1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!getLangOpts().OpenCL) 639 return; 640 641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 642 QualType HintQTy = A->getTypeHint(); 643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 644 bool IsSignedInteger = 645 HintQTy->isSignedIntegerType() || 646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 647 llvm::Metadata *AttrMDArgs[] = { 648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 649 CGM.getTypes().ConvertType(A->getTypeHint()))), 650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 651 llvm::IntegerType::get(Context, 32), 652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 654 } 655 656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 662 } 663 664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 665 llvm::Metadata *AttrMDArgs[] = { 666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 670 } 671 672 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 674 llvm::Metadata *AttrMDArgs[] = { 675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 676 Fn->setMetadata("intel_reqd_sub_group_size", 677 llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 } 680 681 /// Determine whether the function F ends with a return stmt. 682 static bool endsWithReturn(const Decl* F) { 683 const Stmt *Body = nullptr; 684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 685 Body = FD->getBody(); 686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 687 Body = OMD->getBody(); 688 689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 690 auto LastStmt = CS->body_rbegin(); 691 if (LastStmt != CS->body_rend()) 692 return isa<ReturnStmt>(*LastStmt); 693 } 694 return false; 695 } 696 697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 698 if (SanOpts.has(SanitizerKind::Thread)) { 699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 701 } 702 } 703 704 /// Check if the return value of this function requires sanitization. 705 bool CodeGenFunction::requiresReturnValueCheck() const { 706 return requiresReturnValueNullabilityCheck() || 707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 708 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 709 } 710 711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 715 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 716 return false; 717 718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 719 return false; 720 721 if (MD->getNumParams() == 2) { 722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 723 if (!PT || !PT->isVoidPointerType() || 724 !PT->getPointeeType().isConstQualified()) 725 return false; 726 } 727 728 return true; 729 } 730 731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 734 } 735 736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 737 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 738 getTarget().getCXXABI().isMicrosoft() && 739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 740 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 741 }); 742 } 743 744 /// Return the UBSan prologue signature for \p FD if one is available. 745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 746 const FunctionDecl *FD) { 747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 748 if (!MD->isStatic()) 749 return nullptr; 750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 751 } 752 753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 754 llvm::Function *Fn, 755 const CGFunctionInfo &FnInfo, 756 const FunctionArgList &Args, 757 SourceLocation Loc, 758 SourceLocation StartLoc) { 759 assert(!CurFn && 760 "Do not use a CodeGenFunction object for more than one function"); 761 762 const Decl *D = GD.getDecl(); 763 764 DidCallStackSave = false; 765 CurCodeDecl = D; 766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 767 if (FD && FD->usesSEHTry()) 768 CurSEHParent = GD; 769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 770 FnRetTy = RetTy; 771 CurFn = Fn; 772 CurFnInfo = &FnInfo; 773 assert(CurFn->isDeclaration() && "Function already has body?"); 774 775 // If this function is ignored for any of the enabled sanitizers, 776 // disable the sanitizer for the function. 777 do { 778 #define SANITIZER(NAME, ID) \ 779 if (SanOpts.empty()) \ 780 break; \ 781 if (SanOpts.has(SanitizerKind::ID)) \ 782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 783 SanOpts.set(SanitizerKind::ID, false); 784 785 #include "clang/Basic/Sanitizers.def" 786 #undef SANITIZER 787 } while (false); 788 789 if (D) { 790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 791 SanitizerMask no_sanitize_mask; 792 bool NoSanitizeCoverage = false; 793 794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 795 no_sanitize_mask |= Attr->getMask(); 796 // SanitizeCoverage is not handled by SanOpts. 797 if (Attr->hasCoverage()) 798 NoSanitizeCoverage = true; 799 } 800 801 // Apply the no_sanitize* attributes to SanOpts. 802 SanOpts.Mask &= ~no_sanitize_mask; 803 if (no_sanitize_mask & SanitizerKind::Address) 804 SanOpts.set(SanitizerKind::KernelAddress, false); 805 if (no_sanitize_mask & SanitizerKind::KernelAddress) 806 SanOpts.set(SanitizerKind::Address, false); 807 if (no_sanitize_mask & SanitizerKind::HWAddress) 808 SanOpts.set(SanitizerKind::KernelHWAddress, false); 809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 810 SanOpts.set(SanitizerKind::HWAddress, false); 811 812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 814 815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 817 818 // Some passes need the non-negated no_sanitize attribute. Pass them on. 819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 820 if (no_sanitize_mask & SanitizerKind::Thread) 821 Fn->addFnAttr("no_sanitize_thread"); 822 } 823 } 824 825 if (ShouldSkipSanitizerInstrumentation()) { 826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 827 } else { 828 // Apply sanitizer attributes to the function. 829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 832 SanitizerKind::KernelHWAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 834 if (SanOpts.has(SanitizerKind::MemtagStack)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 836 if (SanOpts.has(SanitizerKind::Thread)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 838 if (SanOpts.has(SanitizerKind::NumericalStability)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 } 843 if (SanOpts.has(SanitizerKind::SafeStack)) 844 Fn->addFnAttr(llvm::Attribute::SafeStack); 845 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 847 848 if (SanOpts.has(SanitizerKind::Realtime)) 849 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 850 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 851 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 852 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 853 } 854 855 // Apply fuzzing attribute to the function. 856 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 857 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 858 859 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 860 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 861 if (SanOpts.has(SanitizerKind::Thread)) { 862 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 863 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 864 if (OMD->getMethodFamily() == OMF_dealloc || 865 OMD->getMethodFamily() == OMF_initialize || 866 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 867 markAsIgnoreThreadCheckingAtRuntime(Fn); 868 } 869 } 870 } 871 872 // Ignore unrelated casts in STL allocate() since the allocator must cast 873 // from void* to T* before object initialization completes. Don't match on the 874 // namespace because not all allocators are in std:: 875 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 876 if (matchesStlAllocatorFn(D, getContext())) 877 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 878 } 879 880 // Ignore null checks in coroutine functions since the coroutines passes 881 // are not aware of how to move the extra UBSan instructions across the split 882 // coroutine boundaries. 883 if (D && SanOpts.has(SanitizerKind::Null)) 884 if (FD && FD->getBody() && 885 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 886 SanOpts.Mask &= ~SanitizerKind::Null; 887 888 // Add pointer authentication attributes. 889 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 890 if (CodeGenOpts.PointerAuth.ReturnAddresses) 891 Fn->addFnAttr("ptrauth-returns"); 892 if (CodeGenOpts.PointerAuth.FunctionPointers) 893 Fn->addFnAttr("ptrauth-calls"); 894 if (CodeGenOpts.PointerAuth.AuthTraps) 895 Fn->addFnAttr("ptrauth-auth-traps"); 896 if (CodeGenOpts.PointerAuth.IndirectGotos) 897 Fn->addFnAttr("ptrauth-indirect-gotos"); 898 899 // Apply xray attributes to the function (as a string, for now) 900 bool AlwaysXRayAttr = false; 901 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 902 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 903 XRayInstrKind::FunctionEntry) || 904 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 905 XRayInstrKind::FunctionExit)) { 906 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 907 Fn->addFnAttr("function-instrument", "xray-always"); 908 AlwaysXRayAttr = true; 909 } 910 if (XRayAttr->neverXRayInstrument()) 911 Fn->addFnAttr("function-instrument", "xray-never"); 912 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 913 if (ShouldXRayInstrumentFunction()) 914 Fn->addFnAttr("xray-log-args", 915 llvm::utostr(LogArgs->getArgumentCount())); 916 } 917 } else { 918 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 919 Fn->addFnAttr( 920 "xray-instruction-threshold", 921 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 922 } 923 924 if (ShouldXRayInstrumentFunction()) { 925 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 926 Fn->addFnAttr("xray-ignore-loops"); 927 928 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 929 XRayInstrKind::FunctionExit)) 930 Fn->addFnAttr("xray-skip-exit"); 931 932 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 933 XRayInstrKind::FunctionEntry)) 934 Fn->addFnAttr("xray-skip-entry"); 935 936 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 937 if (FuncGroups > 1) { 938 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 939 CurFn->getName().bytes_end()); 940 auto Group = crc32(FuncName) % FuncGroups; 941 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 942 !AlwaysXRayAttr) 943 Fn->addFnAttr("function-instrument", "xray-never"); 944 } 945 } 946 947 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 948 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 949 case ProfileList::Skip: 950 Fn->addFnAttr(llvm::Attribute::SkipProfile); 951 break; 952 case ProfileList::Forbid: 953 Fn->addFnAttr(llvm::Attribute::NoProfile); 954 break; 955 case ProfileList::Allow: 956 break; 957 } 958 } 959 960 unsigned Count, Offset; 961 if (const auto *Attr = 962 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 963 Count = Attr->getCount(); 964 Offset = Attr->getOffset(); 965 } else { 966 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 967 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 968 } 969 if (Count && Offset <= Count) { 970 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 971 if (Offset) 972 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 973 } 974 // Instruct that functions for COFF/CodeView targets should start with a 975 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 976 // backends as they don't need it -- instructions on these architectures are 977 // always atomically patchable at runtime. 978 if (CGM.getCodeGenOpts().HotPatch && 979 getContext().getTargetInfo().getTriple().isX86() && 980 getContext().getTargetInfo().getTriple().getEnvironment() != 981 llvm::Triple::CODE16) 982 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 983 984 // Add no-jump-tables value. 985 if (CGM.getCodeGenOpts().NoUseJumpTables) 986 Fn->addFnAttr("no-jump-tables", "true"); 987 988 // Add no-inline-line-tables value. 989 if (CGM.getCodeGenOpts().NoInlineLineTables) 990 Fn->addFnAttr("no-inline-line-tables"); 991 992 // Add profile-sample-accurate value. 993 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 994 Fn->addFnAttr("profile-sample-accurate"); 995 996 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 997 Fn->addFnAttr("use-sample-profile"); 998 999 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1000 Fn->addFnAttr("cfi-canonical-jump-table"); 1001 1002 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1003 Fn->addFnAttr(llvm::Attribute::NoProfile); 1004 1005 if (D && D->hasAttr<HybridPatchableAttr>()) 1006 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1007 1008 if (D) { 1009 // Function attributes take precedence over command line flags. 1010 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1011 switch (A->getThunkType()) { 1012 case FunctionReturnThunksAttr::Kind::Keep: 1013 break; 1014 case FunctionReturnThunksAttr::Kind::Extern: 1015 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1016 break; 1017 } 1018 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1019 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1020 } 1021 1022 if (FD && (getLangOpts().OpenCL || 1023 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1024 getLangOpts().CUDAIsDevice))) { 1025 // Add metadata for a kernel function. 1026 EmitKernelMetadata(FD, Fn); 1027 } 1028 1029 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1030 Fn->setMetadata("clspv_libclc_builtin", 1031 llvm::MDNode::get(getLLVMContext(), {})); 1032 } 1033 1034 // If we are checking function types, emit a function type signature as 1035 // prologue data. 1036 if (FD && SanOpts.has(SanitizerKind::Function)) { 1037 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1038 llvm::LLVMContext &Ctx = Fn->getContext(); 1039 llvm::MDBuilder MDB(Ctx); 1040 Fn->setMetadata( 1041 llvm::LLVMContext::MD_func_sanitize, 1042 MDB.createRTTIPointerPrologue( 1043 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1044 } 1045 } 1046 1047 // If we're checking nullability, we need to know whether we can check the 1048 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1049 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1050 auto Nullability = FnRetTy->getNullability(); 1051 if (Nullability && *Nullability == NullabilityKind::NonNull && 1052 !FnRetTy->isRecordType()) { 1053 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1054 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1055 RetValNullabilityPrecondition = 1056 llvm::ConstantInt::getTrue(getLLVMContext()); 1057 } 1058 } 1059 1060 // If we're in C++ mode and the function name is "main", it is guaranteed 1061 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1062 // used within a program"). 1063 // 1064 // OpenCL C 2.0 v2.2-11 s6.9.i: 1065 // Recursion is not supported. 1066 // 1067 // SYCL v1.2.1 s3.10: 1068 // kernels cannot include RTTI information, exception classes, 1069 // recursive code, virtual functions or make use of C++ libraries that 1070 // are not compiled for the device. 1071 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1072 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1073 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1074 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1075 1076 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1077 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1078 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1079 Builder.setDefaultConstrainedRounding(RM); 1080 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1081 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1082 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1083 RM != llvm::RoundingMode::NearestTiesToEven))) { 1084 Builder.setIsFPConstrained(true); 1085 Fn->addFnAttr(llvm::Attribute::StrictFP); 1086 } 1087 1088 // If a custom alignment is used, force realigning to this alignment on 1089 // any main function which certainly will need it. 1090 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1091 CGM.getCodeGenOpts().StackAlignment)) 1092 Fn->addFnAttr("stackrealign"); 1093 1094 // "main" doesn't need to zero out call-used registers. 1095 if (FD && FD->isMain()) 1096 Fn->removeFnAttr("zero-call-used-regs"); 1097 1098 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1099 1100 // Create a marker to make it easy to insert allocas into the entryblock 1101 // later. Don't create this with the builder, because we don't want it 1102 // folded. 1103 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1104 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1105 1106 ReturnBlock = getJumpDestInCurrentScope("return"); 1107 1108 Builder.SetInsertPoint(EntryBB); 1109 1110 // If we're checking the return value, allocate space for a pointer to a 1111 // precise source location of the checked return statement. 1112 if (requiresReturnValueCheck()) { 1113 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1114 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1115 ReturnLocation); 1116 } 1117 1118 // Emit subprogram debug descriptor. 1119 if (CGDebugInfo *DI = getDebugInfo()) { 1120 // Reconstruct the type from the argument list so that implicit parameters, 1121 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1122 // convention. 1123 DI->emitFunctionStart(GD, Loc, StartLoc, 1124 DI->getFunctionType(FD, RetTy, Args), CurFn, 1125 CurFuncIsThunk); 1126 } 1127 1128 if (ShouldInstrumentFunction()) { 1129 if (CGM.getCodeGenOpts().InstrumentFunctions) 1130 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1131 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1132 CurFn->addFnAttr("instrument-function-entry-inlined", 1133 "__cyg_profile_func_enter"); 1134 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1135 CurFn->addFnAttr("instrument-function-entry-inlined", 1136 "__cyg_profile_func_enter_bare"); 1137 } 1138 1139 // Since emitting the mcount call here impacts optimizations such as function 1140 // inlining, we just add an attribute to insert a mcount call in backend. 1141 // The attribute "counting-function" is set to mcount function name which is 1142 // architecture dependent. 1143 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1144 // Calls to fentry/mcount should not be generated if function has 1145 // the no_instrument_function attribute. 1146 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1147 if (CGM.getCodeGenOpts().CallFEntry) 1148 Fn->addFnAttr("fentry-call", "true"); 1149 else { 1150 Fn->addFnAttr("instrument-function-entry-inlined", 1151 getTarget().getMCountName()); 1152 } 1153 if (CGM.getCodeGenOpts().MNopMCount) { 1154 if (!CGM.getCodeGenOpts().CallFEntry) 1155 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1156 << "-mnop-mcount" << "-mfentry"; 1157 Fn->addFnAttr("mnop-mcount"); 1158 } 1159 1160 if (CGM.getCodeGenOpts().RecordMCount) { 1161 if (!CGM.getCodeGenOpts().CallFEntry) 1162 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1163 << "-mrecord-mcount" << "-mfentry"; 1164 Fn->addFnAttr("mrecord-mcount"); 1165 } 1166 } 1167 } 1168 1169 if (CGM.getCodeGenOpts().PackedStack) { 1170 if (getContext().getTargetInfo().getTriple().getArch() != 1171 llvm::Triple::systemz) 1172 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1173 << "-mpacked-stack"; 1174 Fn->addFnAttr("packed-stack"); 1175 } 1176 1177 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1178 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1179 Fn->addFnAttr("warn-stack-size", 1180 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1181 1182 if (RetTy->isVoidType()) { 1183 // Void type; nothing to return. 1184 ReturnValue = Address::invalid(); 1185 1186 // Count the implicit return. 1187 if (!endsWithReturn(D)) 1188 ++NumReturnExprs; 1189 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1190 // Indirect return; emit returned value directly into sret slot. 1191 // This reduces code size, and affects correctness in C++. 1192 auto AI = CurFn->arg_begin(); 1193 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1194 ++AI; 1195 ReturnValue = makeNaturalAddressForPointer( 1196 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1197 nullptr, nullptr, KnownNonNull); 1198 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1199 ReturnValuePointer = 1200 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1201 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1202 ReturnValuePointer); 1203 } 1204 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1205 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1206 // Load the sret pointer from the argument struct and return into that. 1207 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1208 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1209 --EI; 1210 llvm::Value *Addr = Builder.CreateStructGEP( 1211 CurFnInfo->getArgStruct(), &*EI, Idx); 1212 llvm::Type *Ty = 1213 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1214 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1215 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1216 ReturnValue = Address(Addr, ConvertType(RetTy), 1217 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1218 } else { 1219 ReturnValue = CreateIRTemp(RetTy, "retval"); 1220 1221 // Tell the epilog emitter to autorelease the result. We do this 1222 // now so that various specialized functions can suppress it 1223 // during their IR-generation. 1224 if (getLangOpts().ObjCAutoRefCount && 1225 !CurFnInfo->isReturnsRetained() && 1226 RetTy->isObjCRetainableType()) 1227 AutoreleaseResult = true; 1228 } 1229 1230 EmitStartEHSpec(CurCodeDecl); 1231 1232 PrologueCleanupDepth = EHStack.stable_begin(); 1233 1234 // Emit OpenMP specific initialization of the device functions. 1235 if (getLangOpts().OpenMP && CurCodeDecl) 1236 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1237 1238 if (FD && getLangOpts().HLSL) { 1239 // Handle emitting HLSL entry functions. 1240 if (FD->hasAttr<HLSLShaderAttr>()) { 1241 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1242 } 1243 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1244 } 1245 1246 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1247 1248 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1249 MD && !MD->isStatic()) { 1250 bool IsInLambda = 1251 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1252 if (MD->isImplicitObjectMemberFunction()) 1253 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1254 if (IsInLambda) { 1255 // We're in a lambda; figure out the captures. 1256 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1257 LambdaThisCaptureField); 1258 if (LambdaThisCaptureField) { 1259 // If the lambda captures the object referred to by '*this' - either by 1260 // value or by reference, make sure CXXThisValue points to the correct 1261 // object. 1262 1263 // Get the lvalue for the field (which is a copy of the enclosing object 1264 // or contains the address of the enclosing object). 1265 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1266 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1267 // If the enclosing object was captured by value, just use its 1268 // address. Sign this pointer. 1269 CXXThisValue = ThisFieldLValue.getPointer(*this); 1270 } else { 1271 // Load the lvalue pointed to by the field, since '*this' was captured 1272 // by reference. 1273 CXXThisValue = 1274 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1275 } 1276 } 1277 for (auto *FD : MD->getParent()->fields()) { 1278 if (FD->hasCapturedVLAType()) { 1279 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1280 SourceLocation()).getScalarVal(); 1281 auto VAT = FD->getCapturedVLAType(); 1282 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1283 } 1284 } 1285 } else if (MD->isImplicitObjectMemberFunction()) { 1286 // Not in a lambda; just use 'this' from the method. 1287 // FIXME: Should we generate a new load for each use of 'this'? The 1288 // fast register allocator would be happier... 1289 CXXThisValue = CXXABIThisValue; 1290 } 1291 1292 // Check the 'this' pointer once per function, if it's available. 1293 if (CXXABIThisValue) { 1294 SanitizerSet SkippedChecks; 1295 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1296 QualType ThisTy = MD->getThisType(); 1297 1298 // If this is the call operator of a lambda with no captures, it 1299 // may have a static invoker function, which may call this operator with 1300 // a null 'this' pointer. 1301 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1302 SkippedChecks.set(SanitizerKind::Null, true); 1303 1304 EmitTypeCheck( 1305 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1306 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1307 } 1308 } 1309 1310 // If any of the arguments have a variably modified type, make sure to 1311 // emit the type size, but only if the function is not naked. Naked functions 1312 // have no prolog to run this evaluation. 1313 if (!FD || !FD->hasAttr<NakedAttr>()) { 1314 for (const VarDecl *VD : Args) { 1315 // Dig out the type as written from ParmVarDecls; it's unclear whether 1316 // the standard (C99 6.9.1p10) requires this, but we're following the 1317 // precedent set by gcc. 1318 QualType Ty; 1319 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1320 Ty = PVD->getOriginalType(); 1321 else 1322 Ty = VD->getType(); 1323 1324 if (Ty->isVariablyModifiedType()) 1325 EmitVariablyModifiedType(Ty); 1326 } 1327 } 1328 // Emit a location at the end of the prologue. 1329 if (CGDebugInfo *DI = getDebugInfo()) 1330 DI->EmitLocation(Builder, StartLoc); 1331 // TODO: Do we need to handle this in two places like we do with 1332 // target-features/target-cpu? 1333 if (CurFuncDecl) 1334 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1335 LargestVectorWidth = VecWidth->getVectorWidth(); 1336 1337 if (CGM.shouldEmitConvergenceTokens()) 1338 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1339 } 1340 1341 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1342 incrementProfileCounter(Body); 1343 maybeCreateMCDCCondBitmap(); 1344 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1345 EmitCompoundStmtWithoutScope(*S); 1346 else 1347 EmitStmt(Body); 1348 } 1349 1350 /// When instrumenting to collect profile data, the counts for some blocks 1351 /// such as switch cases need to not include the fall-through counts, so 1352 /// emit a branch around the instrumentation code. When not instrumenting, 1353 /// this just calls EmitBlock(). 1354 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1355 const Stmt *S) { 1356 llvm::BasicBlock *SkipCountBB = nullptr; 1357 // Do not skip over the instrumentation when single byte coverage mode is 1358 // enabled. 1359 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1360 !llvm::EnableSingleByteCoverage) { 1361 // When instrumenting for profiling, the fallthrough to certain 1362 // statements needs to skip over the instrumentation code so that we 1363 // get an accurate count. 1364 SkipCountBB = createBasicBlock("skipcount"); 1365 EmitBranch(SkipCountBB); 1366 } 1367 EmitBlock(BB); 1368 uint64_t CurrentCount = getCurrentProfileCount(); 1369 incrementProfileCounter(S); 1370 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1371 if (SkipCountBB) 1372 EmitBlock(SkipCountBB); 1373 } 1374 1375 /// Tries to mark the given function nounwind based on the 1376 /// non-existence of any throwing calls within it. We believe this is 1377 /// lightweight enough to do at -O0. 1378 static void TryMarkNoThrow(llvm::Function *F) { 1379 // LLVM treats 'nounwind' on a function as part of the type, so we 1380 // can't do this on functions that can be overwritten. 1381 if (F->isInterposable()) return; 1382 1383 for (llvm::BasicBlock &BB : *F) 1384 for (llvm::Instruction &I : BB) 1385 if (I.mayThrow()) 1386 return; 1387 1388 F->setDoesNotThrow(); 1389 } 1390 1391 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1392 FunctionArgList &Args) { 1393 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1394 QualType ResTy = FD->getReturnType(); 1395 1396 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1397 if (MD && MD->isImplicitObjectMemberFunction()) { 1398 if (CGM.getCXXABI().HasThisReturn(GD)) 1399 ResTy = MD->getThisType(); 1400 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1401 ResTy = CGM.getContext().VoidPtrTy; 1402 CGM.getCXXABI().buildThisParam(*this, Args); 1403 } 1404 1405 // The base version of an inheriting constructor whose constructed base is a 1406 // virtual base is not passed any arguments (because it doesn't actually call 1407 // the inherited constructor). 1408 bool PassedParams = true; 1409 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1410 if (auto Inherited = CD->getInheritedConstructor()) 1411 PassedParams = 1412 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1413 1414 if (PassedParams) { 1415 for (auto *Param : FD->parameters()) { 1416 Args.push_back(Param); 1417 if (!Param->hasAttr<PassObjectSizeAttr>()) 1418 continue; 1419 1420 auto *Implicit = ImplicitParamDecl::Create( 1421 getContext(), Param->getDeclContext(), Param->getLocation(), 1422 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1423 SizeArguments[Param] = Implicit; 1424 Args.push_back(Implicit); 1425 } 1426 } 1427 1428 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1429 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1430 1431 return ResTy; 1432 } 1433 1434 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1435 const CGFunctionInfo &FnInfo) { 1436 assert(Fn && "generating code for null Function"); 1437 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1438 CurGD = GD; 1439 1440 FunctionArgList Args; 1441 QualType ResTy = BuildFunctionArgList(GD, Args); 1442 1443 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1444 1445 if (FD->isInlineBuiltinDeclaration()) { 1446 // When generating code for a builtin with an inline declaration, use a 1447 // mangled name to hold the actual body, while keeping an external 1448 // definition in case the function pointer is referenced somewhere. 1449 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1450 llvm::Module *M = Fn->getParent(); 1451 llvm::Function *Clone = M->getFunction(FDInlineName); 1452 if (!Clone) { 1453 Clone = llvm::Function::Create(Fn->getFunctionType(), 1454 llvm::GlobalValue::InternalLinkage, 1455 Fn->getAddressSpace(), FDInlineName, M); 1456 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1457 } 1458 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1459 Fn = Clone; 1460 } else { 1461 // Detect the unusual situation where an inline version is shadowed by a 1462 // non-inline version. In that case we should pick the external one 1463 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1464 // to detect that situation before we reach codegen, so do some late 1465 // replacement. 1466 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1467 PD = PD->getPreviousDecl()) { 1468 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1469 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1470 llvm::Module *M = Fn->getParent(); 1471 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1472 Clone->replaceAllUsesWith(Fn); 1473 Clone->eraseFromParent(); 1474 } 1475 break; 1476 } 1477 } 1478 } 1479 1480 // Check if we should generate debug info for this function. 1481 if (FD->hasAttr<NoDebugAttr>()) { 1482 // Clear non-distinct debug info that was possibly attached to the function 1483 // due to an earlier declaration without the nodebug attribute 1484 Fn->setSubprogram(nullptr); 1485 // Disable debug info indefinitely for this function 1486 DebugInfo = nullptr; 1487 } 1488 1489 // The function might not have a body if we're generating thunks for a 1490 // function declaration. 1491 SourceRange BodyRange; 1492 if (Stmt *Body = FD->getBody()) 1493 BodyRange = Body->getSourceRange(); 1494 else 1495 BodyRange = FD->getLocation(); 1496 CurEHLocation = BodyRange.getEnd(); 1497 1498 // Use the location of the start of the function to determine where 1499 // the function definition is located. By default use the location 1500 // of the declaration as the location for the subprogram. A function 1501 // may lack a declaration in the source code if it is created by code 1502 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1503 SourceLocation Loc = FD->getLocation(); 1504 1505 // If this is a function specialization then use the pattern body 1506 // as the location for the function. 1507 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1508 if (SpecDecl->hasBody(SpecDecl)) 1509 Loc = SpecDecl->getLocation(); 1510 1511 Stmt *Body = FD->getBody(); 1512 1513 if (Body) { 1514 // Coroutines always emit lifetime markers. 1515 if (isa<CoroutineBodyStmt>(Body)) 1516 ShouldEmitLifetimeMarkers = true; 1517 1518 // Initialize helper which will detect jumps which can cause invalid 1519 // lifetime markers. 1520 if (ShouldEmitLifetimeMarkers) 1521 Bypasses.Init(Body); 1522 } 1523 1524 // Emit the standard function prologue. 1525 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1526 1527 // Save parameters for coroutine function. 1528 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1529 llvm::append_range(FnArgs, FD->parameters()); 1530 1531 // Ensure that the function adheres to the forward progress guarantee, which 1532 // is required by certain optimizations. 1533 // In C++11 and up, the attribute will be removed if the body contains a 1534 // trivial empty loop. 1535 if (checkIfFunctionMustProgress()) 1536 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1537 1538 // Generate the body of the function. 1539 PGO.assignRegionCounters(GD, CurFn); 1540 if (isa<CXXDestructorDecl>(FD)) 1541 EmitDestructorBody(Args); 1542 else if (isa<CXXConstructorDecl>(FD)) 1543 EmitConstructorBody(Args); 1544 else if (getLangOpts().CUDA && 1545 !getLangOpts().CUDAIsDevice && 1546 FD->hasAttr<CUDAGlobalAttr>()) 1547 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1548 else if (isa<CXXMethodDecl>(FD) && 1549 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1550 // The lambda static invoker function is special, because it forwards or 1551 // clones the body of the function call operator (but is actually static). 1552 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1553 } else if (isa<CXXMethodDecl>(FD) && 1554 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1555 !FnInfo.isDelegateCall() && 1556 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1557 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1558 // If emitting a lambda with static invoker on X86 Windows, change 1559 // the call operator body. 1560 // Make sure that this is a call operator with an inalloca arg and check 1561 // for delegate call to make sure this is the original call op and not the 1562 // new forwarding function for the static invoker. 1563 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1564 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1565 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1566 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1567 // Implicit copy-assignment gets the same special treatment as implicit 1568 // copy-constructors. 1569 emitImplicitAssignmentOperatorBody(Args); 1570 } else if (Body) { 1571 EmitFunctionBody(Body); 1572 } else 1573 llvm_unreachable("no definition for emitted function"); 1574 1575 // C++11 [stmt.return]p2: 1576 // Flowing off the end of a function [...] results in undefined behavior in 1577 // a value-returning function. 1578 // C11 6.9.1p12: 1579 // If the '}' that terminates a function is reached, and the value of the 1580 // function call is used by the caller, the behavior is undefined. 1581 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1582 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1583 bool ShouldEmitUnreachable = 1584 CGM.getCodeGenOpts().StrictReturn || 1585 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1586 if (SanOpts.has(SanitizerKind::Return)) { 1587 SanitizerScope SanScope(this); 1588 llvm::Value *IsFalse = Builder.getFalse(); 1589 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1590 SanitizerHandler::MissingReturn, 1591 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1592 } else if (ShouldEmitUnreachable) { 1593 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1594 EmitTrapCall(llvm::Intrinsic::trap); 1595 } 1596 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1597 Builder.CreateUnreachable(); 1598 Builder.ClearInsertionPoint(); 1599 } 1600 } 1601 1602 // Emit the standard function epilogue. 1603 FinishFunction(BodyRange.getEnd()); 1604 1605 // If we haven't marked the function nothrow through other means, do 1606 // a quick pass now to see if we can. 1607 if (!CurFn->doesNotThrow()) 1608 TryMarkNoThrow(CurFn); 1609 } 1610 1611 /// ContainsLabel - Return true if the statement contains a label in it. If 1612 /// this statement is not executed normally, it not containing a label means 1613 /// that we can just remove the code. 1614 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1615 // Null statement, not a label! 1616 if (!S) return false; 1617 1618 // If this is a label, we have to emit the code, consider something like: 1619 // if (0) { ... foo: bar(); } goto foo; 1620 // 1621 // TODO: If anyone cared, we could track __label__'s, since we know that you 1622 // can't jump to one from outside their declared region. 1623 if (isa<LabelStmt>(S)) 1624 return true; 1625 1626 // If this is a case/default statement, and we haven't seen a switch, we have 1627 // to emit the code. 1628 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1629 return true; 1630 1631 // If this is a switch statement, we want to ignore cases below it. 1632 if (isa<SwitchStmt>(S)) 1633 IgnoreCaseStmts = true; 1634 1635 // Scan subexpressions for verboten labels. 1636 for (const Stmt *SubStmt : S->children()) 1637 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1638 return true; 1639 1640 return false; 1641 } 1642 1643 /// containsBreak - Return true if the statement contains a break out of it. 1644 /// If the statement (recursively) contains a switch or loop with a break 1645 /// inside of it, this is fine. 1646 bool CodeGenFunction::containsBreak(const Stmt *S) { 1647 // Null statement, not a label! 1648 if (!S) return false; 1649 1650 // If this is a switch or loop that defines its own break scope, then we can 1651 // include it and anything inside of it. 1652 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1653 isa<ForStmt>(S)) 1654 return false; 1655 1656 if (isa<BreakStmt>(S)) 1657 return true; 1658 1659 // Scan subexpressions for verboten breaks. 1660 for (const Stmt *SubStmt : S->children()) 1661 if (containsBreak(SubStmt)) 1662 return true; 1663 1664 return false; 1665 } 1666 1667 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1668 if (!S) return false; 1669 1670 // Some statement kinds add a scope and thus never add a decl to the current 1671 // scope. Note, this list is longer than the list of statements that might 1672 // have an unscoped decl nested within them, but this way is conservatively 1673 // correct even if more statement kinds are added. 1674 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1675 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1676 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1677 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1678 return false; 1679 1680 if (isa<DeclStmt>(S)) 1681 return true; 1682 1683 for (const Stmt *SubStmt : S->children()) 1684 if (mightAddDeclToScope(SubStmt)) 1685 return true; 1686 1687 return false; 1688 } 1689 1690 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1691 /// to a constant, or if it does but contains a label, return false. If it 1692 /// constant folds return true and set the boolean result in Result. 1693 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1694 bool &ResultBool, 1695 bool AllowLabels) { 1696 // If MC/DC is enabled, disable folding so that we can instrument all 1697 // conditions to yield complete test vectors. We still keep track of 1698 // folded conditions during region mapping and visualization. 1699 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1700 CGM.getCodeGenOpts().MCDCCoverage) 1701 return false; 1702 1703 llvm::APSInt ResultInt; 1704 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1705 return false; 1706 1707 ResultBool = ResultInt.getBoolValue(); 1708 return true; 1709 } 1710 1711 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1712 /// to a constant, or if it does but contains a label, return false. If it 1713 /// constant folds return true and set the folded value. 1714 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1715 llvm::APSInt &ResultInt, 1716 bool AllowLabels) { 1717 // FIXME: Rename and handle conversion of other evaluatable things 1718 // to bool. 1719 Expr::EvalResult Result; 1720 if (!Cond->EvaluateAsInt(Result, getContext())) 1721 return false; // Not foldable, not integer or not fully evaluatable. 1722 1723 llvm::APSInt Int = Result.Val.getInt(); 1724 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1725 return false; // Contains a label. 1726 1727 ResultInt = Int; 1728 return true; 1729 } 1730 1731 /// Strip parentheses and simplistic logical-NOT operators. 1732 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1733 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1734 if (Op->getOpcode() != UO_LNot) 1735 break; 1736 C = Op->getSubExpr(); 1737 } 1738 return C->IgnoreParens(); 1739 } 1740 1741 /// Determine whether the given condition is an instrumentable condition 1742 /// (i.e. no "&&" or "||"). 1743 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1744 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1745 return (!BOp || !BOp->isLogicalOp()); 1746 } 1747 1748 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1749 /// increments a profile counter based on the semantics of the given logical 1750 /// operator opcode. This is used to instrument branch condition coverage for 1751 /// logical operators. 1752 void CodeGenFunction::EmitBranchToCounterBlock( 1753 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1754 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1755 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1756 // If not instrumenting, just emit a branch. 1757 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1758 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1759 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1760 1761 llvm::BasicBlock *ThenBlock = nullptr; 1762 llvm::BasicBlock *ElseBlock = nullptr; 1763 llvm::BasicBlock *NextBlock = nullptr; 1764 1765 // Create the block we'll use to increment the appropriate counter. 1766 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1767 1768 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1769 // means we need to evaluate the condition and increment the counter on TRUE: 1770 // 1771 // if (Cond) 1772 // goto CounterIncrBlock; 1773 // else 1774 // goto FalseBlock; 1775 // 1776 // CounterIncrBlock: 1777 // Counter++; 1778 // goto TrueBlock; 1779 1780 if (LOp == BO_LAnd) { 1781 ThenBlock = CounterIncrBlock; 1782 ElseBlock = FalseBlock; 1783 NextBlock = TrueBlock; 1784 } 1785 1786 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1787 // we need to evaluate the condition and increment the counter on FALSE: 1788 // 1789 // if (Cond) 1790 // goto TrueBlock; 1791 // else 1792 // goto CounterIncrBlock; 1793 // 1794 // CounterIncrBlock: 1795 // Counter++; 1796 // goto FalseBlock; 1797 1798 else if (LOp == BO_LOr) { 1799 ThenBlock = TrueBlock; 1800 ElseBlock = CounterIncrBlock; 1801 NextBlock = FalseBlock; 1802 } else { 1803 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1804 } 1805 1806 // Emit Branch based on condition. 1807 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1808 1809 // Emit the block containing the counter increment(s). 1810 EmitBlock(CounterIncrBlock); 1811 1812 // Increment corresponding counter; if index not provided, use Cond as index. 1813 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1814 1815 // Go to the next block. 1816 EmitBranch(NextBlock); 1817 } 1818 1819 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1820 /// statement) to the specified blocks. Based on the condition, this might try 1821 /// to simplify the codegen of the conditional based on the branch. 1822 /// \param LH The value of the likelihood attribute on the True branch. 1823 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1824 /// ConditionalOperator (ternary) through a recursive call for the operator's 1825 /// LHS and RHS nodes. 1826 void CodeGenFunction::EmitBranchOnBoolExpr( 1827 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1828 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1829 Cond = Cond->IgnoreParens(); 1830 1831 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1832 // Handle X && Y in a condition. 1833 if (CondBOp->getOpcode() == BO_LAnd) { 1834 MCDCLogOpStack.push_back(CondBOp); 1835 1836 // If we have "1 && X", simplify the code. "0 && X" would have constant 1837 // folded if the case was simple enough. 1838 bool ConstantBool = false; 1839 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1840 ConstantBool) { 1841 // br(1 && X) -> br(X). 1842 incrementProfileCounter(CondBOp); 1843 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1844 FalseBlock, TrueCount, LH); 1845 MCDCLogOpStack.pop_back(); 1846 return; 1847 } 1848 1849 // If we have "X && 1", simplify the code to use an uncond branch. 1850 // "X && 0" would have been constant folded to 0. 1851 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1852 ConstantBool) { 1853 // br(X && 1) -> br(X). 1854 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1855 FalseBlock, TrueCount, LH, CondBOp); 1856 MCDCLogOpStack.pop_back(); 1857 return; 1858 } 1859 1860 // Emit the LHS as a conditional. If the LHS conditional is false, we 1861 // want to jump to the FalseBlock. 1862 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1863 // The counter tells us how often we evaluate RHS, and all of TrueCount 1864 // can be propagated to that branch. 1865 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1866 1867 ConditionalEvaluation eval(*this); 1868 { 1869 ApplyDebugLocation DL(*this, Cond); 1870 // Propagate the likelihood attribute like __builtin_expect 1871 // __builtin_expect(X && Y, 1) -> X and Y are likely 1872 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1873 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1874 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1875 EmitBlock(LHSTrue); 1876 } 1877 1878 incrementProfileCounter(CondBOp); 1879 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1880 1881 // Any temporaries created here are conditional. 1882 eval.begin(*this); 1883 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1884 FalseBlock, TrueCount, LH); 1885 eval.end(*this); 1886 MCDCLogOpStack.pop_back(); 1887 return; 1888 } 1889 1890 if (CondBOp->getOpcode() == BO_LOr) { 1891 MCDCLogOpStack.push_back(CondBOp); 1892 1893 // If we have "0 || X", simplify the code. "1 || X" would have constant 1894 // folded if the case was simple enough. 1895 bool ConstantBool = false; 1896 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1897 !ConstantBool) { 1898 // br(0 || X) -> br(X). 1899 incrementProfileCounter(CondBOp); 1900 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1901 FalseBlock, TrueCount, LH); 1902 MCDCLogOpStack.pop_back(); 1903 return; 1904 } 1905 1906 // If we have "X || 0", simplify the code to use an uncond branch. 1907 // "X || 1" would have been constant folded to 1. 1908 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1909 !ConstantBool) { 1910 // br(X || 0) -> br(X). 1911 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1912 FalseBlock, TrueCount, LH, CondBOp); 1913 MCDCLogOpStack.pop_back(); 1914 return; 1915 } 1916 // Emit the LHS as a conditional. If the LHS conditional is true, we 1917 // want to jump to the TrueBlock. 1918 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1919 // We have the count for entry to the RHS and for the whole expression 1920 // being true, so we can divy up True count between the short circuit and 1921 // the RHS. 1922 uint64_t LHSCount = 1923 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1924 uint64_t RHSCount = TrueCount - LHSCount; 1925 1926 ConditionalEvaluation eval(*this); 1927 { 1928 // Propagate the likelihood attribute like __builtin_expect 1929 // __builtin_expect(X || Y, 1) -> only Y is likely 1930 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1931 ApplyDebugLocation DL(*this, Cond); 1932 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1933 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1934 EmitBlock(LHSFalse); 1935 } 1936 1937 incrementProfileCounter(CondBOp); 1938 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1939 1940 // Any temporaries created here are conditional. 1941 eval.begin(*this); 1942 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1943 RHSCount, LH); 1944 1945 eval.end(*this); 1946 MCDCLogOpStack.pop_back(); 1947 return; 1948 } 1949 } 1950 1951 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1952 // br(!x, t, f) -> br(x, f, t) 1953 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1954 // LNot is taken as part of the condition for simplicity, and changing its 1955 // sense negatively impacts test vector tracking. 1956 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1957 CGM.getCodeGenOpts().MCDCCoverage && 1958 isInstrumentedCondition(Cond); 1959 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1960 // Negate the count. 1961 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1962 // The values of the enum are chosen to make this negation possible. 1963 LH = static_cast<Stmt::Likelihood>(-LH); 1964 // Negate the condition and swap the destination blocks. 1965 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1966 FalseCount, LH); 1967 } 1968 } 1969 1970 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1971 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1972 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1973 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1974 1975 // The ConditionalOperator itself has no likelihood information for its 1976 // true and false branches. This matches the behavior of __builtin_expect. 1977 ConditionalEvaluation cond(*this); 1978 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1979 getProfileCount(CondOp), Stmt::LH_None); 1980 1981 // When computing PGO branch weights, we only know the overall count for 1982 // the true block. This code is essentially doing tail duplication of the 1983 // naive code-gen, introducing new edges for which counts are not 1984 // available. Divide the counts proportionally between the LHS and RHS of 1985 // the conditional operator. 1986 uint64_t LHSScaledTrueCount = 0; 1987 if (TrueCount) { 1988 double LHSRatio = 1989 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1990 LHSScaledTrueCount = TrueCount * LHSRatio; 1991 } 1992 1993 cond.begin(*this); 1994 EmitBlock(LHSBlock); 1995 incrementProfileCounter(CondOp); 1996 { 1997 ApplyDebugLocation DL(*this, Cond); 1998 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1999 LHSScaledTrueCount, LH, CondOp); 2000 } 2001 cond.end(*this); 2002 2003 cond.begin(*this); 2004 EmitBlock(RHSBlock); 2005 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2006 TrueCount - LHSScaledTrueCount, LH, CondOp); 2007 cond.end(*this); 2008 2009 return; 2010 } 2011 2012 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2013 // Conditional operator handling can give us a throw expression as a 2014 // condition for a case like: 2015 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2016 // Fold this to: 2017 // br(c, throw x, br(y, t, f)) 2018 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2019 return; 2020 } 2021 2022 // Emit the code with the fully general case. 2023 llvm::Value *CondV; 2024 { 2025 ApplyDebugLocation DL(*this, Cond); 2026 CondV = EvaluateExprAsBool(Cond); 2027 } 2028 2029 // If not at the top of the logical operator nest, update MCDC temp with the 2030 // boolean result of the evaluated condition. 2031 if (!MCDCLogOpStack.empty()) { 2032 const Expr *MCDCBaseExpr = Cond; 2033 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2034 // expression, MC/DC tracks the result of the ternary, and this is tied to 2035 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2036 // this is the case, the ConditionalOperator expression is passed through 2037 // the ConditionalOp parameter and then used as the MCDC base expression. 2038 if (ConditionalOp) 2039 MCDCBaseExpr = ConditionalOp; 2040 2041 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2042 } 2043 2044 llvm::MDNode *Weights = nullptr; 2045 llvm::MDNode *Unpredictable = nullptr; 2046 2047 // If the branch has a condition wrapped by __builtin_unpredictable, 2048 // create metadata that specifies that the branch is unpredictable. 2049 // Don't bother if not optimizing because that metadata would not be used. 2050 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2051 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2052 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2053 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2054 llvm::MDBuilder MDHelper(getLLVMContext()); 2055 Unpredictable = MDHelper.createUnpredictable(); 2056 } 2057 } 2058 2059 // If there is a Likelihood knowledge for the cond, lower it. 2060 // Note that if not optimizing this won't emit anything. 2061 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2062 if (CondV != NewCondV) 2063 CondV = NewCondV; 2064 else { 2065 // Otherwise, lower profile counts. Note that we do this even at -O0. 2066 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2067 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2068 } 2069 2070 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2071 } 2072 2073 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2074 /// specified stmt yet. 2075 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2076 CGM.ErrorUnsupported(S, Type); 2077 } 2078 2079 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2080 /// variable-length array whose elements have a non-zero bit-pattern. 2081 /// 2082 /// \param baseType the inner-most element type of the array 2083 /// \param src - a char* pointing to the bit-pattern for a single 2084 /// base element of the array 2085 /// \param sizeInChars - the total size of the VLA, in chars 2086 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2087 Address dest, Address src, 2088 llvm::Value *sizeInChars) { 2089 CGBuilderTy &Builder = CGF.Builder; 2090 2091 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2092 llvm::Value *baseSizeInChars 2093 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2094 2095 Address begin = dest.withElementType(CGF.Int8Ty); 2096 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2097 begin.emitRawPointer(CGF), 2098 sizeInChars, "vla.end"); 2099 2100 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2101 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2102 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2103 2104 // Make a loop over the VLA. C99 guarantees that the VLA element 2105 // count must be nonzero. 2106 CGF.EmitBlock(loopBB); 2107 2108 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2109 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2110 2111 CharUnits curAlign = 2112 dest.getAlignment().alignmentOfArrayElement(baseSize); 2113 2114 // memcpy the individual element bit-pattern. 2115 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2116 /*volatile*/ false); 2117 2118 // Go to the next element. 2119 llvm::Value *next = 2120 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2121 2122 // Leave if that's the end of the VLA. 2123 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2124 Builder.CreateCondBr(done, contBB, loopBB); 2125 cur->addIncoming(next, loopBB); 2126 2127 CGF.EmitBlock(contBB); 2128 } 2129 2130 void 2131 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2132 // Ignore empty classes in C++. 2133 if (getLangOpts().CPlusPlus) { 2134 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2135 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2136 return; 2137 } 2138 } 2139 2140 if (DestPtr.getElementType() != Int8Ty) 2141 DestPtr = DestPtr.withElementType(Int8Ty); 2142 2143 // Get size and alignment info for this aggregate. 2144 CharUnits size = getContext().getTypeSizeInChars(Ty); 2145 2146 llvm::Value *SizeVal; 2147 const VariableArrayType *vla; 2148 2149 // Don't bother emitting a zero-byte memset. 2150 if (size.isZero()) { 2151 // But note that getTypeInfo returns 0 for a VLA. 2152 if (const VariableArrayType *vlaType = 2153 dyn_cast_or_null<VariableArrayType>( 2154 getContext().getAsArrayType(Ty))) { 2155 auto VlaSize = getVLASize(vlaType); 2156 SizeVal = VlaSize.NumElts; 2157 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2158 if (!eltSize.isOne()) 2159 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2160 vla = vlaType; 2161 } else { 2162 return; 2163 } 2164 } else { 2165 SizeVal = CGM.getSize(size); 2166 vla = nullptr; 2167 } 2168 2169 // If the type contains a pointer to data member we can't memset it to zero. 2170 // Instead, create a null constant and copy it to the destination. 2171 // TODO: there are other patterns besides zero that we can usefully memset, 2172 // like -1, which happens to be the pattern used by member-pointers. 2173 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2174 // For a VLA, emit a single element, then splat that over the VLA. 2175 if (vla) Ty = getContext().getBaseElementType(vla); 2176 2177 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2178 2179 llvm::GlobalVariable *NullVariable = 2180 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2181 /*isConstant=*/true, 2182 llvm::GlobalVariable::PrivateLinkage, 2183 NullConstant, Twine()); 2184 CharUnits NullAlign = DestPtr.getAlignment(); 2185 NullVariable->setAlignment(NullAlign.getAsAlign()); 2186 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2187 2188 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2189 2190 // Get and call the appropriate llvm.memcpy overload. 2191 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2192 return; 2193 } 2194 2195 // Otherwise, just memset the whole thing to zero. This is legal 2196 // because in LLVM, all default initializers (other than the ones we just 2197 // handled above) are guaranteed to have a bit pattern of all zeros. 2198 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2199 } 2200 2201 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2202 // Make sure that there is a block for the indirect goto. 2203 if (!IndirectBranch) 2204 GetIndirectGotoBlock(); 2205 2206 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2207 2208 // Make sure the indirect branch includes all of the address-taken blocks. 2209 IndirectBranch->addDestination(BB); 2210 return llvm::BlockAddress::get(CurFn, BB); 2211 } 2212 2213 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2214 // If we already made the indirect branch for indirect goto, return its block. 2215 if (IndirectBranch) return IndirectBranch->getParent(); 2216 2217 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2218 2219 // Create the PHI node that indirect gotos will add entries to. 2220 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2221 "indirect.goto.dest"); 2222 2223 // Create the indirect branch instruction. 2224 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2225 return IndirectBranch->getParent(); 2226 } 2227 2228 /// Computes the length of an array in elements, as well as the base 2229 /// element type and a properly-typed first element pointer. 2230 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2231 QualType &baseType, 2232 Address &addr) { 2233 const ArrayType *arrayType = origArrayType; 2234 2235 // If it's a VLA, we have to load the stored size. Note that 2236 // this is the size of the VLA in bytes, not its size in elements. 2237 llvm::Value *numVLAElements = nullptr; 2238 if (isa<VariableArrayType>(arrayType)) { 2239 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2240 2241 // Walk into all VLAs. This doesn't require changes to addr, 2242 // which has type T* where T is the first non-VLA element type. 2243 do { 2244 QualType elementType = arrayType->getElementType(); 2245 arrayType = getContext().getAsArrayType(elementType); 2246 2247 // If we only have VLA components, 'addr' requires no adjustment. 2248 if (!arrayType) { 2249 baseType = elementType; 2250 return numVLAElements; 2251 } 2252 } while (isa<VariableArrayType>(arrayType)); 2253 2254 // We get out here only if we find a constant array type 2255 // inside the VLA. 2256 } 2257 2258 // We have some number of constant-length arrays, so addr should 2259 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2260 // down to the first element of addr. 2261 SmallVector<llvm::Value*, 8> gepIndices; 2262 2263 // GEP down to the array type. 2264 llvm::ConstantInt *zero = Builder.getInt32(0); 2265 gepIndices.push_back(zero); 2266 2267 uint64_t countFromCLAs = 1; 2268 QualType eltType; 2269 2270 llvm::ArrayType *llvmArrayType = 2271 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2272 while (llvmArrayType) { 2273 assert(isa<ConstantArrayType>(arrayType)); 2274 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2275 llvmArrayType->getNumElements()); 2276 2277 gepIndices.push_back(zero); 2278 countFromCLAs *= llvmArrayType->getNumElements(); 2279 eltType = arrayType->getElementType(); 2280 2281 llvmArrayType = 2282 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2283 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2284 assert((!llvmArrayType || arrayType) && 2285 "LLVM and Clang types are out-of-synch"); 2286 } 2287 2288 if (arrayType) { 2289 // From this point onwards, the Clang array type has been emitted 2290 // as some other type (probably a packed struct). Compute the array 2291 // size, and just emit the 'begin' expression as a bitcast. 2292 while (arrayType) { 2293 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2294 eltType = arrayType->getElementType(); 2295 arrayType = getContext().getAsArrayType(eltType); 2296 } 2297 2298 llvm::Type *baseType = ConvertType(eltType); 2299 addr = addr.withElementType(baseType); 2300 } else { 2301 // Create the actual GEP. 2302 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2303 addr.emitRawPointer(*this), 2304 gepIndices, "array.begin"), 2305 ConvertTypeForMem(eltType), addr.getAlignment()); 2306 } 2307 2308 baseType = eltType; 2309 2310 llvm::Value *numElements 2311 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2312 2313 // If we had any VLA dimensions, factor them in. 2314 if (numVLAElements) 2315 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2316 2317 return numElements; 2318 } 2319 2320 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2321 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2322 assert(vla && "type was not a variable array type!"); 2323 return getVLASize(vla); 2324 } 2325 2326 CodeGenFunction::VlaSizePair 2327 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2328 // The number of elements so far; always size_t. 2329 llvm::Value *numElements = nullptr; 2330 2331 QualType elementType; 2332 do { 2333 elementType = type->getElementType(); 2334 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2335 assert(vlaSize && "no size for VLA!"); 2336 assert(vlaSize->getType() == SizeTy); 2337 2338 if (!numElements) { 2339 numElements = vlaSize; 2340 } else { 2341 // It's undefined behavior if this wraps around, so mark it that way. 2342 // FIXME: Teach -fsanitize=undefined to trap this. 2343 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2344 } 2345 } while ((type = getContext().getAsVariableArrayType(elementType))); 2346 2347 return { numElements, elementType }; 2348 } 2349 2350 CodeGenFunction::VlaSizePair 2351 CodeGenFunction::getVLAElements1D(QualType type) { 2352 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2353 assert(vla && "type was not a variable array type!"); 2354 return getVLAElements1D(vla); 2355 } 2356 2357 CodeGenFunction::VlaSizePair 2358 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2359 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2360 assert(VlaSize && "no size for VLA!"); 2361 assert(VlaSize->getType() == SizeTy); 2362 return { VlaSize, Vla->getElementType() }; 2363 } 2364 2365 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2366 assert(type->isVariablyModifiedType() && 2367 "Must pass variably modified type to EmitVLASizes!"); 2368 2369 EnsureInsertPoint(); 2370 2371 // We're going to walk down into the type and look for VLA 2372 // expressions. 2373 do { 2374 assert(type->isVariablyModifiedType()); 2375 2376 const Type *ty = type.getTypePtr(); 2377 switch (ty->getTypeClass()) { 2378 2379 #define TYPE(Class, Base) 2380 #define ABSTRACT_TYPE(Class, Base) 2381 #define NON_CANONICAL_TYPE(Class, Base) 2382 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2383 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2384 #include "clang/AST/TypeNodes.inc" 2385 llvm_unreachable("unexpected dependent type!"); 2386 2387 // These types are never variably-modified. 2388 case Type::Builtin: 2389 case Type::Complex: 2390 case Type::Vector: 2391 case Type::ExtVector: 2392 case Type::ConstantMatrix: 2393 case Type::Record: 2394 case Type::Enum: 2395 case Type::Using: 2396 case Type::TemplateSpecialization: 2397 case Type::ObjCTypeParam: 2398 case Type::ObjCObject: 2399 case Type::ObjCInterface: 2400 case Type::ObjCObjectPointer: 2401 case Type::BitInt: 2402 llvm_unreachable("type class is never variably-modified!"); 2403 2404 case Type::Elaborated: 2405 type = cast<ElaboratedType>(ty)->getNamedType(); 2406 break; 2407 2408 case Type::Adjusted: 2409 type = cast<AdjustedType>(ty)->getAdjustedType(); 2410 break; 2411 2412 case Type::Decayed: 2413 type = cast<DecayedType>(ty)->getPointeeType(); 2414 break; 2415 2416 case Type::Pointer: 2417 type = cast<PointerType>(ty)->getPointeeType(); 2418 break; 2419 2420 case Type::BlockPointer: 2421 type = cast<BlockPointerType>(ty)->getPointeeType(); 2422 break; 2423 2424 case Type::LValueReference: 2425 case Type::RValueReference: 2426 type = cast<ReferenceType>(ty)->getPointeeType(); 2427 break; 2428 2429 case Type::MemberPointer: 2430 type = cast<MemberPointerType>(ty)->getPointeeType(); 2431 break; 2432 2433 case Type::ArrayParameter: 2434 case Type::ConstantArray: 2435 case Type::IncompleteArray: 2436 // Losing element qualification here is fine. 2437 type = cast<ArrayType>(ty)->getElementType(); 2438 break; 2439 2440 case Type::VariableArray: { 2441 // Losing element qualification here is fine. 2442 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2443 2444 // Unknown size indication requires no size computation. 2445 // Otherwise, evaluate and record it. 2446 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2447 // It's possible that we might have emitted this already, 2448 // e.g. with a typedef and a pointer to it. 2449 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2450 if (!entry) { 2451 llvm::Value *size = EmitScalarExpr(sizeExpr); 2452 2453 // C11 6.7.6.2p5: 2454 // If the size is an expression that is not an integer constant 2455 // expression [...] each time it is evaluated it shall have a value 2456 // greater than zero. 2457 if (SanOpts.has(SanitizerKind::VLABound)) { 2458 SanitizerScope SanScope(this); 2459 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2460 clang::QualType SEType = sizeExpr->getType(); 2461 llvm::Value *CheckCondition = 2462 SEType->isSignedIntegerType() 2463 ? Builder.CreateICmpSGT(size, Zero) 2464 : Builder.CreateICmpUGT(size, Zero); 2465 llvm::Constant *StaticArgs[] = { 2466 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2467 EmitCheckTypeDescriptor(SEType)}; 2468 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2469 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2470 } 2471 2472 // Always zexting here would be wrong if it weren't 2473 // undefined behavior to have a negative bound. 2474 // FIXME: What about when size's type is larger than size_t? 2475 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2476 } 2477 } 2478 type = vat->getElementType(); 2479 break; 2480 } 2481 2482 case Type::FunctionProto: 2483 case Type::FunctionNoProto: 2484 type = cast<FunctionType>(ty)->getReturnType(); 2485 break; 2486 2487 case Type::Paren: 2488 case Type::TypeOf: 2489 case Type::UnaryTransform: 2490 case Type::Attributed: 2491 case Type::BTFTagAttributed: 2492 case Type::SubstTemplateTypeParm: 2493 case Type::MacroQualified: 2494 case Type::CountAttributed: 2495 // Keep walking after single level desugaring. 2496 type = type.getSingleStepDesugaredType(getContext()); 2497 break; 2498 2499 case Type::Typedef: 2500 case Type::Decltype: 2501 case Type::Auto: 2502 case Type::DeducedTemplateSpecialization: 2503 case Type::PackIndexing: 2504 // Stop walking: nothing to do. 2505 return; 2506 2507 case Type::TypeOfExpr: 2508 // Stop walking: emit typeof expression. 2509 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2510 return; 2511 2512 case Type::Atomic: 2513 type = cast<AtomicType>(ty)->getValueType(); 2514 break; 2515 2516 case Type::Pipe: 2517 type = cast<PipeType>(ty)->getElementType(); 2518 break; 2519 } 2520 } while (type->isVariablyModifiedType()); 2521 } 2522 2523 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2524 if (getContext().getBuiltinVaListType()->isArrayType()) 2525 return EmitPointerWithAlignment(E); 2526 return EmitLValue(E).getAddress(); 2527 } 2528 2529 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2530 return EmitLValue(E).getAddress(); 2531 } 2532 2533 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2534 const APValue &Init) { 2535 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2536 if (CGDebugInfo *Dbg = getDebugInfo()) 2537 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2538 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2539 } 2540 2541 CodeGenFunction::PeepholeProtection 2542 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2543 // At the moment, the only aggressive peephole we do in IR gen 2544 // is trunc(zext) folding, but if we add more, we can easily 2545 // extend this protection. 2546 2547 if (!rvalue.isScalar()) return PeepholeProtection(); 2548 llvm::Value *value = rvalue.getScalarVal(); 2549 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2550 2551 // Just make an extra bitcast. 2552 assert(HaveInsertPoint()); 2553 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2554 Builder.GetInsertBlock()); 2555 2556 PeepholeProtection protection; 2557 protection.Inst = inst; 2558 return protection; 2559 } 2560 2561 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2562 if (!protection.Inst) return; 2563 2564 // In theory, we could try to duplicate the peepholes now, but whatever. 2565 protection.Inst->eraseFromParent(); 2566 } 2567 2568 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2569 QualType Ty, SourceLocation Loc, 2570 SourceLocation AssumptionLoc, 2571 llvm::Value *Alignment, 2572 llvm::Value *OffsetValue) { 2573 if (Alignment->getType() != IntPtrTy) 2574 Alignment = 2575 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2576 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2577 OffsetValue = 2578 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2579 llvm::Value *TheCheck = nullptr; 2580 if (SanOpts.has(SanitizerKind::Alignment)) { 2581 llvm::Value *PtrIntValue = 2582 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2583 2584 if (OffsetValue) { 2585 bool IsOffsetZero = false; 2586 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2587 IsOffsetZero = CI->isZero(); 2588 2589 if (!IsOffsetZero) 2590 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2591 } 2592 2593 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2594 llvm::Value *Mask = 2595 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2596 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2597 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2598 } 2599 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2600 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2601 2602 if (!SanOpts.has(SanitizerKind::Alignment)) 2603 return; 2604 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2605 OffsetValue, TheCheck, Assumption); 2606 } 2607 2608 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2609 const Expr *E, 2610 SourceLocation AssumptionLoc, 2611 llvm::Value *Alignment, 2612 llvm::Value *OffsetValue) { 2613 QualType Ty = E->getType(); 2614 SourceLocation Loc = E->getExprLoc(); 2615 2616 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2617 OffsetValue); 2618 } 2619 2620 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2621 llvm::Value *AnnotatedVal, 2622 StringRef AnnotationStr, 2623 SourceLocation Location, 2624 const AnnotateAttr *Attr) { 2625 SmallVector<llvm::Value *, 5> Args = { 2626 AnnotatedVal, 2627 CGM.EmitAnnotationString(AnnotationStr), 2628 CGM.EmitAnnotationUnit(Location), 2629 CGM.EmitAnnotationLineNo(Location), 2630 }; 2631 if (Attr) 2632 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2633 return Builder.CreateCall(AnnotationFn, Args); 2634 } 2635 2636 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2637 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2638 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2639 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2640 {V->getType(), CGM.ConstGlobalsPtrTy}), 2641 V, I->getAnnotation(), D->getLocation(), I); 2642 } 2643 2644 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2645 Address Addr) { 2646 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2647 llvm::Value *V = Addr.emitRawPointer(*this); 2648 llvm::Type *VTy = V->getType(); 2649 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2650 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2651 llvm::PointerType *IntrinTy = 2652 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2653 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2654 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2655 2656 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2657 // FIXME Always emit the cast inst so we can differentiate between 2658 // annotation on the first field of a struct and annotation on the struct 2659 // itself. 2660 if (VTy != IntrinTy) 2661 V = Builder.CreateBitCast(V, IntrinTy); 2662 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2663 V = Builder.CreateBitCast(V, VTy); 2664 } 2665 2666 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2667 } 2668 2669 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2670 2671 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2672 : CGF(CGF) { 2673 assert(!CGF->IsSanitizerScope); 2674 CGF->IsSanitizerScope = true; 2675 } 2676 2677 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2678 CGF->IsSanitizerScope = false; 2679 } 2680 2681 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2682 const llvm::Twine &Name, 2683 llvm::BasicBlock::iterator InsertPt) const { 2684 LoopStack.InsertHelper(I); 2685 if (IsSanitizerScope) 2686 I->setNoSanitizeMetadata(); 2687 } 2688 2689 void CGBuilderInserter::InsertHelper( 2690 llvm::Instruction *I, const llvm::Twine &Name, 2691 llvm::BasicBlock::iterator InsertPt) const { 2692 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2693 if (CGF) 2694 CGF->InsertHelper(I, Name, InsertPt); 2695 } 2696 2697 // Emits an error if we don't have a valid set of target features for the 2698 // called function. 2699 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2700 const FunctionDecl *TargetDecl) { 2701 // SemaChecking cannot handle below x86 builtins because they have different 2702 // parameter ranges with different TargetAttribute of caller. 2703 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2704 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2705 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2706 BuiltinID == X86::BI__builtin_ia32_cmpss || 2707 BuiltinID == X86::BI__builtin_ia32_cmppd || 2708 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2709 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2710 llvm::StringMap<bool> TargetFetureMap; 2711 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2712 llvm::APSInt Result = 2713 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2714 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2715 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2716 << TargetDecl->getDeclName() << "avx"; 2717 } 2718 } 2719 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2720 } 2721 2722 // Emits an error if we don't have a valid set of target features for the 2723 // called function. 2724 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2725 const FunctionDecl *TargetDecl) { 2726 // Early exit if this is an indirect call. 2727 if (!TargetDecl) 2728 return; 2729 2730 // Get the current enclosing function if it exists. If it doesn't 2731 // we can't check the target features anyhow. 2732 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2733 if (!FD) 2734 return; 2735 2736 // Grab the required features for the call. For a builtin this is listed in 2737 // the td file with the default cpu, for an always_inline function this is any 2738 // listed cpu and any listed features. 2739 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2740 std::string MissingFeature; 2741 llvm::StringMap<bool> CallerFeatureMap; 2742 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2743 // When compiling in HipStdPar mode we have to be conservative in rejecting 2744 // target specific features in the FE, and defer the possible error to the 2745 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2746 // referenced by an accelerator executable function, we emit an error. 2747 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2748 if (BuiltinID) { 2749 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2750 if (!Builtin::evaluateRequiredTargetFeatures( 2751 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2752 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2753 << TargetDecl->getDeclName() 2754 << FeatureList; 2755 } 2756 } else if (!TargetDecl->isMultiVersion() && 2757 TargetDecl->hasAttr<TargetAttr>()) { 2758 // Get the required features for the callee. 2759 2760 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2761 ParsedTargetAttr ParsedAttr = 2762 CGM.getContext().filterFunctionTargetAttrs(TD); 2763 2764 SmallVector<StringRef, 1> ReqFeatures; 2765 llvm::StringMap<bool> CalleeFeatureMap; 2766 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2767 2768 for (const auto &F : ParsedAttr.Features) { 2769 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2770 ReqFeatures.push_back(StringRef(F).substr(1)); 2771 } 2772 2773 for (const auto &F : CalleeFeatureMap) { 2774 // Only positive features are "required". 2775 if (F.getValue()) 2776 ReqFeatures.push_back(F.getKey()); 2777 } 2778 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2779 if (!CallerFeatureMap.lookup(Feature)) { 2780 MissingFeature = Feature.str(); 2781 return false; 2782 } 2783 return true; 2784 }) && !IsHipStdPar) 2785 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2786 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2787 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2788 llvm::StringMap<bool> CalleeFeatureMap; 2789 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2790 2791 for (const auto &F : CalleeFeatureMap) { 2792 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2793 !CallerFeatureMap.find(F.getKey())->getValue()) && 2794 !IsHipStdPar) 2795 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2796 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2797 } 2798 } 2799 } 2800 2801 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2802 if (!CGM.getCodeGenOpts().SanitizeStats) 2803 return; 2804 2805 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2806 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2807 CGM.getSanStats().create(IRB, SSK); 2808 } 2809 2810 void CodeGenFunction::EmitKCFIOperandBundle( 2811 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2812 const FunctionProtoType *FP = 2813 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2814 if (FP) 2815 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2816 } 2817 2818 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2819 const MultiVersionResolverOption &RO) { 2820 llvm::SmallVector<StringRef, 8> CondFeatures; 2821 for (const StringRef &Feature : RO.Conditions.Features) 2822 CondFeatures.push_back(Feature); 2823 if (!CondFeatures.empty()) { 2824 return EmitAArch64CpuSupports(CondFeatures); 2825 } 2826 return nullptr; 2827 } 2828 2829 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2830 const MultiVersionResolverOption &RO) { 2831 llvm::Value *Condition = nullptr; 2832 2833 if (!RO.Conditions.Architecture.empty()) { 2834 StringRef Arch = RO.Conditions.Architecture; 2835 // If arch= specifies an x86-64 micro-architecture level, test the feature 2836 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2837 if (Arch.starts_with("x86-64")) 2838 Condition = EmitX86CpuSupports({Arch}); 2839 else 2840 Condition = EmitX86CpuIs(Arch); 2841 } 2842 2843 if (!RO.Conditions.Features.empty()) { 2844 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2845 Condition = 2846 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2847 } 2848 return Condition; 2849 } 2850 2851 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2852 llvm::Function *Resolver, 2853 CGBuilderTy &Builder, 2854 llvm::Function *FuncToReturn, 2855 bool SupportsIFunc) { 2856 if (SupportsIFunc) { 2857 Builder.CreateRet(FuncToReturn); 2858 return; 2859 } 2860 2861 llvm::SmallVector<llvm::Value *, 10> Args( 2862 llvm::make_pointer_range(Resolver->args())); 2863 2864 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2865 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2866 2867 if (Resolver->getReturnType()->isVoidTy()) 2868 Builder.CreateRetVoid(); 2869 else 2870 Builder.CreateRet(Result); 2871 } 2872 2873 void CodeGenFunction::EmitMultiVersionResolver( 2874 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2875 2876 llvm::Triple::ArchType ArchType = 2877 getContext().getTargetInfo().getTriple().getArch(); 2878 2879 switch (ArchType) { 2880 case llvm::Triple::x86: 2881 case llvm::Triple::x86_64: 2882 EmitX86MultiVersionResolver(Resolver, Options); 2883 return; 2884 case llvm::Triple::aarch64: 2885 EmitAArch64MultiVersionResolver(Resolver, Options); 2886 return; 2887 2888 default: 2889 assert(false && "Only implemented for x86 and AArch64 targets"); 2890 } 2891 } 2892 2893 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2894 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2895 assert(!Options.empty() && "No multiversion resolver options found"); 2896 assert(Options.back().Conditions.Features.size() == 0 && 2897 "Default case must be last"); 2898 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2899 assert(SupportsIFunc && 2900 "Multiversion resolver requires target IFUNC support"); 2901 bool AArch64CpuInitialized = false; 2902 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2903 2904 for (const MultiVersionResolverOption &RO : Options) { 2905 Builder.SetInsertPoint(CurBlock); 2906 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2907 2908 // The 'default' or 'all features enabled' case. 2909 if (!Condition) { 2910 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2911 SupportsIFunc); 2912 return; 2913 } 2914 2915 if (!AArch64CpuInitialized) { 2916 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2917 EmitAArch64CpuInit(); 2918 AArch64CpuInitialized = true; 2919 Builder.SetInsertPoint(CurBlock); 2920 } 2921 2922 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2923 CGBuilderTy RetBuilder(*this, RetBlock); 2924 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2925 SupportsIFunc); 2926 CurBlock = createBasicBlock("resolver_else", Resolver); 2927 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2928 } 2929 2930 // If no default, emit an unreachable. 2931 Builder.SetInsertPoint(CurBlock); 2932 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2933 TrapCall->setDoesNotReturn(); 2934 TrapCall->setDoesNotThrow(); 2935 Builder.CreateUnreachable(); 2936 Builder.ClearInsertionPoint(); 2937 } 2938 2939 void CodeGenFunction::EmitX86MultiVersionResolver( 2940 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2941 2942 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2943 2944 // Main function's basic block. 2945 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2946 Builder.SetInsertPoint(CurBlock); 2947 EmitX86CpuInit(); 2948 2949 for (const MultiVersionResolverOption &RO : Options) { 2950 Builder.SetInsertPoint(CurBlock); 2951 llvm::Value *Condition = FormX86ResolverCondition(RO); 2952 2953 // The 'default' or 'generic' case. 2954 if (!Condition) { 2955 assert(&RO == Options.end() - 1 && 2956 "Default or Generic case must be last"); 2957 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2958 SupportsIFunc); 2959 return; 2960 } 2961 2962 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2963 CGBuilderTy RetBuilder(*this, RetBlock); 2964 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2965 SupportsIFunc); 2966 CurBlock = createBasicBlock("resolver_else", Resolver); 2967 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2968 } 2969 2970 // If no generic/default, emit an unreachable. 2971 Builder.SetInsertPoint(CurBlock); 2972 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2973 TrapCall->setDoesNotReturn(); 2974 TrapCall->setDoesNotThrow(); 2975 Builder.CreateUnreachable(); 2976 Builder.ClearInsertionPoint(); 2977 } 2978 2979 // Loc - where the diagnostic will point, where in the source code this 2980 // alignment has failed. 2981 // SecondaryLoc - if present (will be present if sufficiently different from 2982 // Loc), the diagnostic will additionally point a "Note:" to this location. 2983 // It should be the location where the __attribute__((assume_aligned)) 2984 // was written e.g. 2985 void CodeGenFunction::emitAlignmentAssumptionCheck( 2986 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2987 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2988 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2989 llvm::Instruction *Assumption) { 2990 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 2991 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2992 llvm::Intrinsic::getDeclaration( 2993 Builder.GetInsertBlock()->getParent()->getParent(), 2994 llvm::Intrinsic::assume) && 2995 "Assumption should be a call to llvm.assume()."); 2996 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2997 "Assumption should be the last instruction of the basic block, " 2998 "since the basic block is still being generated."); 2999 3000 if (!SanOpts.has(SanitizerKind::Alignment)) 3001 return; 3002 3003 // Don't check pointers to volatile data. The behavior here is implementation- 3004 // defined. 3005 if (Ty->getPointeeType().isVolatileQualified()) 3006 return; 3007 3008 // We need to temorairly remove the assumption so we can insert the 3009 // sanitizer check before it, else the check will be dropped by optimizations. 3010 Assumption->removeFromParent(); 3011 3012 { 3013 SanitizerScope SanScope(this); 3014 3015 if (!OffsetValue) 3016 OffsetValue = Builder.getInt1(false); // no offset. 3017 3018 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3019 EmitCheckSourceLocation(SecondaryLoc), 3020 EmitCheckTypeDescriptor(Ty)}; 3021 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3022 EmitCheckValue(Alignment), 3023 EmitCheckValue(OffsetValue)}; 3024 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3025 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3026 } 3027 3028 // We are now in the (new, empty) "cont" basic block. 3029 // Reintroduce the assumption. 3030 Builder.Insert(Assumption); 3031 // FIXME: Assumption still has it's original basic block as it's Parent. 3032 } 3033 3034 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3035 if (CGDebugInfo *DI = getDebugInfo()) 3036 return DI->SourceLocToDebugLoc(Location); 3037 3038 return llvm::DebugLoc(); 3039 } 3040 3041 llvm::Value * 3042 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3043 Stmt::Likelihood LH) { 3044 switch (LH) { 3045 case Stmt::LH_None: 3046 return Cond; 3047 case Stmt::LH_Likely: 3048 case Stmt::LH_Unlikely: 3049 // Don't generate llvm.expect on -O0 as the backend won't use it for 3050 // anything. 3051 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3052 return Cond; 3053 llvm::Type *CondTy = Cond->getType(); 3054 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3055 llvm::Function *FnExpect = 3056 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3057 llvm::Value *ExpectedValueOfCond = 3058 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3059 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3060 Cond->getName() + ".expval"); 3061 } 3062 llvm_unreachable("Unknown Likelihood"); 3063 } 3064 3065 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3066 unsigned NumElementsDst, 3067 const llvm::Twine &Name) { 3068 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3069 unsigned NumElementsSrc = SrcTy->getNumElements(); 3070 if (NumElementsSrc == NumElementsDst) 3071 return SrcVec; 3072 3073 std::vector<int> ShuffleMask(NumElementsDst, -1); 3074 for (unsigned MaskIdx = 0; 3075 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3076 ShuffleMask[MaskIdx] = MaskIdx; 3077 3078 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3079 } 3080 3081 void CodeGenFunction::EmitPointerAuthOperandBundle( 3082 const CGPointerAuthInfo &PointerAuth, 3083 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3084 if (!PointerAuth.isSigned()) 3085 return; 3086 3087 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3088 3089 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3090 if (!Discriminator) 3091 Discriminator = Builder.getSize(0); 3092 3093 llvm::Value *Args[] = {Key, Discriminator}; 3094 Bundles.emplace_back("ptrauth", Args); 3095 } 3096 3097 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3098 const CGPointerAuthInfo &PointerAuth, 3099 llvm::Value *Pointer, 3100 unsigned IntrinsicID) { 3101 if (!PointerAuth) 3102 return Pointer; 3103 3104 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3105 3106 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3107 if (!Discriminator) { 3108 Discriminator = CGF.Builder.getSize(0); 3109 } 3110 3111 // Convert the pointer to intptr_t before signing it. 3112 auto OrigType = Pointer->getType(); 3113 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3114 3115 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3116 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3117 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3118 3119 // Convert back to the original type. 3120 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3121 return Pointer; 3122 } 3123 3124 llvm::Value * 3125 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3126 llvm::Value *Pointer) { 3127 if (!PointerAuth.shouldSign()) 3128 return Pointer; 3129 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3130 llvm::Intrinsic::ptrauth_sign); 3131 } 3132 3133 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3134 const CGPointerAuthInfo &PointerAuth, 3135 llvm::Value *Pointer) { 3136 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3137 3138 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3139 // Convert the pointer to intptr_t before signing it. 3140 auto OrigType = Pointer->getType(); 3141 Pointer = CGF.EmitRuntimeCall( 3142 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3143 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3144 } 3145 3146 llvm::Value * 3147 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3148 llvm::Value *Pointer) { 3149 if (PointerAuth.shouldStrip()) { 3150 return EmitStrip(*this, PointerAuth, Pointer); 3151 } 3152 if (!PointerAuth.shouldAuth()) { 3153 return Pointer; 3154 } 3155 3156 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3157 llvm::Intrinsic::ptrauth_auth); 3158 } 3159