1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 if (ShouldSkipSanitizerInstrumentation()) 387 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 388 389 // Emit debug descriptor for function end. 390 if (CGDebugInfo *DI = getDebugInfo()) 391 DI->EmitFunctionEnd(Builder, CurFn); 392 393 // Reset the debug location to that of the simple 'return' expression, if any 394 // rather than that of the end of the function's scope '}'. 395 ApplyDebugLocation AL(*this, Loc); 396 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 397 EmitEndEHSpec(CurCodeDecl); 398 399 assert(EHStack.empty() && 400 "did not remove all scopes from cleanup stack!"); 401 402 // If someone did an indirect goto, emit the indirect goto block at the end of 403 // the function. 404 if (IndirectBranch) { 405 EmitBlock(IndirectBranch->getParent()); 406 Builder.ClearInsertionPoint(); 407 } 408 409 // If some of our locals escaped, insert a call to llvm.localescape in the 410 // entry block. 411 if (!EscapedLocals.empty()) { 412 // Invert the map from local to index into a simple vector. There should be 413 // no holes. 414 SmallVector<llvm::Value *, 4> EscapeArgs; 415 EscapeArgs.resize(EscapedLocals.size()); 416 for (auto &Pair : EscapedLocals) 417 EscapeArgs[Pair.second] = Pair.first; 418 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 419 &CGM.getModule(), llvm::Intrinsic::localescape); 420 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 421 } 422 423 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 424 llvm::Instruction *Ptr = AllocaInsertPt; 425 AllocaInsertPt = nullptr; 426 Ptr->eraseFromParent(); 427 428 // PostAllocaInsertPt, if created, was lazily created when it was required, 429 // remove it now since it was just created for our own convenience. 430 if (PostAllocaInsertPt) { 431 llvm::Instruction *PostPtr = PostAllocaInsertPt; 432 PostAllocaInsertPt = nullptr; 433 PostPtr->eraseFromParent(); 434 } 435 436 // If someone took the address of a label but never did an indirect goto, we 437 // made a zero entry PHI node, which is illegal, zap it now. 438 if (IndirectBranch) { 439 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 440 if (PN->getNumIncomingValues() == 0) { 441 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 442 PN->eraseFromParent(); 443 } 444 } 445 446 EmitIfUsed(*this, EHResumeBlock); 447 EmitIfUsed(*this, TerminateLandingPad); 448 EmitIfUsed(*this, TerminateHandler); 449 EmitIfUsed(*this, UnreachableBlock); 450 451 for (const auto &FuncletAndParent : TerminateFunclets) 452 EmitIfUsed(*this, FuncletAndParent.second); 453 454 if (CGM.getCodeGenOpts().EmitDeclMetadata) 455 EmitDeclMetadata(); 456 457 for (const auto &R : DeferredReplacements) { 458 if (llvm::Value *Old = R.first) { 459 Old->replaceAllUsesWith(R.second); 460 cast<llvm::Instruction>(Old)->eraseFromParent(); 461 } 462 } 463 DeferredReplacements.clear(); 464 465 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 466 // PHIs if the current function is a coroutine. We don't do it for all 467 // functions as it may result in slight increase in numbers of instructions 468 // if compiled with no optimizations. We do it for coroutine as the lifetime 469 // of CleanupDestSlot alloca make correct coroutine frame building very 470 // difficult. 471 if (NormalCleanupDest.isValid() && isCoroutine()) { 472 llvm::DominatorTree DT(*CurFn); 473 llvm::PromoteMemToReg( 474 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 475 NormalCleanupDest = Address::invalid(); 476 } 477 478 // Scan function arguments for vector width. 479 for (llvm::Argument &A : CurFn->args()) 480 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 481 LargestVectorWidth = 482 std::max((uint64_t)LargestVectorWidth, 483 VT->getPrimitiveSizeInBits().getKnownMinSize()); 484 485 // Update vector width based on return type. 486 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 487 LargestVectorWidth = 488 std::max((uint64_t)LargestVectorWidth, 489 VT->getPrimitiveSizeInBits().getKnownMinSize()); 490 491 // Add the required-vector-width attribute. This contains the max width from: 492 // 1. min-vector-width attribute used in the source program. 493 // 2. Any builtins used that have a vector width specified. 494 // 3. Values passed in and out of inline assembly. 495 // 4. Width of vector arguments and return types for this function. 496 // 5. Width of vector aguments and return types for functions called by this 497 // function. 498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 499 500 // Add vscale_range attribute if appropriate. 501 Optional<std::pair<unsigned, unsigned>> VScaleRange = 502 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 503 if (VScaleRange) { 504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 505 getLLVMContext(), VScaleRange.getValue().first, 506 VScaleRange.getValue().second)); 507 } 508 509 // If we generated an unreachable return block, delete it now. 510 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 511 Builder.ClearInsertionPoint(); 512 ReturnBlock.getBlock()->eraseFromParent(); 513 } 514 if (ReturnValue.isValid()) { 515 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 516 if (RetAlloca && RetAlloca->use_empty()) { 517 RetAlloca->eraseFromParent(); 518 ReturnValue = Address::invalid(); 519 } 520 } 521 } 522 523 /// ShouldInstrumentFunction - Return true if the current function should be 524 /// instrumented with __cyg_profile_func_* calls 525 bool CodeGenFunction::ShouldInstrumentFunction() { 526 if (!CGM.getCodeGenOpts().InstrumentFunctions && 527 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 528 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 529 return false; 530 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 531 return false; 532 return true; 533 } 534 535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 536 if (!CurFuncDecl) 537 return false; 538 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 539 } 540 541 /// ShouldXRayInstrument - Return true if the current function should be 542 /// instrumented with XRay nop sleds. 543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 544 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 545 } 546 547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 550 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 551 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 552 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 553 XRayInstrKind::Custom); 554 } 555 556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 557 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 558 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 560 XRayInstrKind::Typed); 561 } 562 563 llvm::Constant * 564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 565 llvm::Constant *Addr) { 566 // Addresses stored in prologue data can't require run-time fixups and must 567 // be PC-relative. Run-time fixups are undesirable because they necessitate 568 // writable text segments, which are unsafe. And absolute addresses are 569 // undesirable because they break PIE mode. 570 571 // Add a layer of indirection through a private global. Taking its address 572 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 573 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 574 /*isConstant=*/true, 575 llvm::GlobalValue::PrivateLinkage, Addr); 576 577 // Create a PC-relative address. 578 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 579 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 580 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 581 return (IntPtrTy == Int32Ty) 582 ? PCRelAsInt 583 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 584 } 585 586 llvm::Value * 587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 588 llvm::Value *EncodedAddr) { 589 // Reconstruct the address of the global. 590 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 591 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 592 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 593 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 594 595 // Load the original pointer through the global. 596 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 597 "decoded_addr"); 598 } 599 600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 601 llvm::Function *Fn) 602 { 603 if (!FD->hasAttr<OpenCLKernelAttr>()) 604 return; 605 606 llvm::LLVMContext &Context = getLLVMContext(); 607 608 CGM.GenOpenCLArgMetadata(Fn, FD, this); 609 610 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 611 QualType HintQTy = A->getTypeHint(); 612 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 613 bool IsSignedInteger = 614 HintQTy->isSignedIntegerType() || 615 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 618 CGM.getTypes().ConvertType(A->getTypeHint()))), 619 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 620 llvm::IntegerType::get(Context, 32), 621 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 622 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 629 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 630 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 633 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 637 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 638 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 639 } 640 641 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 642 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 643 llvm::Metadata *AttrMDArgs[] = { 644 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 645 Fn->setMetadata("intel_reqd_sub_group_size", 646 llvm::MDNode::get(Context, AttrMDArgs)); 647 } 648 } 649 650 /// Determine whether the function F ends with a return stmt. 651 static bool endsWithReturn(const Decl* F) { 652 const Stmt *Body = nullptr; 653 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 654 Body = FD->getBody(); 655 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 656 Body = OMD->getBody(); 657 658 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 659 auto LastStmt = CS->body_rbegin(); 660 if (LastStmt != CS->body_rend()) 661 return isa<ReturnStmt>(*LastStmt); 662 } 663 return false; 664 } 665 666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 667 if (SanOpts.has(SanitizerKind::Thread)) { 668 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 669 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 670 } 671 } 672 673 /// Check if the return value of this function requires sanitization. 674 bool CodeGenFunction::requiresReturnValueCheck() const { 675 return requiresReturnValueNullabilityCheck() || 676 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 677 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 678 } 679 680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 681 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 682 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 683 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 684 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 685 return false; 686 687 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 688 return false; 689 690 if (MD->getNumParams() == 2) { 691 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 692 if (!PT || !PT->isVoidPointerType() || 693 !PT->getPointeeType().isConstQualified()) 694 return false; 695 } 696 697 return true; 698 } 699 700 /// Return the UBSan prologue signature for \p FD if one is available. 701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 702 const FunctionDecl *FD) { 703 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 704 if (!MD->isStatic()) 705 return nullptr; 706 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 707 } 708 709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 723 if (FD && FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 // If this function is ignored for any of the enabled sanitizers, 732 // disable the sanitizer for the function. 733 do { 734 #define SANITIZER(NAME, ID) \ 735 if (SanOpts.empty()) \ 736 break; \ 737 if (SanOpts.has(SanitizerKind::ID)) \ 738 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 739 SanOpts.set(SanitizerKind::ID, false); 740 741 #include "clang/Basic/Sanitizers.def" 742 #undef SANITIZER 743 } while (false); 744 745 if (D) { 746 bool NoSanitizeCoverage = false; 747 748 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 749 // Apply the no_sanitize* attributes to SanOpts. 750 SanitizerMask mask = Attr->getMask(); 751 SanOpts.Mask &= ~mask; 752 if (mask & SanitizerKind::Address) 753 SanOpts.set(SanitizerKind::KernelAddress, false); 754 if (mask & SanitizerKind::KernelAddress) 755 SanOpts.set(SanitizerKind::Address, false); 756 if (mask & SanitizerKind::HWAddress) 757 SanOpts.set(SanitizerKind::KernelHWAddress, false); 758 if (mask & SanitizerKind::KernelHWAddress) 759 SanOpts.set(SanitizerKind::HWAddress, false); 760 761 // SanitizeCoverage is not handled by SanOpts. 762 if (Attr->hasCoverage()) 763 NoSanitizeCoverage = true; 764 } 765 766 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 767 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 768 } 769 770 // Apply sanitizer attributes to the function. 771 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 773 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 774 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 775 if (SanOpts.has(SanitizerKind::MemTag)) 776 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 777 if (SanOpts.has(SanitizerKind::Thread)) 778 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 779 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 780 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 781 if (SanOpts.has(SanitizerKind::SafeStack)) 782 Fn->addFnAttr(llvm::Attribute::SafeStack); 783 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 784 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 785 786 // Apply fuzzing attribute to the function. 787 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 788 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 789 790 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 791 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 792 if (SanOpts.has(SanitizerKind::Thread)) { 793 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 794 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 795 if (OMD->getMethodFamily() == OMF_dealloc || 796 OMD->getMethodFamily() == OMF_initialize || 797 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 798 markAsIgnoreThreadCheckingAtRuntime(Fn); 799 } 800 } 801 } 802 803 // Ignore unrelated casts in STL allocate() since the allocator must cast 804 // from void* to T* before object initialization completes. Don't match on the 805 // namespace because not all allocators are in std:: 806 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 807 if (matchesStlAllocatorFn(D, getContext())) 808 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 809 } 810 811 // Ignore null checks in coroutine functions since the coroutines passes 812 // are not aware of how to move the extra UBSan instructions across the split 813 // coroutine boundaries. 814 if (D && SanOpts.has(SanitizerKind::Null)) 815 if (FD && FD->getBody() && 816 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 817 SanOpts.Mask &= ~SanitizerKind::Null; 818 819 // Apply xray attributes to the function (as a string, for now) 820 bool AlwaysXRayAttr = false; 821 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 822 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 823 XRayInstrKind::FunctionEntry) || 824 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 825 XRayInstrKind::FunctionExit)) { 826 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 827 Fn->addFnAttr("function-instrument", "xray-always"); 828 AlwaysXRayAttr = true; 829 } 830 if (XRayAttr->neverXRayInstrument()) 831 Fn->addFnAttr("function-instrument", "xray-never"); 832 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 833 if (ShouldXRayInstrumentFunction()) 834 Fn->addFnAttr("xray-log-args", 835 llvm::utostr(LogArgs->getArgumentCount())); 836 } 837 } else { 838 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 839 Fn->addFnAttr( 840 "xray-instruction-threshold", 841 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 842 } 843 844 if (ShouldXRayInstrumentFunction()) { 845 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 846 Fn->addFnAttr("xray-ignore-loops"); 847 848 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 849 XRayInstrKind::FunctionExit)) 850 Fn->addFnAttr("xray-skip-exit"); 851 852 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 853 XRayInstrKind::FunctionEntry)) 854 Fn->addFnAttr("xray-skip-entry"); 855 856 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 857 if (FuncGroups > 1) { 858 auto FuncName = llvm::makeArrayRef<uint8_t>( 859 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 860 auto Group = crc32(FuncName) % FuncGroups; 861 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 862 !AlwaysXRayAttr) 863 Fn->addFnAttr("function-instrument", "xray-never"); 864 } 865 } 866 867 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 868 if (CGM.isProfileInstrExcluded(Fn, Loc)) 869 Fn->addFnAttr(llvm::Attribute::NoProfile); 870 871 unsigned Count, Offset; 872 if (const auto *Attr = 873 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 874 Count = Attr->getCount(); 875 Offset = Attr->getOffset(); 876 } else { 877 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 878 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 879 } 880 if (Count && Offset <= Count) { 881 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 882 if (Offset) 883 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 884 } 885 // Instruct that functions for COFF/CodeView targets should start with a 886 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 887 // backends as they don't need it -- instructions on these architectures are 888 // always atomically patchable at runtime. 889 if (CGM.getCodeGenOpts().HotPatch && 890 getContext().getTargetInfo().getTriple().isX86()) 891 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 892 893 // Add no-jump-tables value. 894 if (CGM.getCodeGenOpts().NoUseJumpTables) 895 Fn->addFnAttr("no-jump-tables", "true"); 896 897 // Add no-inline-line-tables value. 898 if (CGM.getCodeGenOpts().NoInlineLineTables) 899 Fn->addFnAttr("no-inline-line-tables"); 900 901 // Add profile-sample-accurate value. 902 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 903 Fn->addFnAttr("profile-sample-accurate"); 904 905 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 906 Fn->addFnAttr("use-sample-profile"); 907 908 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 909 Fn->addFnAttr("cfi-canonical-jump-table"); 910 911 if (D && D->hasAttr<NoProfileFunctionAttr>()) 912 Fn->addFnAttr(llvm::Attribute::NoProfile); 913 914 if (FD && getLangOpts().OpenCL) { 915 // Add metadata for a kernel function. 916 EmitOpenCLKernelMetadata(FD, Fn); 917 } 918 919 // If we are checking function types, emit a function type signature as 920 // prologue data. 921 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 922 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 923 // Remove any (C++17) exception specifications, to allow calling e.g. a 924 // noexcept function through a non-noexcept pointer. 925 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 926 FD->getType(), EST_None); 927 llvm::Constant *FTRTTIConst = 928 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 929 llvm::Constant *FTRTTIConstEncoded = 930 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 931 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 932 llvm::Constant *PrologueStructConst = 933 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 934 Fn->setPrologueData(PrologueStructConst); 935 } 936 } 937 938 // If we're checking nullability, we need to know whether we can check the 939 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 940 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 941 auto Nullability = FnRetTy->getNullability(getContext()); 942 if (Nullability && *Nullability == NullabilityKind::NonNull) { 943 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 944 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 945 RetValNullabilityPrecondition = 946 llvm::ConstantInt::getTrue(getLLVMContext()); 947 } 948 } 949 950 // If we're in C++ mode and the function name is "main", it is guaranteed 951 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 952 // used within a program"). 953 // 954 // OpenCL C 2.0 v2.2-11 s6.9.i: 955 // Recursion is not supported. 956 // 957 // SYCL v1.2.1 s3.10: 958 // kernels cannot include RTTI information, exception classes, 959 // recursive code, virtual functions or make use of C++ libraries that 960 // are not compiled for the device. 961 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 962 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 963 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 964 Fn->addFnAttr(llvm::Attribute::NoRecurse); 965 966 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 967 llvm::fp::ExceptionBehavior FPExceptionBehavior = 968 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 969 Builder.setDefaultConstrainedRounding(RM); 970 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 971 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 972 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 973 RM != llvm::RoundingMode::NearestTiesToEven))) { 974 Builder.setIsFPConstrained(true); 975 Fn->addFnAttr(llvm::Attribute::StrictFP); 976 } 977 978 // If a custom alignment is used, force realigning to this alignment on 979 // any main function which certainly will need it. 980 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 981 CGM.getCodeGenOpts().StackAlignment)) 982 Fn->addFnAttr("stackrealign"); 983 984 // "main" doesn't need to zero out call-used registers. 985 if (FD && FD->isMain()) 986 Fn->removeFnAttr("zero-call-used-regs"); 987 988 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 989 990 // Create a marker to make it easy to insert allocas into the entryblock 991 // later. Don't create this with the builder, because we don't want it 992 // folded. 993 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 994 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 995 996 ReturnBlock = getJumpDestInCurrentScope("return"); 997 998 Builder.SetInsertPoint(EntryBB); 999 1000 // If we're checking the return value, allocate space for a pointer to a 1001 // precise source location of the checked return statement. 1002 if (requiresReturnValueCheck()) { 1003 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1004 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1005 ReturnLocation); 1006 } 1007 1008 // Emit subprogram debug descriptor. 1009 if (CGDebugInfo *DI = getDebugInfo()) { 1010 // Reconstruct the type from the argument list so that implicit parameters, 1011 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1012 // convention. 1013 DI->emitFunctionStart(GD, Loc, StartLoc, 1014 DI->getFunctionType(FD, RetTy, Args), CurFn, 1015 CurFuncIsThunk); 1016 } 1017 1018 if (ShouldInstrumentFunction()) { 1019 if (CGM.getCodeGenOpts().InstrumentFunctions) 1020 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1021 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1022 CurFn->addFnAttr("instrument-function-entry-inlined", 1023 "__cyg_profile_func_enter"); 1024 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1025 CurFn->addFnAttr("instrument-function-entry-inlined", 1026 "__cyg_profile_func_enter_bare"); 1027 } 1028 1029 // Since emitting the mcount call here impacts optimizations such as function 1030 // inlining, we just add an attribute to insert a mcount call in backend. 1031 // The attribute "counting-function" is set to mcount function name which is 1032 // architecture dependent. 1033 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1034 // Calls to fentry/mcount should not be generated if function has 1035 // the no_instrument_function attribute. 1036 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1037 if (CGM.getCodeGenOpts().CallFEntry) 1038 Fn->addFnAttr("fentry-call", "true"); 1039 else { 1040 Fn->addFnAttr("instrument-function-entry-inlined", 1041 getTarget().getMCountName()); 1042 } 1043 if (CGM.getCodeGenOpts().MNopMCount) { 1044 if (!CGM.getCodeGenOpts().CallFEntry) 1045 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1046 << "-mnop-mcount" << "-mfentry"; 1047 Fn->addFnAttr("mnop-mcount"); 1048 } 1049 1050 if (CGM.getCodeGenOpts().RecordMCount) { 1051 if (!CGM.getCodeGenOpts().CallFEntry) 1052 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1053 << "-mrecord-mcount" << "-mfentry"; 1054 Fn->addFnAttr("mrecord-mcount"); 1055 } 1056 } 1057 } 1058 1059 if (CGM.getCodeGenOpts().PackedStack) { 1060 if (getContext().getTargetInfo().getTriple().getArch() != 1061 llvm::Triple::systemz) 1062 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1063 << "-mpacked-stack"; 1064 Fn->addFnAttr("packed-stack"); 1065 } 1066 1067 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1068 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1069 Fn->addFnAttr("warn-stack-size", 1070 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1071 1072 if (RetTy->isVoidType()) { 1073 // Void type; nothing to return. 1074 ReturnValue = Address::invalid(); 1075 1076 // Count the implicit return. 1077 if (!endsWithReturn(D)) 1078 ++NumReturnExprs; 1079 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1080 // Indirect return; emit returned value directly into sret slot. 1081 // This reduces code size, and affects correctness in C++. 1082 auto AI = CurFn->arg_begin(); 1083 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1084 ++AI; 1085 ReturnValue = Address(&*AI, ConvertType(RetTy), 1086 CurFnInfo->getReturnInfo().getIndirectAlign()); 1087 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1088 ReturnValuePointer = 1089 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1090 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1091 ReturnValue.getPointer(), Int8PtrTy), 1092 ReturnValuePointer); 1093 } 1094 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1095 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1096 // Load the sret pointer from the argument struct and return into that. 1097 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1098 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1099 --EI; 1100 llvm::Value *Addr = Builder.CreateStructGEP( 1101 EI->getType()->getPointerElementType(), &*EI, Idx); 1102 llvm::Type *Ty = 1103 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1104 ReturnValuePointer = Address(Addr, getPointerAlign()); 1105 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1106 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1107 } else { 1108 ReturnValue = CreateIRTemp(RetTy, "retval"); 1109 1110 // Tell the epilog emitter to autorelease the result. We do this 1111 // now so that various specialized functions can suppress it 1112 // during their IR-generation. 1113 if (getLangOpts().ObjCAutoRefCount && 1114 !CurFnInfo->isReturnsRetained() && 1115 RetTy->isObjCRetainableType()) 1116 AutoreleaseResult = true; 1117 } 1118 1119 EmitStartEHSpec(CurCodeDecl); 1120 1121 PrologueCleanupDepth = EHStack.stable_begin(); 1122 1123 // Emit OpenMP specific initialization of the device functions. 1124 if (getLangOpts().OpenMP && CurCodeDecl) 1125 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1126 1127 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1128 1129 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1130 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1131 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1132 if (MD->getParent()->isLambda() && 1133 MD->getOverloadedOperator() == OO_Call) { 1134 // We're in a lambda; figure out the captures. 1135 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1136 LambdaThisCaptureField); 1137 if (LambdaThisCaptureField) { 1138 // If the lambda captures the object referred to by '*this' - either by 1139 // value or by reference, make sure CXXThisValue points to the correct 1140 // object. 1141 1142 // Get the lvalue for the field (which is a copy of the enclosing object 1143 // or contains the address of the enclosing object). 1144 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1145 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1146 // If the enclosing object was captured by value, just use its address. 1147 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1148 } else { 1149 // Load the lvalue pointed to by the field, since '*this' was captured 1150 // by reference. 1151 CXXThisValue = 1152 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1153 } 1154 } 1155 for (auto *FD : MD->getParent()->fields()) { 1156 if (FD->hasCapturedVLAType()) { 1157 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1158 SourceLocation()).getScalarVal(); 1159 auto VAT = FD->getCapturedVLAType(); 1160 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1161 } 1162 } 1163 } else { 1164 // Not in a lambda; just use 'this' from the method. 1165 // FIXME: Should we generate a new load for each use of 'this'? The 1166 // fast register allocator would be happier... 1167 CXXThisValue = CXXABIThisValue; 1168 } 1169 1170 // Check the 'this' pointer once per function, if it's available. 1171 if (CXXABIThisValue) { 1172 SanitizerSet SkippedChecks; 1173 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1174 QualType ThisTy = MD->getThisType(); 1175 1176 // If this is the call operator of a lambda with no capture-default, it 1177 // may have a static invoker function, which may call this operator with 1178 // a null 'this' pointer. 1179 if (isLambdaCallOperator(MD) && 1180 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1181 SkippedChecks.set(SanitizerKind::Null, true); 1182 1183 EmitTypeCheck( 1184 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1185 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1186 } 1187 } 1188 1189 // If any of the arguments have a variably modified type, make sure to 1190 // emit the type size. 1191 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1192 i != e; ++i) { 1193 const VarDecl *VD = *i; 1194 1195 // Dig out the type as written from ParmVarDecls; it's unclear whether 1196 // the standard (C99 6.9.1p10) requires this, but we're following the 1197 // precedent set by gcc. 1198 QualType Ty; 1199 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1200 Ty = PVD->getOriginalType(); 1201 else 1202 Ty = VD->getType(); 1203 1204 if (Ty->isVariablyModifiedType()) 1205 EmitVariablyModifiedType(Ty); 1206 } 1207 // Emit a location at the end of the prologue. 1208 if (CGDebugInfo *DI = getDebugInfo()) 1209 DI->EmitLocation(Builder, StartLoc); 1210 1211 // TODO: Do we need to handle this in two places like we do with 1212 // target-features/target-cpu? 1213 if (CurFuncDecl) 1214 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1215 LargestVectorWidth = VecWidth->getVectorWidth(); 1216 } 1217 1218 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1219 incrementProfileCounter(Body); 1220 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1221 EmitCompoundStmtWithoutScope(*S); 1222 else 1223 EmitStmt(Body); 1224 1225 // This is checked after emitting the function body so we know if there 1226 // are any permitted infinite loops. 1227 if (checkIfFunctionMustProgress()) 1228 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1229 } 1230 1231 /// When instrumenting to collect profile data, the counts for some blocks 1232 /// such as switch cases need to not include the fall-through counts, so 1233 /// emit a branch around the instrumentation code. When not instrumenting, 1234 /// this just calls EmitBlock(). 1235 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1236 const Stmt *S) { 1237 llvm::BasicBlock *SkipCountBB = nullptr; 1238 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1239 // When instrumenting for profiling, the fallthrough to certain 1240 // statements needs to skip over the instrumentation code so that we 1241 // get an accurate count. 1242 SkipCountBB = createBasicBlock("skipcount"); 1243 EmitBranch(SkipCountBB); 1244 } 1245 EmitBlock(BB); 1246 uint64_t CurrentCount = getCurrentProfileCount(); 1247 incrementProfileCounter(S); 1248 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1249 if (SkipCountBB) 1250 EmitBlock(SkipCountBB); 1251 } 1252 1253 /// Tries to mark the given function nounwind based on the 1254 /// non-existence of any throwing calls within it. We believe this is 1255 /// lightweight enough to do at -O0. 1256 static void TryMarkNoThrow(llvm::Function *F) { 1257 // LLVM treats 'nounwind' on a function as part of the type, so we 1258 // can't do this on functions that can be overwritten. 1259 if (F->isInterposable()) return; 1260 1261 for (llvm::BasicBlock &BB : *F) 1262 for (llvm::Instruction &I : BB) 1263 if (I.mayThrow()) 1264 return; 1265 1266 F->setDoesNotThrow(); 1267 } 1268 1269 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1270 FunctionArgList &Args) { 1271 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1272 QualType ResTy = FD->getReturnType(); 1273 1274 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1275 if (MD && MD->isInstance()) { 1276 if (CGM.getCXXABI().HasThisReturn(GD)) 1277 ResTy = MD->getThisType(); 1278 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1279 ResTy = CGM.getContext().VoidPtrTy; 1280 CGM.getCXXABI().buildThisParam(*this, Args); 1281 } 1282 1283 // The base version of an inheriting constructor whose constructed base is a 1284 // virtual base is not passed any arguments (because it doesn't actually call 1285 // the inherited constructor). 1286 bool PassedParams = true; 1287 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1288 if (auto Inherited = CD->getInheritedConstructor()) 1289 PassedParams = 1290 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1291 1292 if (PassedParams) { 1293 for (auto *Param : FD->parameters()) { 1294 Args.push_back(Param); 1295 if (!Param->hasAttr<PassObjectSizeAttr>()) 1296 continue; 1297 1298 auto *Implicit = ImplicitParamDecl::Create( 1299 getContext(), Param->getDeclContext(), Param->getLocation(), 1300 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1301 SizeArguments[Param] = Implicit; 1302 Args.push_back(Implicit); 1303 } 1304 } 1305 1306 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1307 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1308 1309 return ResTy; 1310 } 1311 1312 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1313 const CGFunctionInfo &FnInfo) { 1314 assert(Fn && "generating code for null Function"); 1315 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1316 CurGD = GD; 1317 1318 FunctionArgList Args; 1319 QualType ResTy = BuildFunctionArgList(GD, Args); 1320 1321 if (FD->isInlineBuiltinDeclaration()) { 1322 // When generating code for a builtin with an inline declaration, use a 1323 // mangled name to hold the actual body, while keeping an external 1324 // definition in case the function pointer is referenced somewhere. 1325 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1326 llvm::Module *M = Fn->getParent(); 1327 llvm::Function *Clone = M->getFunction(FDInlineName); 1328 if (!Clone) { 1329 Clone = llvm::Function::Create(Fn->getFunctionType(), 1330 llvm::GlobalValue::InternalLinkage, 1331 Fn->getAddressSpace(), FDInlineName, M); 1332 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1333 } 1334 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1335 Fn = Clone; 1336 } else { 1337 // Detect the unusual situation where an inline version is shadowed by a 1338 // non-inline version. In that case we should pick the external one 1339 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1340 // to detect that situation before we reach codegen, so do some late 1341 // replacement. 1342 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1343 PD = PD->getPreviousDecl()) { 1344 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1345 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1346 llvm::Module *M = Fn->getParent(); 1347 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1348 Clone->replaceAllUsesWith(Fn); 1349 Clone->eraseFromParent(); 1350 } 1351 break; 1352 } 1353 } 1354 } 1355 1356 // Check if we should generate debug info for this function. 1357 if (FD->hasAttr<NoDebugAttr>()) { 1358 // Clear non-distinct debug info that was possibly attached to the function 1359 // due to an earlier declaration without the nodebug attribute 1360 Fn->setSubprogram(nullptr); 1361 // Disable debug info indefinitely for this function 1362 DebugInfo = nullptr; 1363 } 1364 1365 // The function might not have a body if we're generating thunks for a 1366 // function declaration. 1367 SourceRange BodyRange; 1368 if (Stmt *Body = FD->getBody()) 1369 BodyRange = Body->getSourceRange(); 1370 else 1371 BodyRange = FD->getLocation(); 1372 CurEHLocation = BodyRange.getEnd(); 1373 1374 // Use the location of the start of the function to determine where 1375 // the function definition is located. By default use the location 1376 // of the declaration as the location for the subprogram. A function 1377 // may lack a declaration in the source code if it is created by code 1378 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1379 SourceLocation Loc = FD->getLocation(); 1380 1381 // If this is a function specialization then use the pattern body 1382 // as the location for the function. 1383 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1384 if (SpecDecl->hasBody(SpecDecl)) 1385 Loc = SpecDecl->getLocation(); 1386 1387 Stmt *Body = FD->getBody(); 1388 1389 if (Body) { 1390 // Coroutines always emit lifetime markers. 1391 if (isa<CoroutineBodyStmt>(Body)) 1392 ShouldEmitLifetimeMarkers = true; 1393 1394 // Initialize helper which will detect jumps which can cause invalid 1395 // lifetime markers. 1396 if (ShouldEmitLifetimeMarkers) 1397 Bypasses.Init(Body); 1398 } 1399 1400 // Emit the standard function prologue. 1401 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1402 1403 // Save parameters for coroutine function. 1404 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1405 for (const auto *ParamDecl : FD->parameters()) 1406 FnArgs.push_back(ParamDecl); 1407 1408 // Generate the body of the function. 1409 PGO.assignRegionCounters(GD, CurFn); 1410 if (isa<CXXDestructorDecl>(FD)) 1411 EmitDestructorBody(Args); 1412 else if (isa<CXXConstructorDecl>(FD)) 1413 EmitConstructorBody(Args); 1414 else if (getLangOpts().CUDA && 1415 !getLangOpts().CUDAIsDevice && 1416 FD->hasAttr<CUDAGlobalAttr>()) 1417 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1418 else if (isa<CXXMethodDecl>(FD) && 1419 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1420 // The lambda static invoker function is special, because it forwards or 1421 // clones the body of the function call operator (but is actually static). 1422 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1423 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1424 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1425 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1426 // Implicit copy-assignment gets the same special treatment as implicit 1427 // copy-constructors. 1428 emitImplicitAssignmentOperatorBody(Args); 1429 } else if (Body) { 1430 EmitFunctionBody(Body); 1431 } else 1432 llvm_unreachable("no definition for emitted function"); 1433 1434 // C++11 [stmt.return]p2: 1435 // Flowing off the end of a function [...] results in undefined behavior in 1436 // a value-returning function. 1437 // C11 6.9.1p12: 1438 // If the '}' that terminates a function is reached, and the value of the 1439 // function call is used by the caller, the behavior is undefined. 1440 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1441 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1442 bool ShouldEmitUnreachable = 1443 CGM.getCodeGenOpts().StrictReturn || 1444 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1445 if (SanOpts.has(SanitizerKind::Return)) { 1446 SanitizerScope SanScope(this); 1447 llvm::Value *IsFalse = Builder.getFalse(); 1448 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1449 SanitizerHandler::MissingReturn, 1450 EmitCheckSourceLocation(FD->getLocation()), None); 1451 } else if (ShouldEmitUnreachable) { 1452 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1453 EmitTrapCall(llvm::Intrinsic::trap); 1454 } 1455 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1456 Builder.CreateUnreachable(); 1457 Builder.ClearInsertionPoint(); 1458 } 1459 } 1460 1461 // Emit the standard function epilogue. 1462 FinishFunction(BodyRange.getEnd()); 1463 1464 // If we haven't marked the function nothrow through other means, do 1465 // a quick pass now to see if we can. 1466 if (!CurFn->doesNotThrow()) 1467 TryMarkNoThrow(CurFn); 1468 } 1469 1470 /// ContainsLabel - Return true if the statement contains a label in it. If 1471 /// this statement is not executed normally, it not containing a label means 1472 /// that we can just remove the code. 1473 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1474 // Null statement, not a label! 1475 if (!S) return false; 1476 1477 // If this is a label, we have to emit the code, consider something like: 1478 // if (0) { ... foo: bar(); } goto foo; 1479 // 1480 // TODO: If anyone cared, we could track __label__'s, since we know that you 1481 // can't jump to one from outside their declared region. 1482 if (isa<LabelStmt>(S)) 1483 return true; 1484 1485 // If this is a case/default statement, and we haven't seen a switch, we have 1486 // to emit the code. 1487 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1488 return true; 1489 1490 // If this is a switch statement, we want to ignore cases below it. 1491 if (isa<SwitchStmt>(S)) 1492 IgnoreCaseStmts = true; 1493 1494 // Scan subexpressions for verboten labels. 1495 for (const Stmt *SubStmt : S->children()) 1496 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1497 return true; 1498 1499 return false; 1500 } 1501 1502 /// containsBreak - Return true if the statement contains a break out of it. 1503 /// If the statement (recursively) contains a switch or loop with a break 1504 /// inside of it, this is fine. 1505 bool CodeGenFunction::containsBreak(const Stmt *S) { 1506 // Null statement, not a label! 1507 if (!S) return false; 1508 1509 // If this is a switch or loop that defines its own break scope, then we can 1510 // include it and anything inside of it. 1511 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1512 isa<ForStmt>(S)) 1513 return false; 1514 1515 if (isa<BreakStmt>(S)) 1516 return true; 1517 1518 // Scan subexpressions for verboten breaks. 1519 for (const Stmt *SubStmt : S->children()) 1520 if (containsBreak(SubStmt)) 1521 return true; 1522 1523 return false; 1524 } 1525 1526 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1527 if (!S) return false; 1528 1529 // Some statement kinds add a scope and thus never add a decl to the current 1530 // scope. Note, this list is longer than the list of statements that might 1531 // have an unscoped decl nested within them, but this way is conservatively 1532 // correct even if more statement kinds are added. 1533 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1534 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1535 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1536 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1537 return false; 1538 1539 if (isa<DeclStmt>(S)) 1540 return true; 1541 1542 for (const Stmt *SubStmt : S->children()) 1543 if (mightAddDeclToScope(SubStmt)) 1544 return true; 1545 1546 return false; 1547 } 1548 1549 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1550 /// to a constant, or if it does but contains a label, return false. If it 1551 /// constant folds return true and set the boolean result in Result. 1552 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1553 bool &ResultBool, 1554 bool AllowLabels) { 1555 llvm::APSInt ResultInt; 1556 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1557 return false; 1558 1559 ResultBool = ResultInt.getBoolValue(); 1560 return true; 1561 } 1562 1563 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1564 /// to a constant, or if it does but contains a label, return false. If it 1565 /// constant folds return true and set the folded value. 1566 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1567 llvm::APSInt &ResultInt, 1568 bool AllowLabels) { 1569 // FIXME: Rename and handle conversion of other evaluatable things 1570 // to bool. 1571 Expr::EvalResult Result; 1572 if (!Cond->EvaluateAsInt(Result, getContext())) 1573 return false; // Not foldable, not integer or not fully evaluatable. 1574 1575 llvm::APSInt Int = Result.Val.getInt(); 1576 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1577 return false; // Contains a label. 1578 1579 ResultInt = Int; 1580 return true; 1581 } 1582 1583 /// Determine whether the given condition is an instrumentable condition 1584 /// (i.e. no "&&" or "||"). 1585 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1586 // Bypass simplistic logical-NOT operator before determining whether the 1587 // condition contains any other logical operator. 1588 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1589 if (UnOp->getOpcode() == UO_LNot) 1590 C = UnOp->getSubExpr(); 1591 1592 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1593 return (!BOp || !BOp->isLogicalOp()); 1594 } 1595 1596 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1597 /// increments a profile counter based on the semantics of the given logical 1598 /// operator opcode. This is used to instrument branch condition coverage for 1599 /// logical operators. 1600 void CodeGenFunction::EmitBranchToCounterBlock( 1601 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1602 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1603 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1604 // If not instrumenting, just emit a branch. 1605 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1606 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1607 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1608 1609 llvm::BasicBlock *ThenBlock = nullptr; 1610 llvm::BasicBlock *ElseBlock = nullptr; 1611 llvm::BasicBlock *NextBlock = nullptr; 1612 1613 // Create the block we'll use to increment the appropriate counter. 1614 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1615 1616 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1617 // means we need to evaluate the condition and increment the counter on TRUE: 1618 // 1619 // if (Cond) 1620 // goto CounterIncrBlock; 1621 // else 1622 // goto FalseBlock; 1623 // 1624 // CounterIncrBlock: 1625 // Counter++; 1626 // goto TrueBlock; 1627 1628 if (LOp == BO_LAnd) { 1629 ThenBlock = CounterIncrBlock; 1630 ElseBlock = FalseBlock; 1631 NextBlock = TrueBlock; 1632 } 1633 1634 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1635 // we need to evaluate the condition and increment the counter on FALSE: 1636 // 1637 // if (Cond) 1638 // goto TrueBlock; 1639 // else 1640 // goto CounterIncrBlock; 1641 // 1642 // CounterIncrBlock: 1643 // Counter++; 1644 // goto FalseBlock; 1645 1646 else if (LOp == BO_LOr) { 1647 ThenBlock = TrueBlock; 1648 ElseBlock = CounterIncrBlock; 1649 NextBlock = FalseBlock; 1650 } else { 1651 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1652 } 1653 1654 // Emit Branch based on condition. 1655 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1656 1657 // Emit the block containing the counter increment(s). 1658 EmitBlock(CounterIncrBlock); 1659 1660 // Increment corresponding counter; if index not provided, use Cond as index. 1661 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1662 1663 // Go to the next block. 1664 EmitBranch(NextBlock); 1665 } 1666 1667 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1668 /// statement) to the specified blocks. Based on the condition, this might try 1669 /// to simplify the codegen of the conditional based on the branch. 1670 /// \param LH The value of the likelihood attribute on the True branch. 1671 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1672 llvm::BasicBlock *TrueBlock, 1673 llvm::BasicBlock *FalseBlock, 1674 uint64_t TrueCount, 1675 Stmt::Likelihood LH) { 1676 Cond = Cond->IgnoreParens(); 1677 1678 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1679 1680 // Handle X && Y in a condition. 1681 if (CondBOp->getOpcode() == BO_LAnd) { 1682 // If we have "1 && X", simplify the code. "0 && X" would have constant 1683 // folded if the case was simple enough. 1684 bool ConstantBool = false; 1685 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1686 ConstantBool) { 1687 // br(1 && X) -> br(X). 1688 incrementProfileCounter(CondBOp); 1689 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1690 FalseBlock, TrueCount, LH); 1691 } 1692 1693 // If we have "X && 1", simplify the code to use an uncond branch. 1694 // "X && 0" would have been constant folded to 0. 1695 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1696 ConstantBool) { 1697 // br(X && 1) -> br(X). 1698 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1699 FalseBlock, TrueCount, LH, CondBOp); 1700 } 1701 1702 // Emit the LHS as a conditional. If the LHS conditional is false, we 1703 // want to jump to the FalseBlock. 1704 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1705 // The counter tells us how often we evaluate RHS, and all of TrueCount 1706 // can be propagated to that branch. 1707 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1708 1709 ConditionalEvaluation eval(*this); 1710 { 1711 ApplyDebugLocation DL(*this, Cond); 1712 // Propagate the likelihood attribute like __builtin_expect 1713 // __builtin_expect(X && Y, 1) -> X and Y are likely 1714 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1715 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1716 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1717 EmitBlock(LHSTrue); 1718 } 1719 1720 incrementProfileCounter(CondBOp); 1721 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1722 1723 // Any temporaries created here are conditional. 1724 eval.begin(*this); 1725 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1726 FalseBlock, TrueCount, LH); 1727 eval.end(*this); 1728 1729 return; 1730 } 1731 1732 if (CondBOp->getOpcode() == BO_LOr) { 1733 // If we have "0 || X", simplify the code. "1 || X" would have constant 1734 // folded if the case was simple enough. 1735 bool ConstantBool = false; 1736 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1737 !ConstantBool) { 1738 // br(0 || X) -> br(X). 1739 incrementProfileCounter(CondBOp); 1740 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1741 FalseBlock, TrueCount, LH); 1742 } 1743 1744 // If we have "X || 0", simplify the code to use an uncond branch. 1745 // "X || 1" would have been constant folded to 1. 1746 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1747 !ConstantBool) { 1748 // br(X || 0) -> br(X). 1749 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1750 FalseBlock, TrueCount, LH, CondBOp); 1751 } 1752 1753 // Emit the LHS as a conditional. If the LHS conditional is true, we 1754 // want to jump to the TrueBlock. 1755 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1756 // We have the count for entry to the RHS and for the whole expression 1757 // being true, so we can divy up True count between the short circuit and 1758 // the RHS. 1759 uint64_t LHSCount = 1760 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1761 uint64_t RHSCount = TrueCount - LHSCount; 1762 1763 ConditionalEvaluation eval(*this); 1764 { 1765 // Propagate the likelihood attribute like __builtin_expect 1766 // __builtin_expect(X || Y, 1) -> only Y is likely 1767 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1768 ApplyDebugLocation DL(*this, Cond); 1769 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1770 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1771 EmitBlock(LHSFalse); 1772 } 1773 1774 incrementProfileCounter(CondBOp); 1775 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1776 1777 // Any temporaries created here are conditional. 1778 eval.begin(*this); 1779 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1780 RHSCount, LH); 1781 1782 eval.end(*this); 1783 1784 return; 1785 } 1786 } 1787 1788 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1789 // br(!x, t, f) -> br(x, f, t) 1790 if (CondUOp->getOpcode() == UO_LNot) { 1791 // Negate the count. 1792 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1793 // The values of the enum are chosen to make this negation possible. 1794 LH = static_cast<Stmt::Likelihood>(-LH); 1795 // Negate the condition and swap the destination blocks. 1796 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1797 FalseCount, LH); 1798 } 1799 } 1800 1801 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1802 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1803 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1804 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1805 1806 // The ConditionalOperator itself has no likelihood information for its 1807 // true and false branches. This matches the behavior of __builtin_expect. 1808 ConditionalEvaluation cond(*this); 1809 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1810 getProfileCount(CondOp), Stmt::LH_None); 1811 1812 // When computing PGO branch weights, we only know the overall count for 1813 // the true block. This code is essentially doing tail duplication of the 1814 // naive code-gen, introducing new edges for which counts are not 1815 // available. Divide the counts proportionally between the LHS and RHS of 1816 // the conditional operator. 1817 uint64_t LHSScaledTrueCount = 0; 1818 if (TrueCount) { 1819 double LHSRatio = 1820 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1821 LHSScaledTrueCount = TrueCount * LHSRatio; 1822 } 1823 1824 cond.begin(*this); 1825 EmitBlock(LHSBlock); 1826 incrementProfileCounter(CondOp); 1827 { 1828 ApplyDebugLocation DL(*this, Cond); 1829 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1830 LHSScaledTrueCount, LH); 1831 } 1832 cond.end(*this); 1833 1834 cond.begin(*this); 1835 EmitBlock(RHSBlock); 1836 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1837 TrueCount - LHSScaledTrueCount, LH); 1838 cond.end(*this); 1839 1840 return; 1841 } 1842 1843 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1844 // Conditional operator handling can give us a throw expression as a 1845 // condition for a case like: 1846 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1847 // Fold this to: 1848 // br(c, throw x, br(y, t, f)) 1849 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1850 return; 1851 } 1852 1853 // Emit the code with the fully general case. 1854 llvm::Value *CondV; 1855 { 1856 ApplyDebugLocation DL(*this, Cond); 1857 CondV = EvaluateExprAsBool(Cond); 1858 } 1859 1860 llvm::MDNode *Weights = nullptr; 1861 llvm::MDNode *Unpredictable = nullptr; 1862 1863 // If the branch has a condition wrapped by __builtin_unpredictable, 1864 // create metadata that specifies that the branch is unpredictable. 1865 // Don't bother if not optimizing because that metadata would not be used. 1866 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1867 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1868 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1869 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1870 llvm::MDBuilder MDHelper(getLLVMContext()); 1871 Unpredictable = MDHelper.createUnpredictable(); 1872 } 1873 } 1874 1875 // If there is a Likelihood knowledge for the cond, lower it. 1876 // Note that if not optimizing this won't emit anything. 1877 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1878 if (CondV != NewCondV) 1879 CondV = NewCondV; 1880 else { 1881 // Otherwise, lower profile counts. Note that we do this even at -O0. 1882 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1883 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1884 } 1885 1886 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1887 } 1888 1889 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1890 /// specified stmt yet. 1891 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1892 CGM.ErrorUnsupported(S, Type); 1893 } 1894 1895 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1896 /// variable-length array whose elements have a non-zero bit-pattern. 1897 /// 1898 /// \param baseType the inner-most element type of the array 1899 /// \param src - a char* pointing to the bit-pattern for a single 1900 /// base element of the array 1901 /// \param sizeInChars - the total size of the VLA, in chars 1902 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1903 Address dest, Address src, 1904 llvm::Value *sizeInChars) { 1905 CGBuilderTy &Builder = CGF.Builder; 1906 1907 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1908 llvm::Value *baseSizeInChars 1909 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1910 1911 Address begin = 1912 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1913 llvm::Value *end = Builder.CreateInBoundsGEP( 1914 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1915 1916 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1917 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1918 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1919 1920 // Make a loop over the VLA. C99 guarantees that the VLA element 1921 // count must be nonzero. 1922 CGF.EmitBlock(loopBB); 1923 1924 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1925 cur->addIncoming(begin.getPointer(), originBB); 1926 1927 CharUnits curAlign = 1928 dest.getAlignment().alignmentOfArrayElement(baseSize); 1929 1930 // memcpy the individual element bit-pattern. 1931 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1932 /*volatile*/ false); 1933 1934 // Go to the next element. 1935 llvm::Value *next = 1936 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1937 1938 // Leave if that's the end of the VLA. 1939 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1940 Builder.CreateCondBr(done, contBB, loopBB); 1941 cur->addIncoming(next, loopBB); 1942 1943 CGF.EmitBlock(contBB); 1944 } 1945 1946 void 1947 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1948 // Ignore empty classes in C++. 1949 if (getLangOpts().CPlusPlus) { 1950 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1951 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1952 return; 1953 } 1954 } 1955 1956 // Cast the dest ptr to the appropriate i8 pointer type. 1957 if (DestPtr.getElementType() != Int8Ty) 1958 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1959 1960 // Get size and alignment info for this aggregate. 1961 CharUnits size = getContext().getTypeSizeInChars(Ty); 1962 1963 llvm::Value *SizeVal; 1964 const VariableArrayType *vla; 1965 1966 // Don't bother emitting a zero-byte memset. 1967 if (size.isZero()) { 1968 // But note that getTypeInfo returns 0 for a VLA. 1969 if (const VariableArrayType *vlaType = 1970 dyn_cast_or_null<VariableArrayType>( 1971 getContext().getAsArrayType(Ty))) { 1972 auto VlaSize = getVLASize(vlaType); 1973 SizeVal = VlaSize.NumElts; 1974 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1975 if (!eltSize.isOne()) 1976 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1977 vla = vlaType; 1978 } else { 1979 return; 1980 } 1981 } else { 1982 SizeVal = CGM.getSize(size); 1983 vla = nullptr; 1984 } 1985 1986 // If the type contains a pointer to data member we can't memset it to zero. 1987 // Instead, create a null constant and copy it to the destination. 1988 // TODO: there are other patterns besides zero that we can usefully memset, 1989 // like -1, which happens to be the pattern used by member-pointers. 1990 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1991 // For a VLA, emit a single element, then splat that over the VLA. 1992 if (vla) Ty = getContext().getBaseElementType(vla); 1993 1994 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1995 1996 llvm::GlobalVariable *NullVariable = 1997 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1998 /*isConstant=*/true, 1999 llvm::GlobalVariable::PrivateLinkage, 2000 NullConstant, Twine()); 2001 CharUnits NullAlign = DestPtr.getAlignment(); 2002 NullVariable->setAlignment(NullAlign.getAsAlign()); 2003 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2004 NullAlign); 2005 2006 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2007 2008 // Get and call the appropriate llvm.memcpy overload. 2009 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2010 return; 2011 } 2012 2013 // Otherwise, just memset the whole thing to zero. This is legal 2014 // because in LLVM, all default initializers (other than the ones we just 2015 // handled above) are guaranteed to have a bit pattern of all zeros. 2016 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2017 } 2018 2019 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2020 // Make sure that there is a block for the indirect goto. 2021 if (!IndirectBranch) 2022 GetIndirectGotoBlock(); 2023 2024 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2025 2026 // Make sure the indirect branch includes all of the address-taken blocks. 2027 IndirectBranch->addDestination(BB); 2028 return llvm::BlockAddress::get(CurFn, BB); 2029 } 2030 2031 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2032 // If we already made the indirect branch for indirect goto, return its block. 2033 if (IndirectBranch) return IndirectBranch->getParent(); 2034 2035 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2036 2037 // Create the PHI node that indirect gotos will add entries to. 2038 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2039 "indirect.goto.dest"); 2040 2041 // Create the indirect branch instruction. 2042 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2043 return IndirectBranch->getParent(); 2044 } 2045 2046 /// Computes the length of an array in elements, as well as the base 2047 /// element type and a properly-typed first element pointer. 2048 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2049 QualType &baseType, 2050 Address &addr) { 2051 const ArrayType *arrayType = origArrayType; 2052 2053 // If it's a VLA, we have to load the stored size. Note that 2054 // this is the size of the VLA in bytes, not its size in elements. 2055 llvm::Value *numVLAElements = nullptr; 2056 if (isa<VariableArrayType>(arrayType)) { 2057 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2058 2059 // Walk into all VLAs. This doesn't require changes to addr, 2060 // which has type T* where T is the first non-VLA element type. 2061 do { 2062 QualType elementType = arrayType->getElementType(); 2063 arrayType = getContext().getAsArrayType(elementType); 2064 2065 // If we only have VLA components, 'addr' requires no adjustment. 2066 if (!arrayType) { 2067 baseType = elementType; 2068 return numVLAElements; 2069 } 2070 } while (isa<VariableArrayType>(arrayType)); 2071 2072 // We get out here only if we find a constant array type 2073 // inside the VLA. 2074 } 2075 2076 // We have some number of constant-length arrays, so addr should 2077 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2078 // down to the first element of addr. 2079 SmallVector<llvm::Value*, 8> gepIndices; 2080 2081 // GEP down to the array type. 2082 llvm::ConstantInt *zero = Builder.getInt32(0); 2083 gepIndices.push_back(zero); 2084 2085 uint64_t countFromCLAs = 1; 2086 QualType eltType; 2087 2088 llvm::ArrayType *llvmArrayType = 2089 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2090 while (llvmArrayType) { 2091 assert(isa<ConstantArrayType>(arrayType)); 2092 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2093 == llvmArrayType->getNumElements()); 2094 2095 gepIndices.push_back(zero); 2096 countFromCLAs *= llvmArrayType->getNumElements(); 2097 eltType = arrayType->getElementType(); 2098 2099 llvmArrayType = 2100 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2101 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2102 assert((!llvmArrayType || arrayType) && 2103 "LLVM and Clang types are out-of-synch"); 2104 } 2105 2106 if (arrayType) { 2107 // From this point onwards, the Clang array type has been emitted 2108 // as some other type (probably a packed struct). Compute the array 2109 // size, and just emit the 'begin' expression as a bitcast. 2110 while (arrayType) { 2111 countFromCLAs *= 2112 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2113 eltType = arrayType->getElementType(); 2114 arrayType = getContext().getAsArrayType(eltType); 2115 } 2116 2117 llvm::Type *baseType = ConvertType(eltType); 2118 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2119 } else { 2120 // Create the actual GEP. 2121 addr = Address(Builder.CreateInBoundsGEP( 2122 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2123 ConvertTypeForMem(eltType), 2124 addr.getAlignment()); 2125 } 2126 2127 baseType = eltType; 2128 2129 llvm::Value *numElements 2130 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2131 2132 // If we had any VLA dimensions, factor them in. 2133 if (numVLAElements) 2134 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2135 2136 return numElements; 2137 } 2138 2139 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2140 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2141 assert(vla && "type was not a variable array type!"); 2142 return getVLASize(vla); 2143 } 2144 2145 CodeGenFunction::VlaSizePair 2146 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2147 // The number of elements so far; always size_t. 2148 llvm::Value *numElements = nullptr; 2149 2150 QualType elementType; 2151 do { 2152 elementType = type->getElementType(); 2153 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2154 assert(vlaSize && "no size for VLA!"); 2155 assert(vlaSize->getType() == SizeTy); 2156 2157 if (!numElements) { 2158 numElements = vlaSize; 2159 } else { 2160 // It's undefined behavior if this wraps around, so mark it that way. 2161 // FIXME: Teach -fsanitize=undefined to trap this. 2162 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2163 } 2164 } while ((type = getContext().getAsVariableArrayType(elementType))); 2165 2166 return { numElements, elementType }; 2167 } 2168 2169 CodeGenFunction::VlaSizePair 2170 CodeGenFunction::getVLAElements1D(QualType type) { 2171 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2172 assert(vla && "type was not a variable array type!"); 2173 return getVLAElements1D(vla); 2174 } 2175 2176 CodeGenFunction::VlaSizePair 2177 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2178 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2179 assert(VlaSize && "no size for VLA!"); 2180 assert(VlaSize->getType() == SizeTy); 2181 return { VlaSize, Vla->getElementType() }; 2182 } 2183 2184 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2185 assert(type->isVariablyModifiedType() && 2186 "Must pass variably modified type to EmitVLASizes!"); 2187 2188 EnsureInsertPoint(); 2189 2190 // We're going to walk down into the type and look for VLA 2191 // expressions. 2192 do { 2193 assert(type->isVariablyModifiedType()); 2194 2195 const Type *ty = type.getTypePtr(); 2196 switch (ty->getTypeClass()) { 2197 2198 #define TYPE(Class, Base) 2199 #define ABSTRACT_TYPE(Class, Base) 2200 #define NON_CANONICAL_TYPE(Class, Base) 2201 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2203 #include "clang/AST/TypeNodes.inc" 2204 llvm_unreachable("unexpected dependent type!"); 2205 2206 // These types are never variably-modified. 2207 case Type::Builtin: 2208 case Type::Complex: 2209 case Type::Vector: 2210 case Type::ExtVector: 2211 case Type::ConstantMatrix: 2212 case Type::Record: 2213 case Type::Enum: 2214 case Type::Elaborated: 2215 case Type::Using: 2216 case Type::TemplateSpecialization: 2217 case Type::ObjCTypeParam: 2218 case Type::ObjCObject: 2219 case Type::ObjCInterface: 2220 case Type::ObjCObjectPointer: 2221 case Type::BitInt: 2222 llvm_unreachable("type class is never variably-modified!"); 2223 2224 case Type::Adjusted: 2225 type = cast<AdjustedType>(ty)->getAdjustedType(); 2226 break; 2227 2228 case Type::Decayed: 2229 type = cast<DecayedType>(ty)->getPointeeType(); 2230 break; 2231 2232 case Type::Pointer: 2233 type = cast<PointerType>(ty)->getPointeeType(); 2234 break; 2235 2236 case Type::BlockPointer: 2237 type = cast<BlockPointerType>(ty)->getPointeeType(); 2238 break; 2239 2240 case Type::LValueReference: 2241 case Type::RValueReference: 2242 type = cast<ReferenceType>(ty)->getPointeeType(); 2243 break; 2244 2245 case Type::MemberPointer: 2246 type = cast<MemberPointerType>(ty)->getPointeeType(); 2247 break; 2248 2249 case Type::ConstantArray: 2250 case Type::IncompleteArray: 2251 // Losing element qualification here is fine. 2252 type = cast<ArrayType>(ty)->getElementType(); 2253 break; 2254 2255 case Type::VariableArray: { 2256 // Losing element qualification here is fine. 2257 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2258 2259 // Unknown size indication requires no size computation. 2260 // Otherwise, evaluate and record it. 2261 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2262 // It's possible that we might have emitted this already, 2263 // e.g. with a typedef and a pointer to it. 2264 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2265 if (!entry) { 2266 llvm::Value *size = EmitScalarExpr(sizeExpr); 2267 2268 // C11 6.7.6.2p5: 2269 // If the size is an expression that is not an integer constant 2270 // expression [...] each time it is evaluated it shall have a value 2271 // greater than zero. 2272 if (SanOpts.has(SanitizerKind::VLABound)) { 2273 SanitizerScope SanScope(this); 2274 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2275 clang::QualType SEType = sizeExpr->getType(); 2276 llvm::Value *CheckCondition = 2277 SEType->isSignedIntegerType() 2278 ? Builder.CreateICmpSGT(size, Zero) 2279 : Builder.CreateICmpUGT(size, Zero); 2280 llvm::Constant *StaticArgs[] = { 2281 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2282 EmitCheckTypeDescriptor(SEType)}; 2283 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2284 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2285 } 2286 2287 // Always zexting here would be wrong if it weren't 2288 // undefined behavior to have a negative bound. 2289 // FIXME: What about when size's type is larger than size_t? 2290 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2291 } 2292 } 2293 type = vat->getElementType(); 2294 break; 2295 } 2296 2297 case Type::FunctionProto: 2298 case Type::FunctionNoProto: 2299 type = cast<FunctionType>(ty)->getReturnType(); 2300 break; 2301 2302 case Type::Paren: 2303 case Type::TypeOf: 2304 case Type::UnaryTransform: 2305 case Type::Attributed: 2306 case Type::SubstTemplateTypeParm: 2307 case Type::MacroQualified: 2308 // Keep walking after single level desugaring. 2309 type = type.getSingleStepDesugaredType(getContext()); 2310 break; 2311 2312 case Type::Typedef: 2313 case Type::Decltype: 2314 case Type::Auto: 2315 case Type::DeducedTemplateSpecialization: 2316 // Stop walking: nothing to do. 2317 return; 2318 2319 case Type::TypeOfExpr: 2320 // Stop walking: emit typeof expression. 2321 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2322 return; 2323 2324 case Type::Atomic: 2325 type = cast<AtomicType>(ty)->getValueType(); 2326 break; 2327 2328 case Type::Pipe: 2329 type = cast<PipeType>(ty)->getElementType(); 2330 break; 2331 } 2332 } while (type->isVariablyModifiedType()); 2333 } 2334 2335 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2336 if (getContext().getBuiltinVaListType()->isArrayType()) 2337 return EmitPointerWithAlignment(E); 2338 return EmitLValue(E).getAddress(*this); 2339 } 2340 2341 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2342 return EmitLValue(E).getAddress(*this); 2343 } 2344 2345 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2346 const APValue &Init) { 2347 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2348 if (CGDebugInfo *Dbg = getDebugInfo()) 2349 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2350 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2351 } 2352 2353 CodeGenFunction::PeepholeProtection 2354 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2355 // At the moment, the only aggressive peephole we do in IR gen 2356 // is trunc(zext) folding, but if we add more, we can easily 2357 // extend this protection. 2358 2359 if (!rvalue.isScalar()) return PeepholeProtection(); 2360 llvm::Value *value = rvalue.getScalarVal(); 2361 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2362 2363 // Just make an extra bitcast. 2364 assert(HaveInsertPoint()); 2365 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2366 Builder.GetInsertBlock()); 2367 2368 PeepholeProtection protection; 2369 protection.Inst = inst; 2370 return protection; 2371 } 2372 2373 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2374 if (!protection.Inst) return; 2375 2376 // In theory, we could try to duplicate the peepholes now, but whatever. 2377 protection.Inst->eraseFromParent(); 2378 } 2379 2380 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2381 QualType Ty, SourceLocation Loc, 2382 SourceLocation AssumptionLoc, 2383 llvm::Value *Alignment, 2384 llvm::Value *OffsetValue) { 2385 if (Alignment->getType() != IntPtrTy) 2386 Alignment = 2387 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2388 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2389 OffsetValue = 2390 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2391 llvm::Value *TheCheck = nullptr; 2392 if (SanOpts.has(SanitizerKind::Alignment)) { 2393 llvm::Value *PtrIntValue = 2394 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2395 2396 if (OffsetValue) { 2397 bool IsOffsetZero = false; 2398 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2399 IsOffsetZero = CI->isZero(); 2400 2401 if (!IsOffsetZero) 2402 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2403 } 2404 2405 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2406 llvm::Value *Mask = 2407 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2408 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2409 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2410 } 2411 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2412 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2413 2414 if (!SanOpts.has(SanitizerKind::Alignment)) 2415 return; 2416 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2417 OffsetValue, TheCheck, Assumption); 2418 } 2419 2420 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2421 const Expr *E, 2422 SourceLocation AssumptionLoc, 2423 llvm::Value *Alignment, 2424 llvm::Value *OffsetValue) { 2425 if (auto *CE = dyn_cast<CastExpr>(E)) 2426 E = CE->getSubExprAsWritten(); 2427 QualType Ty = E->getType(); 2428 SourceLocation Loc = E->getExprLoc(); 2429 2430 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2431 OffsetValue); 2432 } 2433 2434 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2435 llvm::Value *AnnotatedVal, 2436 StringRef AnnotationStr, 2437 SourceLocation Location, 2438 const AnnotateAttr *Attr) { 2439 SmallVector<llvm::Value *, 5> Args = { 2440 AnnotatedVal, 2441 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2442 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2443 CGM.EmitAnnotationLineNo(Location), 2444 }; 2445 if (Attr) 2446 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2447 return Builder.CreateCall(AnnotationFn, Args); 2448 } 2449 2450 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2451 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2452 // FIXME We create a new bitcast for every annotation because that's what 2453 // llvm-gcc was doing. 2454 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2455 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2456 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2457 I->getAnnotation(), D->getLocation(), I); 2458 } 2459 2460 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2461 Address Addr) { 2462 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2463 llvm::Value *V = Addr.getPointer(); 2464 llvm::Type *VTy = V->getType(); 2465 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2466 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2467 llvm::PointerType *IntrinTy = 2468 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2469 llvm::Function *F = 2470 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2471 2472 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2473 // FIXME Always emit the cast inst so we can differentiate between 2474 // annotation on the first field of a struct and annotation on the struct 2475 // itself. 2476 if (VTy != IntrinTy) 2477 V = Builder.CreateBitCast(V, IntrinTy); 2478 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2479 V = Builder.CreateBitCast(V, VTy); 2480 } 2481 2482 return Address(V, Addr.getAlignment()); 2483 } 2484 2485 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2486 2487 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2488 : CGF(CGF) { 2489 assert(!CGF->IsSanitizerScope); 2490 CGF->IsSanitizerScope = true; 2491 } 2492 2493 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2494 CGF->IsSanitizerScope = false; 2495 } 2496 2497 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2498 const llvm::Twine &Name, 2499 llvm::BasicBlock *BB, 2500 llvm::BasicBlock::iterator InsertPt) const { 2501 LoopStack.InsertHelper(I); 2502 if (IsSanitizerScope) 2503 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2504 } 2505 2506 void CGBuilderInserter::InsertHelper( 2507 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2508 llvm::BasicBlock::iterator InsertPt) const { 2509 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2510 if (CGF) 2511 CGF->InsertHelper(I, Name, BB, InsertPt); 2512 } 2513 2514 // Emits an error if we don't have a valid set of target features for the 2515 // called function. 2516 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2517 const FunctionDecl *TargetDecl) { 2518 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2519 } 2520 2521 // Emits an error if we don't have a valid set of target features for the 2522 // called function. 2523 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2524 const FunctionDecl *TargetDecl) { 2525 // Early exit if this is an indirect call. 2526 if (!TargetDecl) 2527 return; 2528 2529 // Get the current enclosing function if it exists. If it doesn't 2530 // we can't check the target features anyhow. 2531 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2532 if (!FD) 2533 return; 2534 2535 // Grab the required features for the call. For a builtin this is listed in 2536 // the td file with the default cpu, for an always_inline function this is any 2537 // listed cpu and any listed features. 2538 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2539 std::string MissingFeature; 2540 llvm::StringMap<bool> CallerFeatureMap; 2541 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2542 if (BuiltinID) { 2543 StringRef FeatureList( 2544 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2545 // Return if the builtin doesn't have any required features. 2546 if (FeatureList.empty()) 2547 return; 2548 assert(!FeatureList.contains(' ') && "Space in feature list"); 2549 TargetFeatures TF(CallerFeatureMap); 2550 if (!TF.hasRequiredFeatures(FeatureList)) 2551 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2552 << TargetDecl->getDeclName() << FeatureList; 2553 } else if (!TargetDecl->isMultiVersion() && 2554 TargetDecl->hasAttr<TargetAttr>()) { 2555 // Get the required features for the callee. 2556 2557 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2558 ParsedTargetAttr ParsedAttr = 2559 CGM.getContext().filterFunctionTargetAttrs(TD); 2560 2561 SmallVector<StringRef, 1> ReqFeatures; 2562 llvm::StringMap<bool> CalleeFeatureMap; 2563 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2564 2565 for (const auto &F : ParsedAttr.Features) { 2566 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2567 ReqFeatures.push_back(StringRef(F).substr(1)); 2568 } 2569 2570 for (const auto &F : CalleeFeatureMap) { 2571 // Only positive features are "required". 2572 if (F.getValue()) 2573 ReqFeatures.push_back(F.getKey()); 2574 } 2575 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2576 if (!CallerFeatureMap.lookup(Feature)) { 2577 MissingFeature = Feature.str(); 2578 return false; 2579 } 2580 return true; 2581 })) 2582 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2583 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2584 } 2585 } 2586 2587 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2588 if (!CGM.getCodeGenOpts().SanitizeStats) 2589 return; 2590 2591 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2592 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2593 CGM.getSanStats().create(IRB, SSK); 2594 } 2595 2596 llvm::Value * 2597 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2598 llvm::Value *Condition = nullptr; 2599 2600 if (!RO.Conditions.Architecture.empty()) 2601 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2602 2603 if (!RO.Conditions.Features.empty()) { 2604 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2605 Condition = 2606 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2607 } 2608 return Condition; 2609 } 2610 2611 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2612 llvm::Function *Resolver, 2613 CGBuilderTy &Builder, 2614 llvm::Function *FuncToReturn, 2615 bool SupportsIFunc) { 2616 if (SupportsIFunc) { 2617 Builder.CreateRet(FuncToReturn); 2618 return; 2619 } 2620 2621 llvm::SmallVector<llvm::Value *, 10> Args; 2622 llvm::for_each(Resolver->args(), 2623 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2624 2625 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2626 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2627 2628 if (Resolver->getReturnType()->isVoidTy()) 2629 Builder.CreateRetVoid(); 2630 else 2631 Builder.CreateRet(Result); 2632 } 2633 2634 void CodeGenFunction::EmitMultiVersionResolver( 2635 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2636 assert(getContext().getTargetInfo().getTriple().isX86() && 2637 "Only implemented for x86 targets"); 2638 2639 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2640 2641 // Main function's basic block. 2642 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2643 Builder.SetInsertPoint(CurBlock); 2644 EmitX86CpuInit(); 2645 2646 for (const MultiVersionResolverOption &RO : Options) { 2647 Builder.SetInsertPoint(CurBlock); 2648 llvm::Value *Condition = FormResolverCondition(RO); 2649 2650 // The 'default' or 'generic' case. 2651 if (!Condition) { 2652 assert(&RO == Options.end() - 1 && 2653 "Default or Generic case must be last"); 2654 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2655 SupportsIFunc); 2656 return; 2657 } 2658 2659 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2660 CGBuilderTy RetBuilder(*this, RetBlock); 2661 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2662 SupportsIFunc); 2663 CurBlock = createBasicBlock("resolver_else", Resolver); 2664 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2665 } 2666 2667 // If no generic/default, emit an unreachable. 2668 Builder.SetInsertPoint(CurBlock); 2669 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2670 TrapCall->setDoesNotReturn(); 2671 TrapCall->setDoesNotThrow(); 2672 Builder.CreateUnreachable(); 2673 Builder.ClearInsertionPoint(); 2674 } 2675 2676 // Loc - where the diagnostic will point, where in the source code this 2677 // alignment has failed. 2678 // SecondaryLoc - if present (will be present if sufficiently different from 2679 // Loc), the diagnostic will additionally point a "Note:" to this location. 2680 // It should be the location where the __attribute__((assume_aligned)) 2681 // was written e.g. 2682 void CodeGenFunction::emitAlignmentAssumptionCheck( 2683 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2684 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2685 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2686 llvm::Instruction *Assumption) { 2687 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2688 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2689 llvm::Intrinsic::getDeclaration( 2690 Builder.GetInsertBlock()->getParent()->getParent(), 2691 llvm::Intrinsic::assume) && 2692 "Assumption should be a call to llvm.assume()."); 2693 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2694 "Assumption should be the last instruction of the basic block, " 2695 "since the basic block is still being generated."); 2696 2697 if (!SanOpts.has(SanitizerKind::Alignment)) 2698 return; 2699 2700 // Don't check pointers to volatile data. The behavior here is implementation- 2701 // defined. 2702 if (Ty->getPointeeType().isVolatileQualified()) 2703 return; 2704 2705 // We need to temorairly remove the assumption so we can insert the 2706 // sanitizer check before it, else the check will be dropped by optimizations. 2707 Assumption->removeFromParent(); 2708 2709 { 2710 SanitizerScope SanScope(this); 2711 2712 if (!OffsetValue) 2713 OffsetValue = Builder.getInt1(false); // no offset. 2714 2715 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2716 EmitCheckSourceLocation(SecondaryLoc), 2717 EmitCheckTypeDescriptor(Ty)}; 2718 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2719 EmitCheckValue(Alignment), 2720 EmitCheckValue(OffsetValue)}; 2721 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2722 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2723 } 2724 2725 // We are now in the (new, empty) "cont" basic block. 2726 // Reintroduce the assumption. 2727 Builder.Insert(Assumption); 2728 // FIXME: Assumption still has it's original basic block as it's Parent. 2729 } 2730 2731 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2732 if (CGDebugInfo *DI = getDebugInfo()) 2733 return DI->SourceLocToDebugLoc(Location); 2734 2735 return llvm::DebugLoc(); 2736 } 2737 2738 llvm::Value * 2739 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2740 Stmt::Likelihood LH) { 2741 switch (LH) { 2742 case Stmt::LH_None: 2743 return Cond; 2744 case Stmt::LH_Likely: 2745 case Stmt::LH_Unlikely: 2746 // Don't generate llvm.expect on -O0 as the backend won't use it for 2747 // anything. 2748 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2749 return Cond; 2750 llvm::Type *CondTy = Cond->getType(); 2751 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2752 llvm::Function *FnExpect = 2753 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2754 llvm::Value *ExpectedValueOfCond = 2755 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2756 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2757 Cond->getName() + ".expval"); 2758 } 2759 llvm_unreachable("Unknown Likelihood"); 2760 } 2761