1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 // Emit debug descriptor for function end. 387 if (CGDebugInfo *DI = getDebugInfo()) 388 DI->EmitFunctionEnd(Builder, CurFn); 389 390 // Reset the debug location to that of the simple 'return' expression, if any 391 // rather than that of the end of the function's scope '}'. 392 ApplyDebugLocation AL(*this, Loc); 393 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 394 EmitEndEHSpec(CurCodeDecl); 395 396 assert(EHStack.empty() && 397 "did not remove all scopes from cleanup stack!"); 398 399 // If someone did an indirect goto, emit the indirect goto block at the end of 400 // the function. 401 if (IndirectBranch) { 402 EmitBlock(IndirectBranch->getParent()); 403 Builder.ClearInsertionPoint(); 404 } 405 406 // If some of our locals escaped, insert a call to llvm.localescape in the 407 // entry block. 408 if (!EscapedLocals.empty()) { 409 // Invert the map from local to index into a simple vector. There should be 410 // no holes. 411 SmallVector<llvm::Value *, 4> EscapeArgs; 412 EscapeArgs.resize(EscapedLocals.size()); 413 for (auto &Pair : EscapedLocals) 414 EscapeArgs[Pair.second] = Pair.first; 415 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 416 &CGM.getModule(), llvm::Intrinsic::localescape); 417 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 418 } 419 420 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 421 llvm::Instruction *Ptr = AllocaInsertPt; 422 AllocaInsertPt = nullptr; 423 Ptr->eraseFromParent(); 424 425 // PostAllocaInsertPt, if created, was lazily created when it was required, 426 // remove it now since it was just created for our own convenience. 427 if (PostAllocaInsertPt) { 428 llvm::Instruction *PostPtr = PostAllocaInsertPt; 429 PostAllocaInsertPt = nullptr; 430 PostPtr->eraseFromParent(); 431 } 432 433 // If someone took the address of a label but never did an indirect goto, we 434 // made a zero entry PHI node, which is illegal, zap it now. 435 if (IndirectBranch) { 436 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 437 if (PN->getNumIncomingValues() == 0) { 438 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 439 PN->eraseFromParent(); 440 } 441 } 442 443 EmitIfUsed(*this, EHResumeBlock); 444 EmitIfUsed(*this, TerminateLandingPad); 445 EmitIfUsed(*this, TerminateHandler); 446 EmitIfUsed(*this, UnreachableBlock); 447 448 for (const auto &FuncletAndParent : TerminateFunclets) 449 EmitIfUsed(*this, FuncletAndParent.second); 450 451 if (CGM.getCodeGenOpts().EmitDeclMetadata) 452 EmitDeclMetadata(); 453 454 for (const auto &R : DeferredReplacements) { 455 if (llvm::Value *Old = R.first) { 456 Old->replaceAllUsesWith(R.second); 457 cast<llvm::Instruction>(Old)->eraseFromParent(); 458 } 459 } 460 DeferredReplacements.clear(); 461 462 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 463 // PHIs if the current function is a coroutine. We don't do it for all 464 // functions as it may result in slight increase in numbers of instructions 465 // if compiled with no optimizations. We do it for coroutine as the lifetime 466 // of CleanupDestSlot alloca make correct coroutine frame building very 467 // difficult. 468 if (NormalCleanupDest.isValid() && isCoroutine()) { 469 llvm::DominatorTree DT(*CurFn); 470 llvm::PromoteMemToReg( 471 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 472 NormalCleanupDest = Address::invalid(); 473 } 474 475 // Scan function arguments for vector width. 476 for (llvm::Argument &A : CurFn->args()) 477 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 478 LargestVectorWidth = 479 std::max((uint64_t)LargestVectorWidth, 480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 481 482 // Update vector width based on return type. 483 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 484 LargestVectorWidth = 485 std::max((uint64_t)LargestVectorWidth, 486 VT->getPrimitiveSizeInBits().getKnownMinSize()); 487 488 // Add the required-vector-width attribute. This contains the max width from: 489 // 1. min-vector-width attribute used in the source program. 490 // 2. Any builtins used that have a vector width specified. 491 // 3. Values passed in and out of inline assembly. 492 // 4. Width of vector arguments and return types for this function. 493 // 5. Width of vector aguments and return types for functions called by this 494 // function. 495 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 496 497 // Add vscale_range attribute if appropriate. 498 Optional<std::pair<unsigned, unsigned>> VScaleRange = 499 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 500 if (VScaleRange) { 501 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 502 getLLVMContext(), VScaleRange.getValue().first, 503 VScaleRange.getValue().second)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 533 if (!CurFuncDecl) 534 return false; 535 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 536 } 537 538 /// ShouldXRayInstrument - Return true if the current function should be 539 /// instrumented with XRay nop sleds. 540 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 542 } 543 544 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 545 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 546 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 547 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 548 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 549 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 550 XRayInstrKind::Custom); 551 } 552 553 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 554 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 555 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 556 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 557 XRayInstrKind::Typed); 558 } 559 560 llvm::Constant * 561 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 562 llvm::Constant *Addr) { 563 // Addresses stored in prologue data can't require run-time fixups and must 564 // be PC-relative. Run-time fixups are undesirable because they necessitate 565 // writable text segments, which are unsafe. And absolute addresses are 566 // undesirable because they break PIE mode. 567 568 // Add a layer of indirection through a private global. Taking its address 569 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 570 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 571 /*isConstant=*/true, 572 llvm::GlobalValue::PrivateLinkage, Addr); 573 574 // Create a PC-relative address. 575 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 576 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 577 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 578 return (IntPtrTy == Int32Ty) 579 ? PCRelAsInt 580 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 581 } 582 583 llvm::Value * 584 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 585 llvm::Value *EncodedAddr) { 586 // Reconstruct the address of the global. 587 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 588 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 589 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 590 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 591 592 // Load the original pointer through the global. 593 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 594 "decoded_addr"); 595 } 596 597 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 598 llvm::Function *Fn) 599 { 600 if (!FD->hasAttr<OpenCLKernelAttr>()) 601 return; 602 603 llvm::LLVMContext &Context = getLLVMContext(); 604 605 CGM.GenOpenCLArgMetadata(Fn, FD, this); 606 607 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 608 QualType HintQTy = A->getTypeHint(); 609 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 610 bool IsSignedInteger = 611 HintQTy->isSignedIntegerType() || 612 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 613 llvm::Metadata *AttrMDArgs[] = { 614 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 615 CGM.getTypes().ConvertType(A->getTypeHint()))), 616 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 617 llvm::IntegerType::get(Context, 32), 618 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 619 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 620 } 621 622 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 623 llvm::Metadata *AttrMDArgs[] = { 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 627 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 628 } 629 630 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 631 llvm::Metadata *AttrMDArgs[] = { 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 633 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 635 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 636 } 637 638 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 639 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 640 llvm::Metadata *AttrMDArgs[] = { 641 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 642 Fn->setMetadata("intel_reqd_sub_group_size", 643 llvm::MDNode::get(Context, AttrMDArgs)); 644 } 645 } 646 647 /// Determine whether the function F ends with a return stmt. 648 static bool endsWithReturn(const Decl* F) { 649 const Stmt *Body = nullptr; 650 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 651 Body = FD->getBody(); 652 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 653 Body = OMD->getBody(); 654 655 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 656 auto LastStmt = CS->body_rbegin(); 657 if (LastStmt != CS->body_rend()) 658 return isa<ReturnStmt>(*LastStmt); 659 } 660 return false; 661 } 662 663 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 664 if (SanOpts.has(SanitizerKind::Thread)) { 665 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 666 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 667 } 668 } 669 670 /// Check if the return value of this function requires sanitization. 671 bool CodeGenFunction::requiresReturnValueCheck() const { 672 return requiresReturnValueNullabilityCheck() || 673 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 674 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 675 } 676 677 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 678 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 679 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 680 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 681 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 682 return false; 683 684 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 685 return false; 686 687 if (MD->getNumParams() == 2) { 688 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 689 if (!PT || !PT->isVoidPointerType() || 690 !PT->getPointeeType().isConstQualified()) 691 return false; 692 } 693 694 return true; 695 } 696 697 /// Return the UBSan prologue signature for \p FD if one is available. 698 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 699 const FunctionDecl *FD) { 700 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 701 if (!MD->isStatic()) 702 return nullptr; 703 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 704 } 705 706 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 707 llvm::Function *Fn, 708 const CGFunctionInfo &FnInfo, 709 const FunctionArgList &Args, 710 SourceLocation Loc, 711 SourceLocation StartLoc) { 712 assert(!CurFn && 713 "Do not use a CodeGenFunction object for more than one function"); 714 715 const Decl *D = GD.getDecl(); 716 717 DidCallStackSave = false; 718 CurCodeDecl = D; 719 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 720 if (FD && FD->usesSEHTry()) 721 CurSEHParent = FD; 722 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 723 FnRetTy = RetTy; 724 CurFn = Fn; 725 CurFnInfo = &FnInfo; 726 assert(CurFn->isDeclaration() && "Function already has body?"); 727 728 // If this function is ignored for any of the enabled sanitizers, 729 // disable the sanitizer for the function. 730 do { 731 #define SANITIZER(NAME, ID) \ 732 if (SanOpts.empty()) \ 733 break; \ 734 if (SanOpts.has(SanitizerKind::ID)) \ 735 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 736 SanOpts.set(SanitizerKind::ID, false); 737 738 #include "clang/Basic/Sanitizers.def" 739 #undef SANITIZER 740 } while (false); 741 742 if (D) { 743 bool NoSanitizeCoverage = false; 744 745 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 746 // Apply the no_sanitize* attributes to SanOpts. 747 SanitizerMask mask = Attr->getMask(); 748 SanOpts.Mask &= ~mask; 749 if (mask & SanitizerKind::Address) 750 SanOpts.set(SanitizerKind::KernelAddress, false); 751 if (mask & SanitizerKind::KernelAddress) 752 SanOpts.set(SanitizerKind::Address, false); 753 if (mask & SanitizerKind::HWAddress) 754 SanOpts.set(SanitizerKind::KernelHWAddress, false); 755 if (mask & SanitizerKind::KernelHWAddress) 756 SanOpts.set(SanitizerKind::HWAddress, false); 757 758 // SanitizeCoverage is not handled by SanOpts. 759 if (Attr->hasCoverage()) 760 NoSanitizeCoverage = true; 761 } 762 763 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 764 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 765 } 766 767 if (ShouldSkipSanitizerInstrumentation()) { 768 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 769 } else { 770 // Apply sanitizer attributes to the function. 771 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 773 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 774 SanitizerKind::KernelHWAddress)) 775 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 776 if (SanOpts.has(SanitizerKind::MemTag)) 777 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 778 if (SanOpts.has(SanitizerKind::Thread)) 779 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 780 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 782 } 783 if (SanOpts.has(SanitizerKind::SafeStack)) 784 Fn->addFnAttr(llvm::Attribute::SafeStack); 785 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 786 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 787 788 // Apply fuzzing attribute to the function. 789 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 790 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 791 792 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 793 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 794 if (SanOpts.has(SanitizerKind::Thread)) { 795 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 796 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 797 if (OMD->getMethodFamily() == OMF_dealloc || 798 OMD->getMethodFamily() == OMF_initialize || 799 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 800 markAsIgnoreThreadCheckingAtRuntime(Fn); 801 } 802 } 803 } 804 805 // Ignore unrelated casts in STL allocate() since the allocator must cast 806 // from void* to T* before object initialization completes. Don't match on the 807 // namespace because not all allocators are in std:: 808 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 809 if (matchesStlAllocatorFn(D, getContext())) 810 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 811 } 812 813 // Ignore null checks in coroutine functions since the coroutines passes 814 // are not aware of how to move the extra UBSan instructions across the split 815 // coroutine boundaries. 816 if (D && SanOpts.has(SanitizerKind::Null)) 817 if (FD && FD->getBody() && 818 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 819 SanOpts.Mask &= ~SanitizerKind::Null; 820 821 // Apply xray attributes to the function (as a string, for now) 822 bool AlwaysXRayAttr = false; 823 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 824 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 825 XRayInstrKind::FunctionEntry) || 826 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 827 XRayInstrKind::FunctionExit)) { 828 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 829 Fn->addFnAttr("function-instrument", "xray-always"); 830 AlwaysXRayAttr = true; 831 } 832 if (XRayAttr->neverXRayInstrument()) 833 Fn->addFnAttr("function-instrument", "xray-never"); 834 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 835 if (ShouldXRayInstrumentFunction()) 836 Fn->addFnAttr("xray-log-args", 837 llvm::utostr(LogArgs->getArgumentCount())); 838 } 839 } else { 840 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 841 Fn->addFnAttr( 842 "xray-instruction-threshold", 843 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 844 } 845 846 if (ShouldXRayInstrumentFunction()) { 847 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 848 Fn->addFnAttr("xray-ignore-loops"); 849 850 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 851 XRayInstrKind::FunctionExit)) 852 Fn->addFnAttr("xray-skip-exit"); 853 854 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 855 XRayInstrKind::FunctionEntry)) 856 Fn->addFnAttr("xray-skip-entry"); 857 858 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 859 if (FuncGroups > 1) { 860 auto FuncName = llvm::makeArrayRef<uint8_t>( 861 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 862 auto Group = crc32(FuncName) % FuncGroups; 863 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 864 !AlwaysXRayAttr) 865 Fn->addFnAttr("function-instrument", "xray-never"); 866 } 867 } 868 869 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 870 if (CGM.isProfileInstrExcluded(Fn, Loc)) 871 Fn->addFnAttr(llvm::Attribute::NoProfile); 872 873 unsigned Count, Offset; 874 if (const auto *Attr = 875 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 876 Count = Attr->getCount(); 877 Offset = Attr->getOffset(); 878 } else { 879 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 880 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 881 } 882 if (Count && Offset <= Count) { 883 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 884 if (Offset) 885 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 886 } 887 // Instruct that functions for COFF/CodeView targets should start with a 888 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 889 // backends as they don't need it -- instructions on these architectures are 890 // always atomically patchable at runtime. 891 if (CGM.getCodeGenOpts().HotPatch && 892 getContext().getTargetInfo().getTriple().isX86()) 893 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 894 895 // Add no-jump-tables value. 896 if (CGM.getCodeGenOpts().NoUseJumpTables) 897 Fn->addFnAttr("no-jump-tables", "true"); 898 899 // Add no-inline-line-tables value. 900 if (CGM.getCodeGenOpts().NoInlineLineTables) 901 Fn->addFnAttr("no-inline-line-tables"); 902 903 // Add profile-sample-accurate value. 904 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 905 Fn->addFnAttr("profile-sample-accurate"); 906 907 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 908 Fn->addFnAttr("use-sample-profile"); 909 910 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 911 Fn->addFnAttr("cfi-canonical-jump-table"); 912 913 if (D && D->hasAttr<NoProfileFunctionAttr>()) 914 Fn->addFnAttr(llvm::Attribute::NoProfile); 915 916 if (FD && getLangOpts().OpenCL) { 917 // Add metadata for a kernel function. 918 EmitOpenCLKernelMetadata(FD, Fn); 919 } 920 921 // If we are checking function types, emit a function type signature as 922 // prologue data. 923 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 924 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 925 // Remove any (C++17) exception specifications, to allow calling e.g. a 926 // noexcept function through a non-noexcept pointer. 927 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 928 FD->getType(), EST_None); 929 llvm::Constant *FTRTTIConst = 930 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 931 llvm::Constant *FTRTTIConstEncoded = 932 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 933 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 934 llvm::Constant *PrologueStructConst = 935 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 936 Fn->setPrologueData(PrologueStructConst); 937 } 938 } 939 940 // If we're checking nullability, we need to know whether we can check the 941 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 942 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 943 auto Nullability = FnRetTy->getNullability(getContext()); 944 if (Nullability && *Nullability == NullabilityKind::NonNull) { 945 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 946 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 947 RetValNullabilityPrecondition = 948 llvm::ConstantInt::getTrue(getLLVMContext()); 949 } 950 } 951 952 // If we're in C++ mode and the function name is "main", it is guaranteed 953 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 954 // used within a program"). 955 // 956 // OpenCL C 2.0 v2.2-11 s6.9.i: 957 // Recursion is not supported. 958 // 959 // SYCL v1.2.1 s3.10: 960 // kernels cannot include RTTI information, exception classes, 961 // recursive code, virtual functions or make use of C++ libraries that 962 // are not compiled for the device. 963 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 964 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 965 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 966 Fn->addFnAttr(llvm::Attribute::NoRecurse); 967 968 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 969 llvm::fp::ExceptionBehavior FPExceptionBehavior = 970 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 971 Builder.setDefaultConstrainedRounding(RM); 972 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 973 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 974 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 975 RM != llvm::RoundingMode::NearestTiesToEven))) { 976 Builder.setIsFPConstrained(true); 977 Fn->addFnAttr(llvm::Attribute::StrictFP); 978 } 979 980 // If a custom alignment is used, force realigning to this alignment on 981 // any main function which certainly will need it. 982 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 983 CGM.getCodeGenOpts().StackAlignment)) 984 Fn->addFnAttr("stackrealign"); 985 986 // "main" doesn't need to zero out call-used registers. 987 if (FD && FD->isMain()) 988 Fn->removeFnAttr("zero-call-used-regs"); 989 990 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 991 992 // Create a marker to make it easy to insert allocas into the entryblock 993 // later. Don't create this with the builder, because we don't want it 994 // folded. 995 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 996 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 997 998 ReturnBlock = getJumpDestInCurrentScope("return"); 999 1000 Builder.SetInsertPoint(EntryBB); 1001 1002 // If we're checking the return value, allocate space for a pointer to a 1003 // precise source location of the checked return statement. 1004 if (requiresReturnValueCheck()) { 1005 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1006 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1007 ReturnLocation); 1008 } 1009 1010 // Emit subprogram debug descriptor. 1011 if (CGDebugInfo *DI = getDebugInfo()) { 1012 // Reconstruct the type from the argument list so that implicit parameters, 1013 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1014 // convention. 1015 DI->emitFunctionStart(GD, Loc, StartLoc, 1016 DI->getFunctionType(FD, RetTy, Args), CurFn, 1017 CurFuncIsThunk); 1018 } 1019 1020 if (ShouldInstrumentFunction()) { 1021 if (CGM.getCodeGenOpts().InstrumentFunctions) 1022 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1023 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1024 CurFn->addFnAttr("instrument-function-entry-inlined", 1025 "__cyg_profile_func_enter"); 1026 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1027 CurFn->addFnAttr("instrument-function-entry-inlined", 1028 "__cyg_profile_func_enter_bare"); 1029 } 1030 1031 // Since emitting the mcount call here impacts optimizations such as function 1032 // inlining, we just add an attribute to insert a mcount call in backend. 1033 // The attribute "counting-function" is set to mcount function name which is 1034 // architecture dependent. 1035 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1036 // Calls to fentry/mcount should not be generated if function has 1037 // the no_instrument_function attribute. 1038 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1039 if (CGM.getCodeGenOpts().CallFEntry) 1040 Fn->addFnAttr("fentry-call", "true"); 1041 else { 1042 Fn->addFnAttr("instrument-function-entry-inlined", 1043 getTarget().getMCountName()); 1044 } 1045 if (CGM.getCodeGenOpts().MNopMCount) { 1046 if (!CGM.getCodeGenOpts().CallFEntry) 1047 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1048 << "-mnop-mcount" << "-mfentry"; 1049 Fn->addFnAttr("mnop-mcount"); 1050 } 1051 1052 if (CGM.getCodeGenOpts().RecordMCount) { 1053 if (!CGM.getCodeGenOpts().CallFEntry) 1054 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1055 << "-mrecord-mcount" << "-mfentry"; 1056 Fn->addFnAttr("mrecord-mcount"); 1057 } 1058 } 1059 } 1060 1061 if (CGM.getCodeGenOpts().PackedStack) { 1062 if (getContext().getTargetInfo().getTriple().getArch() != 1063 llvm::Triple::systemz) 1064 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1065 << "-mpacked-stack"; 1066 Fn->addFnAttr("packed-stack"); 1067 } 1068 1069 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1070 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1071 Fn->addFnAttr("warn-stack-size", 1072 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1073 1074 if (RetTy->isVoidType()) { 1075 // Void type; nothing to return. 1076 ReturnValue = Address::invalid(); 1077 1078 // Count the implicit return. 1079 if (!endsWithReturn(D)) 1080 ++NumReturnExprs; 1081 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1082 // Indirect return; emit returned value directly into sret slot. 1083 // This reduces code size, and affects correctness in C++. 1084 auto AI = CurFn->arg_begin(); 1085 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1086 ++AI; 1087 ReturnValue = Address(&*AI, ConvertType(RetTy), 1088 CurFnInfo->getReturnInfo().getIndirectAlign()); 1089 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1090 ReturnValuePointer = 1091 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1092 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1093 ReturnValue.getPointer(), Int8PtrTy), 1094 ReturnValuePointer); 1095 } 1096 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1097 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1098 // Load the sret pointer from the argument struct and return into that. 1099 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1100 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1101 --EI; 1102 llvm::Value *Addr = Builder.CreateStructGEP( 1103 EI->getType()->getPointerElementType(), &*EI, Idx); 1104 llvm::Type *Ty = 1105 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1106 ReturnValuePointer = Address(Addr, getPointerAlign()); 1107 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1108 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1109 } else { 1110 ReturnValue = CreateIRTemp(RetTy, "retval"); 1111 1112 // Tell the epilog emitter to autorelease the result. We do this 1113 // now so that various specialized functions can suppress it 1114 // during their IR-generation. 1115 if (getLangOpts().ObjCAutoRefCount && 1116 !CurFnInfo->isReturnsRetained() && 1117 RetTy->isObjCRetainableType()) 1118 AutoreleaseResult = true; 1119 } 1120 1121 EmitStartEHSpec(CurCodeDecl); 1122 1123 PrologueCleanupDepth = EHStack.stable_begin(); 1124 1125 // Emit OpenMP specific initialization of the device functions. 1126 if (getLangOpts().OpenMP && CurCodeDecl) 1127 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1128 1129 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1130 1131 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1132 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1133 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1134 if (MD->getParent()->isLambda() && 1135 MD->getOverloadedOperator() == OO_Call) { 1136 // We're in a lambda; figure out the captures. 1137 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1138 LambdaThisCaptureField); 1139 if (LambdaThisCaptureField) { 1140 // If the lambda captures the object referred to by '*this' - either by 1141 // value or by reference, make sure CXXThisValue points to the correct 1142 // object. 1143 1144 // Get the lvalue for the field (which is a copy of the enclosing object 1145 // or contains the address of the enclosing object). 1146 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1147 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1148 // If the enclosing object was captured by value, just use its address. 1149 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1150 } else { 1151 // Load the lvalue pointed to by the field, since '*this' was captured 1152 // by reference. 1153 CXXThisValue = 1154 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1155 } 1156 } 1157 for (auto *FD : MD->getParent()->fields()) { 1158 if (FD->hasCapturedVLAType()) { 1159 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1160 SourceLocation()).getScalarVal(); 1161 auto VAT = FD->getCapturedVLAType(); 1162 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1163 } 1164 } 1165 } else { 1166 // Not in a lambda; just use 'this' from the method. 1167 // FIXME: Should we generate a new load for each use of 'this'? The 1168 // fast register allocator would be happier... 1169 CXXThisValue = CXXABIThisValue; 1170 } 1171 1172 // Check the 'this' pointer once per function, if it's available. 1173 if (CXXABIThisValue) { 1174 SanitizerSet SkippedChecks; 1175 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1176 QualType ThisTy = MD->getThisType(); 1177 1178 // If this is the call operator of a lambda with no capture-default, it 1179 // may have a static invoker function, which may call this operator with 1180 // a null 'this' pointer. 1181 if (isLambdaCallOperator(MD) && 1182 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1183 SkippedChecks.set(SanitizerKind::Null, true); 1184 1185 EmitTypeCheck( 1186 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1187 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1188 } 1189 } 1190 1191 // If any of the arguments have a variably modified type, make sure to 1192 // emit the type size. 1193 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1194 i != e; ++i) { 1195 const VarDecl *VD = *i; 1196 1197 // Dig out the type as written from ParmVarDecls; it's unclear whether 1198 // the standard (C99 6.9.1p10) requires this, but we're following the 1199 // precedent set by gcc. 1200 QualType Ty; 1201 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1202 Ty = PVD->getOriginalType(); 1203 else 1204 Ty = VD->getType(); 1205 1206 if (Ty->isVariablyModifiedType()) 1207 EmitVariablyModifiedType(Ty); 1208 } 1209 // Emit a location at the end of the prologue. 1210 if (CGDebugInfo *DI = getDebugInfo()) 1211 DI->EmitLocation(Builder, StartLoc); 1212 1213 // TODO: Do we need to handle this in two places like we do with 1214 // target-features/target-cpu? 1215 if (CurFuncDecl) 1216 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1217 LargestVectorWidth = VecWidth->getVectorWidth(); 1218 } 1219 1220 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1221 incrementProfileCounter(Body); 1222 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1223 EmitCompoundStmtWithoutScope(*S); 1224 else 1225 EmitStmt(Body); 1226 1227 // This is checked after emitting the function body so we know if there 1228 // are any permitted infinite loops. 1229 if (checkIfFunctionMustProgress()) 1230 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1231 } 1232 1233 /// When instrumenting to collect profile data, the counts for some blocks 1234 /// such as switch cases need to not include the fall-through counts, so 1235 /// emit a branch around the instrumentation code. When not instrumenting, 1236 /// this just calls EmitBlock(). 1237 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1238 const Stmt *S) { 1239 llvm::BasicBlock *SkipCountBB = nullptr; 1240 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1241 // When instrumenting for profiling, the fallthrough to certain 1242 // statements needs to skip over the instrumentation code so that we 1243 // get an accurate count. 1244 SkipCountBB = createBasicBlock("skipcount"); 1245 EmitBranch(SkipCountBB); 1246 } 1247 EmitBlock(BB); 1248 uint64_t CurrentCount = getCurrentProfileCount(); 1249 incrementProfileCounter(S); 1250 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1251 if (SkipCountBB) 1252 EmitBlock(SkipCountBB); 1253 } 1254 1255 /// Tries to mark the given function nounwind based on the 1256 /// non-existence of any throwing calls within it. We believe this is 1257 /// lightweight enough to do at -O0. 1258 static void TryMarkNoThrow(llvm::Function *F) { 1259 // LLVM treats 'nounwind' on a function as part of the type, so we 1260 // can't do this on functions that can be overwritten. 1261 if (F->isInterposable()) return; 1262 1263 for (llvm::BasicBlock &BB : *F) 1264 for (llvm::Instruction &I : BB) 1265 if (I.mayThrow()) 1266 return; 1267 1268 F->setDoesNotThrow(); 1269 } 1270 1271 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1272 FunctionArgList &Args) { 1273 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1274 QualType ResTy = FD->getReturnType(); 1275 1276 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1277 if (MD && MD->isInstance()) { 1278 if (CGM.getCXXABI().HasThisReturn(GD)) 1279 ResTy = MD->getThisType(); 1280 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1281 ResTy = CGM.getContext().VoidPtrTy; 1282 CGM.getCXXABI().buildThisParam(*this, Args); 1283 } 1284 1285 // The base version of an inheriting constructor whose constructed base is a 1286 // virtual base is not passed any arguments (because it doesn't actually call 1287 // the inherited constructor). 1288 bool PassedParams = true; 1289 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1290 if (auto Inherited = CD->getInheritedConstructor()) 1291 PassedParams = 1292 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1293 1294 if (PassedParams) { 1295 for (auto *Param : FD->parameters()) { 1296 Args.push_back(Param); 1297 if (!Param->hasAttr<PassObjectSizeAttr>()) 1298 continue; 1299 1300 auto *Implicit = ImplicitParamDecl::Create( 1301 getContext(), Param->getDeclContext(), Param->getLocation(), 1302 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1303 SizeArguments[Param] = Implicit; 1304 Args.push_back(Implicit); 1305 } 1306 } 1307 1308 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1309 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1310 1311 return ResTy; 1312 } 1313 1314 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1315 const CGFunctionInfo &FnInfo) { 1316 assert(Fn && "generating code for null Function"); 1317 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1318 CurGD = GD; 1319 1320 FunctionArgList Args; 1321 QualType ResTy = BuildFunctionArgList(GD, Args); 1322 1323 if (FD->isInlineBuiltinDeclaration()) { 1324 // When generating code for a builtin with an inline declaration, use a 1325 // mangled name to hold the actual body, while keeping an external 1326 // definition in case the function pointer is referenced somewhere. 1327 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1328 llvm::Module *M = Fn->getParent(); 1329 llvm::Function *Clone = M->getFunction(FDInlineName); 1330 if (!Clone) { 1331 Clone = llvm::Function::Create(Fn->getFunctionType(), 1332 llvm::GlobalValue::InternalLinkage, 1333 Fn->getAddressSpace(), FDInlineName, M); 1334 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1335 } 1336 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1337 Fn = Clone; 1338 } else { 1339 // Detect the unusual situation where an inline version is shadowed by a 1340 // non-inline version. In that case we should pick the external one 1341 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1342 // to detect that situation before we reach codegen, so do some late 1343 // replacement. 1344 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1345 PD = PD->getPreviousDecl()) { 1346 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1347 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1348 llvm::Module *M = Fn->getParent(); 1349 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1350 Clone->replaceAllUsesWith(Fn); 1351 Clone->eraseFromParent(); 1352 } 1353 break; 1354 } 1355 } 1356 } 1357 1358 // Check if we should generate debug info for this function. 1359 if (FD->hasAttr<NoDebugAttr>()) { 1360 // Clear non-distinct debug info that was possibly attached to the function 1361 // due to an earlier declaration without the nodebug attribute 1362 Fn->setSubprogram(nullptr); 1363 // Disable debug info indefinitely for this function 1364 DebugInfo = nullptr; 1365 } 1366 1367 // The function might not have a body if we're generating thunks for a 1368 // function declaration. 1369 SourceRange BodyRange; 1370 if (Stmt *Body = FD->getBody()) 1371 BodyRange = Body->getSourceRange(); 1372 else 1373 BodyRange = FD->getLocation(); 1374 CurEHLocation = BodyRange.getEnd(); 1375 1376 // Use the location of the start of the function to determine where 1377 // the function definition is located. By default use the location 1378 // of the declaration as the location for the subprogram. A function 1379 // may lack a declaration in the source code if it is created by code 1380 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1381 SourceLocation Loc = FD->getLocation(); 1382 1383 // If this is a function specialization then use the pattern body 1384 // as the location for the function. 1385 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1386 if (SpecDecl->hasBody(SpecDecl)) 1387 Loc = SpecDecl->getLocation(); 1388 1389 Stmt *Body = FD->getBody(); 1390 1391 if (Body) { 1392 // Coroutines always emit lifetime markers. 1393 if (isa<CoroutineBodyStmt>(Body)) 1394 ShouldEmitLifetimeMarkers = true; 1395 1396 // Initialize helper which will detect jumps which can cause invalid 1397 // lifetime markers. 1398 if (ShouldEmitLifetimeMarkers) 1399 Bypasses.Init(Body); 1400 } 1401 1402 // Emit the standard function prologue. 1403 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1404 1405 // Save parameters for coroutine function. 1406 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1407 for (const auto *ParamDecl : FD->parameters()) 1408 FnArgs.push_back(ParamDecl); 1409 1410 // Generate the body of the function. 1411 PGO.assignRegionCounters(GD, CurFn); 1412 if (isa<CXXDestructorDecl>(FD)) 1413 EmitDestructorBody(Args); 1414 else if (isa<CXXConstructorDecl>(FD)) 1415 EmitConstructorBody(Args); 1416 else if (getLangOpts().CUDA && 1417 !getLangOpts().CUDAIsDevice && 1418 FD->hasAttr<CUDAGlobalAttr>()) 1419 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1420 else if (isa<CXXMethodDecl>(FD) && 1421 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1422 // The lambda static invoker function is special, because it forwards or 1423 // clones the body of the function call operator (but is actually static). 1424 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1425 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1426 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1427 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1428 // Implicit copy-assignment gets the same special treatment as implicit 1429 // copy-constructors. 1430 emitImplicitAssignmentOperatorBody(Args); 1431 } else if (Body) { 1432 EmitFunctionBody(Body); 1433 } else 1434 llvm_unreachable("no definition for emitted function"); 1435 1436 // C++11 [stmt.return]p2: 1437 // Flowing off the end of a function [...] results in undefined behavior in 1438 // a value-returning function. 1439 // C11 6.9.1p12: 1440 // If the '}' that terminates a function is reached, and the value of the 1441 // function call is used by the caller, the behavior is undefined. 1442 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1443 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1444 bool ShouldEmitUnreachable = 1445 CGM.getCodeGenOpts().StrictReturn || 1446 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1447 if (SanOpts.has(SanitizerKind::Return)) { 1448 SanitizerScope SanScope(this); 1449 llvm::Value *IsFalse = Builder.getFalse(); 1450 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1451 SanitizerHandler::MissingReturn, 1452 EmitCheckSourceLocation(FD->getLocation()), None); 1453 } else if (ShouldEmitUnreachable) { 1454 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1455 EmitTrapCall(llvm::Intrinsic::trap); 1456 } 1457 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1458 Builder.CreateUnreachable(); 1459 Builder.ClearInsertionPoint(); 1460 } 1461 } 1462 1463 // Emit the standard function epilogue. 1464 FinishFunction(BodyRange.getEnd()); 1465 1466 // If we haven't marked the function nothrow through other means, do 1467 // a quick pass now to see if we can. 1468 if (!CurFn->doesNotThrow()) 1469 TryMarkNoThrow(CurFn); 1470 } 1471 1472 /// ContainsLabel - Return true if the statement contains a label in it. If 1473 /// this statement is not executed normally, it not containing a label means 1474 /// that we can just remove the code. 1475 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1476 // Null statement, not a label! 1477 if (!S) return false; 1478 1479 // If this is a label, we have to emit the code, consider something like: 1480 // if (0) { ... foo: bar(); } goto foo; 1481 // 1482 // TODO: If anyone cared, we could track __label__'s, since we know that you 1483 // can't jump to one from outside their declared region. 1484 if (isa<LabelStmt>(S)) 1485 return true; 1486 1487 // If this is a case/default statement, and we haven't seen a switch, we have 1488 // to emit the code. 1489 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1490 return true; 1491 1492 // If this is a switch statement, we want to ignore cases below it. 1493 if (isa<SwitchStmt>(S)) 1494 IgnoreCaseStmts = true; 1495 1496 // Scan subexpressions for verboten labels. 1497 for (const Stmt *SubStmt : S->children()) 1498 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1499 return true; 1500 1501 return false; 1502 } 1503 1504 /// containsBreak - Return true if the statement contains a break out of it. 1505 /// If the statement (recursively) contains a switch or loop with a break 1506 /// inside of it, this is fine. 1507 bool CodeGenFunction::containsBreak(const Stmt *S) { 1508 // Null statement, not a label! 1509 if (!S) return false; 1510 1511 // If this is a switch or loop that defines its own break scope, then we can 1512 // include it and anything inside of it. 1513 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1514 isa<ForStmt>(S)) 1515 return false; 1516 1517 if (isa<BreakStmt>(S)) 1518 return true; 1519 1520 // Scan subexpressions for verboten breaks. 1521 for (const Stmt *SubStmt : S->children()) 1522 if (containsBreak(SubStmt)) 1523 return true; 1524 1525 return false; 1526 } 1527 1528 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1529 if (!S) return false; 1530 1531 // Some statement kinds add a scope and thus never add a decl to the current 1532 // scope. Note, this list is longer than the list of statements that might 1533 // have an unscoped decl nested within them, but this way is conservatively 1534 // correct even if more statement kinds are added. 1535 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1536 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1537 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1538 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1539 return false; 1540 1541 if (isa<DeclStmt>(S)) 1542 return true; 1543 1544 for (const Stmt *SubStmt : S->children()) 1545 if (mightAddDeclToScope(SubStmt)) 1546 return true; 1547 1548 return false; 1549 } 1550 1551 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1552 /// to a constant, or if it does but contains a label, return false. If it 1553 /// constant folds return true and set the boolean result in Result. 1554 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1555 bool &ResultBool, 1556 bool AllowLabels) { 1557 llvm::APSInt ResultInt; 1558 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1559 return false; 1560 1561 ResultBool = ResultInt.getBoolValue(); 1562 return true; 1563 } 1564 1565 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1566 /// to a constant, or if it does but contains a label, return false. If it 1567 /// constant folds return true and set the folded value. 1568 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1569 llvm::APSInt &ResultInt, 1570 bool AllowLabels) { 1571 // FIXME: Rename and handle conversion of other evaluatable things 1572 // to bool. 1573 Expr::EvalResult Result; 1574 if (!Cond->EvaluateAsInt(Result, getContext())) 1575 return false; // Not foldable, not integer or not fully evaluatable. 1576 1577 llvm::APSInt Int = Result.Val.getInt(); 1578 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1579 return false; // Contains a label. 1580 1581 ResultInt = Int; 1582 return true; 1583 } 1584 1585 /// Determine whether the given condition is an instrumentable condition 1586 /// (i.e. no "&&" or "||"). 1587 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1588 // Bypass simplistic logical-NOT operator before determining whether the 1589 // condition contains any other logical operator. 1590 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1591 if (UnOp->getOpcode() == UO_LNot) 1592 C = UnOp->getSubExpr(); 1593 1594 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1595 return (!BOp || !BOp->isLogicalOp()); 1596 } 1597 1598 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1599 /// increments a profile counter based on the semantics of the given logical 1600 /// operator opcode. This is used to instrument branch condition coverage for 1601 /// logical operators. 1602 void CodeGenFunction::EmitBranchToCounterBlock( 1603 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1604 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1605 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1606 // If not instrumenting, just emit a branch. 1607 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1608 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1609 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1610 1611 llvm::BasicBlock *ThenBlock = nullptr; 1612 llvm::BasicBlock *ElseBlock = nullptr; 1613 llvm::BasicBlock *NextBlock = nullptr; 1614 1615 // Create the block we'll use to increment the appropriate counter. 1616 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1617 1618 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1619 // means we need to evaluate the condition and increment the counter on TRUE: 1620 // 1621 // if (Cond) 1622 // goto CounterIncrBlock; 1623 // else 1624 // goto FalseBlock; 1625 // 1626 // CounterIncrBlock: 1627 // Counter++; 1628 // goto TrueBlock; 1629 1630 if (LOp == BO_LAnd) { 1631 ThenBlock = CounterIncrBlock; 1632 ElseBlock = FalseBlock; 1633 NextBlock = TrueBlock; 1634 } 1635 1636 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1637 // we need to evaluate the condition and increment the counter on FALSE: 1638 // 1639 // if (Cond) 1640 // goto TrueBlock; 1641 // else 1642 // goto CounterIncrBlock; 1643 // 1644 // CounterIncrBlock: 1645 // Counter++; 1646 // goto FalseBlock; 1647 1648 else if (LOp == BO_LOr) { 1649 ThenBlock = TrueBlock; 1650 ElseBlock = CounterIncrBlock; 1651 NextBlock = FalseBlock; 1652 } else { 1653 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1654 } 1655 1656 // Emit Branch based on condition. 1657 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1658 1659 // Emit the block containing the counter increment(s). 1660 EmitBlock(CounterIncrBlock); 1661 1662 // Increment corresponding counter; if index not provided, use Cond as index. 1663 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1664 1665 // Go to the next block. 1666 EmitBranch(NextBlock); 1667 } 1668 1669 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1670 /// statement) to the specified blocks. Based on the condition, this might try 1671 /// to simplify the codegen of the conditional based on the branch. 1672 /// \param LH The value of the likelihood attribute on the True branch. 1673 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1674 llvm::BasicBlock *TrueBlock, 1675 llvm::BasicBlock *FalseBlock, 1676 uint64_t TrueCount, 1677 Stmt::Likelihood LH) { 1678 Cond = Cond->IgnoreParens(); 1679 1680 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1681 1682 // Handle X && Y in a condition. 1683 if (CondBOp->getOpcode() == BO_LAnd) { 1684 // If we have "1 && X", simplify the code. "0 && X" would have constant 1685 // folded if the case was simple enough. 1686 bool ConstantBool = false; 1687 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1688 ConstantBool) { 1689 // br(1 && X) -> br(X). 1690 incrementProfileCounter(CondBOp); 1691 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1692 FalseBlock, TrueCount, LH); 1693 } 1694 1695 // If we have "X && 1", simplify the code to use an uncond branch. 1696 // "X && 0" would have been constant folded to 0. 1697 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1698 ConstantBool) { 1699 // br(X && 1) -> br(X). 1700 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1701 FalseBlock, TrueCount, LH, CondBOp); 1702 } 1703 1704 // Emit the LHS as a conditional. If the LHS conditional is false, we 1705 // want to jump to the FalseBlock. 1706 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1707 // The counter tells us how often we evaluate RHS, and all of TrueCount 1708 // can be propagated to that branch. 1709 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1710 1711 ConditionalEvaluation eval(*this); 1712 { 1713 ApplyDebugLocation DL(*this, Cond); 1714 // Propagate the likelihood attribute like __builtin_expect 1715 // __builtin_expect(X && Y, 1) -> X and Y are likely 1716 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1717 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1718 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1719 EmitBlock(LHSTrue); 1720 } 1721 1722 incrementProfileCounter(CondBOp); 1723 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1724 1725 // Any temporaries created here are conditional. 1726 eval.begin(*this); 1727 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1728 FalseBlock, TrueCount, LH); 1729 eval.end(*this); 1730 1731 return; 1732 } 1733 1734 if (CondBOp->getOpcode() == BO_LOr) { 1735 // If we have "0 || X", simplify the code. "1 || X" would have constant 1736 // folded if the case was simple enough. 1737 bool ConstantBool = false; 1738 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1739 !ConstantBool) { 1740 // br(0 || X) -> br(X). 1741 incrementProfileCounter(CondBOp); 1742 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1743 FalseBlock, TrueCount, LH); 1744 } 1745 1746 // If we have "X || 0", simplify the code to use an uncond branch. 1747 // "X || 1" would have been constant folded to 1. 1748 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1749 !ConstantBool) { 1750 // br(X || 0) -> br(X). 1751 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1752 FalseBlock, TrueCount, LH, CondBOp); 1753 } 1754 1755 // Emit the LHS as a conditional. If the LHS conditional is true, we 1756 // want to jump to the TrueBlock. 1757 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1758 // We have the count for entry to the RHS and for the whole expression 1759 // being true, so we can divy up True count between the short circuit and 1760 // the RHS. 1761 uint64_t LHSCount = 1762 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1763 uint64_t RHSCount = TrueCount - LHSCount; 1764 1765 ConditionalEvaluation eval(*this); 1766 { 1767 // Propagate the likelihood attribute like __builtin_expect 1768 // __builtin_expect(X || Y, 1) -> only Y is likely 1769 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1770 ApplyDebugLocation DL(*this, Cond); 1771 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1772 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1773 EmitBlock(LHSFalse); 1774 } 1775 1776 incrementProfileCounter(CondBOp); 1777 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1778 1779 // Any temporaries created here are conditional. 1780 eval.begin(*this); 1781 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1782 RHSCount, LH); 1783 1784 eval.end(*this); 1785 1786 return; 1787 } 1788 } 1789 1790 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1791 // br(!x, t, f) -> br(x, f, t) 1792 if (CondUOp->getOpcode() == UO_LNot) { 1793 // Negate the count. 1794 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1795 // The values of the enum are chosen to make this negation possible. 1796 LH = static_cast<Stmt::Likelihood>(-LH); 1797 // Negate the condition and swap the destination blocks. 1798 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1799 FalseCount, LH); 1800 } 1801 } 1802 1803 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1804 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1805 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1806 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1807 1808 // The ConditionalOperator itself has no likelihood information for its 1809 // true and false branches. This matches the behavior of __builtin_expect. 1810 ConditionalEvaluation cond(*this); 1811 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1812 getProfileCount(CondOp), Stmt::LH_None); 1813 1814 // When computing PGO branch weights, we only know the overall count for 1815 // the true block. This code is essentially doing tail duplication of the 1816 // naive code-gen, introducing new edges for which counts are not 1817 // available. Divide the counts proportionally between the LHS and RHS of 1818 // the conditional operator. 1819 uint64_t LHSScaledTrueCount = 0; 1820 if (TrueCount) { 1821 double LHSRatio = 1822 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1823 LHSScaledTrueCount = TrueCount * LHSRatio; 1824 } 1825 1826 cond.begin(*this); 1827 EmitBlock(LHSBlock); 1828 incrementProfileCounter(CondOp); 1829 { 1830 ApplyDebugLocation DL(*this, Cond); 1831 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1832 LHSScaledTrueCount, LH); 1833 } 1834 cond.end(*this); 1835 1836 cond.begin(*this); 1837 EmitBlock(RHSBlock); 1838 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1839 TrueCount - LHSScaledTrueCount, LH); 1840 cond.end(*this); 1841 1842 return; 1843 } 1844 1845 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1846 // Conditional operator handling can give us a throw expression as a 1847 // condition for a case like: 1848 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1849 // Fold this to: 1850 // br(c, throw x, br(y, t, f)) 1851 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1852 return; 1853 } 1854 1855 // Emit the code with the fully general case. 1856 llvm::Value *CondV; 1857 { 1858 ApplyDebugLocation DL(*this, Cond); 1859 CondV = EvaluateExprAsBool(Cond); 1860 } 1861 1862 llvm::MDNode *Weights = nullptr; 1863 llvm::MDNode *Unpredictable = nullptr; 1864 1865 // If the branch has a condition wrapped by __builtin_unpredictable, 1866 // create metadata that specifies that the branch is unpredictable. 1867 // Don't bother if not optimizing because that metadata would not be used. 1868 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1869 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1870 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1871 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1872 llvm::MDBuilder MDHelper(getLLVMContext()); 1873 Unpredictable = MDHelper.createUnpredictable(); 1874 } 1875 } 1876 1877 // If there is a Likelihood knowledge for the cond, lower it. 1878 // Note that if not optimizing this won't emit anything. 1879 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1880 if (CondV != NewCondV) 1881 CondV = NewCondV; 1882 else { 1883 // Otherwise, lower profile counts. Note that we do this even at -O0. 1884 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1885 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1886 } 1887 1888 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1889 } 1890 1891 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1892 /// specified stmt yet. 1893 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1894 CGM.ErrorUnsupported(S, Type); 1895 } 1896 1897 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1898 /// variable-length array whose elements have a non-zero bit-pattern. 1899 /// 1900 /// \param baseType the inner-most element type of the array 1901 /// \param src - a char* pointing to the bit-pattern for a single 1902 /// base element of the array 1903 /// \param sizeInChars - the total size of the VLA, in chars 1904 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1905 Address dest, Address src, 1906 llvm::Value *sizeInChars) { 1907 CGBuilderTy &Builder = CGF.Builder; 1908 1909 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1910 llvm::Value *baseSizeInChars 1911 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1912 1913 Address begin = 1914 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1915 llvm::Value *end = Builder.CreateInBoundsGEP( 1916 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1917 1918 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1919 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1920 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1921 1922 // Make a loop over the VLA. C99 guarantees that the VLA element 1923 // count must be nonzero. 1924 CGF.EmitBlock(loopBB); 1925 1926 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1927 cur->addIncoming(begin.getPointer(), originBB); 1928 1929 CharUnits curAlign = 1930 dest.getAlignment().alignmentOfArrayElement(baseSize); 1931 1932 // memcpy the individual element bit-pattern. 1933 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1934 /*volatile*/ false); 1935 1936 // Go to the next element. 1937 llvm::Value *next = 1938 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1939 1940 // Leave if that's the end of the VLA. 1941 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1942 Builder.CreateCondBr(done, contBB, loopBB); 1943 cur->addIncoming(next, loopBB); 1944 1945 CGF.EmitBlock(contBB); 1946 } 1947 1948 void 1949 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1950 // Ignore empty classes in C++. 1951 if (getLangOpts().CPlusPlus) { 1952 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1953 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1954 return; 1955 } 1956 } 1957 1958 // Cast the dest ptr to the appropriate i8 pointer type. 1959 if (DestPtr.getElementType() != Int8Ty) 1960 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1961 1962 // Get size and alignment info for this aggregate. 1963 CharUnits size = getContext().getTypeSizeInChars(Ty); 1964 1965 llvm::Value *SizeVal; 1966 const VariableArrayType *vla; 1967 1968 // Don't bother emitting a zero-byte memset. 1969 if (size.isZero()) { 1970 // But note that getTypeInfo returns 0 for a VLA. 1971 if (const VariableArrayType *vlaType = 1972 dyn_cast_or_null<VariableArrayType>( 1973 getContext().getAsArrayType(Ty))) { 1974 auto VlaSize = getVLASize(vlaType); 1975 SizeVal = VlaSize.NumElts; 1976 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1977 if (!eltSize.isOne()) 1978 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1979 vla = vlaType; 1980 } else { 1981 return; 1982 } 1983 } else { 1984 SizeVal = CGM.getSize(size); 1985 vla = nullptr; 1986 } 1987 1988 // If the type contains a pointer to data member we can't memset it to zero. 1989 // Instead, create a null constant and copy it to the destination. 1990 // TODO: there are other patterns besides zero that we can usefully memset, 1991 // like -1, which happens to be the pattern used by member-pointers. 1992 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1993 // For a VLA, emit a single element, then splat that over the VLA. 1994 if (vla) Ty = getContext().getBaseElementType(vla); 1995 1996 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1997 1998 llvm::GlobalVariable *NullVariable = 1999 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2000 /*isConstant=*/true, 2001 llvm::GlobalVariable::PrivateLinkage, 2002 NullConstant, Twine()); 2003 CharUnits NullAlign = DestPtr.getAlignment(); 2004 NullVariable->setAlignment(NullAlign.getAsAlign()); 2005 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2006 NullAlign); 2007 2008 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2009 2010 // Get and call the appropriate llvm.memcpy overload. 2011 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2012 return; 2013 } 2014 2015 // Otherwise, just memset the whole thing to zero. This is legal 2016 // because in LLVM, all default initializers (other than the ones we just 2017 // handled above) are guaranteed to have a bit pattern of all zeros. 2018 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2019 } 2020 2021 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2022 // Make sure that there is a block for the indirect goto. 2023 if (!IndirectBranch) 2024 GetIndirectGotoBlock(); 2025 2026 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2027 2028 // Make sure the indirect branch includes all of the address-taken blocks. 2029 IndirectBranch->addDestination(BB); 2030 return llvm::BlockAddress::get(CurFn, BB); 2031 } 2032 2033 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2034 // If we already made the indirect branch for indirect goto, return its block. 2035 if (IndirectBranch) return IndirectBranch->getParent(); 2036 2037 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2038 2039 // Create the PHI node that indirect gotos will add entries to. 2040 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2041 "indirect.goto.dest"); 2042 2043 // Create the indirect branch instruction. 2044 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2045 return IndirectBranch->getParent(); 2046 } 2047 2048 /// Computes the length of an array in elements, as well as the base 2049 /// element type and a properly-typed first element pointer. 2050 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2051 QualType &baseType, 2052 Address &addr) { 2053 const ArrayType *arrayType = origArrayType; 2054 2055 // If it's a VLA, we have to load the stored size. Note that 2056 // this is the size of the VLA in bytes, not its size in elements. 2057 llvm::Value *numVLAElements = nullptr; 2058 if (isa<VariableArrayType>(arrayType)) { 2059 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2060 2061 // Walk into all VLAs. This doesn't require changes to addr, 2062 // which has type T* where T is the first non-VLA element type. 2063 do { 2064 QualType elementType = arrayType->getElementType(); 2065 arrayType = getContext().getAsArrayType(elementType); 2066 2067 // If we only have VLA components, 'addr' requires no adjustment. 2068 if (!arrayType) { 2069 baseType = elementType; 2070 return numVLAElements; 2071 } 2072 } while (isa<VariableArrayType>(arrayType)); 2073 2074 // We get out here only if we find a constant array type 2075 // inside the VLA. 2076 } 2077 2078 // We have some number of constant-length arrays, so addr should 2079 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2080 // down to the first element of addr. 2081 SmallVector<llvm::Value*, 8> gepIndices; 2082 2083 // GEP down to the array type. 2084 llvm::ConstantInt *zero = Builder.getInt32(0); 2085 gepIndices.push_back(zero); 2086 2087 uint64_t countFromCLAs = 1; 2088 QualType eltType; 2089 2090 llvm::ArrayType *llvmArrayType = 2091 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2092 while (llvmArrayType) { 2093 assert(isa<ConstantArrayType>(arrayType)); 2094 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2095 == llvmArrayType->getNumElements()); 2096 2097 gepIndices.push_back(zero); 2098 countFromCLAs *= llvmArrayType->getNumElements(); 2099 eltType = arrayType->getElementType(); 2100 2101 llvmArrayType = 2102 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2103 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2104 assert((!llvmArrayType || arrayType) && 2105 "LLVM and Clang types are out-of-synch"); 2106 } 2107 2108 if (arrayType) { 2109 // From this point onwards, the Clang array type has been emitted 2110 // as some other type (probably a packed struct). Compute the array 2111 // size, and just emit the 'begin' expression as a bitcast. 2112 while (arrayType) { 2113 countFromCLAs *= 2114 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2115 eltType = arrayType->getElementType(); 2116 arrayType = getContext().getAsArrayType(eltType); 2117 } 2118 2119 llvm::Type *baseType = ConvertType(eltType); 2120 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2121 } else { 2122 // Create the actual GEP. 2123 addr = Address(Builder.CreateInBoundsGEP( 2124 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2125 ConvertTypeForMem(eltType), 2126 addr.getAlignment()); 2127 } 2128 2129 baseType = eltType; 2130 2131 llvm::Value *numElements 2132 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2133 2134 // If we had any VLA dimensions, factor them in. 2135 if (numVLAElements) 2136 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2137 2138 return numElements; 2139 } 2140 2141 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2142 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2143 assert(vla && "type was not a variable array type!"); 2144 return getVLASize(vla); 2145 } 2146 2147 CodeGenFunction::VlaSizePair 2148 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2149 // The number of elements so far; always size_t. 2150 llvm::Value *numElements = nullptr; 2151 2152 QualType elementType; 2153 do { 2154 elementType = type->getElementType(); 2155 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2156 assert(vlaSize && "no size for VLA!"); 2157 assert(vlaSize->getType() == SizeTy); 2158 2159 if (!numElements) { 2160 numElements = vlaSize; 2161 } else { 2162 // It's undefined behavior if this wraps around, so mark it that way. 2163 // FIXME: Teach -fsanitize=undefined to trap this. 2164 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2165 } 2166 } while ((type = getContext().getAsVariableArrayType(elementType))); 2167 2168 return { numElements, elementType }; 2169 } 2170 2171 CodeGenFunction::VlaSizePair 2172 CodeGenFunction::getVLAElements1D(QualType type) { 2173 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2174 assert(vla && "type was not a variable array type!"); 2175 return getVLAElements1D(vla); 2176 } 2177 2178 CodeGenFunction::VlaSizePair 2179 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2180 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2181 assert(VlaSize && "no size for VLA!"); 2182 assert(VlaSize->getType() == SizeTy); 2183 return { VlaSize, Vla->getElementType() }; 2184 } 2185 2186 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2187 assert(type->isVariablyModifiedType() && 2188 "Must pass variably modified type to EmitVLASizes!"); 2189 2190 EnsureInsertPoint(); 2191 2192 // We're going to walk down into the type and look for VLA 2193 // expressions. 2194 do { 2195 assert(type->isVariablyModifiedType()); 2196 2197 const Type *ty = type.getTypePtr(); 2198 switch (ty->getTypeClass()) { 2199 2200 #define TYPE(Class, Base) 2201 #define ABSTRACT_TYPE(Class, Base) 2202 #define NON_CANONICAL_TYPE(Class, Base) 2203 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2204 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2205 #include "clang/AST/TypeNodes.inc" 2206 llvm_unreachable("unexpected dependent type!"); 2207 2208 // These types are never variably-modified. 2209 case Type::Builtin: 2210 case Type::Complex: 2211 case Type::Vector: 2212 case Type::ExtVector: 2213 case Type::ConstantMatrix: 2214 case Type::Record: 2215 case Type::Enum: 2216 case Type::Elaborated: 2217 case Type::Using: 2218 case Type::TemplateSpecialization: 2219 case Type::ObjCTypeParam: 2220 case Type::ObjCObject: 2221 case Type::ObjCInterface: 2222 case Type::ObjCObjectPointer: 2223 case Type::BitInt: 2224 llvm_unreachable("type class is never variably-modified!"); 2225 2226 case Type::Adjusted: 2227 type = cast<AdjustedType>(ty)->getAdjustedType(); 2228 break; 2229 2230 case Type::Decayed: 2231 type = cast<DecayedType>(ty)->getPointeeType(); 2232 break; 2233 2234 case Type::Pointer: 2235 type = cast<PointerType>(ty)->getPointeeType(); 2236 break; 2237 2238 case Type::BlockPointer: 2239 type = cast<BlockPointerType>(ty)->getPointeeType(); 2240 break; 2241 2242 case Type::LValueReference: 2243 case Type::RValueReference: 2244 type = cast<ReferenceType>(ty)->getPointeeType(); 2245 break; 2246 2247 case Type::MemberPointer: 2248 type = cast<MemberPointerType>(ty)->getPointeeType(); 2249 break; 2250 2251 case Type::ConstantArray: 2252 case Type::IncompleteArray: 2253 // Losing element qualification here is fine. 2254 type = cast<ArrayType>(ty)->getElementType(); 2255 break; 2256 2257 case Type::VariableArray: { 2258 // Losing element qualification here is fine. 2259 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2260 2261 // Unknown size indication requires no size computation. 2262 // Otherwise, evaluate and record it. 2263 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2264 // It's possible that we might have emitted this already, 2265 // e.g. with a typedef and a pointer to it. 2266 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2267 if (!entry) { 2268 llvm::Value *size = EmitScalarExpr(sizeExpr); 2269 2270 // C11 6.7.6.2p5: 2271 // If the size is an expression that is not an integer constant 2272 // expression [...] each time it is evaluated it shall have a value 2273 // greater than zero. 2274 if (SanOpts.has(SanitizerKind::VLABound)) { 2275 SanitizerScope SanScope(this); 2276 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2277 clang::QualType SEType = sizeExpr->getType(); 2278 llvm::Value *CheckCondition = 2279 SEType->isSignedIntegerType() 2280 ? Builder.CreateICmpSGT(size, Zero) 2281 : Builder.CreateICmpUGT(size, Zero); 2282 llvm::Constant *StaticArgs[] = { 2283 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2284 EmitCheckTypeDescriptor(SEType)}; 2285 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2286 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2287 } 2288 2289 // Always zexting here would be wrong if it weren't 2290 // undefined behavior to have a negative bound. 2291 // FIXME: What about when size's type is larger than size_t? 2292 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2293 } 2294 } 2295 type = vat->getElementType(); 2296 break; 2297 } 2298 2299 case Type::FunctionProto: 2300 case Type::FunctionNoProto: 2301 type = cast<FunctionType>(ty)->getReturnType(); 2302 break; 2303 2304 case Type::Paren: 2305 case Type::TypeOf: 2306 case Type::UnaryTransform: 2307 case Type::Attributed: 2308 case Type::SubstTemplateTypeParm: 2309 case Type::MacroQualified: 2310 // Keep walking after single level desugaring. 2311 type = type.getSingleStepDesugaredType(getContext()); 2312 break; 2313 2314 case Type::Typedef: 2315 case Type::Decltype: 2316 case Type::Auto: 2317 case Type::DeducedTemplateSpecialization: 2318 // Stop walking: nothing to do. 2319 return; 2320 2321 case Type::TypeOfExpr: 2322 // Stop walking: emit typeof expression. 2323 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2324 return; 2325 2326 case Type::Atomic: 2327 type = cast<AtomicType>(ty)->getValueType(); 2328 break; 2329 2330 case Type::Pipe: 2331 type = cast<PipeType>(ty)->getElementType(); 2332 break; 2333 } 2334 } while (type->isVariablyModifiedType()); 2335 } 2336 2337 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2338 if (getContext().getBuiltinVaListType()->isArrayType()) 2339 return EmitPointerWithAlignment(E); 2340 return EmitLValue(E).getAddress(*this); 2341 } 2342 2343 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2344 return EmitLValue(E).getAddress(*this); 2345 } 2346 2347 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2348 const APValue &Init) { 2349 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2350 if (CGDebugInfo *Dbg = getDebugInfo()) 2351 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2352 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2353 } 2354 2355 CodeGenFunction::PeepholeProtection 2356 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2357 // At the moment, the only aggressive peephole we do in IR gen 2358 // is trunc(zext) folding, but if we add more, we can easily 2359 // extend this protection. 2360 2361 if (!rvalue.isScalar()) return PeepholeProtection(); 2362 llvm::Value *value = rvalue.getScalarVal(); 2363 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2364 2365 // Just make an extra bitcast. 2366 assert(HaveInsertPoint()); 2367 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2368 Builder.GetInsertBlock()); 2369 2370 PeepholeProtection protection; 2371 protection.Inst = inst; 2372 return protection; 2373 } 2374 2375 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2376 if (!protection.Inst) return; 2377 2378 // In theory, we could try to duplicate the peepholes now, but whatever. 2379 protection.Inst->eraseFromParent(); 2380 } 2381 2382 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2383 QualType Ty, SourceLocation Loc, 2384 SourceLocation AssumptionLoc, 2385 llvm::Value *Alignment, 2386 llvm::Value *OffsetValue) { 2387 if (Alignment->getType() != IntPtrTy) 2388 Alignment = 2389 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2390 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2391 OffsetValue = 2392 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2393 llvm::Value *TheCheck = nullptr; 2394 if (SanOpts.has(SanitizerKind::Alignment)) { 2395 llvm::Value *PtrIntValue = 2396 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2397 2398 if (OffsetValue) { 2399 bool IsOffsetZero = false; 2400 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2401 IsOffsetZero = CI->isZero(); 2402 2403 if (!IsOffsetZero) 2404 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2405 } 2406 2407 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2408 llvm::Value *Mask = 2409 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2410 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2411 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2412 } 2413 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2414 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2415 2416 if (!SanOpts.has(SanitizerKind::Alignment)) 2417 return; 2418 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2419 OffsetValue, TheCheck, Assumption); 2420 } 2421 2422 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2423 const Expr *E, 2424 SourceLocation AssumptionLoc, 2425 llvm::Value *Alignment, 2426 llvm::Value *OffsetValue) { 2427 if (auto *CE = dyn_cast<CastExpr>(E)) 2428 E = CE->getSubExprAsWritten(); 2429 QualType Ty = E->getType(); 2430 SourceLocation Loc = E->getExprLoc(); 2431 2432 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2433 OffsetValue); 2434 } 2435 2436 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2437 llvm::Value *AnnotatedVal, 2438 StringRef AnnotationStr, 2439 SourceLocation Location, 2440 const AnnotateAttr *Attr) { 2441 SmallVector<llvm::Value *, 5> Args = { 2442 AnnotatedVal, 2443 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2444 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2445 CGM.EmitAnnotationLineNo(Location), 2446 }; 2447 if (Attr) 2448 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2449 return Builder.CreateCall(AnnotationFn, Args); 2450 } 2451 2452 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2453 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2454 // FIXME We create a new bitcast for every annotation because that's what 2455 // llvm-gcc was doing. 2456 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2457 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2458 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2459 I->getAnnotation(), D->getLocation(), I); 2460 } 2461 2462 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2463 Address Addr) { 2464 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2465 llvm::Value *V = Addr.getPointer(); 2466 llvm::Type *VTy = V->getType(); 2467 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2468 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2469 llvm::PointerType *IntrinTy = 2470 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2471 llvm::Function *F = 2472 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2473 2474 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2475 // FIXME Always emit the cast inst so we can differentiate between 2476 // annotation on the first field of a struct and annotation on the struct 2477 // itself. 2478 if (VTy != IntrinTy) 2479 V = Builder.CreateBitCast(V, IntrinTy); 2480 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2481 V = Builder.CreateBitCast(V, VTy); 2482 } 2483 2484 return Address(V, Addr.getAlignment()); 2485 } 2486 2487 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2488 2489 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2490 : CGF(CGF) { 2491 assert(!CGF->IsSanitizerScope); 2492 CGF->IsSanitizerScope = true; 2493 } 2494 2495 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2496 CGF->IsSanitizerScope = false; 2497 } 2498 2499 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2500 const llvm::Twine &Name, 2501 llvm::BasicBlock *BB, 2502 llvm::BasicBlock::iterator InsertPt) const { 2503 LoopStack.InsertHelper(I); 2504 if (IsSanitizerScope) 2505 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2506 } 2507 2508 void CGBuilderInserter::InsertHelper( 2509 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2510 llvm::BasicBlock::iterator InsertPt) const { 2511 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2512 if (CGF) 2513 CGF->InsertHelper(I, Name, BB, InsertPt); 2514 } 2515 2516 // Emits an error if we don't have a valid set of target features for the 2517 // called function. 2518 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2519 const FunctionDecl *TargetDecl) { 2520 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2521 } 2522 2523 // Emits an error if we don't have a valid set of target features for the 2524 // called function. 2525 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2526 const FunctionDecl *TargetDecl) { 2527 // Early exit if this is an indirect call. 2528 if (!TargetDecl) 2529 return; 2530 2531 // Get the current enclosing function if it exists. If it doesn't 2532 // we can't check the target features anyhow. 2533 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2534 if (!FD) 2535 return; 2536 2537 // Grab the required features for the call. For a builtin this is listed in 2538 // the td file with the default cpu, for an always_inline function this is any 2539 // listed cpu and any listed features. 2540 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2541 std::string MissingFeature; 2542 llvm::StringMap<bool> CallerFeatureMap; 2543 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2544 if (BuiltinID) { 2545 StringRef FeatureList( 2546 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2547 // Return if the builtin doesn't have any required features. 2548 if (FeatureList.empty()) 2549 return; 2550 assert(!FeatureList.contains(' ') && "Space in feature list"); 2551 TargetFeatures TF(CallerFeatureMap); 2552 if (!TF.hasRequiredFeatures(FeatureList)) 2553 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2554 << TargetDecl->getDeclName() << FeatureList; 2555 } else if (!TargetDecl->isMultiVersion() && 2556 TargetDecl->hasAttr<TargetAttr>()) { 2557 // Get the required features for the callee. 2558 2559 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2560 ParsedTargetAttr ParsedAttr = 2561 CGM.getContext().filterFunctionTargetAttrs(TD); 2562 2563 SmallVector<StringRef, 1> ReqFeatures; 2564 llvm::StringMap<bool> CalleeFeatureMap; 2565 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2566 2567 for (const auto &F : ParsedAttr.Features) { 2568 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2569 ReqFeatures.push_back(StringRef(F).substr(1)); 2570 } 2571 2572 for (const auto &F : CalleeFeatureMap) { 2573 // Only positive features are "required". 2574 if (F.getValue()) 2575 ReqFeatures.push_back(F.getKey()); 2576 } 2577 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2578 if (!CallerFeatureMap.lookup(Feature)) { 2579 MissingFeature = Feature.str(); 2580 return false; 2581 } 2582 return true; 2583 })) 2584 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2585 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2586 } 2587 } 2588 2589 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2590 if (!CGM.getCodeGenOpts().SanitizeStats) 2591 return; 2592 2593 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2594 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2595 CGM.getSanStats().create(IRB, SSK); 2596 } 2597 2598 llvm::Value * 2599 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2600 llvm::Value *Condition = nullptr; 2601 2602 if (!RO.Conditions.Architecture.empty()) 2603 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2604 2605 if (!RO.Conditions.Features.empty()) { 2606 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2607 Condition = 2608 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2609 } 2610 return Condition; 2611 } 2612 2613 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2614 llvm::Function *Resolver, 2615 CGBuilderTy &Builder, 2616 llvm::Function *FuncToReturn, 2617 bool SupportsIFunc) { 2618 if (SupportsIFunc) { 2619 Builder.CreateRet(FuncToReturn); 2620 return; 2621 } 2622 2623 llvm::SmallVector<llvm::Value *, 10> Args; 2624 llvm::for_each(Resolver->args(), 2625 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2626 2627 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2628 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2629 2630 if (Resolver->getReturnType()->isVoidTy()) 2631 Builder.CreateRetVoid(); 2632 else 2633 Builder.CreateRet(Result); 2634 } 2635 2636 void CodeGenFunction::EmitMultiVersionResolver( 2637 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2638 assert(getContext().getTargetInfo().getTriple().isX86() && 2639 "Only implemented for x86 targets"); 2640 2641 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2642 2643 // Main function's basic block. 2644 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2645 Builder.SetInsertPoint(CurBlock); 2646 EmitX86CpuInit(); 2647 2648 for (const MultiVersionResolverOption &RO : Options) { 2649 Builder.SetInsertPoint(CurBlock); 2650 llvm::Value *Condition = FormResolverCondition(RO); 2651 2652 // The 'default' or 'generic' case. 2653 if (!Condition) { 2654 assert(&RO == Options.end() - 1 && 2655 "Default or Generic case must be last"); 2656 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2657 SupportsIFunc); 2658 return; 2659 } 2660 2661 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2662 CGBuilderTy RetBuilder(*this, RetBlock); 2663 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2664 SupportsIFunc); 2665 CurBlock = createBasicBlock("resolver_else", Resolver); 2666 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2667 } 2668 2669 // If no generic/default, emit an unreachable. 2670 Builder.SetInsertPoint(CurBlock); 2671 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2672 TrapCall->setDoesNotReturn(); 2673 TrapCall->setDoesNotThrow(); 2674 Builder.CreateUnreachable(); 2675 Builder.ClearInsertionPoint(); 2676 } 2677 2678 // Loc - where the diagnostic will point, where in the source code this 2679 // alignment has failed. 2680 // SecondaryLoc - if present (will be present if sufficiently different from 2681 // Loc), the diagnostic will additionally point a "Note:" to this location. 2682 // It should be the location where the __attribute__((assume_aligned)) 2683 // was written e.g. 2684 void CodeGenFunction::emitAlignmentAssumptionCheck( 2685 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2686 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2687 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2688 llvm::Instruction *Assumption) { 2689 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2690 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2691 llvm::Intrinsic::getDeclaration( 2692 Builder.GetInsertBlock()->getParent()->getParent(), 2693 llvm::Intrinsic::assume) && 2694 "Assumption should be a call to llvm.assume()."); 2695 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2696 "Assumption should be the last instruction of the basic block, " 2697 "since the basic block is still being generated."); 2698 2699 if (!SanOpts.has(SanitizerKind::Alignment)) 2700 return; 2701 2702 // Don't check pointers to volatile data. The behavior here is implementation- 2703 // defined. 2704 if (Ty->getPointeeType().isVolatileQualified()) 2705 return; 2706 2707 // We need to temorairly remove the assumption so we can insert the 2708 // sanitizer check before it, else the check will be dropped by optimizations. 2709 Assumption->removeFromParent(); 2710 2711 { 2712 SanitizerScope SanScope(this); 2713 2714 if (!OffsetValue) 2715 OffsetValue = Builder.getInt1(false); // no offset. 2716 2717 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2718 EmitCheckSourceLocation(SecondaryLoc), 2719 EmitCheckTypeDescriptor(Ty)}; 2720 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2721 EmitCheckValue(Alignment), 2722 EmitCheckValue(OffsetValue)}; 2723 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2724 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2725 } 2726 2727 // We are now in the (new, empty) "cont" basic block. 2728 // Reintroduce the assumption. 2729 Builder.Insert(Assumption); 2730 // FIXME: Assumption still has it's original basic block as it's Parent. 2731 } 2732 2733 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2734 if (CGDebugInfo *DI = getDebugInfo()) 2735 return DI->SourceLocToDebugLoc(Location); 2736 2737 return llvm::DebugLoc(); 2738 } 2739 2740 llvm::Value * 2741 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2742 Stmt::Likelihood LH) { 2743 switch (LH) { 2744 case Stmt::LH_None: 2745 return Cond; 2746 case Stmt::LH_Likely: 2747 case Stmt::LH_Unlikely: 2748 // Don't generate llvm.expect on -O0 as the backend won't use it for 2749 // anything. 2750 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2751 return Cond; 2752 llvm::Type *CondTy = Cond->getType(); 2753 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2754 llvm::Function *FnExpect = 2755 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2756 llvm::Value *ExpectedValueOfCond = 2757 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2758 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2759 Cond->getName() + ".expval"); 2760 } 2761 llvm_unreachable("Unknown Likelihood"); 2762 } 2763