1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 199 bool ForPointeeType, 200 CodeGenFunction &CGF) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment); 206 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 215 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 216 } 217 218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 219 QualType T) { 220 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 221 } 222 223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 224 QualType T) { 225 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 226 } 227 228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 229 return CGM.getTypes().ConvertTypeForMem(T); 230 } 231 232 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 233 return CGM.getTypes().ConvertType(T); 234 } 235 236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 237 type = type.getCanonicalType(); 238 while (true) { 239 switch (type->getTypeClass()) { 240 #define TYPE(name, parent) 241 #define ABSTRACT_TYPE(name, parent) 242 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 243 #define DEPENDENT_TYPE(name, parent) case Type::name: 244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 245 #include "clang/AST/TypeNodes.inc" 246 llvm_unreachable("non-canonical or dependent type in IR-generation"); 247 248 case Type::Auto: 249 case Type::DeducedTemplateSpecialization: 250 llvm_unreachable("undeduced type in IR-generation"); 251 252 // Various scalar types. 253 case Type::Builtin: 254 case Type::Pointer: 255 case Type::BlockPointer: 256 case Type::LValueReference: 257 case Type::RValueReference: 258 case Type::MemberPointer: 259 case Type::Vector: 260 case Type::ExtVector: 261 case Type::ConstantMatrix: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 case Type::BitInt: 268 return TEK_Scalar; 269 270 // Complexes. 271 case Type::Complex: 272 return TEK_Complex; 273 274 // Arrays, records, and Objective-C objects. 275 case Type::ConstantArray: 276 case Type::IncompleteArray: 277 case Type::VariableArray: 278 case Type::Record: 279 case Type::ObjCObject: 280 case Type::ObjCInterface: 281 case Type::ArrayParameter: 282 return TEK_Aggregate; 283 284 // We operate on atomic values according to their underlying type. 285 case Type::Atomic: 286 type = cast<AtomicType>(type)->getValueType(); 287 continue; 288 } 289 llvm_unreachable("unknown type kind!"); 290 } 291 } 292 293 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 294 // For cleanliness, we try to avoid emitting the return block for 295 // simple cases. 296 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 297 298 if (CurBB) { 299 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 300 301 // We have a valid insert point, reuse it if it is empty or there are no 302 // explicit jumps to the return block. 303 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 304 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 305 delete ReturnBlock.getBlock(); 306 ReturnBlock = JumpDest(); 307 } else 308 EmitBlock(ReturnBlock.getBlock()); 309 return llvm::DebugLoc(); 310 } 311 312 // Otherwise, if the return block is the target of a single direct 313 // branch then we can just put the code in that block instead. This 314 // cleans up functions which started with a unified return block. 315 if (ReturnBlock.getBlock()->hasOneUse()) { 316 llvm::BranchInst *BI = 317 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 318 if (BI && BI->isUnconditional() && 319 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 320 // Record/return the DebugLoc of the simple 'return' expression to be used 321 // later by the actual 'ret' instruction. 322 llvm::DebugLoc Loc = BI->getDebugLoc(); 323 Builder.SetInsertPoint(BI->getParent()); 324 BI->eraseFromParent(); 325 delete ReturnBlock.getBlock(); 326 ReturnBlock = JumpDest(); 327 return Loc; 328 } 329 } 330 331 // FIXME: We are at an unreachable point, there is no reason to emit the block 332 // unless it has uses. However, we still need a place to put the debug 333 // region.end for now. 334 335 EmitBlock(ReturnBlock.getBlock()); 336 return llvm::DebugLoc(); 337 } 338 339 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 340 if (!BB) return; 341 if (!BB->use_empty()) { 342 CGF.CurFn->insert(CGF.CurFn->end(), BB); 343 return; 344 } 345 delete BB; 346 } 347 348 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 349 assert(BreakContinueStack.empty() && 350 "mismatched push/pop in break/continue stack!"); 351 assert(LifetimeExtendedCleanupStack.empty() && 352 "mismatched push/pop of cleanups in EHStack!"); 353 assert(DeferredDeactivationCleanupStack.empty() && 354 "mismatched activate/deactivate of cleanups!"); 355 356 if (CGM.shouldEmitConvergenceTokens()) { 357 ConvergenceTokenStack.pop_back(); 358 assert(ConvergenceTokenStack.empty() && 359 "mismatched push/pop in convergence stack!"); 360 } 361 362 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 363 && NumSimpleReturnExprs == NumReturnExprs 364 && ReturnBlock.getBlock()->use_empty(); 365 // Usually the return expression is evaluated before the cleanup 366 // code. If the function contains only a simple return statement, 367 // such as a constant, the location before the cleanup code becomes 368 // the last useful breakpoint in the function, because the simple 369 // return expression will be evaluated after the cleanup code. To be 370 // safe, set the debug location for cleanup code to the location of 371 // the return statement. Otherwise the cleanup code should be at the 372 // end of the function's lexical scope. 373 // 374 // If there are multiple branches to the return block, the branch 375 // instructions will get the location of the return statements and 376 // all will be fine. 377 if (CGDebugInfo *DI = getDebugInfo()) { 378 if (OnlySimpleReturnStmts) 379 DI->EmitLocation(Builder, LastStopPoint); 380 else 381 DI->EmitLocation(Builder, EndLoc); 382 } 383 384 // Pop any cleanups that might have been associated with the 385 // parameters. Do this in whatever block we're currently in; it's 386 // important to do this before we enter the return block or return 387 // edges will be *really* confused. 388 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 389 bool HasOnlyLifetimeMarkers = 390 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 391 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 392 393 std::optional<ApplyDebugLocation> OAL; 394 if (HasCleanups) { 395 // Make sure the line table doesn't jump back into the body for 396 // the ret after it's been at EndLoc. 397 if (CGDebugInfo *DI = getDebugInfo()) { 398 if (OnlySimpleReturnStmts) 399 DI->EmitLocation(Builder, EndLoc); 400 else 401 // We may not have a valid end location. Try to apply it anyway, and 402 // fall back to an artificial location if needed. 403 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 404 } 405 406 PopCleanupBlocks(PrologueCleanupDepth); 407 } 408 409 // Emit function epilog (to return). 410 llvm::DebugLoc Loc = EmitReturnBlock(); 411 412 if (ShouldInstrumentFunction()) { 413 if (CGM.getCodeGenOpts().InstrumentFunctions) 414 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 415 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 416 CurFn->addFnAttr("instrument-function-exit-inlined", 417 "__cyg_profile_func_exit"); 418 } 419 420 // Emit debug descriptor for function end. 421 if (CGDebugInfo *DI = getDebugInfo()) 422 DI->EmitFunctionEnd(Builder, CurFn); 423 424 // Reset the debug location to that of the simple 'return' expression, if any 425 // rather than that of the end of the function's scope '}'. 426 ApplyDebugLocation AL(*this, Loc); 427 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 428 EmitEndEHSpec(CurCodeDecl); 429 430 assert(EHStack.empty() && 431 "did not remove all scopes from cleanup stack!"); 432 433 // If someone did an indirect goto, emit the indirect goto block at the end of 434 // the function. 435 if (IndirectBranch) { 436 EmitBlock(IndirectBranch->getParent()); 437 Builder.ClearInsertionPoint(); 438 } 439 440 // If some of our locals escaped, insert a call to llvm.localescape in the 441 // entry block. 442 if (!EscapedLocals.empty()) { 443 // Invert the map from local to index into a simple vector. There should be 444 // no holes. 445 SmallVector<llvm::Value *, 4> EscapeArgs; 446 EscapeArgs.resize(EscapedLocals.size()); 447 for (auto &Pair : EscapedLocals) 448 EscapeArgs[Pair.second] = Pair.first; 449 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 450 &CGM.getModule(), llvm::Intrinsic::localescape); 451 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 452 } 453 454 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 455 llvm::Instruction *Ptr = AllocaInsertPt; 456 AllocaInsertPt = nullptr; 457 Ptr->eraseFromParent(); 458 459 // PostAllocaInsertPt, if created, was lazily created when it was required, 460 // remove it now since it was just created for our own convenience. 461 if (PostAllocaInsertPt) { 462 llvm::Instruction *PostPtr = PostAllocaInsertPt; 463 PostAllocaInsertPt = nullptr; 464 PostPtr->eraseFromParent(); 465 } 466 467 // If someone took the address of a label but never did an indirect goto, we 468 // made a zero entry PHI node, which is illegal, zap it now. 469 if (IndirectBranch) { 470 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 471 if (PN->getNumIncomingValues() == 0) { 472 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 473 PN->eraseFromParent(); 474 } 475 } 476 477 EmitIfUsed(*this, EHResumeBlock); 478 EmitIfUsed(*this, TerminateLandingPad); 479 EmitIfUsed(*this, TerminateHandler); 480 EmitIfUsed(*this, UnreachableBlock); 481 482 for (const auto &FuncletAndParent : TerminateFunclets) 483 EmitIfUsed(*this, FuncletAndParent.second); 484 485 if (CGM.getCodeGenOpts().EmitDeclMetadata) 486 EmitDeclMetadata(); 487 488 for (const auto &R : DeferredReplacements) { 489 if (llvm::Value *Old = R.first) { 490 Old->replaceAllUsesWith(R.second); 491 cast<llvm::Instruction>(Old)->eraseFromParent(); 492 } 493 } 494 DeferredReplacements.clear(); 495 496 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 497 // PHIs if the current function is a coroutine. We don't do it for all 498 // functions as it may result in slight increase in numbers of instructions 499 // if compiled with no optimizations. We do it for coroutine as the lifetime 500 // of CleanupDestSlot alloca make correct coroutine frame building very 501 // difficult. 502 if (NormalCleanupDest.isValid() && isCoroutine()) { 503 llvm::DominatorTree DT(*CurFn); 504 llvm::PromoteMemToReg( 505 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 506 NormalCleanupDest = Address::invalid(); 507 } 508 509 // Scan function arguments for vector width. 510 for (llvm::Argument &A : CurFn->args()) 511 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 512 LargestVectorWidth = 513 std::max((uint64_t)LargestVectorWidth, 514 VT->getPrimitiveSizeInBits().getKnownMinValue()); 515 516 // Update vector width based on return type. 517 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 518 LargestVectorWidth = 519 std::max((uint64_t)LargestVectorWidth, 520 VT->getPrimitiveSizeInBits().getKnownMinValue()); 521 522 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 523 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 524 525 // Add the min-legal-vector-width attribute. This contains the max width from: 526 // 1. min-vector-width attribute used in the source program. 527 // 2. Any builtins used that have a vector width specified. 528 // 3. Values passed in and out of inline assembly. 529 // 4. Width of vector arguments and return types for this function. 530 // 5. Width of vector arguments and return types for functions called by this 531 // function. 532 if (getContext().getTargetInfo().getTriple().isX86()) 533 CurFn->addFnAttr("min-legal-vector-width", 534 llvm::utostr(LargestVectorWidth)); 535 536 // Add vscale_range attribute if appropriate. 537 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 538 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 539 if (VScaleRange) { 540 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 541 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 542 } 543 544 // If we generated an unreachable return block, delete it now. 545 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 546 Builder.ClearInsertionPoint(); 547 ReturnBlock.getBlock()->eraseFromParent(); 548 } 549 if (ReturnValue.isValid()) { 550 auto *RetAlloca = 551 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 552 if (RetAlloca && RetAlloca->use_empty()) { 553 RetAlloca->eraseFromParent(); 554 ReturnValue = Address::invalid(); 555 } 556 } 557 } 558 559 /// ShouldInstrumentFunction - Return true if the current function should be 560 /// instrumented with __cyg_profile_func_* calls 561 bool CodeGenFunction::ShouldInstrumentFunction() { 562 if (!CGM.getCodeGenOpts().InstrumentFunctions && 563 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 564 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 565 return false; 566 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 567 return false; 568 return true; 569 } 570 571 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 572 if (!CurFuncDecl) 573 return false; 574 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 575 } 576 577 /// ShouldXRayInstrument - Return true if the current function should be 578 /// instrumented with XRay nop sleds. 579 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 580 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 581 } 582 583 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 584 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 585 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 586 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 587 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 588 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 589 XRayInstrKind::Custom); 590 } 591 592 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 593 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 594 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 595 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 596 XRayInstrKind::Typed); 597 } 598 599 llvm::ConstantInt * 600 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 601 // Remove any (C++17) exception specifications, to allow calling e.g. a 602 // noexcept function through a non-noexcept pointer. 603 if (!Ty->isFunctionNoProtoType()) 604 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 605 std::string Mangled; 606 llvm::raw_string_ostream Out(Mangled); 607 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 608 return llvm::ConstantInt::get( 609 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 610 } 611 612 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 613 llvm::Function *Fn) { 614 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 615 return; 616 617 llvm::LLVMContext &Context = getLLVMContext(); 618 619 CGM.GenKernelArgMetadata(Fn, FD, this); 620 621 if (!getLangOpts().OpenCL) 622 return; 623 624 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 625 QualType HintQTy = A->getTypeHint(); 626 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 627 bool IsSignedInteger = 628 HintQTy->isSignedIntegerType() || 629 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 630 llvm::Metadata *AttrMDArgs[] = { 631 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 632 CGM.getTypes().ConvertType(A->getTypeHint()))), 633 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 634 llvm::IntegerType::get(Context, 32), 635 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 636 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 639 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 640 llvm::Metadata *AttrMDArgs[] = { 641 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 642 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 643 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 644 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 645 } 646 647 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 648 llvm::Metadata *AttrMDArgs[] = { 649 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 650 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 651 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 652 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 653 } 654 655 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 656 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 659 Fn->setMetadata("intel_reqd_sub_group_size", 660 llvm::MDNode::get(Context, AttrMDArgs)); 661 } 662 } 663 664 /// Determine whether the function F ends with a return stmt. 665 static bool endsWithReturn(const Decl* F) { 666 const Stmt *Body = nullptr; 667 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 668 Body = FD->getBody(); 669 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 670 Body = OMD->getBody(); 671 672 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 673 auto LastStmt = CS->body_rbegin(); 674 if (LastStmt != CS->body_rend()) 675 return isa<ReturnStmt>(*LastStmt); 676 } 677 return false; 678 } 679 680 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 681 if (SanOpts.has(SanitizerKind::Thread)) { 682 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 683 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 684 } 685 } 686 687 /// Check if the return value of this function requires sanitization. 688 bool CodeGenFunction::requiresReturnValueCheck() const { 689 return requiresReturnValueNullabilityCheck() || 690 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 691 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 692 } 693 694 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 695 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 696 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 697 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 698 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 699 return false; 700 701 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 702 return false; 703 704 if (MD->getNumParams() == 2) { 705 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 706 if (!PT || !PT->isVoidPointerType() || 707 !PT->getPointeeType().isConstQualified()) 708 return false; 709 } 710 711 return true; 712 } 713 714 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 715 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 716 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 717 } 718 719 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 720 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 721 getTarget().getCXXABI().isMicrosoft() && 722 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 723 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 724 }); 725 } 726 727 /// Return the UBSan prologue signature for \p FD if one is available. 728 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 729 const FunctionDecl *FD) { 730 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 731 if (!MD->isStatic()) 732 return nullptr; 733 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 734 } 735 736 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 737 llvm::Function *Fn, 738 const CGFunctionInfo &FnInfo, 739 const FunctionArgList &Args, 740 SourceLocation Loc, 741 SourceLocation StartLoc) { 742 assert(!CurFn && 743 "Do not use a CodeGenFunction object for more than one function"); 744 745 const Decl *D = GD.getDecl(); 746 747 DidCallStackSave = false; 748 CurCodeDecl = D; 749 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 750 if (FD && FD->usesSEHTry()) 751 CurSEHParent = GD; 752 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 753 FnRetTy = RetTy; 754 CurFn = Fn; 755 CurFnInfo = &FnInfo; 756 assert(CurFn->isDeclaration() && "Function already has body?"); 757 758 // If this function is ignored for any of the enabled sanitizers, 759 // disable the sanitizer for the function. 760 do { 761 #define SANITIZER(NAME, ID) \ 762 if (SanOpts.empty()) \ 763 break; \ 764 if (SanOpts.has(SanitizerKind::ID)) \ 765 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 766 SanOpts.set(SanitizerKind::ID, false); 767 768 #include "clang/Basic/Sanitizers.def" 769 #undef SANITIZER 770 } while (false); 771 772 if (D) { 773 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 774 SanitizerMask no_sanitize_mask; 775 bool NoSanitizeCoverage = false; 776 777 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 778 no_sanitize_mask |= Attr->getMask(); 779 // SanitizeCoverage is not handled by SanOpts. 780 if (Attr->hasCoverage()) 781 NoSanitizeCoverage = true; 782 } 783 784 // Apply the no_sanitize* attributes to SanOpts. 785 SanOpts.Mask &= ~no_sanitize_mask; 786 if (no_sanitize_mask & SanitizerKind::Address) 787 SanOpts.set(SanitizerKind::KernelAddress, false); 788 if (no_sanitize_mask & SanitizerKind::KernelAddress) 789 SanOpts.set(SanitizerKind::Address, false); 790 if (no_sanitize_mask & SanitizerKind::HWAddress) 791 SanOpts.set(SanitizerKind::KernelHWAddress, false); 792 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 793 SanOpts.set(SanitizerKind::HWAddress, false); 794 795 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 796 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 797 798 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 799 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 800 801 // Some passes need the non-negated no_sanitize attribute. Pass them on. 802 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 803 if (no_sanitize_mask & SanitizerKind::Thread) 804 Fn->addFnAttr("no_sanitize_thread"); 805 } 806 } 807 808 if (ShouldSkipSanitizerInstrumentation()) { 809 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 810 } else { 811 // Apply sanitizer attributes to the function. 812 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 813 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 814 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 815 SanitizerKind::KernelHWAddress)) 816 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 817 if (SanOpts.has(SanitizerKind::MemtagStack)) 818 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 819 if (SanOpts.has(SanitizerKind::Thread)) 820 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 821 if (SanOpts.has(SanitizerKind::NumericalStability)) 822 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 823 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 824 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 825 } 826 if (SanOpts.has(SanitizerKind::SafeStack)) 827 Fn->addFnAttr(llvm::Attribute::SafeStack); 828 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 829 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 830 831 // Apply fuzzing attribute to the function. 832 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 833 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 834 835 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 836 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 837 if (SanOpts.has(SanitizerKind::Thread)) { 838 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 839 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 840 if (OMD->getMethodFamily() == OMF_dealloc || 841 OMD->getMethodFamily() == OMF_initialize || 842 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 843 markAsIgnoreThreadCheckingAtRuntime(Fn); 844 } 845 } 846 } 847 848 // Ignore unrelated casts in STL allocate() since the allocator must cast 849 // from void* to T* before object initialization completes. Don't match on the 850 // namespace because not all allocators are in std:: 851 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 852 if (matchesStlAllocatorFn(D, getContext())) 853 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 854 } 855 856 // Ignore null checks in coroutine functions since the coroutines passes 857 // are not aware of how to move the extra UBSan instructions across the split 858 // coroutine boundaries. 859 if (D && SanOpts.has(SanitizerKind::Null)) 860 if (FD && FD->getBody() && 861 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 862 SanOpts.Mask &= ~SanitizerKind::Null; 863 864 // Add pointer authentication attributes. 865 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 866 if (CodeGenOpts.PointerAuth.FunctionPointers) 867 Fn->addFnAttr("ptrauth-calls"); 868 869 // Apply xray attributes to the function (as a string, for now) 870 bool AlwaysXRayAttr = false; 871 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 872 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 873 XRayInstrKind::FunctionEntry) || 874 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 875 XRayInstrKind::FunctionExit)) { 876 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 877 Fn->addFnAttr("function-instrument", "xray-always"); 878 AlwaysXRayAttr = true; 879 } 880 if (XRayAttr->neverXRayInstrument()) 881 Fn->addFnAttr("function-instrument", "xray-never"); 882 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 883 if (ShouldXRayInstrumentFunction()) 884 Fn->addFnAttr("xray-log-args", 885 llvm::utostr(LogArgs->getArgumentCount())); 886 } 887 } else { 888 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 889 Fn->addFnAttr( 890 "xray-instruction-threshold", 891 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 892 } 893 894 if (ShouldXRayInstrumentFunction()) { 895 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 896 Fn->addFnAttr("xray-ignore-loops"); 897 898 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 899 XRayInstrKind::FunctionExit)) 900 Fn->addFnAttr("xray-skip-exit"); 901 902 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 903 XRayInstrKind::FunctionEntry)) 904 Fn->addFnAttr("xray-skip-entry"); 905 906 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 907 if (FuncGroups > 1) { 908 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 909 CurFn->getName().bytes_end()); 910 auto Group = crc32(FuncName) % FuncGroups; 911 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 912 !AlwaysXRayAttr) 913 Fn->addFnAttr("function-instrument", "xray-never"); 914 } 915 } 916 917 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 918 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 919 case ProfileList::Skip: 920 Fn->addFnAttr(llvm::Attribute::SkipProfile); 921 break; 922 case ProfileList::Forbid: 923 Fn->addFnAttr(llvm::Attribute::NoProfile); 924 break; 925 case ProfileList::Allow: 926 break; 927 } 928 } 929 930 unsigned Count, Offset; 931 if (const auto *Attr = 932 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 933 Count = Attr->getCount(); 934 Offset = Attr->getOffset(); 935 } else { 936 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 937 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 938 } 939 if (Count && Offset <= Count) { 940 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 941 if (Offset) 942 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 943 } 944 // Instruct that functions for COFF/CodeView targets should start with a 945 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 946 // backends as they don't need it -- instructions on these architectures are 947 // always atomically patchable at runtime. 948 if (CGM.getCodeGenOpts().HotPatch && 949 getContext().getTargetInfo().getTriple().isX86() && 950 getContext().getTargetInfo().getTriple().getEnvironment() != 951 llvm::Triple::CODE16) 952 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 953 954 // Add no-jump-tables value. 955 if (CGM.getCodeGenOpts().NoUseJumpTables) 956 Fn->addFnAttr("no-jump-tables", "true"); 957 958 // Add no-inline-line-tables value. 959 if (CGM.getCodeGenOpts().NoInlineLineTables) 960 Fn->addFnAttr("no-inline-line-tables"); 961 962 // Add profile-sample-accurate value. 963 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 964 Fn->addFnAttr("profile-sample-accurate"); 965 966 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 967 Fn->addFnAttr("use-sample-profile"); 968 969 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 970 Fn->addFnAttr("cfi-canonical-jump-table"); 971 972 if (D && D->hasAttr<NoProfileFunctionAttr>()) 973 Fn->addFnAttr(llvm::Attribute::NoProfile); 974 975 if (D) { 976 // Function attributes take precedence over command line flags. 977 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 978 switch (A->getThunkType()) { 979 case FunctionReturnThunksAttr::Kind::Keep: 980 break; 981 case FunctionReturnThunksAttr::Kind::Extern: 982 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 983 break; 984 } 985 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 986 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 987 } 988 989 if (FD && (getLangOpts().OpenCL || 990 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 991 // Add metadata for a kernel function. 992 EmitKernelMetadata(FD, Fn); 993 } 994 995 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 996 Fn->setMetadata("clspv_libclc_builtin", 997 llvm::MDNode::get(getLLVMContext(), {})); 998 } 999 1000 // If we are checking function types, emit a function type signature as 1001 // prologue data. 1002 if (FD && SanOpts.has(SanitizerKind::Function)) { 1003 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1004 llvm::LLVMContext &Ctx = Fn->getContext(); 1005 llvm::MDBuilder MDB(Ctx); 1006 Fn->setMetadata( 1007 llvm::LLVMContext::MD_func_sanitize, 1008 MDB.createRTTIPointerPrologue( 1009 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1010 } 1011 } 1012 1013 // If we're checking nullability, we need to know whether we can check the 1014 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1015 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1016 auto Nullability = FnRetTy->getNullability(); 1017 if (Nullability && *Nullability == NullabilityKind::NonNull && 1018 !FnRetTy->isRecordType()) { 1019 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1020 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1021 RetValNullabilityPrecondition = 1022 llvm::ConstantInt::getTrue(getLLVMContext()); 1023 } 1024 } 1025 1026 // If we're in C++ mode and the function name is "main", it is guaranteed 1027 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1028 // used within a program"). 1029 // 1030 // OpenCL C 2.0 v2.2-11 s6.9.i: 1031 // Recursion is not supported. 1032 // 1033 // SYCL v1.2.1 s3.10: 1034 // kernels cannot include RTTI information, exception classes, 1035 // recursive code, virtual functions or make use of C++ libraries that 1036 // are not compiled for the device. 1037 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1038 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1039 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1040 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1041 1042 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1043 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1044 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1045 Builder.setDefaultConstrainedRounding(RM); 1046 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1047 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1048 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1049 RM != llvm::RoundingMode::NearestTiesToEven))) { 1050 Builder.setIsFPConstrained(true); 1051 Fn->addFnAttr(llvm::Attribute::StrictFP); 1052 } 1053 1054 // If a custom alignment is used, force realigning to this alignment on 1055 // any main function which certainly will need it. 1056 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1057 CGM.getCodeGenOpts().StackAlignment)) 1058 Fn->addFnAttr("stackrealign"); 1059 1060 // "main" doesn't need to zero out call-used registers. 1061 if (FD && FD->isMain()) 1062 Fn->removeFnAttr("zero-call-used-regs"); 1063 1064 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1065 1066 // Create a marker to make it easy to insert allocas into the entryblock 1067 // later. Don't create this with the builder, because we don't want it 1068 // folded. 1069 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1070 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1071 1072 ReturnBlock = getJumpDestInCurrentScope("return"); 1073 1074 Builder.SetInsertPoint(EntryBB); 1075 1076 // If we're checking the return value, allocate space for a pointer to a 1077 // precise source location of the checked return statement. 1078 if (requiresReturnValueCheck()) { 1079 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1080 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1081 ReturnLocation); 1082 } 1083 1084 // Emit subprogram debug descriptor. 1085 if (CGDebugInfo *DI = getDebugInfo()) { 1086 // Reconstruct the type from the argument list so that implicit parameters, 1087 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1088 // convention. 1089 DI->emitFunctionStart(GD, Loc, StartLoc, 1090 DI->getFunctionType(FD, RetTy, Args), CurFn, 1091 CurFuncIsThunk); 1092 } 1093 1094 if (ShouldInstrumentFunction()) { 1095 if (CGM.getCodeGenOpts().InstrumentFunctions) 1096 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1097 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1098 CurFn->addFnAttr("instrument-function-entry-inlined", 1099 "__cyg_profile_func_enter"); 1100 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1101 CurFn->addFnAttr("instrument-function-entry-inlined", 1102 "__cyg_profile_func_enter_bare"); 1103 } 1104 1105 // Since emitting the mcount call here impacts optimizations such as function 1106 // inlining, we just add an attribute to insert a mcount call in backend. 1107 // The attribute "counting-function" is set to mcount function name which is 1108 // architecture dependent. 1109 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1110 // Calls to fentry/mcount should not be generated if function has 1111 // the no_instrument_function attribute. 1112 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1113 if (CGM.getCodeGenOpts().CallFEntry) 1114 Fn->addFnAttr("fentry-call", "true"); 1115 else { 1116 Fn->addFnAttr("instrument-function-entry-inlined", 1117 getTarget().getMCountName()); 1118 } 1119 if (CGM.getCodeGenOpts().MNopMCount) { 1120 if (!CGM.getCodeGenOpts().CallFEntry) 1121 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1122 << "-mnop-mcount" << "-mfentry"; 1123 Fn->addFnAttr("mnop-mcount"); 1124 } 1125 1126 if (CGM.getCodeGenOpts().RecordMCount) { 1127 if (!CGM.getCodeGenOpts().CallFEntry) 1128 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1129 << "-mrecord-mcount" << "-mfentry"; 1130 Fn->addFnAttr("mrecord-mcount"); 1131 } 1132 } 1133 } 1134 1135 if (CGM.getCodeGenOpts().PackedStack) { 1136 if (getContext().getTargetInfo().getTriple().getArch() != 1137 llvm::Triple::systemz) 1138 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1139 << "-mpacked-stack"; 1140 Fn->addFnAttr("packed-stack"); 1141 } 1142 1143 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1144 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1145 Fn->addFnAttr("warn-stack-size", 1146 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1147 1148 if (RetTy->isVoidType()) { 1149 // Void type; nothing to return. 1150 ReturnValue = Address::invalid(); 1151 1152 // Count the implicit return. 1153 if (!endsWithReturn(D)) 1154 ++NumReturnExprs; 1155 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1156 // Indirect return; emit returned value directly into sret slot. 1157 // This reduces code size, and affects correctness in C++. 1158 auto AI = CurFn->arg_begin(); 1159 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1160 ++AI; 1161 ReturnValue = makeNaturalAddressForPointer( 1162 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1163 nullptr, nullptr, KnownNonNull); 1164 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1165 ReturnValuePointer = 1166 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1167 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1168 ReturnValuePointer); 1169 } 1170 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1171 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1172 // Load the sret pointer from the argument struct and return into that. 1173 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1174 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1175 --EI; 1176 llvm::Value *Addr = Builder.CreateStructGEP( 1177 CurFnInfo->getArgStruct(), &*EI, Idx); 1178 llvm::Type *Ty = 1179 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1180 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1181 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1182 ReturnValue = Address(Addr, ConvertType(RetTy), 1183 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1184 } else { 1185 ReturnValue = CreateIRTemp(RetTy, "retval"); 1186 1187 // Tell the epilog emitter to autorelease the result. We do this 1188 // now so that various specialized functions can suppress it 1189 // during their IR-generation. 1190 if (getLangOpts().ObjCAutoRefCount && 1191 !CurFnInfo->isReturnsRetained() && 1192 RetTy->isObjCRetainableType()) 1193 AutoreleaseResult = true; 1194 } 1195 1196 EmitStartEHSpec(CurCodeDecl); 1197 1198 PrologueCleanupDepth = EHStack.stable_begin(); 1199 1200 // Emit OpenMP specific initialization of the device functions. 1201 if (getLangOpts().OpenMP && CurCodeDecl) 1202 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1203 1204 // Handle emitting HLSL entry functions. 1205 if (D && D->hasAttr<HLSLShaderAttr>()) 1206 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1207 1208 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1209 1210 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1211 MD && !MD->isStatic()) { 1212 bool IsInLambda = 1213 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1214 if (MD->isImplicitObjectMemberFunction()) 1215 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1216 if (IsInLambda) { 1217 // We're in a lambda; figure out the captures. 1218 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1219 LambdaThisCaptureField); 1220 if (LambdaThisCaptureField) { 1221 // If the lambda captures the object referred to by '*this' - either by 1222 // value or by reference, make sure CXXThisValue points to the correct 1223 // object. 1224 1225 // Get the lvalue for the field (which is a copy of the enclosing object 1226 // or contains the address of the enclosing object). 1227 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1228 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1229 // If the enclosing object was captured by value, just use its 1230 // address. Sign this pointer. 1231 CXXThisValue = ThisFieldLValue.getPointer(*this); 1232 } else { 1233 // Load the lvalue pointed to by the field, since '*this' was captured 1234 // by reference. 1235 CXXThisValue = 1236 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1237 } 1238 } 1239 for (auto *FD : MD->getParent()->fields()) { 1240 if (FD->hasCapturedVLAType()) { 1241 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1242 SourceLocation()).getScalarVal(); 1243 auto VAT = FD->getCapturedVLAType(); 1244 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1245 } 1246 } 1247 } else if (MD->isImplicitObjectMemberFunction()) { 1248 // Not in a lambda; just use 'this' from the method. 1249 // FIXME: Should we generate a new load for each use of 'this'? The 1250 // fast register allocator would be happier... 1251 CXXThisValue = CXXABIThisValue; 1252 } 1253 1254 // Check the 'this' pointer once per function, if it's available. 1255 if (CXXABIThisValue) { 1256 SanitizerSet SkippedChecks; 1257 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1258 QualType ThisTy = MD->getThisType(); 1259 1260 // If this is the call operator of a lambda with no captures, it 1261 // may have a static invoker function, which may call this operator with 1262 // a null 'this' pointer. 1263 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1264 SkippedChecks.set(SanitizerKind::Null, true); 1265 1266 EmitTypeCheck( 1267 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1268 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1269 } 1270 } 1271 1272 // If any of the arguments have a variably modified type, make sure to 1273 // emit the type size, but only if the function is not naked. Naked functions 1274 // have no prolog to run this evaluation. 1275 if (!FD || !FD->hasAttr<NakedAttr>()) { 1276 for (const VarDecl *VD : Args) { 1277 // Dig out the type as written from ParmVarDecls; it's unclear whether 1278 // the standard (C99 6.9.1p10) requires this, but we're following the 1279 // precedent set by gcc. 1280 QualType Ty; 1281 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1282 Ty = PVD->getOriginalType(); 1283 else 1284 Ty = VD->getType(); 1285 1286 if (Ty->isVariablyModifiedType()) 1287 EmitVariablyModifiedType(Ty); 1288 } 1289 } 1290 // Emit a location at the end of the prologue. 1291 if (CGDebugInfo *DI = getDebugInfo()) 1292 DI->EmitLocation(Builder, StartLoc); 1293 // TODO: Do we need to handle this in two places like we do with 1294 // target-features/target-cpu? 1295 if (CurFuncDecl) 1296 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1297 LargestVectorWidth = VecWidth->getVectorWidth(); 1298 1299 if (CGM.shouldEmitConvergenceTokens()) 1300 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1301 } 1302 1303 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1304 incrementProfileCounter(Body); 1305 maybeCreateMCDCCondBitmap(); 1306 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1307 EmitCompoundStmtWithoutScope(*S); 1308 else 1309 EmitStmt(Body); 1310 } 1311 1312 /// When instrumenting to collect profile data, the counts for some blocks 1313 /// such as switch cases need to not include the fall-through counts, so 1314 /// emit a branch around the instrumentation code. When not instrumenting, 1315 /// this just calls EmitBlock(). 1316 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1317 const Stmt *S) { 1318 llvm::BasicBlock *SkipCountBB = nullptr; 1319 // Do not skip over the instrumentation when single byte coverage mode is 1320 // enabled. 1321 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1322 !llvm::EnableSingleByteCoverage) { 1323 // When instrumenting for profiling, the fallthrough to certain 1324 // statements needs to skip over the instrumentation code so that we 1325 // get an accurate count. 1326 SkipCountBB = createBasicBlock("skipcount"); 1327 EmitBranch(SkipCountBB); 1328 } 1329 EmitBlock(BB); 1330 uint64_t CurrentCount = getCurrentProfileCount(); 1331 incrementProfileCounter(S); 1332 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1333 if (SkipCountBB) 1334 EmitBlock(SkipCountBB); 1335 } 1336 1337 /// Tries to mark the given function nounwind based on the 1338 /// non-existence of any throwing calls within it. We believe this is 1339 /// lightweight enough to do at -O0. 1340 static void TryMarkNoThrow(llvm::Function *F) { 1341 // LLVM treats 'nounwind' on a function as part of the type, so we 1342 // can't do this on functions that can be overwritten. 1343 if (F->isInterposable()) return; 1344 1345 for (llvm::BasicBlock &BB : *F) 1346 for (llvm::Instruction &I : BB) 1347 if (I.mayThrow()) 1348 return; 1349 1350 F->setDoesNotThrow(); 1351 } 1352 1353 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1354 FunctionArgList &Args) { 1355 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1356 QualType ResTy = FD->getReturnType(); 1357 1358 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1359 if (MD && MD->isImplicitObjectMemberFunction()) { 1360 if (CGM.getCXXABI().HasThisReturn(GD)) 1361 ResTy = MD->getThisType(); 1362 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1363 ResTy = CGM.getContext().VoidPtrTy; 1364 CGM.getCXXABI().buildThisParam(*this, Args); 1365 } 1366 1367 // The base version of an inheriting constructor whose constructed base is a 1368 // virtual base is not passed any arguments (because it doesn't actually call 1369 // the inherited constructor). 1370 bool PassedParams = true; 1371 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1372 if (auto Inherited = CD->getInheritedConstructor()) 1373 PassedParams = 1374 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1375 1376 if (PassedParams) { 1377 for (auto *Param : FD->parameters()) { 1378 Args.push_back(Param); 1379 if (!Param->hasAttr<PassObjectSizeAttr>()) 1380 continue; 1381 1382 auto *Implicit = ImplicitParamDecl::Create( 1383 getContext(), Param->getDeclContext(), Param->getLocation(), 1384 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1385 SizeArguments[Param] = Implicit; 1386 Args.push_back(Implicit); 1387 } 1388 } 1389 1390 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1391 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1392 1393 return ResTy; 1394 } 1395 1396 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1397 const CGFunctionInfo &FnInfo) { 1398 assert(Fn && "generating code for null Function"); 1399 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1400 CurGD = GD; 1401 1402 FunctionArgList Args; 1403 QualType ResTy = BuildFunctionArgList(GD, Args); 1404 1405 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1406 1407 if (FD->isInlineBuiltinDeclaration()) { 1408 // When generating code for a builtin with an inline declaration, use a 1409 // mangled name to hold the actual body, while keeping an external 1410 // definition in case the function pointer is referenced somewhere. 1411 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1412 llvm::Module *M = Fn->getParent(); 1413 llvm::Function *Clone = M->getFunction(FDInlineName); 1414 if (!Clone) { 1415 Clone = llvm::Function::Create(Fn->getFunctionType(), 1416 llvm::GlobalValue::InternalLinkage, 1417 Fn->getAddressSpace(), FDInlineName, M); 1418 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1419 } 1420 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1421 Fn = Clone; 1422 } else { 1423 // Detect the unusual situation where an inline version is shadowed by a 1424 // non-inline version. In that case we should pick the external one 1425 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1426 // to detect that situation before we reach codegen, so do some late 1427 // replacement. 1428 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1429 PD = PD->getPreviousDecl()) { 1430 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1431 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1432 llvm::Module *M = Fn->getParent(); 1433 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1434 Clone->replaceAllUsesWith(Fn); 1435 Clone->eraseFromParent(); 1436 } 1437 break; 1438 } 1439 } 1440 } 1441 1442 // Check if we should generate debug info for this function. 1443 if (FD->hasAttr<NoDebugAttr>()) { 1444 // Clear non-distinct debug info that was possibly attached to the function 1445 // due to an earlier declaration without the nodebug attribute 1446 Fn->setSubprogram(nullptr); 1447 // Disable debug info indefinitely for this function 1448 DebugInfo = nullptr; 1449 } 1450 1451 // The function might not have a body if we're generating thunks for a 1452 // function declaration. 1453 SourceRange BodyRange; 1454 if (Stmt *Body = FD->getBody()) 1455 BodyRange = Body->getSourceRange(); 1456 else 1457 BodyRange = FD->getLocation(); 1458 CurEHLocation = BodyRange.getEnd(); 1459 1460 // Use the location of the start of the function to determine where 1461 // the function definition is located. By default use the location 1462 // of the declaration as the location for the subprogram. A function 1463 // may lack a declaration in the source code if it is created by code 1464 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1465 SourceLocation Loc = FD->getLocation(); 1466 1467 // If this is a function specialization then use the pattern body 1468 // as the location for the function. 1469 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1470 if (SpecDecl->hasBody(SpecDecl)) 1471 Loc = SpecDecl->getLocation(); 1472 1473 Stmt *Body = FD->getBody(); 1474 1475 if (Body) { 1476 // Coroutines always emit lifetime markers. 1477 if (isa<CoroutineBodyStmt>(Body)) 1478 ShouldEmitLifetimeMarkers = true; 1479 1480 // Initialize helper which will detect jumps which can cause invalid 1481 // lifetime markers. 1482 if (ShouldEmitLifetimeMarkers) 1483 Bypasses.Init(Body); 1484 } 1485 1486 // Emit the standard function prologue. 1487 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1488 1489 // Save parameters for coroutine function. 1490 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1491 llvm::append_range(FnArgs, FD->parameters()); 1492 1493 // Ensure that the function adheres to the forward progress guarantee, which 1494 // is required by certain optimizations. 1495 // In C++11 and up, the attribute will be removed if the body contains a 1496 // trivial empty loop. 1497 if (checkIfFunctionMustProgress()) 1498 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1499 1500 // Generate the body of the function. 1501 PGO.assignRegionCounters(GD, CurFn); 1502 if (isa<CXXDestructorDecl>(FD)) 1503 EmitDestructorBody(Args); 1504 else if (isa<CXXConstructorDecl>(FD)) 1505 EmitConstructorBody(Args); 1506 else if (getLangOpts().CUDA && 1507 !getLangOpts().CUDAIsDevice && 1508 FD->hasAttr<CUDAGlobalAttr>()) 1509 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1510 else if (isa<CXXMethodDecl>(FD) && 1511 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1512 // The lambda static invoker function is special, because it forwards or 1513 // clones the body of the function call operator (but is actually static). 1514 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1515 } else if (isa<CXXMethodDecl>(FD) && 1516 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1517 !FnInfo.isDelegateCall() && 1518 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1519 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1520 // If emitting a lambda with static invoker on X86 Windows, change 1521 // the call operator body. 1522 // Make sure that this is a call operator with an inalloca arg and check 1523 // for delegate call to make sure this is the original call op and not the 1524 // new forwarding function for the static invoker. 1525 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1526 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1527 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1528 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1529 // Implicit copy-assignment gets the same special treatment as implicit 1530 // copy-constructors. 1531 emitImplicitAssignmentOperatorBody(Args); 1532 } else if (Body) { 1533 EmitFunctionBody(Body); 1534 } else 1535 llvm_unreachable("no definition for emitted function"); 1536 1537 // C++11 [stmt.return]p2: 1538 // Flowing off the end of a function [...] results in undefined behavior in 1539 // a value-returning function. 1540 // C11 6.9.1p12: 1541 // If the '}' that terminates a function is reached, and the value of the 1542 // function call is used by the caller, the behavior is undefined. 1543 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1544 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1545 bool ShouldEmitUnreachable = 1546 CGM.getCodeGenOpts().StrictReturn || 1547 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1548 if (SanOpts.has(SanitizerKind::Return)) { 1549 SanitizerScope SanScope(this); 1550 llvm::Value *IsFalse = Builder.getFalse(); 1551 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1552 SanitizerHandler::MissingReturn, 1553 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1554 } else if (ShouldEmitUnreachable) { 1555 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1556 EmitTrapCall(llvm::Intrinsic::trap); 1557 } 1558 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1559 Builder.CreateUnreachable(); 1560 Builder.ClearInsertionPoint(); 1561 } 1562 } 1563 1564 // Emit the standard function epilogue. 1565 FinishFunction(BodyRange.getEnd()); 1566 1567 // If we haven't marked the function nothrow through other means, do 1568 // a quick pass now to see if we can. 1569 if (!CurFn->doesNotThrow()) 1570 TryMarkNoThrow(CurFn); 1571 } 1572 1573 /// ContainsLabel - Return true if the statement contains a label in it. If 1574 /// this statement is not executed normally, it not containing a label means 1575 /// that we can just remove the code. 1576 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1577 // Null statement, not a label! 1578 if (!S) return false; 1579 1580 // If this is a label, we have to emit the code, consider something like: 1581 // if (0) { ... foo: bar(); } goto foo; 1582 // 1583 // TODO: If anyone cared, we could track __label__'s, since we know that you 1584 // can't jump to one from outside their declared region. 1585 if (isa<LabelStmt>(S)) 1586 return true; 1587 1588 // If this is a case/default statement, and we haven't seen a switch, we have 1589 // to emit the code. 1590 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1591 return true; 1592 1593 // If this is a switch statement, we want to ignore cases below it. 1594 if (isa<SwitchStmt>(S)) 1595 IgnoreCaseStmts = true; 1596 1597 // Scan subexpressions for verboten labels. 1598 for (const Stmt *SubStmt : S->children()) 1599 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1600 return true; 1601 1602 return false; 1603 } 1604 1605 /// containsBreak - Return true if the statement contains a break out of it. 1606 /// If the statement (recursively) contains a switch or loop with a break 1607 /// inside of it, this is fine. 1608 bool CodeGenFunction::containsBreak(const Stmt *S) { 1609 // Null statement, not a label! 1610 if (!S) return false; 1611 1612 // If this is a switch or loop that defines its own break scope, then we can 1613 // include it and anything inside of it. 1614 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1615 isa<ForStmt>(S)) 1616 return false; 1617 1618 if (isa<BreakStmt>(S)) 1619 return true; 1620 1621 // Scan subexpressions for verboten breaks. 1622 for (const Stmt *SubStmt : S->children()) 1623 if (containsBreak(SubStmt)) 1624 return true; 1625 1626 return false; 1627 } 1628 1629 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1630 if (!S) return false; 1631 1632 // Some statement kinds add a scope and thus never add a decl to the current 1633 // scope. Note, this list is longer than the list of statements that might 1634 // have an unscoped decl nested within them, but this way is conservatively 1635 // correct even if more statement kinds are added. 1636 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1637 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1638 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1639 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1640 return false; 1641 1642 if (isa<DeclStmt>(S)) 1643 return true; 1644 1645 for (const Stmt *SubStmt : S->children()) 1646 if (mightAddDeclToScope(SubStmt)) 1647 return true; 1648 1649 return false; 1650 } 1651 1652 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1653 /// to a constant, or if it does but contains a label, return false. If it 1654 /// constant folds return true and set the boolean result in Result. 1655 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1656 bool &ResultBool, 1657 bool AllowLabels) { 1658 // If MC/DC is enabled, disable folding so that we can instrument all 1659 // conditions to yield complete test vectors. We still keep track of 1660 // folded conditions during region mapping and visualization. 1661 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1662 CGM.getCodeGenOpts().MCDCCoverage) 1663 return false; 1664 1665 llvm::APSInt ResultInt; 1666 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1667 return false; 1668 1669 ResultBool = ResultInt.getBoolValue(); 1670 return true; 1671 } 1672 1673 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1674 /// to a constant, or if it does but contains a label, return false. If it 1675 /// constant folds return true and set the folded value. 1676 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1677 llvm::APSInt &ResultInt, 1678 bool AllowLabels) { 1679 // FIXME: Rename and handle conversion of other evaluatable things 1680 // to bool. 1681 Expr::EvalResult Result; 1682 if (!Cond->EvaluateAsInt(Result, getContext())) 1683 return false; // Not foldable, not integer or not fully evaluatable. 1684 1685 llvm::APSInt Int = Result.Val.getInt(); 1686 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1687 return false; // Contains a label. 1688 1689 ResultInt = Int; 1690 return true; 1691 } 1692 1693 /// Strip parentheses and simplistic logical-NOT operators. 1694 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1695 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1696 if (Op->getOpcode() != UO_LNot) 1697 break; 1698 C = Op->getSubExpr(); 1699 } 1700 return C->IgnoreParens(); 1701 } 1702 1703 /// Determine whether the given condition is an instrumentable condition 1704 /// (i.e. no "&&" or "||"). 1705 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1706 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1707 return (!BOp || !BOp->isLogicalOp()); 1708 } 1709 1710 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1711 /// increments a profile counter based on the semantics of the given logical 1712 /// operator opcode. This is used to instrument branch condition coverage for 1713 /// logical operators. 1714 void CodeGenFunction::EmitBranchToCounterBlock( 1715 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1716 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1717 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1718 // If not instrumenting, just emit a branch. 1719 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1720 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1721 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1722 1723 llvm::BasicBlock *ThenBlock = nullptr; 1724 llvm::BasicBlock *ElseBlock = nullptr; 1725 llvm::BasicBlock *NextBlock = nullptr; 1726 1727 // Create the block we'll use to increment the appropriate counter. 1728 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1729 1730 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1731 // means we need to evaluate the condition and increment the counter on TRUE: 1732 // 1733 // if (Cond) 1734 // goto CounterIncrBlock; 1735 // else 1736 // goto FalseBlock; 1737 // 1738 // CounterIncrBlock: 1739 // Counter++; 1740 // goto TrueBlock; 1741 1742 if (LOp == BO_LAnd) { 1743 ThenBlock = CounterIncrBlock; 1744 ElseBlock = FalseBlock; 1745 NextBlock = TrueBlock; 1746 } 1747 1748 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1749 // we need to evaluate the condition and increment the counter on FALSE: 1750 // 1751 // if (Cond) 1752 // goto TrueBlock; 1753 // else 1754 // goto CounterIncrBlock; 1755 // 1756 // CounterIncrBlock: 1757 // Counter++; 1758 // goto FalseBlock; 1759 1760 else if (LOp == BO_LOr) { 1761 ThenBlock = TrueBlock; 1762 ElseBlock = CounterIncrBlock; 1763 NextBlock = FalseBlock; 1764 } else { 1765 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1766 } 1767 1768 // Emit Branch based on condition. 1769 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1770 1771 // Emit the block containing the counter increment(s). 1772 EmitBlock(CounterIncrBlock); 1773 1774 // Increment corresponding counter; if index not provided, use Cond as index. 1775 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1776 1777 // Go to the next block. 1778 EmitBranch(NextBlock); 1779 } 1780 1781 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1782 /// statement) to the specified blocks. Based on the condition, this might try 1783 /// to simplify the codegen of the conditional based on the branch. 1784 /// \param LH The value of the likelihood attribute on the True branch. 1785 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1786 /// ConditionalOperator (ternary) through a recursive call for the operator's 1787 /// LHS and RHS nodes. 1788 void CodeGenFunction::EmitBranchOnBoolExpr( 1789 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1790 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1791 Cond = Cond->IgnoreParens(); 1792 1793 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1794 // Handle X && Y in a condition. 1795 if (CondBOp->getOpcode() == BO_LAnd) { 1796 MCDCLogOpStack.push_back(CondBOp); 1797 1798 // If we have "1 && X", simplify the code. "0 && X" would have constant 1799 // folded if the case was simple enough. 1800 bool ConstantBool = false; 1801 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1802 ConstantBool) { 1803 // br(1 && X) -> br(X). 1804 incrementProfileCounter(CondBOp); 1805 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1806 FalseBlock, TrueCount, LH); 1807 MCDCLogOpStack.pop_back(); 1808 return; 1809 } 1810 1811 // If we have "X && 1", simplify the code to use an uncond branch. 1812 // "X && 0" would have been constant folded to 0. 1813 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1814 ConstantBool) { 1815 // br(X && 1) -> br(X). 1816 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1817 FalseBlock, TrueCount, LH, CondBOp); 1818 MCDCLogOpStack.pop_back(); 1819 return; 1820 } 1821 1822 // Emit the LHS as a conditional. If the LHS conditional is false, we 1823 // want to jump to the FalseBlock. 1824 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1825 // The counter tells us how often we evaluate RHS, and all of TrueCount 1826 // can be propagated to that branch. 1827 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1828 1829 ConditionalEvaluation eval(*this); 1830 { 1831 ApplyDebugLocation DL(*this, Cond); 1832 // Propagate the likelihood attribute like __builtin_expect 1833 // __builtin_expect(X && Y, 1) -> X and Y are likely 1834 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1835 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1836 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1837 EmitBlock(LHSTrue); 1838 } 1839 1840 incrementProfileCounter(CondBOp); 1841 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1842 1843 // Any temporaries created here are conditional. 1844 eval.begin(*this); 1845 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1846 FalseBlock, TrueCount, LH); 1847 eval.end(*this); 1848 MCDCLogOpStack.pop_back(); 1849 return; 1850 } 1851 1852 if (CondBOp->getOpcode() == BO_LOr) { 1853 MCDCLogOpStack.push_back(CondBOp); 1854 1855 // If we have "0 || X", simplify the code. "1 || X" would have constant 1856 // folded if the case was simple enough. 1857 bool ConstantBool = false; 1858 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1859 !ConstantBool) { 1860 // br(0 || X) -> br(X). 1861 incrementProfileCounter(CondBOp); 1862 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1863 FalseBlock, TrueCount, LH); 1864 MCDCLogOpStack.pop_back(); 1865 return; 1866 } 1867 1868 // If we have "X || 0", simplify the code to use an uncond branch. 1869 // "X || 1" would have been constant folded to 1. 1870 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1871 !ConstantBool) { 1872 // br(X || 0) -> br(X). 1873 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1874 FalseBlock, TrueCount, LH, CondBOp); 1875 MCDCLogOpStack.pop_back(); 1876 return; 1877 } 1878 // Emit the LHS as a conditional. If the LHS conditional is true, we 1879 // want to jump to the TrueBlock. 1880 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1881 // We have the count for entry to the RHS and for the whole expression 1882 // being true, so we can divy up True count between the short circuit and 1883 // the RHS. 1884 uint64_t LHSCount = 1885 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1886 uint64_t RHSCount = TrueCount - LHSCount; 1887 1888 ConditionalEvaluation eval(*this); 1889 { 1890 // Propagate the likelihood attribute like __builtin_expect 1891 // __builtin_expect(X || Y, 1) -> only Y is likely 1892 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1893 ApplyDebugLocation DL(*this, Cond); 1894 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1895 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1896 EmitBlock(LHSFalse); 1897 } 1898 1899 incrementProfileCounter(CondBOp); 1900 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1901 1902 // Any temporaries created here are conditional. 1903 eval.begin(*this); 1904 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1905 RHSCount, LH); 1906 1907 eval.end(*this); 1908 MCDCLogOpStack.pop_back(); 1909 return; 1910 } 1911 } 1912 1913 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1914 // br(!x, t, f) -> br(x, f, t) 1915 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1916 // LNot is taken as part of the condition for simplicity, and changing its 1917 // sense negatively impacts test vector tracking. 1918 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1919 CGM.getCodeGenOpts().MCDCCoverage && 1920 isInstrumentedCondition(Cond); 1921 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1922 // Negate the count. 1923 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1924 // The values of the enum are chosen to make this negation possible. 1925 LH = static_cast<Stmt::Likelihood>(-LH); 1926 // Negate the condition and swap the destination blocks. 1927 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1928 FalseCount, LH); 1929 } 1930 } 1931 1932 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1933 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1934 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1935 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1936 1937 // The ConditionalOperator itself has no likelihood information for its 1938 // true and false branches. This matches the behavior of __builtin_expect. 1939 ConditionalEvaluation cond(*this); 1940 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1941 getProfileCount(CondOp), Stmt::LH_None); 1942 1943 // When computing PGO branch weights, we only know the overall count for 1944 // the true block. This code is essentially doing tail duplication of the 1945 // naive code-gen, introducing new edges for which counts are not 1946 // available. Divide the counts proportionally between the LHS and RHS of 1947 // the conditional operator. 1948 uint64_t LHSScaledTrueCount = 0; 1949 if (TrueCount) { 1950 double LHSRatio = 1951 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1952 LHSScaledTrueCount = TrueCount * LHSRatio; 1953 } 1954 1955 cond.begin(*this); 1956 EmitBlock(LHSBlock); 1957 incrementProfileCounter(CondOp); 1958 { 1959 ApplyDebugLocation DL(*this, Cond); 1960 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1961 LHSScaledTrueCount, LH, CondOp); 1962 } 1963 cond.end(*this); 1964 1965 cond.begin(*this); 1966 EmitBlock(RHSBlock); 1967 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1968 TrueCount - LHSScaledTrueCount, LH, CondOp); 1969 cond.end(*this); 1970 1971 return; 1972 } 1973 1974 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1975 // Conditional operator handling can give us a throw expression as a 1976 // condition for a case like: 1977 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1978 // Fold this to: 1979 // br(c, throw x, br(y, t, f)) 1980 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1981 return; 1982 } 1983 1984 // Emit the code with the fully general case. 1985 llvm::Value *CondV; 1986 { 1987 ApplyDebugLocation DL(*this, Cond); 1988 CondV = EvaluateExprAsBool(Cond); 1989 } 1990 1991 // If not at the top of the logical operator nest, update MCDC temp with the 1992 // boolean result of the evaluated condition. 1993 if (!MCDCLogOpStack.empty()) { 1994 const Expr *MCDCBaseExpr = Cond; 1995 // When a nested ConditionalOperator (ternary) is encountered in a boolean 1996 // expression, MC/DC tracks the result of the ternary, and this is tied to 1997 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 1998 // this is the case, the ConditionalOperator expression is passed through 1999 // the ConditionalOp parameter and then used as the MCDC base expression. 2000 if (ConditionalOp) 2001 MCDCBaseExpr = ConditionalOp; 2002 2003 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2004 } 2005 2006 llvm::MDNode *Weights = nullptr; 2007 llvm::MDNode *Unpredictable = nullptr; 2008 2009 // If the branch has a condition wrapped by __builtin_unpredictable, 2010 // create metadata that specifies that the branch is unpredictable. 2011 // Don't bother if not optimizing because that metadata would not be used. 2012 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2013 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2014 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2015 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2016 llvm::MDBuilder MDHelper(getLLVMContext()); 2017 Unpredictable = MDHelper.createUnpredictable(); 2018 } 2019 } 2020 2021 // If there is a Likelihood knowledge for the cond, lower it. 2022 // Note that if not optimizing this won't emit anything. 2023 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2024 if (CondV != NewCondV) 2025 CondV = NewCondV; 2026 else { 2027 // Otherwise, lower profile counts. Note that we do this even at -O0. 2028 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2029 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2030 } 2031 2032 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2033 } 2034 2035 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2036 /// specified stmt yet. 2037 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2038 CGM.ErrorUnsupported(S, Type); 2039 } 2040 2041 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2042 /// variable-length array whose elements have a non-zero bit-pattern. 2043 /// 2044 /// \param baseType the inner-most element type of the array 2045 /// \param src - a char* pointing to the bit-pattern for a single 2046 /// base element of the array 2047 /// \param sizeInChars - the total size of the VLA, in chars 2048 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2049 Address dest, Address src, 2050 llvm::Value *sizeInChars) { 2051 CGBuilderTy &Builder = CGF.Builder; 2052 2053 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2054 llvm::Value *baseSizeInChars 2055 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2056 2057 Address begin = dest.withElementType(CGF.Int8Ty); 2058 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2059 begin.emitRawPointer(CGF), 2060 sizeInChars, "vla.end"); 2061 2062 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2063 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2064 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2065 2066 // Make a loop over the VLA. C99 guarantees that the VLA element 2067 // count must be nonzero. 2068 CGF.EmitBlock(loopBB); 2069 2070 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2071 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2072 2073 CharUnits curAlign = 2074 dest.getAlignment().alignmentOfArrayElement(baseSize); 2075 2076 // memcpy the individual element bit-pattern. 2077 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2078 /*volatile*/ false); 2079 2080 // Go to the next element. 2081 llvm::Value *next = 2082 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2083 2084 // Leave if that's the end of the VLA. 2085 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2086 Builder.CreateCondBr(done, contBB, loopBB); 2087 cur->addIncoming(next, loopBB); 2088 2089 CGF.EmitBlock(contBB); 2090 } 2091 2092 void 2093 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2094 // Ignore empty classes in C++. 2095 if (getLangOpts().CPlusPlus) { 2096 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2097 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2098 return; 2099 } 2100 } 2101 2102 if (DestPtr.getElementType() != Int8Ty) 2103 DestPtr = DestPtr.withElementType(Int8Ty); 2104 2105 // Get size and alignment info for this aggregate. 2106 CharUnits size = getContext().getTypeSizeInChars(Ty); 2107 2108 llvm::Value *SizeVal; 2109 const VariableArrayType *vla; 2110 2111 // Don't bother emitting a zero-byte memset. 2112 if (size.isZero()) { 2113 // But note that getTypeInfo returns 0 for a VLA. 2114 if (const VariableArrayType *vlaType = 2115 dyn_cast_or_null<VariableArrayType>( 2116 getContext().getAsArrayType(Ty))) { 2117 auto VlaSize = getVLASize(vlaType); 2118 SizeVal = VlaSize.NumElts; 2119 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2120 if (!eltSize.isOne()) 2121 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2122 vla = vlaType; 2123 } else { 2124 return; 2125 } 2126 } else { 2127 SizeVal = CGM.getSize(size); 2128 vla = nullptr; 2129 } 2130 2131 // If the type contains a pointer to data member we can't memset it to zero. 2132 // Instead, create a null constant and copy it to the destination. 2133 // TODO: there are other patterns besides zero that we can usefully memset, 2134 // like -1, which happens to be the pattern used by member-pointers. 2135 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2136 // For a VLA, emit a single element, then splat that over the VLA. 2137 if (vla) Ty = getContext().getBaseElementType(vla); 2138 2139 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2140 2141 llvm::GlobalVariable *NullVariable = 2142 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2143 /*isConstant=*/true, 2144 llvm::GlobalVariable::PrivateLinkage, 2145 NullConstant, Twine()); 2146 CharUnits NullAlign = DestPtr.getAlignment(); 2147 NullVariable->setAlignment(NullAlign.getAsAlign()); 2148 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2149 2150 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2151 2152 // Get and call the appropriate llvm.memcpy overload. 2153 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2154 return; 2155 } 2156 2157 // Otherwise, just memset the whole thing to zero. This is legal 2158 // because in LLVM, all default initializers (other than the ones we just 2159 // handled above) are guaranteed to have a bit pattern of all zeros. 2160 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2161 } 2162 2163 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2164 // Make sure that there is a block for the indirect goto. 2165 if (!IndirectBranch) 2166 GetIndirectGotoBlock(); 2167 2168 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2169 2170 // Make sure the indirect branch includes all of the address-taken blocks. 2171 IndirectBranch->addDestination(BB); 2172 return llvm::BlockAddress::get(CurFn, BB); 2173 } 2174 2175 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2176 // If we already made the indirect branch for indirect goto, return its block. 2177 if (IndirectBranch) return IndirectBranch->getParent(); 2178 2179 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2180 2181 // Create the PHI node that indirect gotos will add entries to. 2182 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2183 "indirect.goto.dest"); 2184 2185 // Create the indirect branch instruction. 2186 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2187 return IndirectBranch->getParent(); 2188 } 2189 2190 /// Computes the length of an array in elements, as well as the base 2191 /// element type and a properly-typed first element pointer. 2192 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2193 QualType &baseType, 2194 Address &addr) { 2195 const ArrayType *arrayType = origArrayType; 2196 2197 // If it's a VLA, we have to load the stored size. Note that 2198 // this is the size of the VLA in bytes, not its size in elements. 2199 llvm::Value *numVLAElements = nullptr; 2200 if (isa<VariableArrayType>(arrayType)) { 2201 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2202 2203 // Walk into all VLAs. This doesn't require changes to addr, 2204 // which has type T* where T is the first non-VLA element type. 2205 do { 2206 QualType elementType = arrayType->getElementType(); 2207 arrayType = getContext().getAsArrayType(elementType); 2208 2209 // If we only have VLA components, 'addr' requires no adjustment. 2210 if (!arrayType) { 2211 baseType = elementType; 2212 return numVLAElements; 2213 } 2214 } while (isa<VariableArrayType>(arrayType)); 2215 2216 // We get out here only if we find a constant array type 2217 // inside the VLA. 2218 } 2219 2220 // We have some number of constant-length arrays, so addr should 2221 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2222 // down to the first element of addr. 2223 SmallVector<llvm::Value*, 8> gepIndices; 2224 2225 // GEP down to the array type. 2226 llvm::ConstantInt *zero = Builder.getInt32(0); 2227 gepIndices.push_back(zero); 2228 2229 uint64_t countFromCLAs = 1; 2230 QualType eltType; 2231 2232 llvm::ArrayType *llvmArrayType = 2233 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2234 while (llvmArrayType) { 2235 assert(isa<ConstantArrayType>(arrayType)); 2236 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2237 llvmArrayType->getNumElements()); 2238 2239 gepIndices.push_back(zero); 2240 countFromCLAs *= llvmArrayType->getNumElements(); 2241 eltType = arrayType->getElementType(); 2242 2243 llvmArrayType = 2244 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2245 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2246 assert((!llvmArrayType || arrayType) && 2247 "LLVM and Clang types are out-of-synch"); 2248 } 2249 2250 if (arrayType) { 2251 // From this point onwards, the Clang array type has been emitted 2252 // as some other type (probably a packed struct). Compute the array 2253 // size, and just emit the 'begin' expression as a bitcast. 2254 while (arrayType) { 2255 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2256 eltType = arrayType->getElementType(); 2257 arrayType = getContext().getAsArrayType(eltType); 2258 } 2259 2260 llvm::Type *baseType = ConvertType(eltType); 2261 addr = addr.withElementType(baseType); 2262 } else { 2263 // Create the actual GEP. 2264 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2265 addr.emitRawPointer(*this), 2266 gepIndices, "array.begin"), 2267 ConvertTypeForMem(eltType), addr.getAlignment()); 2268 } 2269 2270 baseType = eltType; 2271 2272 llvm::Value *numElements 2273 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2274 2275 // If we had any VLA dimensions, factor them in. 2276 if (numVLAElements) 2277 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2278 2279 return numElements; 2280 } 2281 2282 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2283 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2284 assert(vla && "type was not a variable array type!"); 2285 return getVLASize(vla); 2286 } 2287 2288 CodeGenFunction::VlaSizePair 2289 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2290 // The number of elements so far; always size_t. 2291 llvm::Value *numElements = nullptr; 2292 2293 QualType elementType; 2294 do { 2295 elementType = type->getElementType(); 2296 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2297 assert(vlaSize && "no size for VLA!"); 2298 assert(vlaSize->getType() == SizeTy); 2299 2300 if (!numElements) { 2301 numElements = vlaSize; 2302 } else { 2303 // It's undefined behavior if this wraps around, so mark it that way. 2304 // FIXME: Teach -fsanitize=undefined to trap this. 2305 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2306 } 2307 } while ((type = getContext().getAsVariableArrayType(elementType))); 2308 2309 return { numElements, elementType }; 2310 } 2311 2312 CodeGenFunction::VlaSizePair 2313 CodeGenFunction::getVLAElements1D(QualType type) { 2314 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2315 assert(vla && "type was not a variable array type!"); 2316 return getVLAElements1D(vla); 2317 } 2318 2319 CodeGenFunction::VlaSizePair 2320 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2321 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2322 assert(VlaSize && "no size for VLA!"); 2323 assert(VlaSize->getType() == SizeTy); 2324 return { VlaSize, Vla->getElementType() }; 2325 } 2326 2327 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2328 assert(type->isVariablyModifiedType() && 2329 "Must pass variably modified type to EmitVLASizes!"); 2330 2331 EnsureInsertPoint(); 2332 2333 // We're going to walk down into the type and look for VLA 2334 // expressions. 2335 do { 2336 assert(type->isVariablyModifiedType()); 2337 2338 const Type *ty = type.getTypePtr(); 2339 switch (ty->getTypeClass()) { 2340 2341 #define TYPE(Class, Base) 2342 #define ABSTRACT_TYPE(Class, Base) 2343 #define NON_CANONICAL_TYPE(Class, Base) 2344 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2345 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2346 #include "clang/AST/TypeNodes.inc" 2347 llvm_unreachable("unexpected dependent type!"); 2348 2349 // These types are never variably-modified. 2350 case Type::Builtin: 2351 case Type::Complex: 2352 case Type::Vector: 2353 case Type::ExtVector: 2354 case Type::ConstantMatrix: 2355 case Type::Record: 2356 case Type::Enum: 2357 case Type::Using: 2358 case Type::TemplateSpecialization: 2359 case Type::ObjCTypeParam: 2360 case Type::ObjCObject: 2361 case Type::ObjCInterface: 2362 case Type::ObjCObjectPointer: 2363 case Type::BitInt: 2364 llvm_unreachable("type class is never variably-modified!"); 2365 2366 case Type::Elaborated: 2367 type = cast<ElaboratedType>(ty)->getNamedType(); 2368 break; 2369 2370 case Type::Adjusted: 2371 type = cast<AdjustedType>(ty)->getAdjustedType(); 2372 break; 2373 2374 case Type::Decayed: 2375 type = cast<DecayedType>(ty)->getPointeeType(); 2376 break; 2377 2378 case Type::Pointer: 2379 type = cast<PointerType>(ty)->getPointeeType(); 2380 break; 2381 2382 case Type::BlockPointer: 2383 type = cast<BlockPointerType>(ty)->getPointeeType(); 2384 break; 2385 2386 case Type::LValueReference: 2387 case Type::RValueReference: 2388 type = cast<ReferenceType>(ty)->getPointeeType(); 2389 break; 2390 2391 case Type::MemberPointer: 2392 type = cast<MemberPointerType>(ty)->getPointeeType(); 2393 break; 2394 2395 case Type::ArrayParameter: 2396 case Type::ConstantArray: 2397 case Type::IncompleteArray: 2398 // Losing element qualification here is fine. 2399 type = cast<ArrayType>(ty)->getElementType(); 2400 break; 2401 2402 case Type::VariableArray: { 2403 // Losing element qualification here is fine. 2404 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2405 2406 // Unknown size indication requires no size computation. 2407 // Otherwise, evaluate and record it. 2408 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2409 // It's possible that we might have emitted this already, 2410 // e.g. with a typedef and a pointer to it. 2411 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2412 if (!entry) { 2413 llvm::Value *size = EmitScalarExpr(sizeExpr); 2414 2415 // C11 6.7.6.2p5: 2416 // If the size is an expression that is not an integer constant 2417 // expression [...] each time it is evaluated it shall have a value 2418 // greater than zero. 2419 if (SanOpts.has(SanitizerKind::VLABound)) { 2420 SanitizerScope SanScope(this); 2421 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2422 clang::QualType SEType = sizeExpr->getType(); 2423 llvm::Value *CheckCondition = 2424 SEType->isSignedIntegerType() 2425 ? Builder.CreateICmpSGT(size, Zero) 2426 : Builder.CreateICmpUGT(size, Zero); 2427 llvm::Constant *StaticArgs[] = { 2428 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2429 EmitCheckTypeDescriptor(SEType)}; 2430 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2431 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2432 } 2433 2434 // Always zexting here would be wrong if it weren't 2435 // undefined behavior to have a negative bound. 2436 // FIXME: What about when size's type is larger than size_t? 2437 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2438 } 2439 } 2440 type = vat->getElementType(); 2441 break; 2442 } 2443 2444 case Type::FunctionProto: 2445 case Type::FunctionNoProto: 2446 type = cast<FunctionType>(ty)->getReturnType(); 2447 break; 2448 2449 case Type::Paren: 2450 case Type::TypeOf: 2451 case Type::UnaryTransform: 2452 case Type::Attributed: 2453 case Type::BTFTagAttributed: 2454 case Type::SubstTemplateTypeParm: 2455 case Type::MacroQualified: 2456 case Type::CountAttributed: 2457 // Keep walking after single level desugaring. 2458 type = type.getSingleStepDesugaredType(getContext()); 2459 break; 2460 2461 case Type::Typedef: 2462 case Type::Decltype: 2463 case Type::Auto: 2464 case Type::DeducedTemplateSpecialization: 2465 case Type::PackIndexing: 2466 // Stop walking: nothing to do. 2467 return; 2468 2469 case Type::TypeOfExpr: 2470 // Stop walking: emit typeof expression. 2471 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2472 return; 2473 2474 case Type::Atomic: 2475 type = cast<AtomicType>(ty)->getValueType(); 2476 break; 2477 2478 case Type::Pipe: 2479 type = cast<PipeType>(ty)->getElementType(); 2480 break; 2481 } 2482 } while (type->isVariablyModifiedType()); 2483 } 2484 2485 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2486 if (getContext().getBuiltinVaListType()->isArrayType()) 2487 return EmitPointerWithAlignment(E); 2488 return EmitLValue(E).getAddress(); 2489 } 2490 2491 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2492 return EmitLValue(E).getAddress(); 2493 } 2494 2495 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2496 const APValue &Init) { 2497 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2498 if (CGDebugInfo *Dbg = getDebugInfo()) 2499 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2500 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2501 } 2502 2503 CodeGenFunction::PeepholeProtection 2504 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2505 // At the moment, the only aggressive peephole we do in IR gen 2506 // is trunc(zext) folding, but if we add more, we can easily 2507 // extend this protection. 2508 2509 if (!rvalue.isScalar()) return PeepholeProtection(); 2510 llvm::Value *value = rvalue.getScalarVal(); 2511 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2512 2513 // Just make an extra bitcast. 2514 assert(HaveInsertPoint()); 2515 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2516 Builder.GetInsertBlock()); 2517 2518 PeepholeProtection protection; 2519 protection.Inst = inst; 2520 return protection; 2521 } 2522 2523 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2524 if (!protection.Inst) return; 2525 2526 // In theory, we could try to duplicate the peepholes now, but whatever. 2527 protection.Inst->eraseFromParent(); 2528 } 2529 2530 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2531 QualType Ty, SourceLocation Loc, 2532 SourceLocation AssumptionLoc, 2533 llvm::Value *Alignment, 2534 llvm::Value *OffsetValue) { 2535 if (Alignment->getType() != IntPtrTy) 2536 Alignment = 2537 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2538 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2539 OffsetValue = 2540 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2541 llvm::Value *TheCheck = nullptr; 2542 if (SanOpts.has(SanitizerKind::Alignment)) { 2543 llvm::Value *PtrIntValue = 2544 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2545 2546 if (OffsetValue) { 2547 bool IsOffsetZero = false; 2548 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2549 IsOffsetZero = CI->isZero(); 2550 2551 if (!IsOffsetZero) 2552 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2553 } 2554 2555 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2556 llvm::Value *Mask = 2557 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2558 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2559 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2560 } 2561 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2562 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2563 2564 if (!SanOpts.has(SanitizerKind::Alignment)) 2565 return; 2566 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2567 OffsetValue, TheCheck, Assumption); 2568 } 2569 2570 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2571 const Expr *E, 2572 SourceLocation AssumptionLoc, 2573 llvm::Value *Alignment, 2574 llvm::Value *OffsetValue) { 2575 QualType Ty = E->getType(); 2576 SourceLocation Loc = E->getExprLoc(); 2577 2578 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2579 OffsetValue); 2580 } 2581 2582 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2583 llvm::Value *AnnotatedVal, 2584 StringRef AnnotationStr, 2585 SourceLocation Location, 2586 const AnnotateAttr *Attr) { 2587 SmallVector<llvm::Value *, 5> Args = { 2588 AnnotatedVal, 2589 CGM.EmitAnnotationString(AnnotationStr), 2590 CGM.EmitAnnotationUnit(Location), 2591 CGM.EmitAnnotationLineNo(Location), 2592 }; 2593 if (Attr) 2594 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2595 return Builder.CreateCall(AnnotationFn, Args); 2596 } 2597 2598 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2599 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2600 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2601 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2602 {V->getType(), CGM.ConstGlobalsPtrTy}), 2603 V, I->getAnnotation(), D->getLocation(), I); 2604 } 2605 2606 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2607 Address Addr) { 2608 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2609 llvm::Value *V = Addr.emitRawPointer(*this); 2610 llvm::Type *VTy = V->getType(); 2611 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2612 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2613 llvm::PointerType *IntrinTy = 2614 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2615 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2616 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2617 2618 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2619 // FIXME Always emit the cast inst so we can differentiate between 2620 // annotation on the first field of a struct and annotation on the struct 2621 // itself. 2622 if (VTy != IntrinTy) 2623 V = Builder.CreateBitCast(V, IntrinTy); 2624 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2625 V = Builder.CreateBitCast(V, VTy); 2626 } 2627 2628 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2629 } 2630 2631 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2632 2633 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2634 : CGF(CGF) { 2635 assert(!CGF->IsSanitizerScope); 2636 CGF->IsSanitizerScope = true; 2637 } 2638 2639 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2640 CGF->IsSanitizerScope = false; 2641 } 2642 2643 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2644 const llvm::Twine &Name, 2645 llvm::BasicBlock::iterator InsertPt) const { 2646 LoopStack.InsertHelper(I); 2647 if (IsSanitizerScope) 2648 I->setNoSanitizeMetadata(); 2649 } 2650 2651 void CGBuilderInserter::InsertHelper( 2652 llvm::Instruction *I, const llvm::Twine &Name, 2653 llvm::BasicBlock::iterator InsertPt) const { 2654 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2655 if (CGF) 2656 CGF->InsertHelper(I, Name, InsertPt); 2657 } 2658 2659 // Emits an error if we don't have a valid set of target features for the 2660 // called function. 2661 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2662 const FunctionDecl *TargetDecl) { 2663 // SemaChecking cannot handle below x86 builtins because they have different 2664 // parameter ranges with different TargetAttribute of caller. 2665 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2666 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2667 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2668 BuiltinID == X86::BI__builtin_ia32_cmpss || 2669 BuiltinID == X86::BI__builtin_ia32_cmppd || 2670 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2671 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2672 llvm::StringMap<bool> TargetFetureMap; 2673 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2674 llvm::APSInt Result = 2675 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2676 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2677 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2678 << TargetDecl->getDeclName() << "avx"; 2679 } 2680 } 2681 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2682 } 2683 2684 // Emits an error if we don't have a valid set of target features for the 2685 // called function. 2686 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2687 const FunctionDecl *TargetDecl) { 2688 // Early exit if this is an indirect call. 2689 if (!TargetDecl) 2690 return; 2691 2692 // Get the current enclosing function if it exists. If it doesn't 2693 // we can't check the target features anyhow. 2694 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2695 if (!FD) 2696 return; 2697 2698 // Grab the required features for the call. For a builtin this is listed in 2699 // the td file with the default cpu, for an always_inline function this is any 2700 // listed cpu and any listed features. 2701 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2702 std::string MissingFeature; 2703 llvm::StringMap<bool> CallerFeatureMap; 2704 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2705 // When compiling in HipStdPar mode we have to be conservative in rejecting 2706 // target specific features in the FE, and defer the possible error to the 2707 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2708 // referenced by an accelerator executable function, we emit an error. 2709 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2710 if (BuiltinID) { 2711 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2712 if (!Builtin::evaluateRequiredTargetFeatures( 2713 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2714 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2715 << TargetDecl->getDeclName() 2716 << FeatureList; 2717 } 2718 } else if (!TargetDecl->isMultiVersion() && 2719 TargetDecl->hasAttr<TargetAttr>()) { 2720 // Get the required features for the callee. 2721 2722 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2723 ParsedTargetAttr ParsedAttr = 2724 CGM.getContext().filterFunctionTargetAttrs(TD); 2725 2726 SmallVector<StringRef, 1> ReqFeatures; 2727 llvm::StringMap<bool> CalleeFeatureMap; 2728 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2729 2730 for (const auto &F : ParsedAttr.Features) { 2731 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2732 ReqFeatures.push_back(StringRef(F).substr(1)); 2733 } 2734 2735 for (const auto &F : CalleeFeatureMap) { 2736 // Only positive features are "required". 2737 if (F.getValue()) 2738 ReqFeatures.push_back(F.getKey()); 2739 } 2740 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2741 if (!CallerFeatureMap.lookup(Feature)) { 2742 MissingFeature = Feature.str(); 2743 return false; 2744 } 2745 return true; 2746 }) && !IsHipStdPar) 2747 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2748 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2749 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2750 llvm::StringMap<bool> CalleeFeatureMap; 2751 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2752 2753 for (const auto &F : CalleeFeatureMap) { 2754 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2755 !CallerFeatureMap.find(F.getKey())->getValue()) && 2756 !IsHipStdPar) 2757 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2758 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2759 } 2760 } 2761 } 2762 2763 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2764 if (!CGM.getCodeGenOpts().SanitizeStats) 2765 return; 2766 2767 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2768 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2769 CGM.getSanStats().create(IRB, SSK); 2770 } 2771 2772 void CodeGenFunction::EmitKCFIOperandBundle( 2773 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2774 const FunctionProtoType *FP = 2775 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2776 if (FP) 2777 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2778 } 2779 2780 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2781 const MultiVersionResolverOption &RO) { 2782 llvm::SmallVector<StringRef, 8> CondFeatures; 2783 for (const StringRef &Feature : RO.Conditions.Features) { 2784 // Optimize the Function Multi Versioning resolver by creating conditions 2785 // only for features that are not enabled in the target. The exception is 2786 // for features whose extension instructions are executed as NOP on targets 2787 // without extension support. 2788 if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" || 2789 Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" || 2790 Feature == "dgh") 2791 CondFeatures.push_back(Feature); 2792 } 2793 if (!CondFeatures.empty()) { 2794 return EmitAArch64CpuSupports(CondFeatures); 2795 } 2796 return nullptr; 2797 } 2798 2799 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2800 const MultiVersionResolverOption &RO) { 2801 llvm::Value *Condition = nullptr; 2802 2803 if (!RO.Conditions.Architecture.empty()) { 2804 StringRef Arch = RO.Conditions.Architecture; 2805 // If arch= specifies an x86-64 micro-architecture level, test the feature 2806 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2807 if (Arch.starts_with("x86-64")) 2808 Condition = EmitX86CpuSupports({Arch}); 2809 else 2810 Condition = EmitX86CpuIs(Arch); 2811 } 2812 2813 if (!RO.Conditions.Features.empty()) { 2814 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2815 Condition = 2816 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2817 } 2818 return Condition; 2819 } 2820 2821 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2822 llvm::Function *Resolver, 2823 CGBuilderTy &Builder, 2824 llvm::Function *FuncToReturn, 2825 bool SupportsIFunc) { 2826 if (SupportsIFunc) { 2827 Builder.CreateRet(FuncToReturn); 2828 return; 2829 } 2830 2831 llvm::SmallVector<llvm::Value *, 10> Args( 2832 llvm::make_pointer_range(Resolver->args())); 2833 2834 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2835 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2836 2837 if (Resolver->getReturnType()->isVoidTy()) 2838 Builder.CreateRetVoid(); 2839 else 2840 Builder.CreateRet(Result); 2841 } 2842 2843 void CodeGenFunction::EmitMultiVersionResolver( 2844 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2845 2846 llvm::Triple::ArchType ArchType = 2847 getContext().getTargetInfo().getTriple().getArch(); 2848 2849 switch (ArchType) { 2850 case llvm::Triple::x86: 2851 case llvm::Triple::x86_64: 2852 EmitX86MultiVersionResolver(Resolver, Options); 2853 return; 2854 case llvm::Triple::aarch64: 2855 EmitAArch64MultiVersionResolver(Resolver, Options); 2856 return; 2857 2858 default: 2859 assert(false && "Only implemented for x86 and AArch64 targets"); 2860 } 2861 } 2862 2863 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2864 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2865 assert(!Options.empty() && "No multiversion resolver options found"); 2866 assert(Options.back().Conditions.Features.size() == 0 && 2867 "Default case must be last"); 2868 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2869 assert(SupportsIFunc && 2870 "Multiversion resolver requires target IFUNC support"); 2871 bool AArch64CpuInitialized = false; 2872 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2873 2874 for (const MultiVersionResolverOption &RO : Options) { 2875 Builder.SetInsertPoint(CurBlock); 2876 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2877 2878 // The 'default' or 'all features enabled' case. 2879 if (!Condition) { 2880 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2881 SupportsIFunc); 2882 return; 2883 } 2884 2885 if (!AArch64CpuInitialized) { 2886 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2887 EmitAArch64CpuInit(); 2888 AArch64CpuInitialized = true; 2889 Builder.SetInsertPoint(CurBlock); 2890 } 2891 2892 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2893 CGBuilderTy RetBuilder(*this, RetBlock); 2894 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2895 SupportsIFunc); 2896 CurBlock = createBasicBlock("resolver_else", Resolver); 2897 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2898 } 2899 2900 // If no default, emit an unreachable. 2901 Builder.SetInsertPoint(CurBlock); 2902 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2903 TrapCall->setDoesNotReturn(); 2904 TrapCall->setDoesNotThrow(); 2905 Builder.CreateUnreachable(); 2906 Builder.ClearInsertionPoint(); 2907 } 2908 2909 void CodeGenFunction::EmitX86MultiVersionResolver( 2910 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2911 2912 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2913 2914 // Main function's basic block. 2915 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2916 Builder.SetInsertPoint(CurBlock); 2917 EmitX86CpuInit(); 2918 2919 for (const MultiVersionResolverOption &RO : Options) { 2920 Builder.SetInsertPoint(CurBlock); 2921 llvm::Value *Condition = FormX86ResolverCondition(RO); 2922 2923 // The 'default' or 'generic' case. 2924 if (!Condition) { 2925 assert(&RO == Options.end() - 1 && 2926 "Default or Generic case must be last"); 2927 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2928 SupportsIFunc); 2929 return; 2930 } 2931 2932 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2933 CGBuilderTy RetBuilder(*this, RetBlock); 2934 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2935 SupportsIFunc); 2936 CurBlock = createBasicBlock("resolver_else", Resolver); 2937 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2938 } 2939 2940 // If no generic/default, emit an unreachable. 2941 Builder.SetInsertPoint(CurBlock); 2942 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2943 TrapCall->setDoesNotReturn(); 2944 TrapCall->setDoesNotThrow(); 2945 Builder.CreateUnreachable(); 2946 Builder.ClearInsertionPoint(); 2947 } 2948 2949 // Loc - where the diagnostic will point, where in the source code this 2950 // alignment has failed. 2951 // SecondaryLoc - if present (will be present if sufficiently different from 2952 // Loc), the diagnostic will additionally point a "Note:" to this location. 2953 // It should be the location where the __attribute__((assume_aligned)) 2954 // was written e.g. 2955 void CodeGenFunction::emitAlignmentAssumptionCheck( 2956 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2957 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2958 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2959 llvm::Instruction *Assumption) { 2960 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 2961 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2962 llvm::Intrinsic::getDeclaration( 2963 Builder.GetInsertBlock()->getParent()->getParent(), 2964 llvm::Intrinsic::assume) && 2965 "Assumption should be a call to llvm.assume()."); 2966 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2967 "Assumption should be the last instruction of the basic block, " 2968 "since the basic block is still being generated."); 2969 2970 if (!SanOpts.has(SanitizerKind::Alignment)) 2971 return; 2972 2973 // Don't check pointers to volatile data. The behavior here is implementation- 2974 // defined. 2975 if (Ty->getPointeeType().isVolatileQualified()) 2976 return; 2977 2978 // We need to temorairly remove the assumption so we can insert the 2979 // sanitizer check before it, else the check will be dropped by optimizations. 2980 Assumption->removeFromParent(); 2981 2982 { 2983 SanitizerScope SanScope(this); 2984 2985 if (!OffsetValue) 2986 OffsetValue = Builder.getInt1(false); // no offset. 2987 2988 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2989 EmitCheckSourceLocation(SecondaryLoc), 2990 EmitCheckTypeDescriptor(Ty)}; 2991 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2992 EmitCheckValue(Alignment), 2993 EmitCheckValue(OffsetValue)}; 2994 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2995 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2996 } 2997 2998 // We are now in the (new, empty) "cont" basic block. 2999 // Reintroduce the assumption. 3000 Builder.Insert(Assumption); 3001 // FIXME: Assumption still has it's original basic block as it's Parent. 3002 } 3003 3004 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3005 if (CGDebugInfo *DI = getDebugInfo()) 3006 return DI->SourceLocToDebugLoc(Location); 3007 3008 return llvm::DebugLoc(); 3009 } 3010 3011 llvm::Value * 3012 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3013 Stmt::Likelihood LH) { 3014 switch (LH) { 3015 case Stmt::LH_None: 3016 return Cond; 3017 case Stmt::LH_Likely: 3018 case Stmt::LH_Unlikely: 3019 // Don't generate llvm.expect on -O0 as the backend won't use it for 3020 // anything. 3021 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3022 return Cond; 3023 llvm::Type *CondTy = Cond->getType(); 3024 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3025 llvm::Function *FnExpect = 3026 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3027 llvm::Value *ExpectedValueOfCond = 3028 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3029 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3030 Cond->getName() + ".expval"); 3031 } 3032 llvm_unreachable("Unknown Likelihood"); 3033 } 3034 3035 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3036 unsigned NumElementsDst, 3037 const llvm::Twine &Name) { 3038 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3039 unsigned NumElementsSrc = SrcTy->getNumElements(); 3040 if (NumElementsSrc == NumElementsDst) 3041 return SrcVec; 3042 3043 std::vector<int> ShuffleMask(NumElementsDst, -1); 3044 for (unsigned MaskIdx = 0; 3045 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3046 ShuffleMask[MaskIdx] = MaskIdx; 3047 3048 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3049 } 3050 3051 void CodeGenFunction::EmitPointerAuthOperandBundle( 3052 const CGPointerAuthInfo &PointerAuth, 3053 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3054 if (!PointerAuth.isSigned()) 3055 return; 3056 3057 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3058 3059 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3060 if (!Discriminator) 3061 Discriminator = Builder.getSize(0); 3062 3063 llvm::Value *Args[] = {Key, Discriminator}; 3064 Bundles.emplace_back("ptrauth", Args); 3065 } 3066