xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision d010ec6af8162a8ae4e42d2cac5282f83db0ce07)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   if (SanOpts.has(SanitizerKind::Realtime))
849     if (FD && FD->getASTContext().hasAnyFunctionEffects())
850       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
851         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
852           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
853       }
854 
855   // Apply fuzzing attribute to the function.
856   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
857     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
858 
859   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
860   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
861   if (SanOpts.has(SanitizerKind::Thread)) {
862     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
863       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
864       if (OMD->getMethodFamily() == OMF_dealloc ||
865           OMD->getMethodFamily() == OMF_initialize ||
866           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
867         markAsIgnoreThreadCheckingAtRuntime(Fn);
868       }
869     }
870   }
871 
872   // Ignore unrelated casts in STL allocate() since the allocator must cast
873   // from void* to T* before object initialization completes. Don't match on the
874   // namespace because not all allocators are in std::
875   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
876     if (matchesStlAllocatorFn(D, getContext()))
877       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
878   }
879 
880   // Ignore null checks in coroutine functions since the coroutines passes
881   // are not aware of how to move the extra UBSan instructions across the split
882   // coroutine boundaries.
883   if (D && SanOpts.has(SanitizerKind::Null))
884     if (FD && FD->getBody() &&
885         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
886       SanOpts.Mask &= ~SanitizerKind::Null;
887 
888   // Add pointer authentication attributes.
889   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
890   if (CodeGenOpts.PointerAuth.ReturnAddresses)
891     Fn->addFnAttr("ptrauth-returns");
892   if (CodeGenOpts.PointerAuth.FunctionPointers)
893     Fn->addFnAttr("ptrauth-calls");
894   if (CodeGenOpts.PointerAuth.AuthTraps)
895     Fn->addFnAttr("ptrauth-auth-traps");
896   if (CodeGenOpts.PointerAuth.IndirectGotos)
897     Fn->addFnAttr("ptrauth-indirect-gotos");
898 
899   // Apply xray attributes to the function (as a string, for now)
900   bool AlwaysXRayAttr = false;
901   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
902     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
903             XRayInstrKind::FunctionEntry) ||
904         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
905             XRayInstrKind::FunctionExit)) {
906       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
907         Fn->addFnAttr("function-instrument", "xray-always");
908         AlwaysXRayAttr = true;
909       }
910       if (XRayAttr->neverXRayInstrument())
911         Fn->addFnAttr("function-instrument", "xray-never");
912       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
913         if (ShouldXRayInstrumentFunction())
914           Fn->addFnAttr("xray-log-args",
915                         llvm::utostr(LogArgs->getArgumentCount()));
916     }
917   } else {
918     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
919       Fn->addFnAttr(
920           "xray-instruction-threshold",
921           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
922   }
923 
924   if (ShouldXRayInstrumentFunction()) {
925     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
926       Fn->addFnAttr("xray-ignore-loops");
927 
928     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
929             XRayInstrKind::FunctionExit))
930       Fn->addFnAttr("xray-skip-exit");
931 
932     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
933             XRayInstrKind::FunctionEntry))
934       Fn->addFnAttr("xray-skip-entry");
935 
936     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
937     if (FuncGroups > 1) {
938       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
939                                               CurFn->getName().bytes_end());
940       auto Group = crc32(FuncName) % FuncGroups;
941       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
942           !AlwaysXRayAttr)
943         Fn->addFnAttr("function-instrument", "xray-never");
944     }
945   }
946 
947   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
948     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
949     case ProfileList::Skip:
950       Fn->addFnAttr(llvm::Attribute::SkipProfile);
951       break;
952     case ProfileList::Forbid:
953       Fn->addFnAttr(llvm::Attribute::NoProfile);
954       break;
955     case ProfileList::Allow:
956       break;
957     }
958   }
959 
960   unsigned Count, Offset;
961   if (const auto *Attr =
962           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
963     Count = Attr->getCount();
964     Offset = Attr->getOffset();
965   } else {
966     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
967     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
968   }
969   if (Count && Offset <= Count) {
970     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
971     if (Offset)
972       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
973   }
974   // Instruct that functions for COFF/CodeView targets should start with a
975   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
976   // backends as they don't need it -- instructions on these architectures are
977   // always atomically patchable at runtime.
978   if (CGM.getCodeGenOpts().HotPatch &&
979       getContext().getTargetInfo().getTriple().isX86() &&
980       getContext().getTargetInfo().getTriple().getEnvironment() !=
981           llvm::Triple::CODE16)
982     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
983 
984   // Add no-jump-tables value.
985   if (CGM.getCodeGenOpts().NoUseJumpTables)
986     Fn->addFnAttr("no-jump-tables", "true");
987 
988   // Add no-inline-line-tables value.
989   if (CGM.getCodeGenOpts().NoInlineLineTables)
990     Fn->addFnAttr("no-inline-line-tables");
991 
992   // Add profile-sample-accurate value.
993   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
994     Fn->addFnAttr("profile-sample-accurate");
995 
996   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
997     Fn->addFnAttr("use-sample-profile");
998 
999   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1000     Fn->addFnAttr("cfi-canonical-jump-table");
1001 
1002   if (D && D->hasAttr<NoProfileFunctionAttr>())
1003     Fn->addFnAttr(llvm::Attribute::NoProfile);
1004 
1005   if (D && D->hasAttr<HybridPatchableAttr>())
1006     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1007 
1008   if (D) {
1009     // Function attributes take precedence over command line flags.
1010     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1011       switch (A->getThunkType()) {
1012       case FunctionReturnThunksAttr::Kind::Keep:
1013         break;
1014       case FunctionReturnThunksAttr::Kind::Extern:
1015         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1016         break;
1017       }
1018     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1019       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1020   }
1021 
1022   if (FD && (getLangOpts().OpenCL ||
1023              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1024               getLangOpts().CUDAIsDevice))) {
1025     // Add metadata for a kernel function.
1026     EmitKernelMetadata(FD, Fn);
1027   }
1028 
1029   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1030     Fn->setMetadata("clspv_libclc_builtin",
1031                     llvm::MDNode::get(getLLVMContext(), {}));
1032   }
1033 
1034   // If we are checking function types, emit a function type signature as
1035   // prologue data.
1036   if (FD && SanOpts.has(SanitizerKind::Function)) {
1037     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1038       llvm::LLVMContext &Ctx = Fn->getContext();
1039       llvm::MDBuilder MDB(Ctx);
1040       Fn->setMetadata(
1041           llvm::LLVMContext::MD_func_sanitize,
1042           MDB.createRTTIPointerPrologue(
1043               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1044     }
1045   }
1046 
1047   // If we're checking nullability, we need to know whether we can check the
1048   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1049   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1050     auto Nullability = FnRetTy->getNullability();
1051     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1052         !FnRetTy->isRecordType()) {
1053       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1054             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1055         RetValNullabilityPrecondition =
1056             llvm::ConstantInt::getTrue(getLLVMContext());
1057     }
1058   }
1059 
1060   // If we're in C++ mode and the function name is "main", it is guaranteed
1061   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1062   // used within a program").
1063   //
1064   // OpenCL C 2.0 v2.2-11 s6.9.i:
1065   //     Recursion is not supported.
1066   //
1067   // SYCL v1.2.1 s3.10:
1068   //     kernels cannot include RTTI information, exception classes,
1069   //     recursive code, virtual functions or make use of C++ libraries that
1070   //     are not compiled for the device.
1071   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1072              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1073              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1074     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1075 
1076   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1077   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1078       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1079   Builder.setDefaultConstrainedRounding(RM);
1080   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1081   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1082       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1083                RM != llvm::RoundingMode::NearestTiesToEven))) {
1084     Builder.setIsFPConstrained(true);
1085     Fn->addFnAttr(llvm::Attribute::StrictFP);
1086   }
1087 
1088   // If a custom alignment is used, force realigning to this alignment on
1089   // any main function which certainly will need it.
1090   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1091              CGM.getCodeGenOpts().StackAlignment))
1092     Fn->addFnAttr("stackrealign");
1093 
1094   // "main" doesn't need to zero out call-used registers.
1095   if (FD && FD->isMain())
1096     Fn->removeFnAttr("zero-call-used-regs");
1097 
1098   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1099 
1100   // Create a marker to make it easy to insert allocas into the entryblock
1101   // later.  Don't create this with the builder, because we don't want it
1102   // folded.
1103   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1104   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1105 
1106   ReturnBlock = getJumpDestInCurrentScope("return");
1107 
1108   Builder.SetInsertPoint(EntryBB);
1109 
1110   // If we're checking the return value, allocate space for a pointer to a
1111   // precise source location of the checked return statement.
1112   if (requiresReturnValueCheck()) {
1113     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1114     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1115                         ReturnLocation);
1116   }
1117 
1118   // Emit subprogram debug descriptor.
1119   if (CGDebugInfo *DI = getDebugInfo()) {
1120     // Reconstruct the type from the argument list so that implicit parameters,
1121     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1122     // convention.
1123     DI->emitFunctionStart(GD, Loc, StartLoc,
1124                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1125                           CurFuncIsThunk);
1126   }
1127 
1128   if (ShouldInstrumentFunction()) {
1129     if (CGM.getCodeGenOpts().InstrumentFunctions)
1130       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1131     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1132       CurFn->addFnAttr("instrument-function-entry-inlined",
1133                        "__cyg_profile_func_enter");
1134     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1135       CurFn->addFnAttr("instrument-function-entry-inlined",
1136                        "__cyg_profile_func_enter_bare");
1137   }
1138 
1139   // Since emitting the mcount call here impacts optimizations such as function
1140   // inlining, we just add an attribute to insert a mcount call in backend.
1141   // The attribute "counting-function" is set to mcount function name which is
1142   // architecture dependent.
1143   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1144     // Calls to fentry/mcount should not be generated if function has
1145     // the no_instrument_function attribute.
1146     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1147       if (CGM.getCodeGenOpts().CallFEntry)
1148         Fn->addFnAttr("fentry-call", "true");
1149       else {
1150         Fn->addFnAttr("instrument-function-entry-inlined",
1151                       getTarget().getMCountName());
1152       }
1153       if (CGM.getCodeGenOpts().MNopMCount) {
1154         if (!CGM.getCodeGenOpts().CallFEntry)
1155           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1156             << "-mnop-mcount" << "-mfentry";
1157         Fn->addFnAttr("mnop-mcount");
1158       }
1159 
1160       if (CGM.getCodeGenOpts().RecordMCount) {
1161         if (!CGM.getCodeGenOpts().CallFEntry)
1162           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1163             << "-mrecord-mcount" << "-mfentry";
1164         Fn->addFnAttr("mrecord-mcount");
1165       }
1166     }
1167   }
1168 
1169   if (CGM.getCodeGenOpts().PackedStack) {
1170     if (getContext().getTargetInfo().getTriple().getArch() !=
1171         llvm::Triple::systemz)
1172       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1173         << "-mpacked-stack";
1174     Fn->addFnAttr("packed-stack");
1175   }
1176 
1177   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1178       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1179     Fn->addFnAttr("warn-stack-size",
1180                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1181 
1182   if (RetTy->isVoidType()) {
1183     // Void type; nothing to return.
1184     ReturnValue = Address::invalid();
1185 
1186     // Count the implicit return.
1187     if (!endsWithReturn(D))
1188       ++NumReturnExprs;
1189   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1190     // Indirect return; emit returned value directly into sret slot.
1191     // This reduces code size, and affects correctness in C++.
1192     auto AI = CurFn->arg_begin();
1193     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1194       ++AI;
1195     ReturnValue = makeNaturalAddressForPointer(
1196         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1197         nullptr, nullptr, KnownNonNull);
1198     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1199       ReturnValuePointer =
1200           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1201       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1202                           ReturnValuePointer);
1203     }
1204   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1205              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1206     // Load the sret pointer from the argument struct and return into that.
1207     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1208     llvm::Function::arg_iterator EI = CurFn->arg_end();
1209     --EI;
1210     llvm::Value *Addr = Builder.CreateStructGEP(
1211         CurFnInfo->getArgStruct(), &*EI, Idx);
1212     llvm::Type *Ty =
1213         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1214     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1215     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1216     ReturnValue = Address(Addr, ConvertType(RetTy),
1217                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1218   } else {
1219     ReturnValue = CreateIRTemp(RetTy, "retval");
1220 
1221     // Tell the epilog emitter to autorelease the result.  We do this
1222     // now so that various specialized functions can suppress it
1223     // during their IR-generation.
1224     if (getLangOpts().ObjCAutoRefCount &&
1225         !CurFnInfo->isReturnsRetained() &&
1226         RetTy->isObjCRetainableType())
1227       AutoreleaseResult = true;
1228   }
1229 
1230   EmitStartEHSpec(CurCodeDecl);
1231 
1232   PrologueCleanupDepth = EHStack.stable_begin();
1233 
1234   // Emit OpenMP specific initialization of the device functions.
1235   if (getLangOpts().OpenMP && CurCodeDecl)
1236     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1237 
1238   if (FD && getLangOpts().HLSL) {
1239     // Handle emitting HLSL entry functions.
1240     if (FD->hasAttr<HLSLShaderAttr>()) {
1241       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1242     }
1243     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1244   }
1245 
1246   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1247 
1248   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1249       MD && !MD->isStatic()) {
1250     bool IsInLambda =
1251         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1252     if (MD->isImplicitObjectMemberFunction())
1253       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1254     if (IsInLambda) {
1255       // We're in a lambda; figure out the captures.
1256       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1257                                         LambdaThisCaptureField);
1258       if (LambdaThisCaptureField) {
1259         // If the lambda captures the object referred to by '*this' - either by
1260         // value or by reference, make sure CXXThisValue points to the correct
1261         // object.
1262 
1263         // Get the lvalue for the field (which is a copy of the enclosing object
1264         // or contains the address of the enclosing object).
1265         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1266         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1267           // If the enclosing object was captured by value, just use its
1268           // address. Sign this pointer.
1269           CXXThisValue = ThisFieldLValue.getPointer(*this);
1270         } else {
1271           // Load the lvalue pointed to by the field, since '*this' was captured
1272           // by reference.
1273           CXXThisValue =
1274               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1275         }
1276       }
1277       for (auto *FD : MD->getParent()->fields()) {
1278         if (FD->hasCapturedVLAType()) {
1279           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1280                                            SourceLocation()).getScalarVal();
1281           auto VAT = FD->getCapturedVLAType();
1282           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1283         }
1284       }
1285     } else if (MD->isImplicitObjectMemberFunction()) {
1286       // Not in a lambda; just use 'this' from the method.
1287       // FIXME: Should we generate a new load for each use of 'this'?  The
1288       // fast register allocator would be happier...
1289       CXXThisValue = CXXABIThisValue;
1290     }
1291 
1292     // Check the 'this' pointer once per function, if it's available.
1293     if (CXXABIThisValue) {
1294       SanitizerSet SkippedChecks;
1295       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1296       QualType ThisTy = MD->getThisType();
1297 
1298       // If this is the call operator of a lambda with no captures, it
1299       // may have a static invoker function, which may call this operator with
1300       // a null 'this' pointer.
1301       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1302         SkippedChecks.set(SanitizerKind::Null, true);
1303 
1304       EmitTypeCheck(
1305           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1306           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1307     }
1308   }
1309 
1310   // If any of the arguments have a variably modified type, make sure to
1311   // emit the type size, but only if the function is not naked. Naked functions
1312   // have no prolog to run this evaluation.
1313   if (!FD || !FD->hasAttr<NakedAttr>()) {
1314     for (const VarDecl *VD : Args) {
1315       // Dig out the type as written from ParmVarDecls; it's unclear whether
1316       // the standard (C99 6.9.1p10) requires this, but we're following the
1317       // precedent set by gcc.
1318       QualType Ty;
1319       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1320         Ty = PVD->getOriginalType();
1321       else
1322         Ty = VD->getType();
1323 
1324       if (Ty->isVariablyModifiedType())
1325         EmitVariablyModifiedType(Ty);
1326     }
1327   }
1328   // Emit a location at the end of the prologue.
1329   if (CGDebugInfo *DI = getDebugInfo())
1330     DI->EmitLocation(Builder, StartLoc);
1331   // TODO: Do we need to handle this in two places like we do with
1332   // target-features/target-cpu?
1333   if (CurFuncDecl)
1334     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1335       LargestVectorWidth = VecWidth->getVectorWidth();
1336 
1337   if (CGM.shouldEmitConvergenceTokens())
1338     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1339 }
1340 
1341 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1342   incrementProfileCounter(Body);
1343   maybeCreateMCDCCondBitmap();
1344   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1345     EmitCompoundStmtWithoutScope(*S);
1346   else
1347     EmitStmt(Body);
1348 }
1349 
1350 /// When instrumenting to collect profile data, the counts for some blocks
1351 /// such as switch cases need to not include the fall-through counts, so
1352 /// emit a branch around the instrumentation code. When not instrumenting,
1353 /// this just calls EmitBlock().
1354 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1355                                                const Stmt *S) {
1356   llvm::BasicBlock *SkipCountBB = nullptr;
1357   // Do not skip over the instrumentation when single byte coverage mode is
1358   // enabled.
1359   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1360       !llvm::EnableSingleByteCoverage) {
1361     // When instrumenting for profiling, the fallthrough to certain
1362     // statements needs to skip over the instrumentation code so that we
1363     // get an accurate count.
1364     SkipCountBB = createBasicBlock("skipcount");
1365     EmitBranch(SkipCountBB);
1366   }
1367   EmitBlock(BB);
1368   uint64_t CurrentCount = getCurrentProfileCount();
1369   incrementProfileCounter(S);
1370   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1371   if (SkipCountBB)
1372     EmitBlock(SkipCountBB);
1373 }
1374 
1375 /// Tries to mark the given function nounwind based on the
1376 /// non-existence of any throwing calls within it.  We believe this is
1377 /// lightweight enough to do at -O0.
1378 static void TryMarkNoThrow(llvm::Function *F) {
1379   // LLVM treats 'nounwind' on a function as part of the type, so we
1380   // can't do this on functions that can be overwritten.
1381   if (F->isInterposable()) return;
1382 
1383   for (llvm::BasicBlock &BB : *F)
1384     for (llvm::Instruction &I : BB)
1385       if (I.mayThrow())
1386         return;
1387 
1388   F->setDoesNotThrow();
1389 }
1390 
1391 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1392                                                FunctionArgList &Args) {
1393   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1394   QualType ResTy = FD->getReturnType();
1395 
1396   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1397   if (MD && MD->isImplicitObjectMemberFunction()) {
1398     if (CGM.getCXXABI().HasThisReturn(GD))
1399       ResTy = MD->getThisType();
1400     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1401       ResTy = CGM.getContext().VoidPtrTy;
1402     CGM.getCXXABI().buildThisParam(*this, Args);
1403   }
1404 
1405   // The base version of an inheriting constructor whose constructed base is a
1406   // virtual base is not passed any arguments (because it doesn't actually call
1407   // the inherited constructor).
1408   bool PassedParams = true;
1409   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1410     if (auto Inherited = CD->getInheritedConstructor())
1411       PassedParams =
1412           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1413 
1414   if (PassedParams) {
1415     for (auto *Param : FD->parameters()) {
1416       Args.push_back(Param);
1417       if (!Param->hasAttr<PassObjectSizeAttr>())
1418         continue;
1419 
1420       auto *Implicit = ImplicitParamDecl::Create(
1421           getContext(), Param->getDeclContext(), Param->getLocation(),
1422           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1423       SizeArguments[Param] = Implicit;
1424       Args.push_back(Implicit);
1425     }
1426   }
1427 
1428   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1429     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1430 
1431   return ResTy;
1432 }
1433 
1434 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1435                                    const CGFunctionInfo &FnInfo) {
1436   assert(Fn && "generating code for null Function");
1437   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1438   CurGD = GD;
1439 
1440   FunctionArgList Args;
1441   QualType ResTy = BuildFunctionArgList(GD, Args);
1442 
1443   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1444 
1445   if (FD->isInlineBuiltinDeclaration()) {
1446     // When generating code for a builtin with an inline declaration, use a
1447     // mangled name to hold the actual body, while keeping an external
1448     // definition in case the function pointer is referenced somewhere.
1449     std::string FDInlineName = (Fn->getName() + ".inline").str();
1450     llvm::Module *M = Fn->getParent();
1451     llvm::Function *Clone = M->getFunction(FDInlineName);
1452     if (!Clone) {
1453       Clone = llvm::Function::Create(Fn->getFunctionType(),
1454                                      llvm::GlobalValue::InternalLinkage,
1455                                      Fn->getAddressSpace(), FDInlineName, M);
1456       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1457     }
1458     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1459     Fn = Clone;
1460   } else {
1461     // Detect the unusual situation where an inline version is shadowed by a
1462     // non-inline version. In that case we should pick the external one
1463     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1464     // to detect that situation before we reach codegen, so do some late
1465     // replacement.
1466     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1467          PD = PD->getPreviousDecl()) {
1468       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1469         std::string FDInlineName = (Fn->getName() + ".inline").str();
1470         llvm::Module *M = Fn->getParent();
1471         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1472           Clone->replaceAllUsesWith(Fn);
1473           Clone->eraseFromParent();
1474         }
1475         break;
1476       }
1477     }
1478   }
1479 
1480   // Check if we should generate debug info for this function.
1481   if (FD->hasAttr<NoDebugAttr>()) {
1482     // Clear non-distinct debug info that was possibly attached to the function
1483     // due to an earlier declaration without the nodebug attribute
1484     Fn->setSubprogram(nullptr);
1485     // Disable debug info indefinitely for this function
1486     DebugInfo = nullptr;
1487   }
1488 
1489   // The function might not have a body if we're generating thunks for a
1490   // function declaration.
1491   SourceRange BodyRange;
1492   if (Stmt *Body = FD->getBody())
1493     BodyRange = Body->getSourceRange();
1494   else
1495     BodyRange = FD->getLocation();
1496   CurEHLocation = BodyRange.getEnd();
1497 
1498   // Use the location of the start of the function to determine where
1499   // the function definition is located. By default use the location
1500   // of the declaration as the location for the subprogram. A function
1501   // may lack a declaration in the source code if it is created by code
1502   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1503   SourceLocation Loc = FD->getLocation();
1504 
1505   // If this is a function specialization then use the pattern body
1506   // as the location for the function.
1507   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1508     if (SpecDecl->hasBody(SpecDecl))
1509       Loc = SpecDecl->getLocation();
1510 
1511   Stmt *Body = FD->getBody();
1512 
1513   if (Body) {
1514     // Coroutines always emit lifetime markers.
1515     if (isa<CoroutineBodyStmt>(Body))
1516       ShouldEmitLifetimeMarkers = true;
1517 
1518     // Initialize helper which will detect jumps which can cause invalid
1519     // lifetime markers.
1520     if (ShouldEmitLifetimeMarkers)
1521       Bypasses.Init(Body);
1522   }
1523 
1524   // Emit the standard function prologue.
1525   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1526 
1527   // Save parameters for coroutine function.
1528   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1529     llvm::append_range(FnArgs, FD->parameters());
1530 
1531   // Ensure that the function adheres to the forward progress guarantee, which
1532   // is required by certain optimizations.
1533   // In C++11 and up, the attribute will be removed if the body contains a
1534   // trivial empty loop.
1535   if (checkIfFunctionMustProgress())
1536     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1537 
1538   // Generate the body of the function.
1539   PGO.assignRegionCounters(GD, CurFn);
1540   if (isa<CXXDestructorDecl>(FD))
1541     EmitDestructorBody(Args);
1542   else if (isa<CXXConstructorDecl>(FD))
1543     EmitConstructorBody(Args);
1544   else if (getLangOpts().CUDA &&
1545            !getLangOpts().CUDAIsDevice &&
1546            FD->hasAttr<CUDAGlobalAttr>())
1547     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1548   else if (isa<CXXMethodDecl>(FD) &&
1549            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1550     // The lambda static invoker function is special, because it forwards or
1551     // clones the body of the function call operator (but is actually static).
1552     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1553   } else if (isa<CXXMethodDecl>(FD) &&
1554              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1555              !FnInfo.isDelegateCall() &&
1556              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1557              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1558     // If emitting a lambda with static invoker on X86 Windows, change
1559     // the call operator body.
1560     // Make sure that this is a call operator with an inalloca arg and check
1561     // for delegate call to make sure this is the original call op and not the
1562     // new forwarding function for the static invoker.
1563     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1564   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1565              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1566               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1567     // Implicit copy-assignment gets the same special treatment as implicit
1568     // copy-constructors.
1569     emitImplicitAssignmentOperatorBody(Args);
1570   } else if (Body) {
1571     EmitFunctionBody(Body);
1572   } else
1573     llvm_unreachable("no definition for emitted function");
1574 
1575   // C++11 [stmt.return]p2:
1576   //   Flowing off the end of a function [...] results in undefined behavior in
1577   //   a value-returning function.
1578   // C11 6.9.1p12:
1579   //   If the '}' that terminates a function is reached, and the value of the
1580   //   function call is used by the caller, the behavior is undefined.
1581   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1582       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1583     bool ShouldEmitUnreachable =
1584         CGM.getCodeGenOpts().StrictReturn ||
1585         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1586     if (SanOpts.has(SanitizerKind::Return)) {
1587       SanitizerScope SanScope(this);
1588       llvm::Value *IsFalse = Builder.getFalse();
1589       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1590                 SanitizerHandler::MissingReturn,
1591                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1592     } else if (ShouldEmitUnreachable) {
1593       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1594         EmitTrapCall(llvm::Intrinsic::trap);
1595     }
1596     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1597       Builder.CreateUnreachable();
1598       Builder.ClearInsertionPoint();
1599     }
1600   }
1601 
1602   // Emit the standard function epilogue.
1603   FinishFunction(BodyRange.getEnd());
1604 
1605   // If we haven't marked the function nothrow through other means, do
1606   // a quick pass now to see if we can.
1607   if (!CurFn->doesNotThrow())
1608     TryMarkNoThrow(CurFn);
1609 }
1610 
1611 /// ContainsLabel - Return true if the statement contains a label in it.  If
1612 /// this statement is not executed normally, it not containing a label means
1613 /// that we can just remove the code.
1614 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1615   // Null statement, not a label!
1616   if (!S) return false;
1617 
1618   // If this is a label, we have to emit the code, consider something like:
1619   // if (0) {  ...  foo:  bar(); }  goto foo;
1620   //
1621   // TODO: If anyone cared, we could track __label__'s, since we know that you
1622   // can't jump to one from outside their declared region.
1623   if (isa<LabelStmt>(S))
1624     return true;
1625 
1626   // If this is a case/default statement, and we haven't seen a switch, we have
1627   // to emit the code.
1628   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1629     return true;
1630 
1631   // If this is a switch statement, we want to ignore cases below it.
1632   if (isa<SwitchStmt>(S))
1633     IgnoreCaseStmts = true;
1634 
1635   // Scan subexpressions for verboten labels.
1636   for (const Stmt *SubStmt : S->children())
1637     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1638       return true;
1639 
1640   return false;
1641 }
1642 
1643 /// containsBreak - Return true if the statement contains a break out of it.
1644 /// If the statement (recursively) contains a switch or loop with a break
1645 /// inside of it, this is fine.
1646 bool CodeGenFunction::containsBreak(const Stmt *S) {
1647   // Null statement, not a label!
1648   if (!S) return false;
1649 
1650   // If this is a switch or loop that defines its own break scope, then we can
1651   // include it and anything inside of it.
1652   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1653       isa<ForStmt>(S))
1654     return false;
1655 
1656   if (isa<BreakStmt>(S))
1657     return true;
1658 
1659   // Scan subexpressions for verboten breaks.
1660   for (const Stmt *SubStmt : S->children())
1661     if (containsBreak(SubStmt))
1662       return true;
1663 
1664   return false;
1665 }
1666 
1667 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1668   if (!S) return false;
1669 
1670   // Some statement kinds add a scope and thus never add a decl to the current
1671   // scope. Note, this list is longer than the list of statements that might
1672   // have an unscoped decl nested within them, but this way is conservatively
1673   // correct even if more statement kinds are added.
1674   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1675       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1676       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1677       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1678     return false;
1679 
1680   if (isa<DeclStmt>(S))
1681     return true;
1682 
1683   for (const Stmt *SubStmt : S->children())
1684     if (mightAddDeclToScope(SubStmt))
1685       return true;
1686 
1687   return false;
1688 }
1689 
1690 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1691 /// to a constant, or if it does but contains a label, return false.  If it
1692 /// constant folds return true and set the boolean result in Result.
1693 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1694                                                    bool &ResultBool,
1695                                                    bool AllowLabels) {
1696   // If MC/DC is enabled, disable folding so that we can instrument all
1697   // conditions to yield complete test vectors. We still keep track of
1698   // folded conditions during region mapping and visualization.
1699   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1700       CGM.getCodeGenOpts().MCDCCoverage)
1701     return false;
1702 
1703   llvm::APSInt ResultInt;
1704   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1705     return false;
1706 
1707   ResultBool = ResultInt.getBoolValue();
1708   return true;
1709 }
1710 
1711 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1712 /// to a constant, or if it does but contains a label, return false.  If it
1713 /// constant folds return true and set the folded value.
1714 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1715                                                    llvm::APSInt &ResultInt,
1716                                                    bool AllowLabels) {
1717   // FIXME: Rename and handle conversion of other evaluatable things
1718   // to bool.
1719   Expr::EvalResult Result;
1720   if (!Cond->EvaluateAsInt(Result, getContext()))
1721     return false;  // Not foldable, not integer or not fully evaluatable.
1722 
1723   llvm::APSInt Int = Result.Val.getInt();
1724   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1725     return false;  // Contains a label.
1726 
1727   ResultInt = Int;
1728   return true;
1729 }
1730 
1731 /// Strip parentheses and simplistic logical-NOT operators.
1732 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1733   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1734     if (Op->getOpcode() != UO_LNot)
1735       break;
1736     C = Op->getSubExpr();
1737   }
1738   return C->IgnoreParens();
1739 }
1740 
1741 /// Determine whether the given condition is an instrumentable condition
1742 /// (i.e. no "&&" or "||").
1743 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1744   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1745   return (!BOp || !BOp->isLogicalOp());
1746 }
1747 
1748 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1749 /// increments a profile counter based on the semantics of the given logical
1750 /// operator opcode.  This is used to instrument branch condition coverage for
1751 /// logical operators.
1752 void CodeGenFunction::EmitBranchToCounterBlock(
1753     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1754     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1755     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1756   // If not instrumenting, just emit a branch.
1757   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1758   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1759     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1760 
1761   llvm::BasicBlock *ThenBlock = nullptr;
1762   llvm::BasicBlock *ElseBlock = nullptr;
1763   llvm::BasicBlock *NextBlock = nullptr;
1764 
1765   // Create the block we'll use to increment the appropriate counter.
1766   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1767 
1768   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1769   // means we need to evaluate the condition and increment the counter on TRUE:
1770   //
1771   // if (Cond)
1772   //   goto CounterIncrBlock;
1773   // else
1774   //   goto FalseBlock;
1775   //
1776   // CounterIncrBlock:
1777   //   Counter++;
1778   //   goto TrueBlock;
1779 
1780   if (LOp == BO_LAnd) {
1781     ThenBlock = CounterIncrBlock;
1782     ElseBlock = FalseBlock;
1783     NextBlock = TrueBlock;
1784   }
1785 
1786   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1787   // we need to evaluate the condition and increment the counter on FALSE:
1788   //
1789   // if (Cond)
1790   //   goto TrueBlock;
1791   // else
1792   //   goto CounterIncrBlock;
1793   //
1794   // CounterIncrBlock:
1795   //   Counter++;
1796   //   goto FalseBlock;
1797 
1798   else if (LOp == BO_LOr) {
1799     ThenBlock = TrueBlock;
1800     ElseBlock = CounterIncrBlock;
1801     NextBlock = FalseBlock;
1802   } else {
1803     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1804   }
1805 
1806   // Emit Branch based on condition.
1807   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1808 
1809   // Emit the block containing the counter increment(s).
1810   EmitBlock(CounterIncrBlock);
1811 
1812   // Increment corresponding counter; if index not provided, use Cond as index.
1813   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1814 
1815   // Go to the next block.
1816   EmitBranch(NextBlock);
1817 }
1818 
1819 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1820 /// statement) to the specified blocks.  Based on the condition, this might try
1821 /// to simplify the codegen of the conditional based on the branch.
1822 /// \param LH The value of the likelihood attribute on the True branch.
1823 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1824 /// ConditionalOperator (ternary) through a recursive call for the operator's
1825 /// LHS and RHS nodes.
1826 void CodeGenFunction::EmitBranchOnBoolExpr(
1827     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1828     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1829   Cond = Cond->IgnoreParens();
1830 
1831   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1832     // Handle X && Y in a condition.
1833     if (CondBOp->getOpcode() == BO_LAnd) {
1834       MCDCLogOpStack.push_back(CondBOp);
1835 
1836       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1837       // folded if the case was simple enough.
1838       bool ConstantBool = false;
1839       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1840           ConstantBool) {
1841         // br(1 && X) -> br(X).
1842         incrementProfileCounter(CondBOp);
1843         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1844                                  FalseBlock, TrueCount, LH);
1845         MCDCLogOpStack.pop_back();
1846         return;
1847       }
1848 
1849       // If we have "X && 1", simplify the code to use an uncond branch.
1850       // "X && 0" would have been constant folded to 0.
1851       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1852           ConstantBool) {
1853         // br(X && 1) -> br(X).
1854         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1855                                  FalseBlock, TrueCount, LH, CondBOp);
1856         MCDCLogOpStack.pop_back();
1857         return;
1858       }
1859 
1860       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1861       // want to jump to the FalseBlock.
1862       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1863       // The counter tells us how often we evaluate RHS, and all of TrueCount
1864       // can be propagated to that branch.
1865       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1866 
1867       ConditionalEvaluation eval(*this);
1868       {
1869         ApplyDebugLocation DL(*this, Cond);
1870         // Propagate the likelihood attribute like __builtin_expect
1871         // __builtin_expect(X && Y, 1) -> X and Y are likely
1872         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1873         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1874                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1875         EmitBlock(LHSTrue);
1876       }
1877 
1878       incrementProfileCounter(CondBOp);
1879       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1880 
1881       // Any temporaries created here are conditional.
1882       eval.begin(*this);
1883       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1884                                FalseBlock, TrueCount, LH);
1885       eval.end(*this);
1886       MCDCLogOpStack.pop_back();
1887       return;
1888     }
1889 
1890     if (CondBOp->getOpcode() == BO_LOr) {
1891       MCDCLogOpStack.push_back(CondBOp);
1892 
1893       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1894       // folded if the case was simple enough.
1895       bool ConstantBool = false;
1896       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1897           !ConstantBool) {
1898         // br(0 || X) -> br(X).
1899         incrementProfileCounter(CondBOp);
1900         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1901                                  FalseBlock, TrueCount, LH);
1902         MCDCLogOpStack.pop_back();
1903         return;
1904       }
1905 
1906       // If we have "X || 0", simplify the code to use an uncond branch.
1907       // "X || 1" would have been constant folded to 1.
1908       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1909           !ConstantBool) {
1910         // br(X || 0) -> br(X).
1911         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1912                                  FalseBlock, TrueCount, LH, CondBOp);
1913         MCDCLogOpStack.pop_back();
1914         return;
1915       }
1916       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1917       // want to jump to the TrueBlock.
1918       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1919       // We have the count for entry to the RHS and for the whole expression
1920       // being true, so we can divy up True count between the short circuit and
1921       // the RHS.
1922       uint64_t LHSCount =
1923           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1924       uint64_t RHSCount = TrueCount - LHSCount;
1925 
1926       ConditionalEvaluation eval(*this);
1927       {
1928         // Propagate the likelihood attribute like __builtin_expect
1929         // __builtin_expect(X || Y, 1) -> only Y is likely
1930         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1931         ApplyDebugLocation DL(*this, Cond);
1932         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1933                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1934         EmitBlock(LHSFalse);
1935       }
1936 
1937       incrementProfileCounter(CondBOp);
1938       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1939 
1940       // Any temporaries created here are conditional.
1941       eval.begin(*this);
1942       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1943                                RHSCount, LH);
1944 
1945       eval.end(*this);
1946       MCDCLogOpStack.pop_back();
1947       return;
1948     }
1949   }
1950 
1951   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1952     // br(!x, t, f) -> br(x, f, t)
1953     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1954     // LNot is taken as part of the condition for simplicity, and changing its
1955     // sense negatively impacts test vector tracking.
1956     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1957                          CGM.getCodeGenOpts().MCDCCoverage &&
1958                          isInstrumentedCondition(Cond);
1959     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1960       // Negate the count.
1961       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1962       // The values of the enum are chosen to make this negation possible.
1963       LH = static_cast<Stmt::Likelihood>(-LH);
1964       // Negate the condition and swap the destination blocks.
1965       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1966                                   FalseCount, LH);
1967     }
1968   }
1969 
1970   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1971     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1972     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1973     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1974 
1975     // The ConditionalOperator itself has no likelihood information for its
1976     // true and false branches. This matches the behavior of __builtin_expect.
1977     ConditionalEvaluation cond(*this);
1978     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1979                          getProfileCount(CondOp), Stmt::LH_None);
1980 
1981     // When computing PGO branch weights, we only know the overall count for
1982     // the true block. This code is essentially doing tail duplication of the
1983     // naive code-gen, introducing new edges for which counts are not
1984     // available. Divide the counts proportionally between the LHS and RHS of
1985     // the conditional operator.
1986     uint64_t LHSScaledTrueCount = 0;
1987     if (TrueCount) {
1988       double LHSRatio =
1989           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1990       LHSScaledTrueCount = TrueCount * LHSRatio;
1991     }
1992 
1993     cond.begin(*this);
1994     EmitBlock(LHSBlock);
1995     incrementProfileCounter(CondOp);
1996     {
1997       ApplyDebugLocation DL(*this, Cond);
1998       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1999                            LHSScaledTrueCount, LH, CondOp);
2000     }
2001     cond.end(*this);
2002 
2003     cond.begin(*this);
2004     EmitBlock(RHSBlock);
2005     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2006                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2007     cond.end(*this);
2008 
2009     return;
2010   }
2011 
2012   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2013     // Conditional operator handling can give us a throw expression as a
2014     // condition for a case like:
2015     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2016     // Fold this to:
2017     //   br(c, throw x, br(y, t, f))
2018     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2019     return;
2020   }
2021 
2022   // Emit the code with the fully general case.
2023   llvm::Value *CondV;
2024   {
2025     ApplyDebugLocation DL(*this, Cond);
2026     CondV = EvaluateExprAsBool(Cond);
2027   }
2028 
2029   // If not at the top of the logical operator nest, update MCDC temp with the
2030   // boolean result of the evaluated condition.
2031   if (!MCDCLogOpStack.empty()) {
2032     const Expr *MCDCBaseExpr = Cond;
2033     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2034     // expression, MC/DC tracks the result of the ternary, and this is tied to
2035     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2036     // this is the case, the ConditionalOperator expression is passed through
2037     // the ConditionalOp parameter and then used as the MCDC base expression.
2038     if (ConditionalOp)
2039       MCDCBaseExpr = ConditionalOp;
2040 
2041     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2042   }
2043 
2044   llvm::MDNode *Weights = nullptr;
2045   llvm::MDNode *Unpredictable = nullptr;
2046 
2047   // If the branch has a condition wrapped by __builtin_unpredictable,
2048   // create metadata that specifies that the branch is unpredictable.
2049   // Don't bother if not optimizing because that metadata would not be used.
2050   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2051   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2052     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2053     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2054       llvm::MDBuilder MDHelper(getLLVMContext());
2055       Unpredictable = MDHelper.createUnpredictable();
2056     }
2057   }
2058 
2059   // If there is a Likelihood knowledge for the cond, lower it.
2060   // Note that if not optimizing this won't emit anything.
2061   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2062   if (CondV != NewCondV)
2063     CondV = NewCondV;
2064   else {
2065     // Otherwise, lower profile counts. Note that we do this even at -O0.
2066     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2067     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2068   }
2069 
2070   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2071 }
2072 
2073 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2074 /// specified stmt yet.
2075 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2076   CGM.ErrorUnsupported(S, Type);
2077 }
2078 
2079 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2080 /// variable-length array whose elements have a non-zero bit-pattern.
2081 ///
2082 /// \param baseType the inner-most element type of the array
2083 /// \param src - a char* pointing to the bit-pattern for a single
2084 /// base element of the array
2085 /// \param sizeInChars - the total size of the VLA, in chars
2086 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2087                                Address dest, Address src,
2088                                llvm::Value *sizeInChars) {
2089   CGBuilderTy &Builder = CGF.Builder;
2090 
2091   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2092   llvm::Value *baseSizeInChars
2093     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2094 
2095   Address begin = dest.withElementType(CGF.Int8Ty);
2096   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2097                                                begin.emitRawPointer(CGF),
2098                                                sizeInChars, "vla.end");
2099 
2100   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2101   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2102   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2103 
2104   // Make a loop over the VLA.  C99 guarantees that the VLA element
2105   // count must be nonzero.
2106   CGF.EmitBlock(loopBB);
2107 
2108   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2109   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2110 
2111   CharUnits curAlign =
2112     dest.getAlignment().alignmentOfArrayElement(baseSize);
2113 
2114   // memcpy the individual element bit-pattern.
2115   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2116                        /*volatile*/ false);
2117 
2118   // Go to the next element.
2119   llvm::Value *next =
2120     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2121 
2122   // Leave if that's the end of the VLA.
2123   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2124   Builder.CreateCondBr(done, contBB, loopBB);
2125   cur->addIncoming(next, loopBB);
2126 
2127   CGF.EmitBlock(contBB);
2128 }
2129 
2130 void
2131 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2132   // Ignore empty classes in C++.
2133   if (getLangOpts().CPlusPlus) {
2134     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2135       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2136         return;
2137     }
2138   }
2139 
2140   if (DestPtr.getElementType() != Int8Ty)
2141     DestPtr = DestPtr.withElementType(Int8Ty);
2142 
2143   // Get size and alignment info for this aggregate.
2144   CharUnits size = getContext().getTypeSizeInChars(Ty);
2145 
2146   llvm::Value *SizeVal;
2147   const VariableArrayType *vla;
2148 
2149   // Don't bother emitting a zero-byte memset.
2150   if (size.isZero()) {
2151     // But note that getTypeInfo returns 0 for a VLA.
2152     if (const VariableArrayType *vlaType =
2153           dyn_cast_or_null<VariableArrayType>(
2154                                           getContext().getAsArrayType(Ty))) {
2155       auto VlaSize = getVLASize(vlaType);
2156       SizeVal = VlaSize.NumElts;
2157       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2158       if (!eltSize.isOne())
2159         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2160       vla = vlaType;
2161     } else {
2162       return;
2163     }
2164   } else {
2165     SizeVal = CGM.getSize(size);
2166     vla = nullptr;
2167   }
2168 
2169   // If the type contains a pointer to data member we can't memset it to zero.
2170   // Instead, create a null constant and copy it to the destination.
2171   // TODO: there are other patterns besides zero that we can usefully memset,
2172   // like -1, which happens to be the pattern used by member-pointers.
2173   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2174     // For a VLA, emit a single element, then splat that over the VLA.
2175     if (vla) Ty = getContext().getBaseElementType(vla);
2176 
2177     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2178 
2179     llvm::GlobalVariable *NullVariable =
2180       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2181                                /*isConstant=*/true,
2182                                llvm::GlobalVariable::PrivateLinkage,
2183                                NullConstant, Twine());
2184     CharUnits NullAlign = DestPtr.getAlignment();
2185     NullVariable->setAlignment(NullAlign.getAsAlign());
2186     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2187 
2188     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2189 
2190     // Get and call the appropriate llvm.memcpy overload.
2191     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2192     return;
2193   }
2194 
2195   // Otherwise, just memset the whole thing to zero.  This is legal
2196   // because in LLVM, all default initializers (other than the ones we just
2197   // handled above) are guaranteed to have a bit pattern of all zeros.
2198   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2199 }
2200 
2201 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2202   // Make sure that there is a block for the indirect goto.
2203   if (!IndirectBranch)
2204     GetIndirectGotoBlock();
2205 
2206   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2207 
2208   // Make sure the indirect branch includes all of the address-taken blocks.
2209   IndirectBranch->addDestination(BB);
2210   return llvm::BlockAddress::get(CurFn, BB);
2211 }
2212 
2213 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2214   // If we already made the indirect branch for indirect goto, return its block.
2215   if (IndirectBranch) return IndirectBranch->getParent();
2216 
2217   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2218 
2219   // Create the PHI node that indirect gotos will add entries to.
2220   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2221                                               "indirect.goto.dest");
2222 
2223   // Create the indirect branch instruction.
2224   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2225   return IndirectBranch->getParent();
2226 }
2227 
2228 /// Computes the length of an array in elements, as well as the base
2229 /// element type and a properly-typed first element pointer.
2230 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2231                                               QualType &baseType,
2232                                               Address &addr) {
2233   const ArrayType *arrayType = origArrayType;
2234 
2235   // If it's a VLA, we have to load the stored size.  Note that
2236   // this is the size of the VLA in bytes, not its size in elements.
2237   llvm::Value *numVLAElements = nullptr;
2238   if (isa<VariableArrayType>(arrayType)) {
2239     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2240 
2241     // Walk into all VLAs.  This doesn't require changes to addr,
2242     // which has type T* where T is the first non-VLA element type.
2243     do {
2244       QualType elementType = arrayType->getElementType();
2245       arrayType = getContext().getAsArrayType(elementType);
2246 
2247       // If we only have VLA components, 'addr' requires no adjustment.
2248       if (!arrayType) {
2249         baseType = elementType;
2250         return numVLAElements;
2251       }
2252     } while (isa<VariableArrayType>(arrayType));
2253 
2254     // We get out here only if we find a constant array type
2255     // inside the VLA.
2256   }
2257 
2258   // We have some number of constant-length arrays, so addr should
2259   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2260   // down to the first element of addr.
2261   SmallVector<llvm::Value*, 8> gepIndices;
2262 
2263   // GEP down to the array type.
2264   llvm::ConstantInt *zero = Builder.getInt32(0);
2265   gepIndices.push_back(zero);
2266 
2267   uint64_t countFromCLAs = 1;
2268   QualType eltType;
2269 
2270   llvm::ArrayType *llvmArrayType =
2271     dyn_cast<llvm::ArrayType>(addr.getElementType());
2272   while (llvmArrayType) {
2273     assert(isa<ConstantArrayType>(arrayType));
2274     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2275            llvmArrayType->getNumElements());
2276 
2277     gepIndices.push_back(zero);
2278     countFromCLAs *= llvmArrayType->getNumElements();
2279     eltType = arrayType->getElementType();
2280 
2281     llvmArrayType =
2282       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2283     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2284     assert((!llvmArrayType || arrayType) &&
2285            "LLVM and Clang types are out-of-synch");
2286   }
2287 
2288   if (arrayType) {
2289     // From this point onwards, the Clang array type has been emitted
2290     // as some other type (probably a packed struct). Compute the array
2291     // size, and just emit the 'begin' expression as a bitcast.
2292     while (arrayType) {
2293       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2294       eltType = arrayType->getElementType();
2295       arrayType = getContext().getAsArrayType(eltType);
2296     }
2297 
2298     llvm::Type *baseType = ConvertType(eltType);
2299     addr = addr.withElementType(baseType);
2300   } else {
2301     // Create the actual GEP.
2302     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2303                                              addr.emitRawPointer(*this),
2304                                              gepIndices, "array.begin"),
2305                    ConvertTypeForMem(eltType), addr.getAlignment());
2306   }
2307 
2308   baseType = eltType;
2309 
2310   llvm::Value *numElements
2311     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2312 
2313   // If we had any VLA dimensions, factor them in.
2314   if (numVLAElements)
2315     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2316 
2317   return numElements;
2318 }
2319 
2320 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2321   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2322   assert(vla && "type was not a variable array type!");
2323   return getVLASize(vla);
2324 }
2325 
2326 CodeGenFunction::VlaSizePair
2327 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2328   // The number of elements so far; always size_t.
2329   llvm::Value *numElements = nullptr;
2330 
2331   QualType elementType;
2332   do {
2333     elementType = type->getElementType();
2334     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2335     assert(vlaSize && "no size for VLA!");
2336     assert(vlaSize->getType() == SizeTy);
2337 
2338     if (!numElements) {
2339       numElements = vlaSize;
2340     } else {
2341       // It's undefined behavior if this wraps around, so mark it that way.
2342       // FIXME: Teach -fsanitize=undefined to trap this.
2343       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2344     }
2345   } while ((type = getContext().getAsVariableArrayType(elementType)));
2346 
2347   return { numElements, elementType };
2348 }
2349 
2350 CodeGenFunction::VlaSizePair
2351 CodeGenFunction::getVLAElements1D(QualType type) {
2352   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2353   assert(vla && "type was not a variable array type!");
2354   return getVLAElements1D(vla);
2355 }
2356 
2357 CodeGenFunction::VlaSizePair
2358 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2359   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2360   assert(VlaSize && "no size for VLA!");
2361   assert(VlaSize->getType() == SizeTy);
2362   return { VlaSize, Vla->getElementType() };
2363 }
2364 
2365 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2366   assert(type->isVariablyModifiedType() &&
2367          "Must pass variably modified type to EmitVLASizes!");
2368 
2369   EnsureInsertPoint();
2370 
2371   // We're going to walk down into the type and look for VLA
2372   // expressions.
2373   do {
2374     assert(type->isVariablyModifiedType());
2375 
2376     const Type *ty = type.getTypePtr();
2377     switch (ty->getTypeClass()) {
2378 
2379 #define TYPE(Class, Base)
2380 #define ABSTRACT_TYPE(Class, Base)
2381 #define NON_CANONICAL_TYPE(Class, Base)
2382 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2383 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2384 #include "clang/AST/TypeNodes.inc"
2385       llvm_unreachable("unexpected dependent type!");
2386 
2387     // These types are never variably-modified.
2388     case Type::Builtin:
2389     case Type::Complex:
2390     case Type::Vector:
2391     case Type::ExtVector:
2392     case Type::ConstantMatrix:
2393     case Type::Record:
2394     case Type::Enum:
2395     case Type::Using:
2396     case Type::TemplateSpecialization:
2397     case Type::ObjCTypeParam:
2398     case Type::ObjCObject:
2399     case Type::ObjCInterface:
2400     case Type::ObjCObjectPointer:
2401     case Type::BitInt:
2402       llvm_unreachable("type class is never variably-modified!");
2403 
2404     case Type::Elaborated:
2405       type = cast<ElaboratedType>(ty)->getNamedType();
2406       break;
2407 
2408     case Type::Adjusted:
2409       type = cast<AdjustedType>(ty)->getAdjustedType();
2410       break;
2411 
2412     case Type::Decayed:
2413       type = cast<DecayedType>(ty)->getPointeeType();
2414       break;
2415 
2416     case Type::Pointer:
2417       type = cast<PointerType>(ty)->getPointeeType();
2418       break;
2419 
2420     case Type::BlockPointer:
2421       type = cast<BlockPointerType>(ty)->getPointeeType();
2422       break;
2423 
2424     case Type::LValueReference:
2425     case Type::RValueReference:
2426       type = cast<ReferenceType>(ty)->getPointeeType();
2427       break;
2428 
2429     case Type::MemberPointer:
2430       type = cast<MemberPointerType>(ty)->getPointeeType();
2431       break;
2432 
2433     case Type::ArrayParameter:
2434     case Type::ConstantArray:
2435     case Type::IncompleteArray:
2436       // Losing element qualification here is fine.
2437       type = cast<ArrayType>(ty)->getElementType();
2438       break;
2439 
2440     case Type::VariableArray: {
2441       // Losing element qualification here is fine.
2442       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2443 
2444       // Unknown size indication requires no size computation.
2445       // Otherwise, evaluate and record it.
2446       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2447         // It's possible that we might have emitted this already,
2448         // e.g. with a typedef and a pointer to it.
2449         llvm::Value *&entry = VLASizeMap[sizeExpr];
2450         if (!entry) {
2451           llvm::Value *size = EmitScalarExpr(sizeExpr);
2452 
2453           // C11 6.7.6.2p5:
2454           //   If the size is an expression that is not an integer constant
2455           //   expression [...] each time it is evaluated it shall have a value
2456           //   greater than zero.
2457           if (SanOpts.has(SanitizerKind::VLABound)) {
2458             SanitizerScope SanScope(this);
2459             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2460             clang::QualType SEType = sizeExpr->getType();
2461             llvm::Value *CheckCondition =
2462                 SEType->isSignedIntegerType()
2463                     ? Builder.CreateICmpSGT(size, Zero)
2464                     : Builder.CreateICmpUGT(size, Zero);
2465             llvm::Constant *StaticArgs[] = {
2466                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2467                 EmitCheckTypeDescriptor(SEType)};
2468             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2469                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2470           }
2471 
2472           // Always zexting here would be wrong if it weren't
2473           // undefined behavior to have a negative bound.
2474           // FIXME: What about when size's type is larger than size_t?
2475           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2476         }
2477       }
2478       type = vat->getElementType();
2479       break;
2480     }
2481 
2482     case Type::FunctionProto:
2483     case Type::FunctionNoProto:
2484       type = cast<FunctionType>(ty)->getReturnType();
2485       break;
2486 
2487     case Type::Paren:
2488     case Type::TypeOf:
2489     case Type::UnaryTransform:
2490     case Type::Attributed:
2491     case Type::BTFTagAttributed:
2492     case Type::SubstTemplateTypeParm:
2493     case Type::MacroQualified:
2494     case Type::CountAttributed:
2495       // Keep walking after single level desugaring.
2496       type = type.getSingleStepDesugaredType(getContext());
2497       break;
2498 
2499     case Type::Typedef:
2500     case Type::Decltype:
2501     case Type::Auto:
2502     case Type::DeducedTemplateSpecialization:
2503     case Type::PackIndexing:
2504       // Stop walking: nothing to do.
2505       return;
2506 
2507     case Type::TypeOfExpr:
2508       // Stop walking: emit typeof expression.
2509       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2510       return;
2511 
2512     case Type::Atomic:
2513       type = cast<AtomicType>(ty)->getValueType();
2514       break;
2515 
2516     case Type::Pipe:
2517       type = cast<PipeType>(ty)->getElementType();
2518       break;
2519     }
2520   } while (type->isVariablyModifiedType());
2521 }
2522 
2523 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2524   if (getContext().getBuiltinVaListType()->isArrayType())
2525     return EmitPointerWithAlignment(E);
2526   return EmitLValue(E).getAddress();
2527 }
2528 
2529 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2530   return EmitLValue(E).getAddress();
2531 }
2532 
2533 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2534                                               const APValue &Init) {
2535   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2536   if (CGDebugInfo *Dbg = getDebugInfo())
2537     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2538       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2539 }
2540 
2541 CodeGenFunction::PeepholeProtection
2542 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2543   // At the moment, the only aggressive peephole we do in IR gen
2544   // is trunc(zext) folding, but if we add more, we can easily
2545   // extend this protection.
2546 
2547   if (!rvalue.isScalar()) return PeepholeProtection();
2548   llvm::Value *value = rvalue.getScalarVal();
2549   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2550 
2551   // Just make an extra bitcast.
2552   assert(HaveInsertPoint());
2553   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2554                                                   Builder.GetInsertBlock());
2555 
2556   PeepholeProtection protection;
2557   protection.Inst = inst;
2558   return protection;
2559 }
2560 
2561 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2562   if (!protection.Inst) return;
2563 
2564   // In theory, we could try to duplicate the peepholes now, but whatever.
2565   protection.Inst->eraseFromParent();
2566 }
2567 
2568 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2569                                               QualType Ty, SourceLocation Loc,
2570                                               SourceLocation AssumptionLoc,
2571                                               llvm::Value *Alignment,
2572                                               llvm::Value *OffsetValue) {
2573   if (Alignment->getType() != IntPtrTy)
2574     Alignment =
2575         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2576   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2577     OffsetValue =
2578         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2579   llvm::Value *TheCheck = nullptr;
2580   if (SanOpts.has(SanitizerKind::Alignment)) {
2581     llvm::Value *PtrIntValue =
2582         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2583 
2584     if (OffsetValue) {
2585       bool IsOffsetZero = false;
2586       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2587         IsOffsetZero = CI->isZero();
2588 
2589       if (!IsOffsetZero)
2590         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2591     }
2592 
2593     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2594     llvm::Value *Mask =
2595         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2596     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2597     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2598   }
2599   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2600       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2601 
2602   if (!SanOpts.has(SanitizerKind::Alignment))
2603     return;
2604   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2605                                OffsetValue, TheCheck, Assumption);
2606 }
2607 
2608 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2609                                               const Expr *E,
2610                                               SourceLocation AssumptionLoc,
2611                                               llvm::Value *Alignment,
2612                                               llvm::Value *OffsetValue) {
2613   QualType Ty = E->getType();
2614   SourceLocation Loc = E->getExprLoc();
2615 
2616   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2617                           OffsetValue);
2618 }
2619 
2620 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2621                                                  llvm::Value *AnnotatedVal,
2622                                                  StringRef AnnotationStr,
2623                                                  SourceLocation Location,
2624                                                  const AnnotateAttr *Attr) {
2625   SmallVector<llvm::Value *, 5> Args = {
2626       AnnotatedVal,
2627       CGM.EmitAnnotationString(AnnotationStr),
2628       CGM.EmitAnnotationUnit(Location),
2629       CGM.EmitAnnotationLineNo(Location),
2630   };
2631   if (Attr)
2632     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2633   return Builder.CreateCall(AnnotationFn, Args);
2634 }
2635 
2636 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2637   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2638   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2639     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2640                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2641                        V, I->getAnnotation(), D->getLocation(), I);
2642 }
2643 
2644 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2645                                               Address Addr) {
2646   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2647   llvm::Value *V = Addr.emitRawPointer(*this);
2648   llvm::Type *VTy = V->getType();
2649   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2650   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2651   llvm::PointerType *IntrinTy =
2652       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2653   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2654                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2655 
2656   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2657     // FIXME Always emit the cast inst so we can differentiate between
2658     // annotation on the first field of a struct and annotation on the struct
2659     // itself.
2660     if (VTy != IntrinTy)
2661       V = Builder.CreateBitCast(V, IntrinTy);
2662     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2663     V = Builder.CreateBitCast(V, VTy);
2664   }
2665 
2666   return Address(V, Addr.getElementType(), Addr.getAlignment());
2667 }
2668 
2669 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2670 
2671 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2672     : CGF(CGF) {
2673   assert(!CGF->IsSanitizerScope);
2674   CGF->IsSanitizerScope = true;
2675 }
2676 
2677 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2678   CGF->IsSanitizerScope = false;
2679 }
2680 
2681 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2682                                    const llvm::Twine &Name,
2683                                    llvm::BasicBlock::iterator InsertPt) const {
2684   LoopStack.InsertHelper(I);
2685   if (IsSanitizerScope)
2686     I->setNoSanitizeMetadata();
2687 }
2688 
2689 void CGBuilderInserter::InsertHelper(
2690     llvm::Instruction *I, const llvm::Twine &Name,
2691     llvm::BasicBlock::iterator InsertPt) const {
2692   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2693   if (CGF)
2694     CGF->InsertHelper(I, Name, InsertPt);
2695 }
2696 
2697 // Emits an error if we don't have a valid set of target features for the
2698 // called function.
2699 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2700                                           const FunctionDecl *TargetDecl) {
2701   // SemaChecking cannot handle below x86 builtins because they have different
2702   // parameter ranges with different TargetAttribute of caller.
2703   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2704     unsigned BuiltinID = TargetDecl->getBuiltinID();
2705     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2706         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2707         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2708         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2709       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2710       llvm::StringMap<bool> TargetFetureMap;
2711       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2712       llvm::APSInt Result =
2713           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2714       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2715         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2716             << TargetDecl->getDeclName() << "avx";
2717     }
2718   }
2719   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2720 }
2721 
2722 // Emits an error if we don't have a valid set of target features for the
2723 // called function.
2724 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2725                                           const FunctionDecl *TargetDecl) {
2726   // Early exit if this is an indirect call.
2727   if (!TargetDecl)
2728     return;
2729 
2730   // Get the current enclosing function if it exists. If it doesn't
2731   // we can't check the target features anyhow.
2732   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2733   if (!FD)
2734     return;
2735 
2736   // Grab the required features for the call. For a builtin this is listed in
2737   // the td file with the default cpu, for an always_inline function this is any
2738   // listed cpu and any listed features.
2739   unsigned BuiltinID = TargetDecl->getBuiltinID();
2740   std::string MissingFeature;
2741   llvm::StringMap<bool> CallerFeatureMap;
2742   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2743   // When compiling in HipStdPar mode we have to be conservative in rejecting
2744   // target specific features in the FE, and defer the possible error to the
2745   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2746   // referenced by an accelerator executable function, we emit an error.
2747   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2748   if (BuiltinID) {
2749     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2750     if (!Builtin::evaluateRequiredTargetFeatures(
2751         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2752       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2753           << TargetDecl->getDeclName()
2754           << FeatureList;
2755     }
2756   } else if (!TargetDecl->isMultiVersion() &&
2757              TargetDecl->hasAttr<TargetAttr>()) {
2758     // Get the required features for the callee.
2759 
2760     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2761     ParsedTargetAttr ParsedAttr =
2762         CGM.getContext().filterFunctionTargetAttrs(TD);
2763 
2764     SmallVector<StringRef, 1> ReqFeatures;
2765     llvm::StringMap<bool> CalleeFeatureMap;
2766     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2767 
2768     for (const auto &F : ParsedAttr.Features) {
2769       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2770         ReqFeatures.push_back(StringRef(F).substr(1));
2771     }
2772 
2773     for (const auto &F : CalleeFeatureMap) {
2774       // Only positive features are "required".
2775       if (F.getValue())
2776         ReqFeatures.push_back(F.getKey());
2777     }
2778     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2779       if (!CallerFeatureMap.lookup(Feature)) {
2780         MissingFeature = Feature.str();
2781         return false;
2782       }
2783       return true;
2784     }) && !IsHipStdPar)
2785       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2786           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2787   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2788     llvm::StringMap<bool> CalleeFeatureMap;
2789     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2790 
2791     for (const auto &F : CalleeFeatureMap) {
2792       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2793                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2794           !IsHipStdPar)
2795         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2796             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2797     }
2798   }
2799 }
2800 
2801 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2802   if (!CGM.getCodeGenOpts().SanitizeStats)
2803     return;
2804 
2805   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2806   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2807   CGM.getSanStats().create(IRB, SSK);
2808 }
2809 
2810 void CodeGenFunction::EmitKCFIOperandBundle(
2811     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2812   const FunctionProtoType *FP =
2813       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2814   if (FP)
2815     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2816 }
2817 
2818 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2819     const MultiVersionResolverOption &RO) {
2820   llvm::SmallVector<StringRef, 8> CondFeatures;
2821   for (const StringRef &Feature : RO.Conditions.Features)
2822     CondFeatures.push_back(Feature);
2823   if (!CondFeatures.empty()) {
2824     return EmitAArch64CpuSupports(CondFeatures);
2825   }
2826   return nullptr;
2827 }
2828 
2829 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2830     const MultiVersionResolverOption &RO) {
2831   llvm::Value *Condition = nullptr;
2832 
2833   if (!RO.Conditions.Architecture.empty()) {
2834     StringRef Arch = RO.Conditions.Architecture;
2835     // If arch= specifies an x86-64 micro-architecture level, test the feature
2836     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2837     if (Arch.starts_with("x86-64"))
2838       Condition = EmitX86CpuSupports({Arch});
2839     else
2840       Condition = EmitX86CpuIs(Arch);
2841   }
2842 
2843   if (!RO.Conditions.Features.empty()) {
2844     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2845     Condition =
2846         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2847   }
2848   return Condition;
2849 }
2850 
2851 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2852                                              llvm::Function *Resolver,
2853                                              CGBuilderTy &Builder,
2854                                              llvm::Function *FuncToReturn,
2855                                              bool SupportsIFunc) {
2856   if (SupportsIFunc) {
2857     Builder.CreateRet(FuncToReturn);
2858     return;
2859   }
2860 
2861   llvm::SmallVector<llvm::Value *, 10> Args(
2862       llvm::make_pointer_range(Resolver->args()));
2863 
2864   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2865   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2866 
2867   if (Resolver->getReturnType()->isVoidTy())
2868     Builder.CreateRetVoid();
2869   else
2870     Builder.CreateRet(Result);
2871 }
2872 
2873 void CodeGenFunction::EmitMultiVersionResolver(
2874     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2875 
2876   llvm::Triple::ArchType ArchType =
2877       getContext().getTargetInfo().getTriple().getArch();
2878 
2879   switch (ArchType) {
2880   case llvm::Triple::x86:
2881   case llvm::Triple::x86_64:
2882     EmitX86MultiVersionResolver(Resolver, Options);
2883     return;
2884   case llvm::Triple::aarch64:
2885     EmitAArch64MultiVersionResolver(Resolver, Options);
2886     return;
2887 
2888   default:
2889     assert(false && "Only implemented for x86 and AArch64 targets");
2890   }
2891 }
2892 
2893 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2894     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2895   assert(!Options.empty() && "No multiversion resolver options found");
2896   assert(Options.back().Conditions.Features.size() == 0 &&
2897          "Default case must be last");
2898   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2899   assert(SupportsIFunc &&
2900          "Multiversion resolver requires target IFUNC support");
2901   bool AArch64CpuInitialized = false;
2902   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2903 
2904   for (const MultiVersionResolverOption &RO : Options) {
2905     Builder.SetInsertPoint(CurBlock);
2906     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2907 
2908     // The 'default' or 'all features enabled' case.
2909     if (!Condition) {
2910       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2911                                        SupportsIFunc);
2912       return;
2913     }
2914 
2915     if (!AArch64CpuInitialized) {
2916       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2917       EmitAArch64CpuInit();
2918       AArch64CpuInitialized = true;
2919       Builder.SetInsertPoint(CurBlock);
2920     }
2921 
2922     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2923     CGBuilderTy RetBuilder(*this, RetBlock);
2924     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2925                                      SupportsIFunc);
2926     CurBlock = createBasicBlock("resolver_else", Resolver);
2927     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2928   }
2929 
2930   // If no default, emit an unreachable.
2931   Builder.SetInsertPoint(CurBlock);
2932   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2933   TrapCall->setDoesNotReturn();
2934   TrapCall->setDoesNotThrow();
2935   Builder.CreateUnreachable();
2936   Builder.ClearInsertionPoint();
2937 }
2938 
2939 void CodeGenFunction::EmitX86MultiVersionResolver(
2940     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2941 
2942   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2943 
2944   // Main function's basic block.
2945   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2946   Builder.SetInsertPoint(CurBlock);
2947   EmitX86CpuInit();
2948 
2949   for (const MultiVersionResolverOption &RO : Options) {
2950     Builder.SetInsertPoint(CurBlock);
2951     llvm::Value *Condition = FormX86ResolverCondition(RO);
2952 
2953     // The 'default' or 'generic' case.
2954     if (!Condition) {
2955       assert(&RO == Options.end() - 1 &&
2956              "Default or Generic case must be last");
2957       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2958                                        SupportsIFunc);
2959       return;
2960     }
2961 
2962     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2963     CGBuilderTy RetBuilder(*this, RetBlock);
2964     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2965                                      SupportsIFunc);
2966     CurBlock = createBasicBlock("resolver_else", Resolver);
2967     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2968   }
2969 
2970   // If no generic/default, emit an unreachable.
2971   Builder.SetInsertPoint(CurBlock);
2972   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2973   TrapCall->setDoesNotReturn();
2974   TrapCall->setDoesNotThrow();
2975   Builder.CreateUnreachable();
2976   Builder.ClearInsertionPoint();
2977 }
2978 
2979 // Loc - where the diagnostic will point, where in the source code this
2980 //  alignment has failed.
2981 // SecondaryLoc - if present (will be present if sufficiently different from
2982 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2983 //  It should be the location where the __attribute__((assume_aligned))
2984 //  was written e.g.
2985 void CodeGenFunction::emitAlignmentAssumptionCheck(
2986     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2987     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2988     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2989     llvm::Instruction *Assumption) {
2990   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2991          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2992              llvm::Intrinsic::getDeclaration(
2993                  Builder.GetInsertBlock()->getParent()->getParent(),
2994                  llvm::Intrinsic::assume) &&
2995          "Assumption should be a call to llvm.assume().");
2996   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2997          "Assumption should be the last instruction of the basic block, "
2998          "since the basic block is still being generated.");
2999 
3000   if (!SanOpts.has(SanitizerKind::Alignment))
3001     return;
3002 
3003   // Don't check pointers to volatile data. The behavior here is implementation-
3004   // defined.
3005   if (Ty->getPointeeType().isVolatileQualified())
3006     return;
3007 
3008   // We need to temorairly remove the assumption so we can insert the
3009   // sanitizer check before it, else the check will be dropped by optimizations.
3010   Assumption->removeFromParent();
3011 
3012   {
3013     SanitizerScope SanScope(this);
3014 
3015     if (!OffsetValue)
3016       OffsetValue = Builder.getInt1(false); // no offset.
3017 
3018     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3019                                     EmitCheckSourceLocation(SecondaryLoc),
3020                                     EmitCheckTypeDescriptor(Ty)};
3021     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3022                                   EmitCheckValue(Alignment),
3023                                   EmitCheckValue(OffsetValue)};
3024     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3025               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3026   }
3027 
3028   // We are now in the (new, empty) "cont" basic block.
3029   // Reintroduce the assumption.
3030   Builder.Insert(Assumption);
3031   // FIXME: Assumption still has it's original basic block as it's Parent.
3032 }
3033 
3034 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3035   if (CGDebugInfo *DI = getDebugInfo())
3036     return DI->SourceLocToDebugLoc(Location);
3037 
3038   return llvm::DebugLoc();
3039 }
3040 
3041 llvm::Value *
3042 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3043                                                       Stmt::Likelihood LH) {
3044   switch (LH) {
3045   case Stmt::LH_None:
3046     return Cond;
3047   case Stmt::LH_Likely:
3048   case Stmt::LH_Unlikely:
3049     // Don't generate llvm.expect on -O0 as the backend won't use it for
3050     // anything.
3051     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3052       return Cond;
3053     llvm::Type *CondTy = Cond->getType();
3054     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3055     llvm::Function *FnExpect =
3056         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3057     llvm::Value *ExpectedValueOfCond =
3058         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3059     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3060                               Cond->getName() + ".expval");
3061   }
3062   llvm_unreachable("Unknown Likelihood");
3063 }
3064 
3065 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3066                                                     unsigned NumElementsDst,
3067                                                     const llvm::Twine &Name) {
3068   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3069   unsigned NumElementsSrc = SrcTy->getNumElements();
3070   if (NumElementsSrc == NumElementsDst)
3071     return SrcVec;
3072 
3073   std::vector<int> ShuffleMask(NumElementsDst, -1);
3074   for (unsigned MaskIdx = 0;
3075        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3076     ShuffleMask[MaskIdx] = MaskIdx;
3077 
3078   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3079 }
3080 
3081 void CodeGenFunction::EmitPointerAuthOperandBundle(
3082     const CGPointerAuthInfo &PointerAuth,
3083     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3084   if (!PointerAuth.isSigned())
3085     return;
3086 
3087   auto *Key = Builder.getInt32(PointerAuth.getKey());
3088 
3089   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3090   if (!Discriminator)
3091     Discriminator = Builder.getSize(0);
3092 
3093   llvm::Value *Args[] = {Key, Discriminator};
3094   Bundles.emplace_back("ptrauth", Args);
3095 }
3096 
3097 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3098                                           const CGPointerAuthInfo &PointerAuth,
3099                                           llvm::Value *Pointer,
3100                                           unsigned IntrinsicID) {
3101   if (!PointerAuth)
3102     return Pointer;
3103 
3104   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3105 
3106   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3107   if (!Discriminator) {
3108     Discriminator = CGF.Builder.getSize(0);
3109   }
3110 
3111   // Convert the pointer to intptr_t before signing it.
3112   auto OrigType = Pointer->getType();
3113   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3114 
3115   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3116   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3117   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3118 
3119   // Convert back to the original type.
3120   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3121   return Pointer;
3122 }
3123 
3124 llvm::Value *
3125 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3126                                      llvm::Value *Pointer) {
3127   if (!PointerAuth.shouldSign())
3128     return Pointer;
3129   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3130                                llvm::Intrinsic::ptrauth_sign);
3131 }
3132 
3133 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3134                               const CGPointerAuthInfo &PointerAuth,
3135                               llvm::Value *Pointer) {
3136   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3137 
3138   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3139   // Convert the pointer to intptr_t before signing it.
3140   auto OrigType = Pointer->getType();
3141   Pointer = CGF.EmitRuntimeCall(
3142       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3143   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3144 }
3145 
3146 llvm::Value *
3147 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3148                                      llvm::Value *Pointer) {
3149   if (PointerAuth.shouldStrip()) {
3150     return EmitStrip(*this, PointerAuth, Pointer);
3151   }
3152   if (!PointerAuth.shouldAuth()) {
3153     return Pointer;
3154   }
3155 
3156   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3157                                llvm::Intrinsic::ptrauth_auth);
3158 }
3159