xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision ef198cd99e6bac3a2e87adb6c8a18fb461056fa6)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
112   llvm::FastMathFlags FMF;
113   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
114   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
115   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
116   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
117   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
118   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
119   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
120   Builder.setFastMathFlags(FMF);
121 }
122 
123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
124                                                   const Expr *E)
125     : CGF(CGF) {
126   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
127 }
128 
129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
130                                                   FPOptions FPFeatures)
131     : CGF(CGF) {
132   ConstructorHelper(FPFeatures);
133 }
134 
135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
136   OldFPFeatures = CGF.CurFPFeatures;
137   CGF.CurFPFeatures = FPFeatures;
138 
139   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
140   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
141 
142   if (OldFPFeatures == FPFeatures)
143     return;
144 
145   FMFGuard.emplace(CGF.Builder);
146 
147   llvm::RoundingMode NewRoundingBehavior =
148       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
149   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
150   auto NewExceptionBehavior =
151       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
152           FPFeatures.getFPExceptionMode()));
153   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
154 
155   CGF.SetFastMathFlags(FPFeatures);
156 
157   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
158           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
159           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
160           (NewExceptionBehavior == llvm::fp::ebIgnore &&
161            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
162          "FPConstrained should be enabled on entire function");
163 
164   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
165     auto OldValue =
166         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
167     auto NewValue = OldValue & Value;
168     if (OldValue != NewValue)
169       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
170   };
171   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
172   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
173   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
174   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
175                                          FPFeatures.getAllowReciprocal() &&
176                                          FPFeatures.getAllowApproxFunc() &&
177                                          FPFeatures.getNoSignedZero());
178 }
179 
180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
181   CGF.CurFPFeatures = OldFPFeatures;
182   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
183   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
184 }
185 
186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
187   LValueBaseInfo BaseInfo;
188   TBAAAccessInfo TBAAInfo;
189   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
190   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
191                           TBAAInfo);
192 }
193 
194 /// Given a value of type T* that may not be to a complete object,
195 /// construct an l-value with the natural pointee alignment of T.
196 LValue
197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
201                                                 /* forPointeeType= */ true);
202   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
203 }
204 
205 
206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
207   return CGM.getTypes().ConvertTypeForMem(T);
208 }
209 
210 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
211   return CGM.getTypes().ConvertType(T);
212 }
213 
214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
215   type = type.getCanonicalType();
216   while (true) {
217     switch (type->getTypeClass()) {
218 #define TYPE(name, parent)
219 #define ABSTRACT_TYPE(name, parent)
220 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
221 #define DEPENDENT_TYPE(name, parent) case Type::name:
222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
223 #include "clang/AST/TypeNodes.inc"
224       llvm_unreachable("non-canonical or dependent type in IR-generation");
225 
226     case Type::Auto:
227     case Type::DeducedTemplateSpecialization:
228       llvm_unreachable("undeduced type in IR-generation");
229 
230     // Various scalar types.
231     case Type::Builtin:
232     case Type::Pointer:
233     case Type::BlockPointer:
234     case Type::LValueReference:
235     case Type::RValueReference:
236     case Type::MemberPointer:
237     case Type::Vector:
238     case Type::ExtVector:
239     case Type::ConstantMatrix:
240     case Type::FunctionProto:
241     case Type::FunctionNoProto:
242     case Type::Enum:
243     case Type::ObjCObjectPointer:
244     case Type::Pipe:
245     case Type::ExtInt:
246       return TEK_Scalar;
247 
248     // Complexes.
249     case Type::Complex:
250       return TEK_Complex;
251 
252     // Arrays, records, and Objective-C objects.
253     case Type::ConstantArray:
254     case Type::IncompleteArray:
255     case Type::VariableArray:
256     case Type::Record:
257     case Type::ObjCObject:
258     case Type::ObjCInterface:
259       return TEK_Aggregate;
260 
261     // We operate on atomic values according to their underlying type.
262     case Type::Atomic:
263       type = cast<AtomicType>(type)->getValueType();
264       continue;
265     }
266     llvm_unreachable("unknown type kind!");
267   }
268 }
269 
270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
271   // For cleanliness, we try to avoid emitting the return block for
272   // simple cases.
273   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
274 
275   if (CurBB) {
276     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
277 
278     // We have a valid insert point, reuse it if it is empty or there are no
279     // explicit jumps to the return block.
280     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
281       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
282       delete ReturnBlock.getBlock();
283       ReturnBlock = JumpDest();
284     } else
285       EmitBlock(ReturnBlock.getBlock());
286     return llvm::DebugLoc();
287   }
288 
289   // Otherwise, if the return block is the target of a single direct
290   // branch then we can just put the code in that block instead. This
291   // cleans up functions which started with a unified return block.
292   if (ReturnBlock.getBlock()->hasOneUse()) {
293     llvm::BranchInst *BI =
294       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
295     if (BI && BI->isUnconditional() &&
296         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
297       // Record/return the DebugLoc of the simple 'return' expression to be used
298       // later by the actual 'ret' instruction.
299       llvm::DebugLoc Loc = BI->getDebugLoc();
300       Builder.SetInsertPoint(BI->getParent());
301       BI->eraseFromParent();
302       delete ReturnBlock.getBlock();
303       ReturnBlock = JumpDest();
304       return Loc;
305     }
306   }
307 
308   // FIXME: We are at an unreachable point, there is no reason to emit the block
309   // unless it has uses. However, we still need a place to put the debug
310   // region.end for now.
311 
312   EmitBlock(ReturnBlock.getBlock());
313   return llvm::DebugLoc();
314 }
315 
316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
317   if (!BB) return;
318   if (!BB->use_empty())
319     return CGF.CurFn->getBasicBlockList().push_back(BB);
320   delete BB;
321 }
322 
323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
324   assert(BreakContinueStack.empty() &&
325          "mismatched push/pop in break/continue stack!");
326 
327   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
328     && NumSimpleReturnExprs == NumReturnExprs
329     && ReturnBlock.getBlock()->use_empty();
330   // Usually the return expression is evaluated before the cleanup
331   // code.  If the function contains only a simple return statement,
332   // such as a constant, the location before the cleanup code becomes
333   // the last useful breakpoint in the function, because the simple
334   // return expression will be evaluated after the cleanup code. To be
335   // safe, set the debug location for cleanup code to the location of
336   // the return statement.  Otherwise the cleanup code should be at the
337   // end of the function's lexical scope.
338   //
339   // If there are multiple branches to the return block, the branch
340   // instructions will get the location of the return statements and
341   // all will be fine.
342   if (CGDebugInfo *DI = getDebugInfo()) {
343     if (OnlySimpleReturnStmts)
344       DI->EmitLocation(Builder, LastStopPoint);
345     else
346       DI->EmitLocation(Builder, EndLoc);
347   }
348 
349   // Pop any cleanups that might have been associated with the
350   // parameters.  Do this in whatever block we're currently in; it's
351   // important to do this before we enter the return block or return
352   // edges will be *really* confused.
353   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
354   bool HasOnlyLifetimeMarkers =
355       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
356   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
357   if (HasCleanups) {
358     // Make sure the line table doesn't jump back into the body for
359     // the ret after it's been at EndLoc.
360     Optional<ApplyDebugLocation> AL;
361     if (CGDebugInfo *DI = getDebugInfo()) {
362       if (OnlySimpleReturnStmts)
363         DI->EmitLocation(Builder, EndLoc);
364       else
365         // We may not have a valid end location. Try to apply it anyway, and
366         // fall back to an artificial location if needed.
367         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
368     }
369 
370     PopCleanupBlocks(PrologueCleanupDepth);
371   }
372 
373   // Emit function epilog (to return).
374   llvm::DebugLoc Loc = EmitReturnBlock();
375 
376   if (ShouldInstrumentFunction()) {
377     if (CGM.getCodeGenOpts().InstrumentFunctions)
378       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
379     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
380       CurFn->addFnAttr("instrument-function-exit-inlined",
381                        "__cyg_profile_func_exit");
382   }
383 
384   // Emit debug descriptor for function end.
385   if (CGDebugInfo *DI = getDebugInfo())
386     DI->EmitFunctionEnd(Builder, CurFn);
387 
388   // Reset the debug location to that of the simple 'return' expression, if any
389   // rather than that of the end of the function's scope '}'.
390   ApplyDebugLocation AL(*this, Loc);
391   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
392   EmitEndEHSpec(CurCodeDecl);
393 
394   assert(EHStack.empty() &&
395          "did not remove all scopes from cleanup stack!");
396 
397   // If someone did an indirect goto, emit the indirect goto block at the end of
398   // the function.
399   if (IndirectBranch) {
400     EmitBlock(IndirectBranch->getParent());
401     Builder.ClearInsertionPoint();
402   }
403 
404   // If some of our locals escaped, insert a call to llvm.localescape in the
405   // entry block.
406   if (!EscapedLocals.empty()) {
407     // Invert the map from local to index into a simple vector. There should be
408     // no holes.
409     SmallVector<llvm::Value *, 4> EscapeArgs;
410     EscapeArgs.resize(EscapedLocals.size());
411     for (auto &Pair : EscapedLocals)
412       EscapeArgs[Pair.second] = Pair.first;
413     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
414         &CGM.getModule(), llvm::Intrinsic::localescape);
415     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
416   }
417 
418   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
419   llvm::Instruction *Ptr = AllocaInsertPt;
420   AllocaInsertPt = nullptr;
421   Ptr->eraseFromParent();
422 
423   // If someone took the address of a label but never did an indirect goto, we
424   // made a zero entry PHI node, which is illegal, zap it now.
425   if (IndirectBranch) {
426     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
427     if (PN->getNumIncomingValues() == 0) {
428       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
429       PN->eraseFromParent();
430     }
431   }
432 
433   EmitIfUsed(*this, EHResumeBlock);
434   EmitIfUsed(*this, TerminateLandingPad);
435   EmitIfUsed(*this, TerminateHandler);
436   EmitIfUsed(*this, UnreachableBlock);
437 
438   for (const auto &FuncletAndParent : TerminateFunclets)
439     EmitIfUsed(*this, FuncletAndParent.second);
440 
441   if (CGM.getCodeGenOpts().EmitDeclMetadata)
442     EmitDeclMetadata();
443 
444   for (const auto &R : DeferredReplacements) {
445     if (llvm::Value *Old = R.first) {
446       Old->replaceAllUsesWith(R.second);
447       cast<llvm::Instruction>(Old)->eraseFromParent();
448     }
449   }
450   DeferredReplacements.clear();
451 
452   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
453   // PHIs if the current function is a coroutine. We don't do it for all
454   // functions as it may result in slight increase in numbers of instructions
455   // if compiled with no optimizations. We do it for coroutine as the lifetime
456   // of CleanupDestSlot alloca make correct coroutine frame building very
457   // difficult.
458   if (NormalCleanupDest.isValid() && isCoroutine()) {
459     llvm::DominatorTree DT(*CurFn);
460     llvm::PromoteMemToReg(
461         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
462     NormalCleanupDest = Address::invalid();
463   }
464 
465   // Scan function arguments for vector width.
466   for (llvm::Argument &A : CurFn->args())
467     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
468       LargestVectorWidth =
469           std::max((uint64_t)LargestVectorWidth,
470                    VT->getPrimitiveSizeInBits().getKnownMinSize());
471 
472   // Update vector width based on return type.
473   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
474     LargestVectorWidth =
475         std::max((uint64_t)LargestVectorWidth,
476                  VT->getPrimitiveSizeInBits().getKnownMinSize());
477 
478   // Add the required-vector-width attribute. This contains the max width from:
479   // 1. min-vector-width attribute used in the source program.
480   // 2. Any builtins used that have a vector width specified.
481   // 3. Values passed in and out of inline assembly.
482   // 4. Width of vector arguments and return types for this function.
483   // 5. Width of vector aguments and return types for functions called by this
484   //    function.
485   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
486 
487   // Add vscale_range attribute if appropriate.
488   Optional<std::pair<unsigned, unsigned>> VScaleRange =
489       getContext().getTargetInfo().getVScaleRange(getLangOpts());
490   if (VScaleRange) {
491     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
492         getLLVMContext(), VScaleRange.getValue().first,
493         VScaleRange.getValue().second));
494   }
495 
496   // If we generated an unreachable return block, delete it now.
497   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
498     Builder.ClearInsertionPoint();
499     ReturnBlock.getBlock()->eraseFromParent();
500   }
501   if (ReturnValue.isValid()) {
502     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
503     if (RetAlloca && RetAlloca->use_empty()) {
504       RetAlloca->eraseFromParent();
505       ReturnValue = Address::invalid();
506     }
507   }
508 }
509 
510 /// ShouldInstrumentFunction - Return true if the current function should be
511 /// instrumented with __cyg_profile_func_* calls
512 bool CodeGenFunction::ShouldInstrumentFunction() {
513   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
514       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
515       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
516     return false;
517   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
518     return false;
519   return true;
520 }
521 
522 /// ShouldXRayInstrument - Return true if the current function should be
523 /// instrumented with XRay nop sleds.
524 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
525   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
526 }
527 
528 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
529 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
530 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
531   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
532          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
533           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
534               XRayInstrKind::Custom);
535 }
536 
537 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
538   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
539          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
540           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
541               XRayInstrKind::Typed);
542 }
543 
544 llvm::Constant *
545 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
546                                             llvm::Constant *Addr) {
547   // Addresses stored in prologue data can't require run-time fixups and must
548   // be PC-relative. Run-time fixups are undesirable because they necessitate
549   // writable text segments, which are unsafe. And absolute addresses are
550   // undesirable because they break PIE mode.
551 
552   // Add a layer of indirection through a private global. Taking its address
553   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
554   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
555                                       /*isConstant=*/true,
556                                       llvm::GlobalValue::PrivateLinkage, Addr);
557 
558   // Create a PC-relative address.
559   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
560   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
561   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
562   return (IntPtrTy == Int32Ty)
563              ? PCRelAsInt
564              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
565 }
566 
567 llvm::Value *
568 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
569                                           llvm::Value *EncodedAddr) {
570   // Reconstruct the address of the global.
571   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
572   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
573   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
574   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
575 
576   // Load the original pointer through the global.
577   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
578                             "decoded_addr");
579 }
580 
581 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
582                                                llvm::Function *Fn)
583 {
584   if (!FD->hasAttr<OpenCLKernelAttr>())
585     return;
586 
587   llvm::LLVMContext &Context = getLLVMContext();
588 
589   CGM.GenOpenCLArgMetadata(Fn, FD, this);
590 
591   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
592     QualType HintQTy = A->getTypeHint();
593     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
594     bool IsSignedInteger =
595         HintQTy->isSignedIntegerType() ||
596         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
597     llvm::Metadata *AttrMDArgs[] = {
598         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
599             CGM.getTypes().ConvertType(A->getTypeHint()))),
600         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
601             llvm::IntegerType::get(Context, 32),
602             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
603     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
604   }
605 
606   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
609         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
610         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
611     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
612   }
613 
614   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
615     llvm::Metadata *AttrMDArgs[] = {
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
619     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
620   }
621 
622   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
623           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
624     llvm::Metadata *AttrMDArgs[] = {
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
626     Fn->setMetadata("intel_reqd_sub_group_size",
627                     llvm::MDNode::get(Context, AttrMDArgs));
628   }
629 }
630 
631 /// Determine whether the function F ends with a return stmt.
632 static bool endsWithReturn(const Decl* F) {
633   const Stmt *Body = nullptr;
634   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
635     Body = FD->getBody();
636   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
637     Body = OMD->getBody();
638 
639   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
640     auto LastStmt = CS->body_rbegin();
641     if (LastStmt != CS->body_rend())
642       return isa<ReturnStmt>(*LastStmt);
643   }
644   return false;
645 }
646 
647 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
648   if (SanOpts.has(SanitizerKind::Thread)) {
649     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
650     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
651   }
652 }
653 
654 /// Check if the return value of this function requires sanitization.
655 bool CodeGenFunction::requiresReturnValueCheck() const {
656   return requiresReturnValueNullabilityCheck() ||
657          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
658           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
659 }
660 
661 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
662   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
663   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
664       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
665       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
666     return false;
667 
668   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
669     return false;
670 
671   if (MD->getNumParams() == 2) {
672     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
673     if (!PT || !PT->isVoidPointerType() ||
674         !PT->getPointeeType().isConstQualified())
675       return false;
676   }
677 
678   return true;
679 }
680 
681 /// Return the UBSan prologue signature for \p FD if one is available.
682 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
683                                             const FunctionDecl *FD) {
684   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
685     if (!MD->isStatic())
686       return nullptr;
687   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
688 }
689 
690 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
691                                     llvm::Function *Fn,
692                                     const CGFunctionInfo &FnInfo,
693                                     const FunctionArgList &Args,
694                                     SourceLocation Loc,
695                                     SourceLocation StartLoc) {
696   assert(!CurFn &&
697          "Do not use a CodeGenFunction object for more than one function");
698 
699   const Decl *D = GD.getDecl();
700 
701   DidCallStackSave = false;
702   CurCodeDecl = D;
703   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
704   if (FD && FD->usesSEHTry())
705     CurSEHParent = FD;
706   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
707   FnRetTy = RetTy;
708   CurFn = Fn;
709   CurFnInfo = &FnInfo;
710   assert(CurFn->isDeclaration() && "Function already has body?");
711 
712   // If this function is ignored for any of the enabled sanitizers,
713   // disable the sanitizer for the function.
714   do {
715 #define SANITIZER(NAME, ID)                                                    \
716   if (SanOpts.empty())                                                         \
717     break;                                                                     \
718   if (SanOpts.has(SanitizerKind::ID))                                          \
719     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
720       SanOpts.set(SanitizerKind::ID, false);
721 
722 #include "clang/Basic/Sanitizers.def"
723 #undef SANITIZER
724   } while (0);
725 
726   if (D) {
727     bool NoSanitizeCoverage = false;
728 
729     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
730       // Apply the no_sanitize* attributes to SanOpts.
731       SanitizerMask mask = Attr->getMask();
732       SanOpts.Mask &= ~mask;
733       if (mask & SanitizerKind::Address)
734         SanOpts.set(SanitizerKind::KernelAddress, false);
735       if (mask & SanitizerKind::KernelAddress)
736         SanOpts.set(SanitizerKind::Address, false);
737       if (mask & SanitizerKind::HWAddress)
738         SanOpts.set(SanitizerKind::KernelHWAddress, false);
739       if (mask & SanitizerKind::KernelHWAddress)
740         SanOpts.set(SanitizerKind::HWAddress, false);
741 
742       // SanitizeCoverage is not handled by SanOpts.
743       if (Attr->hasCoverage())
744         NoSanitizeCoverage = true;
745     }
746 
747     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
748       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
749   }
750 
751   // Apply sanitizer attributes to the function.
752   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
753     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
754   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
755     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
756   if (SanOpts.has(SanitizerKind::MemTag))
757     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
758   if (SanOpts.has(SanitizerKind::Thread))
759     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
760   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
761     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
762   if (SanOpts.has(SanitizerKind::SafeStack))
763     Fn->addFnAttr(llvm::Attribute::SafeStack);
764   if (SanOpts.has(SanitizerKind::ShadowCallStack))
765     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
766 
767   // Apply fuzzing attribute to the function.
768   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
769     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
770 
771   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
772   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
773   if (SanOpts.has(SanitizerKind::Thread)) {
774     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
775       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
776       if (OMD->getMethodFamily() == OMF_dealloc ||
777           OMD->getMethodFamily() == OMF_initialize ||
778           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
779         markAsIgnoreThreadCheckingAtRuntime(Fn);
780       }
781     }
782   }
783 
784   // Ignore unrelated casts in STL allocate() since the allocator must cast
785   // from void* to T* before object initialization completes. Don't match on the
786   // namespace because not all allocators are in std::
787   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
788     if (matchesStlAllocatorFn(D, getContext()))
789       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
790   }
791 
792   // Ignore null checks in coroutine functions since the coroutines passes
793   // are not aware of how to move the extra UBSan instructions across the split
794   // coroutine boundaries.
795   if (D && SanOpts.has(SanitizerKind::Null))
796     if (FD && FD->getBody() &&
797         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
798       SanOpts.Mask &= ~SanitizerKind::Null;
799 
800   // Apply xray attributes to the function (as a string, for now)
801   bool AlwaysXRayAttr = false;
802   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
803     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
804             XRayInstrKind::FunctionEntry) ||
805         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806             XRayInstrKind::FunctionExit)) {
807       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
808         Fn->addFnAttr("function-instrument", "xray-always");
809         AlwaysXRayAttr = true;
810       }
811       if (XRayAttr->neverXRayInstrument())
812         Fn->addFnAttr("function-instrument", "xray-never");
813       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
814         if (ShouldXRayInstrumentFunction())
815           Fn->addFnAttr("xray-log-args",
816                         llvm::utostr(LogArgs->getArgumentCount()));
817     }
818   } else {
819     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
820       Fn->addFnAttr(
821           "xray-instruction-threshold",
822           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
823   }
824 
825   if (ShouldXRayInstrumentFunction()) {
826     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
827       Fn->addFnAttr("xray-ignore-loops");
828 
829     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
830             XRayInstrKind::FunctionExit))
831       Fn->addFnAttr("xray-skip-exit");
832 
833     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
834             XRayInstrKind::FunctionEntry))
835       Fn->addFnAttr("xray-skip-entry");
836 
837     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
838     if (FuncGroups > 1) {
839       auto FuncName = llvm::makeArrayRef<uint8_t>(
840           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
841       auto Group = crc32(FuncName) % FuncGroups;
842       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
843           !AlwaysXRayAttr)
844         Fn->addFnAttr("function-instrument", "xray-never");
845     }
846   }
847 
848   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
849     if (CGM.isProfileInstrExcluded(Fn, Loc))
850       Fn->addFnAttr(llvm::Attribute::NoProfile);
851 
852   unsigned Count, Offset;
853   if (const auto *Attr =
854           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
855     Count = Attr->getCount();
856     Offset = Attr->getOffset();
857   } else {
858     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
859     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
860   }
861   if (Count && Offset <= Count) {
862     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
863     if (Offset)
864       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
865   }
866 
867   // Add no-jump-tables value.
868   if (CGM.getCodeGenOpts().NoUseJumpTables)
869     Fn->addFnAttr("no-jump-tables", "true");
870 
871   // Add no-inline-line-tables value.
872   if (CGM.getCodeGenOpts().NoInlineLineTables)
873     Fn->addFnAttr("no-inline-line-tables");
874 
875   // Add profile-sample-accurate value.
876   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
877     Fn->addFnAttr("profile-sample-accurate");
878 
879   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
880     Fn->addFnAttr("use-sample-profile");
881 
882   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
883     Fn->addFnAttr("cfi-canonical-jump-table");
884 
885   if (D && D->hasAttr<NoProfileFunctionAttr>())
886     Fn->addFnAttr(llvm::Attribute::NoProfile);
887 
888   if (FD && getLangOpts().OpenCL) {
889     // Add metadata for a kernel function.
890     EmitOpenCLKernelMetadata(FD, Fn);
891   }
892 
893   // If we are checking function types, emit a function type signature as
894   // prologue data.
895   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
896     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
897       // Remove any (C++17) exception specifications, to allow calling e.g. a
898       // noexcept function through a non-noexcept pointer.
899       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
900           FD->getType(), EST_None);
901       llvm::Constant *FTRTTIConst =
902           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
903       llvm::Constant *FTRTTIConstEncoded =
904           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
905       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
906       llvm::Constant *PrologueStructConst =
907           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
908       Fn->setPrologueData(PrologueStructConst);
909     }
910   }
911 
912   // If we're checking nullability, we need to know whether we can check the
913   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
914   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
915     auto Nullability = FnRetTy->getNullability(getContext());
916     if (Nullability && *Nullability == NullabilityKind::NonNull) {
917       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
918             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
919         RetValNullabilityPrecondition =
920             llvm::ConstantInt::getTrue(getLLVMContext());
921     }
922   }
923 
924   // If we're in C++ mode and the function name is "main", it is guaranteed
925   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
926   // used within a program").
927   //
928   // OpenCL C 2.0 v2.2-11 s6.9.i:
929   //     Recursion is not supported.
930   //
931   // SYCL v1.2.1 s3.10:
932   //     kernels cannot include RTTI information, exception classes,
933   //     recursive code, virtual functions or make use of C++ libraries that
934   //     are not compiled for the device.
935   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
936              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
937              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
938     Fn->addFnAttr(llvm::Attribute::NoRecurse);
939 
940   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
941   llvm::fp::ExceptionBehavior FPExceptionBehavior =
942       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
943   Builder.setDefaultConstrainedRounding(RM);
944   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
945   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
946       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
947                RM != llvm::RoundingMode::NearestTiesToEven))) {
948     Builder.setIsFPConstrained(true);
949     Fn->addFnAttr(llvm::Attribute::StrictFP);
950   }
951 
952   // If a custom alignment is used, force realigning to this alignment on
953   // any main function which certainly will need it.
954   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
955              CGM.getCodeGenOpts().StackAlignment))
956     Fn->addFnAttr("stackrealign");
957 
958   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
959 
960   // Create a marker to make it easy to insert allocas into the entryblock
961   // later.  Don't create this with the builder, because we don't want it
962   // folded.
963   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
964   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
965 
966   ReturnBlock = getJumpDestInCurrentScope("return");
967 
968   Builder.SetInsertPoint(EntryBB);
969 
970   // If we're checking the return value, allocate space for a pointer to a
971   // precise source location of the checked return statement.
972   if (requiresReturnValueCheck()) {
973     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
974     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
975   }
976 
977   // Emit subprogram debug descriptor.
978   if (CGDebugInfo *DI = getDebugInfo()) {
979     // Reconstruct the type from the argument list so that implicit parameters,
980     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
981     // convention.
982     CallingConv CC = CallingConv::CC_C;
983     if (FD)
984       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
985         CC = SrcFnTy->getCallConv();
986     SmallVector<QualType, 16> ArgTypes;
987     for (const VarDecl *VD : Args)
988       ArgTypes.push_back(VD->getType());
989     QualType FnType = getContext().getFunctionType(
990         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
991     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
992   }
993 
994   if (ShouldInstrumentFunction()) {
995     if (CGM.getCodeGenOpts().InstrumentFunctions)
996       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
997     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
998       CurFn->addFnAttr("instrument-function-entry-inlined",
999                        "__cyg_profile_func_enter");
1000     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1001       CurFn->addFnAttr("instrument-function-entry-inlined",
1002                        "__cyg_profile_func_enter_bare");
1003   }
1004 
1005   // Since emitting the mcount call here impacts optimizations such as function
1006   // inlining, we just add an attribute to insert a mcount call in backend.
1007   // The attribute "counting-function" is set to mcount function name which is
1008   // architecture dependent.
1009   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1010     // Calls to fentry/mcount should not be generated if function has
1011     // the no_instrument_function attribute.
1012     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1013       if (CGM.getCodeGenOpts().CallFEntry)
1014         Fn->addFnAttr("fentry-call", "true");
1015       else {
1016         Fn->addFnAttr("instrument-function-entry-inlined",
1017                       getTarget().getMCountName());
1018       }
1019       if (CGM.getCodeGenOpts().MNopMCount) {
1020         if (!CGM.getCodeGenOpts().CallFEntry)
1021           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1022             << "-mnop-mcount" << "-mfentry";
1023         Fn->addFnAttr("mnop-mcount");
1024       }
1025 
1026       if (CGM.getCodeGenOpts().RecordMCount) {
1027         if (!CGM.getCodeGenOpts().CallFEntry)
1028           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1029             << "-mrecord-mcount" << "-mfentry";
1030         Fn->addFnAttr("mrecord-mcount");
1031       }
1032     }
1033   }
1034 
1035   if (CGM.getCodeGenOpts().PackedStack) {
1036     if (getContext().getTargetInfo().getTriple().getArch() !=
1037         llvm::Triple::systemz)
1038       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1039         << "-mpacked-stack";
1040     Fn->addFnAttr("packed-stack");
1041   }
1042 
1043   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX)
1044     Fn->addFnAttr("warn-stack-size",
1045                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1046 
1047   if (RetTy->isVoidType()) {
1048     // Void type; nothing to return.
1049     ReturnValue = Address::invalid();
1050 
1051     // Count the implicit return.
1052     if (!endsWithReturn(D))
1053       ++NumReturnExprs;
1054   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1055     // Indirect return; emit returned value directly into sret slot.
1056     // This reduces code size, and affects correctness in C++.
1057     auto AI = CurFn->arg_begin();
1058     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1059       ++AI;
1060     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1061     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1062       ReturnValuePointer =
1063           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1064       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1065                               ReturnValue.getPointer(), Int8PtrTy),
1066                           ReturnValuePointer);
1067     }
1068   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1069              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1070     // Load the sret pointer from the argument struct and return into that.
1071     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1072     llvm::Function::arg_iterator EI = CurFn->arg_end();
1073     --EI;
1074     llvm::Value *Addr = Builder.CreateStructGEP(
1075         EI->getType()->getPointerElementType(), &*EI, Idx);
1076     llvm::Type *Ty =
1077         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1078     ReturnValuePointer = Address(Addr, getPointerAlign());
1079     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1080     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1081   } else {
1082     ReturnValue = CreateIRTemp(RetTy, "retval");
1083 
1084     // Tell the epilog emitter to autorelease the result.  We do this
1085     // now so that various specialized functions can suppress it
1086     // during their IR-generation.
1087     if (getLangOpts().ObjCAutoRefCount &&
1088         !CurFnInfo->isReturnsRetained() &&
1089         RetTy->isObjCRetainableType())
1090       AutoreleaseResult = true;
1091   }
1092 
1093   EmitStartEHSpec(CurCodeDecl);
1094 
1095   PrologueCleanupDepth = EHStack.stable_begin();
1096 
1097   // Emit OpenMP specific initialization of the device functions.
1098   if (getLangOpts().OpenMP && CurCodeDecl)
1099     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1100 
1101   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1102 
1103   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1104     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1105     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1106     if (MD->getParent()->isLambda() &&
1107         MD->getOverloadedOperator() == OO_Call) {
1108       // We're in a lambda; figure out the captures.
1109       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1110                                         LambdaThisCaptureField);
1111       if (LambdaThisCaptureField) {
1112         // If the lambda captures the object referred to by '*this' - either by
1113         // value or by reference, make sure CXXThisValue points to the correct
1114         // object.
1115 
1116         // Get the lvalue for the field (which is a copy of the enclosing object
1117         // or contains the address of the enclosing object).
1118         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1119         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1120           // If the enclosing object was captured by value, just use its address.
1121           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1122         } else {
1123           // Load the lvalue pointed to by the field, since '*this' was captured
1124           // by reference.
1125           CXXThisValue =
1126               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1127         }
1128       }
1129       for (auto *FD : MD->getParent()->fields()) {
1130         if (FD->hasCapturedVLAType()) {
1131           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1132                                            SourceLocation()).getScalarVal();
1133           auto VAT = FD->getCapturedVLAType();
1134           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1135         }
1136       }
1137     } else {
1138       // Not in a lambda; just use 'this' from the method.
1139       // FIXME: Should we generate a new load for each use of 'this'?  The
1140       // fast register allocator would be happier...
1141       CXXThisValue = CXXABIThisValue;
1142     }
1143 
1144     // Check the 'this' pointer once per function, if it's available.
1145     if (CXXABIThisValue) {
1146       SanitizerSet SkippedChecks;
1147       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1148       QualType ThisTy = MD->getThisType();
1149 
1150       // If this is the call operator of a lambda with no capture-default, it
1151       // may have a static invoker function, which may call this operator with
1152       // a null 'this' pointer.
1153       if (isLambdaCallOperator(MD) &&
1154           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1155         SkippedChecks.set(SanitizerKind::Null, true);
1156 
1157       EmitTypeCheck(
1158           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1159           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1160     }
1161   }
1162 
1163   // If any of the arguments have a variably modified type, make sure to
1164   // emit the type size.
1165   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1166        i != e; ++i) {
1167     const VarDecl *VD = *i;
1168 
1169     // Dig out the type as written from ParmVarDecls; it's unclear whether
1170     // the standard (C99 6.9.1p10) requires this, but we're following the
1171     // precedent set by gcc.
1172     QualType Ty;
1173     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1174       Ty = PVD->getOriginalType();
1175     else
1176       Ty = VD->getType();
1177 
1178     if (Ty->isVariablyModifiedType())
1179       EmitVariablyModifiedType(Ty);
1180   }
1181   // Emit a location at the end of the prologue.
1182   if (CGDebugInfo *DI = getDebugInfo())
1183     DI->EmitLocation(Builder, StartLoc);
1184 
1185   // TODO: Do we need to handle this in two places like we do with
1186   // target-features/target-cpu?
1187   if (CurFuncDecl)
1188     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1189       LargestVectorWidth = VecWidth->getVectorWidth();
1190 }
1191 
1192 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1193   incrementProfileCounter(Body);
1194   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1195     EmitCompoundStmtWithoutScope(*S);
1196   else
1197     EmitStmt(Body);
1198 
1199   // This is checked after emitting the function body so we know if there
1200   // are any permitted infinite loops.
1201   if (checkIfFunctionMustProgress())
1202     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1203 }
1204 
1205 /// When instrumenting to collect profile data, the counts for some blocks
1206 /// such as switch cases need to not include the fall-through counts, so
1207 /// emit a branch around the instrumentation code. When not instrumenting,
1208 /// this just calls EmitBlock().
1209 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1210                                                const Stmt *S) {
1211   llvm::BasicBlock *SkipCountBB = nullptr;
1212   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1213     // When instrumenting for profiling, the fallthrough to certain
1214     // statements needs to skip over the instrumentation code so that we
1215     // get an accurate count.
1216     SkipCountBB = createBasicBlock("skipcount");
1217     EmitBranch(SkipCountBB);
1218   }
1219   EmitBlock(BB);
1220   uint64_t CurrentCount = getCurrentProfileCount();
1221   incrementProfileCounter(S);
1222   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1223   if (SkipCountBB)
1224     EmitBlock(SkipCountBB);
1225 }
1226 
1227 /// Tries to mark the given function nounwind based on the
1228 /// non-existence of any throwing calls within it.  We believe this is
1229 /// lightweight enough to do at -O0.
1230 static void TryMarkNoThrow(llvm::Function *F) {
1231   // LLVM treats 'nounwind' on a function as part of the type, so we
1232   // can't do this on functions that can be overwritten.
1233   if (F->isInterposable()) return;
1234 
1235   for (llvm::BasicBlock &BB : *F)
1236     for (llvm::Instruction &I : BB)
1237       if (I.mayThrow())
1238         return;
1239 
1240   F->setDoesNotThrow();
1241 }
1242 
1243 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1244                                                FunctionArgList &Args) {
1245   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1246   QualType ResTy = FD->getReturnType();
1247 
1248   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1249   if (MD && MD->isInstance()) {
1250     if (CGM.getCXXABI().HasThisReturn(GD))
1251       ResTy = MD->getThisType();
1252     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1253       ResTy = CGM.getContext().VoidPtrTy;
1254     CGM.getCXXABI().buildThisParam(*this, Args);
1255   }
1256 
1257   // The base version of an inheriting constructor whose constructed base is a
1258   // virtual base is not passed any arguments (because it doesn't actually call
1259   // the inherited constructor).
1260   bool PassedParams = true;
1261   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1262     if (auto Inherited = CD->getInheritedConstructor())
1263       PassedParams =
1264           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1265 
1266   if (PassedParams) {
1267     for (auto *Param : FD->parameters()) {
1268       Args.push_back(Param);
1269       if (!Param->hasAttr<PassObjectSizeAttr>())
1270         continue;
1271 
1272       auto *Implicit = ImplicitParamDecl::Create(
1273           getContext(), Param->getDeclContext(), Param->getLocation(),
1274           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1275       SizeArguments[Param] = Implicit;
1276       Args.push_back(Implicit);
1277     }
1278   }
1279 
1280   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1281     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1282 
1283   return ResTy;
1284 }
1285 
1286 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1287                                    const CGFunctionInfo &FnInfo) {
1288   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1289   CurGD = GD;
1290 
1291   FunctionArgList Args;
1292   QualType ResTy = BuildFunctionArgList(GD, Args);
1293 
1294   // Check if we should generate debug info for this function.
1295   if (FD->hasAttr<NoDebugAttr>()) {
1296     // Clear non-distinct debug info that was possibly attached to the function
1297     // due to an earlier declaration without the nodebug attribute
1298     if (Fn)
1299       Fn->setSubprogram(nullptr);
1300     // Disable debug info indefinitely for this function
1301     DebugInfo = nullptr;
1302   }
1303 
1304   // The function might not have a body if we're generating thunks for a
1305   // function declaration.
1306   SourceRange BodyRange;
1307   if (Stmt *Body = FD->getBody())
1308     BodyRange = Body->getSourceRange();
1309   else
1310     BodyRange = FD->getLocation();
1311   CurEHLocation = BodyRange.getEnd();
1312 
1313   // Use the location of the start of the function to determine where
1314   // the function definition is located. By default use the location
1315   // of the declaration as the location for the subprogram. A function
1316   // may lack a declaration in the source code if it is created by code
1317   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1318   SourceLocation Loc = FD->getLocation();
1319 
1320   // If this is a function specialization then use the pattern body
1321   // as the location for the function.
1322   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1323     if (SpecDecl->hasBody(SpecDecl))
1324       Loc = SpecDecl->getLocation();
1325 
1326   Stmt *Body = FD->getBody();
1327 
1328   if (Body) {
1329     // Coroutines always emit lifetime markers.
1330     if (isa<CoroutineBodyStmt>(Body))
1331       ShouldEmitLifetimeMarkers = true;
1332 
1333     // Initialize helper which will detect jumps which can cause invalid
1334     // lifetime markers.
1335     if (ShouldEmitLifetimeMarkers)
1336       Bypasses.Init(Body);
1337   }
1338 
1339   // Emit the standard function prologue.
1340   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1341 
1342   // Save parameters for coroutine function.
1343   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1344     for (const auto *ParamDecl : FD->parameters())
1345       FnArgs.push_back(ParamDecl);
1346 
1347   // Generate the body of the function.
1348   PGO.assignRegionCounters(GD, CurFn);
1349   if (isa<CXXDestructorDecl>(FD))
1350     EmitDestructorBody(Args);
1351   else if (isa<CXXConstructorDecl>(FD))
1352     EmitConstructorBody(Args);
1353   else if (getLangOpts().CUDA &&
1354            !getLangOpts().CUDAIsDevice &&
1355            FD->hasAttr<CUDAGlobalAttr>())
1356     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1357   else if (isa<CXXMethodDecl>(FD) &&
1358            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1359     // The lambda static invoker function is special, because it forwards or
1360     // clones the body of the function call operator (but is actually static).
1361     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1362   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1363              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1364               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1365     // Implicit copy-assignment gets the same special treatment as implicit
1366     // copy-constructors.
1367     emitImplicitAssignmentOperatorBody(Args);
1368   } else if (Body) {
1369     EmitFunctionBody(Body);
1370   } else
1371     llvm_unreachable("no definition for emitted function");
1372 
1373   // C++11 [stmt.return]p2:
1374   //   Flowing off the end of a function [...] results in undefined behavior in
1375   //   a value-returning function.
1376   // C11 6.9.1p12:
1377   //   If the '}' that terminates a function is reached, and the value of the
1378   //   function call is used by the caller, the behavior is undefined.
1379   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1380       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1381     bool ShouldEmitUnreachable =
1382         CGM.getCodeGenOpts().StrictReturn ||
1383         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1384     if (SanOpts.has(SanitizerKind::Return)) {
1385       SanitizerScope SanScope(this);
1386       llvm::Value *IsFalse = Builder.getFalse();
1387       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1388                 SanitizerHandler::MissingReturn,
1389                 EmitCheckSourceLocation(FD->getLocation()), None);
1390     } else if (ShouldEmitUnreachable) {
1391       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1392         EmitTrapCall(llvm::Intrinsic::trap);
1393     }
1394     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1395       Builder.CreateUnreachable();
1396       Builder.ClearInsertionPoint();
1397     }
1398   }
1399 
1400   // Emit the standard function epilogue.
1401   FinishFunction(BodyRange.getEnd());
1402 
1403   // If we haven't marked the function nothrow through other means, do
1404   // a quick pass now to see if we can.
1405   if (!CurFn->doesNotThrow())
1406     TryMarkNoThrow(CurFn);
1407 }
1408 
1409 /// ContainsLabel - Return true if the statement contains a label in it.  If
1410 /// this statement is not executed normally, it not containing a label means
1411 /// that we can just remove the code.
1412 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1413   // Null statement, not a label!
1414   if (!S) return false;
1415 
1416   // If this is a label, we have to emit the code, consider something like:
1417   // if (0) {  ...  foo:  bar(); }  goto foo;
1418   //
1419   // TODO: If anyone cared, we could track __label__'s, since we know that you
1420   // can't jump to one from outside their declared region.
1421   if (isa<LabelStmt>(S))
1422     return true;
1423 
1424   // If this is a case/default statement, and we haven't seen a switch, we have
1425   // to emit the code.
1426   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1427     return true;
1428 
1429   // If this is a switch statement, we want to ignore cases below it.
1430   if (isa<SwitchStmt>(S))
1431     IgnoreCaseStmts = true;
1432 
1433   // Scan subexpressions for verboten labels.
1434   for (const Stmt *SubStmt : S->children())
1435     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1436       return true;
1437 
1438   return false;
1439 }
1440 
1441 /// containsBreak - Return true if the statement contains a break out of it.
1442 /// If the statement (recursively) contains a switch or loop with a break
1443 /// inside of it, this is fine.
1444 bool CodeGenFunction::containsBreak(const Stmt *S) {
1445   // Null statement, not a label!
1446   if (!S) return false;
1447 
1448   // If this is a switch or loop that defines its own break scope, then we can
1449   // include it and anything inside of it.
1450   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1451       isa<ForStmt>(S))
1452     return false;
1453 
1454   if (isa<BreakStmt>(S))
1455     return true;
1456 
1457   // Scan subexpressions for verboten breaks.
1458   for (const Stmt *SubStmt : S->children())
1459     if (containsBreak(SubStmt))
1460       return true;
1461 
1462   return false;
1463 }
1464 
1465 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1466   if (!S) return false;
1467 
1468   // Some statement kinds add a scope and thus never add a decl to the current
1469   // scope. Note, this list is longer than the list of statements that might
1470   // have an unscoped decl nested within them, but this way is conservatively
1471   // correct even if more statement kinds are added.
1472   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1473       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1474       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1475       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1476     return false;
1477 
1478   if (isa<DeclStmt>(S))
1479     return true;
1480 
1481   for (const Stmt *SubStmt : S->children())
1482     if (mightAddDeclToScope(SubStmt))
1483       return true;
1484 
1485   return false;
1486 }
1487 
1488 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1489 /// to a constant, or if it does but contains a label, return false.  If it
1490 /// constant folds return true and set the boolean result in Result.
1491 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1492                                                    bool &ResultBool,
1493                                                    bool AllowLabels) {
1494   llvm::APSInt ResultInt;
1495   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1496     return false;
1497 
1498   ResultBool = ResultInt.getBoolValue();
1499   return true;
1500 }
1501 
1502 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1503 /// to a constant, or if it does but contains a label, return false.  If it
1504 /// constant folds return true and set the folded value.
1505 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1506                                                    llvm::APSInt &ResultInt,
1507                                                    bool AllowLabels) {
1508   // FIXME: Rename and handle conversion of other evaluatable things
1509   // to bool.
1510   Expr::EvalResult Result;
1511   if (!Cond->EvaluateAsInt(Result, getContext()))
1512     return false;  // Not foldable, not integer or not fully evaluatable.
1513 
1514   llvm::APSInt Int = Result.Val.getInt();
1515   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1516     return false;  // Contains a label.
1517 
1518   ResultInt = Int;
1519   return true;
1520 }
1521 
1522 /// Determine whether the given condition is an instrumentable condition
1523 /// (i.e. no "&&" or "||").
1524 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1525   // Bypass simplistic logical-NOT operator before determining whether the
1526   // condition contains any other logical operator.
1527   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1528     if (UnOp->getOpcode() == UO_LNot)
1529       C = UnOp->getSubExpr();
1530 
1531   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1532   return (!BOp || !BOp->isLogicalOp());
1533 }
1534 
1535 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1536 /// increments a profile counter based on the semantics of the given logical
1537 /// operator opcode.  This is used to instrument branch condition coverage for
1538 /// logical operators.
1539 void CodeGenFunction::EmitBranchToCounterBlock(
1540     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1541     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1542     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1543   // If not instrumenting, just emit a branch.
1544   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1545   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1546     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1547 
1548   llvm::BasicBlock *ThenBlock = NULL;
1549   llvm::BasicBlock *ElseBlock = NULL;
1550   llvm::BasicBlock *NextBlock = NULL;
1551 
1552   // Create the block we'll use to increment the appropriate counter.
1553   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1554 
1555   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1556   // means we need to evaluate the condition and increment the counter on TRUE:
1557   //
1558   // if (Cond)
1559   //   goto CounterIncrBlock;
1560   // else
1561   //   goto FalseBlock;
1562   //
1563   // CounterIncrBlock:
1564   //   Counter++;
1565   //   goto TrueBlock;
1566 
1567   if (LOp == BO_LAnd) {
1568     ThenBlock = CounterIncrBlock;
1569     ElseBlock = FalseBlock;
1570     NextBlock = TrueBlock;
1571   }
1572 
1573   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1574   // we need to evaluate the condition and increment the counter on FALSE:
1575   //
1576   // if (Cond)
1577   //   goto TrueBlock;
1578   // else
1579   //   goto CounterIncrBlock;
1580   //
1581   // CounterIncrBlock:
1582   //   Counter++;
1583   //   goto FalseBlock;
1584 
1585   else if (LOp == BO_LOr) {
1586     ThenBlock = TrueBlock;
1587     ElseBlock = CounterIncrBlock;
1588     NextBlock = FalseBlock;
1589   } else {
1590     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1591   }
1592 
1593   // Emit Branch based on condition.
1594   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1595 
1596   // Emit the block containing the counter increment(s).
1597   EmitBlock(CounterIncrBlock);
1598 
1599   // Increment corresponding counter; if index not provided, use Cond as index.
1600   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1601 
1602   // Go to the next block.
1603   EmitBranch(NextBlock);
1604 }
1605 
1606 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1607 /// statement) to the specified blocks.  Based on the condition, this might try
1608 /// to simplify the codegen of the conditional based on the branch.
1609 /// \param LH The value of the likelihood attribute on the True branch.
1610 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1611                                            llvm::BasicBlock *TrueBlock,
1612                                            llvm::BasicBlock *FalseBlock,
1613                                            uint64_t TrueCount,
1614                                            Stmt::Likelihood LH) {
1615   Cond = Cond->IgnoreParens();
1616 
1617   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1618 
1619     // Handle X && Y in a condition.
1620     if (CondBOp->getOpcode() == BO_LAnd) {
1621       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1622       // folded if the case was simple enough.
1623       bool ConstantBool = false;
1624       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1625           ConstantBool) {
1626         // br(1 && X) -> br(X).
1627         incrementProfileCounter(CondBOp);
1628         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1629                                         FalseBlock, TrueCount, LH);
1630       }
1631 
1632       // If we have "X && 1", simplify the code to use an uncond branch.
1633       // "X && 0" would have been constant folded to 0.
1634       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1635           ConstantBool) {
1636         // br(X && 1) -> br(X).
1637         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1638                                         FalseBlock, TrueCount, LH, CondBOp);
1639       }
1640 
1641       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1642       // want to jump to the FalseBlock.
1643       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1644       // The counter tells us how often we evaluate RHS, and all of TrueCount
1645       // can be propagated to that branch.
1646       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1647 
1648       ConditionalEvaluation eval(*this);
1649       {
1650         ApplyDebugLocation DL(*this, Cond);
1651         // Propagate the likelihood attribute like __builtin_expect
1652         // __builtin_expect(X && Y, 1) -> X and Y are likely
1653         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1654         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1655                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1656         EmitBlock(LHSTrue);
1657       }
1658 
1659       incrementProfileCounter(CondBOp);
1660       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1661 
1662       // Any temporaries created here are conditional.
1663       eval.begin(*this);
1664       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1665                                FalseBlock, TrueCount, LH);
1666       eval.end(*this);
1667 
1668       return;
1669     }
1670 
1671     if (CondBOp->getOpcode() == BO_LOr) {
1672       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1673       // folded if the case was simple enough.
1674       bool ConstantBool = false;
1675       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1676           !ConstantBool) {
1677         // br(0 || X) -> br(X).
1678         incrementProfileCounter(CondBOp);
1679         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1680                                         FalseBlock, TrueCount, LH);
1681       }
1682 
1683       // If we have "X || 0", simplify the code to use an uncond branch.
1684       // "X || 1" would have been constant folded to 1.
1685       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1686           !ConstantBool) {
1687         // br(X || 0) -> br(X).
1688         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1689                                         FalseBlock, TrueCount, LH, CondBOp);
1690       }
1691 
1692       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1693       // want to jump to the TrueBlock.
1694       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1695       // We have the count for entry to the RHS and for the whole expression
1696       // being true, so we can divy up True count between the short circuit and
1697       // the RHS.
1698       uint64_t LHSCount =
1699           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1700       uint64_t RHSCount = TrueCount - LHSCount;
1701 
1702       ConditionalEvaluation eval(*this);
1703       {
1704         // Propagate the likelihood attribute like __builtin_expect
1705         // __builtin_expect(X || Y, 1) -> only Y is likely
1706         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1707         ApplyDebugLocation DL(*this, Cond);
1708         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1709                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1710         EmitBlock(LHSFalse);
1711       }
1712 
1713       incrementProfileCounter(CondBOp);
1714       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1715 
1716       // Any temporaries created here are conditional.
1717       eval.begin(*this);
1718       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1719                                RHSCount, LH);
1720 
1721       eval.end(*this);
1722 
1723       return;
1724     }
1725   }
1726 
1727   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1728     // br(!x, t, f) -> br(x, f, t)
1729     if (CondUOp->getOpcode() == UO_LNot) {
1730       // Negate the count.
1731       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1732       // The values of the enum are chosen to make this negation possible.
1733       LH = static_cast<Stmt::Likelihood>(-LH);
1734       // Negate the condition and swap the destination blocks.
1735       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1736                                   FalseCount, LH);
1737     }
1738   }
1739 
1740   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1741     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1742     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1743     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1744 
1745     // The ConditionalOperator itself has no likelihood information for its
1746     // true and false branches. This matches the behavior of __builtin_expect.
1747     ConditionalEvaluation cond(*this);
1748     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1749                          getProfileCount(CondOp), Stmt::LH_None);
1750 
1751     // When computing PGO branch weights, we only know the overall count for
1752     // the true block. This code is essentially doing tail duplication of the
1753     // naive code-gen, introducing new edges for which counts are not
1754     // available. Divide the counts proportionally between the LHS and RHS of
1755     // the conditional operator.
1756     uint64_t LHSScaledTrueCount = 0;
1757     if (TrueCount) {
1758       double LHSRatio =
1759           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1760       LHSScaledTrueCount = TrueCount * LHSRatio;
1761     }
1762 
1763     cond.begin(*this);
1764     EmitBlock(LHSBlock);
1765     incrementProfileCounter(CondOp);
1766     {
1767       ApplyDebugLocation DL(*this, Cond);
1768       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1769                            LHSScaledTrueCount, LH);
1770     }
1771     cond.end(*this);
1772 
1773     cond.begin(*this);
1774     EmitBlock(RHSBlock);
1775     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1776                          TrueCount - LHSScaledTrueCount, LH);
1777     cond.end(*this);
1778 
1779     return;
1780   }
1781 
1782   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1783     // Conditional operator handling can give us a throw expression as a
1784     // condition for a case like:
1785     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1786     // Fold this to:
1787     //   br(c, throw x, br(y, t, f))
1788     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1789     return;
1790   }
1791 
1792   // Emit the code with the fully general case.
1793   llvm::Value *CondV;
1794   {
1795     ApplyDebugLocation DL(*this, Cond);
1796     CondV = EvaluateExprAsBool(Cond);
1797   }
1798 
1799   llvm::MDNode *Weights = nullptr;
1800   llvm::MDNode *Unpredictable = nullptr;
1801 
1802   // If the branch has a condition wrapped by __builtin_unpredictable,
1803   // create metadata that specifies that the branch is unpredictable.
1804   // Don't bother if not optimizing because that metadata would not be used.
1805   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1806   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1807     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1808     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1809       llvm::MDBuilder MDHelper(getLLVMContext());
1810       Unpredictable = MDHelper.createUnpredictable();
1811     }
1812   }
1813 
1814   // If there is a Likelihood knowledge for the cond, lower it.
1815   // Note that if not optimizing this won't emit anything.
1816   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1817   if (CondV != NewCondV)
1818     CondV = NewCondV;
1819   else {
1820     // Otherwise, lower profile counts. Note that we do this even at -O0.
1821     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1822     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1823   }
1824 
1825   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1826 }
1827 
1828 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1829 /// specified stmt yet.
1830 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1831   CGM.ErrorUnsupported(S, Type);
1832 }
1833 
1834 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1835 /// variable-length array whose elements have a non-zero bit-pattern.
1836 ///
1837 /// \param baseType the inner-most element type of the array
1838 /// \param src - a char* pointing to the bit-pattern for a single
1839 /// base element of the array
1840 /// \param sizeInChars - the total size of the VLA, in chars
1841 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1842                                Address dest, Address src,
1843                                llvm::Value *sizeInChars) {
1844   CGBuilderTy &Builder = CGF.Builder;
1845 
1846   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1847   llvm::Value *baseSizeInChars
1848     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1849 
1850   Address begin =
1851     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1852   llvm::Value *end = Builder.CreateInBoundsGEP(
1853       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1854 
1855   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1856   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1857   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1858 
1859   // Make a loop over the VLA.  C99 guarantees that the VLA element
1860   // count must be nonzero.
1861   CGF.EmitBlock(loopBB);
1862 
1863   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1864   cur->addIncoming(begin.getPointer(), originBB);
1865 
1866   CharUnits curAlign =
1867     dest.getAlignment().alignmentOfArrayElement(baseSize);
1868 
1869   // memcpy the individual element bit-pattern.
1870   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1871                        /*volatile*/ false);
1872 
1873   // Go to the next element.
1874   llvm::Value *next =
1875     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1876 
1877   // Leave if that's the end of the VLA.
1878   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1879   Builder.CreateCondBr(done, contBB, loopBB);
1880   cur->addIncoming(next, loopBB);
1881 
1882   CGF.EmitBlock(contBB);
1883 }
1884 
1885 void
1886 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1887   // Ignore empty classes in C++.
1888   if (getLangOpts().CPlusPlus) {
1889     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1890       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1891         return;
1892     }
1893   }
1894 
1895   // Cast the dest ptr to the appropriate i8 pointer type.
1896   if (DestPtr.getElementType() != Int8Ty)
1897     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1898 
1899   // Get size and alignment info for this aggregate.
1900   CharUnits size = getContext().getTypeSizeInChars(Ty);
1901 
1902   llvm::Value *SizeVal;
1903   const VariableArrayType *vla;
1904 
1905   // Don't bother emitting a zero-byte memset.
1906   if (size.isZero()) {
1907     // But note that getTypeInfo returns 0 for a VLA.
1908     if (const VariableArrayType *vlaType =
1909           dyn_cast_or_null<VariableArrayType>(
1910                                           getContext().getAsArrayType(Ty))) {
1911       auto VlaSize = getVLASize(vlaType);
1912       SizeVal = VlaSize.NumElts;
1913       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1914       if (!eltSize.isOne())
1915         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1916       vla = vlaType;
1917     } else {
1918       return;
1919     }
1920   } else {
1921     SizeVal = CGM.getSize(size);
1922     vla = nullptr;
1923   }
1924 
1925   // If the type contains a pointer to data member we can't memset it to zero.
1926   // Instead, create a null constant and copy it to the destination.
1927   // TODO: there are other patterns besides zero that we can usefully memset,
1928   // like -1, which happens to be the pattern used by member-pointers.
1929   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1930     // For a VLA, emit a single element, then splat that over the VLA.
1931     if (vla) Ty = getContext().getBaseElementType(vla);
1932 
1933     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1934 
1935     llvm::GlobalVariable *NullVariable =
1936       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1937                                /*isConstant=*/true,
1938                                llvm::GlobalVariable::PrivateLinkage,
1939                                NullConstant, Twine());
1940     CharUnits NullAlign = DestPtr.getAlignment();
1941     NullVariable->setAlignment(NullAlign.getAsAlign());
1942     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1943                    NullAlign);
1944 
1945     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1946 
1947     // Get and call the appropriate llvm.memcpy overload.
1948     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1949     return;
1950   }
1951 
1952   // Otherwise, just memset the whole thing to zero.  This is legal
1953   // because in LLVM, all default initializers (other than the ones we just
1954   // handled above) are guaranteed to have a bit pattern of all zeros.
1955   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1956 }
1957 
1958 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1959   // Make sure that there is a block for the indirect goto.
1960   if (!IndirectBranch)
1961     GetIndirectGotoBlock();
1962 
1963   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1964 
1965   // Make sure the indirect branch includes all of the address-taken blocks.
1966   IndirectBranch->addDestination(BB);
1967   return llvm::BlockAddress::get(CurFn, BB);
1968 }
1969 
1970 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1971   // If we already made the indirect branch for indirect goto, return its block.
1972   if (IndirectBranch) return IndirectBranch->getParent();
1973 
1974   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1975 
1976   // Create the PHI node that indirect gotos will add entries to.
1977   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1978                                               "indirect.goto.dest");
1979 
1980   // Create the indirect branch instruction.
1981   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1982   return IndirectBranch->getParent();
1983 }
1984 
1985 /// Computes the length of an array in elements, as well as the base
1986 /// element type and a properly-typed first element pointer.
1987 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1988                                               QualType &baseType,
1989                                               Address &addr) {
1990   const ArrayType *arrayType = origArrayType;
1991 
1992   // If it's a VLA, we have to load the stored size.  Note that
1993   // this is the size of the VLA in bytes, not its size in elements.
1994   llvm::Value *numVLAElements = nullptr;
1995   if (isa<VariableArrayType>(arrayType)) {
1996     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1997 
1998     // Walk into all VLAs.  This doesn't require changes to addr,
1999     // which has type T* where T is the first non-VLA element type.
2000     do {
2001       QualType elementType = arrayType->getElementType();
2002       arrayType = getContext().getAsArrayType(elementType);
2003 
2004       // If we only have VLA components, 'addr' requires no adjustment.
2005       if (!arrayType) {
2006         baseType = elementType;
2007         return numVLAElements;
2008       }
2009     } while (isa<VariableArrayType>(arrayType));
2010 
2011     // We get out here only if we find a constant array type
2012     // inside the VLA.
2013   }
2014 
2015   // We have some number of constant-length arrays, so addr should
2016   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2017   // down to the first element of addr.
2018   SmallVector<llvm::Value*, 8> gepIndices;
2019 
2020   // GEP down to the array type.
2021   llvm::ConstantInt *zero = Builder.getInt32(0);
2022   gepIndices.push_back(zero);
2023 
2024   uint64_t countFromCLAs = 1;
2025   QualType eltType;
2026 
2027   llvm::ArrayType *llvmArrayType =
2028     dyn_cast<llvm::ArrayType>(addr.getElementType());
2029   while (llvmArrayType) {
2030     assert(isa<ConstantArrayType>(arrayType));
2031     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2032              == llvmArrayType->getNumElements());
2033 
2034     gepIndices.push_back(zero);
2035     countFromCLAs *= llvmArrayType->getNumElements();
2036     eltType = arrayType->getElementType();
2037 
2038     llvmArrayType =
2039       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2040     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2041     assert((!llvmArrayType || arrayType) &&
2042            "LLVM and Clang types are out-of-synch");
2043   }
2044 
2045   if (arrayType) {
2046     // From this point onwards, the Clang array type has been emitted
2047     // as some other type (probably a packed struct). Compute the array
2048     // size, and just emit the 'begin' expression as a bitcast.
2049     while (arrayType) {
2050       countFromCLAs *=
2051           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2052       eltType = arrayType->getElementType();
2053       arrayType = getContext().getAsArrayType(eltType);
2054     }
2055 
2056     llvm::Type *baseType = ConvertType(eltType);
2057     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2058   } else {
2059     // Create the actual GEP.
2060     addr = Address(Builder.CreateInBoundsGEP(
2061         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2062         addr.getAlignment());
2063   }
2064 
2065   baseType = eltType;
2066 
2067   llvm::Value *numElements
2068     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2069 
2070   // If we had any VLA dimensions, factor them in.
2071   if (numVLAElements)
2072     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2073 
2074   return numElements;
2075 }
2076 
2077 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2078   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2079   assert(vla && "type was not a variable array type!");
2080   return getVLASize(vla);
2081 }
2082 
2083 CodeGenFunction::VlaSizePair
2084 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2085   // The number of elements so far; always size_t.
2086   llvm::Value *numElements = nullptr;
2087 
2088   QualType elementType;
2089   do {
2090     elementType = type->getElementType();
2091     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2092     assert(vlaSize && "no size for VLA!");
2093     assert(vlaSize->getType() == SizeTy);
2094 
2095     if (!numElements) {
2096       numElements = vlaSize;
2097     } else {
2098       // It's undefined behavior if this wraps around, so mark it that way.
2099       // FIXME: Teach -fsanitize=undefined to trap this.
2100       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2101     }
2102   } while ((type = getContext().getAsVariableArrayType(elementType)));
2103 
2104   return { numElements, elementType };
2105 }
2106 
2107 CodeGenFunction::VlaSizePair
2108 CodeGenFunction::getVLAElements1D(QualType type) {
2109   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2110   assert(vla && "type was not a variable array type!");
2111   return getVLAElements1D(vla);
2112 }
2113 
2114 CodeGenFunction::VlaSizePair
2115 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2116   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2117   assert(VlaSize && "no size for VLA!");
2118   assert(VlaSize->getType() == SizeTy);
2119   return { VlaSize, Vla->getElementType() };
2120 }
2121 
2122 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2123   assert(type->isVariablyModifiedType() &&
2124          "Must pass variably modified type to EmitVLASizes!");
2125 
2126   EnsureInsertPoint();
2127 
2128   // We're going to walk down into the type and look for VLA
2129   // expressions.
2130   do {
2131     assert(type->isVariablyModifiedType());
2132 
2133     const Type *ty = type.getTypePtr();
2134     switch (ty->getTypeClass()) {
2135 
2136 #define TYPE(Class, Base)
2137 #define ABSTRACT_TYPE(Class, Base)
2138 #define NON_CANONICAL_TYPE(Class, Base)
2139 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2140 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2141 #include "clang/AST/TypeNodes.inc"
2142       llvm_unreachable("unexpected dependent type!");
2143 
2144     // These types are never variably-modified.
2145     case Type::Builtin:
2146     case Type::Complex:
2147     case Type::Vector:
2148     case Type::ExtVector:
2149     case Type::ConstantMatrix:
2150     case Type::Record:
2151     case Type::Enum:
2152     case Type::Elaborated:
2153     case Type::TemplateSpecialization:
2154     case Type::ObjCTypeParam:
2155     case Type::ObjCObject:
2156     case Type::ObjCInterface:
2157     case Type::ObjCObjectPointer:
2158     case Type::ExtInt:
2159       llvm_unreachable("type class is never variably-modified!");
2160 
2161     case Type::Adjusted:
2162       type = cast<AdjustedType>(ty)->getAdjustedType();
2163       break;
2164 
2165     case Type::Decayed:
2166       type = cast<DecayedType>(ty)->getPointeeType();
2167       break;
2168 
2169     case Type::Pointer:
2170       type = cast<PointerType>(ty)->getPointeeType();
2171       break;
2172 
2173     case Type::BlockPointer:
2174       type = cast<BlockPointerType>(ty)->getPointeeType();
2175       break;
2176 
2177     case Type::LValueReference:
2178     case Type::RValueReference:
2179       type = cast<ReferenceType>(ty)->getPointeeType();
2180       break;
2181 
2182     case Type::MemberPointer:
2183       type = cast<MemberPointerType>(ty)->getPointeeType();
2184       break;
2185 
2186     case Type::ConstantArray:
2187     case Type::IncompleteArray:
2188       // Losing element qualification here is fine.
2189       type = cast<ArrayType>(ty)->getElementType();
2190       break;
2191 
2192     case Type::VariableArray: {
2193       // Losing element qualification here is fine.
2194       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2195 
2196       // Unknown size indication requires no size computation.
2197       // Otherwise, evaluate and record it.
2198       if (const Expr *size = vat->getSizeExpr()) {
2199         // It's possible that we might have emitted this already,
2200         // e.g. with a typedef and a pointer to it.
2201         llvm::Value *&entry = VLASizeMap[size];
2202         if (!entry) {
2203           llvm::Value *Size = EmitScalarExpr(size);
2204 
2205           // C11 6.7.6.2p5:
2206           //   If the size is an expression that is not an integer constant
2207           //   expression [...] each time it is evaluated it shall have a value
2208           //   greater than zero.
2209           if (SanOpts.has(SanitizerKind::VLABound) &&
2210               size->getType()->isSignedIntegerType()) {
2211             SanitizerScope SanScope(this);
2212             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2213             llvm::Constant *StaticArgs[] = {
2214                 EmitCheckSourceLocation(size->getBeginLoc()),
2215                 EmitCheckTypeDescriptor(size->getType())};
2216             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2217                                      SanitizerKind::VLABound),
2218                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2219           }
2220 
2221           // Always zexting here would be wrong if it weren't
2222           // undefined behavior to have a negative bound.
2223           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2224         }
2225       }
2226       type = vat->getElementType();
2227       break;
2228     }
2229 
2230     case Type::FunctionProto:
2231     case Type::FunctionNoProto:
2232       type = cast<FunctionType>(ty)->getReturnType();
2233       break;
2234 
2235     case Type::Paren:
2236     case Type::TypeOf:
2237     case Type::UnaryTransform:
2238     case Type::Attributed:
2239     case Type::SubstTemplateTypeParm:
2240     case Type::MacroQualified:
2241       // Keep walking after single level desugaring.
2242       type = type.getSingleStepDesugaredType(getContext());
2243       break;
2244 
2245     case Type::Typedef:
2246     case Type::Decltype:
2247     case Type::Auto:
2248     case Type::DeducedTemplateSpecialization:
2249       // Stop walking: nothing to do.
2250       return;
2251 
2252     case Type::TypeOfExpr:
2253       // Stop walking: emit typeof expression.
2254       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2255       return;
2256 
2257     case Type::Atomic:
2258       type = cast<AtomicType>(ty)->getValueType();
2259       break;
2260 
2261     case Type::Pipe:
2262       type = cast<PipeType>(ty)->getElementType();
2263       break;
2264     }
2265   } while (type->isVariablyModifiedType());
2266 }
2267 
2268 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2269   if (getContext().getBuiltinVaListType()->isArrayType())
2270     return EmitPointerWithAlignment(E);
2271   return EmitLValue(E).getAddress(*this);
2272 }
2273 
2274 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2275   return EmitLValue(E).getAddress(*this);
2276 }
2277 
2278 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2279                                               const APValue &Init) {
2280   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2281   if (CGDebugInfo *Dbg = getDebugInfo())
2282     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2283       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2284 }
2285 
2286 CodeGenFunction::PeepholeProtection
2287 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2288   // At the moment, the only aggressive peephole we do in IR gen
2289   // is trunc(zext) folding, but if we add more, we can easily
2290   // extend this protection.
2291 
2292   if (!rvalue.isScalar()) return PeepholeProtection();
2293   llvm::Value *value = rvalue.getScalarVal();
2294   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2295 
2296   // Just make an extra bitcast.
2297   assert(HaveInsertPoint());
2298   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2299                                                   Builder.GetInsertBlock());
2300 
2301   PeepholeProtection protection;
2302   protection.Inst = inst;
2303   return protection;
2304 }
2305 
2306 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2307   if (!protection.Inst) return;
2308 
2309   // In theory, we could try to duplicate the peepholes now, but whatever.
2310   protection.Inst->eraseFromParent();
2311 }
2312 
2313 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2314                                               QualType Ty, SourceLocation Loc,
2315                                               SourceLocation AssumptionLoc,
2316                                               llvm::Value *Alignment,
2317                                               llvm::Value *OffsetValue) {
2318   if (Alignment->getType() != IntPtrTy)
2319     Alignment =
2320         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2321   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2322     OffsetValue =
2323         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2324   llvm::Value *TheCheck = nullptr;
2325   if (SanOpts.has(SanitizerKind::Alignment)) {
2326     llvm::Value *PtrIntValue =
2327         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2328 
2329     if (OffsetValue) {
2330       bool IsOffsetZero = false;
2331       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2332         IsOffsetZero = CI->isZero();
2333 
2334       if (!IsOffsetZero)
2335         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2336     }
2337 
2338     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2339     llvm::Value *Mask =
2340         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2341     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2342     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2343   }
2344   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2345       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2346 
2347   if (!SanOpts.has(SanitizerKind::Alignment))
2348     return;
2349   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2350                                OffsetValue, TheCheck, Assumption);
2351 }
2352 
2353 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2354                                               const Expr *E,
2355                                               SourceLocation AssumptionLoc,
2356                                               llvm::Value *Alignment,
2357                                               llvm::Value *OffsetValue) {
2358   if (auto *CE = dyn_cast<CastExpr>(E))
2359     E = CE->getSubExprAsWritten();
2360   QualType Ty = E->getType();
2361   SourceLocation Loc = E->getExprLoc();
2362 
2363   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2364                           OffsetValue);
2365 }
2366 
2367 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2368                                                  llvm::Value *AnnotatedVal,
2369                                                  StringRef AnnotationStr,
2370                                                  SourceLocation Location,
2371                                                  const AnnotateAttr *Attr) {
2372   SmallVector<llvm::Value *, 5> Args = {
2373       AnnotatedVal,
2374       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2375       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2376       CGM.EmitAnnotationLineNo(Location),
2377   };
2378   if (Attr)
2379     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2380   return Builder.CreateCall(AnnotationFn, Args);
2381 }
2382 
2383 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2384   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2385   // FIXME We create a new bitcast for every annotation because that's what
2386   // llvm-gcc was doing.
2387   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2388     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2389                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2390                        I->getAnnotation(), D->getLocation(), I);
2391 }
2392 
2393 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2394                                               Address Addr) {
2395   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2396   llvm::Value *V = Addr.getPointer();
2397   llvm::Type *VTy = V->getType();
2398   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2399                                     CGM.Int8PtrTy);
2400 
2401   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2402     // FIXME Always emit the cast inst so we can differentiate between
2403     // annotation on the first field of a struct and annotation on the struct
2404     // itself.
2405     if (VTy != CGM.Int8PtrTy)
2406       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2407     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2408     V = Builder.CreateBitCast(V, VTy);
2409   }
2410 
2411   return Address(V, Addr.getAlignment());
2412 }
2413 
2414 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2415 
2416 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2417     : CGF(CGF) {
2418   assert(!CGF->IsSanitizerScope);
2419   CGF->IsSanitizerScope = true;
2420 }
2421 
2422 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2423   CGF->IsSanitizerScope = false;
2424 }
2425 
2426 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2427                                    const llvm::Twine &Name,
2428                                    llvm::BasicBlock *BB,
2429                                    llvm::BasicBlock::iterator InsertPt) const {
2430   LoopStack.InsertHelper(I);
2431   if (IsSanitizerScope)
2432     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2433 }
2434 
2435 void CGBuilderInserter::InsertHelper(
2436     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2437     llvm::BasicBlock::iterator InsertPt) const {
2438   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2439   if (CGF)
2440     CGF->InsertHelper(I, Name, BB, InsertPt);
2441 }
2442 
2443 // Emits an error if we don't have a valid set of target features for the
2444 // called function.
2445 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2446                                           const FunctionDecl *TargetDecl) {
2447   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2448 }
2449 
2450 // Emits an error if we don't have a valid set of target features for the
2451 // called function.
2452 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2453                                           const FunctionDecl *TargetDecl) {
2454   // Early exit if this is an indirect call.
2455   if (!TargetDecl)
2456     return;
2457 
2458   // Get the current enclosing function if it exists. If it doesn't
2459   // we can't check the target features anyhow.
2460   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2461   if (!FD)
2462     return;
2463 
2464   // Grab the required features for the call. For a builtin this is listed in
2465   // the td file with the default cpu, for an always_inline function this is any
2466   // listed cpu and any listed features.
2467   unsigned BuiltinID = TargetDecl->getBuiltinID();
2468   std::string MissingFeature;
2469   llvm::StringMap<bool> CallerFeatureMap;
2470   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2471   if (BuiltinID) {
2472     StringRef FeatureList(
2473         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2474     // Return if the builtin doesn't have any required features.
2475     if (FeatureList.empty())
2476       return;
2477     assert(FeatureList.find(' ') == StringRef::npos &&
2478            "Space in feature list");
2479     TargetFeatures TF(CallerFeatureMap);
2480     if (!TF.hasRequiredFeatures(FeatureList))
2481       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2482           << TargetDecl->getDeclName() << FeatureList;
2483   } else if (!TargetDecl->isMultiVersion() &&
2484              TargetDecl->hasAttr<TargetAttr>()) {
2485     // Get the required features for the callee.
2486 
2487     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2488     ParsedTargetAttr ParsedAttr =
2489         CGM.getContext().filterFunctionTargetAttrs(TD);
2490 
2491     SmallVector<StringRef, 1> ReqFeatures;
2492     llvm::StringMap<bool> CalleeFeatureMap;
2493     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2494 
2495     for (const auto &F : ParsedAttr.Features) {
2496       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2497         ReqFeatures.push_back(StringRef(F).substr(1));
2498     }
2499 
2500     for (const auto &F : CalleeFeatureMap) {
2501       // Only positive features are "required".
2502       if (F.getValue())
2503         ReqFeatures.push_back(F.getKey());
2504     }
2505     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2506       if (!CallerFeatureMap.lookup(Feature)) {
2507         MissingFeature = Feature.str();
2508         return false;
2509       }
2510       return true;
2511     }))
2512       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2513           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2514   }
2515 }
2516 
2517 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2518   if (!CGM.getCodeGenOpts().SanitizeStats)
2519     return;
2520 
2521   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2522   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2523   CGM.getSanStats().create(IRB, SSK);
2524 }
2525 
2526 llvm::Value *
2527 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2528   llvm::Value *Condition = nullptr;
2529 
2530   if (!RO.Conditions.Architecture.empty())
2531     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2532 
2533   if (!RO.Conditions.Features.empty()) {
2534     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2535     Condition =
2536         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2537   }
2538   return Condition;
2539 }
2540 
2541 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2542                                              llvm::Function *Resolver,
2543                                              CGBuilderTy &Builder,
2544                                              llvm::Function *FuncToReturn,
2545                                              bool SupportsIFunc) {
2546   if (SupportsIFunc) {
2547     Builder.CreateRet(FuncToReturn);
2548     return;
2549   }
2550 
2551   llvm::SmallVector<llvm::Value *, 10> Args;
2552   llvm::for_each(Resolver->args(),
2553                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2554 
2555   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2556   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2557 
2558   if (Resolver->getReturnType()->isVoidTy())
2559     Builder.CreateRetVoid();
2560   else
2561     Builder.CreateRet(Result);
2562 }
2563 
2564 void CodeGenFunction::EmitMultiVersionResolver(
2565     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2566   assert(getContext().getTargetInfo().getTriple().isX86() &&
2567          "Only implemented for x86 targets");
2568 
2569   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2570 
2571   // Main function's basic block.
2572   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2573   Builder.SetInsertPoint(CurBlock);
2574   EmitX86CpuInit();
2575 
2576   for (const MultiVersionResolverOption &RO : Options) {
2577     Builder.SetInsertPoint(CurBlock);
2578     llvm::Value *Condition = FormResolverCondition(RO);
2579 
2580     // The 'default' or 'generic' case.
2581     if (!Condition) {
2582       assert(&RO == Options.end() - 1 &&
2583              "Default or Generic case must be last");
2584       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2585                                        SupportsIFunc);
2586       return;
2587     }
2588 
2589     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2590     CGBuilderTy RetBuilder(*this, RetBlock);
2591     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2592                                      SupportsIFunc);
2593     CurBlock = createBasicBlock("resolver_else", Resolver);
2594     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2595   }
2596 
2597   // If no generic/default, emit an unreachable.
2598   Builder.SetInsertPoint(CurBlock);
2599   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2600   TrapCall->setDoesNotReturn();
2601   TrapCall->setDoesNotThrow();
2602   Builder.CreateUnreachable();
2603   Builder.ClearInsertionPoint();
2604 }
2605 
2606 // Loc - where the diagnostic will point, where in the source code this
2607 //  alignment has failed.
2608 // SecondaryLoc - if present (will be present if sufficiently different from
2609 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2610 //  It should be the location where the __attribute__((assume_aligned))
2611 //  was written e.g.
2612 void CodeGenFunction::emitAlignmentAssumptionCheck(
2613     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2614     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2615     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2616     llvm::Instruction *Assumption) {
2617   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2618          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2619              llvm::Intrinsic::getDeclaration(
2620                  Builder.GetInsertBlock()->getParent()->getParent(),
2621                  llvm::Intrinsic::assume) &&
2622          "Assumption should be a call to llvm.assume().");
2623   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2624          "Assumption should be the last instruction of the basic block, "
2625          "since the basic block is still being generated.");
2626 
2627   if (!SanOpts.has(SanitizerKind::Alignment))
2628     return;
2629 
2630   // Don't check pointers to volatile data. The behavior here is implementation-
2631   // defined.
2632   if (Ty->getPointeeType().isVolatileQualified())
2633     return;
2634 
2635   // We need to temorairly remove the assumption so we can insert the
2636   // sanitizer check before it, else the check will be dropped by optimizations.
2637   Assumption->removeFromParent();
2638 
2639   {
2640     SanitizerScope SanScope(this);
2641 
2642     if (!OffsetValue)
2643       OffsetValue = Builder.getInt1(0); // no offset.
2644 
2645     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2646                                     EmitCheckSourceLocation(SecondaryLoc),
2647                                     EmitCheckTypeDescriptor(Ty)};
2648     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2649                                   EmitCheckValue(Alignment),
2650                                   EmitCheckValue(OffsetValue)};
2651     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2652               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2653   }
2654 
2655   // We are now in the (new, empty) "cont" basic block.
2656   // Reintroduce the assumption.
2657   Builder.Insert(Assumption);
2658   // FIXME: Assumption still has it's original basic block as it's Parent.
2659 }
2660 
2661 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2662   if (CGDebugInfo *DI = getDebugInfo())
2663     return DI->SourceLocToDebugLoc(Location);
2664 
2665   return llvm::DebugLoc();
2666 }
2667 
2668 llvm::Value *
2669 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2670                                                       Stmt::Likelihood LH) {
2671   switch (LH) {
2672   case Stmt::LH_None:
2673     return Cond;
2674   case Stmt::LH_Likely:
2675   case Stmt::LH_Unlikely:
2676     // Don't generate llvm.expect on -O0 as the backend won't use it for
2677     // anything.
2678     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2679       return Cond;
2680     llvm::Type *CondTy = Cond->getType();
2681     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2682     llvm::Function *FnExpect =
2683         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2684     llvm::Value *ExpectedValueOfCond =
2685         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2686     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2687                               Cond->getName() + ".expval");
2688   }
2689   llvm_unreachable("Unknown Likelihood");
2690 }
2691