3072 VlaSizePair getVLASize(QualType vla); 3073 3074 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 3075 /// generating code for an C++ member function. 3076 llvm::Value *LoadCXXThis() { 3077 assert(CXXThisValue && "no 'this' value for this function"); 3078 return CXXThisValue; 3079 } 3080 Address LoadCXXThisAddress(); 3081 3082 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 3083 /// virtual bases. 3084 // FIXME: Every place that calls LoadCXXVTT is something 3085 // that needs to be abstracted properly. 3086 llvm::Value *LoadCXXVTT() { 3087 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 3088 return CXXStructorImplicitParamValue; 3089 } 3090 3091 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 3092 /// complete class to the given direct base. 3093 Address 3094 GetAddressOfDirectBaseInCompleteClass(Address Value, 3095 const CXXRecordDecl *Derived, 3096 const CXXRecordDecl *Base, 3097 bool BaseIsVirtual); 3098 3099 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 3100 3101 /// GetAddressOfBaseClass - This function will add the necessary delta to the 3102 /// load of 'this' and returns address of the base class. 3103 Address GetAddressOfBaseClass(Address Value, 3104 const CXXRecordDecl *Derived, 3105 CastExpr::path_const_iterator PathBegin, 3106 CastExpr::path_const_iterator PathEnd, 3107 bool NullCheckValue, SourceLocation Loc); 3108 3109 Address GetAddressOfDerivedClass(Address Value, 3110 const CXXRecordDecl *Derived, 3111 CastExpr::path_const_iterator PathBegin, 3112 CastExpr::path_const_iterator PathEnd, 3113 bool NullCheckValue); 3114 3115 /// GetVTTParameter - Return the VTT parameter that should be passed to a 3116 /// base constructor/destructor with virtual bases. 3117 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 3118 /// to ItaniumCXXABI.cpp together with all the references to VTT. 3119 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 3120 bool Delegating); 3121 3122 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 3123 CXXCtorType CtorType, 3124 const FunctionArgList &Args, 3125 SourceLocation Loc); 3126 // It's important not to confuse this and the previous function. Delegating 3127 // constructors are the C++0x feature. The constructor delegate optimization 3128 // is used to reduce duplication in the base and complete consturctors where 3129 // they are substantially the same. 3130 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3131 const FunctionArgList &Args); 3132 3133 /// Emit a call to an inheriting constructor (that is, one that invokes a 3134 /// constructor inherited from a base class) by inlining its definition. This 3135 /// is necessary if the ABI does not support forwarding the arguments to the 3136 /// base class constructor (because they're variadic or similar). 3137 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3138 CXXCtorType CtorType, 3139 bool ForVirtualBase, 3140 bool Delegating, 3141 CallArgList &Args); 3142 3143 /// Emit a call to a constructor inherited from a base class, passing the 3144 /// current constructor's arguments along unmodified (without even making 3145 /// a copy). 3146 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 3147 bool ForVirtualBase, Address This, 3148 bool InheritedFromVBase, 3149 const CXXInheritedCtorInitExpr *E); 3150 3151 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3152 bool ForVirtualBase, bool Delegating, 3153 AggValueSlot ThisAVS, const CXXConstructExpr *E); 3154 3155 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3156 bool ForVirtualBase, bool Delegating, 3157 Address This, CallArgList &Args, 3158 AggValueSlot::Overlap_t Overlap, 3159 SourceLocation Loc, bool NewPointerIsChecked, 3160 llvm::CallBase **CallOrInvoke = nullptr); 3161 3162 /// Emit assumption load for all bases. Requires to be called only on 3163 /// most-derived class and not under construction of the object. 3164 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 3165 3166 /// Emit assumption that vptr load == global vtable. 3167 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 3168 3169 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 3170 Address This, Address Src, 3171 const CXXConstructExpr *E); 3172 3173 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3174 const ArrayType *ArrayTy, 3175 Address ArrayPtr, 3176 const CXXConstructExpr *E, 3177 bool NewPointerIsChecked, 3178 bool ZeroInitialization = false); 3179 3180 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3181 llvm::Value *NumElements, 3182 Address ArrayPtr, 3183 const CXXConstructExpr *E, 3184 bool NewPointerIsChecked, 3185 bool ZeroInitialization = false); 3186 3187 static Destroyer destroyCXXObject; 3188 3189 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 3190 bool ForVirtualBase, bool Delegating, Address This, 3191 QualType ThisTy); 3192 3193 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 3194 llvm::Type *ElementTy, Address NewPtr, 3195 llvm::Value *NumElements, 3196 llvm::Value *AllocSizeWithoutCookie); 3197 3198 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 3199 Address Ptr); 3200 3201 void EmitSehCppScopeBegin(); 3202 void EmitSehCppScopeEnd(); 3203 void EmitSehTryScopeBegin(); 3204 void EmitSehTryScopeEnd(); 3205 3206 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 3207 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 3208 3209 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 3210 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 3211 3212 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 3213 QualType DeleteTy, llvm::Value *NumElements = nullptr, 3214 CharUnits CookieSize = CharUnits()); 3215 3216 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 3217 const CallExpr *TheCallExpr, bool IsDelete); 3218 3219 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 3220 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 3221 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 3222 3223 /// Situations in which we might emit a check for the suitability of a 3224 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 3225 /// compiler-rt. 3226 enum TypeCheckKind { 3227 /// Checking the operand of a load. Must be suitably sized and aligned. 3228 TCK_Load, 3229 /// Checking the destination of a store. Must be suitably sized and aligned. 3230 TCK_Store, 3231 /// Checking the bound value in a reference binding. Must be suitably sized 3232 /// and aligned, but is not required to refer to an object (until the 3233 /// reference is used), per core issue 453. 3234 TCK_ReferenceBinding, 3235 /// Checking the object expression in a non-static data member access. Must 3236 /// be an object within its lifetime. 3237 TCK_MemberAccess, 3238 /// Checking the 'this' pointer for a call to a non-static member function. 3239 /// Must be an object within its lifetime. 3240 TCK_MemberCall, 3241 /// Checking the 'this' pointer for a constructor call. 3242 TCK_ConstructorCall, 3243 /// Checking the operand of a static_cast to a derived pointer type. Must be 3244 /// null or an object within its lifetime. 3245 TCK_DowncastPointer, 3246 /// Checking the operand of a static_cast to a derived reference type. Must 3247 /// be an object within its lifetime. 3248 TCK_DowncastReference, 3249 /// Checking the operand of a cast to a base object. Must be suitably sized 3250 /// and aligned. 3251 TCK_Upcast, 3252 /// Checking the operand of a cast to a virtual base object. Must be an 3253 /// object within its lifetime. 3254 TCK_UpcastToVirtualBase, 3255 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 3256 TCK_NonnullAssign, 3257 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 3258 /// null or an object within its lifetime. 3259 TCK_DynamicOperation 3260 }; 3261 3262 /// Determine whether the pointer type check \p TCK permits null pointers. 3263 static bool isNullPointerAllowed(TypeCheckKind TCK); 3264 3265 /// Determine whether the pointer type check \p TCK requires a vptr check. 3266 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3267 3268 /// Whether any type-checking sanitizers are enabled. If \c false, 3269 /// calls to EmitTypeCheck can be skipped. 3270 bool sanitizePerformTypeCheck() const; 3271 3272 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, 3273 QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), 3274 llvm::Value *ArraySize = nullptr) { 3275 if (!sanitizePerformTypeCheck()) 3276 return; 3277 EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(), 3278 SkippedChecks, ArraySize); 3279 } 3280 3281 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, 3282 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3283 SanitizerSet SkippedChecks = SanitizerSet(), 3284 llvm::Value *ArraySize = nullptr) { 3285 if (!sanitizePerformTypeCheck()) 3286 return; 3287 EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment, 3288 SkippedChecks, ArraySize); 3289 } 3290 3291 /// Emit a check that \p V is the address of storage of the 3292 /// appropriate size and alignment for an object of type \p Type 3293 /// (or if ArraySize is provided, for an array of that bound). 3294 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3295 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3296 SanitizerSet SkippedChecks = SanitizerSet(), 3297 llvm::Value *ArraySize = nullptr); 3298 3299 /// Emit a check that \p Base points into an array object, which 3300 /// we can access at index \p Index. \p Accessed should be \c false if we 3301 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3302 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3303 QualType IndexType, bool Accessed); 3304 void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 3305 llvm::Value *Index, QualType IndexType, 3306 QualType IndexedType, bool Accessed); 3307 3308 // Find a struct's flexible array member and get its offset. It may be 3309 // embedded inside multiple sub-structs, but must still be the last field. 3310 const FieldDecl * 3311 FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, 3312 const FieldDecl *FAMDecl, 3313 uint64_t &Offset); 3314 3315 llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, 3316 const FieldDecl *FAMDecl, 3317 const FieldDecl *CountDecl); 3318 3319 /// Build an expression accessing the "counted_by" field. 3320 llvm::Value *EmitLoadOfCountedByField(const Expr *Base, 3321 const FieldDecl *FAMDecl, 3322 const FieldDecl *CountDecl); 3323 3324 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3325 bool isInc, bool isPre); 3326 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3327 bool isInc, bool isPre); 3328 3329 /// Converts Location to a DebugLoc, if debug information is enabled. 3330 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3331 3332 /// Get the record field index as represented in debug info. 3333 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3334 3335 3336 //===--------------------------------------------------------------------===// 3337 // Declaration Emission 3338 //===--------------------------------------------------------------------===// 3339 3340 /// EmitDecl - Emit a declaration. 3341 /// 3342 /// This function can be called with a null (unreachable) insert point. 3343 void EmitDecl(const Decl &D); 3344 3345 /// EmitVarDecl - Emit a local variable declaration. 3346 /// 3347 /// This function can be called with a null (unreachable) insert point. 3348 void EmitVarDecl(const VarDecl &D); 3349 3350 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3351 bool capturedByInit); 3352 3353 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3354 llvm::Value *Address); 3355 3356 /// Determine whether the given initializer is trivial in the sense 3357 /// that it requires no code to be generated. 3358 bool isTrivialInitializer(const Expr *Init); 3359 3360 /// EmitAutoVarDecl - Emit an auto variable declaration. 3361 /// 3362 /// This function can be called with a null (unreachable) insert point. 3363 void EmitAutoVarDecl(const VarDecl &D); 3364 3365 class AutoVarEmission { 3366 friend class CodeGenFunction; 3367 3368 const VarDecl *Variable; 3369 3370 /// The address of the alloca for languages with explicit address space 3371 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3372 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3373 /// as a global constant. 3374 Address Addr; 3375 3376 llvm::Value *NRVOFlag; 3377 3378 /// True if the variable is a __block variable that is captured by an 3379 /// escaping block. 3380 bool IsEscapingByRef; 3381 3382 /// True if the variable is of aggregate type and has a constant 3383 /// initializer. 3384 bool IsConstantAggregate; 3385 3386 /// Non-null if we should use lifetime annotations. 3387 llvm::Value *SizeForLifetimeMarkers; 3388 3389 /// Address with original alloca instruction. Invalid if the variable was 3390 /// emitted as a global constant. 3391 RawAddress AllocaAddr; 3392 3393 struct Invalid {}; 3394 AutoVarEmission(Invalid) 3395 : Variable(nullptr), Addr(Address::invalid()), 3396 AllocaAddr(RawAddress::invalid()) {} 3397 3398 AutoVarEmission(const VarDecl &variable) 3399 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3400 IsEscapingByRef(false), IsConstantAggregate(false), 3401 SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} 3402 3403 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3404 3405 public: 3406 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3407 3408 bool useLifetimeMarkers() const { 3409 return SizeForLifetimeMarkers != nullptr; 3410 } 3411 llvm::Value *getSizeForLifetimeMarkers() const { 3412 assert(useLifetimeMarkers()); 3413 return SizeForLifetimeMarkers; 3414 } 3415 3416 /// Returns the raw, allocated address, which is not necessarily 3417 /// the address of the object itself. It is casted to default 3418 /// address space for address space agnostic languages. 3419 Address getAllocatedAddress() const { 3420 return Addr; 3421 } 3422 3423 /// Returns the address for the original alloca instruction. 3424 RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } 3425 3426 /// Returns the address of the object within this declaration. 3427 /// Note that this does not chase the forwarding pointer for 3428 /// __block decls. 3429 Address getObjectAddress(CodeGenFunction &CGF) const { 3430 if (!IsEscapingByRef) return Addr; 3431 3432 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3433 } 3434 }; 3435 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3436 void EmitAutoVarInit(const AutoVarEmission &emission); 3437 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3438 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3439 QualType::DestructionKind dtorKind); 3440 3441 /// Emits the alloca and debug information for the size expressions for each 3442 /// dimension of an array. It registers the association of its (1-dimensional) 3443 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3444 /// reference this node when creating the DISubrange object to describe the 3445 /// array types. 3446 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3447 const VarDecl &D, 3448 bool EmitDebugInfo); 3449 3450 void EmitStaticVarDecl(const VarDecl &D, 3451 llvm::GlobalValue::LinkageTypes Linkage); 3452 3453 class ParamValue { 3454 union { 3455 Address Addr; 3456 llvm::Value *Value; 3457 }; 3458 3459 bool IsIndirect; 3460 3461 ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} 3462 ParamValue(Address A) : Addr(A), IsIndirect(true) {} 3463 3464 public: 3465 static ParamValue forDirect(llvm::Value *value) { 3466 return ParamValue(value); 3467 } 3468 static ParamValue forIndirect(Address addr) { 3469 assert(!addr.getAlignment().isZero()); 3470 return ParamValue(addr); 3471 } 3472 3473 bool isIndirect() const { return IsIndirect; } 3474 llvm::Value *getAnyValue() const { 3475 if (!isIndirect()) 3476 return Value; 3477 assert(!Addr.hasOffset() && "unexpected offset"); 3478 return Addr.getBasePointer(); 3479 } 3480 3481 llvm::Value *getDirectValue() const { 3482 assert(!isIndirect()); 3483 return Value; 3484 } 3485 3486 Address getIndirectAddress() const { 3487 assert(isIndirect()); 3488 return Addr; 3489 } 3490 }; 3491 3492 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3493 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3494 3495 /// protectFromPeepholes - Protect a value that we're intending to 3496 /// store to the side, but which will probably be used later, from 3497 /// aggressive peepholing optimizations that might delete it. 3498 /// 3499 /// Pass the result to unprotectFromPeepholes to declare that 3500 /// protection is no longer required. 3501 /// 3502 /// There's no particular reason why this shouldn't apply to 3503 /// l-values, it's just that no existing peepholes work on pointers. 3504 PeepholeProtection protectFromPeepholes(RValue rvalue); 3505 void unprotectFromPeepholes(PeepholeProtection protection); 3506 3507 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3508 SourceLocation Loc, 3509 SourceLocation AssumptionLoc, 3510 llvm::Value *Alignment, 3511 llvm::Value *OffsetValue, 3512 llvm::Value *TheCheck, 3513 llvm::Instruction *Assumption); 3514 3515 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3516 SourceLocation Loc, SourceLocation AssumptionLoc, 3517 llvm::Value *Alignment, 3518 llvm::Value *OffsetValue = nullptr); 3519 3520 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3521 SourceLocation AssumptionLoc, 3522 llvm::Value *Alignment, 3523 llvm::Value *OffsetValue = nullptr); 3524 3525 //===--------------------------------------------------------------------===// 3526 // Statement Emission 3527 //===--------------------------------------------------------------------===// 3528 3529 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3530 void EmitStopPoint(const Stmt *S); 3531 3532 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3533 /// this function even if there is no current insertion point. 3534 /// 3535 /// This function may clear the current insertion point; callers should use 3536 /// EnsureInsertPoint if they wish to subsequently generate code without first 3537 /// calling EmitBlock, EmitBranch, or EmitStmt. 3538 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); 3539 3540 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3541 /// necessarily require an insertion point or debug information; typically 3542 /// because the statement amounts to a jump or a container of other 3543 /// statements. 3544 /// 3545 /// \return True if the statement was handled. 3546 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3547 3548 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3549 AggValueSlot AVS = AggValueSlot::ignored()); 3550 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3551 bool GetLast = false, 3552 AggValueSlot AVS = 3553 AggValueSlot::ignored()); 3554 3555 /// EmitLabel - Emit the block for the given label. It is legal to call this 3556 /// function even if there is no current insertion point. 3557 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3558 3559 void EmitLabelStmt(const LabelStmt &S); 3560 void EmitAttributedStmt(const AttributedStmt &S); 3561 void EmitGotoStmt(const GotoStmt &S); 3562 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3563 void EmitIfStmt(const IfStmt &S); 3564 3565 void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); 3566 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); 3567 void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); 3568 void EmitReturnStmt(const ReturnStmt &S); 3569 void EmitDeclStmt(const DeclStmt &S); 3570 void EmitBreakStmt(const BreakStmt &S); 3571 void EmitContinueStmt(const ContinueStmt &S); 3572 void EmitSwitchStmt(const SwitchStmt &S); 3573 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3574 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3575 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3576 void EmitAsmStmt(const AsmStmt &S); 3577 3578 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3579 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3580 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3581 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3582 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3583 3584 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3585 void EmitCoreturnStmt(const CoreturnStmt &S); 3586 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3587 AggValueSlot aggSlot = AggValueSlot::ignored(), 3588 bool ignoreResult = false); 3589 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3590 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3591 AggValueSlot aggSlot = AggValueSlot::ignored(), 3592 bool ignoreResult = false); 3593 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3594 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3595 3596 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3597 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3598 3599 void EmitCXXTryStmt(const CXXTryStmt &S); 3600 void EmitSEHTryStmt(const SEHTryStmt &S); 3601 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3602 void EnterSEHTryStmt(const SEHTryStmt &S); 3603 void ExitSEHTryStmt(const SEHTryStmt &S); 3604 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3605 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3606 3607 void pushSEHCleanup(CleanupKind kind, 3608 llvm::Function *FinallyFunc); 3609 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3610 const Stmt *OutlinedStmt); 3611 3612 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3613 const SEHExceptStmt &Except); 3614 3615 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3616 const SEHFinallyStmt &Finally); 3617 3618 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3619 llvm::Value *ParentFP, 3620 llvm::Value *EntryEBP); 3621 llvm::Value *EmitSEHExceptionCode(); 3622 llvm::Value *EmitSEHExceptionInfo(); 3623 llvm::Value *EmitSEHAbnormalTermination(); 3624 3625 /// Emit simple code for OpenMP directives in Simd-only mode. 3626 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3627 3628 /// Scan the outlined statement for captures from the parent function. For 3629 /// each capture, mark the capture as escaped and emit a call to 3630 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3631 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3632 bool IsFilter); 3633 3634 /// Recovers the address of a local in a parent function. ParentVar is the 3635 /// address of the variable used in the immediate parent function. It can 3636 /// either be an alloca or a call to llvm.localrecover if there are nested 3637 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3638 /// frame. 3639 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3640 Address ParentVar, 3641 llvm::Value *ParentFP); 3642 3643 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3644 ArrayRef<const Attr *> Attrs = {}); 3645 3646 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3647 class OMPCancelStackRAII { 3648 CodeGenFunction &CGF; 3649 3650 public: 3651 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3652 bool HasCancel) 3653 : CGF(CGF) { 3654 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3655 } 3656 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3657 }; 3658 3659 /// Returns calculated size of the specified type. 3660 llvm::Value *getTypeSize(QualType Ty); 3661 LValue InitCapturedStruct(const CapturedStmt &S); 3662 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3663 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3664 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3665 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3666 SourceLocation Loc); 3667 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3668 SmallVectorImpl<llvm::Value *> &CapturedVars); 3669 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3670 SourceLocation Loc); 3671 /// Perform element by element copying of arrays with type \a 3672 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3673 /// generated by \a CopyGen. 3674 /// 3675 /// \param DestAddr Address of the destination array. 3676 /// \param SrcAddr Address of the source array. 3677 /// \param OriginalType Type of destination and source arrays. 3678 /// \param CopyGen Copying procedure that copies value of single array element 3679 /// to another single array element. 3680 void EmitOMPAggregateAssign( 3681 Address DestAddr, Address SrcAddr, QualType OriginalType, 3682 const llvm::function_ref<void(Address, Address)> CopyGen); 3683 /// Emit proper copying of data from one variable to another. 3684 /// 3685 /// \param OriginalType Original type of the copied variables. 3686 /// \param DestAddr Destination address. 3687 /// \param SrcAddr Source address. 3688 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3689 /// type of the base array element). 3690 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3691 /// the base array element). 3692 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3693 /// DestVD. 3694 void EmitOMPCopy(QualType OriginalType, 3695 Address DestAddr, Address SrcAddr, 3696 const VarDecl *DestVD, const VarDecl *SrcVD, 3697 const Expr *Copy); 3698 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3699 /// \a X = \a E \a BO \a E. 3700 /// 3701 /// \param X Value to be updated. 3702 /// \param E Update value. 3703 /// \param BO Binary operation for update operation. 3704 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3705 /// expression, false otherwise. 3706 /// \param AO Atomic ordering of the generated atomic instructions. 3707 /// \param CommonGen Code generator for complex expressions that cannot be 3708 /// expressed through atomicrmw instruction. 3709 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3710 /// generated, <false, RValue::get(nullptr)> otherwise. 3711 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3712 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3713 llvm::AtomicOrdering AO, SourceLocation Loc, 3714 const llvm::function_ref<RValue(RValue)> CommonGen); 3715 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3716 OMPPrivateScope &PrivateScope); 3717 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3718 OMPPrivateScope &PrivateScope); 3719 void EmitOMPUseDevicePtrClause( 3720 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3721 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3722 CaptureDeviceAddrMap); 3723 void EmitOMPUseDeviceAddrClause( 3724 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3725 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3726 CaptureDeviceAddrMap); 3727 /// Emit code for copyin clause in \a D directive. The next code is 3728 /// generated at the start of outlined functions for directives: 3729 /// \code 3730 /// threadprivate_var1 = master_threadprivate_var1; 3731 /// operator=(threadprivate_var2, master_threadprivate_var2); 3732 /// ... 3733 /// __kmpc_barrier(&loc, global_tid); 3734 /// \endcode 3735 /// 3736 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3737 /// \returns true if at least one copyin variable is found, false otherwise. 3738 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3739 /// Emit initial code for lastprivate variables. If some variable is 3740 /// not also firstprivate, then the default initialization is used. Otherwise 3741 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3742 /// method. 3743 /// 3744 /// \param D Directive that may have 'lastprivate' directives. 3745 /// \param PrivateScope Private scope for capturing lastprivate variables for 3746 /// proper codegen in internal captured statement. 3747 /// 3748 /// \returns true if there is at least one lastprivate variable, false 3749 /// otherwise. 3750 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3751 OMPPrivateScope &PrivateScope); 3752 /// Emit final copying of lastprivate values to original variables at 3753 /// the end of the worksharing or simd directive. 3754 /// 3755 /// \param D Directive that has at least one 'lastprivate' directives. 3756 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3757 /// it is the last iteration of the loop code in associated directive, or to 3758 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3759 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3760 bool NoFinals, 3761 llvm::Value *IsLastIterCond = nullptr); 3762 /// Emit initial code for linear clauses. 3763 void EmitOMPLinearClause(const OMPLoopDirective &D, 3764 CodeGenFunction::OMPPrivateScope &PrivateScope); 3765 /// Emit final code for linear clauses. 3766 /// \param CondGen Optional conditional code for final part of codegen for 3767 /// linear clause. 3768 void EmitOMPLinearClauseFinal( 3769 const OMPLoopDirective &D, 3770 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3771 /// Emit initial code for reduction variables. Creates reduction copies 3772 /// and initializes them with the values according to OpenMP standard. 3773 /// 3774 /// \param D Directive (possibly) with the 'reduction' clause. 3775 /// \param PrivateScope Private scope for capturing reduction variables for 3776 /// proper codegen in internal captured statement. 3777 /// 3778 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3779 OMPPrivateScope &PrivateScope, 3780 bool ForInscan = false); 3781 /// Emit final update of reduction values to original variables at 3782 /// the end of the directive. 3783 /// 3784 /// \param D Directive that has at least one 'reduction' directives. 3785 /// \param ReductionKind The kind of reduction to perform. 3786 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3787 const OpenMPDirectiveKind ReductionKind); 3788 /// Emit initial code for linear variables. Creates private copies 3789 /// and initializes them with the values according to OpenMP standard. 3790 /// 3791 /// \param D Directive (possibly) with the 'linear' clause. 3792 /// \return true if at least one linear variable is found that should be 3793 /// initialized with the value of the original variable, false otherwise. 3794 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3795 3796 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3797 llvm::Function * /*OutlinedFn*/, 3798 const OMPTaskDataTy & /*Data*/)> 3799 TaskGenTy; 3800 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3801 const OpenMPDirectiveKind CapturedRegion, 3802 const RegionCodeGenTy &BodyGen, 3803 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3804 struct OMPTargetDataInfo { 3805 Address BasePointersArray = Address::invalid(); 3806 Address PointersArray = Address::invalid(); 3807 Address SizesArray = Address::invalid(); 3808 Address MappersArray = Address::invalid(); 3809 unsigned NumberOfTargetItems = 0; 3810 explicit OMPTargetDataInfo() = default; 3811 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3812 Address SizesArray, Address MappersArray, 3813 unsigned NumberOfTargetItems) 3814 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3815 SizesArray(SizesArray), MappersArray(MappersArray), 3816 NumberOfTargetItems(NumberOfTargetItems) {} 3817 }; 3818 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3819 const RegionCodeGenTy &BodyGen, 3820 OMPTargetDataInfo &InputInfo); 3821 void processInReduction(const OMPExecutableDirective &S, 3822 OMPTaskDataTy &Data, 3823 CodeGenFunction &CGF, 3824 const CapturedStmt *CS, 3825 OMPPrivateScope &Scope); 3826 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3827 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3828 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3829 void EmitOMPTileDirective(const OMPTileDirective &S); 3830 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3831 void EmitOMPReverseDirective(const OMPReverseDirective &S); 3832 void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); 3833 void EmitOMPForDirective(const OMPForDirective &S); 3834 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3835 void EmitOMPScopeDirective(const OMPScopeDirective &S); 3836 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3837 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3838 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3839 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3840 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3841 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3842 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3843 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3844 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3845 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3846 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3847 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3848 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3849 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3850 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3851 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3852 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3853 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3854 void EmitOMPScanDirective(const OMPScanDirective &S); 3855 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3856 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3857 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3858 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3859 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3860 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3861 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3862 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3863 void 3864 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3865 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3866 void 3867 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3868 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3869 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3870 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3871 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3872 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3873 void 3874 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3875 void EmitOMPParallelMasterTaskLoopDirective( 3876 const OMPParallelMasterTaskLoopDirective &S); 3877 void EmitOMPParallelMaskedTaskLoopDirective( 3878 const OMPParallelMaskedTaskLoopDirective &S); 3879 void EmitOMPParallelMasterTaskLoopSimdDirective( 3880 const OMPParallelMasterTaskLoopSimdDirective &S); 3881 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3882 void EmitOMPDistributeParallelForDirective( 3883 const OMPDistributeParallelForDirective &S); 3884 void EmitOMPDistributeParallelForSimdDirective( 3885 const OMPDistributeParallelForSimdDirective &S); 3886 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3887 void EmitOMPTargetParallelForSimdDirective( 3888 const OMPTargetParallelForSimdDirective &S); 3889 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3890 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3891 void 3892 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3893 void EmitOMPTeamsDistributeParallelForSimdDirective( 3894 const OMPTeamsDistributeParallelForSimdDirective &S); 3895 void EmitOMPTeamsDistributeParallelForDirective( 3896 const OMPTeamsDistributeParallelForDirective &S); 3897 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3898 void EmitOMPTargetTeamsDistributeDirective( 3899 const OMPTargetTeamsDistributeDirective &S); 3900 void EmitOMPTargetTeamsDistributeParallelForDirective( 3901 const OMPTargetTeamsDistributeParallelForDirective &S); 3902 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3903 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3904 void EmitOMPTargetTeamsDistributeSimdDirective( 3905 const OMPTargetTeamsDistributeSimdDirective &S); 3906 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3907 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3908 void EmitOMPTargetParallelGenericLoopDirective( 3909 const OMPTargetParallelGenericLoopDirective &S); 3910 void EmitOMPTargetTeamsGenericLoopDirective( 3911 const OMPTargetTeamsGenericLoopDirective &S); 3912 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3913 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3914 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3915 void EmitOMPAssumeDirective(const OMPAssumeDirective &S); 3916 3917 /// Emit device code for the target directive. 3918 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3919 StringRef ParentName, 3920 const OMPTargetDirective &S); 3921 static void 3922 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3923 const OMPTargetParallelDirective &S); 3924 /// Emit device code for the target parallel for directive. 3925 static void EmitOMPTargetParallelForDeviceFunction( 3926 CodeGenModule &CGM, StringRef ParentName, 3927 const OMPTargetParallelForDirective &S); 3928 /// Emit device code for the target parallel for simd directive. 3929 static void EmitOMPTargetParallelForSimdDeviceFunction( 3930 CodeGenModule &CGM, StringRef ParentName, 3931 const OMPTargetParallelForSimdDirective &S); 3932 /// Emit device code for the target teams directive. 3933 static void 3934 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3935 const OMPTargetTeamsDirective &S); 3936 /// Emit device code for the target teams distribute directive. 3937 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3938 CodeGenModule &CGM, StringRef ParentName, 3939 const OMPTargetTeamsDistributeDirective &S); 3940 /// Emit device code for the target teams distribute simd directive. 3941 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3942 CodeGenModule &CGM, StringRef ParentName, 3943 const OMPTargetTeamsDistributeSimdDirective &S); 3944 /// Emit device code for the target simd directive. 3945 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3946 StringRef ParentName, 3947 const OMPTargetSimdDirective &S); 3948 /// Emit device code for the target teams distribute parallel for simd 3949 /// directive. 3950 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3951 CodeGenModule &CGM, StringRef ParentName, 3952 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3953 3954 /// Emit device code for the target teams loop directive. 3955 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3956 CodeGenModule &CGM, StringRef ParentName, 3957 const OMPTargetTeamsGenericLoopDirective &S); 3958 3959 /// Emit device code for the target parallel loop directive. 3960 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3961 CodeGenModule &CGM, StringRef ParentName, 3962 const OMPTargetParallelGenericLoopDirective &S); 3963 3964 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3965 CodeGenModule &CGM, StringRef ParentName, 3966 const OMPTargetTeamsDistributeParallelForDirective &S); 3967 3968 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3969 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3970 /// future it is meant to be the number of loops expected in the loop nests 3971 /// (usually specified by the "collapse" clause) that are collapsed to a 3972 /// single loop by this function. 3973 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3974 int Depth); 3975 3976 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3977 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3978 3979 /// Emit inner loop of the worksharing/simd construct. 3980 /// 3981 /// \param S Directive, for which the inner loop must be emitted. 3982 /// \param RequiresCleanup true, if directive has some associated private 3983 /// variables. 3984 /// \param LoopCond Bollean condition for loop continuation. 3985 /// \param IncExpr Increment expression for loop control variable. 3986 /// \param BodyGen Generator for the inner body of the inner loop. 3987 /// \param PostIncGen Genrator for post-increment code (required for ordered 3988 /// loop directvies). 3989 void EmitOMPInnerLoop( 3990 const OMPExecutableDirective &S, bool RequiresCleanup, 3991 const Expr *LoopCond, const Expr *IncExpr, 3992 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3993 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3994 3995 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3996 /// Emit initial code for loop counters of loop-based directives. 3997 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3998 OMPPrivateScope &LoopScope); 3999 4000 /// Helper for the OpenMP loop directives. 4001 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 4002 4003 /// Emit code for the worksharing loop-based directive. 4004 /// \return true, if this construct has any lastprivate clause, false - 4005 /// otherwise. 4006 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 4007 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 4008 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4009 4010 /// Emit code for the distribute loop-based directive. 4011 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 4012 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 4013 4014 /// Helpers for the OpenMP loop directives. 4015 void EmitOMPSimdInit(const OMPLoopDirective &D); 4016 void EmitOMPSimdFinal( 4017 const OMPLoopDirective &D, 4018 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 4019 4020 /// Emits the lvalue for the expression with possibly captured variable. 4021 LValue EmitOMPSharedLValue(const Expr *E); 4022 4023 private: 4024 /// Helpers for blocks. 4025 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 4026 4027 /// struct with the values to be passed to the OpenMP loop-related functions 4028 struct OMPLoopArguments { 4029 /// loop lower bound 4030 Address LB = Address::invalid(); 4031 /// loop upper bound 4032 Address UB = Address::invalid(); 4033 /// loop stride 4034 Address ST = Address::invalid(); 4035 /// isLastIteration argument for runtime functions 4036 Address IL = Address::invalid(); 4037 /// Chunk value generated by sema 4038 llvm::Value *Chunk = nullptr; 4039 /// EnsureUpperBound 4040 Expr *EUB = nullptr; 4041 /// IncrementExpression 4042 Expr *IncExpr = nullptr; 4043 /// Loop initialization 4044 Expr *Init = nullptr; 4045 /// Loop exit condition 4046 Expr *Cond = nullptr; 4047 /// Update of LB after a whole chunk has been executed 4048 Expr *NextLB = nullptr; 4049 /// Update of UB after a whole chunk has been executed 4050 Expr *NextUB = nullptr; 4051 /// Distinguish between the for distribute and sections 4052 OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; 4053 OMPLoopArguments() = default; 4054 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 4055 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 4056 Expr *IncExpr = nullptr, Expr *Init = nullptr, 4057 Expr *Cond = nullptr, Expr *NextLB = nullptr, 4058 Expr *NextUB = nullptr) 4059 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 4060 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 4061 NextUB(NextUB) {} 4062 }; 4063 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 4064 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 4065 const OMPLoopArguments &LoopArgs, 4066 const CodeGenLoopTy &CodeGenLoop, 4067 const CodeGenOrderedTy &CodeGenOrdered); 4068 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 4069 bool IsMonotonic, const OMPLoopDirective &S, 4070 OMPPrivateScope &LoopScope, bool Ordered, 4071 const OMPLoopArguments &LoopArgs, 4072 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4073 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 4074 const OMPLoopDirective &S, 4075 OMPPrivateScope &LoopScope, 4076 const OMPLoopArguments &LoopArgs, 4077 const CodeGenLoopTy &CodeGenLoopContent); 4078 /// Emit code for sections directive. 4079 void EmitSections(const OMPExecutableDirective &S); 4080 4081 public: 4082 //===--------------------------------------------------------------------===// 4083 // OpenACC Emission 4084 //===--------------------------------------------------------------------===// 4085 void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { 4086 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4087 // simply emitting its structured block, but in the future we will implement 4088 // some sort of IR. 4089 EmitStmt(S.getStructuredBlock()); 4090 } 4091 4092 void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { 4093 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4094 // simply emitting its loop, but in the future we will implement 4095 // some sort of IR. 4096 EmitStmt(S.getLoop()); 4097 } 4098 4099 void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { 4100 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4101 // simply emitting its loop, but in the future we will implement 4102 // some sort of IR. 4103 EmitStmt(S.getLoop()); 4104 } 4105 4106 void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { 4107 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4108 // simply emitting its structured block, but in the future we will implement 4109 // some sort of IR. 4110 EmitStmt(S.getStructuredBlock()); 4111 } 4112 4113 void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { 4114 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4115 // but in the future we will implement some sort of IR. 4116 } 4117 4118 void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { 4119 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4120 // but in the future we will implement some sort of IR. 4121 } 4122 4123 void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { 4124 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4125 // simply emitting its structured block, but in the future we will implement 4126 // some sort of IR. 4127 EmitStmt(S.getStructuredBlock()); 4128 } 4129 4130 void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { 4131 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4132 // but in the future we will implement some sort of IR. 4133 } 4134 4135 void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) { 4136 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4137 // but in the future we will implement some sort of IR. 4138 } 4139 4140 void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) { 4141 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4142 // but in the future we will implement some sort of IR. 4143 } 4144 4145 void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) { 4146 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4147 // but in the future we will implement some sort of IR. 4148 } 4149 4150 void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) { 4151 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4152 // but in the future we will implement some sort of IR. 4153 } 4154 4155 //===--------------------------------------------------------------------===// 4156 // LValue Expression Emission 4157 //===--------------------------------------------------------------------===// 4158 4159 /// Create a check that a scalar RValue is non-null. 4160 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 4161 4162 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 4163 RValue GetUndefRValue(QualType Ty); 4164 4165 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 4166 /// and issue an ErrorUnsupported style diagnostic (using the 4167 /// provided Name). 4168 RValue EmitUnsupportedRValue(const Expr *E, 4169 const char *Name); 4170 4171 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 4172 /// an ErrorUnsupported style diagnostic (using the provided Name). 4173 LValue EmitUnsupportedLValue(const Expr *E, 4174 const char *Name); 4175 4176 /// EmitLValue - Emit code to compute a designator that specifies the location 4177 /// of the expression. 4178 /// 4179 /// This can return one of two things: a simple address or a bitfield 4180 /// reference. In either case, the LLVM Value* in the LValue structure is 4181 /// guaranteed to be an LLVM pointer type. 4182 /// 4183 /// If this returns a bitfield reference, nothing about the pointee type of 4184 /// the LLVM value is known: For example, it may not be a pointer to an 4185 /// integer. 4186 /// 4187 /// If this returns a normal address, and if the lvalue's C type is fixed 4188 /// size, this method guarantees that the returned pointer type will point to 4189 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 4190 /// variable length type, this is not possible. 4191 /// 4192 LValue EmitLValue(const Expr *E, 4193 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4194 4195 private: 4196 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 4197 4198 public: 4199 /// Same as EmitLValue but additionally we generate checking code to 4200 /// guard against undefined behavior. This is only suitable when we know 4201 /// that the address will be used to access the object. 4202 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 4203 4204 RValue convertTempToRValue(Address addr, QualType type, 4205 SourceLocation Loc); 4206 4207 void EmitAtomicInit(Expr *E, LValue lvalue); 4208 4209 bool LValueIsSuitableForInlineAtomic(LValue Src); 4210 4211 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 4212 AggValueSlot Slot = AggValueSlot::ignored()); 4213 4214 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 4215 llvm::AtomicOrdering AO, bool IsVolatile = false, 4216 AggValueSlot slot = AggValueSlot::ignored()); 4217 4218 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 4219 4220 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 4221 bool IsVolatile, bool isInit); 4222 4223 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 4224 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 4225 llvm::AtomicOrdering Success = 4226 llvm::AtomicOrdering::SequentiallyConsistent, 4227 llvm::AtomicOrdering Failure = 4228 llvm::AtomicOrdering::SequentiallyConsistent, 4229 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 4230 4231 /// Emit an atomicrmw instruction, and applying relevant metadata when 4232 /// applicable. 4233 llvm::AtomicRMWInst *emitAtomicRMWInst( 4234 llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, 4235 llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, 4236 llvm::SyncScope::ID SSID = llvm::SyncScope::System, 4237 const AtomicExpr *AE = nullptr); 4238 4239 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 4240 const llvm::function_ref<RValue(RValue)> &UpdateOp, 4241 bool IsVolatile); 4242 4243 /// EmitToMemory - Change a scalar value from its value 4244 /// representation to its in-memory representation. 4245 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 4246 4247 /// EmitFromMemory - Change a scalar value from its memory 4248 /// representation to its value representation. 4249 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 4250 4251 /// Check if the scalar \p Value is within the valid range for the given 4252 /// type \p Ty. 4253 /// 4254 /// Returns true if a check is needed (even if the range is unknown). 4255 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 4256 SourceLocation Loc); 4257 4258 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4259 /// care to appropriately convert from the memory representation to 4260 /// the LLVM value representation. 4261 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4262 SourceLocation Loc, 4263 AlignmentSource Source = AlignmentSource::Type, 4264 bool isNontemporal = false) { 4265 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 4266 CGM.getTBAAAccessInfo(Ty), isNontemporal); 4267 } 4268 4269 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4270 SourceLocation Loc, LValueBaseInfo BaseInfo, 4271 TBAAAccessInfo TBAAInfo, 4272 bool isNontemporal = false); 4273 4274 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4275 /// care to appropriately convert from the memory representation to 4276 /// the LLVM value representation. The l-value must be a simple 4277 /// l-value. 4278 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 4279 4280 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4281 /// care to appropriately convert from the memory representation to 4282 /// the LLVM value representation. 4283 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4284 bool Volatile, QualType Ty, 4285 AlignmentSource Source = AlignmentSource::Type, 4286 bool isInit = false, bool isNontemporal = false) { 4287 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 4288 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 4289 } 4290 4291 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4292 bool Volatile, QualType Ty, 4293 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 4294 bool isInit = false, bool isNontemporal = false); 4295 4296 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4297 /// care to appropriately convert from the memory representation to 4298 /// the LLVM value representation. The l-value must be a simple 4299 /// l-value. The isInit flag indicates whether this is an initialization. 4300 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 4301 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 4302 4303 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 4304 /// this method emits the address of the lvalue, then loads the result as an 4305 /// rvalue, returning the rvalue. 4306 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 4307 RValue EmitLoadOfExtVectorElementLValue(LValue V); 4308 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 4309 RValue EmitLoadOfGlobalRegLValue(LValue LV); 4310 4311 /// Like EmitLoadOfLValue but also handles complex and aggregate types. 4312 RValue EmitLoadOfAnyValue(LValue V, 4313 AggValueSlot Slot = AggValueSlot::ignored(), 4314 SourceLocation Loc = {}); 4315 4316 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 4317 /// lvalue, where both are guaranteed to the have the same type, and that type 4318 /// is 'Ty'. 4319 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 4320 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 4321 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 4322 4323 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 4324 /// as EmitStoreThroughLValue. 4325 /// 4326 /// \param Result [out] - If non-null, this will be set to a Value* for the 4327 /// bit-field contents after the store, appropriate for use as the result of 4328 /// an assignment to the bit-field. 4329 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 4330 llvm::Value **Result=nullptr); 4331 4332 /// Emit an l-value for an assignment (simple or compound) of complex type. 4333 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 4334 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 4335 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 4336 llvm::Value *&Result); 4337 4338 // Note: only available for agg return types 4339 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 4340 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 4341 // Note: only available for agg return types 4342 LValue EmitCallExprLValue(const CallExpr *E, 4343 llvm::CallBase **CallOrInvoke = nullptr); 4344 // Note: only available for agg return types 4345 LValue EmitVAArgExprLValue(const VAArgExpr *E); 4346 LValue EmitDeclRefLValue(const DeclRefExpr *E); 4347 LValue EmitStringLiteralLValue(const StringLiteral *E); 4348 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 4349 LValue EmitPredefinedLValue(const PredefinedExpr *E); 4350 LValue EmitUnaryOpLValue(const UnaryOperator *E); 4351 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4352 bool Accessed = false); 4353 llvm::Value *EmitMatrixIndexExpr(const Expr *E); 4354 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 4355 LValue EmitArraySectionExpr(const ArraySectionExpr *E, 4356 bool IsLowerBound = true); 4357 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 4358 LValue EmitMemberExpr(const MemberExpr *E); 4359 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 4360 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 4361 LValue EmitInitListLValue(const InitListExpr *E); 4362 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 4363 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 4364 LValue EmitCastLValue(const CastExpr *E); 4365 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4366 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 4367 LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); 4368 4369 std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, 4370 QualType Ty); 4371 LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, 4372 QualType Ty); 4373 4374 Address EmitExtVectorElementLValue(LValue V); 4375 4376 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 4377 4378 Address EmitArrayToPointerDecay(const Expr *Array, 4379 LValueBaseInfo *BaseInfo = nullptr, 4380 TBAAAccessInfo *TBAAInfo = nullptr); 4381 4382 class ConstantEmission { 4383 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 4384 ConstantEmission(llvm::Constant *C, bool isReference) 4385 : ValueAndIsReference(C, isReference) {} 4386 public: 4387 ConstantEmission() {} 4388 static ConstantEmission forReference(llvm::Constant *C) { 4389 return ConstantEmission(C, true); 4390 } 4391 static ConstantEmission forValue(llvm::Constant *C) { 4392 return ConstantEmission(C, false); 4393 } 4394 4395 explicit operator bool() const { 4396 return ValueAndIsReference.getOpaqueValue() != nullptr; 4397 } 4398 4399 bool isReference() const { return ValueAndIsReference.getInt(); } 4400 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 4401 assert(isReference()); 4402 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 4403 refExpr->getType()); 4404 } 4405 4406 llvm::Constant *getValue() const { 4407 assert(!isReference()); 4408 return ValueAndIsReference.getPointer(); 4409 } 4410 }; 4411 4412 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4413 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4414 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4415 4416 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4417 AggValueSlot slot = AggValueSlot::ignored()); 4418 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4419 4420 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4421 const ObjCIvarDecl *Ivar); 4422 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4423 const ObjCIvarDecl *Ivar); 4424 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4425 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4426 LValue EmitLValueForLambdaField(const FieldDecl *Field, 4427 llvm::Value *ThisValue); 4428 4429 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4430 /// if the Field is a reference, this will return the address of the reference 4431 /// and not the address of the value stored in the reference. 4432 LValue EmitLValueForFieldInitialization(LValue Base, 4433 const FieldDecl* Field); 4434 4435 LValue EmitLValueForIvar(QualType ObjectTy, 4436 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4437 unsigned CVRQualifiers); 4438 4439 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4440 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4441 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4442 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4443 4444 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4445 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4446 LValue EmitStmtExprLValue(const StmtExpr *E); 4447 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4448 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4449 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4450 4451 //===--------------------------------------------------------------------===// 4452 // Scalar Expression Emission 4453 //===--------------------------------------------------------------------===// 4454 4455 /// EmitCall - Generate a call of the given function, expecting the given 4456 /// result type, and using the given argument list which specifies both the 4457 /// LLVM arguments and the types they were derived from. 4458 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4459 ReturnValueSlot ReturnValue, const CallArgList &Args, 4460 llvm::CallBase **CallOrInvoke, bool IsMustTail, 4461 SourceLocation Loc, 4462 bool IsVirtualFunctionPointerThunk = false); 4463 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4464 ReturnValueSlot ReturnValue, const CallArgList &Args, 4465 llvm::CallBase **CallOrInvoke = nullptr, 4466 bool IsMustTail = false) { 4467 return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, 4468 IsMustTail, SourceLocation()); 4469 } 4470 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4471 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, 4472 llvm::CallBase **CallOrInvoke = nullptr, 4473 CGFunctionInfo const **ResolvedFnInfo = nullptr); 4474 4475 // If a Call or Invoke instruction was emitted for this CallExpr, this method 4476 // writes the pointer to `CallOrInvoke` if it's not null. 4477 RValue EmitCallExpr(const CallExpr *E, 4478 ReturnValueSlot ReturnValue = ReturnValueSlot(), 4479 llvm::CallBase **CallOrInvoke = nullptr); 4480 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4481 llvm::CallBase **CallOrInvoke = nullptr); 4482 CGCallee EmitCallee(const Expr *E); 4483 4484 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4485 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4486 4487 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4488 const Twine &name = ""); 4489 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4490 ArrayRef<llvm::Value *> args, 4491 const Twine &name = ""); 4492 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4493 const Twine &name = ""); 4494 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4495 ArrayRef<Address> args, 4496 const Twine &name = ""); 4497 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4498 ArrayRef<llvm::Value *> args, 4499 const Twine &name = ""); 4500 4501 SmallVector<llvm::OperandBundleDef, 1> 4502 getBundlesForFunclet(llvm::Value *Callee); 4503 4504 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4505 ArrayRef<llvm::Value *> Args, 4506 const Twine &Name = ""); 4507 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4508 ArrayRef<llvm::Value *> args, 4509 const Twine &name = ""); 4510 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4511 const Twine &name = ""); 4512 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4513 ArrayRef<llvm::Value *> args); 4514 4515 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4516 NestedNameSpecifier *Qual, 4517 llvm::Type *Ty); 4518 4519 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4520 CXXDtorType Type, 4521 const CXXRecordDecl *RD); 4522 4523 bool isPointerKnownNonNull(const Expr *E); 4524 4525 /// Create the discriminator from the storage address and the entity hash. 4526 llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, 4527 llvm::Value *Discriminator); 4528 CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, 4529 llvm::Value *StorageAddress, 4530 GlobalDecl SchemaDecl, 4531 QualType SchemaType); 4532 4533 llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, 4534 llvm::Value *Pointer); 4535 4536 llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, 4537 llvm::Value *Pointer); 4538 4539 llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, 4540 const CGPointerAuthInfo &CurAuthInfo, 4541 const CGPointerAuthInfo &NewAuthInfo, 4542 bool IsKnownNonNull); 4543 llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, 4544 const CGPointerAuthInfo &CurInfo, 4545 const CGPointerAuthInfo &NewInfo); 4546 4547 void EmitPointerAuthOperandBundle( 4548 const CGPointerAuthInfo &Info, 4549 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4550 4551 llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, 4552 QualType SourceType, QualType DestType); 4553 Address authPointerToPointerCast(Address Ptr, QualType SourceType, 4554 QualType DestType); 4555 4556 Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); 4557 4558 llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { 4559 return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer(); 4560 } 4561 4562 // Return the copy constructor name with the prefix "__copy_constructor_" 4563 // removed. 4564 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4565 CharUnits Alignment, 4566 bool IsVolatile, 4567 ASTContext &Ctx); 4568 4569 // Return the destructor name with the prefix "__destructor_" removed. 4570 static std::string getNonTrivialDestructorStr(QualType QT, 4571 CharUnits Alignment, 4572 bool IsVolatile, 4573 ASTContext &Ctx); 4574 4575 // These functions emit calls to the special functions of non-trivial C 4576 // structs. 4577 void defaultInitNonTrivialCStructVar(LValue Dst); 4578 void callCStructDefaultConstructor(LValue Dst); 4579 void callCStructDestructor(LValue Dst); 4580 void callCStructCopyConstructor(LValue Dst, LValue Src); 4581 void callCStructMoveConstructor(LValue Dst, LValue Src); 4582 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4583 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4584 4585 RValue EmitCXXMemberOrOperatorCall( 4586 const CXXMethodDecl *Method, const CGCallee &Callee, 4587 ReturnValueSlot ReturnValue, llvm::Value *This, 4588 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, 4589 CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); 4590 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4591 llvm::Value *This, QualType ThisTy, 4592 llvm::Value *ImplicitParam, 4593 QualType ImplicitParamTy, const CallExpr *E, 4594 llvm::CallBase **CallOrInvoke = nullptr); 4595 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4596 ReturnValueSlot ReturnValue, 4597 llvm::CallBase **CallOrInvoke = nullptr); 4598 RValue EmitCXXMemberOrOperatorMemberCallExpr( 4599 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 4600 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 4601 const Expr *Base, llvm::CallBase **CallOrInvoke); 4602 // Compute the object pointer. 4603 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4604 llvm::Value *memberPtr, 4605 const MemberPointerType *memberPtrType, 4606 LValueBaseInfo *BaseInfo = nullptr, 4607 TBAAAccessInfo *TBAAInfo = nullptr); 4608 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4609 ReturnValueSlot ReturnValue, 4610 llvm::CallBase **CallOrInvoke); 4611 4612 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4613 const CXXMethodDecl *MD, 4614 ReturnValueSlot ReturnValue, 4615 llvm::CallBase **CallOrInvoke); 4616 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4617 4618 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4619 ReturnValueSlot ReturnValue, 4620 llvm::CallBase **CallOrInvoke); 4621 4622 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4623 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4624 4625 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4626 const CallExpr *E, ReturnValueSlot ReturnValue); 4627 4628 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4629 4630 /// Emit IR for __builtin_os_log_format. 4631 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4632 4633 /// Emit IR for __builtin_is_aligned. 4634 RValue EmitBuiltinIsAligned(const CallExpr *E); 4635 /// Emit IR for __builtin_align_up/__builtin_align_down. 4636 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4637 4638 llvm::Function *generateBuiltinOSLogHelperFunction( 4639 const analyze_os_log::OSLogBufferLayout &Layout, 4640 CharUnits BufferAlignment); 4641 4642 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4643 llvm::CallBase **CallOrInvoke); 4644 4645 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4646 /// is unhandled by the current target. 4647 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4648 ReturnValueSlot ReturnValue); 4649 4650 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4651 const llvm::CmpInst::Predicate Fp, 4652 const llvm::CmpInst::Predicate Ip, 4653 const llvm::Twine &Name = ""); 4654 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4655 ReturnValueSlot ReturnValue, 4656 llvm::Triple::ArchType Arch); 4657 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4658 ReturnValueSlot ReturnValue, 4659 llvm::Triple::ArchType Arch); 4660 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4661 ReturnValueSlot ReturnValue, 4662 llvm::Triple::ArchType Arch); 4663 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4664 QualType RTy); 4665 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4666 QualType RTy); 4667 4668 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4669 unsigned LLVMIntrinsic, 4670 unsigned AltLLVMIntrinsic, 4671 const char *NameHint, 4672 unsigned Modifier, 4673 const CallExpr *E, 4674 SmallVectorImpl<llvm::Value *> &Ops, 4675 Address PtrOp0, Address PtrOp1, 4676 llvm::Triple::ArchType Arch); 4677 4678 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4679 unsigned Modifier, llvm::Type *ArgTy, 4680 const CallExpr *E); 4681 llvm::Value *EmitNeonCall(llvm::Function *F, 4682 SmallVectorImpl<llvm::Value*> &O, 4683 const char *name, 4684 unsigned shift = 0, bool rightshift = false); 4685 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4686 const llvm::ElementCount &Count); 4687 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4688 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4689 bool negateForRightShift); 4690 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4691 llvm::Type *Ty, bool usgn, const char *name); 4692 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4693 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4694 /// access builtin. Only required if it can't be inferred from the base 4695 /// pointer operand. 4696 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4697 4698 SmallVector<llvm::Type *, 2> 4699 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4700 ArrayRef<llvm::Value *> Ops); 4701 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4702 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4703 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4704 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4705 ArrayRef<llvm::Value *> Ops); 4706 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4707 llvm::Type *ReturnType, 4708 ArrayRef<llvm::Value *> Ops); 4709 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4710 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4711 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4712 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4713 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4714 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4715 unsigned BuiltinID); 4716 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4717 llvm::ArrayRef<llvm::Value *> Ops, 4718 unsigned BuiltinID); 4719 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4720 llvm::ScalableVectorType *VTy); 4721 llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, 4722 llvm::StructType *Ty); 4723 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4724 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4725 unsigned IntID); 4726 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4727 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4728 unsigned IntID); 4729 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4730 SmallVectorImpl<llvm::Value *> &Ops, 4731 unsigned BuiltinID, bool IsZExtReturn); 4732 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4733 SmallVectorImpl<llvm::Value *> &Ops, 4734 unsigned BuiltinID); 4735 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4736 SmallVectorImpl<llvm::Value *> &Ops, 4737 unsigned BuiltinID); 4738 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4739 SmallVectorImpl<llvm::Value *> &Ops, 4740 unsigned IntID); 4741 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4742 SmallVectorImpl<llvm::Value *> &Ops, 4743 unsigned IntID); 4744 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4745 SmallVectorImpl<llvm::Value *> &Ops, 4746 unsigned IntID); 4747 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4748 4749 llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, 4750 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4751 unsigned IntID); 4752 llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, 4753 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4754 unsigned IntID); 4755 llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, 4756 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4757 unsigned IntID); 4758 llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, 4759 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4760 unsigned IntID); 4761 4762 void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, 4763 SmallVectorImpl<llvm::Value *> &Ops, 4764 SVETypeFlags TypeFlags); 4765 4766 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4767 4768 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4769 llvm::Triple::ArchType Arch); 4770 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4771 4772 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4773 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4774 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4775 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4776 llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4777 ReturnValueSlot ReturnValue); 4778 llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4779 llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, 4780 const CallExpr *E); 4781 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4782 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4783 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4784 const CallExpr *E); 4785 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4786 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4787 ReturnValueSlot ReturnValue); 4788 4789 llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); 4790 llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); 4791 llvm::Value *EmitRISCVCpuInit(); 4792 llvm::Value *EmitRISCVCpuIs(const CallExpr *E); 4793 llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); 4794 4795 void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, 4796 const CallExpr *E); 4797 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4798 llvm::AtomicOrdering &AO, 4799 llvm::SyncScope::ID &SSID); 4800 4801 enum class MSVCIntrin; 4802 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4803 4804 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4805 4806 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4807 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4808 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4809 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4810 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4811 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4812 const ObjCMethodDecl *MethodWithObjects); 4813 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4814 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4815 ReturnValueSlot Return = ReturnValueSlot()); 4816 4817 /// Retrieves the default cleanup kind for an ARC cleanup. 4818 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4819 CleanupKind getARCCleanupKind() { 4820 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4821 ? NormalAndEHCleanup : NormalCleanup; 4822 } 4823 4824 // ARC primitives. 4825 void EmitARCInitWeak(Address addr, llvm::Value *value); 4826 void EmitARCDestroyWeak(Address addr); 4827 llvm::Value *EmitARCLoadWeak(Address addr); 4828 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4829 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4830 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4831 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4832 void EmitARCCopyWeak(Address dst, Address src); 4833 void EmitARCMoveWeak(Address dst, Address src); 4834 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4835 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4836 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4837 bool resultIgnored); 4838 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4839 bool resultIgnored); 4840 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4841 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4842 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4843 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4844 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4845 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4846 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4847 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4848 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4849 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4850 4851 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4852 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4853 llvm::Type *returnType); 4854 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4855 4856 std::pair<LValue,llvm::Value*> 4857 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4858 std::pair<LValue,llvm::Value*> 4859 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4860 std::pair<LValue,llvm::Value*> 4861 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4862 4863 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4864 llvm::Type *returnType); 4865 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4866 llvm::Type *returnType); 4867 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4868 4869 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4870 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4871 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4872 4873 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4874 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4875 bool allowUnsafeClaim); 4876 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4877 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4878 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4879 4880 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4881 4882 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4883 4884 static Destroyer destroyARCStrongImprecise; 4885 static Destroyer destroyARCStrongPrecise; 4886 static Destroyer destroyARCWeak; 4887 static Destroyer emitARCIntrinsicUse; 4888 static Destroyer destroyNonTrivialCStruct; 4889 4890 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4891 llvm::Value *EmitObjCAutoreleasePoolPush(); 4892 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4893 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4894 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4895 4896 /// Emits a reference binding to the passed in expression. 4897 RValue EmitReferenceBindingToExpr(const Expr *E); 4898 4899 //===--------------------------------------------------------------------===// 4900 // Expression Emission 4901 //===--------------------------------------------------------------------===// 4902 4903 // Expressions are broken into three classes: scalar, complex, aggregate. 4904 4905 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4906 /// scalar type, returning the result. 4907 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4908 4909 /// Emit a conversion from the specified type to the specified destination 4910 /// type, both of which are LLVM scalar types. 4911 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4912 QualType DstTy, SourceLocation Loc); 4913 4914 /// Emit a conversion from the specified complex type to the specified 4915 /// destination type, where the destination type is an LLVM scalar type. 4916 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4917 QualType DstTy, 4918 SourceLocation Loc); 4919 4920 /// EmitAggExpr - Emit the computation of the specified expression 4921 /// of aggregate type. The result is computed into the given slot, 4922 /// which may be null to indicate that the value is not needed. 4923 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4924 4925 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4926 /// aggregate type into a temporary LValue. 4927 LValue EmitAggExprToLValue(const Expr *E); 4928 4929 enum ExprValueKind { EVK_RValue, EVK_NonRValue }; 4930 4931 /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into 4932 /// destination address. 4933 void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, 4934 ExprValueKind SrcKind); 4935 4936 /// Create a store to \arg DstPtr from \arg Src, truncating the stored value 4937 /// to at most \arg DstSize bytes. 4938 void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, 4939 bool DstIsVolatile); 4940 4941 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4942 /// make sure it survives garbage collection until this point. 4943 void EmitExtendGCLifetime(llvm::Value *object); 4944 4945 /// EmitComplexExpr - Emit the computation of the specified expression of 4946 /// complex type, returning the result. 4947 ComplexPairTy EmitComplexExpr(const Expr *E, 4948 bool IgnoreReal = false, 4949 bool IgnoreImag = false); 4950 4951 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4952 /// type and place its result into the specified l-value. 4953 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4954 4955 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4956 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4957 4958 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4959 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4960 4961 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4962 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4963 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4964 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4965 4966 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4967 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4968 4969 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4970 /// global variable that has already been created for it. If the initializer 4971 /// has a different type than GV does, this may free GV and return a different 4972 /// one. Otherwise it just returns GV. 4973 llvm::GlobalVariable * 4974 AddInitializerToStaticVarDecl(const VarDecl &D, 4975 llvm::GlobalVariable *GV); 4976 4977 // Emit an @llvm.invariant.start call for the given memory region. 4978 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4979 4980 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4981 /// variable with global storage. 4982 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4983 bool PerformInit); 4984 4985 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4986 llvm::Constant *Addr); 4987 4988 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4989 llvm::FunctionCallee Dtor, 4990 llvm::Constant *Addr, 4991 llvm::FunctionCallee &AtExit); 4992 4993 /// Call atexit() with a function that passes the given argument to 4994 /// the given function. 4995 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4996 llvm::Constant *addr); 4997 4998 /// Registers the dtor using 'llvm.global_dtors' for platforms that do not 4999 /// support an 'atexit()' function. 5000 void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, 5001 llvm::Constant *addr); 5002 5003 /// Call atexit() with function dtorStub. 5004 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 5005 5006 /// Call unatexit() with function dtorStub. 5007 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 5008 5009 /// Emit code in this function to perform a guarded variable 5010 /// initialization. Guarded initializations are used when it's not 5011 /// possible to prove that an initialization will be done exactly 5012 /// once, e.g. with a static local variable or a static data member 5013 /// of a class template. 5014 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 5015 bool PerformInit); 5016 5017 enum class GuardKind { VariableGuard, TlsGuard }; 5018 5019 /// Emit a branch to select whether or not to perform guarded initialization. 5020 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 5021 llvm::BasicBlock *InitBlock, 5022 llvm::BasicBlock *NoInitBlock, 5023 GuardKind Kind, const VarDecl *D); 5024 5025 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 5026 /// variables. 5027 void 5028 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 5029 ArrayRef<llvm::Function *> CXXThreadLocals, 5030 ConstantAddress Guard = ConstantAddress::invalid()); 5031 5032 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 5033 /// variables. 5034 void GenerateCXXGlobalCleanUpFunc( 5035 llvm::Function *Fn, 5036 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 5037 llvm::Constant *>> 5038 DtorsOrStermFinalizers); 5039 5040 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 5041 const VarDecl *D, 5042 llvm::GlobalVariable *Addr, 5043 bool PerformInit); 5044 5045 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 5046 5047 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 5048 5049 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 5050 5051 RValue EmitAtomicExpr(AtomicExpr *E); 5052 5053 //===--------------------------------------------------------------------===// 5054 // Annotations Emission 5055 //===--------------------------------------------------------------------===// 5056 5057 /// Emit an annotation call (intrinsic). 5058 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 5059 llvm::Value *AnnotatedVal, 5060 StringRef AnnotationStr, 5061 SourceLocation Location, 5062 const AnnotateAttr *Attr); 5063 5064 /// Emit local annotations for the local variable V, declared by D. 5065 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 5066 5067 /// Emit field annotations for the given field & value. Returns the 5068 /// annotation result. 5069 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 5070 5071 //===--------------------------------------------------------------------===// 5072 // Internal Helpers 5073 //===--------------------------------------------------------------------===// 5074 5075 /// ContainsLabel - Return true if the statement contains a label in it. If 5076 /// this statement is not executed normally, it not containing a label means 5077 /// that we can just remove the code. 5078 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 5079 5080 /// containsBreak - Return true if the statement contains a break out of it. 5081 /// If the statement (recursively) contains a switch or loop with a break 5082 /// inside of it, this is fine. 5083 static bool containsBreak(const Stmt *S); 5084 5085 /// Determine if the given statement might introduce a declaration into the 5086 /// current scope, by being a (possibly-labelled) DeclStmt. 5087 static bool mightAddDeclToScope(const Stmt *S); 5088 5089 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5090 /// to a constant, or if it does but contains a label, return false. If it 5091 /// constant folds return true and set the boolean result in Result. 5092 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 5093 bool AllowLabels = false); 5094 5095 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5096 /// to a constant, or if it does but contains a label, return false. If it 5097 /// constant folds return true and set the folded value. 5098 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 5099 bool AllowLabels = false); 5100 5101 /// Ignore parentheses and logical-NOT to track conditions consistently. 5102 static const Expr *stripCond(const Expr *C); 5103 5104 /// isInstrumentedCondition - Determine whether the given condition is an 5105 /// instrumentable condition (i.e. no "&&" or "||"). 5106 static bool isInstrumentedCondition(const Expr *C); 5107 5108 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 5109 /// increments a profile counter based on the semantics of the given logical 5110 /// operator opcode. This is used to instrument branch condition coverage 5111 /// for logical operators. 5112 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 5113 llvm::BasicBlock *TrueBlock, 5114 llvm::BasicBlock *FalseBlock, 5115 uint64_t TrueCount = 0, 5116 Stmt::Likelihood LH = Stmt::LH_None, 5117 const Expr *CntrIdx = nullptr); 5118 5119 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 5120 /// if statement) to the specified blocks. Based on the condition, this might 5121 /// try to simplify the codegen of the conditional based on the branch. 5122 /// TrueCount should be the number of times we expect the condition to 5123 /// evaluate to true based on PGO data. 5124 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 5125 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 5126 Stmt::Likelihood LH = Stmt::LH_None, 5127 const Expr *ConditionalOp = nullptr); 5128 5129 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 5130 /// nonnull, if \p LHS is marked _Nonnull. 5131 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 5132 5133 /// An enumeration which makes it easier to specify whether or not an 5134 /// operation is a subtraction. 5135 enum { NotSubtraction = false, IsSubtraction = true }; 5136 5137 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 5138 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 5139 /// \p SignedIndices indicates whether any of the GEP indices are signed. 5140 /// \p IsSubtraction indicates whether the expression used to form the GEP 5141 /// is a subtraction. 5142 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 5143 ArrayRef<llvm::Value *> IdxList, 5144 bool SignedIndices, 5145 bool IsSubtraction, 5146 SourceLocation Loc, 5147 const Twine &Name = ""); 5148 5149 Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, 5150 llvm::Type *elementType, bool SignedIndices, 5151 bool IsSubtraction, SourceLocation Loc, 5152 CharUnits Align, const Twine &Name = ""); 5153 5154 /// Specifies which type of sanitizer check to apply when handling a 5155 /// particular builtin. 5156 enum BuiltinCheckKind { 5157 BCK_CTZPassedZero, 5158 BCK_CLZPassedZero, 5159 BCK_AssumePassedFalse, 5160 }; 5161 5162 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 5163 /// enabled, a runtime check specified by \p Kind is also emitted. 5164 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 5165 5166 /// Emits an argument for a call to a `__builtin_assume`. If the builtin 5167 /// sanitizer is enabled, a runtime check is also emitted. 5168 llvm::Value *EmitCheckedArgForAssume(const Expr *E); 5169 5170 /// Emit a description of a type in a format suitable for passing to 5171 /// a runtime sanitizer handler. 5172 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 5173 5174 /// Convert a value into a format suitable for passing to a runtime 5175 /// sanitizer handler. 5176 llvm::Value *EmitCheckValue(llvm::Value *V); 5177 5178 /// Emit a description of a source location in a format suitable for 5179 /// passing to a runtime sanitizer handler. 5180 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 5181 5182 void EmitKCFIOperandBundle(const CGCallee &Callee, 5183 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 5184 5185 /// Create a basic block that will either trap or call a handler function in 5186 /// the UBSan runtime with the provided arguments, and create a conditional 5187 /// branch to it. 5188 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 5189 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 5190 ArrayRef<llvm::Value *> DynamicArgs); 5191 5192 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 5193 /// if Cond if false. 5194 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 5195 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 5196 ArrayRef<llvm::Constant *> StaticArgs); 5197 5198 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 5199 /// checking is enabled. Otherwise, just emit an unreachable instruction. 5200 void EmitUnreachable(SourceLocation Loc); 5201 5202 /// Create a basic block that will call the trap intrinsic, and emit a 5203 /// conditional branch to it, for the -ftrapv checks. 5204 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, 5205 bool NoMerge = false); 5206 5207 /// Emit a call to trap or debugtrap and attach function attribute 5208 /// "trap-func-name" if specified. 5209 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 5210 5211 /// Emit a stub for the cross-DSO CFI check function. 5212 void EmitCfiCheckStub(); 5213 5214 /// Emit a cross-DSO CFI failure handling function. 5215 void EmitCfiCheckFail(); 5216 5217 /// Create a check for a function parameter that may potentially be 5218 /// declared as non-null. 5219 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 5220 AbstractCallee AC, unsigned ParmNum); 5221 5222 void EmitNonNullArgCheck(Address Addr, QualType ArgType, 5223 SourceLocation ArgLoc, AbstractCallee AC, 5224 unsigned ParmNum); 5225 5226 /// EmitWriteback - Emit callbacks for function. 5227 void EmitWritebacks(const CallArgList &Args); 5228 5229 /// EmitCallArg - Emit a single call argument. 5230 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 5231 5232 /// EmitDelegateCallArg - We are performing a delegate call; that 5233 /// is, the current function is delegating to another one. Produce 5234 /// a r-value suitable for passing the given parameter. 5235 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 5236 SourceLocation loc); 5237 5238 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 5239 /// point operation, expressed as the maximum relative error in ulp. 5240 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 5241 5242 /// Set the minimum required accuracy of the given sqrt operation 5243 /// based on CodeGenOpts. 5244 void SetSqrtFPAccuracy(llvm::Value *Val); 5245 5246 /// Set the minimum required accuracy of the given sqrt operation based on 5247 /// CodeGenOpts. 5248 void SetDivFPAccuracy(llvm::Value *Val); 5249 5250 /// Set the codegen fast-math flags. 5251 void SetFastMathFlags(FPOptions FPFeatures); 5252 5253 // Truncate or extend a boolean vector to the requested number of elements. 5254 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 5255 unsigned NumElementsDst, 5256 const llvm::Twine &Name = ""); 5257 5258 private: 5259 // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| 5260 // as it's parent convergence instr. 5261 llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB); 5262 5263 // Adds a convergence_ctrl token with |ParentToken| as parent convergence 5264 // instr to the call |Input|. 5265 llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input); 5266 5267 // Find the convergence_entry instruction |F|, or emits ones if none exists. 5268 // Returns the convergence instruction. 5269 llvm::ConvergenceControlInst * 5270 getOrEmitConvergenceEntryToken(llvm::Function *F); 5271 5272 private: 5273 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 5274 void EmitReturnOfRValue(RValue RV, QualType Ty); 5275 5276 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 5277 5278 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 5279 DeferredReplacements; 5280 5281 /// Set the address of a local variable. 5282 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 5283 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 5284 LocalDeclMap.insert({VD, Addr}); 5285 } 5286 5287 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 5288 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 5289 /// 5290 /// \param AI - The first function argument of the expansion. 5291 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 5292 llvm::Function::arg_iterator &AI); 5293 5294 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 5295 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 5296 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 5297 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 5298 SmallVectorImpl<llvm::Value *> &IRCallArgs, 5299 unsigned &IRCallArgPos); 5300 5301 std::pair<llvm::Value *, llvm::Type *> 5302 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 5303 std::string &ConstraintStr); 5304 5305 std::pair<llvm::Value *, llvm::Type *> 5306 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 5307 QualType InputType, std::string &ConstraintStr, 5308 SourceLocation Loc); 5309 5310 /// Attempts to statically evaluate the object size of E. If that 5311 /// fails, emits code to figure the size of E out for us. This is 5312 /// pass_object_size aware. 5313 /// 5314 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 5315 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 5316 llvm::IntegerType *ResType, 5317 llvm::Value *EmittedE, 5318 bool IsDynamic); 5319 5320 /// Emits the size of E, as required by __builtin_object_size. This 5321 /// function is aware of pass_object_size parameters, and will act accordingly 5322 /// if E is a parameter with the pass_object_size attribute. 5323 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 5324 llvm::IntegerType *ResType, 5325 llvm::Value *EmittedE, 5326 bool IsDynamic); 5327 5328 llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, 5329 llvm::IntegerType *ResType); 5330 5331 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 5332 Address Loc); 5333 5334 public: 5335 enum class EvaluationOrder { 5336 ///! No language constraints on evaluation order. 5337 Default, 5338 ///! Language semantics require left-to-right evaluation. 5339 ForceLeftToRight, 5340 ///! Language semantics require right-to-left evaluation. 5341 ForceRightToLeft 5342 }; 5343 5344 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 5345 // an ObjCMethodDecl. 5346 struct PrototypeWrapper { 5347 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 5348 5349 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 5350 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 5351 }; 5352 5353 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 5354 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 5355 AbstractCallee AC = AbstractCallee(), 5356 unsigned ParamsToSkip = 0, 5357 EvaluationOrder Order = EvaluationOrder::Default); 5358 5359 /// EmitPointerWithAlignment - Given an expression with a pointer type, 5360 /// emit the value and compute our best estimate of the alignment of the 5361 /// pointee. 5362 /// 5363 /// \param BaseInfo - If non-null, this will be initialized with 5364 /// information about the source of the alignment and the may-alias 5365 /// attribute. Note that this function will conservatively fall back on 5366 /// the type when it doesn't recognize the expression and may-alias will 5367 /// be set to false. 5368 /// 5369 /// One reasonable way to use this information is when there's a language 5370 /// guarantee that the pointer must be aligned to some stricter value, and 5371 /// we're simply trying to ensure that sufficiently obvious uses of under- 5372 /// aligned objects don't get miscompiled; for example, a placement new 5373 /// into the address of a local variable. In such a case, it's quite 5374 /// reasonable to just ignore the returned alignment when it isn't from an 5375 /// explicit source. 5376 Address 5377 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 5378 TBAAAccessInfo *TBAAInfo = nullptr, 5379 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 5380 5381 /// If \p E references a parameter with pass_object_size info or a constant 5382 /// array size modifier, emit the object size divided by the size of \p EltTy. 5383 /// Otherwise return null. 5384 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 5385 5386 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 5387 5388 struct FMVResolverOption { 5389 llvm::Function *Function; 5390 llvm::SmallVector<StringRef, 8> Features; 5391 std::optional<StringRef> Architecture; 5392 5393 FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, 5394 std::optional<StringRef> Arch = std::nullopt) 5395 : Function(F), Features(Feats), Architecture(Arch) {} 5396 }; 5397 5398 // Emits the body of a multiversion function's resolver. Assumes that the 5399 // options are already sorted in the proper order, with the 'default' option 5400 // last (if it exists). 5401 void EmitMultiVersionResolver(llvm::Function *Resolver, 5402 ArrayRef<FMVResolverOption> Options); 5403 void EmitX86MultiVersionResolver(llvm::Function *Resolver, 5404 ArrayRef<FMVResolverOption> Options); 5405 void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 5406 ArrayRef<FMVResolverOption> Options); 5407 void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, 5408 ArrayRef<FMVResolverOption> Options); 5409 5410 private: 5411 QualType getVarArgType(const Expr *Arg); 5412 5413 void EmitDeclMetadata(); 5414 5415 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 5416 const AutoVarEmission &emission); 5417 5418 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 5419 5420 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 5421 llvm::Value *EmitX86CpuIs(const CallExpr *E); 5422 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 5423 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 5424 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 5425 llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); 5426 llvm::Value *EmitX86CpuInit(); 5427 llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); 5428 llvm::Value *EmitAArch64CpuInit(); 5429 llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); 5430 llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); 5431 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 5432 }; 5433 5434 inline DominatingLLVMValue::saved_type 5435 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 5436 if (!needsSaving(value)) return saved_type(value, false); 5437 5438 // Otherwise, we need an alloca. 5439 auto align = CharUnits::fromQuantity( 5440 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 5441 Address alloca = 5442 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 5443 CGF.Builder.CreateStore(value, alloca); 5444 5445 return saved_type(alloca.emitRawPointer(CGF), true); 5446 } 5447 5448 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 5449 saved_type value) { 5450 // If the value says it wasn't saved, trust that it's still dominating. 5451 if (!value.getInt()) return value.getPointer(); 5452 5453 // Otherwise, it should be an alloca instruction, as set up in save(). 5454 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 5455 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 5456 alloca->getAlign()); 5457 } 5458 5459 } // end namespace CodeGen 5460 5461 // Map the LangOption for floating point exception behavior into 5462 // the corresponding enum in the IR. 5463 llvm::fp::ExceptionBehavior 5464 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 5465 } // end namespace clang 5466 5467 #endif 5468