1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenACC.h" 30 #include "clang/AST/StmtOpenMP.h" 31 #include "clang/AST/Type.h" 32 #include "clang/Basic/ABI.h" 33 #include "clang/Basic/CapturedStmt.h" 34 #include "clang/Basic/CodeGenOptions.h" 35 #include "clang/Basic/OpenMPKinds.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/MapVector.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/SanitizerStats.h" 46 #include <optional> 47 48 namespace llvm { 49 class BasicBlock; 50 class LLVMContext; 51 class MDNode; 52 class SwitchInst; 53 class Twine; 54 class Value; 55 class CanonicalLoopInfo; 56 } 57 58 namespace clang { 59 class ASTContext; 60 class CXXDestructorDecl; 61 class CXXForRangeStmt; 62 class CXXTryStmt; 63 class Decl; 64 class LabelDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGBlockInfo; 95 class CGCXXABI; 96 class BlockByrefHelpers; 97 class BlockByrefInfo; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 126 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 127 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 128 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 129 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 130 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 131 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 132 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 133 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 134 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 135 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 136 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 137 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 138 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 139 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 140 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ 141 SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) 142 143 enum SanitizerHandler { 144 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 145 LIST_SANITIZER_CHECKS 146 #undef SANITIZER_CHECK 147 }; 148 149 /// Helper class with most of the code for saving a value for a 150 /// conditional expression cleanup. 151 struct DominatingLLVMValue { 152 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 153 154 /// Answer whether the given value needs extra work to be saved. 155 static bool needsSaving(llvm::Value *value) { 156 if (!value) 157 return false; 158 159 // If it's not an instruction, we don't need to save. 160 if (!isa<llvm::Instruction>(value)) return false; 161 162 // If it's an instruction in the entry block, we don't need to save. 163 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 164 return (block != &block->getParent()->getEntryBlock()); 165 } 166 167 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 168 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 169 }; 170 171 /// A partial specialization of DominatingValue for llvm::Values that 172 /// might be llvm::Instructions. 173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 174 typedef T *type; 175 static type restore(CodeGenFunction &CGF, saved_type value) { 176 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 177 } 178 }; 179 180 /// A specialization of DominatingValue for Address. 181 template <> struct DominatingValue<Address> { 182 typedef Address type; 183 184 struct saved_type { 185 DominatingLLVMValue::saved_type BasePtr; 186 llvm::Type *ElementType; 187 CharUnits Alignment; 188 DominatingLLVMValue::saved_type Offset; 189 llvm::PointerType *EffectiveType; 190 }; 191 192 static bool needsSaving(type value) { 193 if (DominatingLLVMValue::needsSaving(value.getBasePointer()) || 194 DominatingLLVMValue::needsSaving(value.getOffset())) 195 return true; 196 return false; 197 } 198 static saved_type save(CodeGenFunction &CGF, type value) { 199 return {DominatingLLVMValue::save(CGF, value.getBasePointer()), 200 value.getElementType(), value.getAlignment(), 201 DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()}; 202 } 203 static type restore(CodeGenFunction &CGF, saved_type value) { 204 return Address(DominatingLLVMValue::restore(CGF, value.BasePtr), 205 value.ElementType, value.Alignment, CGPointerAuthInfo(), 206 DominatingLLVMValue::restore(CGF, value.Offset)); 207 } 208 }; 209 210 /// A specialization of DominatingValue for RValue. 211 template <> struct DominatingValue<RValue> { 212 typedef RValue type; 213 class saved_type { 214 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 215 AggregateAddress, ComplexAddress }; 216 union { 217 struct { 218 DominatingLLVMValue::saved_type first, second; 219 } Vals; 220 DominatingValue<Address>::saved_type AggregateAddr; 221 }; 222 LLVM_PREFERRED_TYPE(Kind) 223 unsigned K : 3; 224 225 saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) 226 : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {} 227 228 saved_type(DominatingLLVMValue::saved_type Val1, 229 DominatingLLVMValue::saved_type Val2) 230 : Vals{Val1, Val2}, K(ComplexAddress) {} 231 232 saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) 233 : AggregateAddr(AggregateAddr), K(K) {} 234 235 public: 236 static bool needsSaving(RValue value); 237 static saved_type save(CodeGenFunction &CGF, RValue value); 238 RValue restore(CodeGenFunction &CGF); 239 240 // implementations in CGCleanup.cpp 241 }; 242 243 static bool needsSaving(type value) { 244 return saved_type::needsSaving(value); 245 } 246 static saved_type save(CodeGenFunction &CGF, type value) { 247 return saved_type::save(CGF, value); 248 } 249 static type restore(CodeGenFunction &CGF, saved_type value) { 250 return value.restore(CGF); 251 } 252 }; 253 254 /// CodeGenFunction - This class organizes the per-function state that is used 255 /// while generating LLVM code. 256 class CodeGenFunction : public CodeGenTypeCache { 257 CodeGenFunction(const CodeGenFunction &) = delete; 258 void operator=(const CodeGenFunction &) = delete; 259 260 friend class CGCXXABI; 261 public: 262 /// A jump destination is an abstract label, branching to which may 263 /// require a jump out through normal cleanups. 264 struct JumpDest { 265 JumpDest() : Block(nullptr), Index(0) {} 266 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 267 unsigned Index) 268 : Block(Block), ScopeDepth(Depth), Index(Index) {} 269 270 bool isValid() const { return Block != nullptr; } 271 llvm::BasicBlock *getBlock() const { return Block; } 272 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 273 unsigned getDestIndex() const { return Index; } 274 275 // This should be used cautiously. 276 void setScopeDepth(EHScopeStack::stable_iterator depth) { 277 ScopeDepth = depth; 278 } 279 280 private: 281 llvm::BasicBlock *Block; 282 EHScopeStack::stable_iterator ScopeDepth; 283 unsigned Index; 284 }; 285 286 CodeGenModule &CGM; // Per-module state. 287 const TargetInfo &Target; 288 289 // For EH/SEH outlined funclets, this field points to parent's CGF 290 CodeGenFunction *ParentCGF = nullptr; 291 292 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 293 LoopInfoStack LoopStack; 294 CGBuilderTy Builder; 295 296 // Stores variables for which we can't generate correct lifetime markers 297 // because of jumps. 298 VarBypassDetector Bypasses; 299 300 /// List of recently emitted OMPCanonicalLoops. 301 /// 302 /// Since OMPCanonicalLoops are nested inside other statements (in particular 303 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 304 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 305 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 306 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 307 /// this stack when done. Entering a new loop requires clearing this list; it 308 /// either means we start parsing a new loop nest (in which case the previous 309 /// loop nest goes out of scope) or a second loop in the same level in which 310 /// case it would be ambiguous into which of the two (or more) loops the loop 311 /// nest would extend. 312 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 313 314 /// Stack to track the Logical Operator recursion nest for MC/DC. 315 SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; 316 317 /// Stack to track the controlled convergence tokens. 318 SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack; 319 320 /// Number of nested loop to be consumed by the last surrounding 321 /// loop-associated directive. 322 int ExpectedOMPLoopDepth = 0; 323 324 // CodeGen lambda for loops and support for ordered clause 325 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 326 JumpDest)> 327 CodeGenLoopTy; 328 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 329 const unsigned, const bool)> 330 CodeGenOrderedTy; 331 332 // Codegen lambda for loop bounds in worksharing loop constructs 333 typedef llvm::function_ref<std::pair<LValue, LValue>( 334 CodeGenFunction &, const OMPExecutableDirective &S)> 335 CodeGenLoopBoundsTy; 336 337 // Codegen lambda for loop bounds in dispatch-based loop implementation 338 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 339 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 340 Address UB)> 341 CodeGenDispatchBoundsTy; 342 343 /// CGBuilder insert helper. This function is called after an 344 /// instruction is created using Builder. 345 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 346 llvm::BasicBlock::iterator InsertPt) const; 347 348 /// CurFuncDecl - Holds the Decl for the current outermost 349 /// non-closure context. 350 const Decl *CurFuncDecl = nullptr; 351 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 352 const Decl *CurCodeDecl = nullptr; 353 const CGFunctionInfo *CurFnInfo = nullptr; 354 QualType FnRetTy; 355 llvm::Function *CurFn = nullptr; 356 357 /// Save Parameter Decl for coroutine. 358 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 359 360 // Holds coroutine data if the current function is a coroutine. We use a 361 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 362 // in this header. 363 struct CGCoroInfo { 364 std::unique_ptr<CGCoroData> Data; 365 bool InSuspendBlock = false; 366 CGCoroInfo(); 367 ~CGCoroInfo(); 368 }; 369 CGCoroInfo CurCoro; 370 371 bool isCoroutine() const { 372 return CurCoro.Data != nullptr; 373 } 374 375 bool inSuspendBlock() const { 376 return isCoroutine() && CurCoro.InSuspendBlock; 377 } 378 379 // Holds FramePtr for await_suspend wrapper generation, 380 // so that __builtin_coro_frame call can be lowered 381 // directly to value of its second argument 382 struct AwaitSuspendWrapperInfo { 383 llvm::Value *FramePtr = nullptr; 384 }; 385 AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; 386 387 // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. 388 // It encapsulates SuspendExpr in a function, to separate it's body 389 // from the main coroutine to avoid miscompilations. Intrinisic 390 // is lowered to this function call in CoroSplit pass 391 // Function signature is: 392 // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) 393 // where type is one of (void, i1, ptr) 394 llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, 395 Twine const &SuspendPointName, 396 CoroutineSuspendExpr const &S); 397 398 /// CurGD - The GlobalDecl for the current function being compiled. 399 GlobalDecl CurGD; 400 401 /// PrologueCleanupDepth - The cleanup depth enclosing all the 402 /// cleanups associated with the parameters. 403 EHScopeStack::stable_iterator PrologueCleanupDepth; 404 405 /// ReturnBlock - Unified return block. 406 JumpDest ReturnBlock; 407 408 /// ReturnValue - The temporary alloca to hold the return 409 /// value. This is invalid iff the function has no return value. 410 Address ReturnValue = Address::invalid(); 411 412 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 413 /// This is invalid if sret is not in use. 414 Address ReturnValuePointer = Address::invalid(); 415 416 /// If a return statement is being visited, this holds the return statment's 417 /// result expression. 418 const Expr *RetExpr = nullptr; 419 420 /// Return true if a label was seen in the current scope. 421 bool hasLabelBeenSeenInCurrentScope() const { 422 if (CurLexicalScope) 423 return CurLexicalScope->hasLabels(); 424 return !LabelMap.empty(); 425 } 426 427 /// AllocaInsertPoint - This is an instruction in the entry block before which 428 /// we prefer to insert allocas. 429 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 430 431 private: 432 /// PostAllocaInsertPt - This is a place in the prologue where code can be 433 /// inserted that will be dominated by all the static allocas. This helps 434 /// achieve two things: 435 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 436 /// 2. All other prologue code (which are dominated by static allocas) do 437 /// appear in the source order immediately after all static allocas. 438 /// 439 /// PostAllocaInsertPt will be lazily created when it is *really* required. 440 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 441 442 public: 443 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 444 /// immediately after AllocaInsertPt. 445 llvm::Instruction *getPostAllocaInsertPoint() { 446 if (!PostAllocaInsertPt) { 447 assert(AllocaInsertPt && 448 "Expected static alloca insertion point at function prologue"); 449 assert(AllocaInsertPt->getParent()->isEntryBlock() && 450 "EBB should be entry block of the current code gen function"); 451 PostAllocaInsertPt = AllocaInsertPt->clone(); 452 PostAllocaInsertPt->setName("postallocapt"); 453 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 454 } 455 456 return PostAllocaInsertPt; 457 } 458 459 /// API for captured statement code generation. 460 class CGCapturedStmtInfo { 461 public: 462 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 464 explicit CGCapturedStmtInfo(const CapturedStmt &S, 465 CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 467 468 RecordDecl::field_iterator Field = 469 S.getCapturedRecordDecl()->field_begin(); 470 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 471 E = S.capture_end(); 472 I != E; ++I, ++Field) { 473 if (I->capturesThis()) 474 CXXThisFieldDecl = *Field; 475 else if (I->capturesVariable()) 476 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 477 else if (I->capturesVariableByCopy()) 478 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 479 } 480 } 481 482 virtual ~CGCapturedStmtInfo(); 483 484 CapturedRegionKind getKind() const { return Kind; } 485 486 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 487 // Retrieve the value of the context parameter. 488 virtual llvm::Value *getContextValue() const { return ThisValue; } 489 490 /// Lookup the captured field decl for a variable. 491 virtual const FieldDecl *lookup(const VarDecl *VD) const { 492 return CaptureFields.lookup(VD->getCanonicalDecl()); 493 } 494 495 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 496 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 497 498 static bool classof(const CGCapturedStmtInfo *) { 499 return true; 500 } 501 502 /// Emit the captured statement body. 503 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 504 CGF.incrementProfileCounter(S); 505 CGF.EmitStmt(S); 506 } 507 508 /// Get the name of the capture helper. 509 virtual StringRef getHelperName() const { return "__captured_stmt"; } 510 511 /// Get the CaptureFields 512 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 513 return CaptureFields; 514 } 515 516 private: 517 /// The kind of captured statement being generated. 518 CapturedRegionKind Kind; 519 520 /// Keep the map between VarDecl and FieldDecl. 521 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 522 523 /// The base address of the captured record, passed in as the first 524 /// argument of the parallel region function. 525 llvm::Value *ThisValue; 526 527 /// Captured 'this' type. 528 FieldDecl *CXXThisFieldDecl; 529 }; 530 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 531 532 /// RAII for correct setting/restoring of CapturedStmtInfo. 533 class CGCapturedStmtRAII { 534 private: 535 CodeGenFunction &CGF; 536 CGCapturedStmtInfo *PrevCapturedStmtInfo; 537 public: 538 CGCapturedStmtRAII(CodeGenFunction &CGF, 539 CGCapturedStmtInfo *NewCapturedStmtInfo) 540 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 541 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 542 } 543 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 544 }; 545 546 /// An abstract representation of regular/ObjC call/message targets. 547 class AbstractCallee { 548 /// The function declaration of the callee. 549 const Decl *CalleeDecl; 550 551 public: 552 AbstractCallee() : CalleeDecl(nullptr) {} 553 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 554 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 555 bool hasFunctionDecl() const { 556 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 557 } 558 const Decl *getDecl() const { return CalleeDecl; } 559 unsigned getNumParams() const { 560 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 561 return FD->getNumParams(); 562 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 563 } 564 const ParmVarDecl *getParamDecl(unsigned I) const { 565 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 566 return FD->getParamDecl(I); 567 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 568 } 569 }; 570 571 /// Sanitizers enabled for this function. 572 SanitizerSet SanOpts; 573 574 /// True if CodeGen currently emits code implementing sanitizer checks. 575 bool IsSanitizerScope = false; 576 577 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 578 class SanitizerScope { 579 CodeGenFunction *CGF; 580 public: 581 SanitizerScope(CodeGenFunction *CGF); 582 ~SanitizerScope(); 583 }; 584 585 /// In C++, whether we are code generating a thunk. This controls whether we 586 /// should emit cleanups. 587 bool CurFuncIsThunk = false; 588 589 /// In ARC, whether we should autorelease the return value. 590 bool AutoreleaseResult = false; 591 592 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 593 /// potentially set the return value. 594 bool SawAsmBlock = false; 595 596 GlobalDecl CurSEHParent; 597 598 /// True if the current function is an outlined SEH helper. This can be a 599 /// finally block or filter expression. 600 bool IsOutlinedSEHHelper = false; 601 602 /// True if CodeGen currently emits code inside presereved access index 603 /// region. 604 bool IsInPreservedAIRegion = false; 605 606 /// True if the current statement has nomerge attribute. 607 bool InNoMergeAttributedStmt = false; 608 609 /// True if the current statement has noinline attribute. 610 bool InNoInlineAttributedStmt = false; 611 612 /// True if the current statement has always_inline attribute. 613 bool InAlwaysInlineAttributedStmt = false; 614 615 /// True if the current statement has noconvergent attribute. 616 bool InNoConvergentAttributedStmt = false; 617 618 /// HLSL Branch attribute. 619 HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr = 620 HLSLControlFlowHintAttr::SpellingNotCalculated; 621 622 // The CallExpr within the current statement that the musttail attribute 623 // applies to. nullptr if there is no 'musttail' on the current statement. 624 const CallExpr *MustTailCall = nullptr; 625 626 /// Returns true if a function must make progress, which means the 627 /// mustprogress attribute can be added. 628 bool checkIfFunctionMustProgress() { 629 if (CGM.getCodeGenOpts().getFiniteLoops() == 630 CodeGenOptions::FiniteLoopsKind::Never) 631 return false; 632 633 // C++11 and later guarantees that a thread eventually will do one of the 634 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 635 // - terminate, 636 // - make a call to a library I/O function, 637 // - perform an access through a volatile glvalue, or 638 // - perform a synchronization operation or an atomic operation. 639 // 640 // Hence each function is 'mustprogress' in C++11 or later. 641 return getLangOpts().CPlusPlus11; 642 } 643 644 /// Returns true if a loop must make progress, which means the mustprogress 645 /// attribute can be added. \p HasConstantCond indicates whether the branch 646 /// condition is a known constant. 647 bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); 648 649 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 650 llvm::Value *BlockPointer = nullptr; 651 652 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 653 FieldDecl *LambdaThisCaptureField = nullptr; 654 655 /// A mapping from NRVO variables to the flags used to indicate 656 /// when the NRVO has been applied to this variable. 657 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 658 659 EHScopeStack EHStack; 660 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 661 662 // A stack of cleanups which were added to EHStack but have to be deactivated 663 // later before being popped or emitted. These are usually deactivated on 664 // exiting a `CleanupDeactivationScope` scope. For instance, after a 665 // full-expr. 666 // 667 // These are specially useful for correctly emitting cleanups while 668 // encountering branches out of expression (through stmt-expr or coroutine 669 // suspensions). 670 struct DeferredDeactivateCleanup { 671 EHScopeStack::stable_iterator Cleanup; 672 llvm::Instruction *DominatingIP; 673 }; 674 llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; 675 676 // Enters a new scope for capturing cleanups which are deferred to be 677 // deactivated, all of which will be deactivated once the scope is exited. 678 struct CleanupDeactivationScope { 679 CodeGenFunction &CGF; 680 size_t OldDeactivateCleanupStackSize; 681 bool Deactivated; 682 CleanupDeactivationScope(CodeGenFunction &CGF) 683 : CGF(CGF), OldDeactivateCleanupStackSize( 684 CGF.DeferredDeactivationCleanupStack.size()), 685 Deactivated(false) {} 686 687 void ForceDeactivate() { 688 assert(!Deactivated && "Deactivating already deactivated scope"); 689 auto &Stack = CGF.DeferredDeactivationCleanupStack; 690 for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { 691 CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup, 692 Stack[I - 1].DominatingIP); 693 Stack[I - 1].DominatingIP->eraseFromParent(); 694 } 695 Stack.resize(OldDeactivateCleanupStackSize); 696 Deactivated = true; 697 } 698 699 ~CleanupDeactivationScope() { 700 if (Deactivated) 701 return; 702 ForceDeactivate(); 703 } 704 }; 705 706 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 707 708 llvm::Instruction *CurrentFuncletPad = nullptr; 709 710 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 711 bool isRedundantBeforeReturn() override { return true; } 712 713 llvm::Value *Addr; 714 llvm::Value *Size; 715 716 public: 717 CallLifetimeEnd(RawAddress addr, llvm::Value *size) 718 : Addr(addr.getPointer()), Size(size) {} 719 720 void Emit(CodeGenFunction &CGF, Flags flags) override { 721 CGF.EmitLifetimeEnd(Size, Addr); 722 } 723 }; 724 725 /// Header for data within LifetimeExtendedCleanupStack. 726 struct LifetimeExtendedCleanupHeader { 727 /// The size of the following cleanup object. 728 unsigned Size; 729 /// The kind of cleanup to push. 730 LLVM_PREFERRED_TYPE(CleanupKind) 731 unsigned Kind : 31; 732 /// Whether this is a conditional cleanup. 733 LLVM_PREFERRED_TYPE(bool) 734 unsigned IsConditional : 1; 735 736 size_t getSize() const { return Size; } 737 CleanupKind getKind() const { return (CleanupKind)Kind; } 738 bool isConditional() const { return IsConditional; } 739 }; 740 741 /// i32s containing the indexes of the cleanup destinations. 742 RawAddress NormalCleanupDest = RawAddress::invalid(); 743 744 unsigned NextCleanupDestIndex = 1; 745 746 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 747 llvm::BasicBlock *EHResumeBlock = nullptr; 748 749 /// The exception slot. All landing pads write the current exception pointer 750 /// into this alloca. 751 llvm::Value *ExceptionSlot = nullptr; 752 753 /// The selector slot. Under the MandatoryCleanup model, all landing pads 754 /// write the current selector value into this alloca. 755 llvm::AllocaInst *EHSelectorSlot = nullptr; 756 757 /// A stack of exception code slots. Entering an __except block pushes a slot 758 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 759 /// a value from the top of the stack. 760 SmallVector<Address, 1> SEHCodeSlotStack; 761 762 /// Value returned by __exception_info intrinsic. 763 llvm::Value *SEHInfo = nullptr; 764 765 /// Emits a landing pad for the current EH stack. 766 llvm::BasicBlock *EmitLandingPad(); 767 768 llvm::BasicBlock *getInvokeDestImpl(); 769 770 /// Parent loop-based directive for scan directive. 771 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 772 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 773 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 774 llvm::BasicBlock *OMPScanExitBlock = nullptr; 775 llvm::BasicBlock *OMPScanDispatch = nullptr; 776 bool OMPFirstScanLoop = false; 777 778 /// Manages parent directive for scan directives. 779 class ParentLoopDirectiveForScanRegion { 780 CodeGenFunction &CGF; 781 const OMPExecutableDirective *ParentLoopDirectiveForScan; 782 783 public: 784 ParentLoopDirectiveForScanRegion( 785 CodeGenFunction &CGF, 786 const OMPExecutableDirective &ParentLoopDirectiveForScan) 787 : CGF(CGF), 788 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 789 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 790 } 791 ~ParentLoopDirectiveForScanRegion() { 792 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 793 } 794 }; 795 796 template <class T> 797 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 798 return DominatingValue<T>::save(*this, value); 799 } 800 801 class CGFPOptionsRAII { 802 public: 803 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 804 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 805 ~CGFPOptionsRAII(); 806 807 private: 808 void ConstructorHelper(FPOptions FPFeatures); 809 CodeGenFunction &CGF; 810 FPOptions OldFPFeatures; 811 llvm::fp::ExceptionBehavior OldExcept; 812 llvm::RoundingMode OldRounding; 813 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 814 }; 815 FPOptions CurFPFeatures; 816 817 public: 818 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 819 /// rethrows. 820 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 821 822 /// A class controlling the emission of a finally block. 823 class FinallyInfo { 824 /// Where the catchall's edge through the cleanup should go. 825 JumpDest RethrowDest; 826 827 /// A function to call to enter the catch. 828 llvm::FunctionCallee BeginCatchFn; 829 830 /// An i1 variable indicating whether or not the @finally is 831 /// running for an exception. 832 llvm::AllocaInst *ForEHVar = nullptr; 833 834 /// An i8* variable into which the exception pointer to rethrow 835 /// has been saved. 836 llvm::AllocaInst *SavedExnVar = nullptr; 837 838 public: 839 void enter(CodeGenFunction &CGF, const Stmt *Finally, 840 llvm::FunctionCallee beginCatchFn, 841 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 842 void exit(CodeGenFunction &CGF); 843 }; 844 845 /// Returns true inside SEH __try blocks. 846 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 847 848 /// Returns true while emitting a cleanuppad. 849 bool isCleanupPadScope() const { 850 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 851 } 852 853 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 854 /// current full-expression. Safe against the possibility that 855 /// we're currently inside a conditionally-evaluated expression. 856 template <class T, class... As> 857 void pushFullExprCleanup(CleanupKind kind, As... A) { 858 // If we're not in a conditional branch, or if none of the 859 // arguments requires saving, then use the unconditional cleanup. 860 if (!isInConditionalBranch()) 861 return EHStack.pushCleanup<T>(kind, A...); 862 863 // Stash values in a tuple so we can guarantee the order of saves. 864 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 865 SavedTuple Saved{saveValueInCond(A)...}; 866 867 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 868 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 869 initFullExprCleanup(); 870 } 871 872 /// Queue a cleanup to be pushed after finishing the current full-expression, 873 /// potentially with an active flag. 874 template <class T, class... As> 875 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 876 if (!isInConditionalBranch()) 877 return pushCleanupAfterFullExprWithActiveFlag<T>( 878 Kind, RawAddress::invalid(), A...); 879 880 RawAddress ActiveFlag = createCleanupActiveFlag(); 881 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 882 "cleanup active flag should never need saving"); 883 884 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 885 SavedTuple Saved{saveValueInCond(A)...}; 886 887 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 888 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 889 } 890 891 template <class T, class... As> 892 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 893 RawAddress ActiveFlag, As... A) { 894 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 895 ActiveFlag.isValid()}; 896 897 size_t OldSize = LifetimeExtendedCleanupStack.size(); 898 LifetimeExtendedCleanupStack.resize( 899 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 900 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 901 902 static_assert(sizeof(Header) % alignof(T) == 0, 903 "Cleanup will be allocated on misaligned address"); 904 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 905 new (Buffer) LifetimeExtendedCleanupHeader(Header); 906 new (Buffer + sizeof(Header)) T(A...); 907 if (Header.IsConditional) 908 new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); 909 } 910 911 // Push a cleanup onto EHStack and deactivate it later. It is usually 912 // deactivated when exiting a `CleanupDeactivationScope` (for example: after a 913 // full expression). 914 template <class T, class... As> 915 void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { 916 // Placeholder dominating IP for this cleanup. 917 llvm::Instruction *DominatingIP = 918 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 919 EHStack.pushCleanup<T>(Kind, A...); 920 DeferredDeactivationCleanupStack.push_back( 921 {EHStack.stable_begin(), DominatingIP}); 922 } 923 924 /// Set up the last cleanup that was pushed as a conditional 925 /// full-expression cleanup. 926 void initFullExprCleanup() { 927 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 928 } 929 930 void initFullExprCleanupWithFlag(RawAddress ActiveFlag); 931 RawAddress createCleanupActiveFlag(); 932 933 /// PushDestructorCleanup - Push a cleanup to call the 934 /// complete-object destructor of an object of the given type at the 935 /// given address. Does nothing if T is not a C++ class type with a 936 /// non-trivial destructor. 937 void PushDestructorCleanup(QualType T, Address Addr); 938 939 /// PushDestructorCleanup - Push a cleanup to call the 940 /// complete-object variant of the given destructor on the object at 941 /// the given address. 942 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 943 Address Addr); 944 945 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 946 /// process all branch fixups. 947 void PopCleanupBlock(bool FallThroughIsBranchThrough = false, 948 bool ForDeactivation = false); 949 950 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 951 /// The block cannot be reactivated. Pops it if it's the top of the 952 /// stack. 953 /// 954 /// \param DominatingIP - An instruction which is known to 955 /// dominate the current IP (if set) and which lies along 956 /// all paths of execution between the current IP and the 957 /// the point at which the cleanup comes into scope. 958 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 959 llvm::Instruction *DominatingIP); 960 961 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 962 /// Cannot be used to resurrect a deactivated cleanup. 963 /// 964 /// \param DominatingIP - An instruction which is known to 965 /// dominate the current IP (if set) and which lies along 966 /// all paths of execution between the current IP and the 967 /// the point at which the cleanup comes into scope. 968 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 969 llvm::Instruction *DominatingIP); 970 971 /// Enters a new scope for capturing cleanups, all of which 972 /// will be executed once the scope is exited. 973 class RunCleanupsScope { 974 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 975 size_t LifetimeExtendedCleanupStackSize; 976 CleanupDeactivationScope DeactivateCleanups; 977 bool OldDidCallStackSave; 978 protected: 979 bool PerformCleanup; 980 private: 981 982 RunCleanupsScope(const RunCleanupsScope &) = delete; 983 void operator=(const RunCleanupsScope &) = delete; 984 985 protected: 986 CodeGenFunction& CGF; 987 988 public: 989 /// Enter a new cleanup scope. 990 explicit RunCleanupsScope(CodeGenFunction &CGF) 991 : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { 992 CleanupStackDepth = CGF.EHStack.stable_begin(); 993 LifetimeExtendedCleanupStackSize = 994 CGF.LifetimeExtendedCleanupStack.size(); 995 OldDidCallStackSave = CGF.DidCallStackSave; 996 CGF.DidCallStackSave = false; 997 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 998 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 999 } 1000 1001 /// Exit this cleanup scope, emitting any accumulated cleanups. 1002 ~RunCleanupsScope() { 1003 if (PerformCleanup) 1004 ForceCleanup(); 1005 } 1006 1007 /// Determine whether this scope requires any cleanups. 1008 bool requiresCleanups() const { 1009 return CGF.EHStack.stable_begin() != CleanupStackDepth; 1010 } 1011 1012 /// Force the emission of cleanups now, instead of waiting 1013 /// until this object is destroyed. 1014 /// \param ValuesToReload - A list of values that need to be available at 1015 /// the insertion point after cleanup emission. If cleanup emission created 1016 /// a shared cleanup block, these value pointers will be rewritten. 1017 /// Otherwise, they not will be modified. 1018 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 1019 assert(PerformCleanup && "Already forced cleanup"); 1020 CGF.DidCallStackSave = OldDidCallStackSave; 1021 DeactivateCleanups.ForceDeactivate(); 1022 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 1023 ValuesToReload); 1024 PerformCleanup = false; 1025 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 1026 } 1027 }; 1028 1029 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 1030 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 1031 EHScopeStack::stable_end(); 1032 1033 class LexicalScope : public RunCleanupsScope { 1034 SourceRange Range; 1035 SmallVector<const LabelDecl*, 4> Labels; 1036 LexicalScope *ParentScope; 1037 1038 LexicalScope(const LexicalScope &) = delete; 1039 void operator=(const LexicalScope &) = delete; 1040 1041 public: 1042 /// Enter a new cleanup scope. 1043 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 1044 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 1045 CGF.CurLexicalScope = this; 1046 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1047 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 1048 } 1049 1050 void addLabel(const LabelDecl *label) { 1051 assert(PerformCleanup && "adding label to dead scope?"); 1052 Labels.push_back(label); 1053 } 1054 1055 /// Exit this cleanup scope, emitting any accumulated 1056 /// cleanups. 1057 ~LexicalScope() { 1058 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1059 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 1060 1061 // If we should perform a cleanup, force them now. Note that 1062 // this ends the cleanup scope before rescoping any labels. 1063 if (PerformCleanup) { 1064 ApplyDebugLocation DL(CGF, Range.getEnd()); 1065 ForceCleanup(); 1066 } 1067 } 1068 1069 /// Force the emission of cleanups now, instead of waiting 1070 /// until this object is destroyed. 1071 void ForceCleanup() { 1072 CGF.CurLexicalScope = ParentScope; 1073 RunCleanupsScope::ForceCleanup(); 1074 1075 if (!Labels.empty()) 1076 rescopeLabels(); 1077 } 1078 1079 bool hasLabels() const { 1080 return !Labels.empty(); 1081 } 1082 1083 void rescopeLabels(); 1084 }; 1085 1086 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 1087 1088 /// The class used to assign some variables some temporarily addresses. 1089 class OMPMapVars { 1090 DeclMapTy SavedLocals; 1091 DeclMapTy SavedTempAddresses; 1092 OMPMapVars(const OMPMapVars &) = delete; 1093 void operator=(const OMPMapVars &) = delete; 1094 1095 public: 1096 explicit OMPMapVars() = default; 1097 ~OMPMapVars() { 1098 assert(SavedLocals.empty() && "Did not restored original addresses."); 1099 }; 1100 1101 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1102 /// function \p CGF. 1103 /// \return true if at least one variable was set already, false otherwise. 1104 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1105 Address TempAddr) { 1106 LocalVD = LocalVD->getCanonicalDecl(); 1107 // Only save it once. 1108 if (SavedLocals.count(LocalVD)) return false; 1109 1110 // Copy the existing local entry to SavedLocals. 1111 auto it = CGF.LocalDeclMap.find(LocalVD); 1112 if (it != CGF.LocalDeclMap.end()) 1113 SavedLocals.try_emplace(LocalVD, it->second); 1114 else 1115 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1116 1117 // Generate the private entry. 1118 QualType VarTy = LocalVD->getType(); 1119 if (VarTy->isReferenceType()) { 1120 Address Temp = CGF.CreateMemTemp(VarTy); 1121 CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp); 1122 TempAddr = Temp; 1123 } 1124 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1125 1126 return true; 1127 } 1128 1129 /// Applies new addresses to the list of the variables. 1130 /// \return true if at least one variable is using new address, false 1131 /// otherwise. 1132 bool apply(CodeGenFunction &CGF) { 1133 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1134 SavedTempAddresses.clear(); 1135 return !SavedLocals.empty(); 1136 } 1137 1138 /// Restores original addresses of the variables. 1139 void restore(CodeGenFunction &CGF) { 1140 if (!SavedLocals.empty()) { 1141 copyInto(SavedLocals, CGF.LocalDeclMap); 1142 SavedLocals.clear(); 1143 } 1144 } 1145 1146 private: 1147 /// Copy all the entries in the source map over the corresponding 1148 /// entries in the destination, which must exist. 1149 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1150 for (auto &[Decl, Addr] : Src) { 1151 if (!Addr.isValid()) 1152 Dest.erase(Decl); 1153 else 1154 Dest.insert_or_assign(Decl, Addr); 1155 } 1156 } 1157 }; 1158 1159 /// The scope used to remap some variables as private in the OpenMP loop body 1160 /// (or other captured region emitted without outlining), and to restore old 1161 /// vars back on exit. 1162 class OMPPrivateScope : public RunCleanupsScope { 1163 OMPMapVars MappedVars; 1164 OMPPrivateScope(const OMPPrivateScope &) = delete; 1165 void operator=(const OMPPrivateScope &) = delete; 1166 1167 public: 1168 /// Enter a new OpenMP private scope. 1169 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1170 1171 /// Registers \p LocalVD variable as a private with \p Addr as the address 1172 /// of the corresponding private variable. \p 1173 /// PrivateGen is the address of the generated private variable. 1174 /// \return true if the variable is registered as private, false if it has 1175 /// been privatized already. 1176 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1177 assert(PerformCleanup && "adding private to dead scope"); 1178 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1179 } 1180 1181 /// Privatizes local variables previously registered as private. 1182 /// Registration is separate from the actual privatization to allow 1183 /// initializers use values of the original variables, not the private one. 1184 /// This is important, for example, if the private variable is a class 1185 /// variable initialized by a constructor that references other private 1186 /// variables. But at initialization original variables must be used, not 1187 /// private copies. 1188 /// \return true if at least one variable was privatized, false otherwise. 1189 bool Privatize() { return MappedVars.apply(CGF); } 1190 1191 void ForceCleanup() { 1192 RunCleanupsScope::ForceCleanup(); 1193 restoreMap(); 1194 } 1195 1196 /// Exit scope - all the mapped variables are restored. 1197 ~OMPPrivateScope() { 1198 if (PerformCleanup) 1199 ForceCleanup(); 1200 } 1201 1202 /// Checks if the global variable is captured in current function. 1203 bool isGlobalVarCaptured(const VarDecl *VD) const { 1204 VD = VD->getCanonicalDecl(); 1205 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1206 } 1207 1208 /// Restore all mapped variables w/o clean up. This is usefully when we want 1209 /// to reference the original variables but don't want the clean up because 1210 /// that could emit lifetime end too early, causing backend issue #56913. 1211 void restoreMap() { MappedVars.restore(CGF); } 1212 }; 1213 1214 /// Save/restore original map of previously emitted local vars in case when we 1215 /// need to duplicate emission of the same code several times in the same 1216 /// function for OpenMP code. 1217 class OMPLocalDeclMapRAII { 1218 CodeGenFunction &CGF; 1219 DeclMapTy SavedMap; 1220 1221 public: 1222 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1223 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1224 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1225 }; 1226 1227 /// Takes the old cleanup stack size and emits the cleanup blocks 1228 /// that have been added. 1229 void 1230 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1231 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1232 1233 /// Takes the old cleanup stack size and emits the cleanup blocks 1234 /// that have been added, then adds all lifetime-extended cleanups from 1235 /// the given position to the stack. 1236 void 1237 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1238 size_t OldLifetimeExtendedStackSize, 1239 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1240 1241 void ResolveBranchFixups(llvm::BasicBlock *Target); 1242 1243 /// The given basic block lies in the current EH scope, but may be a 1244 /// target of a potentially scope-crossing jump; get a stable handle 1245 /// to which we can perform this jump later. 1246 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1247 return JumpDest(Target, 1248 EHStack.getInnermostNormalCleanup(), 1249 NextCleanupDestIndex++); 1250 } 1251 1252 /// The given basic block lies in the current EH scope, but may be a 1253 /// target of a potentially scope-crossing jump; get a stable handle 1254 /// to which we can perform this jump later. 1255 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1256 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1257 } 1258 1259 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1260 /// block through the normal cleanup handling code (if any) and then 1261 /// on to \arg Dest. 1262 void EmitBranchThroughCleanup(JumpDest Dest); 1263 1264 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1265 /// specified destination obviously has no cleanups to run. 'false' is always 1266 /// a conservatively correct answer for this method. 1267 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1268 1269 /// popCatchScope - Pops the catch scope at the top of the EHScope 1270 /// stack, emitting any required code (other than the catch handlers 1271 /// themselves). 1272 void popCatchScope(); 1273 1274 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1275 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1276 llvm::BasicBlock * 1277 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1278 1279 /// An object to manage conditionally-evaluated expressions. 1280 class ConditionalEvaluation { 1281 llvm::BasicBlock *StartBB; 1282 1283 public: 1284 ConditionalEvaluation(CodeGenFunction &CGF) 1285 : StartBB(CGF.Builder.GetInsertBlock()) {} 1286 1287 void begin(CodeGenFunction &CGF) { 1288 assert(CGF.OutermostConditional != this); 1289 if (!CGF.OutermostConditional) 1290 CGF.OutermostConditional = this; 1291 } 1292 1293 void end(CodeGenFunction &CGF) { 1294 assert(CGF.OutermostConditional != nullptr); 1295 if (CGF.OutermostConditional == this) 1296 CGF.OutermostConditional = nullptr; 1297 } 1298 1299 /// Returns a block which will be executed prior to each 1300 /// evaluation of the conditional code. 1301 llvm::BasicBlock *getStartingBlock() const { 1302 return StartBB; 1303 } 1304 }; 1305 1306 /// isInConditionalBranch - Return true if we're currently emitting 1307 /// one branch or the other of a conditional expression. 1308 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1309 1310 void setBeforeOutermostConditional(llvm::Value *value, Address addr, 1311 CodeGenFunction &CGF) { 1312 assert(isInConditionalBranch()); 1313 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1314 auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), 1315 block->back().getIterator()); 1316 store->setAlignment(addr.getAlignment().getAsAlign()); 1317 } 1318 1319 /// An RAII object to record that we're evaluating a statement 1320 /// expression. 1321 class StmtExprEvaluation { 1322 CodeGenFunction &CGF; 1323 1324 /// We have to save the outermost conditional: cleanups in a 1325 /// statement expression aren't conditional just because the 1326 /// StmtExpr is. 1327 ConditionalEvaluation *SavedOutermostConditional; 1328 1329 public: 1330 StmtExprEvaluation(CodeGenFunction &CGF) 1331 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1332 CGF.OutermostConditional = nullptr; 1333 } 1334 1335 ~StmtExprEvaluation() { 1336 CGF.OutermostConditional = SavedOutermostConditional; 1337 CGF.EnsureInsertPoint(); 1338 } 1339 }; 1340 1341 /// An object which temporarily prevents a value from being 1342 /// destroyed by aggressive peephole optimizations that assume that 1343 /// all uses of a value have been realized in the IR. 1344 class PeepholeProtection { 1345 llvm::Instruction *Inst = nullptr; 1346 friend class CodeGenFunction; 1347 1348 public: 1349 PeepholeProtection() = default; 1350 }; 1351 1352 /// A non-RAII class containing all the information about a bound 1353 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1354 /// this which makes individual mappings very simple; using this 1355 /// class directly is useful when you have a variable number of 1356 /// opaque values or don't want the RAII functionality for some 1357 /// reason. 1358 class OpaqueValueMappingData { 1359 const OpaqueValueExpr *OpaqueValue; 1360 bool BoundLValue; 1361 CodeGenFunction::PeepholeProtection Protection; 1362 1363 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1364 bool boundLValue) 1365 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1366 public: 1367 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1368 1369 static bool shouldBindAsLValue(const Expr *expr) { 1370 // gl-values should be bound as l-values for obvious reasons. 1371 // Records should be bound as l-values because IR generation 1372 // always keeps them in memory. Expressions of function type 1373 // act exactly like l-values but are formally required to be 1374 // r-values in C. 1375 return expr->isGLValue() || 1376 expr->getType()->isFunctionType() || 1377 hasAggregateEvaluationKind(expr->getType()); 1378 } 1379 1380 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1381 const OpaqueValueExpr *ov, 1382 const Expr *e) { 1383 if (shouldBindAsLValue(ov)) 1384 return bind(CGF, ov, CGF.EmitLValue(e)); 1385 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1386 } 1387 1388 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1389 const OpaqueValueExpr *ov, 1390 const LValue &lv) { 1391 assert(shouldBindAsLValue(ov)); 1392 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1393 return OpaqueValueMappingData(ov, true); 1394 } 1395 1396 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1397 const OpaqueValueExpr *ov, 1398 const RValue &rv) { 1399 assert(!shouldBindAsLValue(ov)); 1400 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1401 1402 OpaqueValueMappingData data(ov, false); 1403 1404 // Work around an extremely aggressive peephole optimization in 1405 // EmitScalarConversion which assumes that all other uses of a 1406 // value are extant. 1407 data.Protection = CGF.protectFromPeepholes(rv); 1408 1409 return data; 1410 } 1411 1412 bool isValid() const { return OpaqueValue != nullptr; } 1413 void clear() { OpaqueValue = nullptr; } 1414 1415 void unbind(CodeGenFunction &CGF) { 1416 assert(OpaqueValue && "no data to unbind!"); 1417 1418 if (BoundLValue) { 1419 CGF.OpaqueLValues.erase(OpaqueValue); 1420 } else { 1421 CGF.OpaqueRValues.erase(OpaqueValue); 1422 CGF.unprotectFromPeepholes(Protection); 1423 } 1424 } 1425 }; 1426 1427 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1428 class OpaqueValueMapping { 1429 CodeGenFunction &CGF; 1430 OpaqueValueMappingData Data; 1431 1432 public: 1433 static bool shouldBindAsLValue(const Expr *expr) { 1434 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1435 } 1436 1437 /// Build the opaque value mapping for the given conditional 1438 /// operator if it's the GNU ?: extension. This is a common 1439 /// enough pattern that the convenience operator is really 1440 /// helpful. 1441 /// 1442 OpaqueValueMapping(CodeGenFunction &CGF, 1443 const AbstractConditionalOperator *op) : CGF(CGF) { 1444 if (isa<ConditionalOperator>(op)) 1445 // Leave Data empty. 1446 return; 1447 1448 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1449 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1450 e->getCommon()); 1451 } 1452 1453 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1454 /// expression is set to the expression the OVE represents. 1455 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1456 : CGF(CGF) { 1457 if (OV) { 1458 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1459 "for OVE with no source expression"); 1460 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1461 } 1462 } 1463 1464 OpaqueValueMapping(CodeGenFunction &CGF, 1465 const OpaqueValueExpr *opaqueValue, 1466 LValue lvalue) 1467 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1468 } 1469 1470 OpaqueValueMapping(CodeGenFunction &CGF, 1471 const OpaqueValueExpr *opaqueValue, 1472 RValue rvalue) 1473 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1474 } 1475 1476 void pop() { 1477 Data.unbind(CGF); 1478 Data.clear(); 1479 } 1480 1481 ~OpaqueValueMapping() { 1482 if (Data.isValid()) Data.unbind(CGF); 1483 } 1484 }; 1485 1486 private: 1487 CGDebugInfo *DebugInfo; 1488 /// Used to create unique names for artificial VLA size debug info variables. 1489 unsigned VLAExprCounter = 0; 1490 bool DisableDebugInfo = false; 1491 1492 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1493 /// calling llvm.stacksave for multiple VLAs in the same scope. 1494 bool DidCallStackSave = false; 1495 1496 /// IndirectBranch - The first time an indirect goto is seen we create a block 1497 /// with an indirect branch. Every time we see the address of a label taken, 1498 /// we add the label to the indirect goto. Every subsequent indirect goto is 1499 /// codegen'd as a jump to the IndirectBranch's basic block. 1500 llvm::IndirectBrInst *IndirectBranch = nullptr; 1501 1502 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1503 /// decls. 1504 DeclMapTy LocalDeclMap; 1505 1506 // Keep track of the cleanups for callee-destructed parameters pushed to the 1507 // cleanup stack so that they can be deactivated later. 1508 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1509 CalleeDestructedParamCleanups; 1510 1511 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1512 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1513 /// parameter. 1514 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1515 SizeArguments; 1516 1517 /// Track escaped local variables with auto storage. Used during SEH 1518 /// outlining to produce a call to llvm.localescape. 1519 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1520 1521 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1522 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1523 1524 // BreakContinueStack - This keeps track of where break and continue 1525 // statements should jump to. 1526 struct BreakContinue { 1527 BreakContinue(JumpDest Break, JumpDest Continue) 1528 : BreakBlock(Break), ContinueBlock(Continue) {} 1529 1530 JumpDest BreakBlock; 1531 JumpDest ContinueBlock; 1532 }; 1533 SmallVector<BreakContinue, 8> BreakContinueStack; 1534 1535 /// Handles cancellation exit points in OpenMP-related constructs. 1536 class OpenMPCancelExitStack { 1537 /// Tracks cancellation exit point and join point for cancel-related exit 1538 /// and normal exit. 1539 struct CancelExit { 1540 CancelExit() = default; 1541 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1542 JumpDest ContBlock) 1543 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1544 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1545 /// true if the exit block has been emitted already by the special 1546 /// emitExit() call, false if the default codegen is used. 1547 bool HasBeenEmitted = false; 1548 JumpDest ExitBlock; 1549 JumpDest ContBlock; 1550 }; 1551 1552 SmallVector<CancelExit, 8> Stack; 1553 1554 public: 1555 OpenMPCancelExitStack() : Stack(1) {} 1556 ~OpenMPCancelExitStack() = default; 1557 /// Fetches the exit block for the current OpenMP construct. 1558 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1559 /// Emits exit block with special codegen procedure specific for the related 1560 /// OpenMP construct + emits code for normal construct cleanup. 1561 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1562 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1563 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1564 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1565 assert(CGF.HaveInsertPoint()); 1566 assert(!Stack.back().HasBeenEmitted); 1567 auto IP = CGF.Builder.saveAndClearIP(); 1568 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1569 CodeGen(CGF); 1570 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1571 CGF.Builder.restoreIP(IP); 1572 Stack.back().HasBeenEmitted = true; 1573 } 1574 CodeGen(CGF); 1575 } 1576 /// Enter the cancel supporting \a Kind construct. 1577 /// \param Kind OpenMP directive that supports cancel constructs. 1578 /// \param HasCancel true, if the construct has inner cancel directive, 1579 /// false otherwise. 1580 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1581 Stack.push_back({Kind, 1582 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1583 : JumpDest(), 1584 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1585 : JumpDest()}); 1586 } 1587 /// Emits default exit point for the cancel construct (if the special one 1588 /// has not be used) + join point for cancel/normal exits. 1589 void exit(CodeGenFunction &CGF) { 1590 if (getExitBlock().isValid()) { 1591 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1592 bool HaveIP = CGF.HaveInsertPoint(); 1593 if (!Stack.back().HasBeenEmitted) { 1594 if (HaveIP) 1595 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1596 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1597 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1598 } 1599 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1600 if (!HaveIP) { 1601 CGF.Builder.CreateUnreachable(); 1602 CGF.Builder.ClearInsertionPoint(); 1603 } 1604 } 1605 Stack.pop_back(); 1606 } 1607 }; 1608 OpenMPCancelExitStack OMPCancelStack; 1609 1610 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1611 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1612 Stmt::Likelihood LH); 1613 1614 CodeGenPGO PGO; 1615 1616 /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. 1617 Address MCDCCondBitmapAddr = Address::invalid(); 1618 1619 /// Calculate branch weights appropriate for PGO data 1620 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1621 uint64_t FalseCount) const; 1622 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1623 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1624 uint64_t LoopCount) const; 1625 1626 public: 1627 auto getIsCounterPair(const Stmt *S) const { return PGO.getIsCounterPair(S); } 1628 1629 void markStmtAsUsed(bool Skipped, const Stmt *S) { 1630 PGO.markStmtAsUsed(Skipped, S); 1631 } 1632 void markStmtMaybeUsed(const Stmt *S) { PGO.markStmtMaybeUsed(S); } 1633 1634 /// Increment the profiler's counter for the given statement by \p StepV. 1635 /// If \p StepV is null, the default increment is 1. 1636 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1637 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1638 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1639 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) { 1640 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1641 PGO.emitCounterSetOrIncrement(Builder, S, StepV); 1642 } 1643 PGO.setCurrentStmt(S); 1644 } 1645 1646 bool isMCDCCoverageEnabled() const { 1647 return (CGM.getCodeGenOpts().hasProfileClangInstr() && 1648 CGM.getCodeGenOpts().MCDCCoverage && 1649 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); 1650 } 1651 1652 /// Allocate a temp value on the stack that MCDC can use to track condition 1653 /// results. 1654 void maybeCreateMCDCCondBitmap() { 1655 if (isMCDCCoverageEnabled()) { 1656 PGO.emitMCDCParameters(Builder); 1657 MCDCCondBitmapAddr = 1658 CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr"); 1659 } 1660 } 1661 1662 bool isBinaryLogicalOp(const Expr *E) const { 1663 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens()); 1664 return (BOp && BOp->isLogicalOp()); 1665 } 1666 1667 /// Zero-init the MCDC temp value. 1668 void maybeResetMCDCCondBitmap(const Expr *E) { 1669 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1670 PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr); 1671 PGO.setCurrentStmt(E); 1672 } 1673 } 1674 1675 /// Increment the profiler's counter for the given expression by \p StepV. 1676 /// If \p StepV is null, the default increment is 1. 1677 void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { 1678 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1679 PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this); 1680 PGO.setCurrentStmt(E); 1681 } 1682 } 1683 1684 /// Update the MCDC temp value with the condition's evaluated result. 1685 void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { 1686 if (isMCDCCoverageEnabled()) { 1687 PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this); 1688 PGO.setCurrentStmt(E); 1689 } 1690 } 1691 1692 /// Get the profiler's count for the given statement. 1693 uint64_t getProfileCount(const Stmt *S) { 1694 return PGO.getStmtCount(S).value_or(0); 1695 } 1696 1697 /// Set the profiler's current count. 1698 void setCurrentProfileCount(uint64_t Count) { 1699 PGO.setCurrentRegionCount(Count); 1700 } 1701 1702 /// Get the profiler's current count. This is generally the count for the most 1703 /// recently incremented counter. 1704 uint64_t getCurrentProfileCount() { 1705 return PGO.getCurrentRegionCount(); 1706 } 1707 1708 private: 1709 1710 /// SwitchInsn - This is nearest current switch instruction. It is null if 1711 /// current context is not in a switch. 1712 llvm::SwitchInst *SwitchInsn = nullptr; 1713 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1714 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1715 1716 /// The likelihood attributes of the SwitchCase. 1717 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1718 1719 /// CaseRangeBlock - This block holds if condition check for last case 1720 /// statement range in current switch instruction. 1721 llvm::BasicBlock *CaseRangeBlock = nullptr; 1722 1723 /// OpaqueLValues - Keeps track of the current set of opaque value 1724 /// expressions. 1725 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1726 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1727 1728 // VLASizeMap - This keeps track of the associated size for each VLA type. 1729 // We track this by the size expression rather than the type itself because 1730 // in certain situations, like a const qualifier applied to an VLA typedef, 1731 // multiple VLA types can share the same size expression. 1732 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1733 // enter/leave scopes. 1734 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1735 1736 /// A block containing a single 'unreachable' instruction. Created 1737 /// lazily by getUnreachableBlock(). 1738 llvm::BasicBlock *UnreachableBlock = nullptr; 1739 1740 /// Counts of the number return expressions in the function. 1741 unsigned NumReturnExprs = 0; 1742 1743 /// Count the number of simple (constant) return expressions in the function. 1744 unsigned NumSimpleReturnExprs = 0; 1745 1746 /// The last regular (non-return) debug location (breakpoint) in the function. 1747 SourceLocation LastStopPoint; 1748 1749 public: 1750 /// Source location information about the default argument or member 1751 /// initializer expression we're evaluating, if any. 1752 CurrentSourceLocExprScope CurSourceLocExprScope; 1753 using SourceLocExprScopeGuard = 1754 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1755 1756 /// A scope within which we are constructing the fields of an object which 1757 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1758 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1759 class FieldConstructionScope { 1760 public: 1761 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1762 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1763 CGF.CXXDefaultInitExprThis = This; 1764 } 1765 ~FieldConstructionScope() { 1766 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1767 } 1768 1769 private: 1770 CodeGenFunction &CGF; 1771 Address OldCXXDefaultInitExprThis; 1772 }; 1773 1774 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1775 /// is overridden to be the object under construction. 1776 class CXXDefaultInitExprScope { 1777 public: 1778 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1779 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1780 OldCXXThisAlignment(CGF.CXXThisAlignment), 1781 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1782 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); 1783 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1784 } 1785 ~CXXDefaultInitExprScope() { 1786 CGF.CXXThisValue = OldCXXThisValue; 1787 CGF.CXXThisAlignment = OldCXXThisAlignment; 1788 } 1789 1790 public: 1791 CodeGenFunction &CGF; 1792 llvm::Value *OldCXXThisValue; 1793 CharUnits OldCXXThisAlignment; 1794 SourceLocExprScopeGuard SourceLocScope; 1795 }; 1796 1797 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1798 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1799 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1800 }; 1801 1802 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1803 /// current loop index is overridden. 1804 class ArrayInitLoopExprScope { 1805 public: 1806 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1807 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1808 CGF.ArrayInitIndex = Index; 1809 } 1810 ~ArrayInitLoopExprScope() { 1811 CGF.ArrayInitIndex = OldArrayInitIndex; 1812 } 1813 1814 private: 1815 CodeGenFunction &CGF; 1816 llvm::Value *OldArrayInitIndex; 1817 }; 1818 1819 class InlinedInheritingConstructorScope { 1820 public: 1821 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1822 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1823 OldCurCodeDecl(CGF.CurCodeDecl), 1824 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1825 OldCXXABIThisValue(CGF.CXXABIThisValue), 1826 OldCXXThisValue(CGF.CXXThisValue), 1827 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1828 OldCXXThisAlignment(CGF.CXXThisAlignment), 1829 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1830 OldCXXInheritedCtorInitExprArgs( 1831 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1832 CGF.CurGD = GD; 1833 CGF.CurFuncDecl = CGF.CurCodeDecl = 1834 cast<CXXConstructorDecl>(GD.getDecl()); 1835 CGF.CXXABIThisDecl = nullptr; 1836 CGF.CXXABIThisValue = nullptr; 1837 CGF.CXXThisValue = nullptr; 1838 CGF.CXXABIThisAlignment = CharUnits(); 1839 CGF.CXXThisAlignment = CharUnits(); 1840 CGF.ReturnValue = Address::invalid(); 1841 CGF.FnRetTy = QualType(); 1842 CGF.CXXInheritedCtorInitExprArgs.clear(); 1843 } 1844 ~InlinedInheritingConstructorScope() { 1845 CGF.CurGD = OldCurGD; 1846 CGF.CurFuncDecl = OldCurFuncDecl; 1847 CGF.CurCodeDecl = OldCurCodeDecl; 1848 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1849 CGF.CXXABIThisValue = OldCXXABIThisValue; 1850 CGF.CXXThisValue = OldCXXThisValue; 1851 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1852 CGF.CXXThisAlignment = OldCXXThisAlignment; 1853 CGF.ReturnValue = OldReturnValue; 1854 CGF.FnRetTy = OldFnRetTy; 1855 CGF.CXXInheritedCtorInitExprArgs = 1856 std::move(OldCXXInheritedCtorInitExprArgs); 1857 } 1858 1859 private: 1860 CodeGenFunction &CGF; 1861 GlobalDecl OldCurGD; 1862 const Decl *OldCurFuncDecl; 1863 const Decl *OldCurCodeDecl; 1864 ImplicitParamDecl *OldCXXABIThisDecl; 1865 llvm::Value *OldCXXABIThisValue; 1866 llvm::Value *OldCXXThisValue; 1867 CharUnits OldCXXABIThisAlignment; 1868 CharUnits OldCXXThisAlignment; 1869 Address OldReturnValue; 1870 QualType OldFnRetTy; 1871 CallArgList OldCXXInheritedCtorInitExprArgs; 1872 }; 1873 1874 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1875 // region body, and finalization codegen callbacks. This will class will also 1876 // contain privatization functions used by the privatization call backs 1877 // 1878 // TODO: this is temporary class for things that are being moved out of 1879 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1880 // utility function for use with the OMPBuilder. Once that move to use the 1881 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1882 // directly, or a new helper class that will contain functions used by both 1883 // this and the OMPBuilder 1884 1885 struct OMPBuilderCBHelpers { 1886 1887 OMPBuilderCBHelpers() = delete; 1888 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1889 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1890 1891 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1892 1893 /// Cleanup action for allocate support. 1894 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1895 1896 private: 1897 llvm::CallInst *RTLFnCI; 1898 1899 public: 1900 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1901 RLFnCI->removeFromParent(); 1902 } 1903 1904 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1905 if (!CGF.HaveInsertPoint()) 1906 return; 1907 CGF.Builder.Insert(RTLFnCI); 1908 } 1909 }; 1910 1911 /// Returns address of the threadprivate variable for the current 1912 /// thread. This Also create any necessary OMP runtime calls. 1913 /// 1914 /// \param VD VarDecl for Threadprivate variable. 1915 /// \param VDAddr Address of the Vardecl 1916 /// \param Loc The location where the barrier directive was encountered 1917 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1918 const VarDecl *VD, Address VDAddr, 1919 SourceLocation Loc); 1920 1921 /// Gets the OpenMP-specific address of the local variable /p VD. 1922 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1923 const VarDecl *VD); 1924 /// Get the platform-specific name separator. 1925 /// \param Parts different parts of the final name that needs separation 1926 /// \param FirstSeparator First separator used between the initial two 1927 /// parts of the name. 1928 /// \param Separator separator used between all of the rest consecutinve 1929 /// parts of the name 1930 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1931 StringRef FirstSeparator = ".", 1932 StringRef Separator = "."); 1933 /// Emit the Finalization for an OMP region 1934 /// \param CGF The Codegen function this belongs to 1935 /// \param IP Insertion point for generating the finalization code. 1936 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1937 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1938 assert(IP.getBlock()->end() != IP.getPoint() && 1939 "OpenMP IR Builder should cause terminated block!"); 1940 1941 llvm::BasicBlock *IPBB = IP.getBlock(); 1942 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1943 assert(DestBB && "Finalization block should have one successor!"); 1944 1945 // erase and replace with cleanup branch. 1946 IPBB->getTerminator()->eraseFromParent(); 1947 CGF.Builder.SetInsertPoint(IPBB); 1948 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1949 CGF.EmitBranchThroughCleanup(Dest); 1950 } 1951 1952 /// Emit the body of an OMP region 1953 /// \param CGF The Codegen function this belongs to 1954 /// \param RegionBodyStmt The body statement for the OpenMP region being 1955 /// generated 1956 /// \param AllocaIP Where to insert alloca instructions 1957 /// \param CodeGenIP Where to insert the region code 1958 /// \param RegionName Name to be used for new blocks 1959 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1960 const Stmt *RegionBodyStmt, 1961 InsertPointTy AllocaIP, 1962 InsertPointTy CodeGenIP, 1963 Twine RegionName); 1964 1965 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1966 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1967 ArrayRef<llvm::Value *> Args) { 1968 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1969 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1970 CodeGenIPBBTI->eraseFromParent(); 1971 1972 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1973 1974 if (Fn->doesNotThrow()) 1975 CGF.EmitNounwindRuntimeCall(Fn, Args); 1976 else 1977 CGF.EmitRuntimeCall(Fn, Args); 1978 1979 if (CGF.Builder.saveIP().isSet()) 1980 CGF.Builder.CreateBr(&FiniBB); 1981 } 1982 1983 /// Emit the body of an OMP region that will be outlined in 1984 /// OpenMPIRBuilder::finalize(). 1985 /// \param CGF The Codegen function this belongs to 1986 /// \param RegionBodyStmt The body statement for the OpenMP region being 1987 /// generated 1988 /// \param AllocaIP Where to insert alloca instructions 1989 /// \param CodeGenIP Where to insert the region code 1990 /// \param RegionName Name to be used for new blocks 1991 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1992 const Stmt *RegionBodyStmt, 1993 InsertPointTy AllocaIP, 1994 InsertPointTy CodeGenIP, 1995 Twine RegionName); 1996 1997 /// RAII for preserving necessary info during Outlined region body codegen. 1998 class OutlinedRegionBodyRAII { 1999 2000 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2001 CodeGenFunction::JumpDest OldReturnBlock; 2002 CodeGenFunction &CGF; 2003 2004 public: 2005 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2006 llvm::BasicBlock &RetBB) 2007 : CGF(cgf) { 2008 assert(AllocaIP.isSet() && 2009 "Must specify Insertion point for allocas of outlined function"); 2010 OldAllocaIP = CGF.AllocaInsertPt; 2011 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2012 2013 OldReturnBlock = CGF.ReturnBlock; 2014 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 2015 } 2016 2017 ~OutlinedRegionBodyRAII() { 2018 CGF.AllocaInsertPt = OldAllocaIP; 2019 CGF.ReturnBlock = OldReturnBlock; 2020 } 2021 }; 2022 2023 /// RAII for preserving necessary info during inlined region body codegen. 2024 class InlinedRegionBodyRAII { 2025 2026 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2027 CodeGenFunction &CGF; 2028 2029 public: 2030 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2031 llvm::BasicBlock &FiniBB) 2032 : CGF(cgf) { 2033 // Alloca insertion block should be in the entry block of the containing 2034 // function so it expects an empty AllocaIP in which case will reuse the 2035 // old alloca insertion point, or a new AllocaIP in the same block as 2036 // the old one 2037 assert((!AllocaIP.isSet() || 2038 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 2039 "Insertion point should be in the entry block of containing " 2040 "function!"); 2041 OldAllocaIP = CGF.AllocaInsertPt; 2042 if (AllocaIP.isSet()) 2043 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2044 2045 // TODO: Remove the call, after making sure the counter is not used by 2046 // the EHStack. 2047 // Since this is an inlined region, it should not modify the 2048 // ReturnBlock, and should reuse the one for the enclosing outlined 2049 // region. So, the JumpDest being return by the function is discarded 2050 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 2051 } 2052 2053 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 2054 }; 2055 }; 2056 2057 private: 2058 /// CXXThisDecl - When generating code for a C++ member function, 2059 /// this will hold the implicit 'this' declaration. 2060 ImplicitParamDecl *CXXABIThisDecl = nullptr; 2061 llvm::Value *CXXABIThisValue = nullptr; 2062 llvm::Value *CXXThisValue = nullptr; 2063 CharUnits CXXABIThisAlignment; 2064 CharUnits CXXThisAlignment; 2065 2066 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 2067 /// this expression. 2068 Address CXXDefaultInitExprThis = Address::invalid(); 2069 2070 /// The current array initialization index when evaluating an 2071 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 2072 llvm::Value *ArrayInitIndex = nullptr; 2073 2074 /// The values of function arguments to use when evaluating 2075 /// CXXInheritedCtorInitExprs within this context. 2076 CallArgList CXXInheritedCtorInitExprArgs; 2077 2078 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 2079 /// destructor, this will hold the implicit argument (e.g. VTT). 2080 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 2081 llvm::Value *CXXStructorImplicitParamValue = nullptr; 2082 2083 /// OutermostConditional - Points to the outermost active 2084 /// conditional control. This is used so that we know if a 2085 /// temporary should be destroyed conditionally. 2086 ConditionalEvaluation *OutermostConditional = nullptr; 2087 2088 /// The current lexical scope. 2089 LexicalScope *CurLexicalScope = nullptr; 2090 2091 /// The current source location that should be used for exception 2092 /// handling code. 2093 SourceLocation CurEHLocation; 2094 2095 /// BlockByrefInfos - For each __block variable, contains 2096 /// information about the layout of the variable. 2097 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 2098 2099 /// Used by -fsanitize=nullability-return to determine whether the return 2100 /// value can be checked. 2101 llvm::Value *RetValNullabilityPrecondition = nullptr; 2102 2103 /// Check if -fsanitize=nullability-return instrumentation is required for 2104 /// this function. 2105 bool requiresReturnValueNullabilityCheck() const { 2106 return RetValNullabilityPrecondition; 2107 } 2108 2109 /// Used to store precise source locations for return statements by the 2110 /// runtime return value checks. 2111 Address ReturnLocation = Address::invalid(); 2112 2113 /// Check if the return value of this function requires sanitization. 2114 bool requiresReturnValueCheck() const; 2115 2116 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 2117 bool hasInAllocaArg(const CXXMethodDecl *MD); 2118 2119 llvm::BasicBlock *TerminateLandingPad = nullptr; 2120 llvm::BasicBlock *TerminateHandler = nullptr; 2121 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 2122 2123 /// Terminate funclets keyed by parent funclet pad. 2124 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 2125 2126 /// Largest vector width used in ths function. Will be used to create a 2127 /// function attribute. 2128 unsigned LargestVectorWidth = 0; 2129 2130 /// True if we need emit the life-time markers. This is initially set in 2131 /// the constructor, but could be overwritten to true if this is a coroutine. 2132 bool ShouldEmitLifetimeMarkers; 2133 2134 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 2135 /// the function metadata. 2136 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 2137 2138 public: 2139 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 2140 ~CodeGenFunction(); 2141 2142 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 2143 ASTContext &getContext() const { return CGM.getContext(); } 2144 CGDebugInfo *getDebugInfo() { 2145 if (DisableDebugInfo) 2146 return nullptr; 2147 return DebugInfo; 2148 } 2149 void disableDebugInfo() { DisableDebugInfo = true; } 2150 void enableDebugInfo() { DisableDebugInfo = false; } 2151 2152 bool shouldUseFusedARCCalls() { 2153 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2154 } 2155 2156 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2157 2158 /// Returns a pointer to the function's exception object and selector slot, 2159 /// which is assigned in every landing pad. 2160 Address getExceptionSlot(); 2161 Address getEHSelectorSlot(); 2162 2163 /// Returns the contents of the function's exception object and selector 2164 /// slots. 2165 llvm::Value *getExceptionFromSlot(); 2166 llvm::Value *getSelectorFromSlot(); 2167 2168 RawAddress getNormalCleanupDestSlot(); 2169 2170 llvm::BasicBlock *getUnreachableBlock() { 2171 if (!UnreachableBlock) { 2172 UnreachableBlock = createBasicBlock("unreachable"); 2173 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2174 } 2175 return UnreachableBlock; 2176 } 2177 2178 llvm::BasicBlock *getInvokeDest() { 2179 if (!EHStack.requiresLandingPad()) return nullptr; 2180 return getInvokeDestImpl(); 2181 } 2182 2183 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2184 2185 const TargetInfo &getTarget() const { return Target; } 2186 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2187 const TargetCodeGenInfo &getTargetHooks() const { 2188 return CGM.getTargetCodeGenInfo(); 2189 } 2190 2191 //===--------------------------------------------------------------------===// 2192 // Cleanups 2193 //===--------------------------------------------------------------------===// 2194 2195 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2196 2197 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2198 Address arrayEndPointer, 2199 QualType elementType, 2200 CharUnits elementAlignment, 2201 Destroyer *destroyer); 2202 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2203 llvm::Value *arrayEnd, 2204 QualType elementType, 2205 CharUnits elementAlignment, 2206 Destroyer *destroyer); 2207 2208 void pushDestroy(QualType::DestructionKind dtorKind, 2209 Address addr, QualType type); 2210 void pushEHDestroy(QualType::DestructionKind dtorKind, 2211 Address addr, QualType type); 2212 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2213 Destroyer *destroyer, bool useEHCleanupForArray); 2214 void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, 2215 Address addr, QualType type); 2216 void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, 2217 QualType type, Destroyer *destroyer, 2218 bool useEHCleanupForArray); 2219 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2220 QualType type, Destroyer *destroyer, 2221 bool useEHCleanupForArray); 2222 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2223 llvm::Value *CompletePtr, 2224 QualType ElementType); 2225 void pushStackRestore(CleanupKind kind, Address SPMem); 2226 void pushKmpcAllocFree(CleanupKind Kind, 2227 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2228 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2229 bool useEHCleanupForArray); 2230 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2231 Destroyer *destroyer, 2232 bool useEHCleanupForArray, 2233 const VarDecl *VD); 2234 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2235 QualType elementType, CharUnits elementAlign, 2236 Destroyer *destroyer, 2237 bool checkZeroLength, bool useEHCleanup); 2238 2239 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2240 2241 /// Determines whether an EH cleanup is required to destroy a type 2242 /// with the given destruction kind. 2243 bool needsEHCleanup(QualType::DestructionKind kind) { 2244 switch (kind) { 2245 case QualType::DK_none: 2246 return false; 2247 case QualType::DK_cxx_destructor: 2248 case QualType::DK_objc_weak_lifetime: 2249 case QualType::DK_nontrivial_c_struct: 2250 return getLangOpts().Exceptions; 2251 case QualType::DK_objc_strong_lifetime: 2252 return getLangOpts().Exceptions && 2253 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2254 } 2255 llvm_unreachable("bad destruction kind"); 2256 } 2257 2258 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2259 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2260 } 2261 2262 //===--------------------------------------------------------------------===// 2263 // Objective-C 2264 //===--------------------------------------------------------------------===// 2265 2266 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2267 2268 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2269 2270 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2271 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2272 const ObjCPropertyImplDecl *PID); 2273 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2274 const ObjCPropertyImplDecl *propImpl, 2275 const ObjCMethodDecl *GetterMothodDecl, 2276 llvm::Constant *AtomicHelperFn); 2277 2278 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2279 ObjCMethodDecl *MD, bool ctor); 2280 2281 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2282 /// for the given property. 2283 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2284 const ObjCPropertyImplDecl *PID); 2285 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2286 const ObjCPropertyImplDecl *propImpl, 2287 llvm::Constant *AtomicHelperFn); 2288 2289 //===--------------------------------------------------------------------===// 2290 // Block Bits 2291 //===--------------------------------------------------------------------===// 2292 2293 /// Emit block literal. 2294 /// \return an LLVM value which is a pointer to a struct which contains 2295 /// information about the block, including the block invoke function, the 2296 /// captured variables, etc. 2297 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2298 2299 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2300 const CGBlockInfo &Info, 2301 const DeclMapTy &ldm, 2302 bool IsLambdaConversionToBlock, 2303 bool BuildGlobalBlock); 2304 2305 /// Check if \p T is a C++ class that has a destructor that can throw. 2306 static bool cxxDestructorCanThrow(QualType T); 2307 2308 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2309 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2310 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2311 const ObjCPropertyImplDecl *PID); 2312 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2313 const ObjCPropertyImplDecl *PID); 2314 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2315 2316 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2317 bool CanThrow); 2318 2319 class AutoVarEmission; 2320 2321 void emitByrefStructureInit(const AutoVarEmission &emission); 2322 2323 /// Enter a cleanup to destroy a __block variable. Note that this 2324 /// cleanup should be a no-op if the variable hasn't left the stack 2325 /// yet; if a cleanup is required for the variable itself, that needs 2326 /// to be done externally. 2327 /// 2328 /// \param Kind Cleanup kind. 2329 /// 2330 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2331 /// structure that will be passed to _Block_object_dispose. When 2332 /// \p LoadBlockVarAddr is true, the address of the field of the block 2333 /// structure that holds the address of the __block structure. 2334 /// 2335 /// \param Flags The flag that will be passed to _Block_object_dispose. 2336 /// 2337 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2338 /// \p Addr to get the address of the __block structure. 2339 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2340 bool LoadBlockVarAddr, bool CanThrow); 2341 2342 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2343 llvm::Value *ptr); 2344 2345 Address LoadBlockStruct(); 2346 Address GetAddrOfBlockDecl(const VarDecl *var); 2347 2348 /// BuildBlockByrefAddress - Computes the location of the 2349 /// data in a variable which is declared as __block. 2350 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2351 bool followForward = true); 2352 Address emitBlockByrefAddress(Address baseAddr, 2353 const BlockByrefInfo &info, 2354 bool followForward, 2355 const llvm::Twine &name); 2356 2357 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2358 2359 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2360 2361 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2362 const CGFunctionInfo &FnInfo); 2363 2364 /// Annotate the function with an attribute that disables TSan checking at 2365 /// runtime. 2366 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2367 2368 /// Emit code for the start of a function. 2369 /// \param Loc The location to be associated with the function. 2370 /// \param StartLoc The location of the function body. 2371 void StartFunction(GlobalDecl GD, 2372 QualType RetTy, 2373 llvm::Function *Fn, 2374 const CGFunctionInfo &FnInfo, 2375 const FunctionArgList &Args, 2376 SourceLocation Loc = SourceLocation(), 2377 SourceLocation StartLoc = SourceLocation()); 2378 2379 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2380 2381 void EmitConstructorBody(FunctionArgList &Args); 2382 void EmitDestructorBody(FunctionArgList &Args); 2383 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2384 void EmitFunctionBody(const Stmt *Body); 2385 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2386 2387 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2388 CallArgList &CallArgs, 2389 const CGFunctionInfo *CallOpFnInfo = nullptr, 2390 llvm::Constant *CallOpFn = nullptr); 2391 void EmitLambdaBlockInvokeBody(); 2392 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2393 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2394 CallArgList &CallArgs); 2395 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2396 const CGFunctionInfo **ImplFnInfo, 2397 llvm::Function **ImplFn); 2398 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2399 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2400 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2401 } 2402 void EmitAsanPrologueOrEpilogue(bool Prologue); 2403 2404 /// Emit the unified return block, trying to avoid its emission when 2405 /// possible. 2406 /// \return The debug location of the user written return statement if the 2407 /// return block is avoided. 2408 llvm::DebugLoc EmitReturnBlock(); 2409 2410 /// FinishFunction - Complete IR generation of the current function. It is 2411 /// legal to call this function even if there is no current insertion point. 2412 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2413 2414 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2415 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2416 2417 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2418 const ThunkInfo *Thunk, bool IsUnprototyped); 2419 2420 void FinishThunk(); 2421 2422 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2423 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2424 llvm::FunctionCallee Callee); 2425 2426 /// Generate a thunk for the given method. 2427 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2428 GlobalDecl GD, const ThunkInfo &Thunk, 2429 bool IsUnprototyped); 2430 2431 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2432 const CGFunctionInfo &FnInfo, 2433 GlobalDecl GD, const ThunkInfo &Thunk); 2434 2435 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2436 FunctionArgList &Args); 2437 2438 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2439 2440 /// Struct with all information about dynamic [sub]class needed to set vptr. 2441 struct VPtr { 2442 BaseSubobject Base; 2443 const CXXRecordDecl *NearestVBase; 2444 CharUnits OffsetFromNearestVBase; 2445 const CXXRecordDecl *VTableClass; 2446 }; 2447 2448 /// Initialize the vtable pointer of the given subobject. 2449 void InitializeVTablePointer(const VPtr &vptr); 2450 2451 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2452 2453 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2454 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2455 2456 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2457 CharUnits OffsetFromNearestVBase, 2458 bool BaseIsNonVirtualPrimaryBase, 2459 const CXXRecordDecl *VTableClass, 2460 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2461 2462 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2463 2464 // VTableTrapMode - whether we guarantee that loading the 2465 // vtable is guaranteed to trap on authentication failure, 2466 // even if the resulting vtable pointer is unused. 2467 enum class VTableAuthMode { 2468 Authenticate, 2469 MustTrap, 2470 UnsafeUbsanStrip // Should only be used for Vptr UBSan check 2471 }; 2472 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2473 /// to by This. 2474 llvm::Value * 2475 GetVTablePtr(Address This, llvm::Type *VTableTy, 2476 const CXXRecordDecl *VTableClass, 2477 VTableAuthMode AuthMode = VTableAuthMode::Authenticate); 2478 2479 enum CFITypeCheckKind { 2480 CFITCK_VCall, 2481 CFITCK_NVCall, 2482 CFITCK_DerivedCast, 2483 CFITCK_UnrelatedCast, 2484 CFITCK_ICall, 2485 CFITCK_NVMFCall, 2486 CFITCK_VMFCall, 2487 }; 2488 2489 /// Derived is the presumed address of an object of type T after a 2490 /// cast. If T is a polymorphic class type, emit a check that the virtual 2491 /// table for Derived belongs to a class derived from T. 2492 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2493 CFITypeCheckKind TCK, SourceLocation Loc); 2494 2495 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2496 /// If vptr CFI is enabled, emit a check that VTable is valid. 2497 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2498 CFITypeCheckKind TCK, SourceLocation Loc); 2499 2500 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2501 /// RD using llvm.type.test. 2502 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2503 CFITypeCheckKind TCK, SourceLocation Loc); 2504 2505 /// If whole-program virtual table optimization is enabled, emit an assumption 2506 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2507 /// enabled, emit a check that VTable is a member of RD's type identifier. 2508 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2509 llvm::Value *VTable, SourceLocation Loc); 2510 2511 /// Returns whether we should perform a type checked load when loading a 2512 /// virtual function for virtual calls to members of RD. This is generally 2513 /// true when both vcall CFI and whole-program-vtables are enabled. 2514 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2515 2516 /// Emit a type checked load from the given vtable. 2517 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2518 llvm::Value *VTable, 2519 llvm::Type *VTableTy, 2520 uint64_t VTableByteOffset); 2521 2522 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2523 /// given phase of destruction for a destructor. The end result 2524 /// should call destructors on members and base classes in reverse 2525 /// order of their construction. 2526 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2527 2528 /// ShouldInstrumentFunction - Return true if the current function should be 2529 /// instrumented with __cyg_profile_func_* calls 2530 bool ShouldInstrumentFunction(); 2531 2532 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2533 /// should not be instrumented with sanitizers. 2534 bool ShouldSkipSanitizerInstrumentation(); 2535 2536 /// ShouldXRayInstrument - Return true if the current function should be 2537 /// instrumented with XRay nop sleds. 2538 bool ShouldXRayInstrumentFunction() const; 2539 2540 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2541 /// XRay custom event handling calls. 2542 bool AlwaysEmitXRayCustomEvents() const; 2543 2544 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2545 /// XRay typed event handling calls. 2546 bool AlwaysEmitXRayTypedEvents() const; 2547 2548 /// Return a type hash constant for a function instrumented by 2549 /// -fsanitize=function. 2550 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2551 2552 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2553 /// arguments for the given function. This is also responsible for naming the 2554 /// LLVM function arguments. 2555 void EmitFunctionProlog(const CGFunctionInfo &FI, 2556 llvm::Function *Fn, 2557 const FunctionArgList &Args); 2558 2559 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2560 /// given temporary. 2561 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2562 SourceLocation EndLoc); 2563 2564 /// Emit a test that checks if the return value \p RV is nonnull. 2565 void EmitReturnValueCheck(llvm::Value *RV); 2566 2567 /// EmitStartEHSpec - Emit the start of the exception spec. 2568 void EmitStartEHSpec(const Decl *D); 2569 2570 /// EmitEndEHSpec - Emit the end of the exception spec. 2571 void EmitEndEHSpec(const Decl *D); 2572 2573 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2574 llvm::BasicBlock *getTerminateLandingPad(); 2575 2576 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2577 /// terminate. 2578 llvm::BasicBlock *getTerminateFunclet(); 2579 2580 /// getTerminateHandler - Return a handler (not a landing pad, just 2581 /// a catch handler) that just calls terminate. This is used when 2582 /// a terminate scope encloses a try. 2583 llvm::BasicBlock *getTerminateHandler(); 2584 2585 llvm::Type *ConvertTypeForMem(QualType T); 2586 llvm::Type *ConvertType(QualType T); 2587 llvm::Type *convertTypeForLoadStore(QualType ASTTy, 2588 llvm::Type *LLVMTy = nullptr); 2589 llvm::Type *ConvertType(const TypeDecl *T) { 2590 return ConvertType(getContext().getTypeDeclType(T)); 2591 } 2592 2593 /// LoadObjCSelf - Load the value of self. This function is only valid while 2594 /// generating code for an Objective-C method. 2595 llvm::Value *LoadObjCSelf(); 2596 2597 /// TypeOfSelfObject - Return type of object that this self represents. 2598 QualType TypeOfSelfObject(); 2599 2600 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2601 static TypeEvaluationKind getEvaluationKind(QualType T); 2602 2603 static bool hasScalarEvaluationKind(QualType T) { 2604 return getEvaluationKind(T) == TEK_Scalar; 2605 } 2606 2607 static bool hasAggregateEvaluationKind(QualType T) { 2608 return getEvaluationKind(T) == TEK_Aggregate; 2609 } 2610 2611 /// createBasicBlock - Create an LLVM basic block. 2612 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2613 llvm::Function *parent = nullptr, 2614 llvm::BasicBlock *before = nullptr) { 2615 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2616 } 2617 2618 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2619 /// label maps to. 2620 JumpDest getJumpDestForLabel(const LabelDecl *S); 2621 2622 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2623 /// another basic block, simplify it. This assumes that no other code could 2624 /// potentially reference the basic block. 2625 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2626 2627 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2628 /// adding a fall-through branch from the current insert block if 2629 /// necessary. It is legal to call this function even if there is no current 2630 /// insertion point. 2631 /// 2632 /// IsFinished - If true, indicates that the caller has finished emitting 2633 /// branches to the given block and does not expect to emit code into it. This 2634 /// means the block can be ignored if it is unreachable. 2635 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2636 2637 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2638 /// near its uses, and leave the insertion point in it. 2639 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2640 2641 /// EmitBranch - Emit a branch to the specified basic block from the current 2642 /// insert block, taking care to avoid creation of branches from dummy 2643 /// blocks. It is legal to call this function even if there is no current 2644 /// insertion point. 2645 /// 2646 /// This function clears the current insertion point. The caller should follow 2647 /// calls to this function with calls to Emit*Block prior to generation new 2648 /// code. 2649 void EmitBranch(llvm::BasicBlock *Block); 2650 2651 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2652 /// indicates that the current code being emitted is unreachable. 2653 bool HaveInsertPoint() const { 2654 return Builder.GetInsertBlock() != nullptr; 2655 } 2656 2657 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2658 /// emitted IR has a place to go. Note that by definition, if this function 2659 /// creates a block then that block is unreachable; callers may do better to 2660 /// detect when no insertion point is defined and simply skip IR generation. 2661 void EnsureInsertPoint() { 2662 if (!HaveInsertPoint()) 2663 EmitBlock(createBasicBlock()); 2664 } 2665 2666 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2667 /// specified stmt yet. 2668 void ErrorUnsupported(const Stmt *S, const char *Type); 2669 2670 //===--------------------------------------------------------------------===// 2671 // Helpers 2672 //===--------------------------------------------------------------------===// 2673 2674 Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, 2675 llvm::BasicBlock *LHSBlock, 2676 llvm::BasicBlock *RHSBlock, 2677 llvm::BasicBlock *MergeBlock, 2678 QualType MergedType) { 2679 Builder.SetInsertPoint(MergeBlock); 2680 llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond"); 2681 PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock); 2682 PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock); 2683 LHS.replaceBasePointer(PtrPhi); 2684 LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment())); 2685 return LHS; 2686 } 2687 2688 /// Construct an address with the natural alignment of T. If a pointer to T 2689 /// is expected to be signed, the pointer passed to this function must have 2690 /// been signed, and the returned Address will have the pointer authentication 2691 /// information needed to authenticate the signed pointer. 2692 Address makeNaturalAddressForPointer( 2693 llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), 2694 bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, 2695 TBAAAccessInfo *TBAAInfo = nullptr, 2696 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 2697 if (Alignment.isZero()) 2698 Alignment = 2699 CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType); 2700 return Address(Ptr, ConvertTypeForMem(T), Alignment, 2701 CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr, 2702 IsKnownNonNull); 2703 } 2704 2705 LValue MakeAddrLValue(Address Addr, QualType T, 2706 AlignmentSource Source = AlignmentSource::Type) { 2707 return MakeAddrLValue(Addr, T, LValueBaseInfo(Source), 2708 CGM.getTBAAAccessInfo(T)); 2709 } 2710 2711 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2712 TBAAAccessInfo TBAAInfo) { 2713 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2714 } 2715 2716 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2717 AlignmentSource Source = AlignmentSource::Type) { 2718 return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T, 2719 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2720 } 2721 2722 /// Same as MakeAddrLValue above except that the pointer is known to be 2723 /// unsigned. 2724 LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2725 AlignmentSource Source = AlignmentSource::Type) { 2726 Address Addr(V, ConvertTypeForMem(T), Alignment); 2727 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2728 CGM.getTBAAAccessInfo(T)); 2729 } 2730 2731 LValue 2732 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2733 AlignmentSource Source = AlignmentSource::Type) { 2734 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2735 TBAAAccessInfo()); 2736 } 2737 2738 /// Given a value of type T* that may not be to a complete object, construct 2739 /// an l-value with the natural pointee alignment of T. 2740 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2741 2742 LValue 2743 MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 2744 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 2745 2746 /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known 2747 /// to be unsigned. 2748 LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); 2749 2750 LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); 2751 2752 Address EmitLoadOfReference(LValue RefLVal, 2753 LValueBaseInfo *PointeeBaseInfo = nullptr, 2754 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2755 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2756 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2757 AlignmentSource Source = 2758 AlignmentSource::Type) { 2759 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2760 CGM.getTBAAAccessInfo(RefTy)); 2761 return EmitLoadOfReferenceLValue(RefLVal); 2762 } 2763 2764 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2765 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2766 /// it is loaded from. 2767 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2768 LValueBaseInfo *BaseInfo = nullptr, 2769 TBAAAccessInfo *TBAAInfo = nullptr); 2770 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2771 2772 private: 2773 struct AllocaTracker { 2774 void Add(llvm::AllocaInst *I) { Allocas.push_back(I); } 2775 llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } 2776 2777 private: 2778 llvm::SmallVector<llvm::AllocaInst *> Allocas; 2779 }; 2780 AllocaTracker *Allocas = nullptr; 2781 2782 public: 2783 // Captures all the allocas created during the scope of its RAII object. 2784 struct AllocaTrackerRAII { 2785 AllocaTrackerRAII(CodeGenFunction &CGF) 2786 : CGF(CGF), OldTracker(CGF.Allocas) { 2787 CGF.Allocas = &Tracker; 2788 } 2789 ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } 2790 2791 llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } 2792 2793 private: 2794 CodeGenFunction &CGF; 2795 AllocaTracker *OldTracker; 2796 AllocaTracker Tracker; 2797 }; 2798 2799 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2800 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2801 /// insertion point of the builder. The caller is responsible for setting an 2802 /// appropriate alignment on 2803 /// the alloca. 2804 /// 2805 /// \p ArraySize is the number of array elements to be allocated if it 2806 /// is not nullptr. 2807 /// 2808 /// LangAS::Default is the address space of pointers to local variables and 2809 /// temporaries, as exposed in the source language. In certain 2810 /// configurations, this is not the same as the alloca address space, and a 2811 /// cast is needed to lift the pointer from the alloca AS into 2812 /// LangAS::Default. This can happen when the target uses a restricted 2813 /// address space for the stack but the source language requires 2814 /// LangAS::Default to be a generic address space. The latter condition is 2815 /// common for most programming languages; OpenCL is an exception in that 2816 /// LangAS::Default is the private address space, which naturally maps 2817 /// to the stack. 2818 /// 2819 /// Because the address of a temporary is often exposed to the program in 2820 /// various ways, this function will perform the cast. The original alloca 2821 /// instruction is returned through \p Alloca if it is not nullptr. 2822 /// 2823 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2824 /// more efficient if the caller knows that the address will not be exposed. 2825 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2826 llvm::Value *ArraySize = nullptr); 2827 RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2828 const Twine &Name = "tmp", 2829 llvm::Value *ArraySize = nullptr, 2830 RawAddress *Alloca = nullptr); 2831 RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2832 const Twine &Name = "tmp", 2833 llvm::Value *ArraySize = nullptr); 2834 2835 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2836 /// default ABI alignment of the given LLVM type. 2837 /// 2838 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2839 /// any given AST type that happens to have been lowered to the 2840 /// given IR type. This should only ever be used for function-local, 2841 /// IR-driven manipulations like saving and restoring a value. Do 2842 /// not hand this address off to arbitrary IRGen routines, and especially 2843 /// do not pass it as an argument to a function that might expect a 2844 /// properly ABI-aligned value. 2845 RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2846 const Twine &Name = "tmp"); 2847 2848 /// CreateIRTemp - Create a temporary IR object of the given type, with 2849 /// appropriate alignment. This routine should only be used when an temporary 2850 /// value needs to be stored into an alloca (for example, to avoid explicit 2851 /// PHI construction), but the type is the IR type, not the type appropriate 2852 /// for storing in memory. 2853 /// 2854 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2855 /// ConvertType instead of ConvertTypeForMem. 2856 RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2857 2858 /// CreateMemTemp - Create a temporary memory object of the given type, with 2859 /// appropriate alignmen and cast it to the default address space. Returns 2860 /// the original alloca instruction by \p Alloca if it is not nullptr. 2861 RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp", 2862 RawAddress *Alloca = nullptr); 2863 RawAddress CreateMemTemp(QualType T, CharUnits Align, 2864 const Twine &Name = "tmp", 2865 RawAddress *Alloca = nullptr); 2866 2867 /// CreateMemTemp - Create a temporary memory object of the given type, with 2868 /// appropriate alignmen without casting it to the default address space. 2869 RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2870 RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, 2871 const Twine &Name = "tmp"); 2872 2873 /// CreateAggTemp - Create a temporary memory object for the given 2874 /// aggregate type. 2875 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2876 RawAddress *Alloca = nullptr) { 2877 return AggValueSlot::forAddr( 2878 CreateMemTemp(T, Name, Alloca), T.getQualifiers(), 2879 AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, 2880 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); 2881 } 2882 2883 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2884 /// expression and compare the result against zero, returning an Int1Ty value. 2885 llvm::Value *EvaluateExprAsBool(const Expr *E); 2886 2887 /// Retrieve the implicit cast expression of the rhs in a binary operator 2888 /// expression by passing pointers to Value and QualType 2889 /// This is used for implicit bitfield conversion checks, which 2890 /// must compare with the value before potential truncation. 2891 llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, 2892 llvm::Value **Previous, 2893 QualType *SrcType); 2894 2895 /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, 2896 /// so we use the value after conversion. 2897 void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, 2898 llvm::Value *Dst, QualType DstType, 2899 const CGBitFieldInfo &Info, 2900 SourceLocation Loc); 2901 2902 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2903 void EmitIgnoredExpr(const Expr *E); 2904 2905 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2906 /// any type. The result is returned as an RValue struct. If this is an 2907 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2908 /// the result should be returned. 2909 /// 2910 /// \param ignoreResult True if the resulting value isn't used. 2911 RValue EmitAnyExpr(const Expr *E, 2912 AggValueSlot aggSlot = AggValueSlot::ignored(), 2913 bool ignoreResult = false); 2914 2915 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2916 // or the value of the expression, depending on how va_list is defined. 2917 Address EmitVAListRef(const Expr *E); 2918 2919 /// Emit a "reference" to a __builtin_ms_va_list; this is 2920 /// always the value of the expression, because a __builtin_ms_va_list is a 2921 /// pointer to a char. 2922 Address EmitMSVAListRef(const Expr *E); 2923 2924 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2925 /// always be accessible even if no aggregate location is provided. 2926 RValue EmitAnyExprToTemp(const Expr *E); 2927 2928 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2929 /// arbitrary expression into the given memory location. 2930 void EmitAnyExprToMem(const Expr *E, Address Location, 2931 Qualifiers Quals, bool IsInitializer); 2932 2933 void EmitAnyExprToExn(const Expr *E, Address Addr); 2934 2935 /// EmitInitializationToLValue - Emit an initializer to an LValue. 2936 void EmitInitializationToLValue( 2937 const Expr *E, LValue LV, 2938 AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); 2939 2940 /// EmitExprAsInit - Emits the code necessary to initialize a 2941 /// location in memory with the given initializer. 2942 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2943 bool capturedByInit); 2944 2945 /// hasVolatileMember - returns true if aggregate type has a volatile 2946 /// member. 2947 bool hasVolatileMember(QualType T) { 2948 if (const RecordType *RT = T->getAs<RecordType>()) { 2949 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2950 return RD->hasVolatileMember(); 2951 } 2952 return false; 2953 } 2954 2955 /// Determine whether a return value slot may overlap some other object. 2956 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2957 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2958 // class subobjects. These cases may need to be revisited depending on the 2959 // resolution of the relevant core issue. 2960 return AggValueSlot::DoesNotOverlap; 2961 } 2962 2963 /// Determine whether a field initialization may overlap some other object. 2964 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2965 2966 /// Determine whether a base class initialization may overlap some other 2967 /// object. 2968 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2969 const CXXRecordDecl *BaseRD, 2970 bool IsVirtual); 2971 2972 /// Emit an aggregate assignment. 2973 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2974 bool IsVolatile = hasVolatileMember(EltTy); 2975 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2976 } 2977 2978 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2979 AggValueSlot::Overlap_t MayOverlap) { 2980 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2981 } 2982 2983 /// EmitAggregateCopy - Emit an aggregate copy. 2984 /// 2985 /// \param isVolatile \c true iff either the source or the destination is 2986 /// volatile. 2987 /// \param MayOverlap Whether the tail padding of the destination might be 2988 /// occupied by some other object. More efficient code can often be 2989 /// generated if not. 2990 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2991 AggValueSlot::Overlap_t MayOverlap, 2992 bool isVolatile = false); 2993 2994 /// GetAddrOfLocalVar - Return the address of a local variable. 2995 Address GetAddrOfLocalVar(const VarDecl *VD) { 2996 auto it = LocalDeclMap.find(VD); 2997 assert(it != LocalDeclMap.end() && 2998 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2999 return it->second; 3000 } 3001 3002 /// Given an opaque value expression, return its LValue mapping if it exists, 3003 /// otherwise create one. 3004 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 3005 3006 /// Given an opaque value expression, return its RValue mapping if it exists, 3007 /// otherwise create one. 3008 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 3009 3010 /// Get the index of the current ArrayInitLoopExpr, if any. 3011 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 3012 3013 /// getAccessedFieldNo - Given an encoded value and a result number, return 3014 /// the input field number being accessed. 3015 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 3016 3017 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 3018 llvm::BasicBlock *GetIndirectGotoBlock(); 3019 3020 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 3021 static bool IsWrappedCXXThis(const Expr *E); 3022 3023 /// EmitNullInitialization - Generate code to set a value of the given type to 3024 /// null, If the type contains data member pointers, they will be initialized 3025 /// to -1 in accordance with the Itanium C++ ABI. 3026 void EmitNullInitialization(Address DestPtr, QualType Ty); 3027 3028 /// Emits a call to an LLVM variable-argument intrinsic, either 3029 /// \c llvm.va_start or \c llvm.va_end. 3030 /// \param ArgValue A reference to the \c va_list as emitted by either 3031 /// \c EmitVAListRef or \c EmitMSVAListRef. 3032 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 3033 /// calls \c llvm.va_end. 3034 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 3035 3036 /// Generate code to get an argument from the passed in pointer 3037 /// and update it accordingly. 3038 /// \param VE The \c VAArgExpr for which to generate code. 3039 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 3040 /// either \c EmitVAListRef or \c EmitMSVAListRef. 3041 /// \returns A pointer to the argument. 3042 // FIXME: We should be able to get rid of this method and use the va_arg 3043 // instruction in LLVM instead once it works well enough. 3044 RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 3045 AggValueSlot Slot = AggValueSlot::ignored()); 3046 3047 /// emitArrayLength - Compute the length of an array, even if it's a 3048 /// VLA, and drill down to the base element type. 3049 llvm::Value *emitArrayLength(const ArrayType *arrayType, 3050 QualType &baseType, 3051 Address &addr); 3052 3053 /// EmitVLASize - Capture all the sizes for the VLA expressions in 3054 /// the given variably-modified type and store them in the VLASizeMap. 3055 /// 3056 /// This function can be called with a null (unreachable) insert point. 3057 void EmitVariablyModifiedType(QualType Ty); 3058 3059 struct VlaSizePair { 3060 llvm::Value *NumElts; 3061 QualType Type; 3062 3063 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 3064 }; 3065 3066 /// Return the number of elements for a single dimension 3067 /// for the given array type. 3068 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 3069 VlaSizePair getVLAElements1D(QualType vla); 3070 3071 /// Returns an LLVM value that corresponds to the size, 3072 /// in non-variably-sized elements, of a variable length array type, 3073 /// plus that largest non-variably-sized element type. Assumes that 3074 /// the type has already been emitted with EmitVariablyModifiedType. 3075 VlaSizePair getVLASize(const VariableArrayType *vla); 3076 VlaSizePair getVLASize(QualType vla); 3077 3078 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 3079 /// generating code for an C++ member function. 3080 llvm::Value *LoadCXXThis() { 3081 assert(CXXThisValue && "no 'this' value for this function"); 3082 return CXXThisValue; 3083 } 3084 Address LoadCXXThisAddress(); 3085 3086 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 3087 /// virtual bases. 3088 // FIXME: Every place that calls LoadCXXVTT is something 3089 // that needs to be abstracted properly. 3090 llvm::Value *LoadCXXVTT() { 3091 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 3092 return CXXStructorImplicitParamValue; 3093 } 3094 3095 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 3096 /// complete class to the given direct base. 3097 Address 3098 GetAddressOfDirectBaseInCompleteClass(Address Value, 3099 const CXXRecordDecl *Derived, 3100 const CXXRecordDecl *Base, 3101 bool BaseIsVirtual); 3102 3103 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 3104 3105 /// GetAddressOfBaseClass - This function will add the necessary delta to the 3106 /// load of 'this' and returns address of the base class. 3107 Address GetAddressOfBaseClass(Address Value, 3108 const CXXRecordDecl *Derived, 3109 CastExpr::path_const_iterator PathBegin, 3110 CastExpr::path_const_iterator PathEnd, 3111 bool NullCheckValue, SourceLocation Loc); 3112 3113 Address GetAddressOfDerivedClass(Address Value, 3114 const CXXRecordDecl *Derived, 3115 CastExpr::path_const_iterator PathBegin, 3116 CastExpr::path_const_iterator PathEnd, 3117 bool NullCheckValue); 3118 3119 /// GetVTTParameter - Return the VTT parameter that should be passed to a 3120 /// base constructor/destructor with virtual bases. 3121 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 3122 /// to ItaniumCXXABI.cpp together with all the references to VTT. 3123 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 3124 bool Delegating); 3125 3126 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 3127 CXXCtorType CtorType, 3128 const FunctionArgList &Args, 3129 SourceLocation Loc); 3130 // It's important not to confuse this and the previous function. Delegating 3131 // constructors are the C++0x feature. The constructor delegate optimization 3132 // is used to reduce duplication in the base and complete consturctors where 3133 // they are substantially the same. 3134 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3135 const FunctionArgList &Args); 3136 3137 /// Emit a call to an inheriting constructor (that is, one that invokes a 3138 /// constructor inherited from a base class) by inlining its definition. This 3139 /// is necessary if the ABI does not support forwarding the arguments to the 3140 /// base class constructor (because they're variadic or similar). 3141 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3142 CXXCtorType CtorType, 3143 bool ForVirtualBase, 3144 bool Delegating, 3145 CallArgList &Args); 3146 3147 /// Emit a call to a constructor inherited from a base class, passing the 3148 /// current constructor's arguments along unmodified (without even making 3149 /// a copy). 3150 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 3151 bool ForVirtualBase, Address This, 3152 bool InheritedFromVBase, 3153 const CXXInheritedCtorInitExpr *E); 3154 3155 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3156 bool ForVirtualBase, bool Delegating, 3157 AggValueSlot ThisAVS, const CXXConstructExpr *E); 3158 3159 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3160 bool ForVirtualBase, bool Delegating, 3161 Address This, CallArgList &Args, 3162 AggValueSlot::Overlap_t Overlap, 3163 SourceLocation Loc, bool NewPointerIsChecked, 3164 llvm::CallBase **CallOrInvoke = nullptr); 3165 3166 /// Emit assumption load for all bases. Requires to be called only on 3167 /// most-derived class and not under construction of the object. 3168 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 3169 3170 /// Emit assumption that vptr load == global vtable. 3171 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 3172 3173 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 3174 Address This, Address Src, 3175 const CXXConstructExpr *E); 3176 3177 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3178 const ArrayType *ArrayTy, 3179 Address ArrayPtr, 3180 const CXXConstructExpr *E, 3181 bool NewPointerIsChecked, 3182 bool ZeroInitialization = false); 3183 3184 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3185 llvm::Value *NumElements, 3186 Address ArrayPtr, 3187 const CXXConstructExpr *E, 3188 bool NewPointerIsChecked, 3189 bool ZeroInitialization = false); 3190 3191 static Destroyer destroyCXXObject; 3192 3193 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 3194 bool ForVirtualBase, bool Delegating, Address This, 3195 QualType ThisTy); 3196 3197 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 3198 llvm::Type *ElementTy, Address NewPtr, 3199 llvm::Value *NumElements, 3200 llvm::Value *AllocSizeWithoutCookie); 3201 3202 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 3203 Address Ptr); 3204 3205 void EmitSehCppScopeBegin(); 3206 void EmitSehCppScopeEnd(); 3207 void EmitSehTryScopeBegin(); 3208 void EmitSehTryScopeEnd(); 3209 3210 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 3211 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 3212 3213 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 3214 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 3215 3216 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 3217 QualType DeleteTy, llvm::Value *NumElements = nullptr, 3218 CharUnits CookieSize = CharUnits()); 3219 3220 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 3221 const CallExpr *TheCallExpr, bool IsDelete); 3222 3223 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 3224 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 3225 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 3226 3227 /// Situations in which we might emit a check for the suitability of a 3228 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 3229 /// compiler-rt. 3230 enum TypeCheckKind { 3231 /// Checking the operand of a load. Must be suitably sized and aligned. 3232 TCK_Load, 3233 /// Checking the destination of a store. Must be suitably sized and aligned. 3234 TCK_Store, 3235 /// Checking the bound value in a reference binding. Must be suitably sized 3236 /// and aligned, but is not required to refer to an object (until the 3237 /// reference is used), per core issue 453. 3238 TCK_ReferenceBinding, 3239 /// Checking the object expression in a non-static data member access. Must 3240 /// be an object within its lifetime. 3241 TCK_MemberAccess, 3242 /// Checking the 'this' pointer for a call to a non-static member function. 3243 /// Must be an object within its lifetime. 3244 TCK_MemberCall, 3245 /// Checking the 'this' pointer for a constructor call. 3246 TCK_ConstructorCall, 3247 /// Checking the operand of a static_cast to a derived pointer type. Must be 3248 /// null or an object within its lifetime. 3249 TCK_DowncastPointer, 3250 /// Checking the operand of a static_cast to a derived reference type. Must 3251 /// be an object within its lifetime. 3252 TCK_DowncastReference, 3253 /// Checking the operand of a cast to a base object. Must be suitably sized 3254 /// and aligned. 3255 TCK_Upcast, 3256 /// Checking the operand of a cast to a virtual base object. Must be an 3257 /// object within its lifetime. 3258 TCK_UpcastToVirtualBase, 3259 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 3260 TCK_NonnullAssign, 3261 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 3262 /// null or an object within its lifetime. 3263 TCK_DynamicOperation 3264 }; 3265 3266 /// Determine whether the pointer type check \p TCK permits null pointers. 3267 static bool isNullPointerAllowed(TypeCheckKind TCK); 3268 3269 /// Determine whether the pointer type check \p TCK requires a vptr check. 3270 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3271 3272 /// Whether any type-checking sanitizers are enabled. If \c false, 3273 /// calls to EmitTypeCheck can be skipped. 3274 bool sanitizePerformTypeCheck() const; 3275 3276 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, 3277 QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), 3278 llvm::Value *ArraySize = nullptr) { 3279 if (!sanitizePerformTypeCheck()) 3280 return; 3281 EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(), 3282 SkippedChecks, ArraySize); 3283 } 3284 3285 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, 3286 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3287 SanitizerSet SkippedChecks = SanitizerSet(), 3288 llvm::Value *ArraySize = nullptr) { 3289 if (!sanitizePerformTypeCheck()) 3290 return; 3291 EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment, 3292 SkippedChecks, ArraySize); 3293 } 3294 3295 /// Emit a check that \p V is the address of storage of the 3296 /// appropriate size and alignment for an object of type \p Type 3297 /// (or if ArraySize is provided, for an array of that bound). 3298 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3299 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3300 SanitizerSet SkippedChecks = SanitizerSet(), 3301 llvm::Value *ArraySize = nullptr); 3302 3303 /// Emit a check that \p Base points into an array object, which 3304 /// we can access at index \p Index. \p Accessed should be \c false if we 3305 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3306 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3307 QualType IndexType, bool Accessed); 3308 void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 3309 llvm::Value *Index, QualType IndexType, 3310 QualType IndexedType, bool Accessed); 3311 3312 // Find a struct's flexible array member and get its offset. It may be 3313 // embedded inside multiple sub-structs, but must still be the last field. 3314 const FieldDecl * 3315 FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, 3316 const FieldDecl *FAMDecl, 3317 uint64_t &Offset); 3318 3319 llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, 3320 const FieldDecl *FAMDecl, 3321 const FieldDecl *CountDecl); 3322 3323 /// Build an expression accessing the "counted_by" field. 3324 llvm::Value *EmitLoadOfCountedByField(const Expr *Base, 3325 const FieldDecl *FAMDecl, 3326 const FieldDecl *CountDecl); 3327 3328 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3329 bool isInc, bool isPre); 3330 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3331 bool isInc, bool isPre); 3332 3333 /// Converts Location to a DebugLoc, if debug information is enabled. 3334 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3335 3336 /// Get the record field index as represented in debug info. 3337 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3338 3339 3340 //===--------------------------------------------------------------------===// 3341 // Declaration Emission 3342 //===--------------------------------------------------------------------===// 3343 3344 /// EmitDecl - Emit a declaration. 3345 /// 3346 /// This function can be called with a null (unreachable) insert point. 3347 void EmitDecl(const Decl &D); 3348 3349 /// EmitVarDecl - Emit a local variable declaration. 3350 /// 3351 /// This function can be called with a null (unreachable) insert point. 3352 void EmitVarDecl(const VarDecl &D); 3353 3354 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3355 bool capturedByInit); 3356 3357 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3358 llvm::Value *Address); 3359 3360 /// Determine whether the given initializer is trivial in the sense 3361 /// that it requires no code to be generated. 3362 bool isTrivialInitializer(const Expr *Init); 3363 3364 /// EmitAutoVarDecl - Emit an auto variable declaration. 3365 /// 3366 /// This function can be called with a null (unreachable) insert point. 3367 void EmitAutoVarDecl(const VarDecl &D); 3368 3369 class AutoVarEmission { 3370 friend class CodeGenFunction; 3371 3372 const VarDecl *Variable; 3373 3374 /// The address of the alloca for languages with explicit address space 3375 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3376 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3377 /// as a global constant. 3378 Address Addr; 3379 3380 llvm::Value *NRVOFlag; 3381 3382 /// True if the variable is a __block variable that is captured by an 3383 /// escaping block. 3384 bool IsEscapingByRef; 3385 3386 /// True if the variable is of aggregate type and has a constant 3387 /// initializer. 3388 bool IsConstantAggregate; 3389 3390 /// Non-null if we should use lifetime annotations. 3391 llvm::Value *SizeForLifetimeMarkers; 3392 3393 /// Address with original alloca instruction. Invalid if the variable was 3394 /// emitted as a global constant. 3395 RawAddress AllocaAddr; 3396 3397 struct Invalid {}; 3398 AutoVarEmission(Invalid) 3399 : Variable(nullptr), Addr(Address::invalid()), 3400 AllocaAddr(RawAddress::invalid()) {} 3401 3402 AutoVarEmission(const VarDecl &variable) 3403 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3404 IsEscapingByRef(false), IsConstantAggregate(false), 3405 SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} 3406 3407 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3408 3409 public: 3410 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3411 3412 bool useLifetimeMarkers() const { 3413 return SizeForLifetimeMarkers != nullptr; 3414 } 3415 llvm::Value *getSizeForLifetimeMarkers() const { 3416 assert(useLifetimeMarkers()); 3417 return SizeForLifetimeMarkers; 3418 } 3419 3420 /// Returns the raw, allocated address, which is not necessarily 3421 /// the address of the object itself. It is casted to default 3422 /// address space for address space agnostic languages. 3423 Address getAllocatedAddress() const { 3424 return Addr; 3425 } 3426 3427 /// Returns the address for the original alloca instruction. 3428 RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } 3429 3430 /// Returns the address of the object within this declaration. 3431 /// Note that this does not chase the forwarding pointer for 3432 /// __block decls. 3433 Address getObjectAddress(CodeGenFunction &CGF) const { 3434 if (!IsEscapingByRef) return Addr; 3435 3436 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3437 } 3438 }; 3439 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3440 void EmitAutoVarInit(const AutoVarEmission &emission); 3441 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3442 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3443 QualType::DestructionKind dtorKind); 3444 3445 /// Emits the alloca and debug information for the size expressions for each 3446 /// dimension of an array. It registers the association of its (1-dimensional) 3447 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3448 /// reference this node when creating the DISubrange object to describe the 3449 /// array types. 3450 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3451 const VarDecl &D, 3452 bool EmitDebugInfo); 3453 3454 void EmitStaticVarDecl(const VarDecl &D, 3455 llvm::GlobalValue::LinkageTypes Linkage); 3456 3457 class ParamValue { 3458 union { 3459 Address Addr; 3460 llvm::Value *Value; 3461 }; 3462 3463 bool IsIndirect; 3464 3465 ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} 3466 ParamValue(Address A) : Addr(A), IsIndirect(true) {} 3467 3468 public: 3469 static ParamValue forDirect(llvm::Value *value) { 3470 return ParamValue(value); 3471 } 3472 static ParamValue forIndirect(Address addr) { 3473 assert(!addr.getAlignment().isZero()); 3474 return ParamValue(addr); 3475 } 3476 3477 bool isIndirect() const { return IsIndirect; } 3478 llvm::Value *getAnyValue() const { 3479 if (!isIndirect()) 3480 return Value; 3481 assert(!Addr.hasOffset() && "unexpected offset"); 3482 return Addr.getBasePointer(); 3483 } 3484 3485 llvm::Value *getDirectValue() const { 3486 assert(!isIndirect()); 3487 return Value; 3488 } 3489 3490 Address getIndirectAddress() const { 3491 assert(isIndirect()); 3492 return Addr; 3493 } 3494 }; 3495 3496 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3497 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3498 3499 /// protectFromPeepholes - Protect a value that we're intending to 3500 /// store to the side, but which will probably be used later, from 3501 /// aggressive peepholing optimizations that might delete it. 3502 /// 3503 /// Pass the result to unprotectFromPeepholes to declare that 3504 /// protection is no longer required. 3505 /// 3506 /// There's no particular reason why this shouldn't apply to 3507 /// l-values, it's just that no existing peepholes work on pointers. 3508 PeepholeProtection protectFromPeepholes(RValue rvalue); 3509 void unprotectFromPeepholes(PeepholeProtection protection); 3510 3511 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3512 SourceLocation Loc, 3513 SourceLocation AssumptionLoc, 3514 llvm::Value *Alignment, 3515 llvm::Value *OffsetValue, 3516 llvm::Value *TheCheck, 3517 llvm::Instruction *Assumption); 3518 3519 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3520 SourceLocation Loc, SourceLocation AssumptionLoc, 3521 llvm::Value *Alignment, 3522 llvm::Value *OffsetValue = nullptr); 3523 3524 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3525 SourceLocation AssumptionLoc, 3526 llvm::Value *Alignment, 3527 llvm::Value *OffsetValue = nullptr); 3528 3529 //===--------------------------------------------------------------------===// 3530 // Statement Emission 3531 //===--------------------------------------------------------------------===// 3532 3533 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3534 void EmitStopPoint(const Stmt *S); 3535 3536 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3537 /// this function even if there is no current insertion point. 3538 /// 3539 /// This function may clear the current insertion point; callers should use 3540 /// EnsureInsertPoint if they wish to subsequently generate code without first 3541 /// calling EmitBlock, EmitBranch, or EmitStmt. 3542 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); 3543 3544 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3545 /// necessarily require an insertion point or debug information; typically 3546 /// because the statement amounts to a jump or a container of other 3547 /// statements. 3548 /// 3549 /// \return True if the statement was handled. 3550 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3551 3552 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3553 AggValueSlot AVS = AggValueSlot::ignored()); 3554 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3555 bool GetLast = false, 3556 AggValueSlot AVS = 3557 AggValueSlot::ignored()); 3558 3559 /// EmitLabel - Emit the block for the given label. It is legal to call this 3560 /// function even if there is no current insertion point. 3561 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3562 3563 void EmitLabelStmt(const LabelStmt &S); 3564 void EmitAttributedStmt(const AttributedStmt &S); 3565 void EmitGotoStmt(const GotoStmt &S); 3566 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3567 void EmitIfStmt(const IfStmt &S); 3568 3569 void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); 3570 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); 3571 void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); 3572 void EmitReturnStmt(const ReturnStmt &S); 3573 void EmitDeclStmt(const DeclStmt &S); 3574 void EmitBreakStmt(const BreakStmt &S); 3575 void EmitContinueStmt(const ContinueStmt &S); 3576 void EmitSwitchStmt(const SwitchStmt &S); 3577 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3578 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3579 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3580 void EmitAsmStmt(const AsmStmt &S); 3581 3582 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3583 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3584 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3585 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3586 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3587 3588 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3589 void EmitCoreturnStmt(const CoreturnStmt &S); 3590 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3591 AggValueSlot aggSlot = AggValueSlot::ignored(), 3592 bool ignoreResult = false); 3593 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3594 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3595 AggValueSlot aggSlot = AggValueSlot::ignored(), 3596 bool ignoreResult = false); 3597 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3598 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3599 3600 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3601 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3602 3603 void EmitCXXTryStmt(const CXXTryStmt &S); 3604 void EmitSEHTryStmt(const SEHTryStmt &S); 3605 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3606 void EnterSEHTryStmt(const SEHTryStmt &S); 3607 void ExitSEHTryStmt(const SEHTryStmt &S); 3608 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3609 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3610 3611 void pushSEHCleanup(CleanupKind kind, 3612 llvm::Function *FinallyFunc); 3613 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3614 const Stmt *OutlinedStmt); 3615 3616 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3617 const SEHExceptStmt &Except); 3618 3619 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3620 const SEHFinallyStmt &Finally); 3621 3622 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3623 llvm::Value *ParentFP, 3624 llvm::Value *EntryEBP); 3625 llvm::Value *EmitSEHExceptionCode(); 3626 llvm::Value *EmitSEHExceptionInfo(); 3627 llvm::Value *EmitSEHAbnormalTermination(); 3628 3629 /// Emit simple code for OpenMP directives in Simd-only mode. 3630 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3631 3632 /// Scan the outlined statement for captures from the parent function. For 3633 /// each capture, mark the capture as escaped and emit a call to 3634 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3635 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3636 bool IsFilter); 3637 3638 /// Recovers the address of a local in a parent function. ParentVar is the 3639 /// address of the variable used in the immediate parent function. It can 3640 /// either be an alloca or a call to llvm.localrecover if there are nested 3641 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3642 /// frame. 3643 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3644 Address ParentVar, 3645 llvm::Value *ParentFP); 3646 3647 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3648 ArrayRef<const Attr *> Attrs = {}); 3649 3650 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3651 class OMPCancelStackRAII { 3652 CodeGenFunction &CGF; 3653 3654 public: 3655 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3656 bool HasCancel) 3657 : CGF(CGF) { 3658 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3659 } 3660 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3661 }; 3662 3663 /// Returns calculated size of the specified type. 3664 llvm::Value *getTypeSize(QualType Ty); 3665 LValue InitCapturedStruct(const CapturedStmt &S); 3666 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3667 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3668 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3669 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3670 SourceLocation Loc); 3671 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3672 SmallVectorImpl<llvm::Value *> &CapturedVars); 3673 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3674 SourceLocation Loc); 3675 /// Perform element by element copying of arrays with type \a 3676 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3677 /// generated by \a CopyGen. 3678 /// 3679 /// \param DestAddr Address of the destination array. 3680 /// \param SrcAddr Address of the source array. 3681 /// \param OriginalType Type of destination and source arrays. 3682 /// \param CopyGen Copying procedure that copies value of single array element 3683 /// to another single array element. 3684 void EmitOMPAggregateAssign( 3685 Address DestAddr, Address SrcAddr, QualType OriginalType, 3686 const llvm::function_ref<void(Address, Address)> CopyGen); 3687 /// Emit proper copying of data from one variable to another. 3688 /// 3689 /// \param OriginalType Original type of the copied variables. 3690 /// \param DestAddr Destination address. 3691 /// \param SrcAddr Source address. 3692 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3693 /// type of the base array element). 3694 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3695 /// the base array element). 3696 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3697 /// DestVD. 3698 void EmitOMPCopy(QualType OriginalType, 3699 Address DestAddr, Address SrcAddr, 3700 const VarDecl *DestVD, const VarDecl *SrcVD, 3701 const Expr *Copy); 3702 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3703 /// \a X = \a E \a BO \a E. 3704 /// 3705 /// \param X Value to be updated. 3706 /// \param E Update value. 3707 /// \param BO Binary operation for update operation. 3708 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3709 /// expression, false otherwise. 3710 /// \param AO Atomic ordering of the generated atomic instructions. 3711 /// \param CommonGen Code generator for complex expressions that cannot be 3712 /// expressed through atomicrmw instruction. 3713 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3714 /// generated, <false, RValue::get(nullptr)> otherwise. 3715 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3716 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3717 llvm::AtomicOrdering AO, SourceLocation Loc, 3718 const llvm::function_ref<RValue(RValue)> CommonGen); 3719 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3720 OMPPrivateScope &PrivateScope); 3721 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3722 OMPPrivateScope &PrivateScope); 3723 void EmitOMPUseDevicePtrClause( 3724 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3725 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3726 CaptureDeviceAddrMap); 3727 void EmitOMPUseDeviceAddrClause( 3728 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3729 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3730 CaptureDeviceAddrMap); 3731 /// Emit code for copyin clause in \a D directive. The next code is 3732 /// generated at the start of outlined functions for directives: 3733 /// \code 3734 /// threadprivate_var1 = master_threadprivate_var1; 3735 /// operator=(threadprivate_var2, master_threadprivate_var2); 3736 /// ... 3737 /// __kmpc_barrier(&loc, global_tid); 3738 /// \endcode 3739 /// 3740 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3741 /// \returns true if at least one copyin variable is found, false otherwise. 3742 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3743 /// Emit initial code for lastprivate variables. If some variable is 3744 /// not also firstprivate, then the default initialization is used. Otherwise 3745 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3746 /// method. 3747 /// 3748 /// \param D Directive that may have 'lastprivate' directives. 3749 /// \param PrivateScope Private scope for capturing lastprivate variables for 3750 /// proper codegen in internal captured statement. 3751 /// 3752 /// \returns true if there is at least one lastprivate variable, false 3753 /// otherwise. 3754 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3755 OMPPrivateScope &PrivateScope); 3756 /// Emit final copying of lastprivate values to original variables at 3757 /// the end of the worksharing or simd directive. 3758 /// 3759 /// \param D Directive that has at least one 'lastprivate' directives. 3760 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3761 /// it is the last iteration of the loop code in associated directive, or to 3762 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3763 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3764 bool NoFinals, 3765 llvm::Value *IsLastIterCond = nullptr); 3766 /// Emit initial code for linear clauses. 3767 void EmitOMPLinearClause(const OMPLoopDirective &D, 3768 CodeGenFunction::OMPPrivateScope &PrivateScope); 3769 /// Emit final code for linear clauses. 3770 /// \param CondGen Optional conditional code for final part of codegen for 3771 /// linear clause. 3772 void EmitOMPLinearClauseFinal( 3773 const OMPLoopDirective &D, 3774 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3775 /// Emit initial code for reduction variables. Creates reduction copies 3776 /// and initializes them with the values according to OpenMP standard. 3777 /// 3778 /// \param D Directive (possibly) with the 'reduction' clause. 3779 /// \param PrivateScope Private scope for capturing reduction variables for 3780 /// proper codegen in internal captured statement. 3781 /// 3782 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3783 OMPPrivateScope &PrivateScope, 3784 bool ForInscan = false); 3785 /// Emit final update of reduction values to original variables at 3786 /// the end of the directive. 3787 /// 3788 /// \param D Directive that has at least one 'reduction' directives. 3789 /// \param ReductionKind The kind of reduction to perform. 3790 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3791 const OpenMPDirectiveKind ReductionKind); 3792 /// Emit initial code for linear variables. Creates private copies 3793 /// and initializes them with the values according to OpenMP standard. 3794 /// 3795 /// \param D Directive (possibly) with the 'linear' clause. 3796 /// \return true if at least one linear variable is found that should be 3797 /// initialized with the value of the original variable, false otherwise. 3798 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3799 3800 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3801 llvm::Function * /*OutlinedFn*/, 3802 const OMPTaskDataTy & /*Data*/)> 3803 TaskGenTy; 3804 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3805 const OpenMPDirectiveKind CapturedRegion, 3806 const RegionCodeGenTy &BodyGen, 3807 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3808 struct OMPTargetDataInfo { 3809 Address BasePointersArray = Address::invalid(); 3810 Address PointersArray = Address::invalid(); 3811 Address SizesArray = Address::invalid(); 3812 Address MappersArray = Address::invalid(); 3813 unsigned NumberOfTargetItems = 0; 3814 explicit OMPTargetDataInfo() = default; 3815 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3816 Address SizesArray, Address MappersArray, 3817 unsigned NumberOfTargetItems) 3818 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3819 SizesArray(SizesArray), MappersArray(MappersArray), 3820 NumberOfTargetItems(NumberOfTargetItems) {} 3821 }; 3822 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3823 const RegionCodeGenTy &BodyGen, 3824 OMPTargetDataInfo &InputInfo); 3825 void processInReduction(const OMPExecutableDirective &S, 3826 OMPTaskDataTy &Data, 3827 CodeGenFunction &CGF, 3828 const CapturedStmt *CS, 3829 OMPPrivateScope &Scope); 3830 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3831 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3832 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3833 void EmitOMPTileDirective(const OMPTileDirective &S); 3834 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3835 void EmitOMPReverseDirective(const OMPReverseDirective &S); 3836 void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); 3837 void EmitOMPForDirective(const OMPForDirective &S); 3838 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3839 void EmitOMPScopeDirective(const OMPScopeDirective &S); 3840 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3841 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3842 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3843 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3844 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3845 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3846 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3847 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3848 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3849 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3850 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3851 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3852 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3853 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3854 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3855 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3856 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3857 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3858 void EmitOMPScanDirective(const OMPScanDirective &S); 3859 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3860 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3861 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3862 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3863 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3864 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3865 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3866 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3867 void 3868 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3869 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3870 void 3871 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3872 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3873 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3874 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3875 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3876 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3877 void EmitOMPMaskedTaskLoopDirective(const OMPMaskedTaskLoopDirective &S); 3878 void 3879 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3880 void 3881 EmitOMPMaskedTaskLoopSimdDirective(const OMPMaskedTaskLoopSimdDirective &S); 3882 void EmitOMPParallelMasterTaskLoopDirective( 3883 const OMPParallelMasterTaskLoopDirective &S); 3884 void EmitOMPParallelMaskedTaskLoopDirective( 3885 const OMPParallelMaskedTaskLoopDirective &S); 3886 void EmitOMPParallelMasterTaskLoopSimdDirective( 3887 const OMPParallelMasterTaskLoopSimdDirective &S); 3888 void EmitOMPParallelMaskedTaskLoopSimdDirective( 3889 const OMPParallelMaskedTaskLoopSimdDirective &S); 3890 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3891 void EmitOMPDistributeParallelForDirective( 3892 const OMPDistributeParallelForDirective &S); 3893 void EmitOMPDistributeParallelForSimdDirective( 3894 const OMPDistributeParallelForSimdDirective &S); 3895 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3896 void EmitOMPTargetParallelForSimdDirective( 3897 const OMPTargetParallelForSimdDirective &S); 3898 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3899 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3900 void 3901 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3902 void EmitOMPTeamsDistributeParallelForSimdDirective( 3903 const OMPTeamsDistributeParallelForSimdDirective &S); 3904 void EmitOMPTeamsDistributeParallelForDirective( 3905 const OMPTeamsDistributeParallelForDirective &S); 3906 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3907 void EmitOMPTargetTeamsDistributeDirective( 3908 const OMPTargetTeamsDistributeDirective &S); 3909 void EmitOMPTargetTeamsDistributeParallelForDirective( 3910 const OMPTargetTeamsDistributeParallelForDirective &S); 3911 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3912 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3913 void EmitOMPTargetTeamsDistributeSimdDirective( 3914 const OMPTargetTeamsDistributeSimdDirective &S); 3915 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3916 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3917 void EmitOMPTargetParallelGenericLoopDirective( 3918 const OMPTargetParallelGenericLoopDirective &S); 3919 void EmitOMPTargetTeamsGenericLoopDirective( 3920 const OMPTargetTeamsGenericLoopDirective &S); 3921 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3922 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3923 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3924 void EmitOMPAssumeDirective(const OMPAssumeDirective &S); 3925 3926 /// Emit device code for the target directive. 3927 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3928 StringRef ParentName, 3929 const OMPTargetDirective &S); 3930 static void 3931 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3932 const OMPTargetParallelDirective &S); 3933 /// Emit device code for the target parallel for directive. 3934 static void EmitOMPTargetParallelForDeviceFunction( 3935 CodeGenModule &CGM, StringRef ParentName, 3936 const OMPTargetParallelForDirective &S); 3937 /// Emit device code for the target parallel for simd directive. 3938 static void EmitOMPTargetParallelForSimdDeviceFunction( 3939 CodeGenModule &CGM, StringRef ParentName, 3940 const OMPTargetParallelForSimdDirective &S); 3941 /// Emit device code for the target teams directive. 3942 static void 3943 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3944 const OMPTargetTeamsDirective &S); 3945 /// Emit device code for the target teams distribute directive. 3946 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3947 CodeGenModule &CGM, StringRef ParentName, 3948 const OMPTargetTeamsDistributeDirective &S); 3949 /// Emit device code for the target teams distribute simd directive. 3950 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3951 CodeGenModule &CGM, StringRef ParentName, 3952 const OMPTargetTeamsDistributeSimdDirective &S); 3953 /// Emit device code for the target simd directive. 3954 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3955 StringRef ParentName, 3956 const OMPTargetSimdDirective &S); 3957 /// Emit device code for the target teams distribute parallel for simd 3958 /// directive. 3959 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3960 CodeGenModule &CGM, StringRef ParentName, 3961 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3962 3963 /// Emit device code for the target teams loop directive. 3964 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3965 CodeGenModule &CGM, StringRef ParentName, 3966 const OMPTargetTeamsGenericLoopDirective &S); 3967 3968 /// Emit device code for the target parallel loop directive. 3969 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3970 CodeGenModule &CGM, StringRef ParentName, 3971 const OMPTargetParallelGenericLoopDirective &S); 3972 3973 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3974 CodeGenModule &CGM, StringRef ParentName, 3975 const OMPTargetTeamsDistributeParallelForDirective &S); 3976 3977 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3978 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3979 /// future it is meant to be the number of loops expected in the loop nests 3980 /// (usually specified by the "collapse" clause) that are collapsed to a 3981 /// single loop by this function. 3982 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3983 int Depth); 3984 3985 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3986 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3987 3988 /// Emit inner loop of the worksharing/simd construct. 3989 /// 3990 /// \param S Directive, for which the inner loop must be emitted. 3991 /// \param RequiresCleanup true, if directive has some associated private 3992 /// variables. 3993 /// \param LoopCond Bollean condition for loop continuation. 3994 /// \param IncExpr Increment expression for loop control variable. 3995 /// \param BodyGen Generator for the inner body of the inner loop. 3996 /// \param PostIncGen Genrator for post-increment code (required for ordered 3997 /// loop directvies). 3998 void EmitOMPInnerLoop( 3999 const OMPExecutableDirective &S, bool RequiresCleanup, 4000 const Expr *LoopCond, const Expr *IncExpr, 4001 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 4002 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 4003 4004 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 4005 /// Emit initial code for loop counters of loop-based directives. 4006 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 4007 OMPPrivateScope &LoopScope); 4008 4009 /// Helper for the OpenMP loop directives. 4010 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 4011 4012 /// Emit code for the worksharing loop-based directive. 4013 /// \return true, if this construct has any lastprivate clause, false - 4014 /// otherwise. 4015 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 4016 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 4017 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4018 4019 /// Emit code for the distribute loop-based directive. 4020 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 4021 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 4022 4023 /// Helpers for the OpenMP loop directives. 4024 void EmitOMPSimdInit(const OMPLoopDirective &D); 4025 void EmitOMPSimdFinal( 4026 const OMPLoopDirective &D, 4027 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 4028 4029 /// Emits the lvalue for the expression with possibly captured variable. 4030 LValue EmitOMPSharedLValue(const Expr *E); 4031 4032 private: 4033 /// Helpers for blocks. 4034 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 4035 4036 /// struct with the values to be passed to the OpenMP loop-related functions 4037 struct OMPLoopArguments { 4038 /// loop lower bound 4039 Address LB = Address::invalid(); 4040 /// loop upper bound 4041 Address UB = Address::invalid(); 4042 /// loop stride 4043 Address ST = Address::invalid(); 4044 /// isLastIteration argument for runtime functions 4045 Address IL = Address::invalid(); 4046 /// Chunk value generated by sema 4047 llvm::Value *Chunk = nullptr; 4048 /// EnsureUpperBound 4049 Expr *EUB = nullptr; 4050 /// IncrementExpression 4051 Expr *IncExpr = nullptr; 4052 /// Loop initialization 4053 Expr *Init = nullptr; 4054 /// Loop exit condition 4055 Expr *Cond = nullptr; 4056 /// Update of LB after a whole chunk has been executed 4057 Expr *NextLB = nullptr; 4058 /// Update of UB after a whole chunk has been executed 4059 Expr *NextUB = nullptr; 4060 /// Distinguish between the for distribute and sections 4061 OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; 4062 OMPLoopArguments() = default; 4063 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 4064 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 4065 Expr *IncExpr = nullptr, Expr *Init = nullptr, 4066 Expr *Cond = nullptr, Expr *NextLB = nullptr, 4067 Expr *NextUB = nullptr) 4068 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 4069 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 4070 NextUB(NextUB) {} 4071 }; 4072 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 4073 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 4074 const OMPLoopArguments &LoopArgs, 4075 const CodeGenLoopTy &CodeGenLoop, 4076 const CodeGenOrderedTy &CodeGenOrdered); 4077 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 4078 bool IsMonotonic, const OMPLoopDirective &S, 4079 OMPPrivateScope &LoopScope, bool Ordered, 4080 const OMPLoopArguments &LoopArgs, 4081 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4082 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 4083 const OMPLoopDirective &S, 4084 OMPPrivateScope &LoopScope, 4085 const OMPLoopArguments &LoopArgs, 4086 const CodeGenLoopTy &CodeGenLoopContent); 4087 /// Emit code for sections directive. 4088 void EmitSections(const OMPExecutableDirective &S); 4089 4090 public: 4091 //===--------------------------------------------------------------------===// 4092 // OpenACC Emission 4093 //===--------------------------------------------------------------------===// 4094 void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { 4095 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4096 // simply emitting its structured block, but in the future we will implement 4097 // some sort of IR. 4098 EmitStmt(S.getStructuredBlock()); 4099 } 4100 4101 void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { 4102 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4103 // simply emitting its loop, but in the future we will implement 4104 // some sort of IR. 4105 EmitStmt(S.getLoop()); 4106 } 4107 4108 void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { 4109 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4110 // simply emitting its loop, but in the future we will implement 4111 // some sort of IR. 4112 EmitStmt(S.getLoop()); 4113 } 4114 4115 void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { 4116 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4117 // simply emitting its structured block, but in the future we will implement 4118 // some sort of IR. 4119 EmitStmt(S.getStructuredBlock()); 4120 } 4121 4122 void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { 4123 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4124 // but in the future we will implement some sort of IR. 4125 } 4126 4127 void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { 4128 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4129 // but in the future we will implement some sort of IR. 4130 } 4131 4132 void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { 4133 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4134 // simply emitting its structured block, but in the future we will implement 4135 // some sort of IR. 4136 EmitStmt(S.getStructuredBlock()); 4137 } 4138 4139 void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { 4140 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4141 // but in the future we will implement some sort of IR. 4142 } 4143 4144 void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) { 4145 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4146 // but in the future we will implement some sort of IR. 4147 } 4148 4149 void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) { 4150 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4151 // but in the future we will implement some sort of IR. 4152 } 4153 4154 void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) { 4155 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4156 // but in the future we will implement some sort of IR. 4157 } 4158 4159 void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) { 4160 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4161 // but in the future we will implement some sort of IR. 4162 } 4163 4164 //===--------------------------------------------------------------------===// 4165 // LValue Expression Emission 4166 //===--------------------------------------------------------------------===// 4167 4168 /// Create a check that a scalar RValue is non-null. 4169 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 4170 4171 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 4172 RValue GetUndefRValue(QualType Ty); 4173 4174 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 4175 /// and issue an ErrorUnsupported style diagnostic (using the 4176 /// provided Name). 4177 RValue EmitUnsupportedRValue(const Expr *E, 4178 const char *Name); 4179 4180 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 4181 /// an ErrorUnsupported style diagnostic (using the provided Name). 4182 LValue EmitUnsupportedLValue(const Expr *E, 4183 const char *Name); 4184 4185 /// EmitLValue - Emit code to compute a designator that specifies the location 4186 /// of the expression. 4187 /// 4188 /// This can return one of two things: a simple address or a bitfield 4189 /// reference. In either case, the LLVM Value* in the LValue structure is 4190 /// guaranteed to be an LLVM pointer type. 4191 /// 4192 /// If this returns a bitfield reference, nothing about the pointee type of 4193 /// the LLVM value is known: For example, it may not be a pointer to an 4194 /// integer. 4195 /// 4196 /// If this returns a normal address, and if the lvalue's C type is fixed 4197 /// size, this method guarantees that the returned pointer type will point to 4198 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 4199 /// variable length type, this is not possible. 4200 /// 4201 LValue EmitLValue(const Expr *E, 4202 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4203 4204 private: 4205 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 4206 4207 public: 4208 /// Same as EmitLValue but additionally we generate checking code to 4209 /// guard against undefined behavior. This is only suitable when we know 4210 /// that the address will be used to access the object. 4211 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 4212 4213 RValue convertTempToRValue(Address addr, QualType type, 4214 SourceLocation Loc); 4215 4216 void EmitAtomicInit(Expr *E, LValue lvalue); 4217 4218 bool LValueIsSuitableForInlineAtomic(LValue Src); 4219 4220 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 4221 AggValueSlot Slot = AggValueSlot::ignored()); 4222 4223 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 4224 llvm::AtomicOrdering AO, bool IsVolatile = false, 4225 AggValueSlot slot = AggValueSlot::ignored()); 4226 4227 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 4228 4229 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 4230 bool IsVolatile, bool isInit); 4231 4232 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 4233 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 4234 llvm::AtomicOrdering Success = 4235 llvm::AtomicOrdering::SequentiallyConsistent, 4236 llvm::AtomicOrdering Failure = 4237 llvm::AtomicOrdering::SequentiallyConsistent, 4238 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 4239 4240 /// Emit an atomicrmw instruction, and applying relevant metadata when 4241 /// applicable. 4242 llvm::AtomicRMWInst *emitAtomicRMWInst( 4243 llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, 4244 llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, 4245 llvm::SyncScope::ID SSID = llvm::SyncScope::System, 4246 const AtomicExpr *AE = nullptr); 4247 4248 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 4249 const llvm::function_ref<RValue(RValue)> &UpdateOp, 4250 bool IsVolatile); 4251 4252 /// EmitToMemory - Change a scalar value from its value 4253 /// representation to its in-memory representation. 4254 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 4255 4256 /// EmitFromMemory - Change a scalar value from its memory 4257 /// representation to its value representation. 4258 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 4259 4260 /// Check if the scalar \p Value is within the valid range for the given 4261 /// type \p Ty. 4262 /// 4263 /// Returns true if a check is needed (even if the range is unknown). 4264 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 4265 SourceLocation Loc); 4266 4267 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4268 /// care to appropriately convert from the memory representation to 4269 /// the LLVM value representation. 4270 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4271 SourceLocation Loc, 4272 AlignmentSource Source = AlignmentSource::Type, 4273 bool isNontemporal = false) { 4274 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 4275 CGM.getTBAAAccessInfo(Ty), isNontemporal); 4276 } 4277 4278 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4279 SourceLocation Loc, LValueBaseInfo BaseInfo, 4280 TBAAAccessInfo TBAAInfo, 4281 bool isNontemporal = false); 4282 4283 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4284 /// care to appropriately convert from the memory representation to 4285 /// the LLVM value representation. The l-value must be a simple 4286 /// l-value. 4287 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 4288 4289 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4290 /// care to appropriately convert from the memory representation to 4291 /// the LLVM value representation. 4292 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4293 bool Volatile, QualType Ty, 4294 AlignmentSource Source = AlignmentSource::Type, 4295 bool isInit = false, bool isNontemporal = false) { 4296 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 4297 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 4298 } 4299 4300 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4301 bool Volatile, QualType Ty, 4302 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 4303 bool isInit = false, bool isNontemporal = false); 4304 4305 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4306 /// care to appropriately convert from the memory representation to 4307 /// the LLVM value representation. The l-value must be a simple 4308 /// l-value. The isInit flag indicates whether this is an initialization. 4309 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 4310 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 4311 4312 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 4313 /// this method emits the address of the lvalue, then loads the result as an 4314 /// rvalue, returning the rvalue. 4315 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 4316 RValue EmitLoadOfExtVectorElementLValue(LValue V); 4317 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 4318 RValue EmitLoadOfGlobalRegLValue(LValue LV); 4319 4320 /// Like EmitLoadOfLValue but also handles complex and aggregate types. 4321 RValue EmitLoadOfAnyValue(LValue V, 4322 AggValueSlot Slot = AggValueSlot::ignored(), 4323 SourceLocation Loc = {}); 4324 4325 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 4326 /// lvalue, where both are guaranteed to the have the same type, and that type 4327 /// is 'Ty'. 4328 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 4329 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 4330 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 4331 4332 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 4333 /// as EmitStoreThroughLValue. 4334 /// 4335 /// \param Result [out] - If non-null, this will be set to a Value* for the 4336 /// bit-field contents after the store, appropriate for use as the result of 4337 /// an assignment to the bit-field. 4338 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 4339 llvm::Value **Result=nullptr); 4340 4341 /// Emit an l-value for an assignment (simple or compound) of complex type. 4342 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 4343 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 4344 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 4345 llvm::Value *&Result); 4346 4347 // Note: only available for agg return types 4348 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 4349 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 4350 // Note: only available for agg return types 4351 LValue EmitCallExprLValue(const CallExpr *E, 4352 llvm::CallBase **CallOrInvoke = nullptr); 4353 // Note: only available for agg return types 4354 LValue EmitVAArgExprLValue(const VAArgExpr *E); 4355 LValue EmitDeclRefLValue(const DeclRefExpr *E); 4356 LValue EmitStringLiteralLValue(const StringLiteral *E); 4357 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 4358 LValue EmitPredefinedLValue(const PredefinedExpr *E); 4359 LValue EmitUnaryOpLValue(const UnaryOperator *E); 4360 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4361 bool Accessed = false); 4362 llvm::Value *EmitMatrixIndexExpr(const Expr *E); 4363 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 4364 LValue EmitArraySectionExpr(const ArraySectionExpr *E, 4365 bool IsLowerBound = true); 4366 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 4367 LValue EmitMemberExpr(const MemberExpr *E); 4368 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 4369 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 4370 LValue EmitInitListLValue(const InitListExpr *E); 4371 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 4372 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 4373 LValue EmitCastLValue(const CastExpr *E); 4374 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4375 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 4376 LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); 4377 4378 std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, 4379 QualType Ty); 4380 LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, 4381 QualType Ty); 4382 4383 Address EmitExtVectorElementLValue(LValue V); 4384 4385 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 4386 4387 Address EmitArrayToPointerDecay(const Expr *Array, 4388 LValueBaseInfo *BaseInfo = nullptr, 4389 TBAAAccessInfo *TBAAInfo = nullptr); 4390 4391 class ConstantEmission { 4392 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 4393 ConstantEmission(llvm::Constant *C, bool isReference) 4394 : ValueAndIsReference(C, isReference) {} 4395 public: 4396 ConstantEmission() {} 4397 static ConstantEmission forReference(llvm::Constant *C) { 4398 return ConstantEmission(C, true); 4399 } 4400 static ConstantEmission forValue(llvm::Constant *C) { 4401 return ConstantEmission(C, false); 4402 } 4403 4404 explicit operator bool() const { 4405 return ValueAndIsReference.getOpaqueValue() != nullptr; 4406 } 4407 4408 bool isReference() const { return ValueAndIsReference.getInt(); } 4409 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 4410 assert(isReference()); 4411 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 4412 refExpr->getType()); 4413 } 4414 4415 llvm::Constant *getValue() const { 4416 assert(!isReference()); 4417 return ValueAndIsReference.getPointer(); 4418 } 4419 }; 4420 4421 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4422 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4423 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4424 4425 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4426 AggValueSlot slot = AggValueSlot::ignored()); 4427 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4428 4429 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4430 const ObjCIvarDecl *Ivar); 4431 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4432 const ObjCIvarDecl *Ivar); 4433 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4434 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4435 LValue EmitLValueForLambdaField(const FieldDecl *Field, 4436 llvm::Value *ThisValue); 4437 4438 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4439 /// if the Field is a reference, this will return the address of the reference 4440 /// and not the address of the value stored in the reference. 4441 LValue EmitLValueForFieldInitialization(LValue Base, 4442 const FieldDecl* Field); 4443 4444 LValue EmitLValueForIvar(QualType ObjectTy, 4445 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4446 unsigned CVRQualifiers); 4447 4448 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4449 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4450 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4451 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4452 4453 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4454 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4455 LValue EmitStmtExprLValue(const StmtExpr *E); 4456 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4457 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4458 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4459 4460 //===--------------------------------------------------------------------===// 4461 // Scalar Expression Emission 4462 //===--------------------------------------------------------------------===// 4463 4464 /// EmitCall - Generate a call of the given function, expecting the given 4465 /// result type, and using the given argument list which specifies both the 4466 /// LLVM arguments and the types they were derived from. 4467 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4468 ReturnValueSlot ReturnValue, const CallArgList &Args, 4469 llvm::CallBase **CallOrInvoke, bool IsMustTail, 4470 SourceLocation Loc, 4471 bool IsVirtualFunctionPointerThunk = false); 4472 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4473 ReturnValueSlot ReturnValue, const CallArgList &Args, 4474 llvm::CallBase **CallOrInvoke = nullptr, 4475 bool IsMustTail = false) { 4476 return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, 4477 IsMustTail, SourceLocation()); 4478 } 4479 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4480 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, 4481 llvm::CallBase **CallOrInvoke = nullptr, 4482 CGFunctionInfo const **ResolvedFnInfo = nullptr); 4483 4484 // If a Call or Invoke instruction was emitted for this CallExpr, this method 4485 // writes the pointer to `CallOrInvoke` if it's not null. 4486 RValue EmitCallExpr(const CallExpr *E, 4487 ReturnValueSlot ReturnValue = ReturnValueSlot(), 4488 llvm::CallBase **CallOrInvoke = nullptr); 4489 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4490 llvm::CallBase **CallOrInvoke = nullptr); 4491 CGCallee EmitCallee(const Expr *E); 4492 4493 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4494 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4495 4496 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4497 const Twine &name = ""); 4498 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4499 ArrayRef<llvm::Value *> args, 4500 const Twine &name = ""); 4501 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4502 const Twine &name = ""); 4503 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4504 ArrayRef<Address> args, 4505 const Twine &name = ""); 4506 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4507 ArrayRef<llvm::Value *> args, 4508 const Twine &name = ""); 4509 4510 SmallVector<llvm::OperandBundleDef, 1> 4511 getBundlesForFunclet(llvm::Value *Callee); 4512 4513 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4514 ArrayRef<llvm::Value *> Args, 4515 const Twine &Name = ""); 4516 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4517 ArrayRef<llvm::Value *> args, 4518 const Twine &name = ""); 4519 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4520 const Twine &name = ""); 4521 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4522 ArrayRef<llvm::Value *> args); 4523 4524 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4525 NestedNameSpecifier *Qual, 4526 llvm::Type *Ty); 4527 4528 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4529 CXXDtorType Type, 4530 const CXXRecordDecl *RD); 4531 4532 bool isPointerKnownNonNull(const Expr *E); 4533 4534 /// Create the discriminator from the storage address and the entity hash. 4535 llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, 4536 llvm::Value *Discriminator); 4537 CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, 4538 llvm::Value *StorageAddress, 4539 GlobalDecl SchemaDecl, 4540 QualType SchemaType); 4541 4542 llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, 4543 llvm::Value *Pointer); 4544 4545 llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, 4546 llvm::Value *Pointer); 4547 4548 llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, 4549 const CGPointerAuthInfo &CurAuthInfo, 4550 const CGPointerAuthInfo &NewAuthInfo, 4551 bool IsKnownNonNull); 4552 llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, 4553 const CGPointerAuthInfo &CurInfo, 4554 const CGPointerAuthInfo &NewInfo); 4555 4556 void EmitPointerAuthOperandBundle( 4557 const CGPointerAuthInfo &Info, 4558 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4559 4560 llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, 4561 QualType SourceType, QualType DestType); 4562 Address authPointerToPointerCast(Address Ptr, QualType SourceType, 4563 QualType DestType); 4564 4565 Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); 4566 4567 llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { 4568 return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer(); 4569 } 4570 4571 // Return the copy constructor name with the prefix "__copy_constructor_" 4572 // removed. 4573 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4574 CharUnits Alignment, 4575 bool IsVolatile, 4576 ASTContext &Ctx); 4577 4578 // Return the destructor name with the prefix "__destructor_" removed. 4579 static std::string getNonTrivialDestructorStr(QualType QT, 4580 CharUnits Alignment, 4581 bool IsVolatile, 4582 ASTContext &Ctx); 4583 4584 // These functions emit calls to the special functions of non-trivial C 4585 // structs. 4586 void defaultInitNonTrivialCStructVar(LValue Dst); 4587 void callCStructDefaultConstructor(LValue Dst); 4588 void callCStructDestructor(LValue Dst); 4589 void callCStructCopyConstructor(LValue Dst, LValue Src); 4590 void callCStructMoveConstructor(LValue Dst, LValue Src); 4591 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4592 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4593 4594 RValue EmitCXXMemberOrOperatorCall( 4595 const CXXMethodDecl *Method, const CGCallee &Callee, 4596 ReturnValueSlot ReturnValue, llvm::Value *This, 4597 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, 4598 CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); 4599 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4600 llvm::Value *This, QualType ThisTy, 4601 llvm::Value *ImplicitParam, 4602 QualType ImplicitParamTy, const CallExpr *E, 4603 llvm::CallBase **CallOrInvoke = nullptr); 4604 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4605 ReturnValueSlot ReturnValue, 4606 llvm::CallBase **CallOrInvoke = nullptr); 4607 RValue EmitCXXMemberOrOperatorMemberCallExpr( 4608 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 4609 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 4610 const Expr *Base, llvm::CallBase **CallOrInvoke); 4611 // Compute the object pointer. 4612 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4613 llvm::Value *memberPtr, 4614 const MemberPointerType *memberPtrType, 4615 LValueBaseInfo *BaseInfo = nullptr, 4616 TBAAAccessInfo *TBAAInfo = nullptr); 4617 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4618 ReturnValueSlot ReturnValue, 4619 llvm::CallBase **CallOrInvoke); 4620 4621 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4622 const CXXMethodDecl *MD, 4623 ReturnValueSlot ReturnValue, 4624 llvm::CallBase **CallOrInvoke); 4625 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4626 4627 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4628 ReturnValueSlot ReturnValue, 4629 llvm::CallBase **CallOrInvoke); 4630 4631 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4632 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4633 4634 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4635 const CallExpr *E, ReturnValueSlot ReturnValue); 4636 4637 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4638 4639 /// Emit IR for __builtin_os_log_format. 4640 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4641 4642 /// Emit IR for __builtin_is_aligned. 4643 RValue EmitBuiltinIsAligned(const CallExpr *E); 4644 /// Emit IR for __builtin_align_up/__builtin_align_down. 4645 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4646 4647 llvm::Function *generateBuiltinOSLogHelperFunction( 4648 const analyze_os_log::OSLogBufferLayout &Layout, 4649 CharUnits BufferAlignment); 4650 4651 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, 4652 llvm::CallBase **CallOrInvoke); 4653 4654 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4655 /// is unhandled by the current target. 4656 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4657 ReturnValueSlot ReturnValue); 4658 4659 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4660 const llvm::CmpInst::Predicate Fp, 4661 const llvm::CmpInst::Predicate Ip, 4662 const llvm::Twine &Name = ""); 4663 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4664 ReturnValueSlot ReturnValue, 4665 llvm::Triple::ArchType Arch); 4666 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4667 ReturnValueSlot ReturnValue, 4668 llvm::Triple::ArchType Arch); 4669 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4670 ReturnValueSlot ReturnValue, 4671 llvm::Triple::ArchType Arch); 4672 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4673 QualType RTy); 4674 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4675 QualType RTy); 4676 4677 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4678 unsigned LLVMIntrinsic, 4679 unsigned AltLLVMIntrinsic, 4680 const char *NameHint, 4681 unsigned Modifier, 4682 const CallExpr *E, 4683 SmallVectorImpl<llvm::Value *> &Ops, 4684 Address PtrOp0, Address PtrOp1, 4685 llvm::Triple::ArchType Arch); 4686 4687 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4688 unsigned Modifier, llvm::Type *ArgTy, 4689 const CallExpr *E); 4690 llvm::Value *EmitNeonCall(llvm::Function *F, 4691 SmallVectorImpl<llvm::Value*> &O, 4692 const char *name, 4693 unsigned shift = 0, bool rightshift = false); 4694 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4695 const llvm::ElementCount &Count); 4696 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4697 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4698 bool negateForRightShift); 4699 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4700 llvm::Type *Ty, bool usgn, const char *name); 4701 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4702 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4703 /// access builtin. Only required if it can't be inferred from the base 4704 /// pointer operand. 4705 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4706 4707 SmallVector<llvm::Type *, 2> 4708 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4709 ArrayRef<llvm::Value *> Ops); 4710 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4711 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4712 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4713 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4714 ArrayRef<llvm::Value *> Ops); 4715 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4716 llvm::Type *ReturnType, 4717 ArrayRef<llvm::Value *> Ops); 4718 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4719 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4720 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4721 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4722 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4723 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4724 unsigned BuiltinID); 4725 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4726 llvm::ArrayRef<llvm::Value *> Ops, 4727 unsigned BuiltinID); 4728 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4729 llvm::ScalableVectorType *VTy); 4730 llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, 4731 llvm::StructType *Ty); 4732 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4733 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4734 unsigned IntID); 4735 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4736 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4737 unsigned IntID); 4738 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4739 SmallVectorImpl<llvm::Value *> &Ops, 4740 unsigned BuiltinID, bool IsZExtReturn); 4741 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4742 SmallVectorImpl<llvm::Value *> &Ops, 4743 unsigned BuiltinID); 4744 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4745 SmallVectorImpl<llvm::Value *> &Ops, 4746 unsigned BuiltinID); 4747 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4748 SmallVectorImpl<llvm::Value *> &Ops, 4749 unsigned IntID); 4750 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4751 SmallVectorImpl<llvm::Value *> &Ops, 4752 unsigned IntID); 4753 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4754 SmallVectorImpl<llvm::Value *> &Ops, 4755 unsigned IntID); 4756 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4757 4758 llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, 4759 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4760 unsigned IntID); 4761 llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, 4762 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4763 unsigned IntID); 4764 llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, 4765 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4766 unsigned IntID); 4767 llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, 4768 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4769 unsigned IntID); 4770 4771 void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, 4772 SmallVectorImpl<llvm::Value *> &Ops, 4773 SVETypeFlags TypeFlags); 4774 4775 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4776 4777 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4778 llvm::Triple::ArchType Arch); 4779 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4780 4781 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4782 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4783 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4784 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4785 llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4786 ReturnValueSlot ReturnValue); 4787 llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4788 llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, 4789 const CallExpr *E); 4790 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4791 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4792 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4793 const CallExpr *E); 4794 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4795 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4796 ReturnValueSlot ReturnValue); 4797 4798 llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); 4799 llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); 4800 llvm::Value *EmitRISCVCpuInit(); 4801 llvm::Value *EmitRISCVCpuIs(const CallExpr *E); 4802 llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); 4803 4804 void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, 4805 const CallExpr *E); 4806 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4807 llvm::AtomicOrdering &AO, 4808 llvm::SyncScope::ID &SSID); 4809 4810 enum class MSVCIntrin; 4811 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4812 4813 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4814 4815 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4816 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4817 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4818 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4819 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4820 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4821 const ObjCMethodDecl *MethodWithObjects); 4822 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4823 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4824 ReturnValueSlot Return = ReturnValueSlot()); 4825 4826 /// Retrieves the default cleanup kind for an ARC cleanup. 4827 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4828 CleanupKind getARCCleanupKind() { 4829 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4830 ? NormalAndEHCleanup : NormalCleanup; 4831 } 4832 4833 // ARC primitives. 4834 void EmitARCInitWeak(Address addr, llvm::Value *value); 4835 void EmitARCDestroyWeak(Address addr); 4836 llvm::Value *EmitARCLoadWeak(Address addr); 4837 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4838 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4839 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4840 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4841 void EmitARCCopyWeak(Address dst, Address src); 4842 void EmitARCMoveWeak(Address dst, Address src); 4843 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4844 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4845 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4846 bool resultIgnored); 4847 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4848 bool resultIgnored); 4849 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4850 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4851 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4852 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4853 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4854 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4855 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4856 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4857 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4858 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4859 4860 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4861 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4862 llvm::Type *returnType); 4863 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4864 4865 std::pair<LValue,llvm::Value*> 4866 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4867 std::pair<LValue,llvm::Value*> 4868 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4869 std::pair<LValue,llvm::Value*> 4870 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4871 4872 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4873 llvm::Type *returnType); 4874 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4875 llvm::Type *returnType); 4876 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4877 4878 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4879 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4880 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4881 4882 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4883 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4884 bool allowUnsafeClaim); 4885 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4886 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4887 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4888 4889 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4890 4891 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4892 4893 static Destroyer destroyARCStrongImprecise; 4894 static Destroyer destroyARCStrongPrecise; 4895 static Destroyer destroyARCWeak; 4896 static Destroyer emitARCIntrinsicUse; 4897 static Destroyer destroyNonTrivialCStruct; 4898 4899 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4900 llvm::Value *EmitObjCAutoreleasePoolPush(); 4901 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4902 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4903 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4904 4905 /// Emits a reference binding to the passed in expression. 4906 RValue EmitReferenceBindingToExpr(const Expr *E); 4907 4908 //===--------------------------------------------------------------------===// 4909 // Expression Emission 4910 //===--------------------------------------------------------------------===// 4911 4912 // Expressions are broken into three classes: scalar, complex, aggregate. 4913 4914 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4915 /// scalar type, returning the result. 4916 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4917 4918 /// Emit a conversion from the specified type to the specified destination 4919 /// type, both of which are LLVM scalar types. 4920 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4921 QualType DstTy, SourceLocation Loc); 4922 4923 /// Emit a conversion from the specified complex type to the specified 4924 /// destination type, where the destination type is an LLVM scalar type. 4925 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4926 QualType DstTy, 4927 SourceLocation Loc); 4928 4929 /// EmitAggExpr - Emit the computation of the specified expression 4930 /// of aggregate type. The result is computed into the given slot, 4931 /// which may be null to indicate that the value is not needed. 4932 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4933 4934 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4935 /// aggregate type into a temporary LValue. 4936 LValue EmitAggExprToLValue(const Expr *E); 4937 4938 enum ExprValueKind { EVK_RValue, EVK_NonRValue }; 4939 4940 /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into 4941 /// destination address. 4942 void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, 4943 ExprValueKind SrcKind); 4944 4945 /// Create a store to \arg DstPtr from \arg Src, truncating the stored value 4946 /// to at most \arg DstSize bytes. 4947 void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, 4948 bool DstIsVolatile); 4949 4950 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4951 /// make sure it survives garbage collection until this point. 4952 void EmitExtendGCLifetime(llvm::Value *object); 4953 4954 /// EmitComplexExpr - Emit the computation of the specified expression of 4955 /// complex type, returning the result. 4956 ComplexPairTy EmitComplexExpr(const Expr *E, 4957 bool IgnoreReal = false, 4958 bool IgnoreImag = false); 4959 4960 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4961 /// type and place its result into the specified l-value. 4962 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4963 4964 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4965 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4966 4967 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4968 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4969 4970 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4971 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4972 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4973 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4974 4975 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4976 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4977 4978 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4979 /// global variable that has already been created for it. If the initializer 4980 /// has a different type than GV does, this may free GV and return a different 4981 /// one. Otherwise it just returns GV. 4982 llvm::GlobalVariable * 4983 AddInitializerToStaticVarDecl(const VarDecl &D, 4984 llvm::GlobalVariable *GV); 4985 4986 // Emit an @llvm.invariant.start call for the given memory region. 4987 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4988 4989 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4990 /// variable with global storage. 4991 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4992 bool PerformInit); 4993 4994 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4995 llvm::Constant *Addr); 4996 4997 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4998 llvm::FunctionCallee Dtor, 4999 llvm::Constant *Addr, 5000 llvm::FunctionCallee &AtExit); 5001 5002 /// Call atexit() with a function that passes the given argument to 5003 /// the given function. 5004 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 5005 llvm::Constant *addr); 5006 5007 /// Registers the dtor using 'llvm.global_dtors' for platforms that do not 5008 /// support an 'atexit()' function. 5009 void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, 5010 llvm::Constant *addr); 5011 5012 /// Call atexit() with function dtorStub. 5013 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 5014 5015 /// Call unatexit() with function dtorStub. 5016 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 5017 5018 /// Emit code in this function to perform a guarded variable 5019 /// initialization. Guarded initializations are used when it's not 5020 /// possible to prove that an initialization will be done exactly 5021 /// once, e.g. with a static local variable or a static data member 5022 /// of a class template. 5023 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 5024 bool PerformInit); 5025 5026 enum class GuardKind { VariableGuard, TlsGuard }; 5027 5028 /// Emit a branch to select whether or not to perform guarded initialization. 5029 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 5030 llvm::BasicBlock *InitBlock, 5031 llvm::BasicBlock *NoInitBlock, 5032 GuardKind Kind, const VarDecl *D); 5033 5034 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 5035 /// variables. 5036 void 5037 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 5038 ArrayRef<llvm::Function *> CXXThreadLocals, 5039 ConstantAddress Guard = ConstantAddress::invalid()); 5040 5041 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 5042 /// variables. 5043 void GenerateCXXGlobalCleanUpFunc( 5044 llvm::Function *Fn, 5045 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 5046 llvm::Constant *>> 5047 DtorsOrStermFinalizers); 5048 5049 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 5050 const VarDecl *D, 5051 llvm::GlobalVariable *Addr, 5052 bool PerformInit); 5053 5054 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 5055 5056 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 5057 5058 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 5059 5060 RValue EmitAtomicExpr(AtomicExpr *E); 5061 5062 //===--------------------------------------------------------------------===// 5063 // Annotations Emission 5064 //===--------------------------------------------------------------------===// 5065 5066 /// Emit an annotation call (intrinsic). 5067 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 5068 llvm::Value *AnnotatedVal, 5069 StringRef AnnotationStr, 5070 SourceLocation Location, 5071 const AnnotateAttr *Attr); 5072 5073 /// Emit local annotations for the local variable V, declared by D. 5074 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 5075 5076 /// Emit field annotations for the given field & value. Returns the 5077 /// annotation result. 5078 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 5079 5080 //===--------------------------------------------------------------------===// 5081 // Internal Helpers 5082 //===--------------------------------------------------------------------===// 5083 5084 /// ContainsLabel - Return true if the statement contains a label in it. If 5085 /// this statement is not executed normally, it not containing a label means 5086 /// that we can just remove the code. 5087 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 5088 5089 /// containsBreak - Return true if the statement contains a break out of it. 5090 /// If the statement (recursively) contains a switch or loop with a break 5091 /// inside of it, this is fine. 5092 static bool containsBreak(const Stmt *S); 5093 5094 /// Determine if the given statement might introduce a declaration into the 5095 /// current scope, by being a (possibly-labelled) DeclStmt. 5096 static bool mightAddDeclToScope(const Stmt *S); 5097 5098 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5099 /// to a constant, or if it does but contains a label, return false. If it 5100 /// constant folds return true and set the boolean result in Result. 5101 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 5102 bool AllowLabels = false); 5103 5104 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5105 /// to a constant, or if it does but contains a label, return false. If it 5106 /// constant folds return true and set the folded value. 5107 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 5108 bool AllowLabels = false); 5109 5110 /// Ignore parentheses and logical-NOT to track conditions consistently. 5111 static const Expr *stripCond(const Expr *C); 5112 5113 /// isInstrumentedCondition - Determine whether the given condition is an 5114 /// instrumentable condition (i.e. no "&&" or "||"). 5115 static bool isInstrumentedCondition(const Expr *C); 5116 5117 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 5118 /// increments a profile counter based on the semantics of the given logical 5119 /// operator opcode. This is used to instrument branch condition coverage 5120 /// for logical operators. 5121 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 5122 llvm::BasicBlock *TrueBlock, 5123 llvm::BasicBlock *FalseBlock, 5124 uint64_t TrueCount = 0, 5125 Stmt::Likelihood LH = Stmt::LH_None, 5126 const Expr *CntrIdx = nullptr); 5127 5128 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 5129 /// if statement) to the specified blocks. Based on the condition, this might 5130 /// try to simplify the codegen of the conditional based on the branch. 5131 /// TrueCount should be the number of times we expect the condition to 5132 /// evaluate to true based on PGO data. 5133 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 5134 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 5135 Stmt::Likelihood LH = Stmt::LH_None, 5136 const Expr *ConditionalOp = nullptr); 5137 5138 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 5139 /// nonnull, if \p LHS is marked _Nonnull. 5140 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 5141 5142 /// An enumeration which makes it easier to specify whether or not an 5143 /// operation is a subtraction. 5144 enum { NotSubtraction = false, IsSubtraction = true }; 5145 5146 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 5147 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 5148 /// \p SignedIndices indicates whether any of the GEP indices are signed. 5149 /// \p IsSubtraction indicates whether the expression used to form the GEP 5150 /// is a subtraction. 5151 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 5152 ArrayRef<llvm::Value *> IdxList, 5153 bool SignedIndices, 5154 bool IsSubtraction, 5155 SourceLocation Loc, 5156 const Twine &Name = ""); 5157 5158 Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, 5159 llvm::Type *elementType, bool SignedIndices, 5160 bool IsSubtraction, SourceLocation Loc, 5161 CharUnits Align, const Twine &Name = ""); 5162 5163 /// Specifies which type of sanitizer check to apply when handling a 5164 /// particular builtin. 5165 enum BuiltinCheckKind { 5166 BCK_CTZPassedZero, 5167 BCK_CLZPassedZero, 5168 BCK_AssumePassedFalse, 5169 }; 5170 5171 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 5172 /// enabled, a runtime check specified by \p Kind is also emitted. 5173 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 5174 5175 /// Emits an argument for a call to a `__builtin_assume`. If the builtin 5176 /// sanitizer is enabled, a runtime check is also emitted. 5177 llvm::Value *EmitCheckedArgForAssume(const Expr *E); 5178 5179 /// Emit a description of a type in a format suitable for passing to 5180 /// a runtime sanitizer handler. 5181 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 5182 5183 /// Convert a value into a format suitable for passing to a runtime 5184 /// sanitizer handler. 5185 llvm::Value *EmitCheckValue(llvm::Value *V); 5186 5187 /// Emit a description of a source location in a format suitable for 5188 /// passing to a runtime sanitizer handler. 5189 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 5190 5191 void EmitKCFIOperandBundle(const CGCallee &Callee, 5192 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 5193 5194 /// Create a basic block that will either trap or call a handler function in 5195 /// the UBSan runtime with the provided arguments, and create a conditional 5196 /// branch to it. 5197 void 5198 EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> 5199 Checked, 5200 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 5201 ArrayRef<llvm::Value *> DynamicArgs); 5202 5203 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 5204 /// if Cond if false. 5205 void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal, 5206 llvm::Value *Cond, llvm::ConstantInt *TypeId, 5207 llvm::Value *Ptr, 5208 ArrayRef<llvm::Constant *> StaticArgs); 5209 5210 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 5211 /// checking is enabled. Otherwise, just emit an unreachable instruction. 5212 void EmitUnreachable(SourceLocation Loc); 5213 5214 /// Create a basic block that will call the trap intrinsic, and emit a 5215 /// conditional branch to it, for the -ftrapv checks. 5216 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, 5217 bool NoMerge = false); 5218 5219 /// Emit a call to trap or debugtrap and attach function attribute 5220 /// "trap-func-name" if specified. 5221 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 5222 5223 /// Emit a stub for the cross-DSO CFI check function. 5224 void EmitCfiCheckStub(); 5225 5226 /// Emit a cross-DSO CFI failure handling function. 5227 void EmitCfiCheckFail(); 5228 5229 /// Create a check for a function parameter that may potentially be 5230 /// declared as non-null. 5231 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 5232 AbstractCallee AC, unsigned ParmNum); 5233 5234 void EmitNonNullArgCheck(Address Addr, QualType ArgType, 5235 SourceLocation ArgLoc, AbstractCallee AC, 5236 unsigned ParmNum); 5237 5238 /// EmitWriteback - Emit callbacks for function. 5239 void EmitWritebacks(const CallArgList &Args); 5240 5241 /// EmitCallArg - Emit a single call argument. 5242 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 5243 5244 /// EmitDelegateCallArg - We are performing a delegate call; that 5245 /// is, the current function is delegating to another one. Produce 5246 /// a r-value suitable for passing the given parameter. 5247 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 5248 SourceLocation loc); 5249 5250 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 5251 /// point operation, expressed as the maximum relative error in ulp. 5252 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 5253 5254 /// Set the minimum required accuracy of the given sqrt operation 5255 /// based on CodeGenOpts. 5256 void SetSqrtFPAccuracy(llvm::Value *Val); 5257 5258 /// Set the minimum required accuracy of the given sqrt operation based on 5259 /// CodeGenOpts. 5260 void SetDivFPAccuracy(llvm::Value *Val); 5261 5262 /// Set the codegen fast-math flags. 5263 void SetFastMathFlags(FPOptions FPFeatures); 5264 5265 // Truncate or extend a boolean vector to the requested number of elements. 5266 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 5267 unsigned NumElementsDst, 5268 const llvm::Twine &Name = ""); 5269 5270 private: 5271 // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| 5272 // as it's parent convergence instr. 5273 llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB); 5274 5275 // Adds a convergence_ctrl token with |ParentToken| as parent convergence 5276 // instr to the call |Input|. 5277 llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input); 5278 5279 // Find the convergence_entry instruction |F|, or emits ones if none exists. 5280 // Returns the convergence instruction. 5281 llvm::ConvergenceControlInst * 5282 getOrEmitConvergenceEntryToken(llvm::Function *F); 5283 5284 private: 5285 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 5286 void EmitReturnOfRValue(RValue RV, QualType Ty); 5287 5288 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 5289 5290 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 5291 DeferredReplacements; 5292 5293 /// Set the address of a local variable. 5294 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 5295 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 5296 LocalDeclMap.insert({VD, Addr}); 5297 } 5298 5299 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 5300 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 5301 /// 5302 /// \param AI - The first function argument of the expansion. 5303 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 5304 llvm::Function::arg_iterator &AI); 5305 5306 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 5307 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 5308 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 5309 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 5310 SmallVectorImpl<llvm::Value *> &IRCallArgs, 5311 unsigned &IRCallArgPos); 5312 5313 std::pair<llvm::Value *, llvm::Type *> 5314 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 5315 std::string &ConstraintStr); 5316 5317 std::pair<llvm::Value *, llvm::Type *> 5318 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 5319 QualType InputType, std::string &ConstraintStr, 5320 SourceLocation Loc); 5321 5322 /// Attempts to statically evaluate the object size of E. If that 5323 /// fails, emits code to figure the size of E out for us. This is 5324 /// pass_object_size aware. 5325 /// 5326 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 5327 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 5328 llvm::IntegerType *ResType, 5329 llvm::Value *EmittedE, 5330 bool IsDynamic); 5331 5332 /// Emits the size of E, as required by __builtin_object_size. This 5333 /// function is aware of pass_object_size parameters, and will act accordingly 5334 /// if E is a parameter with the pass_object_size attribute. 5335 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 5336 llvm::IntegerType *ResType, 5337 llvm::Value *EmittedE, 5338 bool IsDynamic); 5339 5340 llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, 5341 llvm::IntegerType *ResType); 5342 5343 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 5344 Address Loc); 5345 5346 public: 5347 enum class EvaluationOrder { 5348 ///! No language constraints on evaluation order. 5349 Default, 5350 ///! Language semantics require left-to-right evaluation. 5351 ForceLeftToRight, 5352 ///! Language semantics require right-to-left evaluation. 5353 ForceRightToLeft 5354 }; 5355 5356 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 5357 // an ObjCMethodDecl. 5358 struct PrototypeWrapper { 5359 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 5360 5361 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 5362 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 5363 }; 5364 5365 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 5366 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 5367 AbstractCallee AC = AbstractCallee(), 5368 unsigned ParamsToSkip = 0, 5369 EvaluationOrder Order = EvaluationOrder::Default); 5370 5371 /// EmitPointerWithAlignment - Given an expression with a pointer type, 5372 /// emit the value and compute our best estimate of the alignment of the 5373 /// pointee. 5374 /// 5375 /// \param BaseInfo - If non-null, this will be initialized with 5376 /// information about the source of the alignment and the may-alias 5377 /// attribute. Note that this function will conservatively fall back on 5378 /// the type when it doesn't recognize the expression and may-alias will 5379 /// be set to false. 5380 /// 5381 /// One reasonable way to use this information is when there's a language 5382 /// guarantee that the pointer must be aligned to some stricter value, and 5383 /// we're simply trying to ensure that sufficiently obvious uses of under- 5384 /// aligned objects don't get miscompiled; for example, a placement new 5385 /// into the address of a local variable. In such a case, it's quite 5386 /// reasonable to just ignore the returned alignment when it isn't from an 5387 /// explicit source. 5388 Address 5389 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 5390 TBAAAccessInfo *TBAAInfo = nullptr, 5391 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 5392 5393 /// If \p E references a parameter with pass_object_size info or a constant 5394 /// array size modifier, emit the object size divided by the size of \p EltTy. 5395 /// Otherwise return null. 5396 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 5397 5398 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 5399 5400 struct FMVResolverOption { 5401 llvm::Function *Function; 5402 llvm::SmallVector<StringRef, 8> Features; 5403 std::optional<StringRef> Architecture; 5404 5405 FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, 5406 std::optional<StringRef> Arch = std::nullopt) 5407 : Function(F), Features(Feats), Architecture(Arch) {} 5408 }; 5409 5410 // Emits the body of a multiversion function's resolver. Assumes that the 5411 // options are already sorted in the proper order, with the 'default' option 5412 // last (if it exists). 5413 void EmitMultiVersionResolver(llvm::Function *Resolver, 5414 ArrayRef<FMVResolverOption> Options); 5415 void EmitX86MultiVersionResolver(llvm::Function *Resolver, 5416 ArrayRef<FMVResolverOption> Options); 5417 void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 5418 ArrayRef<FMVResolverOption> Options); 5419 void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, 5420 ArrayRef<FMVResolverOption> Options); 5421 5422 private: 5423 QualType getVarArgType(const Expr *Arg); 5424 5425 void EmitDeclMetadata(); 5426 5427 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 5428 const AutoVarEmission &emission); 5429 5430 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 5431 5432 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 5433 llvm::Value *EmitX86CpuIs(const CallExpr *E); 5434 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 5435 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 5436 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 5437 llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); 5438 llvm::Value *EmitX86CpuInit(); 5439 llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); 5440 llvm::Value *EmitAArch64CpuInit(); 5441 llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); 5442 llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); 5443 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 5444 }; 5445 5446 inline DominatingLLVMValue::saved_type 5447 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 5448 if (!needsSaving(value)) return saved_type(value, false); 5449 5450 // Otherwise, we need an alloca. 5451 auto align = CharUnits::fromQuantity( 5452 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 5453 Address alloca = 5454 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 5455 CGF.Builder.CreateStore(value, alloca); 5456 5457 return saved_type(alloca.emitRawPointer(CGF), true); 5458 } 5459 5460 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 5461 saved_type value) { 5462 // If the value says it wasn't saved, trust that it's still dominating. 5463 if (!value.getInt()) return value.getPointer(); 5464 5465 // Otherwise, it should be an alloca instruction, as set up in save(). 5466 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 5467 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 5468 alloca->getAlign()); 5469 } 5470 5471 } // end namespace CodeGen 5472 5473 // Map the LangOption for floating point exception behavior into 5474 // the corresponding enum in the IR. 5475 llvm::fp::ExceptionBehavior 5476 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 5477 } // end namespace clang 5478 5479 #endif 5480