xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision deffae5da123b32098914d8346bf4358a6792bdc)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
199                                          bool ForPointeeType,
200                                          CodeGenFunction &CGF) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment);
206   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
207 }
208 
209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
215   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
216 }
217 
218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
219                                                       QualType T) {
220   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
221 }
222 
223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
224                                                              QualType T) {
225   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
226 }
227 
228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
229   return CGM.getTypes().ConvertTypeForMem(T);
230 }
231 
232 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
233   return CGM.getTypes().ConvertType(T);
234 }
235 
236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
237   type = type.getCanonicalType();
238   while (true) {
239     switch (type->getTypeClass()) {
240 #define TYPE(name, parent)
241 #define ABSTRACT_TYPE(name, parent)
242 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
243 #define DEPENDENT_TYPE(name, parent) case Type::name:
244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
245 #include "clang/AST/TypeNodes.inc"
246       llvm_unreachable("non-canonical or dependent type in IR-generation");
247 
248     case Type::Auto:
249     case Type::DeducedTemplateSpecialization:
250       llvm_unreachable("undeduced type in IR-generation");
251 
252     // Various scalar types.
253     case Type::Builtin:
254     case Type::Pointer:
255     case Type::BlockPointer:
256     case Type::LValueReference:
257     case Type::RValueReference:
258     case Type::MemberPointer:
259     case Type::Vector:
260     case Type::ExtVector:
261     case Type::ConstantMatrix:
262     case Type::FunctionProto:
263     case Type::FunctionNoProto:
264     case Type::Enum:
265     case Type::ObjCObjectPointer:
266     case Type::Pipe:
267     case Type::BitInt:
268       return TEK_Scalar;
269 
270     // Complexes.
271     case Type::Complex:
272       return TEK_Complex;
273 
274     // Arrays, records, and Objective-C objects.
275     case Type::ConstantArray:
276     case Type::IncompleteArray:
277     case Type::VariableArray:
278     case Type::Record:
279     case Type::ObjCObject:
280     case Type::ObjCInterface:
281     case Type::ArrayParameter:
282       return TEK_Aggregate;
283 
284     // We operate on atomic values according to their underlying type.
285     case Type::Atomic:
286       type = cast<AtomicType>(type)->getValueType();
287       continue;
288     }
289     llvm_unreachable("unknown type kind!");
290   }
291 }
292 
293 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
294   // For cleanliness, we try to avoid emitting the return block for
295   // simple cases.
296   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
297 
298   if (CurBB) {
299     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
300 
301     // We have a valid insert point, reuse it if it is empty or there are no
302     // explicit jumps to the return block.
303     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
304       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
305       delete ReturnBlock.getBlock();
306       ReturnBlock = JumpDest();
307     } else
308       EmitBlock(ReturnBlock.getBlock());
309     return llvm::DebugLoc();
310   }
311 
312   // Otherwise, if the return block is the target of a single direct
313   // branch then we can just put the code in that block instead. This
314   // cleans up functions which started with a unified return block.
315   if (ReturnBlock.getBlock()->hasOneUse()) {
316     llvm::BranchInst *BI =
317       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
318     if (BI && BI->isUnconditional() &&
319         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
320       // Record/return the DebugLoc of the simple 'return' expression to be used
321       // later by the actual 'ret' instruction.
322       llvm::DebugLoc Loc = BI->getDebugLoc();
323       Builder.SetInsertPoint(BI->getParent());
324       BI->eraseFromParent();
325       delete ReturnBlock.getBlock();
326       ReturnBlock = JumpDest();
327       return Loc;
328     }
329   }
330 
331   // FIXME: We are at an unreachable point, there is no reason to emit the block
332   // unless it has uses. However, we still need a place to put the debug
333   // region.end for now.
334 
335   EmitBlock(ReturnBlock.getBlock());
336   return llvm::DebugLoc();
337 }
338 
339 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
340   if (!BB) return;
341   if (!BB->use_empty()) {
342     CGF.CurFn->insert(CGF.CurFn->end(), BB);
343     return;
344   }
345   delete BB;
346 }
347 
348 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
349   assert(BreakContinueStack.empty() &&
350          "mismatched push/pop in break/continue stack!");
351   assert(LifetimeExtendedCleanupStack.empty() &&
352          "mismatched push/pop of cleanups in EHStack!");
353   assert(DeferredDeactivationCleanupStack.empty() &&
354          "mismatched activate/deactivate of cleanups!");
355 
356   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
357     && NumSimpleReturnExprs == NumReturnExprs
358     && ReturnBlock.getBlock()->use_empty();
359   // Usually the return expression is evaluated before the cleanup
360   // code.  If the function contains only a simple return statement,
361   // such as a constant, the location before the cleanup code becomes
362   // the last useful breakpoint in the function, because the simple
363   // return expression will be evaluated after the cleanup code. To be
364   // safe, set the debug location for cleanup code to the location of
365   // the return statement.  Otherwise the cleanup code should be at the
366   // end of the function's lexical scope.
367   //
368   // If there are multiple branches to the return block, the branch
369   // instructions will get the location of the return statements and
370   // all will be fine.
371   if (CGDebugInfo *DI = getDebugInfo()) {
372     if (OnlySimpleReturnStmts)
373       DI->EmitLocation(Builder, LastStopPoint);
374     else
375       DI->EmitLocation(Builder, EndLoc);
376   }
377 
378   // Pop any cleanups that might have been associated with the
379   // parameters.  Do this in whatever block we're currently in; it's
380   // important to do this before we enter the return block or return
381   // edges will be *really* confused.
382   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
383   bool HasOnlyLifetimeMarkers =
384       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
385   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
386 
387   std::optional<ApplyDebugLocation> OAL;
388   if (HasCleanups) {
389     // Make sure the line table doesn't jump back into the body for
390     // the ret after it's been at EndLoc.
391     if (CGDebugInfo *DI = getDebugInfo()) {
392       if (OnlySimpleReturnStmts)
393         DI->EmitLocation(Builder, EndLoc);
394       else
395         // We may not have a valid end location. Try to apply it anyway, and
396         // fall back to an artificial location if needed.
397         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
398     }
399 
400     PopCleanupBlocks(PrologueCleanupDepth);
401   }
402 
403   // Emit function epilog (to return).
404   llvm::DebugLoc Loc = EmitReturnBlock();
405 
406   if (ShouldInstrumentFunction()) {
407     if (CGM.getCodeGenOpts().InstrumentFunctions)
408       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
409     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
410       CurFn->addFnAttr("instrument-function-exit-inlined",
411                        "__cyg_profile_func_exit");
412   }
413 
414   // Emit debug descriptor for function end.
415   if (CGDebugInfo *DI = getDebugInfo())
416     DI->EmitFunctionEnd(Builder, CurFn);
417 
418   // Reset the debug location to that of the simple 'return' expression, if any
419   // rather than that of the end of the function's scope '}'.
420   ApplyDebugLocation AL(*this, Loc);
421   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
422   EmitEndEHSpec(CurCodeDecl);
423 
424   assert(EHStack.empty() &&
425          "did not remove all scopes from cleanup stack!");
426 
427   // If someone did an indirect goto, emit the indirect goto block at the end of
428   // the function.
429   if (IndirectBranch) {
430     EmitBlock(IndirectBranch->getParent());
431     Builder.ClearInsertionPoint();
432   }
433 
434   // If some of our locals escaped, insert a call to llvm.localescape in the
435   // entry block.
436   if (!EscapedLocals.empty()) {
437     // Invert the map from local to index into a simple vector. There should be
438     // no holes.
439     SmallVector<llvm::Value *, 4> EscapeArgs;
440     EscapeArgs.resize(EscapedLocals.size());
441     for (auto &Pair : EscapedLocals)
442       EscapeArgs[Pair.second] = Pair.first;
443     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
444         &CGM.getModule(), llvm::Intrinsic::localescape);
445     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
446   }
447 
448   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
449   llvm::Instruction *Ptr = AllocaInsertPt;
450   AllocaInsertPt = nullptr;
451   Ptr->eraseFromParent();
452 
453   // PostAllocaInsertPt, if created, was lazily created when it was required,
454   // remove it now since it was just created for our own convenience.
455   if (PostAllocaInsertPt) {
456     llvm::Instruction *PostPtr = PostAllocaInsertPt;
457     PostAllocaInsertPt = nullptr;
458     PostPtr->eraseFromParent();
459   }
460 
461   // If someone took the address of a label but never did an indirect goto, we
462   // made a zero entry PHI node, which is illegal, zap it now.
463   if (IndirectBranch) {
464     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
465     if (PN->getNumIncomingValues() == 0) {
466       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
467       PN->eraseFromParent();
468     }
469   }
470 
471   EmitIfUsed(*this, EHResumeBlock);
472   EmitIfUsed(*this, TerminateLandingPad);
473   EmitIfUsed(*this, TerminateHandler);
474   EmitIfUsed(*this, UnreachableBlock);
475 
476   for (const auto &FuncletAndParent : TerminateFunclets)
477     EmitIfUsed(*this, FuncletAndParent.second);
478 
479   if (CGM.getCodeGenOpts().EmitDeclMetadata)
480     EmitDeclMetadata();
481 
482   for (const auto &R : DeferredReplacements) {
483     if (llvm::Value *Old = R.first) {
484       Old->replaceAllUsesWith(R.second);
485       cast<llvm::Instruction>(Old)->eraseFromParent();
486     }
487   }
488   DeferredReplacements.clear();
489 
490   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
491   // PHIs if the current function is a coroutine. We don't do it for all
492   // functions as it may result in slight increase in numbers of instructions
493   // if compiled with no optimizations. We do it for coroutine as the lifetime
494   // of CleanupDestSlot alloca make correct coroutine frame building very
495   // difficult.
496   if (NormalCleanupDest.isValid() && isCoroutine()) {
497     llvm::DominatorTree DT(*CurFn);
498     llvm::PromoteMemToReg(
499         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
500     NormalCleanupDest = Address::invalid();
501   }
502 
503   // Scan function arguments for vector width.
504   for (llvm::Argument &A : CurFn->args())
505     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
506       LargestVectorWidth =
507           std::max((uint64_t)LargestVectorWidth,
508                    VT->getPrimitiveSizeInBits().getKnownMinValue());
509 
510   // Update vector width based on return type.
511   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
512     LargestVectorWidth =
513         std::max((uint64_t)LargestVectorWidth,
514                  VT->getPrimitiveSizeInBits().getKnownMinValue());
515 
516   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
517     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
518 
519   // Add the min-legal-vector-width attribute. This contains the max width from:
520   // 1. min-vector-width attribute used in the source program.
521   // 2. Any builtins used that have a vector width specified.
522   // 3. Values passed in and out of inline assembly.
523   // 4. Width of vector arguments and return types for this function.
524   // 5. Width of vector arguments and return types for functions called by this
525   //    function.
526   if (getContext().getTargetInfo().getTriple().isX86())
527     CurFn->addFnAttr("min-legal-vector-width",
528                      llvm::utostr(LargestVectorWidth));
529 
530   // Add vscale_range attribute if appropriate.
531   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
532       getContext().getTargetInfo().getVScaleRange(getLangOpts());
533   if (VScaleRange) {
534     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
535         getLLVMContext(), VScaleRange->first, VScaleRange->second));
536   }
537 
538   // If we generated an unreachable return block, delete it now.
539   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
540     Builder.ClearInsertionPoint();
541     ReturnBlock.getBlock()->eraseFromParent();
542   }
543   if (ReturnValue.isValid()) {
544     auto *RetAlloca =
545         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
546     if (RetAlloca && RetAlloca->use_empty()) {
547       RetAlloca->eraseFromParent();
548       ReturnValue = Address::invalid();
549     }
550   }
551 }
552 
553 /// ShouldInstrumentFunction - Return true if the current function should be
554 /// instrumented with __cyg_profile_func_* calls
555 bool CodeGenFunction::ShouldInstrumentFunction() {
556   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
557       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
558       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
559     return false;
560   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
561     return false;
562   return true;
563 }
564 
565 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
566   if (!CurFuncDecl)
567     return false;
568   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
569 }
570 
571 /// ShouldXRayInstrument - Return true if the current function should be
572 /// instrumented with XRay nop sleds.
573 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
574   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
575 }
576 
577 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
578 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
579 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
580   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
581          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
582           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
583               XRayInstrKind::Custom);
584 }
585 
586 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
587   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
588          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
589           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
590               XRayInstrKind::Typed);
591 }
592 
593 llvm::ConstantInt *
594 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
595   // Remove any (C++17) exception specifications, to allow calling e.g. a
596   // noexcept function through a non-noexcept pointer.
597   if (!Ty->isFunctionNoProtoType())
598     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
599   std::string Mangled;
600   llvm::raw_string_ostream Out(Mangled);
601   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
602   return llvm::ConstantInt::get(
603       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
604 }
605 
606 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
607                                          llvm::Function *Fn) {
608   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
609     return;
610 
611   llvm::LLVMContext &Context = getLLVMContext();
612 
613   CGM.GenKernelArgMetadata(Fn, FD, this);
614 
615   if (!getLangOpts().OpenCL)
616     return;
617 
618   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
619     QualType HintQTy = A->getTypeHint();
620     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
621     bool IsSignedInteger =
622         HintQTy->isSignedIntegerType() ||
623         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
624     llvm::Metadata *AttrMDArgs[] = {
625         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
626             CGM.getTypes().ConvertType(A->getTypeHint()))),
627         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
628             llvm::IntegerType::get(Context, 32),
629             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
630     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
642     llvm::Metadata *AttrMDArgs[] = {
643         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
645         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
646     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 
649   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
650           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
651     llvm::Metadata *AttrMDArgs[] = {
652         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
653     Fn->setMetadata("intel_reqd_sub_group_size",
654                     llvm::MDNode::get(Context, AttrMDArgs));
655   }
656 }
657 
658 /// Determine whether the function F ends with a return stmt.
659 static bool endsWithReturn(const Decl* F) {
660   const Stmt *Body = nullptr;
661   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
662     Body = FD->getBody();
663   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
664     Body = OMD->getBody();
665 
666   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
667     auto LastStmt = CS->body_rbegin();
668     if (LastStmt != CS->body_rend())
669       return isa<ReturnStmt>(*LastStmt);
670   }
671   return false;
672 }
673 
674 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
675   if (SanOpts.has(SanitizerKind::Thread)) {
676     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
677     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
678   }
679 }
680 
681 /// Check if the return value of this function requires sanitization.
682 bool CodeGenFunction::requiresReturnValueCheck() const {
683   return requiresReturnValueNullabilityCheck() ||
684          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
685           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
686 }
687 
688 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
689   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
690   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
691       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
692       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
693     return false;
694 
695   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
696     return false;
697 
698   if (MD->getNumParams() == 2) {
699     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
700     if (!PT || !PT->isVoidPointerType() ||
701         !PT->getPointeeType().isConstQualified())
702       return false;
703   }
704 
705   return true;
706 }
707 
708 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
709   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
710   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
711 }
712 
713 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
714   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
715          getTarget().getCXXABI().isMicrosoft() &&
716          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
717            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
718          });
719 }
720 
721 /// Return the UBSan prologue signature for \p FD if one is available.
722 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
723                                             const FunctionDecl *FD) {
724   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
725     if (!MD->isStatic())
726       return nullptr;
727   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
728 }
729 
730 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
731                                     llvm::Function *Fn,
732                                     const CGFunctionInfo &FnInfo,
733                                     const FunctionArgList &Args,
734                                     SourceLocation Loc,
735                                     SourceLocation StartLoc) {
736   assert(!CurFn &&
737          "Do not use a CodeGenFunction object for more than one function");
738 
739   const Decl *D = GD.getDecl();
740 
741   DidCallStackSave = false;
742   CurCodeDecl = D;
743   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
744   if (FD && FD->usesSEHTry())
745     CurSEHParent = GD;
746   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
747   FnRetTy = RetTy;
748   CurFn = Fn;
749   CurFnInfo = &FnInfo;
750   assert(CurFn->isDeclaration() && "Function already has body?");
751 
752   // If this function is ignored for any of the enabled sanitizers,
753   // disable the sanitizer for the function.
754   do {
755 #define SANITIZER(NAME, ID)                                                    \
756   if (SanOpts.empty())                                                         \
757     break;                                                                     \
758   if (SanOpts.has(SanitizerKind::ID))                                          \
759     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
760       SanOpts.set(SanitizerKind::ID, false);
761 
762 #include "clang/Basic/Sanitizers.def"
763 #undef SANITIZER
764   } while (false);
765 
766   if (D) {
767     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
768     SanitizerMask no_sanitize_mask;
769     bool NoSanitizeCoverage = false;
770 
771     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
772       no_sanitize_mask |= Attr->getMask();
773       // SanitizeCoverage is not handled by SanOpts.
774       if (Attr->hasCoverage())
775         NoSanitizeCoverage = true;
776     }
777 
778     // Apply the no_sanitize* attributes to SanOpts.
779     SanOpts.Mask &= ~no_sanitize_mask;
780     if (no_sanitize_mask & SanitizerKind::Address)
781       SanOpts.set(SanitizerKind::KernelAddress, false);
782     if (no_sanitize_mask & SanitizerKind::KernelAddress)
783       SanOpts.set(SanitizerKind::Address, false);
784     if (no_sanitize_mask & SanitizerKind::HWAddress)
785       SanOpts.set(SanitizerKind::KernelHWAddress, false);
786     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
787       SanOpts.set(SanitizerKind::HWAddress, false);
788 
789     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
790       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
791 
792     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
793       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
794 
795     // Some passes need the non-negated no_sanitize attribute. Pass them on.
796     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
797       if (no_sanitize_mask & SanitizerKind::Thread)
798         Fn->addFnAttr("no_sanitize_thread");
799     }
800   }
801 
802   if (ShouldSkipSanitizerInstrumentation()) {
803     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
804   } else {
805     // Apply sanitizer attributes to the function.
806     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
807       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
808     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
809                          SanitizerKind::KernelHWAddress))
810       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
811     if (SanOpts.has(SanitizerKind::MemtagStack))
812       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
813     if (SanOpts.has(SanitizerKind::Thread))
814       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
815     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
816       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
817   }
818   if (SanOpts.has(SanitizerKind::SafeStack))
819     Fn->addFnAttr(llvm::Attribute::SafeStack);
820   if (SanOpts.has(SanitizerKind::ShadowCallStack))
821     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
822 
823   // Apply fuzzing attribute to the function.
824   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
825     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
826 
827   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
828   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
829   if (SanOpts.has(SanitizerKind::Thread)) {
830     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
831       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
832       if (OMD->getMethodFamily() == OMF_dealloc ||
833           OMD->getMethodFamily() == OMF_initialize ||
834           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
835         markAsIgnoreThreadCheckingAtRuntime(Fn);
836       }
837     }
838   }
839 
840   // Ignore unrelated casts in STL allocate() since the allocator must cast
841   // from void* to T* before object initialization completes. Don't match on the
842   // namespace because not all allocators are in std::
843   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
844     if (matchesStlAllocatorFn(D, getContext()))
845       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
846   }
847 
848   // Ignore null checks in coroutine functions since the coroutines passes
849   // are not aware of how to move the extra UBSan instructions across the split
850   // coroutine boundaries.
851   if (D && SanOpts.has(SanitizerKind::Null))
852     if (FD && FD->getBody() &&
853         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
854       SanOpts.Mask &= ~SanitizerKind::Null;
855 
856   // Apply xray attributes to the function (as a string, for now)
857   bool AlwaysXRayAttr = false;
858   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
859     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
860             XRayInstrKind::FunctionEntry) ||
861         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
862             XRayInstrKind::FunctionExit)) {
863       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
864         Fn->addFnAttr("function-instrument", "xray-always");
865         AlwaysXRayAttr = true;
866       }
867       if (XRayAttr->neverXRayInstrument())
868         Fn->addFnAttr("function-instrument", "xray-never");
869       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
870         if (ShouldXRayInstrumentFunction())
871           Fn->addFnAttr("xray-log-args",
872                         llvm::utostr(LogArgs->getArgumentCount()));
873     }
874   } else {
875     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
876       Fn->addFnAttr(
877           "xray-instruction-threshold",
878           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
879   }
880 
881   if (ShouldXRayInstrumentFunction()) {
882     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
883       Fn->addFnAttr("xray-ignore-loops");
884 
885     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
886             XRayInstrKind::FunctionExit))
887       Fn->addFnAttr("xray-skip-exit");
888 
889     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
890             XRayInstrKind::FunctionEntry))
891       Fn->addFnAttr("xray-skip-entry");
892 
893     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
894     if (FuncGroups > 1) {
895       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
896                                               CurFn->getName().bytes_end());
897       auto Group = crc32(FuncName) % FuncGroups;
898       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
899           !AlwaysXRayAttr)
900         Fn->addFnAttr("function-instrument", "xray-never");
901     }
902   }
903 
904   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
905     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
906     case ProfileList::Skip:
907       Fn->addFnAttr(llvm::Attribute::SkipProfile);
908       break;
909     case ProfileList::Forbid:
910       Fn->addFnAttr(llvm::Attribute::NoProfile);
911       break;
912     case ProfileList::Allow:
913       break;
914     }
915   }
916 
917   unsigned Count, Offset;
918   if (const auto *Attr =
919           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
920     Count = Attr->getCount();
921     Offset = Attr->getOffset();
922   } else {
923     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
924     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
925   }
926   if (Count && Offset <= Count) {
927     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
928     if (Offset)
929       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
930   }
931   // Instruct that functions for COFF/CodeView targets should start with a
932   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
933   // backends as they don't need it -- instructions on these architectures are
934   // always atomically patchable at runtime.
935   if (CGM.getCodeGenOpts().HotPatch &&
936       getContext().getTargetInfo().getTriple().isX86() &&
937       getContext().getTargetInfo().getTriple().getEnvironment() !=
938           llvm::Triple::CODE16)
939     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
940 
941   // Add no-jump-tables value.
942   if (CGM.getCodeGenOpts().NoUseJumpTables)
943     Fn->addFnAttr("no-jump-tables", "true");
944 
945   // Add no-inline-line-tables value.
946   if (CGM.getCodeGenOpts().NoInlineLineTables)
947     Fn->addFnAttr("no-inline-line-tables");
948 
949   // Add profile-sample-accurate value.
950   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
951     Fn->addFnAttr("profile-sample-accurate");
952 
953   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
954     Fn->addFnAttr("use-sample-profile");
955 
956   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
957     Fn->addFnAttr("cfi-canonical-jump-table");
958 
959   if (D && D->hasAttr<NoProfileFunctionAttr>())
960     Fn->addFnAttr(llvm::Attribute::NoProfile);
961 
962   if (D) {
963     // Function attributes take precedence over command line flags.
964     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
965       switch (A->getThunkType()) {
966       case FunctionReturnThunksAttr::Kind::Keep:
967         break;
968       case FunctionReturnThunksAttr::Kind::Extern:
969         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
970         break;
971       }
972     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
973       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
974   }
975 
976   if (FD && (getLangOpts().OpenCL ||
977              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
978     // Add metadata for a kernel function.
979     EmitKernelMetadata(FD, Fn);
980   }
981 
982   // If we are checking function types, emit a function type signature as
983   // prologue data.
984   if (FD && SanOpts.has(SanitizerKind::Function)) {
985     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
986       llvm::LLVMContext &Ctx = Fn->getContext();
987       llvm::MDBuilder MDB(Ctx);
988       Fn->setMetadata(
989           llvm::LLVMContext::MD_func_sanitize,
990           MDB.createRTTIPointerPrologue(
991               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
992     }
993   }
994 
995   // If we're checking nullability, we need to know whether we can check the
996   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
997   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
998     auto Nullability = FnRetTy->getNullability();
999     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1000         !FnRetTy->isRecordType()) {
1001       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1002             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1003         RetValNullabilityPrecondition =
1004             llvm::ConstantInt::getTrue(getLLVMContext());
1005     }
1006   }
1007 
1008   // If we're in C++ mode and the function name is "main", it is guaranteed
1009   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1010   // used within a program").
1011   //
1012   // OpenCL C 2.0 v2.2-11 s6.9.i:
1013   //     Recursion is not supported.
1014   //
1015   // SYCL v1.2.1 s3.10:
1016   //     kernels cannot include RTTI information, exception classes,
1017   //     recursive code, virtual functions or make use of C++ libraries that
1018   //     are not compiled for the device.
1019   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1020              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1021              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1022     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1023 
1024   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1025   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1026       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1027   Builder.setDefaultConstrainedRounding(RM);
1028   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1029   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1030       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1031                RM != llvm::RoundingMode::NearestTiesToEven))) {
1032     Builder.setIsFPConstrained(true);
1033     Fn->addFnAttr(llvm::Attribute::StrictFP);
1034   }
1035 
1036   // If a custom alignment is used, force realigning to this alignment on
1037   // any main function which certainly will need it.
1038   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1039              CGM.getCodeGenOpts().StackAlignment))
1040     Fn->addFnAttr("stackrealign");
1041 
1042   // "main" doesn't need to zero out call-used registers.
1043   if (FD && FD->isMain())
1044     Fn->removeFnAttr("zero-call-used-regs");
1045 
1046   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1047 
1048   // Create a marker to make it easy to insert allocas into the entryblock
1049   // later.  Don't create this with the builder, because we don't want it
1050   // folded.
1051   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1052   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1053 
1054   ReturnBlock = getJumpDestInCurrentScope("return");
1055 
1056   Builder.SetInsertPoint(EntryBB);
1057 
1058   // If we're checking the return value, allocate space for a pointer to a
1059   // precise source location of the checked return statement.
1060   if (requiresReturnValueCheck()) {
1061     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1062     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1063                         ReturnLocation);
1064   }
1065 
1066   // Emit subprogram debug descriptor.
1067   if (CGDebugInfo *DI = getDebugInfo()) {
1068     // Reconstruct the type from the argument list so that implicit parameters,
1069     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1070     // convention.
1071     DI->emitFunctionStart(GD, Loc, StartLoc,
1072                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1073                           CurFuncIsThunk);
1074   }
1075 
1076   if (ShouldInstrumentFunction()) {
1077     if (CGM.getCodeGenOpts().InstrumentFunctions)
1078       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1079     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1080       CurFn->addFnAttr("instrument-function-entry-inlined",
1081                        "__cyg_profile_func_enter");
1082     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1083       CurFn->addFnAttr("instrument-function-entry-inlined",
1084                        "__cyg_profile_func_enter_bare");
1085   }
1086 
1087   // Since emitting the mcount call here impacts optimizations such as function
1088   // inlining, we just add an attribute to insert a mcount call in backend.
1089   // The attribute "counting-function" is set to mcount function name which is
1090   // architecture dependent.
1091   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1092     // Calls to fentry/mcount should not be generated if function has
1093     // the no_instrument_function attribute.
1094     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1095       if (CGM.getCodeGenOpts().CallFEntry)
1096         Fn->addFnAttr("fentry-call", "true");
1097       else {
1098         Fn->addFnAttr("instrument-function-entry-inlined",
1099                       getTarget().getMCountName());
1100       }
1101       if (CGM.getCodeGenOpts().MNopMCount) {
1102         if (!CGM.getCodeGenOpts().CallFEntry)
1103           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1104             << "-mnop-mcount" << "-mfentry";
1105         Fn->addFnAttr("mnop-mcount");
1106       }
1107 
1108       if (CGM.getCodeGenOpts().RecordMCount) {
1109         if (!CGM.getCodeGenOpts().CallFEntry)
1110           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1111             << "-mrecord-mcount" << "-mfentry";
1112         Fn->addFnAttr("mrecord-mcount");
1113       }
1114     }
1115   }
1116 
1117   if (CGM.getCodeGenOpts().PackedStack) {
1118     if (getContext().getTargetInfo().getTriple().getArch() !=
1119         llvm::Triple::systemz)
1120       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1121         << "-mpacked-stack";
1122     Fn->addFnAttr("packed-stack");
1123   }
1124 
1125   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1126       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1127     Fn->addFnAttr("warn-stack-size",
1128                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1129 
1130   if (RetTy->isVoidType()) {
1131     // Void type; nothing to return.
1132     ReturnValue = Address::invalid();
1133 
1134     // Count the implicit return.
1135     if (!endsWithReturn(D))
1136       ++NumReturnExprs;
1137   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1138     // Indirect return; emit returned value directly into sret slot.
1139     // This reduces code size, and affects correctness in C++.
1140     auto AI = CurFn->arg_begin();
1141     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1142       ++AI;
1143     ReturnValue = makeNaturalAddressForPointer(
1144         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1145         nullptr, nullptr, KnownNonNull);
1146     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1147       ReturnValuePointer =
1148           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1149       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1150                           ReturnValuePointer);
1151     }
1152   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1153              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1154     // Load the sret pointer from the argument struct and return into that.
1155     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1156     llvm::Function::arg_iterator EI = CurFn->arg_end();
1157     --EI;
1158     llvm::Value *Addr = Builder.CreateStructGEP(
1159         CurFnInfo->getArgStruct(), &*EI, Idx);
1160     llvm::Type *Ty =
1161         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1162     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1163     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1164     ReturnValue = Address(Addr, ConvertType(RetTy),
1165                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1166   } else {
1167     ReturnValue = CreateIRTemp(RetTy, "retval");
1168 
1169     // Tell the epilog emitter to autorelease the result.  We do this
1170     // now so that various specialized functions can suppress it
1171     // during their IR-generation.
1172     if (getLangOpts().ObjCAutoRefCount &&
1173         !CurFnInfo->isReturnsRetained() &&
1174         RetTy->isObjCRetainableType())
1175       AutoreleaseResult = true;
1176   }
1177 
1178   EmitStartEHSpec(CurCodeDecl);
1179 
1180   PrologueCleanupDepth = EHStack.stable_begin();
1181 
1182   // Emit OpenMP specific initialization of the device functions.
1183   if (getLangOpts().OpenMP && CurCodeDecl)
1184     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1185 
1186   // Handle emitting HLSL entry functions.
1187   if (D && D->hasAttr<HLSLShaderAttr>())
1188     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1189 
1190   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1191 
1192   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1193       MD && !MD->isStatic()) {
1194     bool IsInLambda =
1195         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1196     if (MD->isImplicitObjectMemberFunction())
1197       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1198     if (IsInLambda) {
1199       // We're in a lambda; figure out the captures.
1200       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1201                                         LambdaThisCaptureField);
1202       if (LambdaThisCaptureField) {
1203         // If the lambda captures the object referred to by '*this' - either by
1204         // value or by reference, make sure CXXThisValue points to the correct
1205         // object.
1206 
1207         // Get the lvalue for the field (which is a copy of the enclosing object
1208         // or contains the address of the enclosing object).
1209         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1210         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1211           // If the enclosing object was captured by value, just use its
1212           // address. Sign this pointer.
1213           CXXThisValue = ThisFieldLValue.getPointer(*this);
1214         } else {
1215           // Load the lvalue pointed to by the field, since '*this' was captured
1216           // by reference.
1217           CXXThisValue =
1218               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1219         }
1220       }
1221       for (auto *FD : MD->getParent()->fields()) {
1222         if (FD->hasCapturedVLAType()) {
1223           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1224                                            SourceLocation()).getScalarVal();
1225           auto VAT = FD->getCapturedVLAType();
1226           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1227         }
1228       }
1229     } else if (MD->isImplicitObjectMemberFunction()) {
1230       // Not in a lambda; just use 'this' from the method.
1231       // FIXME: Should we generate a new load for each use of 'this'?  The
1232       // fast register allocator would be happier...
1233       CXXThisValue = CXXABIThisValue;
1234     }
1235 
1236     // Check the 'this' pointer once per function, if it's available.
1237     if (CXXABIThisValue) {
1238       SanitizerSet SkippedChecks;
1239       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1240       QualType ThisTy = MD->getThisType();
1241 
1242       // If this is the call operator of a lambda with no captures, it
1243       // may have a static invoker function, which may call this operator with
1244       // a null 'this' pointer.
1245       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1246         SkippedChecks.set(SanitizerKind::Null, true);
1247 
1248       EmitTypeCheck(
1249           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1250           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1251     }
1252   }
1253 
1254   // If any of the arguments have a variably modified type, make sure to
1255   // emit the type size, but only if the function is not naked. Naked functions
1256   // have no prolog to run this evaluation.
1257   if (!FD || !FD->hasAttr<NakedAttr>()) {
1258     for (const VarDecl *VD : Args) {
1259       // Dig out the type as written from ParmVarDecls; it's unclear whether
1260       // the standard (C99 6.9.1p10) requires this, but we're following the
1261       // precedent set by gcc.
1262       QualType Ty;
1263       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1264         Ty = PVD->getOriginalType();
1265       else
1266         Ty = VD->getType();
1267 
1268       if (Ty->isVariablyModifiedType())
1269         EmitVariablyModifiedType(Ty);
1270     }
1271   }
1272   // Emit a location at the end of the prologue.
1273   if (CGDebugInfo *DI = getDebugInfo())
1274     DI->EmitLocation(Builder, StartLoc);
1275   // TODO: Do we need to handle this in two places like we do with
1276   // target-features/target-cpu?
1277   if (CurFuncDecl)
1278     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1279       LargestVectorWidth = VecWidth->getVectorWidth();
1280 }
1281 
1282 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1283   incrementProfileCounter(Body);
1284   maybeCreateMCDCCondBitmap();
1285   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1286     EmitCompoundStmtWithoutScope(*S);
1287   else
1288     EmitStmt(Body);
1289 }
1290 
1291 /// When instrumenting to collect profile data, the counts for some blocks
1292 /// such as switch cases need to not include the fall-through counts, so
1293 /// emit a branch around the instrumentation code. When not instrumenting,
1294 /// this just calls EmitBlock().
1295 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1296                                                const Stmt *S) {
1297   llvm::BasicBlock *SkipCountBB = nullptr;
1298   // Do not skip over the instrumentation when single byte coverage mode is
1299   // enabled.
1300   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1301       !llvm::EnableSingleByteCoverage) {
1302     // When instrumenting for profiling, the fallthrough to certain
1303     // statements needs to skip over the instrumentation code so that we
1304     // get an accurate count.
1305     SkipCountBB = createBasicBlock("skipcount");
1306     EmitBranch(SkipCountBB);
1307   }
1308   EmitBlock(BB);
1309   uint64_t CurrentCount = getCurrentProfileCount();
1310   incrementProfileCounter(S);
1311   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1312   if (SkipCountBB)
1313     EmitBlock(SkipCountBB);
1314 }
1315 
1316 /// Tries to mark the given function nounwind based on the
1317 /// non-existence of any throwing calls within it.  We believe this is
1318 /// lightweight enough to do at -O0.
1319 static void TryMarkNoThrow(llvm::Function *F) {
1320   // LLVM treats 'nounwind' on a function as part of the type, so we
1321   // can't do this on functions that can be overwritten.
1322   if (F->isInterposable()) return;
1323 
1324   for (llvm::BasicBlock &BB : *F)
1325     for (llvm::Instruction &I : BB)
1326       if (I.mayThrow())
1327         return;
1328 
1329   F->setDoesNotThrow();
1330 }
1331 
1332 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1333                                                FunctionArgList &Args) {
1334   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1335   QualType ResTy = FD->getReturnType();
1336 
1337   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1338   if (MD && MD->isImplicitObjectMemberFunction()) {
1339     if (CGM.getCXXABI().HasThisReturn(GD))
1340       ResTy = MD->getThisType();
1341     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1342       ResTy = CGM.getContext().VoidPtrTy;
1343     CGM.getCXXABI().buildThisParam(*this, Args);
1344   }
1345 
1346   // The base version of an inheriting constructor whose constructed base is a
1347   // virtual base is not passed any arguments (because it doesn't actually call
1348   // the inherited constructor).
1349   bool PassedParams = true;
1350   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1351     if (auto Inherited = CD->getInheritedConstructor())
1352       PassedParams =
1353           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1354 
1355   if (PassedParams) {
1356     for (auto *Param : FD->parameters()) {
1357       Args.push_back(Param);
1358       if (!Param->hasAttr<PassObjectSizeAttr>())
1359         continue;
1360 
1361       auto *Implicit = ImplicitParamDecl::Create(
1362           getContext(), Param->getDeclContext(), Param->getLocation(),
1363           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1364       SizeArguments[Param] = Implicit;
1365       Args.push_back(Implicit);
1366     }
1367   }
1368 
1369   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1370     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1371 
1372   return ResTy;
1373 }
1374 
1375 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1376                                    const CGFunctionInfo &FnInfo) {
1377   assert(Fn && "generating code for null Function");
1378   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1379   CurGD = GD;
1380 
1381   FunctionArgList Args;
1382   QualType ResTy = BuildFunctionArgList(GD, Args);
1383 
1384   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1385 
1386   if (FD->isInlineBuiltinDeclaration()) {
1387     // When generating code for a builtin with an inline declaration, use a
1388     // mangled name to hold the actual body, while keeping an external
1389     // definition in case the function pointer is referenced somewhere.
1390     std::string FDInlineName = (Fn->getName() + ".inline").str();
1391     llvm::Module *M = Fn->getParent();
1392     llvm::Function *Clone = M->getFunction(FDInlineName);
1393     if (!Clone) {
1394       Clone = llvm::Function::Create(Fn->getFunctionType(),
1395                                      llvm::GlobalValue::InternalLinkage,
1396                                      Fn->getAddressSpace(), FDInlineName, M);
1397       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1398     }
1399     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1400     Fn = Clone;
1401   } else {
1402     // Detect the unusual situation where an inline version is shadowed by a
1403     // non-inline version. In that case we should pick the external one
1404     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1405     // to detect that situation before we reach codegen, so do some late
1406     // replacement.
1407     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1408          PD = PD->getPreviousDecl()) {
1409       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1410         std::string FDInlineName = (Fn->getName() + ".inline").str();
1411         llvm::Module *M = Fn->getParent();
1412         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1413           Clone->replaceAllUsesWith(Fn);
1414           Clone->eraseFromParent();
1415         }
1416         break;
1417       }
1418     }
1419   }
1420 
1421   // Check if we should generate debug info for this function.
1422   if (FD->hasAttr<NoDebugAttr>()) {
1423     // Clear non-distinct debug info that was possibly attached to the function
1424     // due to an earlier declaration without the nodebug attribute
1425     Fn->setSubprogram(nullptr);
1426     // Disable debug info indefinitely for this function
1427     DebugInfo = nullptr;
1428   }
1429 
1430   // The function might not have a body if we're generating thunks for a
1431   // function declaration.
1432   SourceRange BodyRange;
1433   if (Stmt *Body = FD->getBody())
1434     BodyRange = Body->getSourceRange();
1435   else
1436     BodyRange = FD->getLocation();
1437   CurEHLocation = BodyRange.getEnd();
1438 
1439   // Use the location of the start of the function to determine where
1440   // the function definition is located. By default use the location
1441   // of the declaration as the location for the subprogram. A function
1442   // may lack a declaration in the source code if it is created by code
1443   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1444   SourceLocation Loc = FD->getLocation();
1445 
1446   // If this is a function specialization then use the pattern body
1447   // as the location for the function.
1448   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1449     if (SpecDecl->hasBody(SpecDecl))
1450       Loc = SpecDecl->getLocation();
1451 
1452   Stmt *Body = FD->getBody();
1453 
1454   if (Body) {
1455     // Coroutines always emit lifetime markers.
1456     if (isa<CoroutineBodyStmt>(Body))
1457       ShouldEmitLifetimeMarkers = true;
1458 
1459     // Initialize helper which will detect jumps which can cause invalid
1460     // lifetime markers.
1461     if (ShouldEmitLifetimeMarkers)
1462       Bypasses.Init(Body);
1463   }
1464 
1465   // Emit the standard function prologue.
1466   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1467 
1468   // Save parameters for coroutine function.
1469   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1470     llvm::append_range(FnArgs, FD->parameters());
1471 
1472   // Ensure that the function adheres to the forward progress guarantee, which
1473   // is required by certain optimizations.
1474   // In C++11 and up, the attribute will be removed if the body contains a
1475   // trivial empty loop.
1476   if (checkIfFunctionMustProgress())
1477     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1478 
1479   // Generate the body of the function.
1480   PGO.assignRegionCounters(GD, CurFn);
1481   if (isa<CXXDestructorDecl>(FD))
1482     EmitDestructorBody(Args);
1483   else if (isa<CXXConstructorDecl>(FD))
1484     EmitConstructorBody(Args);
1485   else if (getLangOpts().CUDA &&
1486            !getLangOpts().CUDAIsDevice &&
1487            FD->hasAttr<CUDAGlobalAttr>())
1488     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1489   else if (isa<CXXMethodDecl>(FD) &&
1490            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1491     // The lambda static invoker function is special, because it forwards or
1492     // clones the body of the function call operator (but is actually static).
1493     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1494   } else if (isa<CXXMethodDecl>(FD) &&
1495              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1496              !FnInfo.isDelegateCall() &&
1497              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1498              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1499     // If emitting a lambda with static invoker on X86 Windows, change
1500     // the call operator body.
1501     // Make sure that this is a call operator with an inalloca arg and check
1502     // for delegate call to make sure this is the original call op and not the
1503     // new forwarding function for the static invoker.
1504     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1505   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1506              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1507               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1508     // Implicit copy-assignment gets the same special treatment as implicit
1509     // copy-constructors.
1510     emitImplicitAssignmentOperatorBody(Args);
1511   } else if (Body) {
1512     EmitFunctionBody(Body);
1513   } else
1514     llvm_unreachable("no definition for emitted function");
1515 
1516   // C++11 [stmt.return]p2:
1517   //   Flowing off the end of a function [...] results in undefined behavior in
1518   //   a value-returning function.
1519   // C11 6.9.1p12:
1520   //   If the '}' that terminates a function is reached, and the value of the
1521   //   function call is used by the caller, the behavior is undefined.
1522   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1523       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1524     bool ShouldEmitUnreachable =
1525         CGM.getCodeGenOpts().StrictReturn ||
1526         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1527     if (SanOpts.has(SanitizerKind::Return)) {
1528       SanitizerScope SanScope(this);
1529       llvm::Value *IsFalse = Builder.getFalse();
1530       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1531                 SanitizerHandler::MissingReturn,
1532                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1533     } else if (ShouldEmitUnreachable) {
1534       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1535         EmitTrapCall(llvm::Intrinsic::trap);
1536     }
1537     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1538       Builder.CreateUnreachable();
1539       Builder.ClearInsertionPoint();
1540     }
1541   }
1542 
1543   // Emit the standard function epilogue.
1544   FinishFunction(BodyRange.getEnd());
1545 
1546   // If we haven't marked the function nothrow through other means, do
1547   // a quick pass now to see if we can.
1548   if (!CurFn->doesNotThrow())
1549     TryMarkNoThrow(CurFn);
1550 }
1551 
1552 /// ContainsLabel - Return true if the statement contains a label in it.  If
1553 /// this statement is not executed normally, it not containing a label means
1554 /// that we can just remove the code.
1555 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1556   // Null statement, not a label!
1557   if (!S) return false;
1558 
1559   // If this is a label, we have to emit the code, consider something like:
1560   // if (0) {  ...  foo:  bar(); }  goto foo;
1561   //
1562   // TODO: If anyone cared, we could track __label__'s, since we know that you
1563   // can't jump to one from outside their declared region.
1564   if (isa<LabelStmt>(S))
1565     return true;
1566 
1567   // If this is a case/default statement, and we haven't seen a switch, we have
1568   // to emit the code.
1569   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1570     return true;
1571 
1572   // If this is a switch statement, we want to ignore cases below it.
1573   if (isa<SwitchStmt>(S))
1574     IgnoreCaseStmts = true;
1575 
1576   // Scan subexpressions for verboten labels.
1577   for (const Stmt *SubStmt : S->children())
1578     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1579       return true;
1580 
1581   return false;
1582 }
1583 
1584 /// containsBreak - Return true if the statement contains a break out of it.
1585 /// If the statement (recursively) contains a switch or loop with a break
1586 /// inside of it, this is fine.
1587 bool CodeGenFunction::containsBreak(const Stmt *S) {
1588   // Null statement, not a label!
1589   if (!S) return false;
1590 
1591   // If this is a switch or loop that defines its own break scope, then we can
1592   // include it and anything inside of it.
1593   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1594       isa<ForStmt>(S))
1595     return false;
1596 
1597   if (isa<BreakStmt>(S))
1598     return true;
1599 
1600   // Scan subexpressions for verboten breaks.
1601   for (const Stmt *SubStmt : S->children())
1602     if (containsBreak(SubStmt))
1603       return true;
1604 
1605   return false;
1606 }
1607 
1608 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1609   if (!S) return false;
1610 
1611   // Some statement kinds add a scope and thus never add a decl to the current
1612   // scope. Note, this list is longer than the list of statements that might
1613   // have an unscoped decl nested within them, but this way is conservatively
1614   // correct even if more statement kinds are added.
1615   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1616       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1617       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1618       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1619     return false;
1620 
1621   if (isa<DeclStmt>(S))
1622     return true;
1623 
1624   for (const Stmt *SubStmt : S->children())
1625     if (mightAddDeclToScope(SubStmt))
1626       return true;
1627 
1628   return false;
1629 }
1630 
1631 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1632 /// to a constant, or if it does but contains a label, return false.  If it
1633 /// constant folds return true and set the boolean result in Result.
1634 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1635                                                    bool &ResultBool,
1636                                                    bool AllowLabels) {
1637   // If MC/DC is enabled, disable folding so that we can instrument all
1638   // conditions to yield complete test vectors. We still keep track of
1639   // folded conditions during region mapping and visualization.
1640   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1641       CGM.getCodeGenOpts().MCDCCoverage)
1642     return false;
1643 
1644   llvm::APSInt ResultInt;
1645   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1646     return false;
1647 
1648   ResultBool = ResultInt.getBoolValue();
1649   return true;
1650 }
1651 
1652 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1653 /// to a constant, or if it does but contains a label, return false.  If it
1654 /// constant folds return true and set the folded value.
1655 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1656                                                    llvm::APSInt &ResultInt,
1657                                                    bool AllowLabels) {
1658   // FIXME: Rename and handle conversion of other evaluatable things
1659   // to bool.
1660   Expr::EvalResult Result;
1661   if (!Cond->EvaluateAsInt(Result, getContext()))
1662     return false;  // Not foldable, not integer or not fully evaluatable.
1663 
1664   llvm::APSInt Int = Result.Val.getInt();
1665   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1666     return false;  // Contains a label.
1667 
1668   ResultInt = Int;
1669   return true;
1670 }
1671 
1672 /// Strip parentheses and simplistic logical-NOT operators.
1673 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1674   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1675     if (Op->getOpcode() != UO_LNot)
1676       break;
1677     C = Op->getSubExpr();
1678   }
1679   return C->IgnoreParens();
1680 }
1681 
1682 /// Determine whether the given condition is an instrumentable condition
1683 /// (i.e. no "&&" or "||").
1684 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1685   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1686   return (!BOp || !BOp->isLogicalOp());
1687 }
1688 
1689 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1690 /// increments a profile counter based on the semantics of the given logical
1691 /// operator opcode.  This is used to instrument branch condition coverage for
1692 /// logical operators.
1693 void CodeGenFunction::EmitBranchToCounterBlock(
1694     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1695     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1696     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1697   // If not instrumenting, just emit a branch.
1698   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1699   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1700     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1701 
1702   llvm::BasicBlock *ThenBlock = nullptr;
1703   llvm::BasicBlock *ElseBlock = nullptr;
1704   llvm::BasicBlock *NextBlock = nullptr;
1705 
1706   // Create the block we'll use to increment the appropriate counter.
1707   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1708 
1709   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1710   // means we need to evaluate the condition and increment the counter on TRUE:
1711   //
1712   // if (Cond)
1713   //   goto CounterIncrBlock;
1714   // else
1715   //   goto FalseBlock;
1716   //
1717   // CounterIncrBlock:
1718   //   Counter++;
1719   //   goto TrueBlock;
1720 
1721   if (LOp == BO_LAnd) {
1722     ThenBlock = CounterIncrBlock;
1723     ElseBlock = FalseBlock;
1724     NextBlock = TrueBlock;
1725   }
1726 
1727   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1728   // we need to evaluate the condition and increment the counter on FALSE:
1729   //
1730   // if (Cond)
1731   //   goto TrueBlock;
1732   // else
1733   //   goto CounterIncrBlock;
1734   //
1735   // CounterIncrBlock:
1736   //   Counter++;
1737   //   goto FalseBlock;
1738 
1739   else if (LOp == BO_LOr) {
1740     ThenBlock = TrueBlock;
1741     ElseBlock = CounterIncrBlock;
1742     NextBlock = FalseBlock;
1743   } else {
1744     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1745   }
1746 
1747   // Emit Branch based on condition.
1748   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1749 
1750   // Emit the block containing the counter increment(s).
1751   EmitBlock(CounterIncrBlock);
1752 
1753   // Increment corresponding counter; if index not provided, use Cond as index.
1754   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1755 
1756   // Go to the next block.
1757   EmitBranch(NextBlock);
1758 }
1759 
1760 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1761 /// statement) to the specified blocks.  Based on the condition, this might try
1762 /// to simplify the codegen of the conditional based on the branch.
1763 /// \param LH The value of the likelihood attribute on the True branch.
1764 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1765 /// ConditionalOperator (ternary) through a recursive call for the operator's
1766 /// LHS and RHS nodes.
1767 void CodeGenFunction::EmitBranchOnBoolExpr(
1768     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1769     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1770   Cond = Cond->IgnoreParens();
1771 
1772   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1773     // Handle X && Y in a condition.
1774     if (CondBOp->getOpcode() == BO_LAnd) {
1775       MCDCLogOpStack.push_back(CondBOp);
1776 
1777       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1778       // folded if the case was simple enough.
1779       bool ConstantBool = false;
1780       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1781           ConstantBool) {
1782         // br(1 && X) -> br(X).
1783         incrementProfileCounter(CondBOp);
1784         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1785                                  FalseBlock, TrueCount, LH);
1786         MCDCLogOpStack.pop_back();
1787         return;
1788       }
1789 
1790       // If we have "X && 1", simplify the code to use an uncond branch.
1791       // "X && 0" would have been constant folded to 0.
1792       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1793           ConstantBool) {
1794         // br(X && 1) -> br(X).
1795         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1796                                  FalseBlock, TrueCount, LH, CondBOp);
1797         MCDCLogOpStack.pop_back();
1798         return;
1799       }
1800 
1801       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1802       // want to jump to the FalseBlock.
1803       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1804       // The counter tells us how often we evaluate RHS, and all of TrueCount
1805       // can be propagated to that branch.
1806       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1807 
1808       ConditionalEvaluation eval(*this);
1809       {
1810         ApplyDebugLocation DL(*this, Cond);
1811         // Propagate the likelihood attribute like __builtin_expect
1812         // __builtin_expect(X && Y, 1) -> X and Y are likely
1813         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1814         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1815                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1816         EmitBlock(LHSTrue);
1817       }
1818 
1819       incrementProfileCounter(CondBOp);
1820       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1821 
1822       // Any temporaries created here are conditional.
1823       eval.begin(*this);
1824       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1825                                FalseBlock, TrueCount, LH);
1826       eval.end(*this);
1827       MCDCLogOpStack.pop_back();
1828       return;
1829     }
1830 
1831     if (CondBOp->getOpcode() == BO_LOr) {
1832       MCDCLogOpStack.push_back(CondBOp);
1833 
1834       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1835       // folded if the case was simple enough.
1836       bool ConstantBool = false;
1837       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1838           !ConstantBool) {
1839         // br(0 || X) -> br(X).
1840         incrementProfileCounter(CondBOp);
1841         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1842                                  FalseBlock, TrueCount, LH);
1843         MCDCLogOpStack.pop_back();
1844         return;
1845       }
1846 
1847       // If we have "X || 0", simplify the code to use an uncond branch.
1848       // "X || 1" would have been constant folded to 1.
1849       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1850           !ConstantBool) {
1851         // br(X || 0) -> br(X).
1852         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1853                                  FalseBlock, TrueCount, LH, CondBOp);
1854         MCDCLogOpStack.pop_back();
1855         return;
1856       }
1857       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1858       // want to jump to the TrueBlock.
1859       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1860       // We have the count for entry to the RHS and for the whole expression
1861       // being true, so we can divy up True count between the short circuit and
1862       // the RHS.
1863       uint64_t LHSCount =
1864           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1865       uint64_t RHSCount = TrueCount - LHSCount;
1866 
1867       ConditionalEvaluation eval(*this);
1868       {
1869         // Propagate the likelihood attribute like __builtin_expect
1870         // __builtin_expect(X || Y, 1) -> only Y is likely
1871         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1872         ApplyDebugLocation DL(*this, Cond);
1873         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1874                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1875         EmitBlock(LHSFalse);
1876       }
1877 
1878       incrementProfileCounter(CondBOp);
1879       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1880 
1881       // Any temporaries created here are conditional.
1882       eval.begin(*this);
1883       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1884                                RHSCount, LH);
1885 
1886       eval.end(*this);
1887       MCDCLogOpStack.pop_back();
1888       return;
1889     }
1890   }
1891 
1892   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1893     // br(!x, t, f) -> br(x, f, t)
1894     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1895     // LNot is taken as part of the condition for simplicity, and changing its
1896     // sense negatively impacts test vector tracking.
1897     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1898                          CGM.getCodeGenOpts().MCDCCoverage &&
1899                          isInstrumentedCondition(Cond);
1900     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1901       // Negate the count.
1902       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1903       // The values of the enum are chosen to make this negation possible.
1904       LH = static_cast<Stmt::Likelihood>(-LH);
1905       // Negate the condition and swap the destination blocks.
1906       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1907                                   FalseCount, LH);
1908     }
1909   }
1910 
1911   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1912     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1913     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1914     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1915 
1916     // The ConditionalOperator itself has no likelihood information for its
1917     // true and false branches. This matches the behavior of __builtin_expect.
1918     ConditionalEvaluation cond(*this);
1919     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1920                          getProfileCount(CondOp), Stmt::LH_None);
1921 
1922     // When computing PGO branch weights, we only know the overall count for
1923     // the true block. This code is essentially doing tail duplication of the
1924     // naive code-gen, introducing new edges for which counts are not
1925     // available. Divide the counts proportionally between the LHS and RHS of
1926     // the conditional operator.
1927     uint64_t LHSScaledTrueCount = 0;
1928     if (TrueCount) {
1929       double LHSRatio =
1930           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1931       LHSScaledTrueCount = TrueCount * LHSRatio;
1932     }
1933 
1934     cond.begin(*this);
1935     EmitBlock(LHSBlock);
1936     incrementProfileCounter(CondOp);
1937     {
1938       ApplyDebugLocation DL(*this, Cond);
1939       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1940                            LHSScaledTrueCount, LH, CondOp);
1941     }
1942     cond.end(*this);
1943 
1944     cond.begin(*this);
1945     EmitBlock(RHSBlock);
1946     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1947                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1948     cond.end(*this);
1949 
1950     return;
1951   }
1952 
1953   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1954     // Conditional operator handling can give us a throw expression as a
1955     // condition for a case like:
1956     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1957     // Fold this to:
1958     //   br(c, throw x, br(y, t, f))
1959     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1960     return;
1961   }
1962 
1963   // Emit the code with the fully general case.
1964   llvm::Value *CondV;
1965   {
1966     ApplyDebugLocation DL(*this, Cond);
1967     CondV = EvaluateExprAsBool(Cond);
1968   }
1969 
1970   // If not at the top of the logical operator nest, update MCDC temp with the
1971   // boolean result of the evaluated condition.
1972   if (!MCDCLogOpStack.empty()) {
1973     const Expr *MCDCBaseExpr = Cond;
1974     // When a nested ConditionalOperator (ternary) is encountered in a boolean
1975     // expression, MC/DC tracks the result of the ternary, and this is tied to
1976     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
1977     // this is the case, the ConditionalOperator expression is passed through
1978     // the ConditionalOp parameter and then used as the MCDC base expression.
1979     if (ConditionalOp)
1980       MCDCBaseExpr = ConditionalOp;
1981 
1982     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
1983   }
1984 
1985   llvm::MDNode *Weights = nullptr;
1986   llvm::MDNode *Unpredictable = nullptr;
1987 
1988   // If the branch has a condition wrapped by __builtin_unpredictable,
1989   // create metadata that specifies that the branch is unpredictable.
1990   // Don't bother if not optimizing because that metadata would not be used.
1991   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1992   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1993     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1994     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1995       llvm::MDBuilder MDHelper(getLLVMContext());
1996       Unpredictable = MDHelper.createUnpredictable();
1997     }
1998   }
1999 
2000   // If there is a Likelihood knowledge for the cond, lower it.
2001   // Note that if not optimizing this won't emit anything.
2002   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2003   if (CondV != NewCondV)
2004     CondV = NewCondV;
2005   else {
2006     // Otherwise, lower profile counts. Note that we do this even at -O0.
2007     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2008     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2009   }
2010 
2011   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2012 }
2013 
2014 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2015 /// specified stmt yet.
2016 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2017   CGM.ErrorUnsupported(S, Type);
2018 }
2019 
2020 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2021 /// variable-length array whose elements have a non-zero bit-pattern.
2022 ///
2023 /// \param baseType the inner-most element type of the array
2024 /// \param src - a char* pointing to the bit-pattern for a single
2025 /// base element of the array
2026 /// \param sizeInChars - the total size of the VLA, in chars
2027 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2028                                Address dest, Address src,
2029                                llvm::Value *sizeInChars) {
2030   CGBuilderTy &Builder = CGF.Builder;
2031 
2032   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2033   llvm::Value *baseSizeInChars
2034     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2035 
2036   Address begin = dest.withElementType(CGF.Int8Ty);
2037   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2038                                                begin.emitRawPointer(CGF),
2039                                                sizeInChars, "vla.end");
2040 
2041   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2042   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2043   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2044 
2045   // Make a loop over the VLA.  C99 guarantees that the VLA element
2046   // count must be nonzero.
2047   CGF.EmitBlock(loopBB);
2048 
2049   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2050   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2051 
2052   CharUnits curAlign =
2053     dest.getAlignment().alignmentOfArrayElement(baseSize);
2054 
2055   // memcpy the individual element bit-pattern.
2056   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2057                        /*volatile*/ false);
2058 
2059   // Go to the next element.
2060   llvm::Value *next =
2061     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2062 
2063   // Leave if that's the end of the VLA.
2064   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2065   Builder.CreateCondBr(done, contBB, loopBB);
2066   cur->addIncoming(next, loopBB);
2067 
2068   CGF.EmitBlock(contBB);
2069 }
2070 
2071 void
2072 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2073   // Ignore empty classes in C++.
2074   if (getLangOpts().CPlusPlus) {
2075     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2076       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2077         return;
2078     }
2079   }
2080 
2081   if (DestPtr.getElementType() != Int8Ty)
2082     DestPtr = DestPtr.withElementType(Int8Ty);
2083 
2084   // Get size and alignment info for this aggregate.
2085   CharUnits size = getContext().getTypeSizeInChars(Ty);
2086 
2087   llvm::Value *SizeVal;
2088   const VariableArrayType *vla;
2089 
2090   // Don't bother emitting a zero-byte memset.
2091   if (size.isZero()) {
2092     // But note that getTypeInfo returns 0 for a VLA.
2093     if (const VariableArrayType *vlaType =
2094           dyn_cast_or_null<VariableArrayType>(
2095                                           getContext().getAsArrayType(Ty))) {
2096       auto VlaSize = getVLASize(vlaType);
2097       SizeVal = VlaSize.NumElts;
2098       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2099       if (!eltSize.isOne())
2100         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2101       vla = vlaType;
2102     } else {
2103       return;
2104     }
2105   } else {
2106     SizeVal = CGM.getSize(size);
2107     vla = nullptr;
2108   }
2109 
2110   // If the type contains a pointer to data member we can't memset it to zero.
2111   // Instead, create a null constant and copy it to the destination.
2112   // TODO: there are other patterns besides zero that we can usefully memset,
2113   // like -1, which happens to be the pattern used by member-pointers.
2114   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2115     // For a VLA, emit a single element, then splat that over the VLA.
2116     if (vla) Ty = getContext().getBaseElementType(vla);
2117 
2118     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2119 
2120     llvm::GlobalVariable *NullVariable =
2121       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2122                                /*isConstant=*/true,
2123                                llvm::GlobalVariable::PrivateLinkage,
2124                                NullConstant, Twine());
2125     CharUnits NullAlign = DestPtr.getAlignment();
2126     NullVariable->setAlignment(NullAlign.getAsAlign());
2127     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2128 
2129     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2130 
2131     // Get and call the appropriate llvm.memcpy overload.
2132     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2133     return;
2134   }
2135 
2136   // Otherwise, just memset the whole thing to zero.  This is legal
2137   // because in LLVM, all default initializers (other than the ones we just
2138   // handled above) are guaranteed to have a bit pattern of all zeros.
2139   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2140 }
2141 
2142 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2143   // Make sure that there is a block for the indirect goto.
2144   if (!IndirectBranch)
2145     GetIndirectGotoBlock();
2146 
2147   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2148 
2149   // Make sure the indirect branch includes all of the address-taken blocks.
2150   IndirectBranch->addDestination(BB);
2151   return llvm::BlockAddress::get(CurFn, BB);
2152 }
2153 
2154 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2155   // If we already made the indirect branch for indirect goto, return its block.
2156   if (IndirectBranch) return IndirectBranch->getParent();
2157 
2158   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2159 
2160   // Create the PHI node that indirect gotos will add entries to.
2161   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2162                                               "indirect.goto.dest");
2163 
2164   // Create the indirect branch instruction.
2165   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2166   return IndirectBranch->getParent();
2167 }
2168 
2169 /// Computes the length of an array in elements, as well as the base
2170 /// element type and a properly-typed first element pointer.
2171 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2172                                               QualType &baseType,
2173                                               Address &addr) {
2174   const ArrayType *arrayType = origArrayType;
2175 
2176   // If it's a VLA, we have to load the stored size.  Note that
2177   // this is the size of the VLA in bytes, not its size in elements.
2178   llvm::Value *numVLAElements = nullptr;
2179   if (isa<VariableArrayType>(arrayType)) {
2180     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2181 
2182     // Walk into all VLAs.  This doesn't require changes to addr,
2183     // which has type T* where T is the first non-VLA element type.
2184     do {
2185       QualType elementType = arrayType->getElementType();
2186       arrayType = getContext().getAsArrayType(elementType);
2187 
2188       // If we only have VLA components, 'addr' requires no adjustment.
2189       if (!arrayType) {
2190         baseType = elementType;
2191         return numVLAElements;
2192       }
2193     } while (isa<VariableArrayType>(arrayType));
2194 
2195     // We get out here only if we find a constant array type
2196     // inside the VLA.
2197   }
2198 
2199   // We have some number of constant-length arrays, so addr should
2200   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2201   // down to the first element of addr.
2202   SmallVector<llvm::Value*, 8> gepIndices;
2203 
2204   // GEP down to the array type.
2205   llvm::ConstantInt *zero = Builder.getInt32(0);
2206   gepIndices.push_back(zero);
2207 
2208   uint64_t countFromCLAs = 1;
2209   QualType eltType;
2210 
2211   llvm::ArrayType *llvmArrayType =
2212     dyn_cast<llvm::ArrayType>(addr.getElementType());
2213   while (llvmArrayType) {
2214     assert(isa<ConstantArrayType>(arrayType));
2215     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2216            llvmArrayType->getNumElements());
2217 
2218     gepIndices.push_back(zero);
2219     countFromCLAs *= llvmArrayType->getNumElements();
2220     eltType = arrayType->getElementType();
2221 
2222     llvmArrayType =
2223       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2224     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2225     assert((!llvmArrayType || arrayType) &&
2226            "LLVM and Clang types are out-of-synch");
2227   }
2228 
2229   if (arrayType) {
2230     // From this point onwards, the Clang array type has been emitted
2231     // as some other type (probably a packed struct). Compute the array
2232     // size, and just emit the 'begin' expression as a bitcast.
2233     while (arrayType) {
2234       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2235       eltType = arrayType->getElementType();
2236       arrayType = getContext().getAsArrayType(eltType);
2237     }
2238 
2239     llvm::Type *baseType = ConvertType(eltType);
2240     addr = addr.withElementType(baseType);
2241   } else {
2242     // Create the actual GEP.
2243     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2244                                              addr.emitRawPointer(*this),
2245                                              gepIndices, "array.begin"),
2246                    ConvertTypeForMem(eltType), addr.getAlignment());
2247   }
2248 
2249   baseType = eltType;
2250 
2251   llvm::Value *numElements
2252     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2253 
2254   // If we had any VLA dimensions, factor them in.
2255   if (numVLAElements)
2256     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2257 
2258   return numElements;
2259 }
2260 
2261 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2262   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2263   assert(vla && "type was not a variable array type!");
2264   return getVLASize(vla);
2265 }
2266 
2267 CodeGenFunction::VlaSizePair
2268 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2269   // The number of elements so far; always size_t.
2270   llvm::Value *numElements = nullptr;
2271 
2272   QualType elementType;
2273   do {
2274     elementType = type->getElementType();
2275     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2276     assert(vlaSize && "no size for VLA!");
2277     assert(vlaSize->getType() == SizeTy);
2278 
2279     if (!numElements) {
2280       numElements = vlaSize;
2281     } else {
2282       // It's undefined behavior if this wraps around, so mark it that way.
2283       // FIXME: Teach -fsanitize=undefined to trap this.
2284       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2285     }
2286   } while ((type = getContext().getAsVariableArrayType(elementType)));
2287 
2288   return { numElements, elementType };
2289 }
2290 
2291 CodeGenFunction::VlaSizePair
2292 CodeGenFunction::getVLAElements1D(QualType type) {
2293   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2294   assert(vla && "type was not a variable array type!");
2295   return getVLAElements1D(vla);
2296 }
2297 
2298 CodeGenFunction::VlaSizePair
2299 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2300   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2301   assert(VlaSize && "no size for VLA!");
2302   assert(VlaSize->getType() == SizeTy);
2303   return { VlaSize, Vla->getElementType() };
2304 }
2305 
2306 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2307   assert(type->isVariablyModifiedType() &&
2308          "Must pass variably modified type to EmitVLASizes!");
2309 
2310   EnsureInsertPoint();
2311 
2312   // We're going to walk down into the type and look for VLA
2313   // expressions.
2314   do {
2315     assert(type->isVariablyModifiedType());
2316 
2317     const Type *ty = type.getTypePtr();
2318     switch (ty->getTypeClass()) {
2319 
2320 #define TYPE(Class, Base)
2321 #define ABSTRACT_TYPE(Class, Base)
2322 #define NON_CANONICAL_TYPE(Class, Base)
2323 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2324 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2325 #include "clang/AST/TypeNodes.inc"
2326       llvm_unreachable("unexpected dependent type!");
2327 
2328     // These types are never variably-modified.
2329     case Type::Builtin:
2330     case Type::Complex:
2331     case Type::Vector:
2332     case Type::ExtVector:
2333     case Type::ConstantMatrix:
2334     case Type::Record:
2335     case Type::Enum:
2336     case Type::Using:
2337     case Type::TemplateSpecialization:
2338     case Type::ObjCTypeParam:
2339     case Type::ObjCObject:
2340     case Type::ObjCInterface:
2341     case Type::ObjCObjectPointer:
2342     case Type::BitInt:
2343       llvm_unreachable("type class is never variably-modified!");
2344 
2345     case Type::Elaborated:
2346       type = cast<ElaboratedType>(ty)->getNamedType();
2347       break;
2348 
2349     case Type::Adjusted:
2350       type = cast<AdjustedType>(ty)->getAdjustedType();
2351       break;
2352 
2353     case Type::Decayed:
2354       type = cast<DecayedType>(ty)->getPointeeType();
2355       break;
2356 
2357     case Type::Pointer:
2358       type = cast<PointerType>(ty)->getPointeeType();
2359       break;
2360 
2361     case Type::BlockPointer:
2362       type = cast<BlockPointerType>(ty)->getPointeeType();
2363       break;
2364 
2365     case Type::LValueReference:
2366     case Type::RValueReference:
2367       type = cast<ReferenceType>(ty)->getPointeeType();
2368       break;
2369 
2370     case Type::MemberPointer:
2371       type = cast<MemberPointerType>(ty)->getPointeeType();
2372       break;
2373 
2374     case Type::ArrayParameter:
2375     case Type::ConstantArray:
2376     case Type::IncompleteArray:
2377       // Losing element qualification here is fine.
2378       type = cast<ArrayType>(ty)->getElementType();
2379       break;
2380 
2381     case Type::VariableArray: {
2382       // Losing element qualification here is fine.
2383       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2384 
2385       // Unknown size indication requires no size computation.
2386       // Otherwise, evaluate and record it.
2387       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2388         // It's possible that we might have emitted this already,
2389         // e.g. with a typedef and a pointer to it.
2390         llvm::Value *&entry = VLASizeMap[sizeExpr];
2391         if (!entry) {
2392           llvm::Value *size = EmitScalarExpr(sizeExpr);
2393 
2394           // C11 6.7.6.2p5:
2395           //   If the size is an expression that is not an integer constant
2396           //   expression [...] each time it is evaluated it shall have a value
2397           //   greater than zero.
2398           if (SanOpts.has(SanitizerKind::VLABound)) {
2399             SanitizerScope SanScope(this);
2400             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2401             clang::QualType SEType = sizeExpr->getType();
2402             llvm::Value *CheckCondition =
2403                 SEType->isSignedIntegerType()
2404                     ? Builder.CreateICmpSGT(size, Zero)
2405                     : Builder.CreateICmpUGT(size, Zero);
2406             llvm::Constant *StaticArgs[] = {
2407                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2408                 EmitCheckTypeDescriptor(SEType)};
2409             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2410                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2411           }
2412 
2413           // Always zexting here would be wrong if it weren't
2414           // undefined behavior to have a negative bound.
2415           // FIXME: What about when size's type is larger than size_t?
2416           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2417         }
2418       }
2419       type = vat->getElementType();
2420       break;
2421     }
2422 
2423     case Type::FunctionProto:
2424     case Type::FunctionNoProto:
2425       type = cast<FunctionType>(ty)->getReturnType();
2426       break;
2427 
2428     case Type::Paren:
2429     case Type::TypeOf:
2430     case Type::UnaryTransform:
2431     case Type::Attributed:
2432     case Type::BTFTagAttributed:
2433     case Type::SubstTemplateTypeParm:
2434     case Type::MacroQualified:
2435     case Type::CountAttributed:
2436       // Keep walking after single level desugaring.
2437       type = type.getSingleStepDesugaredType(getContext());
2438       break;
2439 
2440     case Type::Typedef:
2441     case Type::Decltype:
2442     case Type::Auto:
2443     case Type::DeducedTemplateSpecialization:
2444     case Type::PackIndexing:
2445       // Stop walking: nothing to do.
2446       return;
2447 
2448     case Type::TypeOfExpr:
2449       // Stop walking: emit typeof expression.
2450       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2451       return;
2452 
2453     case Type::Atomic:
2454       type = cast<AtomicType>(ty)->getValueType();
2455       break;
2456 
2457     case Type::Pipe:
2458       type = cast<PipeType>(ty)->getElementType();
2459       break;
2460     }
2461   } while (type->isVariablyModifiedType());
2462 }
2463 
2464 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2465   if (getContext().getBuiltinVaListType()->isArrayType())
2466     return EmitPointerWithAlignment(E);
2467   return EmitLValue(E).getAddress(*this);
2468 }
2469 
2470 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2471   return EmitLValue(E).getAddress(*this);
2472 }
2473 
2474 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2475                                               const APValue &Init) {
2476   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2477   if (CGDebugInfo *Dbg = getDebugInfo())
2478     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2479       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2480 }
2481 
2482 CodeGenFunction::PeepholeProtection
2483 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2484   // At the moment, the only aggressive peephole we do in IR gen
2485   // is trunc(zext) folding, but if we add more, we can easily
2486   // extend this protection.
2487 
2488   if (!rvalue.isScalar()) return PeepholeProtection();
2489   llvm::Value *value = rvalue.getScalarVal();
2490   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2491 
2492   // Just make an extra bitcast.
2493   assert(HaveInsertPoint());
2494   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2495                                                   Builder.GetInsertBlock());
2496 
2497   PeepholeProtection protection;
2498   protection.Inst = inst;
2499   return protection;
2500 }
2501 
2502 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2503   if (!protection.Inst) return;
2504 
2505   // In theory, we could try to duplicate the peepholes now, but whatever.
2506   protection.Inst->eraseFromParent();
2507 }
2508 
2509 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2510                                               QualType Ty, SourceLocation Loc,
2511                                               SourceLocation AssumptionLoc,
2512                                               llvm::Value *Alignment,
2513                                               llvm::Value *OffsetValue) {
2514   if (Alignment->getType() != IntPtrTy)
2515     Alignment =
2516         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2517   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2518     OffsetValue =
2519         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2520   llvm::Value *TheCheck = nullptr;
2521   if (SanOpts.has(SanitizerKind::Alignment)) {
2522     llvm::Value *PtrIntValue =
2523         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2524 
2525     if (OffsetValue) {
2526       bool IsOffsetZero = false;
2527       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2528         IsOffsetZero = CI->isZero();
2529 
2530       if (!IsOffsetZero)
2531         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2532     }
2533 
2534     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2535     llvm::Value *Mask =
2536         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2537     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2538     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2539   }
2540   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2541       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2542 
2543   if (!SanOpts.has(SanitizerKind::Alignment))
2544     return;
2545   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2546                                OffsetValue, TheCheck, Assumption);
2547 }
2548 
2549 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2550                                               const Expr *E,
2551                                               SourceLocation AssumptionLoc,
2552                                               llvm::Value *Alignment,
2553                                               llvm::Value *OffsetValue) {
2554   QualType Ty = E->getType();
2555   SourceLocation Loc = E->getExprLoc();
2556 
2557   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2558                           OffsetValue);
2559 }
2560 
2561 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2562                                                  llvm::Value *AnnotatedVal,
2563                                                  StringRef AnnotationStr,
2564                                                  SourceLocation Location,
2565                                                  const AnnotateAttr *Attr) {
2566   SmallVector<llvm::Value *, 5> Args = {
2567       AnnotatedVal,
2568       CGM.EmitAnnotationString(AnnotationStr),
2569       CGM.EmitAnnotationUnit(Location),
2570       CGM.EmitAnnotationLineNo(Location),
2571   };
2572   if (Attr)
2573     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2574   return Builder.CreateCall(AnnotationFn, Args);
2575 }
2576 
2577 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2578   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2579   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2580     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2581                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2582                        V, I->getAnnotation(), D->getLocation(), I);
2583 }
2584 
2585 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2586                                               Address Addr) {
2587   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2588   llvm::Value *V = Addr.emitRawPointer(*this);
2589   llvm::Type *VTy = V->getType();
2590   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2591   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2592   llvm::PointerType *IntrinTy =
2593       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2594   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2595                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2596 
2597   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2598     // FIXME Always emit the cast inst so we can differentiate between
2599     // annotation on the first field of a struct and annotation on the struct
2600     // itself.
2601     if (VTy != IntrinTy)
2602       V = Builder.CreateBitCast(V, IntrinTy);
2603     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2604     V = Builder.CreateBitCast(V, VTy);
2605   }
2606 
2607   return Address(V, Addr.getElementType(), Addr.getAlignment());
2608 }
2609 
2610 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2611 
2612 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2613     : CGF(CGF) {
2614   assert(!CGF->IsSanitizerScope);
2615   CGF->IsSanitizerScope = true;
2616 }
2617 
2618 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2619   CGF->IsSanitizerScope = false;
2620 }
2621 
2622 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2623                                    const llvm::Twine &Name,
2624                                    llvm::BasicBlock *BB,
2625                                    llvm::BasicBlock::iterator InsertPt) const {
2626   LoopStack.InsertHelper(I);
2627   if (IsSanitizerScope)
2628     I->setNoSanitizeMetadata();
2629 }
2630 
2631 void CGBuilderInserter::InsertHelper(
2632     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2633     llvm::BasicBlock::iterator InsertPt) const {
2634   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2635   if (CGF)
2636     CGF->InsertHelper(I, Name, BB, InsertPt);
2637 }
2638 
2639 // Emits an error if we don't have a valid set of target features for the
2640 // called function.
2641 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2642                                           const FunctionDecl *TargetDecl) {
2643   // SemaChecking cannot handle below x86 builtins because they have different
2644   // parameter ranges with different TargetAttribute of caller.
2645   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2646     unsigned BuiltinID = TargetDecl->getBuiltinID();
2647     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2648         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2649         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2650         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2651       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2652       llvm::StringMap<bool> TargetFetureMap;
2653       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2654       llvm::APSInt Result =
2655           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2656       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2657         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2658             << TargetDecl->getDeclName() << "avx";
2659     }
2660   }
2661   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2662 }
2663 
2664 // Emits an error if we don't have a valid set of target features for the
2665 // called function.
2666 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2667                                           const FunctionDecl *TargetDecl) {
2668   // Early exit if this is an indirect call.
2669   if (!TargetDecl)
2670     return;
2671 
2672   // Get the current enclosing function if it exists. If it doesn't
2673   // we can't check the target features anyhow.
2674   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2675   if (!FD)
2676     return;
2677 
2678   // Grab the required features for the call. For a builtin this is listed in
2679   // the td file with the default cpu, for an always_inline function this is any
2680   // listed cpu and any listed features.
2681   unsigned BuiltinID = TargetDecl->getBuiltinID();
2682   std::string MissingFeature;
2683   llvm::StringMap<bool> CallerFeatureMap;
2684   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2685   // When compiling in HipStdPar mode we have to be conservative in rejecting
2686   // target specific features in the FE, and defer the possible error to the
2687   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2688   // referenced by an accelerator executable function, we emit an error.
2689   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2690   if (BuiltinID) {
2691     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2692     if (!Builtin::evaluateRequiredTargetFeatures(
2693         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2694       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2695           << TargetDecl->getDeclName()
2696           << FeatureList;
2697     }
2698   } else if (!TargetDecl->isMultiVersion() &&
2699              TargetDecl->hasAttr<TargetAttr>()) {
2700     // Get the required features for the callee.
2701 
2702     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2703     ParsedTargetAttr ParsedAttr =
2704         CGM.getContext().filterFunctionTargetAttrs(TD);
2705 
2706     SmallVector<StringRef, 1> ReqFeatures;
2707     llvm::StringMap<bool> CalleeFeatureMap;
2708     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2709 
2710     for (const auto &F : ParsedAttr.Features) {
2711       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2712         ReqFeatures.push_back(StringRef(F).substr(1));
2713     }
2714 
2715     for (const auto &F : CalleeFeatureMap) {
2716       // Only positive features are "required".
2717       if (F.getValue())
2718         ReqFeatures.push_back(F.getKey());
2719     }
2720     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2721       if (!CallerFeatureMap.lookup(Feature)) {
2722         MissingFeature = Feature.str();
2723         return false;
2724       }
2725       return true;
2726     }) && !IsHipStdPar)
2727       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2728           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2729   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2730     llvm::StringMap<bool> CalleeFeatureMap;
2731     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2732 
2733     for (const auto &F : CalleeFeatureMap) {
2734       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2735                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2736           !IsHipStdPar)
2737         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2738             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2739     }
2740   }
2741 }
2742 
2743 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2744   if (!CGM.getCodeGenOpts().SanitizeStats)
2745     return;
2746 
2747   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2748   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2749   CGM.getSanStats().create(IRB, SSK);
2750 }
2751 
2752 void CodeGenFunction::EmitKCFIOperandBundle(
2753     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2754   const FunctionProtoType *FP =
2755       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2756   if (FP)
2757     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2758 }
2759 
2760 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2761     const MultiVersionResolverOption &RO) {
2762   llvm::SmallVector<StringRef, 8> CondFeatures;
2763   for (const StringRef &Feature : RO.Conditions.Features) {
2764     // Optimize the Function Multi Versioning resolver by creating conditions
2765     // only for features that are not enabled in the target. The exception is
2766     // for features whose extension instructions are executed as NOP on targets
2767     // without extension support.
2768     if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" ||
2769         Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" ||
2770         Feature == "dgh")
2771       CondFeatures.push_back(Feature);
2772   }
2773   if (!CondFeatures.empty()) {
2774     return EmitAArch64CpuSupports(CondFeatures);
2775   }
2776   return nullptr;
2777 }
2778 
2779 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2780     const MultiVersionResolverOption &RO) {
2781   llvm::Value *Condition = nullptr;
2782 
2783   if (!RO.Conditions.Architecture.empty()) {
2784     StringRef Arch = RO.Conditions.Architecture;
2785     // If arch= specifies an x86-64 micro-architecture level, test the feature
2786     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2787     if (Arch.starts_with("x86-64"))
2788       Condition = EmitX86CpuSupports({Arch});
2789     else
2790       Condition = EmitX86CpuIs(Arch);
2791   }
2792 
2793   if (!RO.Conditions.Features.empty()) {
2794     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2795     Condition =
2796         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2797   }
2798   return Condition;
2799 }
2800 
2801 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2802                                              llvm::Function *Resolver,
2803                                              CGBuilderTy &Builder,
2804                                              llvm::Function *FuncToReturn,
2805                                              bool SupportsIFunc) {
2806   if (SupportsIFunc) {
2807     Builder.CreateRet(FuncToReturn);
2808     return;
2809   }
2810 
2811   llvm::SmallVector<llvm::Value *, 10> Args(
2812       llvm::make_pointer_range(Resolver->args()));
2813 
2814   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2815   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2816 
2817   if (Resolver->getReturnType()->isVoidTy())
2818     Builder.CreateRetVoid();
2819   else
2820     Builder.CreateRet(Result);
2821 }
2822 
2823 void CodeGenFunction::EmitMultiVersionResolver(
2824     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2825 
2826   llvm::Triple::ArchType ArchType =
2827       getContext().getTargetInfo().getTriple().getArch();
2828 
2829   switch (ArchType) {
2830   case llvm::Triple::x86:
2831   case llvm::Triple::x86_64:
2832     EmitX86MultiVersionResolver(Resolver, Options);
2833     return;
2834   case llvm::Triple::aarch64:
2835     EmitAArch64MultiVersionResolver(Resolver, Options);
2836     return;
2837 
2838   default:
2839     assert(false && "Only implemented for x86 and AArch64 targets");
2840   }
2841 }
2842 
2843 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2844     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2845   assert(!Options.empty() && "No multiversion resolver options found");
2846   assert(Options.back().Conditions.Features.size() == 0 &&
2847          "Default case must be last");
2848   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2849   assert(SupportsIFunc &&
2850          "Multiversion resolver requires target IFUNC support");
2851   bool AArch64CpuInitialized = false;
2852   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2853 
2854   for (const MultiVersionResolverOption &RO : Options) {
2855     Builder.SetInsertPoint(CurBlock);
2856     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2857 
2858     // The 'default' or 'all features enabled' case.
2859     if (!Condition) {
2860       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2861                                        SupportsIFunc);
2862       return;
2863     }
2864 
2865     if (!AArch64CpuInitialized) {
2866       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2867       EmitAArch64CpuInit();
2868       AArch64CpuInitialized = true;
2869       Builder.SetInsertPoint(CurBlock);
2870     }
2871 
2872     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2873     CGBuilderTy RetBuilder(*this, RetBlock);
2874     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2875                                      SupportsIFunc);
2876     CurBlock = createBasicBlock("resolver_else", Resolver);
2877     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2878   }
2879 
2880   // If no default, emit an unreachable.
2881   Builder.SetInsertPoint(CurBlock);
2882   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2883   TrapCall->setDoesNotReturn();
2884   TrapCall->setDoesNotThrow();
2885   Builder.CreateUnreachable();
2886   Builder.ClearInsertionPoint();
2887 }
2888 
2889 void CodeGenFunction::EmitX86MultiVersionResolver(
2890     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2891 
2892   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2893 
2894   // Main function's basic block.
2895   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2896   Builder.SetInsertPoint(CurBlock);
2897   EmitX86CpuInit();
2898 
2899   for (const MultiVersionResolverOption &RO : Options) {
2900     Builder.SetInsertPoint(CurBlock);
2901     llvm::Value *Condition = FormX86ResolverCondition(RO);
2902 
2903     // The 'default' or 'generic' case.
2904     if (!Condition) {
2905       assert(&RO == Options.end() - 1 &&
2906              "Default or Generic case must be last");
2907       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2908                                        SupportsIFunc);
2909       return;
2910     }
2911 
2912     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2913     CGBuilderTy RetBuilder(*this, RetBlock);
2914     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2915                                      SupportsIFunc);
2916     CurBlock = createBasicBlock("resolver_else", Resolver);
2917     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2918   }
2919 
2920   // If no generic/default, emit an unreachable.
2921   Builder.SetInsertPoint(CurBlock);
2922   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2923   TrapCall->setDoesNotReturn();
2924   TrapCall->setDoesNotThrow();
2925   Builder.CreateUnreachable();
2926   Builder.ClearInsertionPoint();
2927 }
2928 
2929 // Loc - where the diagnostic will point, where in the source code this
2930 //  alignment has failed.
2931 // SecondaryLoc - if present (will be present if sufficiently different from
2932 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2933 //  It should be the location where the __attribute__((assume_aligned))
2934 //  was written e.g.
2935 void CodeGenFunction::emitAlignmentAssumptionCheck(
2936     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2937     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2938     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2939     llvm::Instruction *Assumption) {
2940   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2941          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2942              llvm::Intrinsic::getDeclaration(
2943                  Builder.GetInsertBlock()->getParent()->getParent(),
2944                  llvm::Intrinsic::assume) &&
2945          "Assumption should be a call to llvm.assume().");
2946   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2947          "Assumption should be the last instruction of the basic block, "
2948          "since the basic block is still being generated.");
2949 
2950   if (!SanOpts.has(SanitizerKind::Alignment))
2951     return;
2952 
2953   // Don't check pointers to volatile data. The behavior here is implementation-
2954   // defined.
2955   if (Ty->getPointeeType().isVolatileQualified())
2956     return;
2957 
2958   // We need to temorairly remove the assumption so we can insert the
2959   // sanitizer check before it, else the check will be dropped by optimizations.
2960   Assumption->removeFromParent();
2961 
2962   {
2963     SanitizerScope SanScope(this);
2964 
2965     if (!OffsetValue)
2966       OffsetValue = Builder.getInt1(false); // no offset.
2967 
2968     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2969                                     EmitCheckSourceLocation(SecondaryLoc),
2970                                     EmitCheckTypeDescriptor(Ty)};
2971     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2972                                   EmitCheckValue(Alignment),
2973                                   EmitCheckValue(OffsetValue)};
2974     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2975               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2976   }
2977 
2978   // We are now in the (new, empty) "cont" basic block.
2979   // Reintroduce the assumption.
2980   Builder.Insert(Assumption);
2981   // FIXME: Assumption still has it's original basic block as it's Parent.
2982 }
2983 
2984 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2985   if (CGDebugInfo *DI = getDebugInfo())
2986     return DI->SourceLocToDebugLoc(Location);
2987 
2988   return llvm::DebugLoc();
2989 }
2990 
2991 llvm::Value *
2992 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2993                                                       Stmt::Likelihood LH) {
2994   switch (LH) {
2995   case Stmt::LH_None:
2996     return Cond;
2997   case Stmt::LH_Likely:
2998   case Stmt::LH_Unlikely:
2999     // Don't generate llvm.expect on -O0 as the backend won't use it for
3000     // anything.
3001     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3002       return Cond;
3003     llvm::Type *CondTy = Cond->getType();
3004     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3005     llvm::Function *FnExpect =
3006         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3007     llvm::Value *ExpectedValueOfCond =
3008         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3009     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3010                               Cond->getName() + ".expval");
3011   }
3012   llvm_unreachable("Unknown Likelihood");
3013 }
3014 
3015 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3016                                                     unsigned NumElementsDst,
3017                                                     const llvm::Twine &Name) {
3018   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3019   unsigned NumElementsSrc = SrcTy->getNumElements();
3020   if (NumElementsSrc == NumElementsDst)
3021     return SrcVec;
3022 
3023   std::vector<int> ShuffleMask(NumElementsDst, -1);
3024   for (unsigned MaskIdx = 0;
3025        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3026     ShuffleMask[MaskIdx] = MaskIdx;
3027 
3028   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3029 }
3030