xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision dd145f953db3dafbc019f1d3783bb4f09a28af92)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   // Emit debug descriptor for function end.
387   if (CGDebugInfo *DI = getDebugInfo())
388     DI->EmitFunctionEnd(Builder, CurFn);
389 
390   // Reset the debug location to that of the simple 'return' expression, if any
391   // rather than that of the end of the function's scope '}'.
392   ApplyDebugLocation AL(*this, Loc);
393   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394   EmitEndEHSpec(CurCodeDecl);
395 
396   assert(EHStack.empty() &&
397          "did not remove all scopes from cleanup stack!");
398 
399   // If someone did an indirect goto, emit the indirect goto block at the end of
400   // the function.
401   if (IndirectBranch) {
402     EmitBlock(IndirectBranch->getParent());
403     Builder.ClearInsertionPoint();
404   }
405 
406   // If some of our locals escaped, insert a call to llvm.localescape in the
407   // entry block.
408   if (!EscapedLocals.empty()) {
409     // Invert the map from local to index into a simple vector. There should be
410     // no holes.
411     SmallVector<llvm::Value *, 4> EscapeArgs;
412     EscapeArgs.resize(EscapedLocals.size());
413     for (auto &Pair : EscapedLocals)
414       EscapeArgs[Pair.second] = Pair.first;
415     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416         &CGM.getModule(), llvm::Intrinsic::localescape);
417     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418   }
419 
420   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421   llvm::Instruction *Ptr = AllocaInsertPt;
422   AllocaInsertPt = nullptr;
423   Ptr->eraseFromParent();
424 
425   // PostAllocaInsertPt, if created, was lazily created when it was required,
426   // remove it now since it was just created for our own convenience.
427   if (PostAllocaInsertPt) {
428     llvm::Instruction *PostPtr = PostAllocaInsertPt;
429     PostAllocaInsertPt = nullptr;
430     PostPtr->eraseFromParent();
431   }
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (const auto &R : DeferredReplacements) {
455     if (llvm::Value *Old = R.first) {
456       Old->replaceAllUsesWith(R.second);
457       cast<llvm::Instruction>(Old)->eraseFromParent();
458     }
459   }
460   DeferredReplacements.clear();
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   // Add the required-vector-width attribute. This contains the max width from:
489   // 1. min-vector-width attribute used in the source program.
490   // 2. Any builtins used that have a vector width specified.
491   // 3. Values passed in and out of inline assembly.
492   // 4. Width of vector arguments and return types for this function.
493   // 5. Width of vector aguments and return types for functions called by this
494   //    function.
495   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
496 
497   // Add vscale_range attribute if appropriate.
498   Optional<std::pair<unsigned, unsigned>> VScaleRange =
499       getContext().getTargetInfo().getVScaleRange(getLangOpts());
500   if (VScaleRange) {
501     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
502         getLLVMContext(), VScaleRange.getValue().first,
503         VScaleRange.getValue().second));
504   }
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
533   if (!CurFuncDecl)
534     return false;
535   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
536 }
537 
538 /// ShouldXRayInstrument - Return true if the current function should be
539 /// instrumented with XRay nop sleds.
540 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
542 }
543 
544 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
545 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
546 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
547   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
548          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
549           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
550               XRayInstrKind::Custom);
551 }
552 
553 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
554   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
555          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
556           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
557               XRayInstrKind::Typed);
558 }
559 
560 llvm::Constant *
561 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
562                                             llvm::Constant *Addr) {
563   // Addresses stored in prologue data can't require run-time fixups and must
564   // be PC-relative. Run-time fixups are undesirable because they necessitate
565   // writable text segments, which are unsafe. And absolute addresses are
566   // undesirable because they break PIE mode.
567 
568   // Add a layer of indirection through a private global. Taking its address
569   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
570   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
571                                       /*isConstant=*/true,
572                                       llvm::GlobalValue::PrivateLinkage, Addr);
573 
574   // Create a PC-relative address.
575   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
576   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
577   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
578   return (IntPtrTy == Int32Ty)
579              ? PCRelAsInt
580              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
581 }
582 
583 llvm::Value *
584 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
585                                           llvm::Value *EncodedAddr) {
586   // Reconstruct the address of the global.
587   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
588   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
589   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
590   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
591 
592   // Load the original pointer through the global.
593   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
594                             "decoded_addr");
595 }
596 
597 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
598                                                llvm::Function *Fn)
599 {
600   if (!FD->hasAttr<OpenCLKernelAttr>())
601     return;
602 
603   llvm::LLVMContext &Context = getLLVMContext();
604 
605   CGM.GenOpenCLArgMetadata(Fn, FD, this);
606 
607   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
608     QualType HintQTy = A->getTypeHint();
609     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
610     bool IsSignedInteger =
611         HintQTy->isSignedIntegerType() ||
612         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
613     llvm::Metadata *AttrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
615             CGM.getTypes().ConvertType(A->getTypeHint()))),
616         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
617             llvm::IntegerType::get(Context, 32),
618             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
619     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
620   }
621 
622   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
623     llvm::Metadata *AttrMDArgs[] = {
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
627     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
628   }
629 
630   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
631     llvm::Metadata *AttrMDArgs[] = {
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
633         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
634         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
635     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
636   }
637 
638   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
639           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
640     llvm::Metadata *AttrMDArgs[] = {
641         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
642     Fn->setMetadata("intel_reqd_sub_group_size",
643                     llvm::MDNode::get(Context, AttrMDArgs));
644   }
645 }
646 
647 /// Determine whether the function F ends with a return stmt.
648 static bool endsWithReturn(const Decl* F) {
649   const Stmt *Body = nullptr;
650   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
651     Body = FD->getBody();
652   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
653     Body = OMD->getBody();
654 
655   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
656     auto LastStmt = CS->body_rbegin();
657     if (LastStmt != CS->body_rend())
658       return isa<ReturnStmt>(*LastStmt);
659   }
660   return false;
661 }
662 
663 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
664   if (SanOpts.has(SanitizerKind::Thread)) {
665     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
666     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
667   }
668 }
669 
670 /// Check if the return value of this function requires sanitization.
671 bool CodeGenFunction::requiresReturnValueCheck() const {
672   return requiresReturnValueNullabilityCheck() ||
673          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
674           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
675 }
676 
677 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
678   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
679   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
680       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
681       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
682     return false;
683 
684   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
685     return false;
686 
687   if (MD->getNumParams() == 2) {
688     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
689     if (!PT || !PT->isVoidPointerType() ||
690         !PT->getPointeeType().isConstQualified())
691       return false;
692   }
693 
694   return true;
695 }
696 
697 /// Return the UBSan prologue signature for \p FD if one is available.
698 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
699                                             const FunctionDecl *FD) {
700   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
701     if (!MD->isStatic())
702       return nullptr;
703   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
704 }
705 
706 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
707                                     llvm::Function *Fn,
708                                     const CGFunctionInfo &FnInfo,
709                                     const FunctionArgList &Args,
710                                     SourceLocation Loc,
711                                     SourceLocation StartLoc) {
712   assert(!CurFn &&
713          "Do not use a CodeGenFunction object for more than one function");
714 
715   const Decl *D = GD.getDecl();
716 
717   DidCallStackSave = false;
718   CurCodeDecl = D;
719   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
720   if (FD && FD->usesSEHTry())
721     CurSEHParent = FD;
722   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
723   FnRetTy = RetTy;
724   CurFn = Fn;
725   CurFnInfo = &FnInfo;
726   assert(CurFn->isDeclaration() && "Function already has body?");
727 
728   // If this function is ignored for any of the enabled sanitizers,
729   // disable the sanitizer for the function.
730   do {
731 #define SANITIZER(NAME, ID)                                                    \
732   if (SanOpts.empty())                                                         \
733     break;                                                                     \
734   if (SanOpts.has(SanitizerKind::ID))                                          \
735     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
736       SanOpts.set(SanitizerKind::ID, false);
737 
738 #include "clang/Basic/Sanitizers.def"
739 #undef SANITIZER
740   } while (false);
741 
742   if (D) {
743     bool NoSanitizeCoverage = false;
744 
745     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
746       // Apply the no_sanitize* attributes to SanOpts.
747       SanitizerMask mask = Attr->getMask();
748       SanOpts.Mask &= ~mask;
749       if (mask & SanitizerKind::Address)
750         SanOpts.set(SanitizerKind::KernelAddress, false);
751       if (mask & SanitizerKind::KernelAddress)
752         SanOpts.set(SanitizerKind::Address, false);
753       if (mask & SanitizerKind::HWAddress)
754         SanOpts.set(SanitizerKind::KernelHWAddress, false);
755       if (mask & SanitizerKind::KernelHWAddress)
756         SanOpts.set(SanitizerKind::HWAddress, false);
757 
758       // SanitizeCoverage is not handled by SanOpts.
759       if (Attr->hasCoverage())
760         NoSanitizeCoverage = true;
761     }
762 
763     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
764       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
765   }
766 
767   if (ShouldSkipSanitizerInstrumentation()) {
768     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
769   } else {
770     // Apply sanitizer attributes to the function.
771     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
772       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
773     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
774                          SanitizerKind::KernelHWAddress))
775       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
776     if (SanOpts.has(SanitizerKind::MemTag))
777       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
778     if (SanOpts.has(SanitizerKind::Thread))
779       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
780     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
781       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
782   }
783   if (SanOpts.has(SanitizerKind::SafeStack))
784     Fn->addFnAttr(llvm::Attribute::SafeStack);
785   if (SanOpts.has(SanitizerKind::ShadowCallStack))
786     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
787 
788   // Apply fuzzing attribute to the function.
789   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
790     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
791 
792   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
793   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
794   if (SanOpts.has(SanitizerKind::Thread)) {
795     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
796       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
797       if (OMD->getMethodFamily() == OMF_dealloc ||
798           OMD->getMethodFamily() == OMF_initialize ||
799           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
800         markAsIgnoreThreadCheckingAtRuntime(Fn);
801       }
802     }
803   }
804 
805   // Ignore unrelated casts in STL allocate() since the allocator must cast
806   // from void* to T* before object initialization completes. Don't match on the
807   // namespace because not all allocators are in std::
808   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
809     if (matchesStlAllocatorFn(D, getContext()))
810       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
811   }
812 
813   // Ignore null checks in coroutine functions since the coroutines passes
814   // are not aware of how to move the extra UBSan instructions across the split
815   // coroutine boundaries.
816   if (D && SanOpts.has(SanitizerKind::Null))
817     if (FD && FD->getBody() &&
818         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
819       SanOpts.Mask &= ~SanitizerKind::Null;
820 
821   // Apply xray attributes to the function (as a string, for now)
822   bool AlwaysXRayAttr = false;
823   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
824     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionEntry) ||
826         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
827             XRayInstrKind::FunctionExit)) {
828       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
829         Fn->addFnAttr("function-instrument", "xray-always");
830         AlwaysXRayAttr = true;
831       }
832       if (XRayAttr->neverXRayInstrument())
833         Fn->addFnAttr("function-instrument", "xray-never");
834       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
835         if (ShouldXRayInstrumentFunction())
836           Fn->addFnAttr("xray-log-args",
837                         llvm::utostr(LogArgs->getArgumentCount()));
838     }
839   } else {
840     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
841       Fn->addFnAttr(
842           "xray-instruction-threshold",
843           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
844   }
845 
846   if (ShouldXRayInstrumentFunction()) {
847     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
848       Fn->addFnAttr("xray-ignore-loops");
849 
850     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
851             XRayInstrKind::FunctionExit))
852       Fn->addFnAttr("xray-skip-exit");
853 
854     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
855             XRayInstrKind::FunctionEntry))
856       Fn->addFnAttr("xray-skip-entry");
857 
858     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
859     if (FuncGroups > 1) {
860       auto FuncName = llvm::makeArrayRef<uint8_t>(
861           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
862       auto Group = crc32(FuncName) % FuncGroups;
863       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
864           !AlwaysXRayAttr)
865         Fn->addFnAttr("function-instrument", "xray-never");
866     }
867   }
868 
869   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
870     if (CGM.isProfileInstrExcluded(Fn, Loc))
871       Fn->addFnAttr(llvm::Attribute::NoProfile);
872 
873   unsigned Count, Offset;
874   if (const auto *Attr =
875           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
876     Count = Attr->getCount();
877     Offset = Attr->getOffset();
878   } else {
879     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
880     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
881   }
882   if (Count && Offset <= Count) {
883     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
884     if (Offset)
885       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
886   }
887   // Instruct that functions for COFF/CodeView targets should start with a
888   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
889   // backends as they don't need it -- instructions on these architectures are
890   // always atomically patchable at runtime.
891   if (CGM.getCodeGenOpts().HotPatch &&
892       getContext().getTargetInfo().getTriple().isX86())
893     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
894 
895   // Add no-jump-tables value.
896   if (CGM.getCodeGenOpts().NoUseJumpTables)
897     Fn->addFnAttr("no-jump-tables", "true");
898 
899   // Add no-inline-line-tables value.
900   if (CGM.getCodeGenOpts().NoInlineLineTables)
901     Fn->addFnAttr("no-inline-line-tables");
902 
903   // Add profile-sample-accurate value.
904   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
905     Fn->addFnAttr("profile-sample-accurate");
906 
907   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
908     Fn->addFnAttr("use-sample-profile");
909 
910   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
911     Fn->addFnAttr("cfi-canonical-jump-table");
912 
913   if (D && D->hasAttr<NoProfileFunctionAttr>())
914     Fn->addFnAttr(llvm::Attribute::NoProfile);
915 
916   if (FD && getLangOpts().OpenCL) {
917     // Add metadata for a kernel function.
918     EmitOpenCLKernelMetadata(FD, Fn);
919   }
920 
921   // If we are checking function types, emit a function type signature as
922   // prologue data.
923   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
924     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
925       // Remove any (C++17) exception specifications, to allow calling e.g. a
926       // noexcept function through a non-noexcept pointer.
927       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
928           FD->getType(), EST_None);
929       llvm::Constant *FTRTTIConst =
930           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
931       llvm::Constant *FTRTTIConstEncoded =
932           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
933       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
934       llvm::Constant *PrologueStructConst =
935           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
936       Fn->setPrologueData(PrologueStructConst);
937     }
938   }
939 
940   // If we're checking nullability, we need to know whether we can check the
941   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
942   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
943     auto Nullability = FnRetTy->getNullability(getContext());
944     if (Nullability && *Nullability == NullabilityKind::NonNull) {
945       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
946             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
947         RetValNullabilityPrecondition =
948             llvm::ConstantInt::getTrue(getLLVMContext());
949     }
950   }
951 
952   // If we're in C++ mode and the function name is "main", it is guaranteed
953   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
954   // used within a program").
955   //
956   // OpenCL C 2.0 v2.2-11 s6.9.i:
957   //     Recursion is not supported.
958   //
959   // SYCL v1.2.1 s3.10:
960   //     kernels cannot include RTTI information, exception classes,
961   //     recursive code, virtual functions or make use of C++ libraries that
962   //     are not compiled for the device.
963   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
964              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
965              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
966     Fn->addFnAttr(llvm::Attribute::NoRecurse);
967 
968   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
969   llvm::fp::ExceptionBehavior FPExceptionBehavior =
970       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
971   Builder.setDefaultConstrainedRounding(RM);
972   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
973   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
974       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
975                RM != llvm::RoundingMode::NearestTiesToEven))) {
976     Builder.setIsFPConstrained(true);
977     Fn->addFnAttr(llvm::Attribute::StrictFP);
978   }
979 
980   // If a custom alignment is used, force realigning to this alignment on
981   // any main function which certainly will need it.
982   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
983              CGM.getCodeGenOpts().StackAlignment))
984     Fn->addFnAttr("stackrealign");
985 
986   // "main" doesn't need to zero out call-used registers.
987   if (FD && FD->isMain())
988     Fn->removeFnAttr("zero-call-used-regs");
989 
990   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
991 
992   // Create a marker to make it easy to insert allocas into the entryblock
993   // later.  Don't create this with the builder, because we don't want it
994   // folded.
995   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
996   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
997 
998   ReturnBlock = getJumpDestInCurrentScope("return");
999 
1000   Builder.SetInsertPoint(EntryBB);
1001 
1002   // If we're checking the return value, allocate space for a pointer to a
1003   // precise source location of the checked return statement.
1004   if (requiresReturnValueCheck()) {
1005     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1006     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1007                         ReturnLocation);
1008   }
1009 
1010   // Emit subprogram debug descriptor.
1011   if (CGDebugInfo *DI = getDebugInfo()) {
1012     // Reconstruct the type from the argument list so that implicit parameters,
1013     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1014     // convention.
1015     DI->emitFunctionStart(GD, Loc, StartLoc,
1016                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1017                           CurFuncIsThunk);
1018   }
1019 
1020   if (ShouldInstrumentFunction()) {
1021     if (CGM.getCodeGenOpts().InstrumentFunctions)
1022       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1023     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1024       CurFn->addFnAttr("instrument-function-entry-inlined",
1025                        "__cyg_profile_func_enter");
1026     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1027       CurFn->addFnAttr("instrument-function-entry-inlined",
1028                        "__cyg_profile_func_enter_bare");
1029   }
1030 
1031   // Since emitting the mcount call here impacts optimizations such as function
1032   // inlining, we just add an attribute to insert a mcount call in backend.
1033   // The attribute "counting-function" is set to mcount function name which is
1034   // architecture dependent.
1035   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1036     // Calls to fentry/mcount should not be generated if function has
1037     // the no_instrument_function attribute.
1038     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1039       if (CGM.getCodeGenOpts().CallFEntry)
1040         Fn->addFnAttr("fentry-call", "true");
1041       else {
1042         Fn->addFnAttr("instrument-function-entry-inlined",
1043                       getTarget().getMCountName());
1044       }
1045       if (CGM.getCodeGenOpts().MNopMCount) {
1046         if (!CGM.getCodeGenOpts().CallFEntry)
1047           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1048             << "-mnop-mcount" << "-mfentry";
1049         Fn->addFnAttr("mnop-mcount");
1050       }
1051 
1052       if (CGM.getCodeGenOpts().RecordMCount) {
1053         if (!CGM.getCodeGenOpts().CallFEntry)
1054           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1055             << "-mrecord-mcount" << "-mfentry";
1056         Fn->addFnAttr("mrecord-mcount");
1057       }
1058     }
1059   }
1060 
1061   if (CGM.getCodeGenOpts().PackedStack) {
1062     if (getContext().getTargetInfo().getTriple().getArch() !=
1063         llvm::Triple::systemz)
1064       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1065         << "-mpacked-stack";
1066     Fn->addFnAttr("packed-stack");
1067   }
1068 
1069   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1070       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1071     Fn->addFnAttr("warn-stack-size",
1072                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1073 
1074   if (RetTy->isVoidType()) {
1075     // Void type; nothing to return.
1076     ReturnValue = Address::invalid();
1077 
1078     // Count the implicit return.
1079     if (!endsWithReturn(D))
1080       ++NumReturnExprs;
1081   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1082     // Indirect return; emit returned value directly into sret slot.
1083     // This reduces code size, and affects correctness in C++.
1084     auto AI = CurFn->arg_begin();
1085     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1086       ++AI;
1087     ReturnValue = Address(&*AI, ConvertType(RetTy),
1088                           CurFnInfo->getReturnInfo().getIndirectAlign());
1089     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1090       ReturnValuePointer =
1091           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1092       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1093                               ReturnValue.getPointer(), Int8PtrTy),
1094                           ReturnValuePointer);
1095     }
1096   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1097              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1098     // Load the sret pointer from the argument struct and return into that.
1099     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1100     llvm::Function::arg_iterator EI = CurFn->arg_end();
1101     --EI;
1102     llvm::Value *Addr = Builder.CreateStructGEP(
1103         EI->getType()->getPointerElementType(), &*EI, Idx);
1104     llvm::Type *Ty =
1105         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1106     ReturnValuePointer = Address(Addr, getPointerAlign());
1107     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1108     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1109   } else {
1110     ReturnValue = CreateIRTemp(RetTy, "retval");
1111 
1112     // Tell the epilog emitter to autorelease the result.  We do this
1113     // now so that various specialized functions can suppress it
1114     // during their IR-generation.
1115     if (getLangOpts().ObjCAutoRefCount &&
1116         !CurFnInfo->isReturnsRetained() &&
1117         RetTy->isObjCRetainableType())
1118       AutoreleaseResult = true;
1119   }
1120 
1121   EmitStartEHSpec(CurCodeDecl);
1122 
1123   PrologueCleanupDepth = EHStack.stable_begin();
1124 
1125   // Emit OpenMP specific initialization of the device functions.
1126   if (getLangOpts().OpenMP && CurCodeDecl)
1127     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1128 
1129   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1130 
1131   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1132     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1133     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1134     if (MD->getParent()->isLambda() &&
1135         MD->getOverloadedOperator() == OO_Call) {
1136       // We're in a lambda; figure out the captures.
1137       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1138                                         LambdaThisCaptureField);
1139       if (LambdaThisCaptureField) {
1140         // If the lambda captures the object referred to by '*this' - either by
1141         // value or by reference, make sure CXXThisValue points to the correct
1142         // object.
1143 
1144         // Get the lvalue for the field (which is a copy of the enclosing object
1145         // or contains the address of the enclosing object).
1146         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1147         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1148           // If the enclosing object was captured by value, just use its address.
1149           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1150         } else {
1151           // Load the lvalue pointed to by the field, since '*this' was captured
1152           // by reference.
1153           CXXThisValue =
1154               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1155         }
1156       }
1157       for (auto *FD : MD->getParent()->fields()) {
1158         if (FD->hasCapturedVLAType()) {
1159           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1160                                            SourceLocation()).getScalarVal();
1161           auto VAT = FD->getCapturedVLAType();
1162           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1163         }
1164       }
1165     } else {
1166       // Not in a lambda; just use 'this' from the method.
1167       // FIXME: Should we generate a new load for each use of 'this'?  The
1168       // fast register allocator would be happier...
1169       CXXThisValue = CXXABIThisValue;
1170     }
1171 
1172     // Check the 'this' pointer once per function, if it's available.
1173     if (CXXABIThisValue) {
1174       SanitizerSet SkippedChecks;
1175       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1176       QualType ThisTy = MD->getThisType();
1177 
1178       // If this is the call operator of a lambda with no capture-default, it
1179       // may have a static invoker function, which may call this operator with
1180       // a null 'this' pointer.
1181       if (isLambdaCallOperator(MD) &&
1182           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1183         SkippedChecks.set(SanitizerKind::Null, true);
1184 
1185       EmitTypeCheck(
1186           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1187           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1188     }
1189   }
1190 
1191   // If any of the arguments have a variably modified type, make sure to
1192   // emit the type size.
1193   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1194        i != e; ++i) {
1195     const VarDecl *VD = *i;
1196 
1197     // Dig out the type as written from ParmVarDecls; it's unclear whether
1198     // the standard (C99 6.9.1p10) requires this, but we're following the
1199     // precedent set by gcc.
1200     QualType Ty;
1201     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1202       Ty = PVD->getOriginalType();
1203     else
1204       Ty = VD->getType();
1205 
1206     if (Ty->isVariablyModifiedType())
1207       EmitVariablyModifiedType(Ty);
1208   }
1209   // Emit a location at the end of the prologue.
1210   if (CGDebugInfo *DI = getDebugInfo())
1211     DI->EmitLocation(Builder, StartLoc);
1212 
1213   // TODO: Do we need to handle this in two places like we do with
1214   // target-features/target-cpu?
1215   if (CurFuncDecl)
1216     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1217       LargestVectorWidth = VecWidth->getVectorWidth();
1218 }
1219 
1220 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1221   incrementProfileCounter(Body);
1222   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1223     EmitCompoundStmtWithoutScope(*S);
1224   else
1225     EmitStmt(Body);
1226 
1227   // This is checked after emitting the function body so we know if there
1228   // are any permitted infinite loops.
1229   if (checkIfFunctionMustProgress())
1230     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1231 }
1232 
1233 /// When instrumenting to collect profile data, the counts for some blocks
1234 /// such as switch cases need to not include the fall-through counts, so
1235 /// emit a branch around the instrumentation code. When not instrumenting,
1236 /// this just calls EmitBlock().
1237 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1238                                                const Stmt *S) {
1239   llvm::BasicBlock *SkipCountBB = nullptr;
1240   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1241     // When instrumenting for profiling, the fallthrough to certain
1242     // statements needs to skip over the instrumentation code so that we
1243     // get an accurate count.
1244     SkipCountBB = createBasicBlock("skipcount");
1245     EmitBranch(SkipCountBB);
1246   }
1247   EmitBlock(BB);
1248   uint64_t CurrentCount = getCurrentProfileCount();
1249   incrementProfileCounter(S);
1250   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1251   if (SkipCountBB)
1252     EmitBlock(SkipCountBB);
1253 }
1254 
1255 /// Tries to mark the given function nounwind based on the
1256 /// non-existence of any throwing calls within it.  We believe this is
1257 /// lightweight enough to do at -O0.
1258 static void TryMarkNoThrow(llvm::Function *F) {
1259   // LLVM treats 'nounwind' on a function as part of the type, so we
1260   // can't do this on functions that can be overwritten.
1261   if (F->isInterposable()) return;
1262 
1263   for (llvm::BasicBlock &BB : *F)
1264     for (llvm::Instruction &I : BB)
1265       if (I.mayThrow())
1266         return;
1267 
1268   F->setDoesNotThrow();
1269 }
1270 
1271 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1272                                                FunctionArgList &Args) {
1273   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1274   QualType ResTy = FD->getReturnType();
1275 
1276   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1277   if (MD && MD->isInstance()) {
1278     if (CGM.getCXXABI().HasThisReturn(GD))
1279       ResTy = MD->getThisType();
1280     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1281       ResTy = CGM.getContext().VoidPtrTy;
1282     CGM.getCXXABI().buildThisParam(*this, Args);
1283   }
1284 
1285   // The base version of an inheriting constructor whose constructed base is a
1286   // virtual base is not passed any arguments (because it doesn't actually call
1287   // the inherited constructor).
1288   bool PassedParams = true;
1289   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1290     if (auto Inherited = CD->getInheritedConstructor())
1291       PassedParams =
1292           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1293 
1294   if (PassedParams) {
1295     for (auto *Param : FD->parameters()) {
1296       Args.push_back(Param);
1297       if (!Param->hasAttr<PassObjectSizeAttr>())
1298         continue;
1299 
1300       auto *Implicit = ImplicitParamDecl::Create(
1301           getContext(), Param->getDeclContext(), Param->getLocation(),
1302           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1303       SizeArguments[Param] = Implicit;
1304       Args.push_back(Implicit);
1305     }
1306   }
1307 
1308   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1309     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1310 
1311   return ResTy;
1312 }
1313 
1314 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1315                                    const CGFunctionInfo &FnInfo) {
1316   assert(Fn && "generating code for null Function");
1317   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1318   CurGD = GD;
1319 
1320   FunctionArgList Args;
1321   QualType ResTy = BuildFunctionArgList(GD, Args);
1322 
1323   if (FD->isInlineBuiltinDeclaration()) {
1324     // When generating code for a builtin with an inline declaration, use a
1325     // mangled name to hold the actual body, while keeping an external
1326     // definition in case the function pointer is referenced somewhere.
1327     std::string FDInlineName = (Fn->getName() + ".inline").str();
1328     llvm::Module *M = Fn->getParent();
1329     llvm::Function *Clone = M->getFunction(FDInlineName);
1330     if (!Clone) {
1331       Clone = llvm::Function::Create(Fn->getFunctionType(),
1332                                      llvm::GlobalValue::InternalLinkage,
1333                                      Fn->getAddressSpace(), FDInlineName, M);
1334       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1335     }
1336     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1337     Fn = Clone;
1338   } else {
1339     // Detect the unusual situation where an inline version is shadowed by a
1340     // non-inline version. In that case we should pick the external one
1341     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1342     // to detect that situation before we reach codegen, so do some late
1343     // replacement.
1344     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1345          PD = PD->getPreviousDecl()) {
1346       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1347         std::string FDInlineName = (Fn->getName() + ".inline").str();
1348         llvm::Module *M = Fn->getParent();
1349         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1350           Clone->replaceAllUsesWith(Fn);
1351           Clone->eraseFromParent();
1352         }
1353         break;
1354       }
1355     }
1356   }
1357 
1358   // Check if we should generate debug info for this function.
1359   if (FD->hasAttr<NoDebugAttr>()) {
1360     // Clear non-distinct debug info that was possibly attached to the function
1361     // due to an earlier declaration without the nodebug attribute
1362     Fn->setSubprogram(nullptr);
1363     // Disable debug info indefinitely for this function
1364     DebugInfo = nullptr;
1365   }
1366 
1367   // The function might not have a body if we're generating thunks for a
1368   // function declaration.
1369   SourceRange BodyRange;
1370   if (Stmt *Body = FD->getBody())
1371     BodyRange = Body->getSourceRange();
1372   else
1373     BodyRange = FD->getLocation();
1374   CurEHLocation = BodyRange.getEnd();
1375 
1376   // Use the location of the start of the function to determine where
1377   // the function definition is located. By default use the location
1378   // of the declaration as the location for the subprogram. A function
1379   // may lack a declaration in the source code if it is created by code
1380   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1381   SourceLocation Loc = FD->getLocation();
1382 
1383   // If this is a function specialization then use the pattern body
1384   // as the location for the function.
1385   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1386     if (SpecDecl->hasBody(SpecDecl))
1387       Loc = SpecDecl->getLocation();
1388 
1389   Stmt *Body = FD->getBody();
1390 
1391   if (Body) {
1392     // Coroutines always emit lifetime markers.
1393     if (isa<CoroutineBodyStmt>(Body))
1394       ShouldEmitLifetimeMarkers = true;
1395 
1396     // Initialize helper which will detect jumps which can cause invalid
1397     // lifetime markers.
1398     if (ShouldEmitLifetimeMarkers)
1399       Bypasses.Init(Body);
1400   }
1401 
1402   // Emit the standard function prologue.
1403   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1404 
1405   // Save parameters for coroutine function.
1406   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1407     for (const auto *ParamDecl : FD->parameters())
1408       FnArgs.push_back(ParamDecl);
1409 
1410   // Generate the body of the function.
1411   PGO.assignRegionCounters(GD, CurFn);
1412   if (isa<CXXDestructorDecl>(FD))
1413     EmitDestructorBody(Args);
1414   else if (isa<CXXConstructorDecl>(FD))
1415     EmitConstructorBody(Args);
1416   else if (getLangOpts().CUDA &&
1417            !getLangOpts().CUDAIsDevice &&
1418            FD->hasAttr<CUDAGlobalAttr>())
1419     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1420   else if (isa<CXXMethodDecl>(FD) &&
1421            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1422     // The lambda static invoker function is special, because it forwards or
1423     // clones the body of the function call operator (but is actually static).
1424     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1425   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1426              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1427               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1428     // Implicit copy-assignment gets the same special treatment as implicit
1429     // copy-constructors.
1430     emitImplicitAssignmentOperatorBody(Args);
1431   } else if (Body) {
1432     EmitFunctionBody(Body);
1433   } else
1434     llvm_unreachable("no definition for emitted function");
1435 
1436   // C++11 [stmt.return]p2:
1437   //   Flowing off the end of a function [...] results in undefined behavior in
1438   //   a value-returning function.
1439   // C11 6.9.1p12:
1440   //   If the '}' that terminates a function is reached, and the value of the
1441   //   function call is used by the caller, the behavior is undefined.
1442   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1443       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1444     bool ShouldEmitUnreachable =
1445         CGM.getCodeGenOpts().StrictReturn ||
1446         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1447     if (SanOpts.has(SanitizerKind::Return)) {
1448       SanitizerScope SanScope(this);
1449       llvm::Value *IsFalse = Builder.getFalse();
1450       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1451                 SanitizerHandler::MissingReturn,
1452                 EmitCheckSourceLocation(FD->getLocation()), None);
1453     } else if (ShouldEmitUnreachable) {
1454       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1455         EmitTrapCall(llvm::Intrinsic::trap);
1456     }
1457     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1458       Builder.CreateUnreachable();
1459       Builder.ClearInsertionPoint();
1460     }
1461   }
1462 
1463   // Emit the standard function epilogue.
1464   FinishFunction(BodyRange.getEnd());
1465 
1466   // If we haven't marked the function nothrow through other means, do
1467   // a quick pass now to see if we can.
1468   if (!CurFn->doesNotThrow())
1469     TryMarkNoThrow(CurFn);
1470 }
1471 
1472 /// ContainsLabel - Return true if the statement contains a label in it.  If
1473 /// this statement is not executed normally, it not containing a label means
1474 /// that we can just remove the code.
1475 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1476   // Null statement, not a label!
1477   if (!S) return false;
1478 
1479   // If this is a label, we have to emit the code, consider something like:
1480   // if (0) {  ...  foo:  bar(); }  goto foo;
1481   //
1482   // TODO: If anyone cared, we could track __label__'s, since we know that you
1483   // can't jump to one from outside their declared region.
1484   if (isa<LabelStmt>(S))
1485     return true;
1486 
1487   // If this is a case/default statement, and we haven't seen a switch, we have
1488   // to emit the code.
1489   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1490     return true;
1491 
1492   // If this is a switch statement, we want to ignore cases below it.
1493   if (isa<SwitchStmt>(S))
1494     IgnoreCaseStmts = true;
1495 
1496   // Scan subexpressions for verboten labels.
1497   for (const Stmt *SubStmt : S->children())
1498     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1499       return true;
1500 
1501   return false;
1502 }
1503 
1504 /// containsBreak - Return true if the statement contains a break out of it.
1505 /// If the statement (recursively) contains a switch or loop with a break
1506 /// inside of it, this is fine.
1507 bool CodeGenFunction::containsBreak(const Stmt *S) {
1508   // Null statement, not a label!
1509   if (!S) return false;
1510 
1511   // If this is a switch or loop that defines its own break scope, then we can
1512   // include it and anything inside of it.
1513   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1514       isa<ForStmt>(S))
1515     return false;
1516 
1517   if (isa<BreakStmt>(S))
1518     return true;
1519 
1520   // Scan subexpressions for verboten breaks.
1521   for (const Stmt *SubStmt : S->children())
1522     if (containsBreak(SubStmt))
1523       return true;
1524 
1525   return false;
1526 }
1527 
1528 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1529   if (!S) return false;
1530 
1531   // Some statement kinds add a scope and thus never add a decl to the current
1532   // scope. Note, this list is longer than the list of statements that might
1533   // have an unscoped decl nested within them, but this way is conservatively
1534   // correct even if more statement kinds are added.
1535   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1536       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1537       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1538       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1539     return false;
1540 
1541   if (isa<DeclStmt>(S))
1542     return true;
1543 
1544   for (const Stmt *SubStmt : S->children())
1545     if (mightAddDeclToScope(SubStmt))
1546       return true;
1547 
1548   return false;
1549 }
1550 
1551 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1552 /// to a constant, or if it does but contains a label, return false.  If it
1553 /// constant folds return true and set the boolean result in Result.
1554 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1555                                                    bool &ResultBool,
1556                                                    bool AllowLabels) {
1557   llvm::APSInt ResultInt;
1558   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1559     return false;
1560 
1561   ResultBool = ResultInt.getBoolValue();
1562   return true;
1563 }
1564 
1565 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1566 /// to a constant, or if it does but contains a label, return false.  If it
1567 /// constant folds return true and set the folded value.
1568 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1569                                                    llvm::APSInt &ResultInt,
1570                                                    bool AllowLabels) {
1571   // FIXME: Rename and handle conversion of other evaluatable things
1572   // to bool.
1573   Expr::EvalResult Result;
1574   if (!Cond->EvaluateAsInt(Result, getContext()))
1575     return false;  // Not foldable, not integer or not fully evaluatable.
1576 
1577   llvm::APSInt Int = Result.Val.getInt();
1578   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1579     return false;  // Contains a label.
1580 
1581   ResultInt = Int;
1582   return true;
1583 }
1584 
1585 /// Determine whether the given condition is an instrumentable condition
1586 /// (i.e. no "&&" or "||").
1587 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1588   // Bypass simplistic logical-NOT operator before determining whether the
1589   // condition contains any other logical operator.
1590   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1591     if (UnOp->getOpcode() == UO_LNot)
1592       C = UnOp->getSubExpr();
1593 
1594   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1595   return (!BOp || !BOp->isLogicalOp());
1596 }
1597 
1598 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1599 /// increments a profile counter based on the semantics of the given logical
1600 /// operator opcode.  This is used to instrument branch condition coverage for
1601 /// logical operators.
1602 void CodeGenFunction::EmitBranchToCounterBlock(
1603     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1604     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1605     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1606   // If not instrumenting, just emit a branch.
1607   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1608   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1609     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1610 
1611   llvm::BasicBlock *ThenBlock = nullptr;
1612   llvm::BasicBlock *ElseBlock = nullptr;
1613   llvm::BasicBlock *NextBlock = nullptr;
1614 
1615   // Create the block we'll use to increment the appropriate counter.
1616   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1617 
1618   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1619   // means we need to evaluate the condition and increment the counter on TRUE:
1620   //
1621   // if (Cond)
1622   //   goto CounterIncrBlock;
1623   // else
1624   //   goto FalseBlock;
1625   //
1626   // CounterIncrBlock:
1627   //   Counter++;
1628   //   goto TrueBlock;
1629 
1630   if (LOp == BO_LAnd) {
1631     ThenBlock = CounterIncrBlock;
1632     ElseBlock = FalseBlock;
1633     NextBlock = TrueBlock;
1634   }
1635 
1636   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1637   // we need to evaluate the condition and increment the counter on FALSE:
1638   //
1639   // if (Cond)
1640   //   goto TrueBlock;
1641   // else
1642   //   goto CounterIncrBlock;
1643   //
1644   // CounterIncrBlock:
1645   //   Counter++;
1646   //   goto FalseBlock;
1647 
1648   else if (LOp == BO_LOr) {
1649     ThenBlock = TrueBlock;
1650     ElseBlock = CounterIncrBlock;
1651     NextBlock = FalseBlock;
1652   } else {
1653     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1654   }
1655 
1656   // Emit Branch based on condition.
1657   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1658 
1659   // Emit the block containing the counter increment(s).
1660   EmitBlock(CounterIncrBlock);
1661 
1662   // Increment corresponding counter; if index not provided, use Cond as index.
1663   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1664 
1665   // Go to the next block.
1666   EmitBranch(NextBlock);
1667 }
1668 
1669 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1670 /// statement) to the specified blocks.  Based on the condition, this might try
1671 /// to simplify the codegen of the conditional based on the branch.
1672 /// \param LH The value of the likelihood attribute on the True branch.
1673 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1674                                            llvm::BasicBlock *TrueBlock,
1675                                            llvm::BasicBlock *FalseBlock,
1676                                            uint64_t TrueCount,
1677                                            Stmt::Likelihood LH) {
1678   Cond = Cond->IgnoreParens();
1679 
1680   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1681 
1682     // Handle X && Y in a condition.
1683     if (CondBOp->getOpcode() == BO_LAnd) {
1684       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1685       // folded if the case was simple enough.
1686       bool ConstantBool = false;
1687       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1688           ConstantBool) {
1689         // br(1 && X) -> br(X).
1690         incrementProfileCounter(CondBOp);
1691         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1692                                         FalseBlock, TrueCount, LH);
1693       }
1694 
1695       // If we have "X && 1", simplify the code to use an uncond branch.
1696       // "X && 0" would have been constant folded to 0.
1697       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1698           ConstantBool) {
1699         // br(X && 1) -> br(X).
1700         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1701                                         FalseBlock, TrueCount, LH, CondBOp);
1702       }
1703 
1704       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1705       // want to jump to the FalseBlock.
1706       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1707       // The counter tells us how often we evaluate RHS, and all of TrueCount
1708       // can be propagated to that branch.
1709       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1710 
1711       ConditionalEvaluation eval(*this);
1712       {
1713         ApplyDebugLocation DL(*this, Cond);
1714         // Propagate the likelihood attribute like __builtin_expect
1715         // __builtin_expect(X && Y, 1) -> X and Y are likely
1716         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1717         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1718                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1719         EmitBlock(LHSTrue);
1720       }
1721 
1722       incrementProfileCounter(CondBOp);
1723       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1724 
1725       // Any temporaries created here are conditional.
1726       eval.begin(*this);
1727       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1728                                FalseBlock, TrueCount, LH);
1729       eval.end(*this);
1730 
1731       return;
1732     }
1733 
1734     if (CondBOp->getOpcode() == BO_LOr) {
1735       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1736       // folded if the case was simple enough.
1737       bool ConstantBool = false;
1738       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1739           !ConstantBool) {
1740         // br(0 || X) -> br(X).
1741         incrementProfileCounter(CondBOp);
1742         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1743                                         FalseBlock, TrueCount, LH);
1744       }
1745 
1746       // If we have "X || 0", simplify the code to use an uncond branch.
1747       // "X || 1" would have been constant folded to 1.
1748       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1749           !ConstantBool) {
1750         // br(X || 0) -> br(X).
1751         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1752                                         FalseBlock, TrueCount, LH, CondBOp);
1753       }
1754 
1755       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1756       // want to jump to the TrueBlock.
1757       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1758       // We have the count for entry to the RHS and for the whole expression
1759       // being true, so we can divy up True count between the short circuit and
1760       // the RHS.
1761       uint64_t LHSCount =
1762           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1763       uint64_t RHSCount = TrueCount - LHSCount;
1764 
1765       ConditionalEvaluation eval(*this);
1766       {
1767         // Propagate the likelihood attribute like __builtin_expect
1768         // __builtin_expect(X || Y, 1) -> only Y is likely
1769         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1770         ApplyDebugLocation DL(*this, Cond);
1771         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1772                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1773         EmitBlock(LHSFalse);
1774       }
1775 
1776       incrementProfileCounter(CondBOp);
1777       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1778 
1779       // Any temporaries created here are conditional.
1780       eval.begin(*this);
1781       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1782                                RHSCount, LH);
1783 
1784       eval.end(*this);
1785 
1786       return;
1787     }
1788   }
1789 
1790   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1791     // br(!x, t, f) -> br(x, f, t)
1792     if (CondUOp->getOpcode() == UO_LNot) {
1793       // Negate the count.
1794       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1795       // The values of the enum are chosen to make this negation possible.
1796       LH = static_cast<Stmt::Likelihood>(-LH);
1797       // Negate the condition and swap the destination blocks.
1798       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1799                                   FalseCount, LH);
1800     }
1801   }
1802 
1803   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1804     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1805     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1806     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1807 
1808     // The ConditionalOperator itself has no likelihood information for its
1809     // true and false branches. This matches the behavior of __builtin_expect.
1810     ConditionalEvaluation cond(*this);
1811     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1812                          getProfileCount(CondOp), Stmt::LH_None);
1813 
1814     // When computing PGO branch weights, we only know the overall count for
1815     // the true block. This code is essentially doing tail duplication of the
1816     // naive code-gen, introducing new edges for which counts are not
1817     // available. Divide the counts proportionally between the LHS and RHS of
1818     // the conditional operator.
1819     uint64_t LHSScaledTrueCount = 0;
1820     if (TrueCount) {
1821       double LHSRatio =
1822           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1823       LHSScaledTrueCount = TrueCount * LHSRatio;
1824     }
1825 
1826     cond.begin(*this);
1827     EmitBlock(LHSBlock);
1828     incrementProfileCounter(CondOp);
1829     {
1830       ApplyDebugLocation DL(*this, Cond);
1831       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1832                            LHSScaledTrueCount, LH);
1833     }
1834     cond.end(*this);
1835 
1836     cond.begin(*this);
1837     EmitBlock(RHSBlock);
1838     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1839                          TrueCount - LHSScaledTrueCount, LH);
1840     cond.end(*this);
1841 
1842     return;
1843   }
1844 
1845   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1846     // Conditional operator handling can give us a throw expression as a
1847     // condition for a case like:
1848     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1849     // Fold this to:
1850     //   br(c, throw x, br(y, t, f))
1851     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1852     return;
1853   }
1854 
1855   // Emit the code with the fully general case.
1856   llvm::Value *CondV;
1857   {
1858     ApplyDebugLocation DL(*this, Cond);
1859     CondV = EvaluateExprAsBool(Cond);
1860   }
1861 
1862   llvm::MDNode *Weights = nullptr;
1863   llvm::MDNode *Unpredictable = nullptr;
1864 
1865   // If the branch has a condition wrapped by __builtin_unpredictable,
1866   // create metadata that specifies that the branch is unpredictable.
1867   // Don't bother if not optimizing because that metadata would not be used.
1868   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1869   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1870     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1871     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1872       llvm::MDBuilder MDHelper(getLLVMContext());
1873       Unpredictable = MDHelper.createUnpredictable();
1874     }
1875   }
1876 
1877   // If there is a Likelihood knowledge for the cond, lower it.
1878   // Note that if not optimizing this won't emit anything.
1879   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1880   if (CondV != NewCondV)
1881     CondV = NewCondV;
1882   else {
1883     // Otherwise, lower profile counts. Note that we do this even at -O0.
1884     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1885     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1886   }
1887 
1888   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1889 }
1890 
1891 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1892 /// specified stmt yet.
1893 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1894   CGM.ErrorUnsupported(S, Type);
1895 }
1896 
1897 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1898 /// variable-length array whose elements have a non-zero bit-pattern.
1899 ///
1900 /// \param baseType the inner-most element type of the array
1901 /// \param src - a char* pointing to the bit-pattern for a single
1902 /// base element of the array
1903 /// \param sizeInChars - the total size of the VLA, in chars
1904 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1905                                Address dest, Address src,
1906                                llvm::Value *sizeInChars) {
1907   CGBuilderTy &Builder = CGF.Builder;
1908 
1909   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1910   llvm::Value *baseSizeInChars
1911     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1912 
1913   Address begin =
1914     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1915   llvm::Value *end = Builder.CreateInBoundsGEP(
1916       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1917 
1918   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1919   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1920   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1921 
1922   // Make a loop over the VLA.  C99 guarantees that the VLA element
1923   // count must be nonzero.
1924   CGF.EmitBlock(loopBB);
1925 
1926   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1927   cur->addIncoming(begin.getPointer(), originBB);
1928 
1929   CharUnits curAlign =
1930     dest.getAlignment().alignmentOfArrayElement(baseSize);
1931 
1932   // memcpy the individual element bit-pattern.
1933   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1934                        /*volatile*/ false);
1935 
1936   // Go to the next element.
1937   llvm::Value *next =
1938     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1939 
1940   // Leave if that's the end of the VLA.
1941   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1942   Builder.CreateCondBr(done, contBB, loopBB);
1943   cur->addIncoming(next, loopBB);
1944 
1945   CGF.EmitBlock(contBB);
1946 }
1947 
1948 void
1949 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1950   // Ignore empty classes in C++.
1951   if (getLangOpts().CPlusPlus) {
1952     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1953       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1954         return;
1955     }
1956   }
1957 
1958   // Cast the dest ptr to the appropriate i8 pointer type.
1959   if (DestPtr.getElementType() != Int8Ty)
1960     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1961 
1962   // Get size and alignment info for this aggregate.
1963   CharUnits size = getContext().getTypeSizeInChars(Ty);
1964 
1965   llvm::Value *SizeVal;
1966   const VariableArrayType *vla;
1967 
1968   // Don't bother emitting a zero-byte memset.
1969   if (size.isZero()) {
1970     // But note that getTypeInfo returns 0 for a VLA.
1971     if (const VariableArrayType *vlaType =
1972           dyn_cast_or_null<VariableArrayType>(
1973                                           getContext().getAsArrayType(Ty))) {
1974       auto VlaSize = getVLASize(vlaType);
1975       SizeVal = VlaSize.NumElts;
1976       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1977       if (!eltSize.isOne())
1978         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1979       vla = vlaType;
1980     } else {
1981       return;
1982     }
1983   } else {
1984     SizeVal = CGM.getSize(size);
1985     vla = nullptr;
1986   }
1987 
1988   // If the type contains a pointer to data member we can't memset it to zero.
1989   // Instead, create a null constant and copy it to the destination.
1990   // TODO: there are other patterns besides zero that we can usefully memset,
1991   // like -1, which happens to be the pattern used by member-pointers.
1992   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1993     // For a VLA, emit a single element, then splat that over the VLA.
1994     if (vla) Ty = getContext().getBaseElementType(vla);
1995 
1996     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1997 
1998     llvm::GlobalVariable *NullVariable =
1999       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2000                                /*isConstant=*/true,
2001                                llvm::GlobalVariable::PrivateLinkage,
2002                                NullConstant, Twine());
2003     CharUnits NullAlign = DestPtr.getAlignment();
2004     NullVariable->setAlignment(NullAlign.getAsAlign());
2005     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2006                    NullAlign);
2007 
2008     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2009 
2010     // Get and call the appropriate llvm.memcpy overload.
2011     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2012     return;
2013   }
2014 
2015   // Otherwise, just memset the whole thing to zero.  This is legal
2016   // because in LLVM, all default initializers (other than the ones we just
2017   // handled above) are guaranteed to have a bit pattern of all zeros.
2018   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2019 }
2020 
2021 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2022   // Make sure that there is a block for the indirect goto.
2023   if (!IndirectBranch)
2024     GetIndirectGotoBlock();
2025 
2026   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2027 
2028   // Make sure the indirect branch includes all of the address-taken blocks.
2029   IndirectBranch->addDestination(BB);
2030   return llvm::BlockAddress::get(CurFn, BB);
2031 }
2032 
2033 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2034   // If we already made the indirect branch for indirect goto, return its block.
2035   if (IndirectBranch) return IndirectBranch->getParent();
2036 
2037   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2038 
2039   // Create the PHI node that indirect gotos will add entries to.
2040   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2041                                               "indirect.goto.dest");
2042 
2043   // Create the indirect branch instruction.
2044   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2045   return IndirectBranch->getParent();
2046 }
2047 
2048 /// Computes the length of an array in elements, as well as the base
2049 /// element type and a properly-typed first element pointer.
2050 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2051                                               QualType &baseType,
2052                                               Address &addr) {
2053   const ArrayType *arrayType = origArrayType;
2054 
2055   // If it's a VLA, we have to load the stored size.  Note that
2056   // this is the size of the VLA in bytes, not its size in elements.
2057   llvm::Value *numVLAElements = nullptr;
2058   if (isa<VariableArrayType>(arrayType)) {
2059     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2060 
2061     // Walk into all VLAs.  This doesn't require changes to addr,
2062     // which has type T* where T is the first non-VLA element type.
2063     do {
2064       QualType elementType = arrayType->getElementType();
2065       arrayType = getContext().getAsArrayType(elementType);
2066 
2067       // If we only have VLA components, 'addr' requires no adjustment.
2068       if (!arrayType) {
2069         baseType = elementType;
2070         return numVLAElements;
2071       }
2072     } while (isa<VariableArrayType>(arrayType));
2073 
2074     // We get out here only if we find a constant array type
2075     // inside the VLA.
2076   }
2077 
2078   // We have some number of constant-length arrays, so addr should
2079   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2080   // down to the first element of addr.
2081   SmallVector<llvm::Value*, 8> gepIndices;
2082 
2083   // GEP down to the array type.
2084   llvm::ConstantInt *zero = Builder.getInt32(0);
2085   gepIndices.push_back(zero);
2086 
2087   uint64_t countFromCLAs = 1;
2088   QualType eltType;
2089 
2090   llvm::ArrayType *llvmArrayType =
2091     dyn_cast<llvm::ArrayType>(addr.getElementType());
2092   while (llvmArrayType) {
2093     assert(isa<ConstantArrayType>(arrayType));
2094     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2095              == llvmArrayType->getNumElements());
2096 
2097     gepIndices.push_back(zero);
2098     countFromCLAs *= llvmArrayType->getNumElements();
2099     eltType = arrayType->getElementType();
2100 
2101     llvmArrayType =
2102       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2103     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2104     assert((!llvmArrayType || arrayType) &&
2105            "LLVM and Clang types are out-of-synch");
2106   }
2107 
2108   if (arrayType) {
2109     // From this point onwards, the Clang array type has been emitted
2110     // as some other type (probably a packed struct). Compute the array
2111     // size, and just emit the 'begin' expression as a bitcast.
2112     while (arrayType) {
2113       countFromCLAs *=
2114           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2115       eltType = arrayType->getElementType();
2116       arrayType = getContext().getAsArrayType(eltType);
2117     }
2118 
2119     llvm::Type *baseType = ConvertType(eltType);
2120     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2121   } else {
2122     // Create the actual GEP.
2123     addr = Address(Builder.CreateInBoundsGEP(
2124         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2125         ConvertTypeForMem(eltType),
2126         addr.getAlignment());
2127   }
2128 
2129   baseType = eltType;
2130 
2131   llvm::Value *numElements
2132     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2133 
2134   // If we had any VLA dimensions, factor them in.
2135   if (numVLAElements)
2136     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2137 
2138   return numElements;
2139 }
2140 
2141 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2142   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2143   assert(vla && "type was not a variable array type!");
2144   return getVLASize(vla);
2145 }
2146 
2147 CodeGenFunction::VlaSizePair
2148 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2149   // The number of elements so far; always size_t.
2150   llvm::Value *numElements = nullptr;
2151 
2152   QualType elementType;
2153   do {
2154     elementType = type->getElementType();
2155     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2156     assert(vlaSize && "no size for VLA!");
2157     assert(vlaSize->getType() == SizeTy);
2158 
2159     if (!numElements) {
2160       numElements = vlaSize;
2161     } else {
2162       // It's undefined behavior if this wraps around, so mark it that way.
2163       // FIXME: Teach -fsanitize=undefined to trap this.
2164       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2165     }
2166   } while ((type = getContext().getAsVariableArrayType(elementType)));
2167 
2168   return { numElements, elementType };
2169 }
2170 
2171 CodeGenFunction::VlaSizePair
2172 CodeGenFunction::getVLAElements1D(QualType type) {
2173   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2174   assert(vla && "type was not a variable array type!");
2175   return getVLAElements1D(vla);
2176 }
2177 
2178 CodeGenFunction::VlaSizePair
2179 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2180   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2181   assert(VlaSize && "no size for VLA!");
2182   assert(VlaSize->getType() == SizeTy);
2183   return { VlaSize, Vla->getElementType() };
2184 }
2185 
2186 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2187   assert(type->isVariablyModifiedType() &&
2188          "Must pass variably modified type to EmitVLASizes!");
2189 
2190   EnsureInsertPoint();
2191 
2192   // We're going to walk down into the type and look for VLA
2193   // expressions.
2194   do {
2195     assert(type->isVariablyModifiedType());
2196 
2197     const Type *ty = type.getTypePtr();
2198     switch (ty->getTypeClass()) {
2199 
2200 #define TYPE(Class, Base)
2201 #define ABSTRACT_TYPE(Class, Base)
2202 #define NON_CANONICAL_TYPE(Class, Base)
2203 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2204 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2205 #include "clang/AST/TypeNodes.inc"
2206       llvm_unreachable("unexpected dependent type!");
2207 
2208     // These types are never variably-modified.
2209     case Type::Builtin:
2210     case Type::Complex:
2211     case Type::Vector:
2212     case Type::ExtVector:
2213     case Type::ConstantMatrix:
2214     case Type::Record:
2215     case Type::Enum:
2216     case Type::Elaborated:
2217     case Type::Using:
2218     case Type::TemplateSpecialization:
2219     case Type::ObjCTypeParam:
2220     case Type::ObjCObject:
2221     case Type::ObjCInterface:
2222     case Type::ObjCObjectPointer:
2223     case Type::BitInt:
2224       llvm_unreachable("type class is never variably-modified!");
2225 
2226     case Type::Adjusted:
2227       type = cast<AdjustedType>(ty)->getAdjustedType();
2228       break;
2229 
2230     case Type::Decayed:
2231       type = cast<DecayedType>(ty)->getPointeeType();
2232       break;
2233 
2234     case Type::Pointer:
2235       type = cast<PointerType>(ty)->getPointeeType();
2236       break;
2237 
2238     case Type::BlockPointer:
2239       type = cast<BlockPointerType>(ty)->getPointeeType();
2240       break;
2241 
2242     case Type::LValueReference:
2243     case Type::RValueReference:
2244       type = cast<ReferenceType>(ty)->getPointeeType();
2245       break;
2246 
2247     case Type::MemberPointer:
2248       type = cast<MemberPointerType>(ty)->getPointeeType();
2249       break;
2250 
2251     case Type::ConstantArray:
2252     case Type::IncompleteArray:
2253       // Losing element qualification here is fine.
2254       type = cast<ArrayType>(ty)->getElementType();
2255       break;
2256 
2257     case Type::VariableArray: {
2258       // Losing element qualification here is fine.
2259       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2260 
2261       // Unknown size indication requires no size computation.
2262       // Otherwise, evaluate and record it.
2263       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2264         // It's possible that we might have emitted this already,
2265         // e.g. with a typedef and a pointer to it.
2266         llvm::Value *&entry = VLASizeMap[sizeExpr];
2267         if (!entry) {
2268           llvm::Value *size = EmitScalarExpr(sizeExpr);
2269 
2270           // C11 6.7.6.2p5:
2271           //   If the size is an expression that is not an integer constant
2272           //   expression [...] each time it is evaluated it shall have a value
2273           //   greater than zero.
2274           if (SanOpts.has(SanitizerKind::VLABound)) {
2275             SanitizerScope SanScope(this);
2276             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2277             clang::QualType SEType = sizeExpr->getType();
2278             llvm::Value *CheckCondition =
2279                 SEType->isSignedIntegerType()
2280                     ? Builder.CreateICmpSGT(size, Zero)
2281                     : Builder.CreateICmpUGT(size, Zero);
2282             llvm::Constant *StaticArgs[] = {
2283                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2284                 EmitCheckTypeDescriptor(SEType)};
2285             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2286                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2287           }
2288 
2289           // Always zexting here would be wrong if it weren't
2290           // undefined behavior to have a negative bound.
2291           // FIXME: What about when size's type is larger than size_t?
2292           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2293         }
2294       }
2295       type = vat->getElementType();
2296       break;
2297     }
2298 
2299     case Type::FunctionProto:
2300     case Type::FunctionNoProto:
2301       type = cast<FunctionType>(ty)->getReturnType();
2302       break;
2303 
2304     case Type::Paren:
2305     case Type::TypeOf:
2306     case Type::UnaryTransform:
2307     case Type::Attributed:
2308     case Type::SubstTemplateTypeParm:
2309     case Type::MacroQualified:
2310       // Keep walking after single level desugaring.
2311       type = type.getSingleStepDesugaredType(getContext());
2312       break;
2313 
2314     case Type::Typedef:
2315     case Type::Decltype:
2316     case Type::Auto:
2317     case Type::DeducedTemplateSpecialization:
2318       // Stop walking: nothing to do.
2319       return;
2320 
2321     case Type::TypeOfExpr:
2322       // Stop walking: emit typeof expression.
2323       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2324       return;
2325 
2326     case Type::Atomic:
2327       type = cast<AtomicType>(ty)->getValueType();
2328       break;
2329 
2330     case Type::Pipe:
2331       type = cast<PipeType>(ty)->getElementType();
2332       break;
2333     }
2334   } while (type->isVariablyModifiedType());
2335 }
2336 
2337 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2338   if (getContext().getBuiltinVaListType()->isArrayType())
2339     return EmitPointerWithAlignment(E);
2340   return EmitLValue(E).getAddress(*this);
2341 }
2342 
2343 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2344   return EmitLValue(E).getAddress(*this);
2345 }
2346 
2347 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2348                                               const APValue &Init) {
2349   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2350   if (CGDebugInfo *Dbg = getDebugInfo())
2351     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2352       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2353 }
2354 
2355 CodeGenFunction::PeepholeProtection
2356 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2357   // At the moment, the only aggressive peephole we do in IR gen
2358   // is trunc(zext) folding, but if we add more, we can easily
2359   // extend this protection.
2360 
2361   if (!rvalue.isScalar()) return PeepholeProtection();
2362   llvm::Value *value = rvalue.getScalarVal();
2363   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2364 
2365   // Just make an extra bitcast.
2366   assert(HaveInsertPoint());
2367   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2368                                                   Builder.GetInsertBlock());
2369 
2370   PeepholeProtection protection;
2371   protection.Inst = inst;
2372   return protection;
2373 }
2374 
2375 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2376   if (!protection.Inst) return;
2377 
2378   // In theory, we could try to duplicate the peepholes now, but whatever.
2379   protection.Inst->eraseFromParent();
2380 }
2381 
2382 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2383                                               QualType Ty, SourceLocation Loc,
2384                                               SourceLocation AssumptionLoc,
2385                                               llvm::Value *Alignment,
2386                                               llvm::Value *OffsetValue) {
2387   if (Alignment->getType() != IntPtrTy)
2388     Alignment =
2389         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2390   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2391     OffsetValue =
2392         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2393   llvm::Value *TheCheck = nullptr;
2394   if (SanOpts.has(SanitizerKind::Alignment)) {
2395     llvm::Value *PtrIntValue =
2396         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2397 
2398     if (OffsetValue) {
2399       bool IsOffsetZero = false;
2400       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2401         IsOffsetZero = CI->isZero();
2402 
2403       if (!IsOffsetZero)
2404         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2405     }
2406 
2407     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2408     llvm::Value *Mask =
2409         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2410     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2411     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2412   }
2413   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2414       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2415 
2416   if (!SanOpts.has(SanitizerKind::Alignment))
2417     return;
2418   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2419                                OffsetValue, TheCheck, Assumption);
2420 }
2421 
2422 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2423                                               const Expr *E,
2424                                               SourceLocation AssumptionLoc,
2425                                               llvm::Value *Alignment,
2426                                               llvm::Value *OffsetValue) {
2427   if (auto *CE = dyn_cast<CastExpr>(E))
2428     E = CE->getSubExprAsWritten();
2429   QualType Ty = E->getType();
2430   SourceLocation Loc = E->getExprLoc();
2431 
2432   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2433                           OffsetValue);
2434 }
2435 
2436 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2437                                                  llvm::Value *AnnotatedVal,
2438                                                  StringRef AnnotationStr,
2439                                                  SourceLocation Location,
2440                                                  const AnnotateAttr *Attr) {
2441   SmallVector<llvm::Value *, 5> Args = {
2442       AnnotatedVal,
2443       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2444       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2445       CGM.EmitAnnotationLineNo(Location),
2446   };
2447   if (Attr)
2448     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2449   return Builder.CreateCall(AnnotationFn, Args);
2450 }
2451 
2452 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2453   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2454   // FIXME We create a new bitcast for every annotation because that's what
2455   // llvm-gcc was doing.
2456   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2457     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2458                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2459                        I->getAnnotation(), D->getLocation(), I);
2460 }
2461 
2462 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2463                                               Address Addr) {
2464   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2465   llvm::Value *V = Addr.getPointer();
2466   llvm::Type *VTy = V->getType();
2467   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2468   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2469   llvm::PointerType *IntrinTy =
2470       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2471   llvm::Function *F =
2472       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2473 
2474   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2475     // FIXME Always emit the cast inst so we can differentiate between
2476     // annotation on the first field of a struct and annotation on the struct
2477     // itself.
2478     if (VTy != IntrinTy)
2479       V = Builder.CreateBitCast(V, IntrinTy);
2480     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2481     V = Builder.CreateBitCast(V, VTy);
2482   }
2483 
2484   return Address(V, Addr.getAlignment());
2485 }
2486 
2487 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2488 
2489 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2490     : CGF(CGF) {
2491   assert(!CGF->IsSanitizerScope);
2492   CGF->IsSanitizerScope = true;
2493 }
2494 
2495 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2496   CGF->IsSanitizerScope = false;
2497 }
2498 
2499 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2500                                    const llvm::Twine &Name,
2501                                    llvm::BasicBlock *BB,
2502                                    llvm::BasicBlock::iterator InsertPt) const {
2503   LoopStack.InsertHelper(I);
2504   if (IsSanitizerScope)
2505     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2506 }
2507 
2508 void CGBuilderInserter::InsertHelper(
2509     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2510     llvm::BasicBlock::iterator InsertPt) const {
2511   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2512   if (CGF)
2513     CGF->InsertHelper(I, Name, BB, InsertPt);
2514 }
2515 
2516 // Emits an error if we don't have a valid set of target features for the
2517 // called function.
2518 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2519                                           const FunctionDecl *TargetDecl) {
2520   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2521 }
2522 
2523 // Emits an error if we don't have a valid set of target features for the
2524 // called function.
2525 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2526                                           const FunctionDecl *TargetDecl) {
2527   // Early exit if this is an indirect call.
2528   if (!TargetDecl)
2529     return;
2530 
2531   // Get the current enclosing function if it exists. If it doesn't
2532   // we can't check the target features anyhow.
2533   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2534   if (!FD)
2535     return;
2536 
2537   // Grab the required features for the call. For a builtin this is listed in
2538   // the td file with the default cpu, for an always_inline function this is any
2539   // listed cpu and any listed features.
2540   unsigned BuiltinID = TargetDecl->getBuiltinID();
2541   std::string MissingFeature;
2542   llvm::StringMap<bool> CallerFeatureMap;
2543   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2544   if (BuiltinID) {
2545     StringRef FeatureList(
2546         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2547     // Return if the builtin doesn't have any required features.
2548     if (FeatureList.empty())
2549       return;
2550     assert(!FeatureList.contains(' ') && "Space in feature list");
2551     TargetFeatures TF(CallerFeatureMap);
2552     if (!TF.hasRequiredFeatures(FeatureList))
2553       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2554           << TargetDecl->getDeclName() << FeatureList;
2555   } else if (!TargetDecl->isMultiVersion() &&
2556              TargetDecl->hasAttr<TargetAttr>()) {
2557     // Get the required features for the callee.
2558 
2559     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2560     ParsedTargetAttr ParsedAttr =
2561         CGM.getContext().filterFunctionTargetAttrs(TD);
2562 
2563     SmallVector<StringRef, 1> ReqFeatures;
2564     llvm::StringMap<bool> CalleeFeatureMap;
2565     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2566 
2567     for (const auto &F : ParsedAttr.Features) {
2568       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2569         ReqFeatures.push_back(StringRef(F).substr(1));
2570     }
2571 
2572     for (const auto &F : CalleeFeatureMap) {
2573       // Only positive features are "required".
2574       if (F.getValue())
2575         ReqFeatures.push_back(F.getKey());
2576     }
2577     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2578       if (!CallerFeatureMap.lookup(Feature)) {
2579         MissingFeature = Feature.str();
2580         return false;
2581       }
2582       return true;
2583     }))
2584       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2585           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2586   }
2587 }
2588 
2589 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2590   if (!CGM.getCodeGenOpts().SanitizeStats)
2591     return;
2592 
2593   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2594   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2595   CGM.getSanStats().create(IRB, SSK);
2596 }
2597 
2598 llvm::Value *
2599 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2600   llvm::Value *Condition = nullptr;
2601 
2602   if (!RO.Conditions.Architecture.empty())
2603     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2604 
2605   if (!RO.Conditions.Features.empty()) {
2606     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2607     Condition =
2608         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2609   }
2610   return Condition;
2611 }
2612 
2613 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2614                                              llvm::Function *Resolver,
2615                                              CGBuilderTy &Builder,
2616                                              llvm::Function *FuncToReturn,
2617                                              bool SupportsIFunc) {
2618   if (SupportsIFunc) {
2619     Builder.CreateRet(FuncToReturn);
2620     return;
2621   }
2622 
2623   llvm::SmallVector<llvm::Value *, 10> Args;
2624   llvm::for_each(Resolver->args(),
2625                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2626 
2627   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2628   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2629 
2630   if (Resolver->getReturnType()->isVoidTy())
2631     Builder.CreateRetVoid();
2632   else
2633     Builder.CreateRet(Result);
2634 }
2635 
2636 void CodeGenFunction::EmitMultiVersionResolver(
2637     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2638   assert(getContext().getTargetInfo().getTriple().isX86() &&
2639          "Only implemented for x86 targets");
2640 
2641   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2642 
2643   // Main function's basic block.
2644   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2645   Builder.SetInsertPoint(CurBlock);
2646   EmitX86CpuInit();
2647 
2648   for (const MultiVersionResolverOption &RO : Options) {
2649     Builder.SetInsertPoint(CurBlock);
2650     llvm::Value *Condition = FormResolverCondition(RO);
2651 
2652     // The 'default' or 'generic' case.
2653     if (!Condition) {
2654       assert(&RO == Options.end() - 1 &&
2655              "Default or Generic case must be last");
2656       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2657                                        SupportsIFunc);
2658       return;
2659     }
2660 
2661     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2662     CGBuilderTy RetBuilder(*this, RetBlock);
2663     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2664                                      SupportsIFunc);
2665     CurBlock = createBasicBlock("resolver_else", Resolver);
2666     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2667   }
2668 
2669   // If no generic/default, emit an unreachable.
2670   Builder.SetInsertPoint(CurBlock);
2671   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2672   TrapCall->setDoesNotReturn();
2673   TrapCall->setDoesNotThrow();
2674   Builder.CreateUnreachable();
2675   Builder.ClearInsertionPoint();
2676 }
2677 
2678 // Loc - where the diagnostic will point, where in the source code this
2679 //  alignment has failed.
2680 // SecondaryLoc - if present (will be present if sufficiently different from
2681 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2682 //  It should be the location where the __attribute__((assume_aligned))
2683 //  was written e.g.
2684 void CodeGenFunction::emitAlignmentAssumptionCheck(
2685     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2686     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2687     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2688     llvm::Instruction *Assumption) {
2689   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2690          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2691              llvm::Intrinsic::getDeclaration(
2692                  Builder.GetInsertBlock()->getParent()->getParent(),
2693                  llvm::Intrinsic::assume) &&
2694          "Assumption should be a call to llvm.assume().");
2695   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2696          "Assumption should be the last instruction of the basic block, "
2697          "since the basic block is still being generated.");
2698 
2699   if (!SanOpts.has(SanitizerKind::Alignment))
2700     return;
2701 
2702   // Don't check pointers to volatile data. The behavior here is implementation-
2703   // defined.
2704   if (Ty->getPointeeType().isVolatileQualified())
2705     return;
2706 
2707   // We need to temorairly remove the assumption so we can insert the
2708   // sanitizer check before it, else the check will be dropped by optimizations.
2709   Assumption->removeFromParent();
2710 
2711   {
2712     SanitizerScope SanScope(this);
2713 
2714     if (!OffsetValue)
2715       OffsetValue = Builder.getInt1(false); // no offset.
2716 
2717     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2718                                     EmitCheckSourceLocation(SecondaryLoc),
2719                                     EmitCheckTypeDescriptor(Ty)};
2720     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2721                                   EmitCheckValue(Alignment),
2722                                   EmitCheckValue(OffsetValue)};
2723     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2724               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2725   }
2726 
2727   // We are now in the (new, empty) "cont" basic block.
2728   // Reintroduce the assumption.
2729   Builder.Insert(Assumption);
2730   // FIXME: Assumption still has it's original basic block as it's Parent.
2731 }
2732 
2733 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2734   if (CGDebugInfo *DI = getDebugInfo())
2735     return DI->SourceLocToDebugLoc(Location);
2736 
2737   return llvm::DebugLoc();
2738 }
2739 
2740 llvm::Value *
2741 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2742                                                       Stmt::Likelihood LH) {
2743   switch (LH) {
2744   case Stmt::LH_None:
2745     return Cond;
2746   case Stmt::LH_Likely:
2747   case Stmt::LH_Unlikely:
2748     // Don't generate llvm.expect on -O0 as the backend won't use it for
2749     // anything.
2750     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2751       return Cond;
2752     llvm::Type *CondTy = Cond->getType();
2753     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2754     llvm::Function *FnExpect =
2755         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2756     llvm::Value *ExpectedValueOfCond =
2757         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2758     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2759                               Cond->getName() + ".expval");
2760   }
2761   llvm_unreachable("Unknown Likelihood");
2762 }
2763