1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableSingleByteCoverage; 57 } // namespace llvm 58 59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 60 /// markers. 61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 62 const LangOptions &LangOpts) { 63 if (CGOpts.DisableLifetimeMarkers) 64 return false; 65 66 // Sanitizers may use markers. 67 if (CGOpts.SanitizeAddressUseAfterScope || 68 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 69 LangOpts.Sanitize.has(SanitizerKind::Memory)) 70 return true; 71 72 // For now, only in optimized builds. 73 return CGOpts.OptimizationLevel != 0; 74 } 75 76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 77 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 78 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 79 CGBuilderInserterTy(this)), 80 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 81 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 EHStack.setCGF(this); 87 88 SetFastMathFlags(CurFPFeatures); 89 } 90 91 CodeGenFunction::~CodeGenFunction() { 92 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 93 assert(DeferredDeactivationCleanupStack.empty() && 94 "missed to deactivate a cleanup"); 95 96 if (getLangOpts().OpenMP && CurFn) 97 CGM.getOpenMPRuntime().functionFinished(*this); 98 99 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 100 // outlining etc) at some point. Doing it once the function codegen is done 101 // seems to be a reasonable spot. We do it here, as opposed to the deletion 102 // time of the CodeGenModule, because we have to ensure the IR has not yet 103 // been "emitted" to the outside, thus, modifications are still sensible. 104 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 105 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 106 } 107 108 // Map the LangOption for exception behavior into 109 // the corresponding enum in the IR. 110 llvm::fp::ExceptionBehavior 111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 112 113 switch (Kind) { 114 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 115 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 116 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 117 default: 118 llvm_unreachable("Unsupported FP Exception Behavior"); 119 } 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 159 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 160 auto NewExceptionBehavior = 161 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 162 FPFeatures.getExceptionMode())); 163 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 164 165 CGF.SetFastMathFlags(FPFeatures); 166 167 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 168 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 169 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 170 (NewExceptionBehavior == llvm::fp::ebIgnore && 171 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 172 "FPConstrained should be enabled on entire function"); 173 174 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 175 auto OldValue = 176 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 177 auto NewValue = OldValue & Value; 178 if (OldValue != NewValue) 179 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 180 }; 181 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 182 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 183 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 184 mergeFnAttrValue( 185 "unsafe-fp-math", 186 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 188 FPFeatures.allowFPContractAcrossStatement()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 static LValue 198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 199 bool MightBeSigned, CodeGenFunction &CGF, 200 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = 206 MightBeSigned 207 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 208 nullptr, IsKnownNonNull) 209 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 210 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 215 KnownNonNull_t IsKnownNonNull) { 216 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 217 /*MightBeSigned*/ true, *this, 218 IsKnownNonNull); 219 } 220 221 LValue 222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 223 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 224 /*MightBeSigned*/ true, *this); 225 } 226 227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 228 QualType T) { 229 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 230 /*MightBeSigned*/ false, *this); 231 } 232 233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 234 QualType T) { 235 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 236 /*MightBeSigned*/ false, *this); 237 } 238 239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 240 return CGM.getTypes().ConvertTypeForMem(T); 241 } 242 243 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 244 return CGM.getTypes().ConvertType(T); 245 } 246 247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 248 llvm::Type *LLVMTy) { 249 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 250 } 251 252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 253 type = type.getCanonicalType(); 254 while (true) { 255 switch (type->getTypeClass()) { 256 #define TYPE(name, parent) 257 #define ABSTRACT_TYPE(name, parent) 258 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 259 #define DEPENDENT_TYPE(name, parent) case Type::name: 260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 261 #include "clang/AST/TypeNodes.inc" 262 llvm_unreachable("non-canonical or dependent type in IR-generation"); 263 264 case Type::Auto: 265 case Type::DeducedTemplateSpecialization: 266 llvm_unreachable("undeduced type in IR-generation"); 267 268 // Various scalar types. 269 case Type::Builtin: 270 case Type::Pointer: 271 case Type::BlockPointer: 272 case Type::LValueReference: 273 case Type::RValueReference: 274 case Type::MemberPointer: 275 case Type::Vector: 276 case Type::ExtVector: 277 case Type::ConstantMatrix: 278 case Type::FunctionProto: 279 case Type::FunctionNoProto: 280 case Type::Enum: 281 case Type::ObjCObjectPointer: 282 case Type::Pipe: 283 case Type::BitInt: 284 case Type::HLSLAttributedResource: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!(getLangOpts().OpenCL || 639 (getLangOpts().CUDA && 640 getContext().getTargetInfo().getTriple().isSPIRV()))) 641 return; 642 643 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 644 QualType HintQTy = A->getTypeHint(); 645 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 646 bool IsSignedInteger = 647 HintQTy->isSignedIntegerType() || 648 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 649 llvm::Metadata *AttrMDArgs[] = { 650 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 651 CGM.getTypes().ConvertType(A->getTypeHint()))), 652 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 653 llvm::IntegerType::get(Context, 32), 654 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 655 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 656 } 657 658 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 659 llvm::Metadata *AttrMDArgs[] = { 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 662 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 663 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 664 } 665 666 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 667 llvm::Metadata *AttrMDArgs[] = { 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 670 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 671 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 672 } 673 674 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 675 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 676 llvm::Metadata *AttrMDArgs[] = { 677 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 678 Fn->setMetadata("intel_reqd_sub_group_size", 679 llvm::MDNode::get(Context, AttrMDArgs)); 680 } 681 } 682 683 /// Determine whether the function F ends with a return stmt. 684 static bool endsWithReturn(const Decl* F) { 685 const Stmt *Body = nullptr; 686 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 687 Body = FD->getBody(); 688 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 689 Body = OMD->getBody(); 690 691 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 692 auto LastStmt = CS->body_rbegin(); 693 if (LastStmt != CS->body_rend()) 694 return isa<ReturnStmt>(*LastStmt); 695 } 696 return false; 697 } 698 699 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 700 if (SanOpts.has(SanitizerKind::Thread)) { 701 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 702 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 703 } 704 } 705 706 /// Check if the return value of this function requires sanitization. 707 bool CodeGenFunction::requiresReturnValueCheck() const { 708 return requiresReturnValueNullabilityCheck() || 709 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 710 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 711 } 712 713 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 714 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 715 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 716 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 717 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 718 return false; 719 720 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 721 return false; 722 723 if (MD->getNumParams() == 2) { 724 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 725 if (!PT || !PT->isVoidPointerType() || 726 !PT->getPointeeType().isConstQualified()) 727 return false; 728 } 729 730 return true; 731 } 732 733 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 734 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 735 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 736 } 737 738 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 739 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 740 getTarget().getCXXABI().isMicrosoft() && 741 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 742 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 743 }); 744 } 745 746 /// Return the UBSan prologue signature for \p FD if one is available. 747 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 748 const FunctionDecl *FD) { 749 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 750 if (!MD->isStatic()) 751 return nullptr; 752 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 753 } 754 755 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 756 llvm::Function *Fn, 757 const CGFunctionInfo &FnInfo, 758 const FunctionArgList &Args, 759 SourceLocation Loc, 760 SourceLocation StartLoc) { 761 assert(!CurFn && 762 "Do not use a CodeGenFunction object for more than one function"); 763 764 const Decl *D = GD.getDecl(); 765 766 DidCallStackSave = false; 767 CurCodeDecl = D; 768 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 769 if (FD && FD->usesSEHTry()) 770 CurSEHParent = GD; 771 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 772 FnRetTy = RetTy; 773 CurFn = Fn; 774 CurFnInfo = &FnInfo; 775 assert(CurFn->isDeclaration() && "Function already has body?"); 776 777 // If this function is ignored for any of the enabled sanitizers, 778 // disable the sanitizer for the function. 779 do { 780 #define SANITIZER(NAME, ID) \ 781 if (SanOpts.empty()) \ 782 break; \ 783 if (SanOpts.has(SanitizerKind::ID)) \ 784 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 785 SanOpts.set(SanitizerKind::ID, false); 786 787 #include "clang/Basic/Sanitizers.def" 788 #undef SANITIZER 789 } while (false); 790 791 if (D) { 792 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 793 SanitizerMask no_sanitize_mask; 794 bool NoSanitizeCoverage = false; 795 796 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 797 no_sanitize_mask |= Attr->getMask(); 798 // SanitizeCoverage is not handled by SanOpts. 799 if (Attr->hasCoverage()) 800 NoSanitizeCoverage = true; 801 } 802 803 // Apply the no_sanitize* attributes to SanOpts. 804 SanOpts.Mask &= ~no_sanitize_mask; 805 if (no_sanitize_mask & SanitizerKind::Address) 806 SanOpts.set(SanitizerKind::KernelAddress, false); 807 if (no_sanitize_mask & SanitizerKind::KernelAddress) 808 SanOpts.set(SanitizerKind::Address, false); 809 if (no_sanitize_mask & SanitizerKind::HWAddress) 810 SanOpts.set(SanitizerKind::KernelHWAddress, false); 811 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 812 SanOpts.set(SanitizerKind::HWAddress, false); 813 814 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 815 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 816 817 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 818 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 819 820 // Some passes need the non-negated no_sanitize attribute. Pass them on. 821 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 822 if (no_sanitize_mask & SanitizerKind::Thread) 823 Fn->addFnAttr("no_sanitize_thread"); 824 } 825 } 826 827 if (ShouldSkipSanitizerInstrumentation()) { 828 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 829 } else { 830 // Apply sanitizer attributes to the function. 831 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 832 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 833 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 834 SanitizerKind::KernelHWAddress)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 836 if (SanOpts.has(SanitizerKind::MemtagStack)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 838 if (SanOpts.has(SanitizerKind::Thread)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 840 if (SanOpts.has(SanitizerKind::NumericalStability)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 842 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 843 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 844 } 845 if (SanOpts.has(SanitizerKind::SafeStack)) 846 Fn->addFnAttr(llvm::Attribute::SafeStack); 847 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 848 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 849 850 if (SanOpts.has(SanitizerKind::Realtime)) 851 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 852 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 853 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 854 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 855 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) 856 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking); 857 } 858 859 // Apply fuzzing attribute to the function. 860 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 861 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 862 863 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 864 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 865 if (SanOpts.has(SanitizerKind::Thread)) { 866 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 867 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 868 if (OMD->getMethodFamily() == OMF_dealloc || 869 OMD->getMethodFamily() == OMF_initialize || 870 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 871 markAsIgnoreThreadCheckingAtRuntime(Fn); 872 } 873 } 874 } 875 876 // Ignore unrelated casts in STL allocate() since the allocator must cast 877 // from void* to T* before object initialization completes. Don't match on the 878 // namespace because not all allocators are in std:: 879 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 880 if (matchesStlAllocatorFn(D, getContext())) 881 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 882 } 883 884 // Ignore null checks in coroutine functions since the coroutines passes 885 // are not aware of how to move the extra UBSan instructions across the split 886 // coroutine boundaries. 887 if (D && SanOpts.has(SanitizerKind::Null)) 888 if (FD && FD->getBody() && 889 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 890 SanOpts.Mask &= ~SanitizerKind::Null; 891 892 // Add pointer authentication attributes. 893 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 894 if (CodeGenOpts.PointerAuth.ReturnAddresses) 895 Fn->addFnAttr("ptrauth-returns"); 896 if (CodeGenOpts.PointerAuth.FunctionPointers) 897 Fn->addFnAttr("ptrauth-calls"); 898 if (CodeGenOpts.PointerAuth.AuthTraps) 899 Fn->addFnAttr("ptrauth-auth-traps"); 900 if (CodeGenOpts.PointerAuth.IndirectGotos) 901 Fn->addFnAttr("ptrauth-indirect-gotos"); 902 903 // Apply xray attributes to the function (as a string, for now) 904 bool AlwaysXRayAttr = false; 905 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 906 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 907 XRayInstrKind::FunctionEntry) || 908 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 909 XRayInstrKind::FunctionExit)) { 910 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 911 Fn->addFnAttr("function-instrument", "xray-always"); 912 AlwaysXRayAttr = true; 913 } 914 if (XRayAttr->neverXRayInstrument()) 915 Fn->addFnAttr("function-instrument", "xray-never"); 916 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 917 if (ShouldXRayInstrumentFunction()) 918 Fn->addFnAttr("xray-log-args", 919 llvm::utostr(LogArgs->getArgumentCount())); 920 } 921 } else { 922 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 923 Fn->addFnAttr( 924 "xray-instruction-threshold", 925 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 926 } 927 928 if (ShouldXRayInstrumentFunction()) { 929 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 930 Fn->addFnAttr("xray-ignore-loops"); 931 932 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 933 XRayInstrKind::FunctionExit)) 934 Fn->addFnAttr("xray-skip-exit"); 935 936 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 937 XRayInstrKind::FunctionEntry)) 938 Fn->addFnAttr("xray-skip-entry"); 939 940 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 941 if (FuncGroups > 1) { 942 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 943 CurFn->getName().bytes_end()); 944 auto Group = crc32(FuncName) % FuncGroups; 945 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 946 !AlwaysXRayAttr) 947 Fn->addFnAttr("function-instrument", "xray-never"); 948 } 949 } 950 951 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 952 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 953 case ProfileList::Skip: 954 Fn->addFnAttr(llvm::Attribute::SkipProfile); 955 break; 956 case ProfileList::Forbid: 957 Fn->addFnAttr(llvm::Attribute::NoProfile); 958 break; 959 case ProfileList::Allow: 960 break; 961 } 962 } 963 964 unsigned Count, Offset; 965 if (const auto *Attr = 966 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 967 Count = Attr->getCount(); 968 Offset = Attr->getOffset(); 969 } else { 970 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 971 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 972 } 973 if (Count && Offset <= Count) { 974 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 975 if (Offset) 976 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 977 } 978 // Instruct that functions for COFF/CodeView targets should start with a 979 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 980 // backends as they don't need it -- instructions on these architectures are 981 // always atomically patchable at runtime. 982 if (CGM.getCodeGenOpts().HotPatch && 983 getContext().getTargetInfo().getTriple().isX86() && 984 getContext().getTargetInfo().getTriple().getEnvironment() != 985 llvm::Triple::CODE16) 986 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 987 988 // Add no-jump-tables value. 989 if (CGM.getCodeGenOpts().NoUseJumpTables) 990 Fn->addFnAttr("no-jump-tables", "true"); 991 992 // Add no-inline-line-tables value. 993 if (CGM.getCodeGenOpts().NoInlineLineTables) 994 Fn->addFnAttr("no-inline-line-tables"); 995 996 // Add profile-sample-accurate value. 997 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 998 Fn->addFnAttr("profile-sample-accurate"); 999 1000 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 1001 Fn->addFnAttr("use-sample-profile"); 1002 1003 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1004 Fn->addFnAttr("cfi-canonical-jump-table"); 1005 1006 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1007 Fn->addFnAttr(llvm::Attribute::NoProfile); 1008 1009 if (D && D->hasAttr<HybridPatchableAttr>()) 1010 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1011 1012 if (D) { 1013 // Function attributes take precedence over command line flags. 1014 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1015 switch (A->getThunkType()) { 1016 case FunctionReturnThunksAttr::Kind::Keep: 1017 break; 1018 case FunctionReturnThunksAttr::Kind::Extern: 1019 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1020 break; 1021 } 1022 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1023 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1024 } 1025 1026 if (FD && (getLangOpts().OpenCL || 1027 (getLangOpts().CUDA && 1028 getContext().getTargetInfo().getTriple().isSPIRV()) || 1029 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1030 getLangOpts().CUDAIsDevice))) { 1031 // Add metadata for a kernel function. 1032 EmitKernelMetadata(FD, Fn); 1033 } 1034 1035 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1036 Fn->setMetadata("clspv_libclc_builtin", 1037 llvm::MDNode::get(getLLVMContext(), {})); 1038 } 1039 1040 // If we are checking function types, emit a function type signature as 1041 // prologue data. 1042 if (FD && SanOpts.has(SanitizerKind::Function)) { 1043 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1044 llvm::LLVMContext &Ctx = Fn->getContext(); 1045 llvm::MDBuilder MDB(Ctx); 1046 Fn->setMetadata( 1047 llvm::LLVMContext::MD_func_sanitize, 1048 MDB.createRTTIPointerPrologue( 1049 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1050 } 1051 } 1052 1053 // If we're checking nullability, we need to know whether we can check the 1054 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1055 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1056 auto Nullability = FnRetTy->getNullability(); 1057 if (Nullability && *Nullability == NullabilityKind::NonNull && 1058 !FnRetTy->isRecordType()) { 1059 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1060 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1061 RetValNullabilityPrecondition = 1062 llvm::ConstantInt::getTrue(getLLVMContext()); 1063 } 1064 } 1065 1066 // If we're in C++ mode and the function name is "main", it is guaranteed 1067 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1068 // used within a program"). 1069 // 1070 // OpenCL C 2.0 v2.2-11 s6.9.i: 1071 // Recursion is not supported. 1072 // 1073 // HLSL 1074 // Recursion is not supported. 1075 // 1076 // SYCL v1.2.1 s3.10: 1077 // kernels cannot include RTTI information, exception classes, 1078 // recursive code, virtual functions or make use of C++ libraries that 1079 // are not compiled for the device. 1080 if (FD && 1081 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1082 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1083 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1084 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1085 1086 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1087 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1088 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1089 Builder.setDefaultConstrainedRounding(RM); 1090 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1091 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1092 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1093 RM != llvm::RoundingMode::NearestTiesToEven))) { 1094 Builder.setIsFPConstrained(true); 1095 Fn->addFnAttr(llvm::Attribute::StrictFP); 1096 } 1097 1098 // If a custom alignment is used, force realigning to this alignment on 1099 // any main function which certainly will need it. 1100 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1101 CGM.getCodeGenOpts().StackAlignment)) 1102 Fn->addFnAttr("stackrealign"); 1103 1104 // "main" doesn't need to zero out call-used registers. 1105 if (FD && FD->isMain()) 1106 Fn->removeFnAttr("zero-call-used-regs"); 1107 1108 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1109 1110 // Create a marker to make it easy to insert allocas into the entryblock 1111 // later. Don't create this with the builder, because we don't want it 1112 // folded. 1113 llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty); 1114 AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB); 1115 1116 ReturnBlock = getJumpDestInCurrentScope("return"); 1117 1118 Builder.SetInsertPoint(EntryBB); 1119 1120 // If we're checking the return value, allocate space for a pointer to a 1121 // precise source location of the checked return statement. 1122 if (requiresReturnValueCheck()) { 1123 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1124 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1125 ReturnLocation); 1126 } 1127 1128 // Emit subprogram debug descriptor. 1129 if (CGDebugInfo *DI = getDebugInfo()) { 1130 // Reconstruct the type from the argument list so that implicit parameters, 1131 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1132 // convention. 1133 DI->emitFunctionStart(GD, Loc, StartLoc, 1134 DI->getFunctionType(FD, RetTy, Args), CurFn, 1135 CurFuncIsThunk); 1136 } 1137 1138 if (ShouldInstrumentFunction()) { 1139 if (CGM.getCodeGenOpts().InstrumentFunctions) 1140 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1141 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1142 CurFn->addFnAttr("instrument-function-entry-inlined", 1143 "__cyg_profile_func_enter"); 1144 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1145 CurFn->addFnAttr("instrument-function-entry-inlined", 1146 "__cyg_profile_func_enter_bare"); 1147 } 1148 1149 // Since emitting the mcount call here impacts optimizations such as function 1150 // inlining, we just add an attribute to insert a mcount call in backend. 1151 // The attribute "counting-function" is set to mcount function name which is 1152 // architecture dependent. 1153 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1154 // Calls to fentry/mcount should not be generated if function has 1155 // the no_instrument_function attribute. 1156 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1157 if (CGM.getCodeGenOpts().CallFEntry) 1158 Fn->addFnAttr("fentry-call", "true"); 1159 else { 1160 Fn->addFnAttr("instrument-function-entry-inlined", 1161 getTarget().getMCountName()); 1162 } 1163 if (CGM.getCodeGenOpts().MNopMCount) { 1164 if (!CGM.getCodeGenOpts().CallFEntry) 1165 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1166 << "-mnop-mcount" << "-mfentry"; 1167 Fn->addFnAttr("mnop-mcount"); 1168 } 1169 1170 if (CGM.getCodeGenOpts().RecordMCount) { 1171 if (!CGM.getCodeGenOpts().CallFEntry) 1172 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1173 << "-mrecord-mcount" << "-mfentry"; 1174 Fn->addFnAttr("mrecord-mcount"); 1175 } 1176 } 1177 } 1178 1179 if (CGM.getCodeGenOpts().PackedStack) { 1180 if (getContext().getTargetInfo().getTriple().getArch() != 1181 llvm::Triple::systemz) 1182 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1183 << "-mpacked-stack"; 1184 Fn->addFnAttr("packed-stack"); 1185 } 1186 1187 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1188 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1189 Fn->addFnAttr("warn-stack-size", 1190 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1191 1192 if (RetTy->isVoidType()) { 1193 // Void type; nothing to return. 1194 ReturnValue = Address::invalid(); 1195 1196 // Count the implicit return. 1197 if (!endsWithReturn(D)) 1198 ++NumReturnExprs; 1199 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1200 // Indirect return; emit returned value directly into sret slot. 1201 // This reduces code size, and affects correctness in C++. 1202 auto AI = CurFn->arg_begin(); 1203 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1204 ++AI; 1205 ReturnValue = makeNaturalAddressForPointer( 1206 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1207 nullptr, nullptr, KnownNonNull); 1208 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1209 ReturnValuePointer = 1210 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1211 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1212 ReturnValuePointer); 1213 } 1214 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1215 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1216 // Load the sret pointer from the argument struct and return into that. 1217 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1218 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1219 --EI; 1220 llvm::Value *Addr = Builder.CreateStructGEP( 1221 CurFnInfo->getArgStruct(), &*EI, Idx); 1222 llvm::Type *Ty = 1223 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1224 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1225 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1226 ReturnValue = Address(Addr, ConvertType(RetTy), 1227 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1228 } else { 1229 ReturnValue = CreateIRTemp(RetTy, "retval"); 1230 1231 // Tell the epilog emitter to autorelease the result. We do this 1232 // now so that various specialized functions can suppress it 1233 // during their IR-generation. 1234 if (getLangOpts().ObjCAutoRefCount && 1235 !CurFnInfo->isReturnsRetained() && 1236 RetTy->isObjCRetainableType()) 1237 AutoreleaseResult = true; 1238 } 1239 1240 EmitStartEHSpec(CurCodeDecl); 1241 1242 PrologueCleanupDepth = EHStack.stable_begin(); 1243 1244 // Emit OpenMP specific initialization of the device functions. 1245 if (getLangOpts().OpenMP && CurCodeDecl) 1246 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1247 1248 if (FD && getLangOpts().HLSL) { 1249 // Handle emitting HLSL entry functions. 1250 if (FD->hasAttr<HLSLShaderAttr>()) { 1251 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1252 } 1253 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1254 } 1255 1256 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1257 1258 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1259 MD && !MD->isStatic()) { 1260 bool IsInLambda = 1261 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1262 if (MD->isImplicitObjectMemberFunction()) 1263 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1264 if (IsInLambda) { 1265 // We're in a lambda; figure out the captures. 1266 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1267 LambdaThisCaptureField); 1268 if (LambdaThisCaptureField) { 1269 // If the lambda captures the object referred to by '*this' - either by 1270 // value or by reference, make sure CXXThisValue points to the correct 1271 // object. 1272 1273 // Get the lvalue for the field (which is a copy of the enclosing object 1274 // or contains the address of the enclosing object). 1275 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1276 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1277 // If the enclosing object was captured by value, just use its 1278 // address. Sign this pointer. 1279 CXXThisValue = ThisFieldLValue.getPointer(*this); 1280 } else { 1281 // Load the lvalue pointed to by the field, since '*this' was captured 1282 // by reference. 1283 CXXThisValue = 1284 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1285 } 1286 } 1287 for (auto *FD : MD->getParent()->fields()) { 1288 if (FD->hasCapturedVLAType()) { 1289 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1290 SourceLocation()).getScalarVal(); 1291 auto VAT = FD->getCapturedVLAType(); 1292 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1293 } 1294 } 1295 } else if (MD->isImplicitObjectMemberFunction()) { 1296 // Not in a lambda; just use 'this' from the method. 1297 // FIXME: Should we generate a new load for each use of 'this'? The 1298 // fast register allocator would be happier... 1299 CXXThisValue = CXXABIThisValue; 1300 } 1301 1302 // Check the 'this' pointer once per function, if it's available. 1303 if (CXXABIThisValue) { 1304 SanitizerSet SkippedChecks; 1305 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1306 QualType ThisTy = MD->getThisType(); 1307 1308 // If this is the call operator of a lambda with no captures, it 1309 // may have a static invoker function, which may call this operator with 1310 // a null 'this' pointer. 1311 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1312 SkippedChecks.set(SanitizerKind::Null, true); 1313 1314 EmitTypeCheck( 1315 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1316 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1317 } 1318 } 1319 1320 // If any of the arguments have a variably modified type, make sure to 1321 // emit the type size, but only if the function is not naked. Naked functions 1322 // have no prolog to run this evaluation. 1323 if (!FD || !FD->hasAttr<NakedAttr>()) { 1324 for (const VarDecl *VD : Args) { 1325 // Dig out the type as written from ParmVarDecls; it's unclear whether 1326 // the standard (C99 6.9.1p10) requires this, but we're following the 1327 // precedent set by gcc. 1328 QualType Ty; 1329 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1330 Ty = PVD->getOriginalType(); 1331 else 1332 Ty = VD->getType(); 1333 1334 if (Ty->isVariablyModifiedType()) 1335 EmitVariablyModifiedType(Ty); 1336 } 1337 } 1338 // Emit a location at the end of the prologue. 1339 if (CGDebugInfo *DI = getDebugInfo()) 1340 DI->EmitLocation(Builder, StartLoc); 1341 // TODO: Do we need to handle this in two places like we do with 1342 // target-features/target-cpu? 1343 if (CurFuncDecl) 1344 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1345 LargestVectorWidth = VecWidth->getVectorWidth(); 1346 1347 if (CGM.shouldEmitConvergenceTokens()) 1348 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1349 } 1350 1351 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1352 incrementProfileCounter(Body); 1353 maybeCreateMCDCCondBitmap(); 1354 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1355 EmitCompoundStmtWithoutScope(*S); 1356 else 1357 EmitStmt(Body); 1358 } 1359 1360 /// When instrumenting to collect profile data, the counts for some blocks 1361 /// such as switch cases need to not include the fall-through counts, so 1362 /// emit a branch around the instrumentation code. When not instrumenting, 1363 /// this just calls EmitBlock(). 1364 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1365 const Stmt *S) { 1366 llvm::BasicBlock *SkipCountBB = nullptr; 1367 // Do not skip over the instrumentation when single byte coverage mode is 1368 // enabled. 1369 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1370 !llvm::EnableSingleByteCoverage) { 1371 // When instrumenting for profiling, the fallthrough to certain 1372 // statements needs to skip over the instrumentation code so that we 1373 // get an accurate count. 1374 SkipCountBB = createBasicBlock("skipcount"); 1375 EmitBranch(SkipCountBB); 1376 } 1377 EmitBlock(BB); 1378 uint64_t CurrentCount = getCurrentProfileCount(); 1379 incrementProfileCounter(S); 1380 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1381 if (SkipCountBB) 1382 EmitBlock(SkipCountBB); 1383 } 1384 1385 /// Tries to mark the given function nounwind based on the 1386 /// non-existence of any throwing calls within it. We believe this is 1387 /// lightweight enough to do at -O0. 1388 static void TryMarkNoThrow(llvm::Function *F) { 1389 // LLVM treats 'nounwind' on a function as part of the type, so we 1390 // can't do this on functions that can be overwritten. 1391 if (F->isInterposable()) return; 1392 1393 for (llvm::BasicBlock &BB : *F) 1394 for (llvm::Instruction &I : BB) 1395 if (I.mayThrow()) 1396 return; 1397 1398 F->setDoesNotThrow(); 1399 } 1400 1401 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1402 FunctionArgList &Args) { 1403 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1404 QualType ResTy = FD->getReturnType(); 1405 1406 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1407 if (MD && MD->isImplicitObjectMemberFunction()) { 1408 if (CGM.getCXXABI().HasThisReturn(GD)) 1409 ResTy = MD->getThisType(); 1410 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1411 ResTy = CGM.getContext().VoidPtrTy; 1412 CGM.getCXXABI().buildThisParam(*this, Args); 1413 } 1414 1415 // The base version of an inheriting constructor whose constructed base is a 1416 // virtual base is not passed any arguments (because it doesn't actually call 1417 // the inherited constructor). 1418 bool PassedParams = true; 1419 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1420 if (auto Inherited = CD->getInheritedConstructor()) 1421 PassedParams = 1422 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1423 1424 if (PassedParams) { 1425 for (auto *Param : FD->parameters()) { 1426 Args.push_back(Param); 1427 if (!Param->hasAttr<PassObjectSizeAttr>()) 1428 continue; 1429 1430 auto *Implicit = ImplicitParamDecl::Create( 1431 getContext(), Param->getDeclContext(), Param->getLocation(), 1432 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1433 SizeArguments[Param] = Implicit; 1434 Args.push_back(Implicit); 1435 } 1436 } 1437 1438 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1439 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1440 1441 return ResTy; 1442 } 1443 1444 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1445 const CGFunctionInfo &FnInfo) { 1446 assert(Fn && "generating code for null Function"); 1447 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1448 CurGD = GD; 1449 1450 FunctionArgList Args; 1451 QualType ResTy = BuildFunctionArgList(GD, Args); 1452 1453 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1454 1455 if (FD->isInlineBuiltinDeclaration()) { 1456 // When generating code for a builtin with an inline declaration, use a 1457 // mangled name to hold the actual body, while keeping an external 1458 // definition in case the function pointer is referenced somewhere. 1459 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1460 llvm::Module *M = Fn->getParent(); 1461 llvm::Function *Clone = M->getFunction(FDInlineName); 1462 if (!Clone) { 1463 Clone = llvm::Function::Create(Fn->getFunctionType(), 1464 llvm::GlobalValue::InternalLinkage, 1465 Fn->getAddressSpace(), FDInlineName, M); 1466 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1467 } 1468 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1469 Fn = Clone; 1470 } else { 1471 // Detect the unusual situation where an inline version is shadowed by a 1472 // non-inline version. In that case we should pick the external one 1473 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1474 // to detect that situation before we reach codegen, so do some late 1475 // replacement. 1476 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1477 PD = PD->getPreviousDecl()) { 1478 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1479 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1480 llvm::Module *M = Fn->getParent(); 1481 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1482 Clone->replaceAllUsesWith(Fn); 1483 Clone->eraseFromParent(); 1484 } 1485 break; 1486 } 1487 } 1488 } 1489 1490 // Check if we should generate debug info for this function. 1491 if (FD->hasAttr<NoDebugAttr>()) { 1492 // Clear non-distinct debug info that was possibly attached to the function 1493 // due to an earlier declaration without the nodebug attribute 1494 Fn->setSubprogram(nullptr); 1495 // Disable debug info indefinitely for this function 1496 DebugInfo = nullptr; 1497 } 1498 1499 // The function might not have a body if we're generating thunks for a 1500 // function declaration. 1501 SourceRange BodyRange; 1502 if (Stmt *Body = FD->getBody()) 1503 BodyRange = Body->getSourceRange(); 1504 else 1505 BodyRange = FD->getLocation(); 1506 CurEHLocation = BodyRange.getEnd(); 1507 1508 // Use the location of the start of the function to determine where 1509 // the function definition is located. By default use the location 1510 // of the declaration as the location for the subprogram. A function 1511 // may lack a declaration in the source code if it is created by code 1512 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1513 SourceLocation Loc = FD->getLocation(); 1514 1515 // If this is a function specialization then use the pattern body 1516 // as the location for the function. 1517 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1518 if (SpecDecl->hasBody(SpecDecl)) 1519 Loc = SpecDecl->getLocation(); 1520 1521 Stmt *Body = FD->getBody(); 1522 1523 if (Body) { 1524 // Coroutines always emit lifetime markers. 1525 if (isa<CoroutineBodyStmt>(Body)) 1526 ShouldEmitLifetimeMarkers = true; 1527 1528 // Initialize helper which will detect jumps which can cause invalid 1529 // lifetime markers. 1530 if (ShouldEmitLifetimeMarkers) 1531 Bypasses.Init(Body); 1532 } 1533 1534 // Emit the standard function prologue. 1535 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1536 1537 // Save parameters for coroutine function. 1538 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1539 llvm::append_range(FnArgs, FD->parameters()); 1540 1541 // Ensure that the function adheres to the forward progress guarantee, which 1542 // is required by certain optimizations. 1543 // In C++11 and up, the attribute will be removed if the body contains a 1544 // trivial empty loop. 1545 if (checkIfFunctionMustProgress()) 1546 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1547 1548 // Generate the body of the function. 1549 PGO.assignRegionCounters(GD, CurFn); 1550 if (isa<CXXDestructorDecl>(FD)) 1551 EmitDestructorBody(Args); 1552 else if (isa<CXXConstructorDecl>(FD)) 1553 EmitConstructorBody(Args); 1554 else if (getLangOpts().CUDA && 1555 !getLangOpts().CUDAIsDevice && 1556 FD->hasAttr<CUDAGlobalAttr>()) 1557 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1558 else if (isa<CXXMethodDecl>(FD) && 1559 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1560 // The lambda static invoker function is special, because it forwards or 1561 // clones the body of the function call operator (but is actually static). 1562 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1563 } else if (isa<CXXMethodDecl>(FD) && 1564 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1565 !FnInfo.isDelegateCall() && 1566 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1567 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1568 // If emitting a lambda with static invoker on X86 Windows, change 1569 // the call operator body. 1570 // Make sure that this is a call operator with an inalloca arg and check 1571 // for delegate call to make sure this is the original call op and not the 1572 // new forwarding function for the static invoker. 1573 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1574 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1575 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1576 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1577 // Implicit copy-assignment gets the same special treatment as implicit 1578 // copy-constructors. 1579 emitImplicitAssignmentOperatorBody(Args); 1580 } else if (Body) { 1581 EmitFunctionBody(Body); 1582 } else 1583 llvm_unreachable("no definition for emitted function"); 1584 1585 // C++11 [stmt.return]p2: 1586 // Flowing off the end of a function [...] results in undefined behavior in 1587 // a value-returning function. 1588 // C11 6.9.1p12: 1589 // If the '}' that terminates a function is reached, and the value of the 1590 // function call is used by the caller, the behavior is undefined. 1591 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1592 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1593 bool ShouldEmitUnreachable = 1594 CGM.getCodeGenOpts().StrictReturn || 1595 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1596 if (SanOpts.has(SanitizerKind::Return)) { 1597 SanitizerScope SanScope(this); 1598 llvm::Value *IsFalse = Builder.getFalse(); 1599 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1600 SanitizerHandler::MissingReturn, 1601 EmitCheckSourceLocation(FD->getLocation()), {}); 1602 } else if (ShouldEmitUnreachable) { 1603 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1604 EmitTrapCall(llvm::Intrinsic::trap); 1605 } 1606 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1607 Builder.CreateUnreachable(); 1608 Builder.ClearInsertionPoint(); 1609 } 1610 } 1611 1612 // Emit the standard function epilogue. 1613 FinishFunction(BodyRange.getEnd()); 1614 1615 // If we haven't marked the function nothrow through other means, do 1616 // a quick pass now to see if we can. 1617 if (!CurFn->doesNotThrow()) 1618 TryMarkNoThrow(CurFn); 1619 } 1620 1621 /// ContainsLabel - Return true if the statement contains a label in it. If 1622 /// this statement is not executed normally, it not containing a label means 1623 /// that we can just remove the code. 1624 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1625 // Null statement, not a label! 1626 if (!S) return false; 1627 1628 // If this is a label, we have to emit the code, consider something like: 1629 // if (0) { ... foo: bar(); } goto foo; 1630 // 1631 // TODO: If anyone cared, we could track __label__'s, since we know that you 1632 // can't jump to one from outside their declared region. 1633 if (isa<LabelStmt>(S)) 1634 return true; 1635 1636 // If this is a case/default statement, and we haven't seen a switch, we have 1637 // to emit the code. 1638 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1639 return true; 1640 1641 // If this is a switch statement, we want to ignore cases below it. 1642 if (isa<SwitchStmt>(S)) 1643 IgnoreCaseStmts = true; 1644 1645 // Scan subexpressions for verboten labels. 1646 for (const Stmt *SubStmt : S->children()) 1647 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1648 return true; 1649 1650 return false; 1651 } 1652 1653 /// containsBreak - Return true if the statement contains a break out of it. 1654 /// If the statement (recursively) contains a switch or loop with a break 1655 /// inside of it, this is fine. 1656 bool CodeGenFunction::containsBreak(const Stmt *S) { 1657 // Null statement, not a label! 1658 if (!S) return false; 1659 1660 // If this is a switch or loop that defines its own break scope, then we can 1661 // include it and anything inside of it. 1662 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1663 isa<ForStmt>(S)) 1664 return false; 1665 1666 if (isa<BreakStmt>(S)) 1667 return true; 1668 1669 // Scan subexpressions for verboten breaks. 1670 for (const Stmt *SubStmt : S->children()) 1671 if (containsBreak(SubStmt)) 1672 return true; 1673 1674 return false; 1675 } 1676 1677 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1678 if (!S) return false; 1679 1680 // Some statement kinds add a scope and thus never add a decl to the current 1681 // scope. Note, this list is longer than the list of statements that might 1682 // have an unscoped decl nested within them, but this way is conservatively 1683 // correct even if more statement kinds are added. 1684 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1685 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1686 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1687 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1688 return false; 1689 1690 if (isa<DeclStmt>(S)) 1691 return true; 1692 1693 for (const Stmt *SubStmt : S->children()) 1694 if (mightAddDeclToScope(SubStmt)) 1695 return true; 1696 1697 return false; 1698 } 1699 1700 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1701 /// to a constant, or if it does but contains a label, return false. If it 1702 /// constant folds return true and set the boolean result in Result. 1703 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1704 bool &ResultBool, 1705 bool AllowLabels) { 1706 // If MC/DC is enabled, disable folding so that we can instrument all 1707 // conditions to yield complete test vectors. We still keep track of 1708 // folded conditions during region mapping and visualization. 1709 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1710 CGM.getCodeGenOpts().MCDCCoverage) 1711 return false; 1712 1713 llvm::APSInt ResultInt; 1714 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1715 return false; 1716 1717 ResultBool = ResultInt.getBoolValue(); 1718 return true; 1719 } 1720 1721 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1722 /// to a constant, or if it does but contains a label, return false. If it 1723 /// constant folds return true and set the folded value. 1724 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1725 llvm::APSInt &ResultInt, 1726 bool AllowLabels) { 1727 // FIXME: Rename and handle conversion of other evaluatable things 1728 // to bool. 1729 Expr::EvalResult Result; 1730 if (!Cond->EvaluateAsInt(Result, getContext())) 1731 return false; // Not foldable, not integer or not fully evaluatable. 1732 1733 llvm::APSInt Int = Result.Val.getInt(); 1734 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1735 return false; // Contains a label. 1736 1737 ResultInt = Int; 1738 return true; 1739 } 1740 1741 /// Strip parentheses and simplistic logical-NOT operators. 1742 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1743 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1744 if (Op->getOpcode() != UO_LNot) 1745 break; 1746 C = Op->getSubExpr(); 1747 } 1748 return C->IgnoreParens(); 1749 } 1750 1751 /// Determine whether the given condition is an instrumentable condition 1752 /// (i.e. no "&&" or "||"). 1753 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1754 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1755 return (!BOp || !BOp->isLogicalOp()); 1756 } 1757 1758 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1759 /// increments a profile counter based on the semantics of the given logical 1760 /// operator opcode. This is used to instrument branch condition coverage for 1761 /// logical operators. 1762 void CodeGenFunction::EmitBranchToCounterBlock( 1763 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1764 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1765 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1766 // If not instrumenting, just emit a branch. 1767 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1768 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1769 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1770 1771 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1772 1773 llvm::BasicBlock *ThenBlock = nullptr; 1774 llvm::BasicBlock *ElseBlock = nullptr; 1775 llvm::BasicBlock *NextBlock = nullptr; 1776 1777 // Create the block we'll use to increment the appropriate counter. 1778 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1779 1780 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1781 // means we need to evaluate the condition and increment the counter on TRUE: 1782 // 1783 // if (Cond) 1784 // goto CounterIncrBlock; 1785 // else 1786 // goto FalseBlock; 1787 // 1788 // CounterIncrBlock: 1789 // Counter++; 1790 // goto TrueBlock; 1791 1792 if (LOp == BO_LAnd) { 1793 ThenBlock = CounterIncrBlock; 1794 ElseBlock = FalseBlock; 1795 NextBlock = TrueBlock; 1796 } 1797 1798 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1799 // we need to evaluate the condition and increment the counter on FALSE: 1800 // 1801 // if (Cond) 1802 // goto TrueBlock; 1803 // else 1804 // goto CounterIncrBlock; 1805 // 1806 // CounterIncrBlock: 1807 // Counter++; 1808 // goto FalseBlock; 1809 1810 else if (LOp == BO_LOr) { 1811 ThenBlock = TrueBlock; 1812 ElseBlock = CounterIncrBlock; 1813 NextBlock = FalseBlock; 1814 } else { 1815 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1816 } 1817 1818 // Emit Branch based on condition. 1819 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1820 1821 // Emit the block containing the counter increment(s). 1822 EmitBlock(CounterIncrBlock); 1823 1824 // Increment corresponding counter; if index not provided, use Cond as index. 1825 incrementProfileCounter(CntrStmt); 1826 1827 // Go to the next block. 1828 EmitBranch(NextBlock); 1829 } 1830 1831 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1832 /// statement) to the specified blocks. Based on the condition, this might try 1833 /// to simplify the codegen of the conditional based on the branch. 1834 /// \param LH The value of the likelihood attribute on the True branch. 1835 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1836 /// ConditionalOperator (ternary) through a recursive call for the operator's 1837 /// LHS and RHS nodes. 1838 void CodeGenFunction::EmitBranchOnBoolExpr( 1839 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1840 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1841 Cond = Cond->IgnoreParens(); 1842 1843 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1844 // Handle X && Y in a condition. 1845 if (CondBOp->getOpcode() == BO_LAnd) { 1846 MCDCLogOpStack.push_back(CondBOp); 1847 1848 // If we have "1 && X", simplify the code. "0 && X" would have constant 1849 // folded if the case was simple enough. 1850 bool ConstantBool = false; 1851 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1852 ConstantBool) { 1853 // br(1 && X) -> br(X). 1854 incrementProfileCounter(CondBOp); 1855 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1856 FalseBlock, TrueCount, LH); 1857 MCDCLogOpStack.pop_back(); 1858 return; 1859 } 1860 1861 // If we have "X && 1", simplify the code to use an uncond branch. 1862 // "X && 0" would have been constant folded to 0. 1863 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1864 ConstantBool) { 1865 // br(X && 1) -> br(X). 1866 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1867 FalseBlock, TrueCount, LH, CondBOp); 1868 MCDCLogOpStack.pop_back(); 1869 return; 1870 } 1871 1872 // Emit the LHS as a conditional. If the LHS conditional is false, we 1873 // want to jump to the FalseBlock. 1874 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1875 // The counter tells us how often we evaluate RHS, and all of TrueCount 1876 // can be propagated to that branch. 1877 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1878 1879 ConditionalEvaluation eval(*this); 1880 { 1881 ApplyDebugLocation DL(*this, Cond); 1882 // Propagate the likelihood attribute like __builtin_expect 1883 // __builtin_expect(X && Y, 1) -> X and Y are likely 1884 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1885 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1886 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1887 EmitBlock(LHSTrue); 1888 } 1889 1890 incrementProfileCounter(CondBOp); 1891 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1892 1893 // Any temporaries created here are conditional. 1894 eval.begin(*this); 1895 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1896 FalseBlock, TrueCount, LH); 1897 eval.end(*this); 1898 MCDCLogOpStack.pop_back(); 1899 return; 1900 } 1901 1902 if (CondBOp->getOpcode() == BO_LOr) { 1903 MCDCLogOpStack.push_back(CondBOp); 1904 1905 // If we have "0 || X", simplify the code. "1 || X" would have constant 1906 // folded if the case was simple enough. 1907 bool ConstantBool = false; 1908 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1909 !ConstantBool) { 1910 // br(0 || X) -> br(X). 1911 incrementProfileCounter(CondBOp); 1912 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1913 FalseBlock, TrueCount, LH); 1914 MCDCLogOpStack.pop_back(); 1915 return; 1916 } 1917 1918 // If we have "X || 0", simplify the code to use an uncond branch. 1919 // "X || 1" would have been constant folded to 1. 1920 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1921 !ConstantBool) { 1922 // br(X || 0) -> br(X). 1923 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1924 FalseBlock, TrueCount, LH, CondBOp); 1925 MCDCLogOpStack.pop_back(); 1926 return; 1927 } 1928 // Emit the LHS as a conditional. If the LHS conditional is true, we 1929 // want to jump to the TrueBlock. 1930 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1931 // We have the count for entry to the RHS and for the whole expression 1932 // being true, so we can divy up True count between the short circuit and 1933 // the RHS. 1934 uint64_t LHSCount = 1935 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1936 uint64_t RHSCount = TrueCount - LHSCount; 1937 1938 ConditionalEvaluation eval(*this); 1939 { 1940 // Propagate the likelihood attribute like __builtin_expect 1941 // __builtin_expect(X || Y, 1) -> only Y is likely 1942 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1943 ApplyDebugLocation DL(*this, Cond); 1944 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1945 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1946 EmitBlock(LHSFalse); 1947 } 1948 1949 incrementProfileCounter(CondBOp); 1950 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1951 1952 // Any temporaries created here are conditional. 1953 eval.begin(*this); 1954 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1955 RHSCount, LH); 1956 1957 eval.end(*this); 1958 MCDCLogOpStack.pop_back(); 1959 return; 1960 } 1961 } 1962 1963 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1964 // br(!x, t, f) -> br(x, f, t) 1965 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1966 // LNot is taken as part of the condition for simplicity, and changing its 1967 // sense negatively impacts test vector tracking. 1968 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1969 CGM.getCodeGenOpts().MCDCCoverage && 1970 isInstrumentedCondition(Cond); 1971 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1972 // Negate the count. 1973 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1974 // The values of the enum are chosen to make this negation possible. 1975 LH = static_cast<Stmt::Likelihood>(-LH); 1976 // Negate the condition and swap the destination blocks. 1977 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1978 FalseCount, LH); 1979 } 1980 } 1981 1982 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1983 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1984 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1985 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1986 1987 // The ConditionalOperator itself has no likelihood information for its 1988 // true and false branches. This matches the behavior of __builtin_expect. 1989 ConditionalEvaluation cond(*this); 1990 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1991 getProfileCount(CondOp), Stmt::LH_None); 1992 1993 // When computing PGO branch weights, we only know the overall count for 1994 // the true block. This code is essentially doing tail duplication of the 1995 // naive code-gen, introducing new edges for which counts are not 1996 // available. Divide the counts proportionally between the LHS and RHS of 1997 // the conditional operator. 1998 uint64_t LHSScaledTrueCount = 0; 1999 if (TrueCount) { 2000 double LHSRatio = 2001 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 2002 LHSScaledTrueCount = TrueCount * LHSRatio; 2003 } 2004 2005 cond.begin(*this); 2006 EmitBlock(LHSBlock); 2007 incrementProfileCounter(CondOp); 2008 { 2009 ApplyDebugLocation DL(*this, Cond); 2010 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2011 LHSScaledTrueCount, LH, CondOp); 2012 } 2013 cond.end(*this); 2014 2015 cond.begin(*this); 2016 EmitBlock(RHSBlock); 2017 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2018 TrueCount - LHSScaledTrueCount, LH, CondOp); 2019 cond.end(*this); 2020 2021 return; 2022 } 2023 2024 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2025 // Conditional operator handling can give us a throw expression as a 2026 // condition for a case like: 2027 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2028 // Fold this to: 2029 // br(c, throw x, br(y, t, f)) 2030 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2031 return; 2032 } 2033 2034 // Emit the code with the fully general case. 2035 llvm::Value *CondV; 2036 { 2037 ApplyDebugLocation DL(*this, Cond); 2038 CondV = EvaluateExprAsBool(Cond); 2039 } 2040 2041 // If not at the top of the logical operator nest, update MCDC temp with the 2042 // boolean result of the evaluated condition. 2043 if (!MCDCLogOpStack.empty()) { 2044 const Expr *MCDCBaseExpr = Cond; 2045 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2046 // expression, MC/DC tracks the result of the ternary, and this is tied to 2047 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2048 // this is the case, the ConditionalOperator expression is passed through 2049 // the ConditionalOp parameter and then used as the MCDC base expression. 2050 if (ConditionalOp) 2051 MCDCBaseExpr = ConditionalOp; 2052 2053 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2054 } 2055 2056 llvm::MDNode *Weights = nullptr; 2057 llvm::MDNode *Unpredictable = nullptr; 2058 2059 // If the branch has a condition wrapped by __builtin_unpredictable, 2060 // create metadata that specifies that the branch is unpredictable. 2061 // Don't bother if not optimizing because that metadata would not be used. 2062 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2063 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2064 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2065 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2066 llvm::MDBuilder MDHelper(getLLVMContext()); 2067 Unpredictable = MDHelper.createUnpredictable(); 2068 } 2069 } 2070 2071 // If there is a Likelihood knowledge for the cond, lower it. 2072 // Note that if not optimizing this won't emit anything. 2073 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2074 if (CondV != NewCondV) 2075 CondV = NewCondV; 2076 else { 2077 // Otherwise, lower profile counts. Note that we do this even at -O0. 2078 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2079 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2080 } 2081 2082 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2083 } 2084 2085 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2086 /// specified stmt yet. 2087 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2088 CGM.ErrorUnsupported(S, Type); 2089 } 2090 2091 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2092 /// variable-length array whose elements have a non-zero bit-pattern. 2093 /// 2094 /// \param baseType the inner-most element type of the array 2095 /// \param src - a char* pointing to the bit-pattern for a single 2096 /// base element of the array 2097 /// \param sizeInChars - the total size of the VLA, in chars 2098 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2099 Address dest, Address src, 2100 llvm::Value *sizeInChars) { 2101 CGBuilderTy &Builder = CGF.Builder; 2102 2103 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2104 llvm::Value *baseSizeInChars 2105 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2106 2107 Address begin = dest.withElementType(CGF.Int8Ty); 2108 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2109 begin.emitRawPointer(CGF), 2110 sizeInChars, "vla.end"); 2111 2112 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2113 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2114 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2115 2116 // Make a loop over the VLA. C99 guarantees that the VLA element 2117 // count must be nonzero. 2118 CGF.EmitBlock(loopBB); 2119 2120 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2121 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2122 2123 CharUnits curAlign = 2124 dest.getAlignment().alignmentOfArrayElement(baseSize); 2125 2126 // memcpy the individual element bit-pattern. 2127 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2128 /*volatile*/ false); 2129 2130 // Go to the next element. 2131 llvm::Value *next = 2132 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2133 2134 // Leave if that's the end of the VLA. 2135 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2136 Builder.CreateCondBr(done, contBB, loopBB); 2137 cur->addIncoming(next, loopBB); 2138 2139 CGF.EmitBlock(contBB); 2140 } 2141 2142 void 2143 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2144 // Ignore empty classes in C++. 2145 if (getLangOpts().CPlusPlus) { 2146 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2147 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2148 return; 2149 } 2150 } 2151 2152 if (DestPtr.getElementType() != Int8Ty) 2153 DestPtr = DestPtr.withElementType(Int8Ty); 2154 2155 // Get size and alignment info for this aggregate. 2156 CharUnits size = getContext().getTypeSizeInChars(Ty); 2157 2158 llvm::Value *SizeVal; 2159 const VariableArrayType *vla; 2160 2161 // Don't bother emitting a zero-byte memset. 2162 if (size.isZero()) { 2163 // But note that getTypeInfo returns 0 for a VLA. 2164 if (const VariableArrayType *vlaType = 2165 dyn_cast_or_null<VariableArrayType>( 2166 getContext().getAsArrayType(Ty))) { 2167 auto VlaSize = getVLASize(vlaType); 2168 SizeVal = VlaSize.NumElts; 2169 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2170 if (!eltSize.isOne()) 2171 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2172 vla = vlaType; 2173 } else { 2174 return; 2175 } 2176 } else { 2177 SizeVal = CGM.getSize(size); 2178 vla = nullptr; 2179 } 2180 2181 // If the type contains a pointer to data member we can't memset it to zero. 2182 // Instead, create a null constant and copy it to the destination. 2183 // TODO: there are other patterns besides zero that we can usefully memset, 2184 // like -1, which happens to be the pattern used by member-pointers. 2185 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2186 // For a VLA, emit a single element, then splat that over the VLA. 2187 if (vla) Ty = getContext().getBaseElementType(vla); 2188 2189 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2190 2191 llvm::GlobalVariable *NullVariable = 2192 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2193 /*isConstant=*/true, 2194 llvm::GlobalVariable::PrivateLinkage, 2195 NullConstant, Twine()); 2196 CharUnits NullAlign = DestPtr.getAlignment(); 2197 NullVariable->setAlignment(NullAlign.getAsAlign()); 2198 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2199 2200 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2201 2202 // Get and call the appropriate llvm.memcpy overload. 2203 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2204 return; 2205 } 2206 2207 // Otherwise, just memset the whole thing to zero. This is legal 2208 // because in LLVM, all default initializers (other than the ones we just 2209 // handled above) are guaranteed to have a bit pattern of all zeros. 2210 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2211 } 2212 2213 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2214 // Make sure that there is a block for the indirect goto. 2215 if (!IndirectBranch) 2216 GetIndirectGotoBlock(); 2217 2218 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2219 2220 // Make sure the indirect branch includes all of the address-taken blocks. 2221 IndirectBranch->addDestination(BB); 2222 return llvm::BlockAddress::get(CurFn, BB); 2223 } 2224 2225 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2226 // If we already made the indirect branch for indirect goto, return its block. 2227 if (IndirectBranch) return IndirectBranch->getParent(); 2228 2229 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2230 2231 // Create the PHI node that indirect gotos will add entries to. 2232 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2233 "indirect.goto.dest"); 2234 2235 // Create the indirect branch instruction. 2236 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2237 return IndirectBranch->getParent(); 2238 } 2239 2240 /// Computes the length of an array in elements, as well as the base 2241 /// element type and a properly-typed first element pointer. 2242 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2243 QualType &baseType, 2244 Address &addr) { 2245 const ArrayType *arrayType = origArrayType; 2246 2247 // If it's a VLA, we have to load the stored size. Note that 2248 // this is the size of the VLA in bytes, not its size in elements. 2249 llvm::Value *numVLAElements = nullptr; 2250 if (isa<VariableArrayType>(arrayType)) { 2251 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2252 2253 // Walk into all VLAs. This doesn't require changes to addr, 2254 // which has type T* where T is the first non-VLA element type. 2255 do { 2256 QualType elementType = arrayType->getElementType(); 2257 arrayType = getContext().getAsArrayType(elementType); 2258 2259 // If we only have VLA components, 'addr' requires no adjustment. 2260 if (!arrayType) { 2261 baseType = elementType; 2262 return numVLAElements; 2263 } 2264 } while (isa<VariableArrayType>(arrayType)); 2265 2266 // We get out here only if we find a constant array type 2267 // inside the VLA. 2268 } 2269 2270 // We have some number of constant-length arrays, so addr should 2271 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2272 // down to the first element of addr. 2273 SmallVector<llvm::Value*, 8> gepIndices; 2274 2275 // GEP down to the array type. 2276 llvm::ConstantInt *zero = Builder.getInt32(0); 2277 gepIndices.push_back(zero); 2278 2279 uint64_t countFromCLAs = 1; 2280 QualType eltType; 2281 2282 llvm::ArrayType *llvmArrayType = 2283 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2284 while (llvmArrayType) { 2285 assert(isa<ConstantArrayType>(arrayType)); 2286 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2287 llvmArrayType->getNumElements()); 2288 2289 gepIndices.push_back(zero); 2290 countFromCLAs *= llvmArrayType->getNumElements(); 2291 eltType = arrayType->getElementType(); 2292 2293 llvmArrayType = 2294 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2295 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2296 assert((!llvmArrayType || arrayType) && 2297 "LLVM and Clang types are out-of-synch"); 2298 } 2299 2300 if (arrayType) { 2301 // From this point onwards, the Clang array type has been emitted 2302 // as some other type (probably a packed struct). Compute the array 2303 // size, and just emit the 'begin' expression as a bitcast. 2304 while (arrayType) { 2305 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2306 eltType = arrayType->getElementType(); 2307 arrayType = getContext().getAsArrayType(eltType); 2308 } 2309 2310 llvm::Type *baseType = ConvertType(eltType); 2311 addr = addr.withElementType(baseType); 2312 } else { 2313 // Create the actual GEP. 2314 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2315 addr.emitRawPointer(*this), 2316 gepIndices, "array.begin"), 2317 ConvertTypeForMem(eltType), addr.getAlignment()); 2318 } 2319 2320 baseType = eltType; 2321 2322 llvm::Value *numElements 2323 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2324 2325 // If we had any VLA dimensions, factor them in. 2326 if (numVLAElements) 2327 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2328 2329 return numElements; 2330 } 2331 2332 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2333 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2334 assert(vla && "type was not a variable array type!"); 2335 return getVLASize(vla); 2336 } 2337 2338 CodeGenFunction::VlaSizePair 2339 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2340 // The number of elements so far; always size_t. 2341 llvm::Value *numElements = nullptr; 2342 2343 QualType elementType; 2344 do { 2345 elementType = type->getElementType(); 2346 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2347 assert(vlaSize && "no size for VLA!"); 2348 assert(vlaSize->getType() == SizeTy); 2349 2350 if (!numElements) { 2351 numElements = vlaSize; 2352 } else { 2353 // It's undefined behavior if this wraps around, so mark it that way. 2354 // FIXME: Teach -fsanitize=undefined to trap this. 2355 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2356 } 2357 } while ((type = getContext().getAsVariableArrayType(elementType))); 2358 2359 return { numElements, elementType }; 2360 } 2361 2362 CodeGenFunction::VlaSizePair 2363 CodeGenFunction::getVLAElements1D(QualType type) { 2364 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2365 assert(vla && "type was not a variable array type!"); 2366 return getVLAElements1D(vla); 2367 } 2368 2369 CodeGenFunction::VlaSizePair 2370 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2371 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2372 assert(VlaSize && "no size for VLA!"); 2373 assert(VlaSize->getType() == SizeTy); 2374 return { VlaSize, Vla->getElementType() }; 2375 } 2376 2377 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2378 assert(type->isVariablyModifiedType() && 2379 "Must pass variably modified type to EmitVLASizes!"); 2380 2381 EnsureInsertPoint(); 2382 2383 // We're going to walk down into the type and look for VLA 2384 // expressions. 2385 do { 2386 assert(type->isVariablyModifiedType()); 2387 2388 const Type *ty = type.getTypePtr(); 2389 switch (ty->getTypeClass()) { 2390 2391 #define TYPE(Class, Base) 2392 #define ABSTRACT_TYPE(Class, Base) 2393 #define NON_CANONICAL_TYPE(Class, Base) 2394 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2395 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2396 #include "clang/AST/TypeNodes.inc" 2397 llvm_unreachable("unexpected dependent type!"); 2398 2399 // These types are never variably-modified. 2400 case Type::Builtin: 2401 case Type::Complex: 2402 case Type::Vector: 2403 case Type::ExtVector: 2404 case Type::ConstantMatrix: 2405 case Type::Record: 2406 case Type::Enum: 2407 case Type::Using: 2408 case Type::TemplateSpecialization: 2409 case Type::ObjCTypeParam: 2410 case Type::ObjCObject: 2411 case Type::ObjCInterface: 2412 case Type::ObjCObjectPointer: 2413 case Type::BitInt: 2414 llvm_unreachable("type class is never variably-modified!"); 2415 2416 case Type::Elaborated: 2417 type = cast<ElaboratedType>(ty)->getNamedType(); 2418 break; 2419 2420 case Type::Adjusted: 2421 type = cast<AdjustedType>(ty)->getAdjustedType(); 2422 break; 2423 2424 case Type::Decayed: 2425 type = cast<DecayedType>(ty)->getPointeeType(); 2426 break; 2427 2428 case Type::Pointer: 2429 type = cast<PointerType>(ty)->getPointeeType(); 2430 break; 2431 2432 case Type::BlockPointer: 2433 type = cast<BlockPointerType>(ty)->getPointeeType(); 2434 break; 2435 2436 case Type::LValueReference: 2437 case Type::RValueReference: 2438 type = cast<ReferenceType>(ty)->getPointeeType(); 2439 break; 2440 2441 case Type::MemberPointer: 2442 type = cast<MemberPointerType>(ty)->getPointeeType(); 2443 break; 2444 2445 case Type::ArrayParameter: 2446 case Type::ConstantArray: 2447 case Type::IncompleteArray: 2448 // Losing element qualification here is fine. 2449 type = cast<ArrayType>(ty)->getElementType(); 2450 break; 2451 2452 case Type::VariableArray: { 2453 // Losing element qualification here is fine. 2454 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2455 2456 // Unknown size indication requires no size computation. 2457 // Otherwise, evaluate and record it. 2458 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2459 // It's possible that we might have emitted this already, 2460 // e.g. with a typedef and a pointer to it. 2461 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2462 if (!entry) { 2463 llvm::Value *size = EmitScalarExpr(sizeExpr); 2464 2465 // C11 6.7.6.2p5: 2466 // If the size is an expression that is not an integer constant 2467 // expression [...] each time it is evaluated it shall have a value 2468 // greater than zero. 2469 if (SanOpts.has(SanitizerKind::VLABound)) { 2470 SanitizerScope SanScope(this); 2471 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2472 clang::QualType SEType = sizeExpr->getType(); 2473 llvm::Value *CheckCondition = 2474 SEType->isSignedIntegerType() 2475 ? Builder.CreateICmpSGT(size, Zero) 2476 : Builder.CreateICmpUGT(size, Zero); 2477 llvm::Constant *StaticArgs[] = { 2478 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2479 EmitCheckTypeDescriptor(SEType)}; 2480 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2481 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2482 } 2483 2484 // Always zexting here would be wrong if it weren't 2485 // undefined behavior to have a negative bound. 2486 // FIXME: What about when size's type is larger than size_t? 2487 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2488 } 2489 } 2490 type = vat->getElementType(); 2491 break; 2492 } 2493 2494 case Type::FunctionProto: 2495 case Type::FunctionNoProto: 2496 type = cast<FunctionType>(ty)->getReturnType(); 2497 break; 2498 2499 case Type::Paren: 2500 case Type::TypeOf: 2501 case Type::UnaryTransform: 2502 case Type::Attributed: 2503 case Type::BTFTagAttributed: 2504 case Type::HLSLAttributedResource: 2505 case Type::SubstTemplateTypeParm: 2506 case Type::MacroQualified: 2507 case Type::CountAttributed: 2508 // Keep walking after single level desugaring. 2509 type = type.getSingleStepDesugaredType(getContext()); 2510 break; 2511 2512 case Type::Typedef: 2513 case Type::Decltype: 2514 case Type::Auto: 2515 case Type::DeducedTemplateSpecialization: 2516 case Type::PackIndexing: 2517 // Stop walking: nothing to do. 2518 return; 2519 2520 case Type::TypeOfExpr: 2521 // Stop walking: emit typeof expression. 2522 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2523 return; 2524 2525 case Type::Atomic: 2526 type = cast<AtomicType>(ty)->getValueType(); 2527 break; 2528 2529 case Type::Pipe: 2530 type = cast<PipeType>(ty)->getElementType(); 2531 break; 2532 } 2533 } while (type->isVariablyModifiedType()); 2534 } 2535 2536 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2537 if (getContext().getBuiltinVaListType()->isArrayType()) 2538 return EmitPointerWithAlignment(E); 2539 return EmitLValue(E).getAddress(); 2540 } 2541 2542 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2543 return EmitLValue(E).getAddress(); 2544 } 2545 2546 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2547 const APValue &Init) { 2548 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2549 if (CGDebugInfo *Dbg = getDebugInfo()) 2550 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2551 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2552 } 2553 2554 CodeGenFunction::PeepholeProtection 2555 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2556 // At the moment, the only aggressive peephole we do in IR gen 2557 // is trunc(zext) folding, but if we add more, we can easily 2558 // extend this protection. 2559 2560 if (!rvalue.isScalar()) return PeepholeProtection(); 2561 llvm::Value *value = rvalue.getScalarVal(); 2562 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2563 2564 // Just make an extra bitcast. 2565 assert(HaveInsertPoint()); 2566 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2567 Builder.GetInsertBlock()); 2568 2569 PeepholeProtection protection; 2570 protection.Inst = inst; 2571 return protection; 2572 } 2573 2574 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2575 if (!protection.Inst) return; 2576 2577 // In theory, we could try to duplicate the peepholes now, but whatever. 2578 protection.Inst->eraseFromParent(); 2579 } 2580 2581 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2582 QualType Ty, SourceLocation Loc, 2583 SourceLocation AssumptionLoc, 2584 llvm::Value *Alignment, 2585 llvm::Value *OffsetValue) { 2586 if (Alignment->getType() != IntPtrTy) 2587 Alignment = 2588 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2589 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2590 OffsetValue = 2591 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2592 llvm::Value *TheCheck = nullptr; 2593 if (SanOpts.has(SanitizerKind::Alignment)) { 2594 llvm::Value *PtrIntValue = 2595 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2596 2597 if (OffsetValue) { 2598 bool IsOffsetZero = false; 2599 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2600 IsOffsetZero = CI->isZero(); 2601 2602 if (!IsOffsetZero) 2603 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2604 } 2605 2606 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2607 llvm::Value *Mask = 2608 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2609 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2610 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2611 } 2612 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2613 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2614 2615 if (!SanOpts.has(SanitizerKind::Alignment)) 2616 return; 2617 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2618 OffsetValue, TheCheck, Assumption); 2619 } 2620 2621 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2622 const Expr *E, 2623 SourceLocation AssumptionLoc, 2624 llvm::Value *Alignment, 2625 llvm::Value *OffsetValue) { 2626 QualType Ty = E->getType(); 2627 SourceLocation Loc = E->getExprLoc(); 2628 2629 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2630 OffsetValue); 2631 } 2632 2633 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2634 llvm::Value *AnnotatedVal, 2635 StringRef AnnotationStr, 2636 SourceLocation Location, 2637 const AnnotateAttr *Attr) { 2638 SmallVector<llvm::Value *, 5> Args = { 2639 AnnotatedVal, 2640 CGM.EmitAnnotationString(AnnotationStr), 2641 CGM.EmitAnnotationUnit(Location), 2642 CGM.EmitAnnotationLineNo(Location), 2643 }; 2644 if (Attr) 2645 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2646 return Builder.CreateCall(AnnotationFn, Args); 2647 } 2648 2649 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2650 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2651 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2652 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2653 {V->getType(), CGM.ConstGlobalsPtrTy}), 2654 V, I->getAnnotation(), D->getLocation(), I); 2655 } 2656 2657 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2658 Address Addr) { 2659 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2660 llvm::Value *V = Addr.emitRawPointer(*this); 2661 llvm::Type *VTy = V->getType(); 2662 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2663 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2664 llvm::PointerType *IntrinTy = 2665 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2666 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2667 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2668 2669 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2670 // FIXME Always emit the cast inst so we can differentiate between 2671 // annotation on the first field of a struct and annotation on the struct 2672 // itself. 2673 if (VTy != IntrinTy) 2674 V = Builder.CreateBitCast(V, IntrinTy); 2675 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2676 V = Builder.CreateBitCast(V, VTy); 2677 } 2678 2679 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2680 } 2681 2682 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2683 2684 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2685 : CGF(CGF) { 2686 assert(!CGF->IsSanitizerScope); 2687 CGF->IsSanitizerScope = true; 2688 } 2689 2690 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2691 CGF->IsSanitizerScope = false; 2692 } 2693 2694 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2695 const llvm::Twine &Name, 2696 llvm::BasicBlock::iterator InsertPt) const { 2697 LoopStack.InsertHelper(I); 2698 if (IsSanitizerScope) 2699 I->setNoSanitizeMetadata(); 2700 } 2701 2702 void CGBuilderInserter::InsertHelper( 2703 llvm::Instruction *I, const llvm::Twine &Name, 2704 llvm::BasicBlock::iterator InsertPt) const { 2705 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2706 if (CGF) 2707 CGF->InsertHelper(I, Name, InsertPt); 2708 } 2709 2710 // Emits an error if we don't have a valid set of target features for the 2711 // called function. 2712 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2713 const FunctionDecl *TargetDecl) { 2714 // SemaChecking cannot handle below x86 builtins because they have different 2715 // parameter ranges with different TargetAttribute of caller. 2716 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2717 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2718 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2719 BuiltinID == X86::BI__builtin_ia32_cmpss || 2720 BuiltinID == X86::BI__builtin_ia32_cmppd || 2721 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2723 llvm::StringMap<bool> TargetFetureMap; 2724 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2725 llvm::APSInt Result = 2726 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2727 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2728 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2729 << TargetDecl->getDeclName() << "avx"; 2730 } 2731 } 2732 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2733 } 2734 2735 // Emits an error if we don't have a valid set of target features for the 2736 // called function. 2737 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2738 const FunctionDecl *TargetDecl) { 2739 // Early exit if this is an indirect call. 2740 if (!TargetDecl) 2741 return; 2742 2743 // Get the current enclosing function if it exists. If it doesn't 2744 // we can't check the target features anyhow. 2745 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2746 if (!FD) 2747 return; 2748 2749 // Grab the required features for the call. For a builtin this is listed in 2750 // the td file with the default cpu, for an always_inline function this is any 2751 // listed cpu and any listed features. 2752 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2753 std::string MissingFeature; 2754 llvm::StringMap<bool> CallerFeatureMap; 2755 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2756 // When compiling in HipStdPar mode we have to be conservative in rejecting 2757 // target specific features in the FE, and defer the possible error to the 2758 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2759 // referenced by an accelerator executable function, we emit an error. 2760 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2761 if (BuiltinID) { 2762 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2763 if (!Builtin::evaluateRequiredTargetFeatures( 2764 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2765 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2766 << TargetDecl->getDeclName() 2767 << FeatureList; 2768 } 2769 } else if (!TargetDecl->isMultiVersion() && 2770 TargetDecl->hasAttr<TargetAttr>()) { 2771 // Get the required features for the callee. 2772 2773 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2774 ParsedTargetAttr ParsedAttr = 2775 CGM.getContext().filterFunctionTargetAttrs(TD); 2776 2777 SmallVector<StringRef, 1> ReqFeatures; 2778 llvm::StringMap<bool> CalleeFeatureMap; 2779 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2780 2781 for (const auto &F : ParsedAttr.Features) { 2782 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2783 ReqFeatures.push_back(StringRef(F).substr(1)); 2784 } 2785 2786 for (const auto &F : CalleeFeatureMap) { 2787 // Only positive features are "required". 2788 if (F.getValue()) 2789 ReqFeatures.push_back(F.getKey()); 2790 } 2791 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2792 if (!CallerFeatureMap.lookup(Feature)) { 2793 MissingFeature = Feature.str(); 2794 return false; 2795 } 2796 return true; 2797 }) && !IsHipStdPar) 2798 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2799 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2800 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2801 llvm::StringMap<bool> CalleeFeatureMap; 2802 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2803 2804 for (const auto &F : CalleeFeatureMap) { 2805 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2806 !CallerFeatureMap.find(F.getKey())->getValue()) && 2807 !IsHipStdPar) 2808 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2809 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2810 } 2811 } 2812 } 2813 2814 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2815 if (!CGM.getCodeGenOpts().SanitizeStats) 2816 return; 2817 2818 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2819 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2820 CGM.getSanStats().create(IRB, SSK); 2821 } 2822 2823 void CodeGenFunction::EmitKCFIOperandBundle( 2824 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2825 const FunctionProtoType *FP = 2826 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2827 if (FP) 2828 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2829 } 2830 2831 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2832 const MultiVersionResolverOption &RO) { 2833 llvm::SmallVector<StringRef, 8> CondFeatures; 2834 for (const StringRef &Feature : RO.Conditions.Features) 2835 CondFeatures.push_back(Feature); 2836 if (!CondFeatures.empty()) { 2837 return EmitAArch64CpuSupports(CondFeatures); 2838 } 2839 return nullptr; 2840 } 2841 2842 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2843 const MultiVersionResolverOption &RO) { 2844 llvm::Value *Condition = nullptr; 2845 2846 if (!RO.Conditions.Architecture.empty()) { 2847 StringRef Arch = RO.Conditions.Architecture; 2848 // If arch= specifies an x86-64 micro-architecture level, test the feature 2849 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2850 if (Arch.starts_with("x86-64")) 2851 Condition = EmitX86CpuSupports({Arch}); 2852 else 2853 Condition = EmitX86CpuIs(Arch); 2854 } 2855 2856 if (!RO.Conditions.Features.empty()) { 2857 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2858 Condition = 2859 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2860 } 2861 return Condition; 2862 } 2863 2864 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2865 llvm::Function *Resolver, 2866 CGBuilderTy &Builder, 2867 llvm::Function *FuncToReturn, 2868 bool SupportsIFunc) { 2869 if (SupportsIFunc) { 2870 Builder.CreateRet(FuncToReturn); 2871 return; 2872 } 2873 2874 llvm::SmallVector<llvm::Value *, 10> Args( 2875 llvm::make_pointer_range(Resolver->args())); 2876 2877 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2878 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2879 2880 if (Resolver->getReturnType()->isVoidTy()) 2881 Builder.CreateRetVoid(); 2882 else 2883 Builder.CreateRet(Result); 2884 } 2885 2886 void CodeGenFunction::EmitMultiVersionResolver( 2887 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2888 2889 llvm::Triple::ArchType ArchType = 2890 getContext().getTargetInfo().getTriple().getArch(); 2891 2892 switch (ArchType) { 2893 case llvm::Triple::x86: 2894 case llvm::Triple::x86_64: 2895 EmitX86MultiVersionResolver(Resolver, Options); 2896 return; 2897 case llvm::Triple::aarch64: 2898 EmitAArch64MultiVersionResolver(Resolver, Options); 2899 return; 2900 case llvm::Triple::riscv32: 2901 case llvm::Triple::riscv64: 2902 EmitRISCVMultiVersionResolver(Resolver, Options); 2903 return; 2904 2905 default: 2906 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2907 } 2908 } 2909 2910 static unsigned getPriorityFromAttrString(StringRef AttrStr) { 2911 SmallVector<StringRef, 8> Attrs; 2912 2913 AttrStr.split(Attrs, ';'); 2914 2915 // Default Priority is zero. 2916 unsigned Priority = 0; 2917 for (auto Attr : Attrs) { 2918 if (Attr.consume_front("priority=")) { 2919 unsigned Result; 2920 if (!Attr.getAsInteger(0, Result)) 2921 Priority = Result; 2922 } 2923 } 2924 2925 return Priority; 2926 } 2927 2928 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2929 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2930 2931 if (getContext().getTargetInfo().getTriple().getOS() != 2932 llvm::Triple::OSType::Linux) { 2933 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2934 return; 2935 } 2936 2937 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2938 Builder.SetInsertPoint(CurBlock); 2939 EmitRISCVCpuInit(); 2940 2941 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2942 bool HasDefault = false; 2943 unsigned DefaultIndex = 0; 2944 2945 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions( 2946 Options); 2947 2948 llvm::stable_sort( 2949 CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2950 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2951 return getPriorityFromAttrString(LHS.Conditions.Features[0]) > 2952 getPriorityFromAttrString(RHS.Conditions.Features[0]); 2953 }); 2954 2955 // Check the each candidate function. 2956 for (unsigned Index = 0; Index < CurrOptions.size(); Index++) { 2957 2958 if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) { 2959 HasDefault = true; 2960 DefaultIndex = Index; 2961 continue; 2962 } 2963 2964 Builder.SetInsertPoint(CurBlock); 2965 2966 std::vector<std::string> TargetAttrFeats = 2967 getContext() 2968 .getTargetInfo() 2969 .parseTargetAttr(CurrOptions[Index].Conditions.Features[0]) 2970 .Features; 2971 2972 if (TargetAttrFeats.empty()) 2973 continue; 2974 2975 // FeaturesCondition: The bitmask of the required extension has been 2976 // enabled by the runtime object. 2977 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2978 // REQUIRED_BITMASK 2979 // 2980 // When condition is met, return this version of the function. 2981 // Otherwise, try the next version. 2982 // 2983 // if (FeaturesConditionVersion1) 2984 // return Version1; 2985 // else if (FeaturesConditionVersion2) 2986 // return Version2; 2987 // else if (FeaturesConditionVersion3) 2988 // return Version3; 2989 // ... 2990 // else 2991 // return DefaultVersion; 2992 2993 // TODO: Add a condition to check the length before accessing elements. 2994 // Without checking the length first, we may access an incorrect memory 2995 // address when using different versions. 2996 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2997 2998 for (auto &Feat : TargetAttrFeats) { 2999 StringRef CurrFeat = Feat; 3000 if (CurrFeat.starts_with('+')) 3001 CurrTargetAttrFeats.push_back(CurrFeat.substr(1)); 3002 } 3003 3004 Builder.SetInsertPoint(CurBlock); 3005 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 3006 3007 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3008 CGBuilderTy RetBuilder(*this, RetBlock); 3009 CreateMultiVersionResolverReturn( 3010 CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc); 3011 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 3012 3013 Builder.SetInsertPoint(CurBlock); 3014 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 3015 3016 CurBlock = ElseBlock; 3017 } 3018 3019 // Finally, emit the default one. 3020 if (HasDefault) { 3021 Builder.SetInsertPoint(CurBlock); 3022 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, 3023 CurrOptions[DefaultIndex].Function, 3024 SupportsIFunc); 3025 return; 3026 } 3027 3028 // If no generic/default, emit an unreachable. 3029 Builder.SetInsertPoint(CurBlock); 3030 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3031 TrapCall->setDoesNotReturn(); 3032 TrapCall->setDoesNotThrow(); 3033 Builder.CreateUnreachable(); 3034 Builder.ClearInsertionPoint(); 3035 } 3036 3037 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3038 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3039 assert(!Options.empty() && "No multiversion resolver options found"); 3040 assert(Options.back().Conditions.Features.size() == 0 && 3041 "Default case must be last"); 3042 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3043 assert(SupportsIFunc && 3044 "Multiversion resolver requires target IFUNC support"); 3045 bool AArch64CpuInitialized = false; 3046 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3047 3048 for (const MultiVersionResolverOption &RO : Options) { 3049 Builder.SetInsertPoint(CurBlock); 3050 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3051 3052 // The 'default' or 'all features enabled' case. 3053 if (!Condition) { 3054 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3055 SupportsIFunc); 3056 return; 3057 } 3058 3059 if (!AArch64CpuInitialized) { 3060 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3061 EmitAArch64CpuInit(); 3062 AArch64CpuInitialized = true; 3063 Builder.SetInsertPoint(CurBlock); 3064 } 3065 3066 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3067 CGBuilderTy RetBuilder(*this, RetBlock); 3068 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3069 SupportsIFunc); 3070 CurBlock = createBasicBlock("resolver_else", Resolver); 3071 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3072 } 3073 3074 // If no default, emit an unreachable. 3075 Builder.SetInsertPoint(CurBlock); 3076 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3077 TrapCall->setDoesNotReturn(); 3078 TrapCall->setDoesNotThrow(); 3079 Builder.CreateUnreachable(); 3080 Builder.ClearInsertionPoint(); 3081 } 3082 3083 void CodeGenFunction::EmitX86MultiVersionResolver( 3084 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3085 3086 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3087 3088 // Main function's basic block. 3089 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3090 Builder.SetInsertPoint(CurBlock); 3091 EmitX86CpuInit(); 3092 3093 for (const MultiVersionResolverOption &RO : Options) { 3094 Builder.SetInsertPoint(CurBlock); 3095 llvm::Value *Condition = FormX86ResolverCondition(RO); 3096 3097 // The 'default' or 'generic' case. 3098 if (!Condition) { 3099 assert(&RO == Options.end() - 1 && 3100 "Default or Generic case must be last"); 3101 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3102 SupportsIFunc); 3103 return; 3104 } 3105 3106 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3107 CGBuilderTy RetBuilder(*this, RetBlock); 3108 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3109 SupportsIFunc); 3110 CurBlock = createBasicBlock("resolver_else", Resolver); 3111 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3112 } 3113 3114 // If no generic/default, emit an unreachable. 3115 Builder.SetInsertPoint(CurBlock); 3116 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3117 TrapCall->setDoesNotReturn(); 3118 TrapCall->setDoesNotThrow(); 3119 Builder.CreateUnreachable(); 3120 Builder.ClearInsertionPoint(); 3121 } 3122 3123 // Loc - where the diagnostic will point, where in the source code this 3124 // alignment has failed. 3125 // SecondaryLoc - if present (will be present if sufficiently different from 3126 // Loc), the diagnostic will additionally point a "Note:" to this location. 3127 // It should be the location where the __attribute__((assume_aligned)) 3128 // was written e.g. 3129 void CodeGenFunction::emitAlignmentAssumptionCheck( 3130 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3131 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3132 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3133 llvm::Instruction *Assumption) { 3134 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3135 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3136 llvm::Intrinsic::getOrInsertDeclaration( 3137 Builder.GetInsertBlock()->getParent()->getParent(), 3138 llvm::Intrinsic::assume) && 3139 "Assumption should be a call to llvm.assume()."); 3140 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3141 "Assumption should be the last instruction of the basic block, " 3142 "since the basic block is still being generated."); 3143 3144 if (!SanOpts.has(SanitizerKind::Alignment)) 3145 return; 3146 3147 // Don't check pointers to volatile data. The behavior here is implementation- 3148 // defined. 3149 if (Ty->getPointeeType().isVolatileQualified()) 3150 return; 3151 3152 // We need to temorairly remove the assumption so we can insert the 3153 // sanitizer check before it, else the check will be dropped by optimizations. 3154 Assumption->removeFromParent(); 3155 3156 { 3157 SanitizerScope SanScope(this); 3158 3159 if (!OffsetValue) 3160 OffsetValue = Builder.getInt1(false); // no offset. 3161 3162 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3163 EmitCheckSourceLocation(SecondaryLoc), 3164 EmitCheckTypeDescriptor(Ty)}; 3165 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3166 EmitCheckValue(Alignment), 3167 EmitCheckValue(OffsetValue)}; 3168 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3169 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3170 } 3171 3172 // We are now in the (new, empty) "cont" basic block. 3173 // Reintroduce the assumption. 3174 Builder.Insert(Assumption); 3175 // FIXME: Assumption still has it's original basic block as it's Parent. 3176 } 3177 3178 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3179 if (CGDebugInfo *DI = getDebugInfo()) 3180 return DI->SourceLocToDebugLoc(Location); 3181 3182 return llvm::DebugLoc(); 3183 } 3184 3185 llvm::Value * 3186 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3187 Stmt::Likelihood LH) { 3188 switch (LH) { 3189 case Stmt::LH_None: 3190 return Cond; 3191 case Stmt::LH_Likely: 3192 case Stmt::LH_Unlikely: 3193 // Don't generate llvm.expect on -O0 as the backend won't use it for 3194 // anything. 3195 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3196 return Cond; 3197 llvm::Type *CondTy = Cond->getType(); 3198 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3199 llvm::Function *FnExpect = 3200 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3201 llvm::Value *ExpectedValueOfCond = 3202 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3203 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3204 Cond->getName() + ".expval"); 3205 } 3206 llvm_unreachable("Unknown Likelihood"); 3207 } 3208 3209 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3210 unsigned NumElementsDst, 3211 const llvm::Twine &Name) { 3212 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3213 unsigned NumElementsSrc = SrcTy->getNumElements(); 3214 if (NumElementsSrc == NumElementsDst) 3215 return SrcVec; 3216 3217 std::vector<int> ShuffleMask(NumElementsDst, -1); 3218 for (unsigned MaskIdx = 0; 3219 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3220 ShuffleMask[MaskIdx] = MaskIdx; 3221 3222 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3223 } 3224 3225 void CodeGenFunction::EmitPointerAuthOperandBundle( 3226 const CGPointerAuthInfo &PointerAuth, 3227 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3228 if (!PointerAuth.isSigned()) 3229 return; 3230 3231 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3232 3233 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3234 if (!Discriminator) 3235 Discriminator = Builder.getSize(0); 3236 3237 llvm::Value *Args[] = {Key, Discriminator}; 3238 Bundles.emplace_back("ptrauth", Args); 3239 } 3240 3241 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3242 const CGPointerAuthInfo &PointerAuth, 3243 llvm::Value *Pointer, 3244 unsigned IntrinsicID) { 3245 if (!PointerAuth) 3246 return Pointer; 3247 3248 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3249 3250 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3251 if (!Discriminator) { 3252 Discriminator = CGF.Builder.getSize(0); 3253 } 3254 3255 // Convert the pointer to intptr_t before signing it. 3256 auto OrigType = Pointer->getType(); 3257 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3258 3259 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3260 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3261 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3262 3263 // Convert back to the original type. 3264 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3265 return Pointer; 3266 } 3267 3268 llvm::Value * 3269 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3270 llvm::Value *Pointer) { 3271 if (!PointerAuth.shouldSign()) 3272 return Pointer; 3273 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3274 llvm::Intrinsic::ptrauth_sign); 3275 } 3276 3277 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3278 const CGPointerAuthInfo &PointerAuth, 3279 llvm::Value *Pointer) { 3280 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3281 3282 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3283 // Convert the pointer to intptr_t before signing it. 3284 auto OrigType = Pointer->getType(); 3285 Pointer = CGF.EmitRuntimeCall( 3286 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3287 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3288 } 3289 3290 llvm::Value * 3291 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3292 llvm::Value *Pointer) { 3293 if (PointerAuth.shouldStrip()) { 3294 return EmitStrip(*this, PointerAuth, Pointer); 3295 } 3296 if (!PointerAuth.shouldAuth()) { 3297 return Pointer; 3298 } 3299 3300 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3301 llvm::Intrinsic::ptrauth_auth); 3302 } 3303