1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 192 TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 204 } 205 206 207 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 208 return CGM.getTypes().ConvertTypeForMem(T); 209 } 210 211 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 212 return CGM.getTypes().ConvertType(T); 213 } 214 215 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 216 type = type.getCanonicalType(); 217 while (true) { 218 switch (type->getTypeClass()) { 219 #define TYPE(name, parent) 220 #define ABSTRACT_TYPE(name, parent) 221 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 222 #define DEPENDENT_TYPE(name, parent) case Type::name: 223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 224 #include "clang/AST/TypeNodes.inc" 225 llvm_unreachable("non-canonical or dependent type in IR-generation"); 226 227 case Type::Auto: 228 case Type::DeducedTemplateSpecialization: 229 llvm_unreachable("undeduced type in IR-generation"); 230 231 // Various scalar types. 232 case Type::Builtin: 233 case Type::Pointer: 234 case Type::BlockPointer: 235 case Type::LValueReference: 236 case Type::RValueReference: 237 case Type::MemberPointer: 238 case Type::Vector: 239 case Type::ExtVector: 240 case Type::ConstantMatrix: 241 case Type::FunctionProto: 242 case Type::FunctionNoProto: 243 case Type::Enum: 244 case Type::ObjCObjectPointer: 245 case Type::Pipe: 246 case Type::ExtInt: 247 return TEK_Scalar; 248 249 // Complexes. 250 case Type::Complex: 251 return TEK_Complex; 252 253 // Arrays, records, and Objective-C objects. 254 case Type::ConstantArray: 255 case Type::IncompleteArray: 256 case Type::VariableArray: 257 case Type::Record: 258 case Type::ObjCObject: 259 case Type::ObjCInterface: 260 return TEK_Aggregate; 261 262 // We operate on atomic values according to their underlying type. 263 case Type::Atomic: 264 type = cast<AtomicType>(type)->getValueType(); 265 continue; 266 } 267 llvm_unreachable("unknown type kind!"); 268 } 269 } 270 271 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 272 // For cleanliness, we try to avoid emitting the return block for 273 // simple cases. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (CurBB) { 277 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 278 279 // We have a valid insert point, reuse it if it is empty or there are no 280 // explicit jumps to the return block. 281 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 282 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 283 delete ReturnBlock.getBlock(); 284 ReturnBlock = JumpDest(); 285 } else 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 // Otherwise, if the return block is the target of a single direct 291 // branch then we can just put the code in that block instead. This 292 // cleans up functions which started with a unified return block. 293 if (ReturnBlock.getBlock()->hasOneUse()) { 294 llvm::BranchInst *BI = 295 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 296 if (BI && BI->isUnconditional() && 297 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 298 // Record/return the DebugLoc of the simple 'return' expression to be used 299 // later by the actual 'ret' instruction. 300 llvm::DebugLoc Loc = BI->getDebugLoc(); 301 Builder.SetInsertPoint(BI->getParent()); 302 BI->eraseFromParent(); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 return Loc; 306 } 307 } 308 309 // FIXME: We are at an unreachable point, there is no reason to emit the block 310 // unless it has uses. However, we still need a place to put the debug 311 // region.end for now. 312 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 318 if (!BB) return; 319 if (!BB->use_empty()) 320 return CGF.CurFn->getBasicBlockList().push_back(BB); 321 delete BB; 322 } 323 324 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 325 assert(BreakContinueStack.empty() && 326 "mismatched push/pop in break/continue stack!"); 327 328 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 329 && NumSimpleReturnExprs == NumReturnExprs 330 && ReturnBlock.getBlock()->use_empty(); 331 // Usually the return expression is evaluated before the cleanup 332 // code. If the function contains only a simple return statement, 333 // such as a constant, the location before the cleanup code becomes 334 // the last useful breakpoint in the function, because the simple 335 // return expression will be evaluated after the cleanup code. To be 336 // safe, set the debug location for cleanup code to the location of 337 // the return statement. Otherwise the cleanup code should be at the 338 // end of the function's lexical scope. 339 // 340 // If there are multiple branches to the return block, the branch 341 // instructions will get the location of the return statements and 342 // all will be fine. 343 if (CGDebugInfo *DI = getDebugInfo()) { 344 if (OnlySimpleReturnStmts) 345 DI->EmitLocation(Builder, LastStopPoint); 346 else 347 DI->EmitLocation(Builder, EndLoc); 348 } 349 350 // Pop any cleanups that might have been associated with the 351 // parameters. Do this in whatever block we're currently in; it's 352 // important to do this before we enter the return block or return 353 // edges will be *really* confused. 354 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 355 bool HasOnlyLifetimeMarkers = 356 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 357 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 358 if (HasCleanups) { 359 // Make sure the line table doesn't jump back into the body for 360 // the ret after it's been at EndLoc. 361 Optional<ApplyDebugLocation> AL; 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, EndLoc); 365 else 366 // We may not have a valid end location. Try to apply it anyway, and 367 // fall back to an artificial location if needed. 368 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 369 } 370 371 PopCleanupBlocks(PrologueCleanupDepth); 372 } 373 374 // Emit function epilog (to return). 375 llvm::DebugLoc Loc = EmitReturnBlock(); 376 377 if (ShouldInstrumentFunction()) { 378 if (CGM.getCodeGenOpts().InstrumentFunctions) 379 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 380 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 381 CurFn->addFnAttr("instrument-function-exit-inlined", 382 "__cyg_profile_func_exit"); 383 } 384 385 if (ShouldSkipSanitizerInstrumentation()) 386 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 387 388 // Emit debug descriptor for function end. 389 if (CGDebugInfo *DI = getDebugInfo()) 390 DI->EmitFunctionEnd(Builder, CurFn); 391 392 // Reset the debug location to that of the simple 'return' expression, if any 393 // rather than that of the end of the function's scope '}'. 394 ApplyDebugLocation AL(*this, Loc); 395 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 396 EmitEndEHSpec(CurCodeDecl); 397 398 assert(EHStack.empty() && 399 "did not remove all scopes from cleanup stack!"); 400 401 // If someone did an indirect goto, emit the indirect goto block at the end of 402 // the function. 403 if (IndirectBranch) { 404 EmitBlock(IndirectBranch->getParent()); 405 Builder.ClearInsertionPoint(); 406 } 407 408 // If some of our locals escaped, insert a call to llvm.localescape in the 409 // entry block. 410 if (!EscapedLocals.empty()) { 411 // Invert the map from local to index into a simple vector. There should be 412 // no holes. 413 SmallVector<llvm::Value *, 4> EscapeArgs; 414 EscapeArgs.resize(EscapedLocals.size()); 415 for (auto &Pair : EscapedLocals) 416 EscapeArgs[Pair.second] = Pair.first; 417 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 418 &CGM.getModule(), llvm::Intrinsic::localescape); 419 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 420 } 421 422 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 423 llvm::Instruction *Ptr = AllocaInsertPt; 424 AllocaInsertPt = nullptr; 425 Ptr->eraseFromParent(); 426 427 // If someone took the address of a label but never did an indirect goto, we 428 // made a zero entry PHI node, which is illegal, zap it now. 429 if (IndirectBranch) { 430 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 431 if (PN->getNumIncomingValues() == 0) { 432 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 433 PN->eraseFromParent(); 434 } 435 } 436 437 EmitIfUsed(*this, EHResumeBlock); 438 EmitIfUsed(*this, TerminateLandingPad); 439 EmitIfUsed(*this, TerminateHandler); 440 EmitIfUsed(*this, UnreachableBlock); 441 442 for (const auto &FuncletAndParent : TerminateFunclets) 443 EmitIfUsed(*this, FuncletAndParent.second); 444 445 if (CGM.getCodeGenOpts().EmitDeclMetadata) 446 EmitDeclMetadata(); 447 448 for (const auto &R : DeferredReplacements) { 449 if (llvm::Value *Old = R.first) { 450 Old->replaceAllUsesWith(R.second); 451 cast<llvm::Instruction>(Old)->eraseFromParent(); 452 } 453 } 454 DeferredReplacements.clear(); 455 456 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 457 // PHIs if the current function is a coroutine. We don't do it for all 458 // functions as it may result in slight increase in numbers of instructions 459 // if compiled with no optimizations. We do it for coroutine as the lifetime 460 // of CleanupDestSlot alloca make correct coroutine frame building very 461 // difficult. 462 if (NormalCleanupDest.isValid() && isCoroutine()) { 463 llvm::DominatorTree DT(*CurFn); 464 llvm::PromoteMemToReg( 465 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 466 NormalCleanupDest = Address::invalid(); 467 } 468 469 // Scan function arguments for vector width. 470 for (llvm::Argument &A : CurFn->args()) 471 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 472 LargestVectorWidth = 473 std::max((uint64_t)LargestVectorWidth, 474 VT->getPrimitiveSizeInBits().getKnownMinSize()); 475 476 // Update vector width based on return type. 477 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 478 LargestVectorWidth = 479 std::max((uint64_t)LargestVectorWidth, 480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 481 482 // Add the required-vector-width attribute. This contains the max width from: 483 // 1. min-vector-width attribute used in the source program. 484 // 2. Any builtins used that have a vector width specified. 485 // 3. Values passed in and out of inline assembly. 486 // 4. Width of vector arguments and return types for this function. 487 // 5. Width of vector aguments and return types for functions called by this 488 // function. 489 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 490 491 // Add vscale_range attribute if appropriate. 492 Optional<std::pair<unsigned, unsigned>> VScaleRange = 493 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 494 if (VScaleRange) { 495 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 496 getLLVMContext(), VScaleRange.getValue().first, 497 VScaleRange.getValue().second)); 498 } 499 500 // If we generated an unreachable return block, delete it now. 501 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 502 Builder.ClearInsertionPoint(); 503 ReturnBlock.getBlock()->eraseFromParent(); 504 } 505 if (ReturnValue.isValid()) { 506 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 507 if (RetAlloca && RetAlloca->use_empty()) { 508 RetAlloca->eraseFromParent(); 509 ReturnValue = Address::invalid(); 510 } 511 } 512 } 513 514 /// ShouldInstrumentFunction - Return true if the current function should be 515 /// instrumented with __cyg_profile_func_* calls 516 bool CodeGenFunction::ShouldInstrumentFunction() { 517 if (!CGM.getCodeGenOpts().InstrumentFunctions && 518 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 519 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 520 return false; 521 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 522 return false; 523 return true; 524 } 525 526 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 527 if (!CurFuncDecl) 528 return false; 529 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 714 if (FD && FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (FD && FD->getBody() && 807 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 808 SanOpts.Mask &= ~SanitizerKind::Null; 809 810 // Apply xray attributes to the function (as a string, for now) 811 bool AlwaysXRayAttr = false; 812 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 813 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 814 XRayInstrKind::FunctionEntry) || 815 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 816 XRayInstrKind::FunctionExit)) { 817 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 AlwaysXRayAttr = true; 820 } 821 if (XRayAttr->neverXRayInstrument()) 822 Fn->addFnAttr("function-instrument", "xray-never"); 823 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 824 if (ShouldXRayInstrumentFunction()) 825 Fn->addFnAttr("xray-log-args", 826 llvm::utostr(LogArgs->getArgumentCount())); 827 } 828 } else { 829 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 830 Fn->addFnAttr( 831 "xray-instruction-threshold", 832 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 833 } 834 835 if (ShouldXRayInstrumentFunction()) { 836 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 837 Fn->addFnAttr("xray-ignore-loops"); 838 839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) 841 Fn->addFnAttr("xray-skip-exit"); 842 843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 844 XRayInstrKind::FunctionEntry)) 845 Fn->addFnAttr("xray-skip-entry"); 846 847 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 848 if (FuncGroups > 1) { 849 auto FuncName = llvm::makeArrayRef<uint8_t>( 850 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 851 auto Group = crc32(FuncName) % FuncGroups; 852 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 853 !AlwaysXRayAttr) 854 Fn->addFnAttr("function-instrument", "xray-never"); 855 } 856 } 857 858 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 859 if (CGM.isProfileInstrExcluded(Fn, Loc)) 860 Fn->addFnAttr(llvm::Attribute::NoProfile); 861 862 unsigned Count, Offset; 863 if (const auto *Attr = 864 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 865 Count = Attr->getCount(); 866 Offset = Attr->getOffset(); 867 } else { 868 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 869 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 870 } 871 if (Count && Offset <= Count) { 872 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 873 if (Offset) 874 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 875 } 876 877 // Add no-jump-tables value. 878 if (CGM.getCodeGenOpts().NoUseJumpTables) 879 Fn->addFnAttr("no-jump-tables", "true"); 880 881 // Add no-inline-line-tables value. 882 if (CGM.getCodeGenOpts().NoInlineLineTables) 883 Fn->addFnAttr("no-inline-line-tables"); 884 885 // Add profile-sample-accurate value. 886 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 887 Fn->addFnAttr("profile-sample-accurate"); 888 889 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 890 Fn->addFnAttr("use-sample-profile"); 891 892 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 893 Fn->addFnAttr("cfi-canonical-jump-table"); 894 895 if (D && D->hasAttr<NoProfileFunctionAttr>()) 896 Fn->addFnAttr(llvm::Attribute::NoProfile); 897 898 if (FD && getLangOpts().OpenCL) { 899 // Add metadata for a kernel function. 900 EmitOpenCLKernelMetadata(FD, Fn); 901 } 902 903 // If we are checking function types, emit a function type signature as 904 // prologue data. 905 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 906 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 907 // Remove any (C++17) exception specifications, to allow calling e.g. a 908 // noexcept function through a non-noexcept pointer. 909 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 910 FD->getType(), EST_None); 911 llvm::Constant *FTRTTIConst = 912 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 913 llvm::Constant *FTRTTIConstEncoded = 914 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 915 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 916 llvm::Constant *PrologueStructConst = 917 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 918 Fn->setPrologueData(PrologueStructConst); 919 } 920 } 921 922 // If we're checking nullability, we need to know whether we can check the 923 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 924 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 925 auto Nullability = FnRetTy->getNullability(getContext()); 926 if (Nullability && *Nullability == NullabilityKind::NonNull) { 927 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 928 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 929 RetValNullabilityPrecondition = 930 llvm::ConstantInt::getTrue(getLLVMContext()); 931 } 932 } 933 934 // If we're in C++ mode and the function name is "main", it is guaranteed 935 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 936 // used within a program"). 937 // 938 // OpenCL C 2.0 v2.2-11 s6.9.i: 939 // Recursion is not supported. 940 // 941 // SYCL v1.2.1 s3.10: 942 // kernels cannot include RTTI information, exception classes, 943 // recursive code, virtual functions or make use of C++ libraries that 944 // are not compiled for the device. 945 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 946 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 947 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 948 Fn->addFnAttr(llvm::Attribute::NoRecurse); 949 950 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 951 llvm::fp::ExceptionBehavior FPExceptionBehavior = 952 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 953 Builder.setDefaultConstrainedRounding(RM); 954 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 955 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 956 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 957 RM != llvm::RoundingMode::NearestTiesToEven))) { 958 Builder.setIsFPConstrained(true); 959 Fn->addFnAttr(llvm::Attribute::StrictFP); 960 } 961 962 // If a custom alignment is used, force realigning to this alignment on 963 // any main function which certainly will need it. 964 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 965 CGM.getCodeGenOpts().StackAlignment)) 966 Fn->addFnAttr("stackrealign"); 967 968 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 969 970 // Create a marker to make it easy to insert allocas into the entryblock 971 // later. Don't create this with the builder, because we don't want it 972 // folded. 973 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 974 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 975 976 ReturnBlock = getJumpDestInCurrentScope("return"); 977 978 Builder.SetInsertPoint(EntryBB); 979 980 // If we're checking the return value, allocate space for a pointer to a 981 // precise source location of the checked return statement. 982 if (requiresReturnValueCheck()) { 983 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 984 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 985 ReturnLocation); 986 } 987 988 // Emit subprogram debug descriptor. 989 if (CGDebugInfo *DI = getDebugInfo()) { 990 // Reconstruct the type from the argument list so that implicit parameters, 991 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 992 // convention. 993 DI->emitFunctionStart(GD, Loc, StartLoc, 994 DI->getFunctionType(FD, RetTy, Args), CurFn, 995 CurFuncIsThunk); 996 } 997 998 if (ShouldInstrumentFunction()) { 999 if (CGM.getCodeGenOpts().InstrumentFunctions) 1000 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1001 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1002 CurFn->addFnAttr("instrument-function-entry-inlined", 1003 "__cyg_profile_func_enter"); 1004 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1005 CurFn->addFnAttr("instrument-function-entry-inlined", 1006 "__cyg_profile_func_enter_bare"); 1007 } 1008 1009 // Since emitting the mcount call here impacts optimizations such as function 1010 // inlining, we just add an attribute to insert a mcount call in backend. 1011 // The attribute "counting-function" is set to mcount function name which is 1012 // architecture dependent. 1013 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1014 // Calls to fentry/mcount should not be generated if function has 1015 // the no_instrument_function attribute. 1016 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1017 if (CGM.getCodeGenOpts().CallFEntry) 1018 Fn->addFnAttr("fentry-call", "true"); 1019 else { 1020 Fn->addFnAttr("instrument-function-entry-inlined", 1021 getTarget().getMCountName()); 1022 } 1023 if (CGM.getCodeGenOpts().MNopMCount) { 1024 if (!CGM.getCodeGenOpts().CallFEntry) 1025 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1026 << "-mnop-mcount" << "-mfentry"; 1027 Fn->addFnAttr("mnop-mcount"); 1028 } 1029 1030 if (CGM.getCodeGenOpts().RecordMCount) { 1031 if (!CGM.getCodeGenOpts().CallFEntry) 1032 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1033 << "-mrecord-mcount" << "-mfentry"; 1034 Fn->addFnAttr("mrecord-mcount"); 1035 } 1036 } 1037 } 1038 1039 if (CGM.getCodeGenOpts().PackedStack) { 1040 if (getContext().getTargetInfo().getTriple().getArch() != 1041 llvm::Triple::systemz) 1042 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1043 << "-mpacked-stack"; 1044 Fn->addFnAttr("packed-stack"); 1045 } 1046 1047 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1048 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1049 Fn->addFnAttr("warn-stack-size", 1050 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1051 1052 if (RetTy->isVoidType()) { 1053 // Void type; nothing to return. 1054 ReturnValue = Address::invalid(); 1055 1056 // Count the implicit return. 1057 if (!endsWithReturn(D)) 1058 ++NumReturnExprs; 1059 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1060 // Indirect return; emit returned value directly into sret slot. 1061 // This reduces code size, and affects correctness in C++. 1062 auto AI = CurFn->arg_begin(); 1063 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1064 ++AI; 1065 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1066 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1067 ReturnValuePointer = 1068 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1069 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1070 ReturnValue.getPointer(), Int8PtrTy), 1071 ReturnValuePointer); 1072 } 1073 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1074 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1075 // Load the sret pointer from the argument struct and return into that. 1076 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1077 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1078 --EI; 1079 llvm::Value *Addr = Builder.CreateStructGEP( 1080 EI->getType()->getPointerElementType(), &*EI, Idx); 1081 llvm::Type *Ty = 1082 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1083 ReturnValuePointer = Address(Addr, getPointerAlign()); 1084 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1085 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1086 } else { 1087 ReturnValue = CreateIRTemp(RetTy, "retval"); 1088 1089 // Tell the epilog emitter to autorelease the result. We do this 1090 // now so that various specialized functions can suppress it 1091 // during their IR-generation. 1092 if (getLangOpts().ObjCAutoRefCount && 1093 !CurFnInfo->isReturnsRetained() && 1094 RetTy->isObjCRetainableType()) 1095 AutoreleaseResult = true; 1096 } 1097 1098 EmitStartEHSpec(CurCodeDecl); 1099 1100 PrologueCleanupDepth = EHStack.stable_begin(); 1101 1102 // Emit OpenMP specific initialization of the device functions. 1103 if (getLangOpts().OpenMP && CurCodeDecl) 1104 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1105 1106 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1107 1108 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1109 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1110 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1111 if (MD->getParent()->isLambda() && 1112 MD->getOverloadedOperator() == OO_Call) { 1113 // We're in a lambda; figure out the captures. 1114 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1115 LambdaThisCaptureField); 1116 if (LambdaThisCaptureField) { 1117 // If the lambda captures the object referred to by '*this' - either by 1118 // value or by reference, make sure CXXThisValue points to the correct 1119 // object. 1120 1121 // Get the lvalue for the field (which is a copy of the enclosing object 1122 // or contains the address of the enclosing object). 1123 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1124 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1125 // If the enclosing object was captured by value, just use its address. 1126 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1127 } else { 1128 // Load the lvalue pointed to by the field, since '*this' was captured 1129 // by reference. 1130 CXXThisValue = 1131 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1132 } 1133 } 1134 for (auto *FD : MD->getParent()->fields()) { 1135 if (FD->hasCapturedVLAType()) { 1136 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1137 SourceLocation()).getScalarVal(); 1138 auto VAT = FD->getCapturedVLAType(); 1139 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1140 } 1141 } 1142 } else { 1143 // Not in a lambda; just use 'this' from the method. 1144 // FIXME: Should we generate a new load for each use of 'this'? The 1145 // fast register allocator would be happier... 1146 CXXThisValue = CXXABIThisValue; 1147 } 1148 1149 // Check the 'this' pointer once per function, if it's available. 1150 if (CXXABIThisValue) { 1151 SanitizerSet SkippedChecks; 1152 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1153 QualType ThisTy = MD->getThisType(); 1154 1155 // If this is the call operator of a lambda with no capture-default, it 1156 // may have a static invoker function, which may call this operator with 1157 // a null 'this' pointer. 1158 if (isLambdaCallOperator(MD) && 1159 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1160 SkippedChecks.set(SanitizerKind::Null, true); 1161 1162 EmitTypeCheck( 1163 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1164 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1165 } 1166 } 1167 1168 // If any of the arguments have a variably modified type, make sure to 1169 // emit the type size. 1170 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1171 i != e; ++i) { 1172 const VarDecl *VD = *i; 1173 1174 // Dig out the type as written from ParmVarDecls; it's unclear whether 1175 // the standard (C99 6.9.1p10) requires this, but we're following the 1176 // precedent set by gcc. 1177 QualType Ty; 1178 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1179 Ty = PVD->getOriginalType(); 1180 else 1181 Ty = VD->getType(); 1182 1183 if (Ty->isVariablyModifiedType()) 1184 EmitVariablyModifiedType(Ty); 1185 } 1186 // Emit a location at the end of the prologue. 1187 if (CGDebugInfo *DI = getDebugInfo()) 1188 DI->EmitLocation(Builder, StartLoc); 1189 1190 // TODO: Do we need to handle this in two places like we do with 1191 // target-features/target-cpu? 1192 if (CurFuncDecl) 1193 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1194 LargestVectorWidth = VecWidth->getVectorWidth(); 1195 } 1196 1197 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1198 incrementProfileCounter(Body); 1199 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1200 EmitCompoundStmtWithoutScope(*S); 1201 else 1202 EmitStmt(Body); 1203 1204 // This is checked after emitting the function body so we know if there 1205 // are any permitted infinite loops. 1206 if (checkIfFunctionMustProgress()) 1207 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1208 } 1209 1210 /// When instrumenting to collect profile data, the counts for some blocks 1211 /// such as switch cases need to not include the fall-through counts, so 1212 /// emit a branch around the instrumentation code. When not instrumenting, 1213 /// this just calls EmitBlock(). 1214 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1215 const Stmt *S) { 1216 llvm::BasicBlock *SkipCountBB = nullptr; 1217 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1218 // When instrumenting for profiling, the fallthrough to certain 1219 // statements needs to skip over the instrumentation code so that we 1220 // get an accurate count. 1221 SkipCountBB = createBasicBlock("skipcount"); 1222 EmitBranch(SkipCountBB); 1223 } 1224 EmitBlock(BB); 1225 uint64_t CurrentCount = getCurrentProfileCount(); 1226 incrementProfileCounter(S); 1227 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1228 if (SkipCountBB) 1229 EmitBlock(SkipCountBB); 1230 } 1231 1232 /// Tries to mark the given function nounwind based on the 1233 /// non-existence of any throwing calls within it. We believe this is 1234 /// lightweight enough to do at -O0. 1235 static void TryMarkNoThrow(llvm::Function *F) { 1236 // LLVM treats 'nounwind' on a function as part of the type, so we 1237 // can't do this on functions that can be overwritten. 1238 if (F->isInterposable()) return; 1239 1240 for (llvm::BasicBlock &BB : *F) 1241 for (llvm::Instruction &I : BB) 1242 if (I.mayThrow()) 1243 return; 1244 1245 F->setDoesNotThrow(); 1246 } 1247 1248 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1249 FunctionArgList &Args) { 1250 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1251 QualType ResTy = FD->getReturnType(); 1252 1253 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1254 if (MD && MD->isInstance()) { 1255 if (CGM.getCXXABI().HasThisReturn(GD)) 1256 ResTy = MD->getThisType(); 1257 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1258 ResTy = CGM.getContext().VoidPtrTy; 1259 CGM.getCXXABI().buildThisParam(*this, Args); 1260 } 1261 1262 // The base version of an inheriting constructor whose constructed base is a 1263 // virtual base is not passed any arguments (because it doesn't actually call 1264 // the inherited constructor). 1265 bool PassedParams = true; 1266 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1267 if (auto Inherited = CD->getInheritedConstructor()) 1268 PassedParams = 1269 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1270 1271 if (PassedParams) { 1272 for (auto *Param : FD->parameters()) { 1273 Args.push_back(Param); 1274 if (!Param->hasAttr<PassObjectSizeAttr>()) 1275 continue; 1276 1277 auto *Implicit = ImplicitParamDecl::Create( 1278 getContext(), Param->getDeclContext(), Param->getLocation(), 1279 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1280 SizeArguments[Param] = Implicit; 1281 Args.push_back(Implicit); 1282 } 1283 } 1284 1285 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1286 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1287 1288 return ResTy; 1289 } 1290 1291 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1292 const CGFunctionInfo &FnInfo) { 1293 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1294 CurGD = GD; 1295 1296 FunctionArgList Args; 1297 QualType ResTy = BuildFunctionArgList(GD, Args); 1298 1299 // When generating code for a builtin with an inline declaration, use a 1300 // mangled name to hold the actual body, while keeping an external definition 1301 // in case the function pointer is referenced somewhere. 1302 if (FD->isInlineBuiltinDeclaration() && Fn) { 1303 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1304 llvm::Module *M = Fn->getParent(); 1305 llvm::Function *Clone = M->getFunction(FDInlineName); 1306 if (!Clone) { 1307 Clone = llvm::Function::Create(Fn->getFunctionType(), 1308 llvm::GlobalValue::InternalLinkage, 1309 Fn->getAddressSpace(), FDInlineName, M); 1310 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1311 } 1312 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1313 Fn = Clone; 1314 } 1315 1316 // Check if we should generate debug info for this function. 1317 if (FD->hasAttr<NoDebugAttr>()) { 1318 // Clear non-distinct debug info that was possibly attached to the function 1319 // due to an earlier declaration without the nodebug attribute 1320 if (Fn) 1321 Fn->setSubprogram(nullptr); 1322 // Disable debug info indefinitely for this function 1323 DebugInfo = nullptr; 1324 } 1325 1326 // The function might not have a body if we're generating thunks for a 1327 // function declaration. 1328 SourceRange BodyRange; 1329 if (Stmt *Body = FD->getBody()) 1330 BodyRange = Body->getSourceRange(); 1331 else 1332 BodyRange = FD->getLocation(); 1333 CurEHLocation = BodyRange.getEnd(); 1334 1335 // Use the location of the start of the function to determine where 1336 // the function definition is located. By default use the location 1337 // of the declaration as the location for the subprogram. A function 1338 // may lack a declaration in the source code if it is created by code 1339 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1340 SourceLocation Loc = FD->getLocation(); 1341 1342 // If this is a function specialization then use the pattern body 1343 // as the location for the function. 1344 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1345 if (SpecDecl->hasBody(SpecDecl)) 1346 Loc = SpecDecl->getLocation(); 1347 1348 Stmt *Body = FD->getBody(); 1349 1350 if (Body) { 1351 // Coroutines always emit lifetime markers. 1352 if (isa<CoroutineBodyStmt>(Body)) 1353 ShouldEmitLifetimeMarkers = true; 1354 1355 // Initialize helper which will detect jumps which can cause invalid 1356 // lifetime markers. 1357 if (ShouldEmitLifetimeMarkers) 1358 Bypasses.Init(Body); 1359 } 1360 1361 // Emit the standard function prologue. 1362 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1363 1364 // Save parameters for coroutine function. 1365 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1366 for (const auto *ParamDecl : FD->parameters()) 1367 FnArgs.push_back(ParamDecl); 1368 1369 // Generate the body of the function. 1370 PGO.assignRegionCounters(GD, CurFn); 1371 if (isa<CXXDestructorDecl>(FD)) 1372 EmitDestructorBody(Args); 1373 else if (isa<CXXConstructorDecl>(FD)) 1374 EmitConstructorBody(Args); 1375 else if (getLangOpts().CUDA && 1376 !getLangOpts().CUDAIsDevice && 1377 FD->hasAttr<CUDAGlobalAttr>()) 1378 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1379 else if (isa<CXXMethodDecl>(FD) && 1380 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1381 // The lambda static invoker function is special, because it forwards or 1382 // clones the body of the function call operator (but is actually static). 1383 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1384 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1385 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1386 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1387 // Implicit copy-assignment gets the same special treatment as implicit 1388 // copy-constructors. 1389 emitImplicitAssignmentOperatorBody(Args); 1390 } else if (Body) { 1391 EmitFunctionBody(Body); 1392 } else 1393 llvm_unreachable("no definition for emitted function"); 1394 1395 // C++11 [stmt.return]p2: 1396 // Flowing off the end of a function [...] results in undefined behavior in 1397 // a value-returning function. 1398 // C11 6.9.1p12: 1399 // If the '}' that terminates a function is reached, and the value of the 1400 // function call is used by the caller, the behavior is undefined. 1401 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1402 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1403 bool ShouldEmitUnreachable = 1404 CGM.getCodeGenOpts().StrictReturn || 1405 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1406 if (SanOpts.has(SanitizerKind::Return)) { 1407 SanitizerScope SanScope(this); 1408 llvm::Value *IsFalse = Builder.getFalse(); 1409 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1410 SanitizerHandler::MissingReturn, 1411 EmitCheckSourceLocation(FD->getLocation()), None); 1412 } else if (ShouldEmitUnreachable) { 1413 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1414 EmitTrapCall(llvm::Intrinsic::trap); 1415 } 1416 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1417 Builder.CreateUnreachable(); 1418 Builder.ClearInsertionPoint(); 1419 } 1420 } 1421 1422 // Emit the standard function epilogue. 1423 FinishFunction(BodyRange.getEnd()); 1424 1425 // If we haven't marked the function nothrow through other means, do 1426 // a quick pass now to see if we can. 1427 if (!CurFn->doesNotThrow()) 1428 TryMarkNoThrow(CurFn); 1429 } 1430 1431 /// ContainsLabel - Return true if the statement contains a label in it. If 1432 /// this statement is not executed normally, it not containing a label means 1433 /// that we can just remove the code. 1434 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1435 // Null statement, not a label! 1436 if (!S) return false; 1437 1438 // If this is a label, we have to emit the code, consider something like: 1439 // if (0) { ... foo: bar(); } goto foo; 1440 // 1441 // TODO: If anyone cared, we could track __label__'s, since we know that you 1442 // can't jump to one from outside their declared region. 1443 if (isa<LabelStmt>(S)) 1444 return true; 1445 1446 // If this is a case/default statement, and we haven't seen a switch, we have 1447 // to emit the code. 1448 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1449 return true; 1450 1451 // If this is a switch statement, we want to ignore cases below it. 1452 if (isa<SwitchStmt>(S)) 1453 IgnoreCaseStmts = true; 1454 1455 // Scan subexpressions for verboten labels. 1456 for (const Stmt *SubStmt : S->children()) 1457 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1458 return true; 1459 1460 return false; 1461 } 1462 1463 /// containsBreak - Return true if the statement contains a break out of it. 1464 /// If the statement (recursively) contains a switch or loop with a break 1465 /// inside of it, this is fine. 1466 bool CodeGenFunction::containsBreak(const Stmt *S) { 1467 // Null statement, not a label! 1468 if (!S) return false; 1469 1470 // If this is a switch or loop that defines its own break scope, then we can 1471 // include it and anything inside of it. 1472 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1473 isa<ForStmt>(S)) 1474 return false; 1475 1476 if (isa<BreakStmt>(S)) 1477 return true; 1478 1479 // Scan subexpressions for verboten breaks. 1480 for (const Stmt *SubStmt : S->children()) 1481 if (containsBreak(SubStmt)) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1488 if (!S) return false; 1489 1490 // Some statement kinds add a scope and thus never add a decl to the current 1491 // scope. Note, this list is longer than the list of statements that might 1492 // have an unscoped decl nested within them, but this way is conservatively 1493 // correct even if more statement kinds are added. 1494 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1495 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1496 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1497 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1498 return false; 1499 1500 if (isa<DeclStmt>(S)) 1501 return true; 1502 1503 for (const Stmt *SubStmt : S->children()) 1504 if (mightAddDeclToScope(SubStmt)) 1505 return true; 1506 1507 return false; 1508 } 1509 1510 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1511 /// to a constant, or if it does but contains a label, return false. If it 1512 /// constant folds return true and set the boolean result in Result. 1513 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1514 bool &ResultBool, 1515 bool AllowLabels) { 1516 llvm::APSInt ResultInt; 1517 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1518 return false; 1519 1520 ResultBool = ResultInt.getBoolValue(); 1521 return true; 1522 } 1523 1524 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1525 /// to a constant, or if it does but contains a label, return false. If it 1526 /// constant folds return true and set the folded value. 1527 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1528 llvm::APSInt &ResultInt, 1529 bool AllowLabels) { 1530 // FIXME: Rename and handle conversion of other evaluatable things 1531 // to bool. 1532 Expr::EvalResult Result; 1533 if (!Cond->EvaluateAsInt(Result, getContext())) 1534 return false; // Not foldable, not integer or not fully evaluatable. 1535 1536 llvm::APSInt Int = Result.Val.getInt(); 1537 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1538 return false; // Contains a label. 1539 1540 ResultInt = Int; 1541 return true; 1542 } 1543 1544 /// Determine whether the given condition is an instrumentable condition 1545 /// (i.e. no "&&" or "||"). 1546 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1547 // Bypass simplistic logical-NOT operator before determining whether the 1548 // condition contains any other logical operator. 1549 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1550 if (UnOp->getOpcode() == UO_LNot) 1551 C = UnOp->getSubExpr(); 1552 1553 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1554 return (!BOp || !BOp->isLogicalOp()); 1555 } 1556 1557 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1558 /// increments a profile counter based on the semantics of the given logical 1559 /// operator opcode. This is used to instrument branch condition coverage for 1560 /// logical operators. 1561 void CodeGenFunction::EmitBranchToCounterBlock( 1562 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1563 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1564 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1565 // If not instrumenting, just emit a branch. 1566 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1567 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1568 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1569 1570 llvm::BasicBlock *ThenBlock = NULL; 1571 llvm::BasicBlock *ElseBlock = NULL; 1572 llvm::BasicBlock *NextBlock = NULL; 1573 1574 // Create the block we'll use to increment the appropriate counter. 1575 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1576 1577 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1578 // means we need to evaluate the condition and increment the counter on TRUE: 1579 // 1580 // if (Cond) 1581 // goto CounterIncrBlock; 1582 // else 1583 // goto FalseBlock; 1584 // 1585 // CounterIncrBlock: 1586 // Counter++; 1587 // goto TrueBlock; 1588 1589 if (LOp == BO_LAnd) { 1590 ThenBlock = CounterIncrBlock; 1591 ElseBlock = FalseBlock; 1592 NextBlock = TrueBlock; 1593 } 1594 1595 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1596 // we need to evaluate the condition and increment the counter on FALSE: 1597 // 1598 // if (Cond) 1599 // goto TrueBlock; 1600 // else 1601 // goto CounterIncrBlock; 1602 // 1603 // CounterIncrBlock: 1604 // Counter++; 1605 // goto FalseBlock; 1606 1607 else if (LOp == BO_LOr) { 1608 ThenBlock = TrueBlock; 1609 ElseBlock = CounterIncrBlock; 1610 NextBlock = FalseBlock; 1611 } else { 1612 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1613 } 1614 1615 // Emit Branch based on condition. 1616 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1617 1618 // Emit the block containing the counter increment(s). 1619 EmitBlock(CounterIncrBlock); 1620 1621 // Increment corresponding counter; if index not provided, use Cond as index. 1622 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1623 1624 // Go to the next block. 1625 EmitBranch(NextBlock); 1626 } 1627 1628 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1629 /// statement) to the specified blocks. Based on the condition, this might try 1630 /// to simplify the codegen of the conditional based on the branch. 1631 /// \param LH The value of the likelihood attribute on the True branch. 1632 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1633 llvm::BasicBlock *TrueBlock, 1634 llvm::BasicBlock *FalseBlock, 1635 uint64_t TrueCount, 1636 Stmt::Likelihood LH) { 1637 Cond = Cond->IgnoreParens(); 1638 1639 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1640 1641 // Handle X && Y in a condition. 1642 if (CondBOp->getOpcode() == BO_LAnd) { 1643 // If we have "1 && X", simplify the code. "0 && X" would have constant 1644 // folded if the case was simple enough. 1645 bool ConstantBool = false; 1646 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1647 ConstantBool) { 1648 // br(1 && X) -> br(X). 1649 incrementProfileCounter(CondBOp); 1650 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1651 FalseBlock, TrueCount, LH); 1652 } 1653 1654 // If we have "X && 1", simplify the code to use an uncond branch. 1655 // "X && 0" would have been constant folded to 0. 1656 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1657 ConstantBool) { 1658 // br(X && 1) -> br(X). 1659 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1660 FalseBlock, TrueCount, LH, CondBOp); 1661 } 1662 1663 // Emit the LHS as a conditional. If the LHS conditional is false, we 1664 // want to jump to the FalseBlock. 1665 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1666 // The counter tells us how often we evaluate RHS, and all of TrueCount 1667 // can be propagated to that branch. 1668 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1669 1670 ConditionalEvaluation eval(*this); 1671 { 1672 ApplyDebugLocation DL(*this, Cond); 1673 // Propagate the likelihood attribute like __builtin_expect 1674 // __builtin_expect(X && Y, 1) -> X and Y are likely 1675 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1676 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1677 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1678 EmitBlock(LHSTrue); 1679 } 1680 1681 incrementProfileCounter(CondBOp); 1682 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1683 1684 // Any temporaries created here are conditional. 1685 eval.begin(*this); 1686 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1687 FalseBlock, TrueCount, LH); 1688 eval.end(*this); 1689 1690 return; 1691 } 1692 1693 if (CondBOp->getOpcode() == BO_LOr) { 1694 // If we have "0 || X", simplify the code. "1 || X" would have constant 1695 // folded if the case was simple enough. 1696 bool ConstantBool = false; 1697 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1698 !ConstantBool) { 1699 // br(0 || X) -> br(X). 1700 incrementProfileCounter(CondBOp); 1701 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1702 FalseBlock, TrueCount, LH); 1703 } 1704 1705 // If we have "X || 0", simplify the code to use an uncond branch. 1706 // "X || 1" would have been constant folded to 1. 1707 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1708 !ConstantBool) { 1709 // br(X || 0) -> br(X). 1710 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1711 FalseBlock, TrueCount, LH, CondBOp); 1712 } 1713 1714 // Emit the LHS as a conditional. If the LHS conditional is true, we 1715 // want to jump to the TrueBlock. 1716 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1717 // We have the count for entry to the RHS and for the whole expression 1718 // being true, so we can divy up True count between the short circuit and 1719 // the RHS. 1720 uint64_t LHSCount = 1721 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1722 uint64_t RHSCount = TrueCount - LHSCount; 1723 1724 ConditionalEvaluation eval(*this); 1725 { 1726 // Propagate the likelihood attribute like __builtin_expect 1727 // __builtin_expect(X || Y, 1) -> only Y is likely 1728 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1729 ApplyDebugLocation DL(*this, Cond); 1730 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1731 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1732 EmitBlock(LHSFalse); 1733 } 1734 1735 incrementProfileCounter(CondBOp); 1736 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1737 1738 // Any temporaries created here are conditional. 1739 eval.begin(*this); 1740 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1741 RHSCount, LH); 1742 1743 eval.end(*this); 1744 1745 return; 1746 } 1747 } 1748 1749 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1750 // br(!x, t, f) -> br(x, f, t) 1751 if (CondUOp->getOpcode() == UO_LNot) { 1752 // Negate the count. 1753 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1754 // The values of the enum are chosen to make this negation possible. 1755 LH = static_cast<Stmt::Likelihood>(-LH); 1756 // Negate the condition and swap the destination blocks. 1757 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1758 FalseCount, LH); 1759 } 1760 } 1761 1762 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1763 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1764 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1765 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1766 1767 // The ConditionalOperator itself has no likelihood information for its 1768 // true and false branches. This matches the behavior of __builtin_expect. 1769 ConditionalEvaluation cond(*this); 1770 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1771 getProfileCount(CondOp), Stmt::LH_None); 1772 1773 // When computing PGO branch weights, we only know the overall count for 1774 // the true block. This code is essentially doing tail duplication of the 1775 // naive code-gen, introducing new edges for which counts are not 1776 // available. Divide the counts proportionally between the LHS and RHS of 1777 // the conditional operator. 1778 uint64_t LHSScaledTrueCount = 0; 1779 if (TrueCount) { 1780 double LHSRatio = 1781 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1782 LHSScaledTrueCount = TrueCount * LHSRatio; 1783 } 1784 1785 cond.begin(*this); 1786 EmitBlock(LHSBlock); 1787 incrementProfileCounter(CondOp); 1788 { 1789 ApplyDebugLocation DL(*this, Cond); 1790 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1791 LHSScaledTrueCount, LH); 1792 } 1793 cond.end(*this); 1794 1795 cond.begin(*this); 1796 EmitBlock(RHSBlock); 1797 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1798 TrueCount - LHSScaledTrueCount, LH); 1799 cond.end(*this); 1800 1801 return; 1802 } 1803 1804 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1805 // Conditional operator handling can give us a throw expression as a 1806 // condition for a case like: 1807 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1808 // Fold this to: 1809 // br(c, throw x, br(y, t, f)) 1810 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1811 return; 1812 } 1813 1814 // Emit the code with the fully general case. 1815 llvm::Value *CondV; 1816 { 1817 ApplyDebugLocation DL(*this, Cond); 1818 CondV = EvaluateExprAsBool(Cond); 1819 } 1820 1821 llvm::MDNode *Weights = nullptr; 1822 llvm::MDNode *Unpredictable = nullptr; 1823 1824 // If the branch has a condition wrapped by __builtin_unpredictable, 1825 // create metadata that specifies that the branch is unpredictable. 1826 // Don't bother if not optimizing because that metadata would not be used. 1827 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1828 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1829 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1830 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1831 llvm::MDBuilder MDHelper(getLLVMContext()); 1832 Unpredictable = MDHelper.createUnpredictable(); 1833 } 1834 } 1835 1836 // If there is a Likelihood knowledge for the cond, lower it. 1837 // Note that if not optimizing this won't emit anything. 1838 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1839 if (CondV != NewCondV) 1840 CondV = NewCondV; 1841 else { 1842 // Otherwise, lower profile counts. Note that we do this even at -O0. 1843 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1844 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1845 } 1846 1847 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1848 } 1849 1850 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1851 /// specified stmt yet. 1852 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1853 CGM.ErrorUnsupported(S, Type); 1854 } 1855 1856 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1857 /// variable-length array whose elements have a non-zero bit-pattern. 1858 /// 1859 /// \param baseType the inner-most element type of the array 1860 /// \param src - a char* pointing to the bit-pattern for a single 1861 /// base element of the array 1862 /// \param sizeInChars - the total size of the VLA, in chars 1863 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1864 Address dest, Address src, 1865 llvm::Value *sizeInChars) { 1866 CGBuilderTy &Builder = CGF.Builder; 1867 1868 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1869 llvm::Value *baseSizeInChars 1870 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1871 1872 Address begin = 1873 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1874 llvm::Value *end = Builder.CreateInBoundsGEP( 1875 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1876 1877 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1878 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1879 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1880 1881 // Make a loop over the VLA. C99 guarantees that the VLA element 1882 // count must be nonzero. 1883 CGF.EmitBlock(loopBB); 1884 1885 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1886 cur->addIncoming(begin.getPointer(), originBB); 1887 1888 CharUnits curAlign = 1889 dest.getAlignment().alignmentOfArrayElement(baseSize); 1890 1891 // memcpy the individual element bit-pattern. 1892 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1893 /*volatile*/ false); 1894 1895 // Go to the next element. 1896 llvm::Value *next = 1897 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1898 1899 // Leave if that's the end of the VLA. 1900 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1901 Builder.CreateCondBr(done, contBB, loopBB); 1902 cur->addIncoming(next, loopBB); 1903 1904 CGF.EmitBlock(contBB); 1905 } 1906 1907 void 1908 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1909 // Ignore empty classes in C++. 1910 if (getLangOpts().CPlusPlus) { 1911 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1912 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1913 return; 1914 } 1915 } 1916 1917 // Cast the dest ptr to the appropriate i8 pointer type. 1918 if (DestPtr.getElementType() != Int8Ty) 1919 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1920 1921 // Get size and alignment info for this aggregate. 1922 CharUnits size = getContext().getTypeSizeInChars(Ty); 1923 1924 llvm::Value *SizeVal; 1925 const VariableArrayType *vla; 1926 1927 // Don't bother emitting a zero-byte memset. 1928 if (size.isZero()) { 1929 // But note that getTypeInfo returns 0 for a VLA. 1930 if (const VariableArrayType *vlaType = 1931 dyn_cast_or_null<VariableArrayType>( 1932 getContext().getAsArrayType(Ty))) { 1933 auto VlaSize = getVLASize(vlaType); 1934 SizeVal = VlaSize.NumElts; 1935 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1936 if (!eltSize.isOne()) 1937 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1938 vla = vlaType; 1939 } else { 1940 return; 1941 } 1942 } else { 1943 SizeVal = CGM.getSize(size); 1944 vla = nullptr; 1945 } 1946 1947 // If the type contains a pointer to data member we can't memset it to zero. 1948 // Instead, create a null constant and copy it to the destination. 1949 // TODO: there are other patterns besides zero that we can usefully memset, 1950 // like -1, which happens to be the pattern used by member-pointers. 1951 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1952 // For a VLA, emit a single element, then splat that over the VLA. 1953 if (vla) Ty = getContext().getBaseElementType(vla); 1954 1955 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1956 1957 llvm::GlobalVariable *NullVariable = 1958 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1959 /*isConstant=*/true, 1960 llvm::GlobalVariable::PrivateLinkage, 1961 NullConstant, Twine()); 1962 CharUnits NullAlign = DestPtr.getAlignment(); 1963 NullVariable->setAlignment(NullAlign.getAsAlign()); 1964 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1965 NullAlign); 1966 1967 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1968 1969 // Get and call the appropriate llvm.memcpy overload. 1970 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1971 return; 1972 } 1973 1974 // Otherwise, just memset the whole thing to zero. This is legal 1975 // because in LLVM, all default initializers (other than the ones we just 1976 // handled above) are guaranteed to have a bit pattern of all zeros. 1977 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1978 } 1979 1980 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1981 // Make sure that there is a block for the indirect goto. 1982 if (!IndirectBranch) 1983 GetIndirectGotoBlock(); 1984 1985 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1986 1987 // Make sure the indirect branch includes all of the address-taken blocks. 1988 IndirectBranch->addDestination(BB); 1989 return llvm::BlockAddress::get(CurFn, BB); 1990 } 1991 1992 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1993 // If we already made the indirect branch for indirect goto, return its block. 1994 if (IndirectBranch) return IndirectBranch->getParent(); 1995 1996 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1997 1998 // Create the PHI node that indirect gotos will add entries to. 1999 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2000 "indirect.goto.dest"); 2001 2002 // Create the indirect branch instruction. 2003 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2004 return IndirectBranch->getParent(); 2005 } 2006 2007 /// Computes the length of an array in elements, as well as the base 2008 /// element type and a properly-typed first element pointer. 2009 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2010 QualType &baseType, 2011 Address &addr) { 2012 const ArrayType *arrayType = origArrayType; 2013 2014 // If it's a VLA, we have to load the stored size. Note that 2015 // this is the size of the VLA in bytes, not its size in elements. 2016 llvm::Value *numVLAElements = nullptr; 2017 if (isa<VariableArrayType>(arrayType)) { 2018 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2019 2020 // Walk into all VLAs. This doesn't require changes to addr, 2021 // which has type T* where T is the first non-VLA element type. 2022 do { 2023 QualType elementType = arrayType->getElementType(); 2024 arrayType = getContext().getAsArrayType(elementType); 2025 2026 // If we only have VLA components, 'addr' requires no adjustment. 2027 if (!arrayType) { 2028 baseType = elementType; 2029 return numVLAElements; 2030 } 2031 } while (isa<VariableArrayType>(arrayType)); 2032 2033 // We get out here only if we find a constant array type 2034 // inside the VLA. 2035 } 2036 2037 // We have some number of constant-length arrays, so addr should 2038 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2039 // down to the first element of addr. 2040 SmallVector<llvm::Value*, 8> gepIndices; 2041 2042 // GEP down to the array type. 2043 llvm::ConstantInt *zero = Builder.getInt32(0); 2044 gepIndices.push_back(zero); 2045 2046 uint64_t countFromCLAs = 1; 2047 QualType eltType; 2048 2049 llvm::ArrayType *llvmArrayType = 2050 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2051 while (llvmArrayType) { 2052 assert(isa<ConstantArrayType>(arrayType)); 2053 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2054 == llvmArrayType->getNumElements()); 2055 2056 gepIndices.push_back(zero); 2057 countFromCLAs *= llvmArrayType->getNumElements(); 2058 eltType = arrayType->getElementType(); 2059 2060 llvmArrayType = 2061 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2062 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2063 assert((!llvmArrayType || arrayType) && 2064 "LLVM and Clang types are out-of-synch"); 2065 } 2066 2067 if (arrayType) { 2068 // From this point onwards, the Clang array type has been emitted 2069 // as some other type (probably a packed struct). Compute the array 2070 // size, and just emit the 'begin' expression as a bitcast. 2071 while (arrayType) { 2072 countFromCLAs *= 2073 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2074 eltType = arrayType->getElementType(); 2075 arrayType = getContext().getAsArrayType(eltType); 2076 } 2077 2078 llvm::Type *baseType = ConvertType(eltType); 2079 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2080 } else { 2081 // Create the actual GEP. 2082 addr = Address(Builder.CreateInBoundsGEP( 2083 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2084 addr.getAlignment()); 2085 } 2086 2087 baseType = eltType; 2088 2089 llvm::Value *numElements 2090 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2091 2092 // If we had any VLA dimensions, factor them in. 2093 if (numVLAElements) 2094 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2095 2096 return numElements; 2097 } 2098 2099 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2100 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2101 assert(vla && "type was not a variable array type!"); 2102 return getVLASize(vla); 2103 } 2104 2105 CodeGenFunction::VlaSizePair 2106 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2107 // The number of elements so far; always size_t. 2108 llvm::Value *numElements = nullptr; 2109 2110 QualType elementType; 2111 do { 2112 elementType = type->getElementType(); 2113 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2114 assert(vlaSize && "no size for VLA!"); 2115 assert(vlaSize->getType() == SizeTy); 2116 2117 if (!numElements) { 2118 numElements = vlaSize; 2119 } else { 2120 // It's undefined behavior if this wraps around, so mark it that way. 2121 // FIXME: Teach -fsanitize=undefined to trap this. 2122 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2123 } 2124 } while ((type = getContext().getAsVariableArrayType(elementType))); 2125 2126 return { numElements, elementType }; 2127 } 2128 2129 CodeGenFunction::VlaSizePair 2130 CodeGenFunction::getVLAElements1D(QualType type) { 2131 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2132 assert(vla && "type was not a variable array type!"); 2133 return getVLAElements1D(vla); 2134 } 2135 2136 CodeGenFunction::VlaSizePair 2137 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2138 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2139 assert(VlaSize && "no size for VLA!"); 2140 assert(VlaSize->getType() == SizeTy); 2141 return { VlaSize, Vla->getElementType() }; 2142 } 2143 2144 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2145 assert(type->isVariablyModifiedType() && 2146 "Must pass variably modified type to EmitVLASizes!"); 2147 2148 EnsureInsertPoint(); 2149 2150 // We're going to walk down into the type and look for VLA 2151 // expressions. 2152 do { 2153 assert(type->isVariablyModifiedType()); 2154 2155 const Type *ty = type.getTypePtr(); 2156 switch (ty->getTypeClass()) { 2157 2158 #define TYPE(Class, Base) 2159 #define ABSTRACT_TYPE(Class, Base) 2160 #define NON_CANONICAL_TYPE(Class, Base) 2161 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2162 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2163 #include "clang/AST/TypeNodes.inc" 2164 llvm_unreachable("unexpected dependent type!"); 2165 2166 // These types are never variably-modified. 2167 case Type::Builtin: 2168 case Type::Complex: 2169 case Type::Vector: 2170 case Type::ExtVector: 2171 case Type::ConstantMatrix: 2172 case Type::Record: 2173 case Type::Enum: 2174 case Type::Elaborated: 2175 case Type::TemplateSpecialization: 2176 case Type::ObjCTypeParam: 2177 case Type::ObjCObject: 2178 case Type::ObjCInterface: 2179 case Type::ObjCObjectPointer: 2180 case Type::ExtInt: 2181 llvm_unreachable("type class is never variably-modified!"); 2182 2183 case Type::Adjusted: 2184 type = cast<AdjustedType>(ty)->getAdjustedType(); 2185 break; 2186 2187 case Type::Decayed: 2188 type = cast<DecayedType>(ty)->getPointeeType(); 2189 break; 2190 2191 case Type::Pointer: 2192 type = cast<PointerType>(ty)->getPointeeType(); 2193 break; 2194 2195 case Type::BlockPointer: 2196 type = cast<BlockPointerType>(ty)->getPointeeType(); 2197 break; 2198 2199 case Type::LValueReference: 2200 case Type::RValueReference: 2201 type = cast<ReferenceType>(ty)->getPointeeType(); 2202 break; 2203 2204 case Type::MemberPointer: 2205 type = cast<MemberPointerType>(ty)->getPointeeType(); 2206 break; 2207 2208 case Type::ConstantArray: 2209 case Type::IncompleteArray: 2210 // Losing element qualification here is fine. 2211 type = cast<ArrayType>(ty)->getElementType(); 2212 break; 2213 2214 case Type::VariableArray: { 2215 // Losing element qualification here is fine. 2216 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2217 2218 // Unknown size indication requires no size computation. 2219 // Otherwise, evaluate and record it. 2220 if (const Expr *size = vat->getSizeExpr()) { 2221 // It's possible that we might have emitted this already, 2222 // e.g. with a typedef and a pointer to it. 2223 llvm::Value *&entry = VLASizeMap[size]; 2224 if (!entry) { 2225 llvm::Value *Size = EmitScalarExpr(size); 2226 2227 // C11 6.7.6.2p5: 2228 // If the size is an expression that is not an integer constant 2229 // expression [...] each time it is evaluated it shall have a value 2230 // greater than zero. 2231 if (SanOpts.has(SanitizerKind::VLABound) && 2232 size->getType()->isSignedIntegerType()) { 2233 SanitizerScope SanScope(this); 2234 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2235 llvm::Constant *StaticArgs[] = { 2236 EmitCheckSourceLocation(size->getBeginLoc()), 2237 EmitCheckTypeDescriptor(size->getType())}; 2238 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2239 SanitizerKind::VLABound), 2240 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2241 } 2242 2243 // Always zexting here would be wrong if it weren't 2244 // undefined behavior to have a negative bound. 2245 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2246 } 2247 } 2248 type = vat->getElementType(); 2249 break; 2250 } 2251 2252 case Type::FunctionProto: 2253 case Type::FunctionNoProto: 2254 type = cast<FunctionType>(ty)->getReturnType(); 2255 break; 2256 2257 case Type::Paren: 2258 case Type::TypeOf: 2259 case Type::UnaryTransform: 2260 case Type::Attributed: 2261 case Type::SubstTemplateTypeParm: 2262 case Type::MacroQualified: 2263 // Keep walking after single level desugaring. 2264 type = type.getSingleStepDesugaredType(getContext()); 2265 break; 2266 2267 case Type::Typedef: 2268 case Type::Decltype: 2269 case Type::Auto: 2270 case Type::DeducedTemplateSpecialization: 2271 // Stop walking: nothing to do. 2272 return; 2273 2274 case Type::TypeOfExpr: 2275 // Stop walking: emit typeof expression. 2276 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2277 return; 2278 2279 case Type::Atomic: 2280 type = cast<AtomicType>(ty)->getValueType(); 2281 break; 2282 2283 case Type::Pipe: 2284 type = cast<PipeType>(ty)->getElementType(); 2285 break; 2286 } 2287 } while (type->isVariablyModifiedType()); 2288 } 2289 2290 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2291 if (getContext().getBuiltinVaListType()->isArrayType()) 2292 return EmitPointerWithAlignment(E); 2293 return EmitLValue(E).getAddress(*this); 2294 } 2295 2296 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2297 return EmitLValue(E).getAddress(*this); 2298 } 2299 2300 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2301 const APValue &Init) { 2302 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2303 if (CGDebugInfo *Dbg = getDebugInfo()) 2304 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2305 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2306 } 2307 2308 CodeGenFunction::PeepholeProtection 2309 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2310 // At the moment, the only aggressive peephole we do in IR gen 2311 // is trunc(zext) folding, but if we add more, we can easily 2312 // extend this protection. 2313 2314 if (!rvalue.isScalar()) return PeepholeProtection(); 2315 llvm::Value *value = rvalue.getScalarVal(); 2316 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2317 2318 // Just make an extra bitcast. 2319 assert(HaveInsertPoint()); 2320 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2321 Builder.GetInsertBlock()); 2322 2323 PeepholeProtection protection; 2324 protection.Inst = inst; 2325 return protection; 2326 } 2327 2328 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2329 if (!protection.Inst) return; 2330 2331 // In theory, we could try to duplicate the peepholes now, but whatever. 2332 protection.Inst->eraseFromParent(); 2333 } 2334 2335 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2336 QualType Ty, SourceLocation Loc, 2337 SourceLocation AssumptionLoc, 2338 llvm::Value *Alignment, 2339 llvm::Value *OffsetValue) { 2340 if (Alignment->getType() != IntPtrTy) 2341 Alignment = 2342 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2343 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2344 OffsetValue = 2345 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2346 llvm::Value *TheCheck = nullptr; 2347 if (SanOpts.has(SanitizerKind::Alignment)) { 2348 llvm::Value *PtrIntValue = 2349 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2350 2351 if (OffsetValue) { 2352 bool IsOffsetZero = false; 2353 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2354 IsOffsetZero = CI->isZero(); 2355 2356 if (!IsOffsetZero) 2357 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2358 } 2359 2360 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2361 llvm::Value *Mask = 2362 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2363 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2364 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2365 } 2366 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2367 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2368 2369 if (!SanOpts.has(SanitizerKind::Alignment)) 2370 return; 2371 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2372 OffsetValue, TheCheck, Assumption); 2373 } 2374 2375 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2376 const Expr *E, 2377 SourceLocation AssumptionLoc, 2378 llvm::Value *Alignment, 2379 llvm::Value *OffsetValue) { 2380 if (auto *CE = dyn_cast<CastExpr>(E)) 2381 E = CE->getSubExprAsWritten(); 2382 QualType Ty = E->getType(); 2383 SourceLocation Loc = E->getExprLoc(); 2384 2385 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2386 OffsetValue); 2387 } 2388 2389 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2390 llvm::Value *AnnotatedVal, 2391 StringRef AnnotationStr, 2392 SourceLocation Location, 2393 const AnnotateAttr *Attr) { 2394 SmallVector<llvm::Value *, 5> Args = { 2395 AnnotatedVal, 2396 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2397 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2398 CGM.EmitAnnotationLineNo(Location), 2399 }; 2400 if (Attr) 2401 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2402 return Builder.CreateCall(AnnotationFn, Args); 2403 } 2404 2405 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2406 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2407 // FIXME We create a new bitcast for every annotation because that's what 2408 // llvm-gcc was doing. 2409 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2410 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2411 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2412 I->getAnnotation(), D->getLocation(), I); 2413 } 2414 2415 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2416 Address Addr) { 2417 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2418 llvm::Value *V = Addr.getPointer(); 2419 llvm::Type *VTy = V->getType(); 2420 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2421 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2422 llvm::PointerType *IntrinTy = 2423 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2424 llvm::Function *F = 2425 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2426 2427 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2428 // FIXME Always emit the cast inst so we can differentiate between 2429 // annotation on the first field of a struct and annotation on the struct 2430 // itself. 2431 if (VTy != IntrinTy) 2432 V = Builder.CreateBitCast(V, IntrinTy); 2433 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2434 V = Builder.CreateBitCast(V, VTy); 2435 } 2436 2437 return Address(V, Addr.getAlignment()); 2438 } 2439 2440 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2441 2442 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2443 : CGF(CGF) { 2444 assert(!CGF->IsSanitizerScope); 2445 CGF->IsSanitizerScope = true; 2446 } 2447 2448 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2449 CGF->IsSanitizerScope = false; 2450 } 2451 2452 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2453 const llvm::Twine &Name, 2454 llvm::BasicBlock *BB, 2455 llvm::BasicBlock::iterator InsertPt) const { 2456 LoopStack.InsertHelper(I); 2457 if (IsSanitizerScope) 2458 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2459 } 2460 2461 void CGBuilderInserter::InsertHelper( 2462 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2463 llvm::BasicBlock::iterator InsertPt) const { 2464 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2465 if (CGF) 2466 CGF->InsertHelper(I, Name, BB, InsertPt); 2467 } 2468 2469 // Emits an error if we don't have a valid set of target features for the 2470 // called function. 2471 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2472 const FunctionDecl *TargetDecl) { 2473 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2474 } 2475 2476 // Emits an error if we don't have a valid set of target features for the 2477 // called function. 2478 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2479 const FunctionDecl *TargetDecl) { 2480 // Early exit if this is an indirect call. 2481 if (!TargetDecl) 2482 return; 2483 2484 // Get the current enclosing function if it exists. If it doesn't 2485 // we can't check the target features anyhow. 2486 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2487 if (!FD) 2488 return; 2489 2490 // Grab the required features for the call. For a builtin this is listed in 2491 // the td file with the default cpu, for an always_inline function this is any 2492 // listed cpu and any listed features. 2493 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2494 std::string MissingFeature; 2495 llvm::StringMap<bool> CallerFeatureMap; 2496 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2497 if (BuiltinID) { 2498 StringRef FeatureList( 2499 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2500 // Return if the builtin doesn't have any required features. 2501 if (FeatureList.empty()) 2502 return; 2503 assert(!FeatureList.contains(' ') && "Space in feature list"); 2504 TargetFeatures TF(CallerFeatureMap); 2505 if (!TF.hasRequiredFeatures(FeatureList)) 2506 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2507 << TargetDecl->getDeclName() << FeatureList; 2508 } else if (!TargetDecl->isMultiVersion() && 2509 TargetDecl->hasAttr<TargetAttr>()) { 2510 // Get the required features for the callee. 2511 2512 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2513 ParsedTargetAttr ParsedAttr = 2514 CGM.getContext().filterFunctionTargetAttrs(TD); 2515 2516 SmallVector<StringRef, 1> ReqFeatures; 2517 llvm::StringMap<bool> CalleeFeatureMap; 2518 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2519 2520 for (const auto &F : ParsedAttr.Features) { 2521 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2522 ReqFeatures.push_back(StringRef(F).substr(1)); 2523 } 2524 2525 for (const auto &F : CalleeFeatureMap) { 2526 // Only positive features are "required". 2527 if (F.getValue()) 2528 ReqFeatures.push_back(F.getKey()); 2529 } 2530 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2531 if (!CallerFeatureMap.lookup(Feature)) { 2532 MissingFeature = Feature.str(); 2533 return false; 2534 } 2535 return true; 2536 })) 2537 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2538 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2539 } 2540 } 2541 2542 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2543 if (!CGM.getCodeGenOpts().SanitizeStats) 2544 return; 2545 2546 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2547 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2548 CGM.getSanStats().create(IRB, SSK); 2549 } 2550 2551 llvm::Value * 2552 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2553 llvm::Value *Condition = nullptr; 2554 2555 if (!RO.Conditions.Architecture.empty()) 2556 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2557 2558 if (!RO.Conditions.Features.empty()) { 2559 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2560 Condition = 2561 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2562 } 2563 return Condition; 2564 } 2565 2566 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2567 llvm::Function *Resolver, 2568 CGBuilderTy &Builder, 2569 llvm::Function *FuncToReturn, 2570 bool SupportsIFunc) { 2571 if (SupportsIFunc) { 2572 Builder.CreateRet(FuncToReturn); 2573 return; 2574 } 2575 2576 llvm::SmallVector<llvm::Value *, 10> Args; 2577 llvm::for_each(Resolver->args(), 2578 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2579 2580 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2581 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2582 2583 if (Resolver->getReturnType()->isVoidTy()) 2584 Builder.CreateRetVoid(); 2585 else 2586 Builder.CreateRet(Result); 2587 } 2588 2589 void CodeGenFunction::EmitMultiVersionResolver( 2590 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2591 assert(getContext().getTargetInfo().getTriple().isX86() && 2592 "Only implemented for x86 targets"); 2593 2594 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2595 2596 // Main function's basic block. 2597 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2598 Builder.SetInsertPoint(CurBlock); 2599 EmitX86CpuInit(); 2600 2601 for (const MultiVersionResolverOption &RO : Options) { 2602 Builder.SetInsertPoint(CurBlock); 2603 llvm::Value *Condition = FormResolverCondition(RO); 2604 2605 // The 'default' or 'generic' case. 2606 if (!Condition) { 2607 assert(&RO == Options.end() - 1 && 2608 "Default or Generic case must be last"); 2609 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2610 SupportsIFunc); 2611 return; 2612 } 2613 2614 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2615 CGBuilderTy RetBuilder(*this, RetBlock); 2616 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2617 SupportsIFunc); 2618 CurBlock = createBasicBlock("resolver_else", Resolver); 2619 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2620 } 2621 2622 // If no generic/default, emit an unreachable. 2623 Builder.SetInsertPoint(CurBlock); 2624 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2625 TrapCall->setDoesNotReturn(); 2626 TrapCall->setDoesNotThrow(); 2627 Builder.CreateUnreachable(); 2628 Builder.ClearInsertionPoint(); 2629 } 2630 2631 // Loc - where the diagnostic will point, where in the source code this 2632 // alignment has failed. 2633 // SecondaryLoc - if present (will be present if sufficiently different from 2634 // Loc), the diagnostic will additionally point a "Note:" to this location. 2635 // It should be the location where the __attribute__((assume_aligned)) 2636 // was written e.g. 2637 void CodeGenFunction::emitAlignmentAssumptionCheck( 2638 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2639 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2640 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2641 llvm::Instruction *Assumption) { 2642 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2643 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2644 llvm::Intrinsic::getDeclaration( 2645 Builder.GetInsertBlock()->getParent()->getParent(), 2646 llvm::Intrinsic::assume) && 2647 "Assumption should be a call to llvm.assume()."); 2648 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2649 "Assumption should be the last instruction of the basic block, " 2650 "since the basic block is still being generated."); 2651 2652 if (!SanOpts.has(SanitizerKind::Alignment)) 2653 return; 2654 2655 // Don't check pointers to volatile data. The behavior here is implementation- 2656 // defined. 2657 if (Ty->getPointeeType().isVolatileQualified()) 2658 return; 2659 2660 // We need to temorairly remove the assumption so we can insert the 2661 // sanitizer check before it, else the check will be dropped by optimizations. 2662 Assumption->removeFromParent(); 2663 2664 { 2665 SanitizerScope SanScope(this); 2666 2667 if (!OffsetValue) 2668 OffsetValue = Builder.getInt1(0); // no offset. 2669 2670 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2671 EmitCheckSourceLocation(SecondaryLoc), 2672 EmitCheckTypeDescriptor(Ty)}; 2673 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2674 EmitCheckValue(Alignment), 2675 EmitCheckValue(OffsetValue)}; 2676 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2677 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2678 } 2679 2680 // We are now in the (new, empty) "cont" basic block. 2681 // Reintroduce the assumption. 2682 Builder.Insert(Assumption); 2683 // FIXME: Assumption still has it's original basic block as it's Parent. 2684 } 2685 2686 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2687 if (CGDebugInfo *DI = getDebugInfo()) 2688 return DI->SourceLocToDebugLoc(Location); 2689 2690 return llvm::DebugLoc(); 2691 } 2692 2693 llvm::Value * 2694 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2695 Stmt::Likelihood LH) { 2696 switch (LH) { 2697 case Stmt::LH_None: 2698 return Cond; 2699 case Stmt::LH_Likely: 2700 case Stmt::LH_Unlikely: 2701 // Don't generate llvm.expect on -O0 as the backend won't use it for 2702 // anything. 2703 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2704 return Cond; 2705 llvm::Type *CondTy = Cond->getType(); 2706 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2707 llvm::Function *FnExpect = 2708 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2709 llvm::Value *ExpectedValueOfCond = 2710 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2711 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2712 Cond->getName() + ".expval"); 2713 } 2714 llvm_unreachable("Unknown Likelihood"); 2715 } 2716