xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision c719d7b390481b095c7498fe75a0bcf60a24bad9)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.FunctionPointers)
884     Fn->addFnAttr("ptrauth-calls");
885 
886   // Apply xray attributes to the function (as a string, for now)
887   bool AlwaysXRayAttr = false;
888   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
889     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
890             XRayInstrKind::FunctionEntry) ||
891         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
892             XRayInstrKind::FunctionExit)) {
893       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
894         Fn->addFnAttr("function-instrument", "xray-always");
895         AlwaysXRayAttr = true;
896       }
897       if (XRayAttr->neverXRayInstrument())
898         Fn->addFnAttr("function-instrument", "xray-never");
899       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
900         if (ShouldXRayInstrumentFunction())
901           Fn->addFnAttr("xray-log-args",
902                         llvm::utostr(LogArgs->getArgumentCount()));
903     }
904   } else {
905     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
906       Fn->addFnAttr(
907           "xray-instruction-threshold",
908           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
909   }
910 
911   if (ShouldXRayInstrumentFunction()) {
912     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
913       Fn->addFnAttr("xray-ignore-loops");
914 
915     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
916             XRayInstrKind::FunctionExit))
917       Fn->addFnAttr("xray-skip-exit");
918 
919     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
920             XRayInstrKind::FunctionEntry))
921       Fn->addFnAttr("xray-skip-entry");
922 
923     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
924     if (FuncGroups > 1) {
925       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
926                                               CurFn->getName().bytes_end());
927       auto Group = crc32(FuncName) % FuncGroups;
928       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
929           !AlwaysXRayAttr)
930         Fn->addFnAttr("function-instrument", "xray-never");
931     }
932   }
933 
934   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
935     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
936     case ProfileList::Skip:
937       Fn->addFnAttr(llvm::Attribute::SkipProfile);
938       break;
939     case ProfileList::Forbid:
940       Fn->addFnAttr(llvm::Attribute::NoProfile);
941       break;
942     case ProfileList::Allow:
943       break;
944     }
945   }
946 
947   unsigned Count, Offset;
948   if (const auto *Attr =
949           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
950     Count = Attr->getCount();
951     Offset = Attr->getOffset();
952   } else {
953     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
954     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
955   }
956   if (Count && Offset <= Count) {
957     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
958     if (Offset)
959       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
960   }
961   // Instruct that functions for COFF/CodeView targets should start with a
962   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
963   // backends as they don't need it -- instructions on these architectures are
964   // always atomically patchable at runtime.
965   if (CGM.getCodeGenOpts().HotPatch &&
966       getContext().getTargetInfo().getTriple().isX86() &&
967       getContext().getTargetInfo().getTriple().getEnvironment() !=
968           llvm::Triple::CODE16)
969     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
970 
971   // Add no-jump-tables value.
972   if (CGM.getCodeGenOpts().NoUseJumpTables)
973     Fn->addFnAttr("no-jump-tables", "true");
974 
975   // Add no-inline-line-tables value.
976   if (CGM.getCodeGenOpts().NoInlineLineTables)
977     Fn->addFnAttr("no-inline-line-tables");
978 
979   // Add profile-sample-accurate value.
980   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
981     Fn->addFnAttr("profile-sample-accurate");
982 
983   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
984     Fn->addFnAttr("use-sample-profile");
985 
986   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
987     Fn->addFnAttr("cfi-canonical-jump-table");
988 
989   if (D && D->hasAttr<NoProfileFunctionAttr>())
990     Fn->addFnAttr(llvm::Attribute::NoProfile);
991 
992   if (D) {
993     // Function attributes take precedence over command line flags.
994     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
995       switch (A->getThunkType()) {
996       case FunctionReturnThunksAttr::Kind::Keep:
997         break;
998       case FunctionReturnThunksAttr::Kind::Extern:
999         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1000         break;
1001       }
1002     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1003       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1004   }
1005 
1006   if (FD && (getLangOpts().OpenCL ||
1007              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1008     // Add metadata for a kernel function.
1009     EmitKernelMetadata(FD, Fn);
1010   }
1011 
1012   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1013     Fn->setMetadata("clspv_libclc_builtin",
1014                     llvm::MDNode::get(getLLVMContext(), {}));
1015   }
1016 
1017   // If we are checking function types, emit a function type signature as
1018   // prologue data.
1019   if (FD && SanOpts.has(SanitizerKind::Function)) {
1020     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1021       llvm::LLVMContext &Ctx = Fn->getContext();
1022       llvm::MDBuilder MDB(Ctx);
1023       Fn->setMetadata(
1024           llvm::LLVMContext::MD_func_sanitize,
1025           MDB.createRTTIPointerPrologue(
1026               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1027     }
1028   }
1029 
1030   // If we're checking nullability, we need to know whether we can check the
1031   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1032   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1033     auto Nullability = FnRetTy->getNullability();
1034     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1035         !FnRetTy->isRecordType()) {
1036       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1037             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1038         RetValNullabilityPrecondition =
1039             llvm::ConstantInt::getTrue(getLLVMContext());
1040     }
1041   }
1042 
1043   // If we're in C++ mode and the function name is "main", it is guaranteed
1044   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1045   // used within a program").
1046   //
1047   // OpenCL C 2.0 v2.2-11 s6.9.i:
1048   //     Recursion is not supported.
1049   //
1050   // SYCL v1.2.1 s3.10:
1051   //     kernels cannot include RTTI information, exception classes,
1052   //     recursive code, virtual functions or make use of C++ libraries that
1053   //     are not compiled for the device.
1054   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1055              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1056              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1057     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1058 
1059   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1060   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1061       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1062   Builder.setDefaultConstrainedRounding(RM);
1063   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1064   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1065       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1066                RM != llvm::RoundingMode::NearestTiesToEven))) {
1067     Builder.setIsFPConstrained(true);
1068     Fn->addFnAttr(llvm::Attribute::StrictFP);
1069   }
1070 
1071   // If a custom alignment is used, force realigning to this alignment on
1072   // any main function which certainly will need it.
1073   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1074              CGM.getCodeGenOpts().StackAlignment))
1075     Fn->addFnAttr("stackrealign");
1076 
1077   // "main" doesn't need to zero out call-used registers.
1078   if (FD && FD->isMain())
1079     Fn->removeFnAttr("zero-call-used-regs");
1080 
1081   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1082 
1083   // Create a marker to make it easy to insert allocas into the entryblock
1084   // later.  Don't create this with the builder, because we don't want it
1085   // folded.
1086   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1087   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1088 
1089   ReturnBlock = getJumpDestInCurrentScope("return");
1090 
1091   Builder.SetInsertPoint(EntryBB);
1092 
1093   // If we're checking the return value, allocate space for a pointer to a
1094   // precise source location of the checked return statement.
1095   if (requiresReturnValueCheck()) {
1096     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1097     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1098                         ReturnLocation);
1099   }
1100 
1101   // Emit subprogram debug descriptor.
1102   if (CGDebugInfo *DI = getDebugInfo()) {
1103     // Reconstruct the type from the argument list so that implicit parameters,
1104     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1105     // convention.
1106     DI->emitFunctionStart(GD, Loc, StartLoc,
1107                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1108                           CurFuncIsThunk);
1109   }
1110 
1111   if (ShouldInstrumentFunction()) {
1112     if (CGM.getCodeGenOpts().InstrumentFunctions)
1113       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1114     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1115       CurFn->addFnAttr("instrument-function-entry-inlined",
1116                        "__cyg_profile_func_enter");
1117     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1118       CurFn->addFnAttr("instrument-function-entry-inlined",
1119                        "__cyg_profile_func_enter_bare");
1120   }
1121 
1122   // Since emitting the mcount call here impacts optimizations such as function
1123   // inlining, we just add an attribute to insert a mcount call in backend.
1124   // The attribute "counting-function" is set to mcount function name which is
1125   // architecture dependent.
1126   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1127     // Calls to fentry/mcount should not be generated if function has
1128     // the no_instrument_function attribute.
1129     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1130       if (CGM.getCodeGenOpts().CallFEntry)
1131         Fn->addFnAttr("fentry-call", "true");
1132       else {
1133         Fn->addFnAttr("instrument-function-entry-inlined",
1134                       getTarget().getMCountName());
1135       }
1136       if (CGM.getCodeGenOpts().MNopMCount) {
1137         if (!CGM.getCodeGenOpts().CallFEntry)
1138           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1139             << "-mnop-mcount" << "-mfentry";
1140         Fn->addFnAttr("mnop-mcount");
1141       }
1142 
1143       if (CGM.getCodeGenOpts().RecordMCount) {
1144         if (!CGM.getCodeGenOpts().CallFEntry)
1145           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1146             << "-mrecord-mcount" << "-mfentry";
1147         Fn->addFnAttr("mrecord-mcount");
1148       }
1149     }
1150   }
1151 
1152   if (CGM.getCodeGenOpts().PackedStack) {
1153     if (getContext().getTargetInfo().getTriple().getArch() !=
1154         llvm::Triple::systemz)
1155       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1156         << "-mpacked-stack";
1157     Fn->addFnAttr("packed-stack");
1158   }
1159 
1160   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1161       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1162     Fn->addFnAttr("warn-stack-size",
1163                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1164 
1165   if (RetTy->isVoidType()) {
1166     // Void type; nothing to return.
1167     ReturnValue = Address::invalid();
1168 
1169     // Count the implicit return.
1170     if (!endsWithReturn(D))
1171       ++NumReturnExprs;
1172   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1173     // Indirect return; emit returned value directly into sret slot.
1174     // This reduces code size, and affects correctness in C++.
1175     auto AI = CurFn->arg_begin();
1176     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1177       ++AI;
1178     ReturnValue = makeNaturalAddressForPointer(
1179         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1180         nullptr, nullptr, KnownNonNull);
1181     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1182       ReturnValuePointer =
1183           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1184       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1185                           ReturnValuePointer);
1186     }
1187   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1188              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1189     // Load the sret pointer from the argument struct and return into that.
1190     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1191     llvm::Function::arg_iterator EI = CurFn->arg_end();
1192     --EI;
1193     llvm::Value *Addr = Builder.CreateStructGEP(
1194         CurFnInfo->getArgStruct(), &*EI, Idx);
1195     llvm::Type *Ty =
1196         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1197     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1198     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1199     ReturnValue = Address(Addr, ConvertType(RetTy),
1200                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1201   } else {
1202     ReturnValue = CreateIRTemp(RetTy, "retval");
1203 
1204     // Tell the epilog emitter to autorelease the result.  We do this
1205     // now so that various specialized functions can suppress it
1206     // during their IR-generation.
1207     if (getLangOpts().ObjCAutoRefCount &&
1208         !CurFnInfo->isReturnsRetained() &&
1209         RetTy->isObjCRetainableType())
1210       AutoreleaseResult = true;
1211   }
1212 
1213   EmitStartEHSpec(CurCodeDecl);
1214 
1215   PrologueCleanupDepth = EHStack.stable_begin();
1216 
1217   // Emit OpenMP specific initialization of the device functions.
1218   if (getLangOpts().OpenMP && CurCodeDecl)
1219     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1220 
1221   // Handle emitting HLSL entry functions.
1222   if (D && D->hasAttr<HLSLShaderAttr>())
1223     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1224 
1225   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1226 
1227   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1228       MD && !MD->isStatic()) {
1229     bool IsInLambda =
1230         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1231     if (MD->isImplicitObjectMemberFunction())
1232       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1233     if (IsInLambda) {
1234       // We're in a lambda; figure out the captures.
1235       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1236                                         LambdaThisCaptureField);
1237       if (LambdaThisCaptureField) {
1238         // If the lambda captures the object referred to by '*this' - either by
1239         // value or by reference, make sure CXXThisValue points to the correct
1240         // object.
1241 
1242         // Get the lvalue for the field (which is a copy of the enclosing object
1243         // or contains the address of the enclosing object).
1244         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1245         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1246           // If the enclosing object was captured by value, just use its
1247           // address. Sign this pointer.
1248           CXXThisValue = ThisFieldLValue.getPointer(*this);
1249         } else {
1250           // Load the lvalue pointed to by the field, since '*this' was captured
1251           // by reference.
1252           CXXThisValue =
1253               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1254         }
1255       }
1256       for (auto *FD : MD->getParent()->fields()) {
1257         if (FD->hasCapturedVLAType()) {
1258           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1259                                            SourceLocation()).getScalarVal();
1260           auto VAT = FD->getCapturedVLAType();
1261           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1262         }
1263       }
1264     } else if (MD->isImplicitObjectMemberFunction()) {
1265       // Not in a lambda; just use 'this' from the method.
1266       // FIXME: Should we generate a new load for each use of 'this'?  The
1267       // fast register allocator would be happier...
1268       CXXThisValue = CXXABIThisValue;
1269     }
1270 
1271     // Check the 'this' pointer once per function, if it's available.
1272     if (CXXABIThisValue) {
1273       SanitizerSet SkippedChecks;
1274       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1275       QualType ThisTy = MD->getThisType();
1276 
1277       // If this is the call operator of a lambda with no captures, it
1278       // may have a static invoker function, which may call this operator with
1279       // a null 'this' pointer.
1280       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1281         SkippedChecks.set(SanitizerKind::Null, true);
1282 
1283       EmitTypeCheck(
1284           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1285           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1286     }
1287   }
1288 
1289   // If any of the arguments have a variably modified type, make sure to
1290   // emit the type size, but only if the function is not naked. Naked functions
1291   // have no prolog to run this evaluation.
1292   if (!FD || !FD->hasAttr<NakedAttr>()) {
1293     for (const VarDecl *VD : Args) {
1294       // Dig out the type as written from ParmVarDecls; it's unclear whether
1295       // the standard (C99 6.9.1p10) requires this, but we're following the
1296       // precedent set by gcc.
1297       QualType Ty;
1298       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1299         Ty = PVD->getOriginalType();
1300       else
1301         Ty = VD->getType();
1302 
1303       if (Ty->isVariablyModifiedType())
1304         EmitVariablyModifiedType(Ty);
1305     }
1306   }
1307   // Emit a location at the end of the prologue.
1308   if (CGDebugInfo *DI = getDebugInfo())
1309     DI->EmitLocation(Builder, StartLoc);
1310   // TODO: Do we need to handle this in two places like we do with
1311   // target-features/target-cpu?
1312   if (CurFuncDecl)
1313     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1314       LargestVectorWidth = VecWidth->getVectorWidth();
1315 
1316   if (CGM.shouldEmitConvergenceTokens())
1317     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1318 }
1319 
1320 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1321   incrementProfileCounter(Body);
1322   maybeCreateMCDCCondBitmap();
1323   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1324     EmitCompoundStmtWithoutScope(*S);
1325   else
1326     EmitStmt(Body);
1327 }
1328 
1329 /// When instrumenting to collect profile data, the counts for some blocks
1330 /// such as switch cases need to not include the fall-through counts, so
1331 /// emit a branch around the instrumentation code. When not instrumenting,
1332 /// this just calls EmitBlock().
1333 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1334                                                const Stmt *S) {
1335   llvm::BasicBlock *SkipCountBB = nullptr;
1336   // Do not skip over the instrumentation when single byte coverage mode is
1337   // enabled.
1338   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1339       !llvm::EnableSingleByteCoverage) {
1340     // When instrumenting for profiling, the fallthrough to certain
1341     // statements needs to skip over the instrumentation code so that we
1342     // get an accurate count.
1343     SkipCountBB = createBasicBlock("skipcount");
1344     EmitBranch(SkipCountBB);
1345   }
1346   EmitBlock(BB);
1347   uint64_t CurrentCount = getCurrentProfileCount();
1348   incrementProfileCounter(S);
1349   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1350   if (SkipCountBB)
1351     EmitBlock(SkipCountBB);
1352 }
1353 
1354 /// Tries to mark the given function nounwind based on the
1355 /// non-existence of any throwing calls within it.  We believe this is
1356 /// lightweight enough to do at -O0.
1357 static void TryMarkNoThrow(llvm::Function *F) {
1358   // LLVM treats 'nounwind' on a function as part of the type, so we
1359   // can't do this on functions that can be overwritten.
1360   if (F->isInterposable()) return;
1361 
1362   for (llvm::BasicBlock &BB : *F)
1363     for (llvm::Instruction &I : BB)
1364       if (I.mayThrow())
1365         return;
1366 
1367   F->setDoesNotThrow();
1368 }
1369 
1370 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1371                                                FunctionArgList &Args) {
1372   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1373   QualType ResTy = FD->getReturnType();
1374 
1375   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1376   if (MD && MD->isImplicitObjectMemberFunction()) {
1377     if (CGM.getCXXABI().HasThisReturn(GD))
1378       ResTy = MD->getThisType();
1379     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1380       ResTy = CGM.getContext().VoidPtrTy;
1381     CGM.getCXXABI().buildThisParam(*this, Args);
1382   }
1383 
1384   // The base version of an inheriting constructor whose constructed base is a
1385   // virtual base is not passed any arguments (because it doesn't actually call
1386   // the inherited constructor).
1387   bool PassedParams = true;
1388   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1389     if (auto Inherited = CD->getInheritedConstructor())
1390       PassedParams =
1391           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1392 
1393   if (PassedParams) {
1394     for (auto *Param : FD->parameters()) {
1395       Args.push_back(Param);
1396       if (!Param->hasAttr<PassObjectSizeAttr>())
1397         continue;
1398 
1399       auto *Implicit = ImplicitParamDecl::Create(
1400           getContext(), Param->getDeclContext(), Param->getLocation(),
1401           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1402       SizeArguments[Param] = Implicit;
1403       Args.push_back(Implicit);
1404     }
1405   }
1406 
1407   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1408     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1409 
1410   return ResTy;
1411 }
1412 
1413 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1414                                    const CGFunctionInfo &FnInfo) {
1415   assert(Fn && "generating code for null Function");
1416   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1417   CurGD = GD;
1418 
1419   FunctionArgList Args;
1420   QualType ResTy = BuildFunctionArgList(GD, Args);
1421 
1422   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1423 
1424   if (FD->isInlineBuiltinDeclaration()) {
1425     // When generating code for a builtin with an inline declaration, use a
1426     // mangled name to hold the actual body, while keeping an external
1427     // definition in case the function pointer is referenced somewhere.
1428     std::string FDInlineName = (Fn->getName() + ".inline").str();
1429     llvm::Module *M = Fn->getParent();
1430     llvm::Function *Clone = M->getFunction(FDInlineName);
1431     if (!Clone) {
1432       Clone = llvm::Function::Create(Fn->getFunctionType(),
1433                                      llvm::GlobalValue::InternalLinkage,
1434                                      Fn->getAddressSpace(), FDInlineName, M);
1435       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1436     }
1437     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1438     Fn = Clone;
1439   } else {
1440     // Detect the unusual situation where an inline version is shadowed by a
1441     // non-inline version. In that case we should pick the external one
1442     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1443     // to detect that situation before we reach codegen, so do some late
1444     // replacement.
1445     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1446          PD = PD->getPreviousDecl()) {
1447       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1448         std::string FDInlineName = (Fn->getName() + ".inline").str();
1449         llvm::Module *M = Fn->getParent();
1450         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1451           Clone->replaceAllUsesWith(Fn);
1452           Clone->eraseFromParent();
1453         }
1454         break;
1455       }
1456     }
1457   }
1458 
1459   // Check if we should generate debug info for this function.
1460   if (FD->hasAttr<NoDebugAttr>()) {
1461     // Clear non-distinct debug info that was possibly attached to the function
1462     // due to an earlier declaration without the nodebug attribute
1463     Fn->setSubprogram(nullptr);
1464     // Disable debug info indefinitely for this function
1465     DebugInfo = nullptr;
1466   }
1467 
1468   // The function might not have a body if we're generating thunks for a
1469   // function declaration.
1470   SourceRange BodyRange;
1471   if (Stmt *Body = FD->getBody())
1472     BodyRange = Body->getSourceRange();
1473   else
1474     BodyRange = FD->getLocation();
1475   CurEHLocation = BodyRange.getEnd();
1476 
1477   // Use the location of the start of the function to determine where
1478   // the function definition is located. By default use the location
1479   // of the declaration as the location for the subprogram. A function
1480   // may lack a declaration in the source code if it is created by code
1481   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1482   SourceLocation Loc = FD->getLocation();
1483 
1484   // If this is a function specialization then use the pattern body
1485   // as the location for the function.
1486   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1487     if (SpecDecl->hasBody(SpecDecl))
1488       Loc = SpecDecl->getLocation();
1489 
1490   Stmt *Body = FD->getBody();
1491 
1492   if (Body) {
1493     // Coroutines always emit lifetime markers.
1494     if (isa<CoroutineBodyStmt>(Body))
1495       ShouldEmitLifetimeMarkers = true;
1496 
1497     // Initialize helper which will detect jumps which can cause invalid
1498     // lifetime markers.
1499     if (ShouldEmitLifetimeMarkers)
1500       Bypasses.Init(Body);
1501   }
1502 
1503   // Emit the standard function prologue.
1504   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1505 
1506   // Save parameters for coroutine function.
1507   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1508     llvm::append_range(FnArgs, FD->parameters());
1509 
1510   // Ensure that the function adheres to the forward progress guarantee, which
1511   // is required by certain optimizations.
1512   // In C++11 and up, the attribute will be removed if the body contains a
1513   // trivial empty loop.
1514   if (checkIfFunctionMustProgress())
1515     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1516 
1517   // Generate the body of the function.
1518   PGO.assignRegionCounters(GD, CurFn);
1519   if (isa<CXXDestructorDecl>(FD))
1520     EmitDestructorBody(Args);
1521   else if (isa<CXXConstructorDecl>(FD))
1522     EmitConstructorBody(Args);
1523   else if (getLangOpts().CUDA &&
1524            !getLangOpts().CUDAIsDevice &&
1525            FD->hasAttr<CUDAGlobalAttr>())
1526     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1527   else if (isa<CXXMethodDecl>(FD) &&
1528            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1529     // The lambda static invoker function is special, because it forwards or
1530     // clones the body of the function call operator (but is actually static).
1531     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1532   } else if (isa<CXXMethodDecl>(FD) &&
1533              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1534              !FnInfo.isDelegateCall() &&
1535              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1536              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1537     // If emitting a lambda with static invoker on X86 Windows, change
1538     // the call operator body.
1539     // Make sure that this is a call operator with an inalloca arg and check
1540     // for delegate call to make sure this is the original call op and not the
1541     // new forwarding function for the static invoker.
1542     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1543   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1544              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1545               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1546     // Implicit copy-assignment gets the same special treatment as implicit
1547     // copy-constructors.
1548     emitImplicitAssignmentOperatorBody(Args);
1549   } else if (Body) {
1550     EmitFunctionBody(Body);
1551   } else
1552     llvm_unreachable("no definition for emitted function");
1553 
1554   // C++11 [stmt.return]p2:
1555   //   Flowing off the end of a function [...] results in undefined behavior in
1556   //   a value-returning function.
1557   // C11 6.9.1p12:
1558   //   If the '}' that terminates a function is reached, and the value of the
1559   //   function call is used by the caller, the behavior is undefined.
1560   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1561       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1562     bool ShouldEmitUnreachable =
1563         CGM.getCodeGenOpts().StrictReturn ||
1564         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1565     if (SanOpts.has(SanitizerKind::Return)) {
1566       SanitizerScope SanScope(this);
1567       llvm::Value *IsFalse = Builder.getFalse();
1568       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1569                 SanitizerHandler::MissingReturn,
1570                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1571     } else if (ShouldEmitUnreachable) {
1572       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1573         EmitTrapCall(llvm::Intrinsic::trap);
1574     }
1575     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1576       Builder.CreateUnreachable();
1577       Builder.ClearInsertionPoint();
1578     }
1579   }
1580 
1581   // Emit the standard function epilogue.
1582   FinishFunction(BodyRange.getEnd());
1583 
1584   // If we haven't marked the function nothrow through other means, do
1585   // a quick pass now to see if we can.
1586   if (!CurFn->doesNotThrow())
1587     TryMarkNoThrow(CurFn);
1588 }
1589 
1590 /// ContainsLabel - Return true if the statement contains a label in it.  If
1591 /// this statement is not executed normally, it not containing a label means
1592 /// that we can just remove the code.
1593 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1594   // Null statement, not a label!
1595   if (!S) return false;
1596 
1597   // If this is a label, we have to emit the code, consider something like:
1598   // if (0) {  ...  foo:  bar(); }  goto foo;
1599   //
1600   // TODO: If anyone cared, we could track __label__'s, since we know that you
1601   // can't jump to one from outside their declared region.
1602   if (isa<LabelStmt>(S))
1603     return true;
1604 
1605   // If this is a case/default statement, and we haven't seen a switch, we have
1606   // to emit the code.
1607   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1608     return true;
1609 
1610   // If this is a switch statement, we want to ignore cases below it.
1611   if (isa<SwitchStmt>(S))
1612     IgnoreCaseStmts = true;
1613 
1614   // Scan subexpressions for verboten labels.
1615   for (const Stmt *SubStmt : S->children())
1616     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1617       return true;
1618 
1619   return false;
1620 }
1621 
1622 /// containsBreak - Return true if the statement contains a break out of it.
1623 /// If the statement (recursively) contains a switch or loop with a break
1624 /// inside of it, this is fine.
1625 bool CodeGenFunction::containsBreak(const Stmt *S) {
1626   // Null statement, not a label!
1627   if (!S) return false;
1628 
1629   // If this is a switch or loop that defines its own break scope, then we can
1630   // include it and anything inside of it.
1631   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1632       isa<ForStmt>(S))
1633     return false;
1634 
1635   if (isa<BreakStmt>(S))
1636     return true;
1637 
1638   // Scan subexpressions for verboten breaks.
1639   for (const Stmt *SubStmt : S->children())
1640     if (containsBreak(SubStmt))
1641       return true;
1642 
1643   return false;
1644 }
1645 
1646 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1647   if (!S) return false;
1648 
1649   // Some statement kinds add a scope and thus never add a decl to the current
1650   // scope. Note, this list is longer than the list of statements that might
1651   // have an unscoped decl nested within them, but this way is conservatively
1652   // correct even if more statement kinds are added.
1653   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1654       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1655       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1656       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1657     return false;
1658 
1659   if (isa<DeclStmt>(S))
1660     return true;
1661 
1662   for (const Stmt *SubStmt : S->children())
1663     if (mightAddDeclToScope(SubStmt))
1664       return true;
1665 
1666   return false;
1667 }
1668 
1669 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1670 /// to a constant, or if it does but contains a label, return false.  If it
1671 /// constant folds return true and set the boolean result in Result.
1672 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1673                                                    bool &ResultBool,
1674                                                    bool AllowLabels) {
1675   // If MC/DC is enabled, disable folding so that we can instrument all
1676   // conditions to yield complete test vectors. We still keep track of
1677   // folded conditions during region mapping and visualization.
1678   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1679       CGM.getCodeGenOpts().MCDCCoverage)
1680     return false;
1681 
1682   llvm::APSInt ResultInt;
1683   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1684     return false;
1685 
1686   ResultBool = ResultInt.getBoolValue();
1687   return true;
1688 }
1689 
1690 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1691 /// to a constant, or if it does but contains a label, return false.  If it
1692 /// constant folds return true and set the folded value.
1693 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1694                                                    llvm::APSInt &ResultInt,
1695                                                    bool AllowLabels) {
1696   // FIXME: Rename and handle conversion of other evaluatable things
1697   // to bool.
1698   Expr::EvalResult Result;
1699   if (!Cond->EvaluateAsInt(Result, getContext()))
1700     return false;  // Not foldable, not integer or not fully evaluatable.
1701 
1702   llvm::APSInt Int = Result.Val.getInt();
1703   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1704     return false;  // Contains a label.
1705 
1706   ResultInt = Int;
1707   return true;
1708 }
1709 
1710 /// Strip parentheses and simplistic logical-NOT operators.
1711 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1712   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1713     if (Op->getOpcode() != UO_LNot)
1714       break;
1715     C = Op->getSubExpr();
1716   }
1717   return C->IgnoreParens();
1718 }
1719 
1720 /// Determine whether the given condition is an instrumentable condition
1721 /// (i.e. no "&&" or "||").
1722 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1723   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1724   return (!BOp || !BOp->isLogicalOp());
1725 }
1726 
1727 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1728 /// increments a profile counter based on the semantics of the given logical
1729 /// operator opcode.  This is used to instrument branch condition coverage for
1730 /// logical operators.
1731 void CodeGenFunction::EmitBranchToCounterBlock(
1732     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1733     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1734     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1735   // If not instrumenting, just emit a branch.
1736   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1737   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1738     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1739 
1740   llvm::BasicBlock *ThenBlock = nullptr;
1741   llvm::BasicBlock *ElseBlock = nullptr;
1742   llvm::BasicBlock *NextBlock = nullptr;
1743 
1744   // Create the block we'll use to increment the appropriate counter.
1745   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1746 
1747   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1748   // means we need to evaluate the condition and increment the counter on TRUE:
1749   //
1750   // if (Cond)
1751   //   goto CounterIncrBlock;
1752   // else
1753   //   goto FalseBlock;
1754   //
1755   // CounterIncrBlock:
1756   //   Counter++;
1757   //   goto TrueBlock;
1758 
1759   if (LOp == BO_LAnd) {
1760     ThenBlock = CounterIncrBlock;
1761     ElseBlock = FalseBlock;
1762     NextBlock = TrueBlock;
1763   }
1764 
1765   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1766   // we need to evaluate the condition and increment the counter on FALSE:
1767   //
1768   // if (Cond)
1769   //   goto TrueBlock;
1770   // else
1771   //   goto CounterIncrBlock;
1772   //
1773   // CounterIncrBlock:
1774   //   Counter++;
1775   //   goto FalseBlock;
1776 
1777   else if (LOp == BO_LOr) {
1778     ThenBlock = TrueBlock;
1779     ElseBlock = CounterIncrBlock;
1780     NextBlock = FalseBlock;
1781   } else {
1782     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1783   }
1784 
1785   // Emit Branch based on condition.
1786   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1787 
1788   // Emit the block containing the counter increment(s).
1789   EmitBlock(CounterIncrBlock);
1790 
1791   // Increment corresponding counter; if index not provided, use Cond as index.
1792   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1793 
1794   // Go to the next block.
1795   EmitBranch(NextBlock);
1796 }
1797 
1798 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1799 /// statement) to the specified blocks.  Based on the condition, this might try
1800 /// to simplify the codegen of the conditional based on the branch.
1801 /// \param LH The value of the likelihood attribute on the True branch.
1802 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1803 /// ConditionalOperator (ternary) through a recursive call for the operator's
1804 /// LHS and RHS nodes.
1805 void CodeGenFunction::EmitBranchOnBoolExpr(
1806     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1807     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1808   Cond = Cond->IgnoreParens();
1809 
1810   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1811     // Handle X && Y in a condition.
1812     if (CondBOp->getOpcode() == BO_LAnd) {
1813       MCDCLogOpStack.push_back(CondBOp);
1814 
1815       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1816       // folded if the case was simple enough.
1817       bool ConstantBool = false;
1818       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1819           ConstantBool) {
1820         // br(1 && X) -> br(X).
1821         incrementProfileCounter(CondBOp);
1822         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1823                                  FalseBlock, TrueCount, LH);
1824         MCDCLogOpStack.pop_back();
1825         return;
1826       }
1827 
1828       // If we have "X && 1", simplify the code to use an uncond branch.
1829       // "X && 0" would have been constant folded to 0.
1830       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1831           ConstantBool) {
1832         // br(X && 1) -> br(X).
1833         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1834                                  FalseBlock, TrueCount, LH, CondBOp);
1835         MCDCLogOpStack.pop_back();
1836         return;
1837       }
1838 
1839       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1840       // want to jump to the FalseBlock.
1841       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1842       // The counter tells us how often we evaluate RHS, and all of TrueCount
1843       // can be propagated to that branch.
1844       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1845 
1846       ConditionalEvaluation eval(*this);
1847       {
1848         ApplyDebugLocation DL(*this, Cond);
1849         // Propagate the likelihood attribute like __builtin_expect
1850         // __builtin_expect(X && Y, 1) -> X and Y are likely
1851         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1852         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1853                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1854         EmitBlock(LHSTrue);
1855       }
1856 
1857       incrementProfileCounter(CondBOp);
1858       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1859 
1860       // Any temporaries created here are conditional.
1861       eval.begin(*this);
1862       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1863                                FalseBlock, TrueCount, LH);
1864       eval.end(*this);
1865       MCDCLogOpStack.pop_back();
1866       return;
1867     }
1868 
1869     if (CondBOp->getOpcode() == BO_LOr) {
1870       MCDCLogOpStack.push_back(CondBOp);
1871 
1872       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1873       // folded if the case was simple enough.
1874       bool ConstantBool = false;
1875       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1876           !ConstantBool) {
1877         // br(0 || X) -> br(X).
1878         incrementProfileCounter(CondBOp);
1879         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1880                                  FalseBlock, TrueCount, LH);
1881         MCDCLogOpStack.pop_back();
1882         return;
1883       }
1884 
1885       // If we have "X || 0", simplify the code to use an uncond branch.
1886       // "X || 1" would have been constant folded to 1.
1887       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1888           !ConstantBool) {
1889         // br(X || 0) -> br(X).
1890         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1891                                  FalseBlock, TrueCount, LH, CondBOp);
1892         MCDCLogOpStack.pop_back();
1893         return;
1894       }
1895       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1896       // want to jump to the TrueBlock.
1897       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1898       // We have the count for entry to the RHS and for the whole expression
1899       // being true, so we can divy up True count between the short circuit and
1900       // the RHS.
1901       uint64_t LHSCount =
1902           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1903       uint64_t RHSCount = TrueCount - LHSCount;
1904 
1905       ConditionalEvaluation eval(*this);
1906       {
1907         // Propagate the likelihood attribute like __builtin_expect
1908         // __builtin_expect(X || Y, 1) -> only Y is likely
1909         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1910         ApplyDebugLocation DL(*this, Cond);
1911         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1912                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1913         EmitBlock(LHSFalse);
1914       }
1915 
1916       incrementProfileCounter(CondBOp);
1917       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1918 
1919       // Any temporaries created here are conditional.
1920       eval.begin(*this);
1921       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1922                                RHSCount, LH);
1923 
1924       eval.end(*this);
1925       MCDCLogOpStack.pop_back();
1926       return;
1927     }
1928   }
1929 
1930   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1931     // br(!x, t, f) -> br(x, f, t)
1932     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1933     // LNot is taken as part of the condition for simplicity, and changing its
1934     // sense negatively impacts test vector tracking.
1935     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1936                          CGM.getCodeGenOpts().MCDCCoverage &&
1937                          isInstrumentedCondition(Cond);
1938     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1939       // Negate the count.
1940       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1941       // The values of the enum are chosen to make this negation possible.
1942       LH = static_cast<Stmt::Likelihood>(-LH);
1943       // Negate the condition and swap the destination blocks.
1944       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1945                                   FalseCount, LH);
1946     }
1947   }
1948 
1949   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1950     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1951     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1952     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1953 
1954     // The ConditionalOperator itself has no likelihood information for its
1955     // true and false branches. This matches the behavior of __builtin_expect.
1956     ConditionalEvaluation cond(*this);
1957     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1958                          getProfileCount(CondOp), Stmt::LH_None);
1959 
1960     // When computing PGO branch weights, we only know the overall count for
1961     // the true block. This code is essentially doing tail duplication of the
1962     // naive code-gen, introducing new edges for which counts are not
1963     // available. Divide the counts proportionally between the LHS and RHS of
1964     // the conditional operator.
1965     uint64_t LHSScaledTrueCount = 0;
1966     if (TrueCount) {
1967       double LHSRatio =
1968           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1969       LHSScaledTrueCount = TrueCount * LHSRatio;
1970     }
1971 
1972     cond.begin(*this);
1973     EmitBlock(LHSBlock);
1974     incrementProfileCounter(CondOp);
1975     {
1976       ApplyDebugLocation DL(*this, Cond);
1977       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1978                            LHSScaledTrueCount, LH, CondOp);
1979     }
1980     cond.end(*this);
1981 
1982     cond.begin(*this);
1983     EmitBlock(RHSBlock);
1984     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1985                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1986     cond.end(*this);
1987 
1988     return;
1989   }
1990 
1991   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1992     // Conditional operator handling can give us a throw expression as a
1993     // condition for a case like:
1994     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1995     // Fold this to:
1996     //   br(c, throw x, br(y, t, f))
1997     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1998     return;
1999   }
2000 
2001   // Emit the code with the fully general case.
2002   llvm::Value *CondV;
2003   {
2004     ApplyDebugLocation DL(*this, Cond);
2005     CondV = EvaluateExprAsBool(Cond);
2006   }
2007 
2008   // If not at the top of the logical operator nest, update MCDC temp with the
2009   // boolean result of the evaluated condition.
2010   if (!MCDCLogOpStack.empty()) {
2011     const Expr *MCDCBaseExpr = Cond;
2012     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2013     // expression, MC/DC tracks the result of the ternary, and this is tied to
2014     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2015     // this is the case, the ConditionalOperator expression is passed through
2016     // the ConditionalOp parameter and then used as the MCDC base expression.
2017     if (ConditionalOp)
2018       MCDCBaseExpr = ConditionalOp;
2019 
2020     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2021   }
2022 
2023   llvm::MDNode *Weights = nullptr;
2024   llvm::MDNode *Unpredictable = nullptr;
2025 
2026   // If the branch has a condition wrapped by __builtin_unpredictable,
2027   // create metadata that specifies that the branch is unpredictable.
2028   // Don't bother if not optimizing because that metadata would not be used.
2029   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2030   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2031     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2032     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2033       llvm::MDBuilder MDHelper(getLLVMContext());
2034       Unpredictable = MDHelper.createUnpredictable();
2035     }
2036   }
2037 
2038   // If there is a Likelihood knowledge for the cond, lower it.
2039   // Note that if not optimizing this won't emit anything.
2040   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2041   if (CondV != NewCondV)
2042     CondV = NewCondV;
2043   else {
2044     // Otherwise, lower profile counts. Note that we do this even at -O0.
2045     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2046     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2047   }
2048 
2049   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2050 }
2051 
2052 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2053 /// specified stmt yet.
2054 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2055   CGM.ErrorUnsupported(S, Type);
2056 }
2057 
2058 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2059 /// variable-length array whose elements have a non-zero bit-pattern.
2060 ///
2061 /// \param baseType the inner-most element type of the array
2062 /// \param src - a char* pointing to the bit-pattern for a single
2063 /// base element of the array
2064 /// \param sizeInChars - the total size of the VLA, in chars
2065 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2066                                Address dest, Address src,
2067                                llvm::Value *sizeInChars) {
2068   CGBuilderTy &Builder = CGF.Builder;
2069 
2070   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2071   llvm::Value *baseSizeInChars
2072     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2073 
2074   Address begin = dest.withElementType(CGF.Int8Ty);
2075   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2076                                                begin.emitRawPointer(CGF),
2077                                                sizeInChars, "vla.end");
2078 
2079   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2080   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2081   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2082 
2083   // Make a loop over the VLA.  C99 guarantees that the VLA element
2084   // count must be nonzero.
2085   CGF.EmitBlock(loopBB);
2086 
2087   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2088   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2089 
2090   CharUnits curAlign =
2091     dest.getAlignment().alignmentOfArrayElement(baseSize);
2092 
2093   // memcpy the individual element bit-pattern.
2094   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2095                        /*volatile*/ false);
2096 
2097   // Go to the next element.
2098   llvm::Value *next =
2099     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2100 
2101   // Leave if that's the end of the VLA.
2102   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2103   Builder.CreateCondBr(done, contBB, loopBB);
2104   cur->addIncoming(next, loopBB);
2105 
2106   CGF.EmitBlock(contBB);
2107 }
2108 
2109 void
2110 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2111   // Ignore empty classes in C++.
2112   if (getLangOpts().CPlusPlus) {
2113     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2114       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2115         return;
2116     }
2117   }
2118 
2119   if (DestPtr.getElementType() != Int8Ty)
2120     DestPtr = DestPtr.withElementType(Int8Ty);
2121 
2122   // Get size and alignment info for this aggregate.
2123   CharUnits size = getContext().getTypeSizeInChars(Ty);
2124 
2125   llvm::Value *SizeVal;
2126   const VariableArrayType *vla;
2127 
2128   // Don't bother emitting a zero-byte memset.
2129   if (size.isZero()) {
2130     // But note that getTypeInfo returns 0 for a VLA.
2131     if (const VariableArrayType *vlaType =
2132           dyn_cast_or_null<VariableArrayType>(
2133                                           getContext().getAsArrayType(Ty))) {
2134       auto VlaSize = getVLASize(vlaType);
2135       SizeVal = VlaSize.NumElts;
2136       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2137       if (!eltSize.isOne())
2138         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2139       vla = vlaType;
2140     } else {
2141       return;
2142     }
2143   } else {
2144     SizeVal = CGM.getSize(size);
2145     vla = nullptr;
2146   }
2147 
2148   // If the type contains a pointer to data member we can't memset it to zero.
2149   // Instead, create a null constant and copy it to the destination.
2150   // TODO: there are other patterns besides zero that we can usefully memset,
2151   // like -1, which happens to be the pattern used by member-pointers.
2152   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2153     // For a VLA, emit a single element, then splat that over the VLA.
2154     if (vla) Ty = getContext().getBaseElementType(vla);
2155 
2156     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2157 
2158     llvm::GlobalVariable *NullVariable =
2159       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2160                                /*isConstant=*/true,
2161                                llvm::GlobalVariable::PrivateLinkage,
2162                                NullConstant, Twine());
2163     CharUnits NullAlign = DestPtr.getAlignment();
2164     NullVariable->setAlignment(NullAlign.getAsAlign());
2165     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2166 
2167     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2168 
2169     // Get and call the appropriate llvm.memcpy overload.
2170     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2171     return;
2172   }
2173 
2174   // Otherwise, just memset the whole thing to zero.  This is legal
2175   // because in LLVM, all default initializers (other than the ones we just
2176   // handled above) are guaranteed to have a bit pattern of all zeros.
2177   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2178 }
2179 
2180 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2181   // Make sure that there is a block for the indirect goto.
2182   if (!IndirectBranch)
2183     GetIndirectGotoBlock();
2184 
2185   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2186 
2187   // Make sure the indirect branch includes all of the address-taken blocks.
2188   IndirectBranch->addDestination(BB);
2189   return llvm::BlockAddress::get(CurFn, BB);
2190 }
2191 
2192 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2193   // If we already made the indirect branch for indirect goto, return its block.
2194   if (IndirectBranch) return IndirectBranch->getParent();
2195 
2196   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2197 
2198   // Create the PHI node that indirect gotos will add entries to.
2199   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2200                                               "indirect.goto.dest");
2201 
2202   // Create the indirect branch instruction.
2203   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2204   return IndirectBranch->getParent();
2205 }
2206 
2207 /// Computes the length of an array in elements, as well as the base
2208 /// element type and a properly-typed first element pointer.
2209 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2210                                               QualType &baseType,
2211                                               Address &addr) {
2212   const ArrayType *arrayType = origArrayType;
2213 
2214   // If it's a VLA, we have to load the stored size.  Note that
2215   // this is the size of the VLA in bytes, not its size in elements.
2216   llvm::Value *numVLAElements = nullptr;
2217   if (isa<VariableArrayType>(arrayType)) {
2218     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2219 
2220     // Walk into all VLAs.  This doesn't require changes to addr,
2221     // which has type T* where T is the first non-VLA element type.
2222     do {
2223       QualType elementType = arrayType->getElementType();
2224       arrayType = getContext().getAsArrayType(elementType);
2225 
2226       // If we only have VLA components, 'addr' requires no adjustment.
2227       if (!arrayType) {
2228         baseType = elementType;
2229         return numVLAElements;
2230       }
2231     } while (isa<VariableArrayType>(arrayType));
2232 
2233     // We get out here only if we find a constant array type
2234     // inside the VLA.
2235   }
2236 
2237   // We have some number of constant-length arrays, so addr should
2238   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2239   // down to the first element of addr.
2240   SmallVector<llvm::Value*, 8> gepIndices;
2241 
2242   // GEP down to the array type.
2243   llvm::ConstantInt *zero = Builder.getInt32(0);
2244   gepIndices.push_back(zero);
2245 
2246   uint64_t countFromCLAs = 1;
2247   QualType eltType;
2248 
2249   llvm::ArrayType *llvmArrayType =
2250     dyn_cast<llvm::ArrayType>(addr.getElementType());
2251   while (llvmArrayType) {
2252     assert(isa<ConstantArrayType>(arrayType));
2253     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2254            llvmArrayType->getNumElements());
2255 
2256     gepIndices.push_back(zero);
2257     countFromCLAs *= llvmArrayType->getNumElements();
2258     eltType = arrayType->getElementType();
2259 
2260     llvmArrayType =
2261       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2262     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2263     assert((!llvmArrayType || arrayType) &&
2264            "LLVM and Clang types are out-of-synch");
2265   }
2266 
2267   if (arrayType) {
2268     // From this point onwards, the Clang array type has been emitted
2269     // as some other type (probably a packed struct). Compute the array
2270     // size, and just emit the 'begin' expression as a bitcast.
2271     while (arrayType) {
2272       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2273       eltType = arrayType->getElementType();
2274       arrayType = getContext().getAsArrayType(eltType);
2275     }
2276 
2277     llvm::Type *baseType = ConvertType(eltType);
2278     addr = addr.withElementType(baseType);
2279   } else {
2280     // Create the actual GEP.
2281     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2282                                              addr.emitRawPointer(*this),
2283                                              gepIndices, "array.begin"),
2284                    ConvertTypeForMem(eltType), addr.getAlignment());
2285   }
2286 
2287   baseType = eltType;
2288 
2289   llvm::Value *numElements
2290     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2291 
2292   // If we had any VLA dimensions, factor them in.
2293   if (numVLAElements)
2294     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2295 
2296   return numElements;
2297 }
2298 
2299 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2300   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2301   assert(vla && "type was not a variable array type!");
2302   return getVLASize(vla);
2303 }
2304 
2305 CodeGenFunction::VlaSizePair
2306 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2307   // The number of elements so far; always size_t.
2308   llvm::Value *numElements = nullptr;
2309 
2310   QualType elementType;
2311   do {
2312     elementType = type->getElementType();
2313     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2314     assert(vlaSize && "no size for VLA!");
2315     assert(vlaSize->getType() == SizeTy);
2316 
2317     if (!numElements) {
2318       numElements = vlaSize;
2319     } else {
2320       // It's undefined behavior if this wraps around, so mark it that way.
2321       // FIXME: Teach -fsanitize=undefined to trap this.
2322       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2323     }
2324   } while ((type = getContext().getAsVariableArrayType(elementType)));
2325 
2326   return { numElements, elementType };
2327 }
2328 
2329 CodeGenFunction::VlaSizePair
2330 CodeGenFunction::getVLAElements1D(QualType type) {
2331   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2332   assert(vla && "type was not a variable array type!");
2333   return getVLAElements1D(vla);
2334 }
2335 
2336 CodeGenFunction::VlaSizePair
2337 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2338   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2339   assert(VlaSize && "no size for VLA!");
2340   assert(VlaSize->getType() == SizeTy);
2341   return { VlaSize, Vla->getElementType() };
2342 }
2343 
2344 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2345   assert(type->isVariablyModifiedType() &&
2346          "Must pass variably modified type to EmitVLASizes!");
2347 
2348   EnsureInsertPoint();
2349 
2350   // We're going to walk down into the type and look for VLA
2351   // expressions.
2352   do {
2353     assert(type->isVariablyModifiedType());
2354 
2355     const Type *ty = type.getTypePtr();
2356     switch (ty->getTypeClass()) {
2357 
2358 #define TYPE(Class, Base)
2359 #define ABSTRACT_TYPE(Class, Base)
2360 #define NON_CANONICAL_TYPE(Class, Base)
2361 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2362 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2363 #include "clang/AST/TypeNodes.inc"
2364       llvm_unreachable("unexpected dependent type!");
2365 
2366     // These types are never variably-modified.
2367     case Type::Builtin:
2368     case Type::Complex:
2369     case Type::Vector:
2370     case Type::ExtVector:
2371     case Type::ConstantMatrix:
2372     case Type::Record:
2373     case Type::Enum:
2374     case Type::Using:
2375     case Type::TemplateSpecialization:
2376     case Type::ObjCTypeParam:
2377     case Type::ObjCObject:
2378     case Type::ObjCInterface:
2379     case Type::ObjCObjectPointer:
2380     case Type::BitInt:
2381       llvm_unreachable("type class is never variably-modified!");
2382 
2383     case Type::Elaborated:
2384       type = cast<ElaboratedType>(ty)->getNamedType();
2385       break;
2386 
2387     case Type::Adjusted:
2388       type = cast<AdjustedType>(ty)->getAdjustedType();
2389       break;
2390 
2391     case Type::Decayed:
2392       type = cast<DecayedType>(ty)->getPointeeType();
2393       break;
2394 
2395     case Type::Pointer:
2396       type = cast<PointerType>(ty)->getPointeeType();
2397       break;
2398 
2399     case Type::BlockPointer:
2400       type = cast<BlockPointerType>(ty)->getPointeeType();
2401       break;
2402 
2403     case Type::LValueReference:
2404     case Type::RValueReference:
2405       type = cast<ReferenceType>(ty)->getPointeeType();
2406       break;
2407 
2408     case Type::MemberPointer:
2409       type = cast<MemberPointerType>(ty)->getPointeeType();
2410       break;
2411 
2412     case Type::ArrayParameter:
2413     case Type::ConstantArray:
2414     case Type::IncompleteArray:
2415       // Losing element qualification here is fine.
2416       type = cast<ArrayType>(ty)->getElementType();
2417       break;
2418 
2419     case Type::VariableArray: {
2420       // Losing element qualification here is fine.
2421       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2422 
2423       // Unknown size indication requires no size computation.
2424       // Otherwise, evaluate and record it.
2425       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2426         // It's possible that we might have emitted this already,
2427         // e.g. with a typedef and a pointer to it.
2428         llvm::Value *&entry = VLASizeMap[sizeExpr];
2429         if (!entry) {
2430           llvm::Value *size = EmitScalarExpr(sizeExpr);
2431 
2432           // C11 6.7.6.2p5:
2433           //   If the size is an expression that is not an integer constant
2434           //   expression [...] each time it is evaluated it shall have a value
2435           //   greater than zero.
2436           if (SanOpts.has(SanitizerKind::VLABound)) {
2437             SanitizerScope SanScope(this);
2438             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2439             clang::QualType SEType = sizeExpr->getType();
2440             llvm::Value *CheckCondition =
2441                 SEType->isSignedIntegerType()
2442                     ? Builder.CreateICmpSGT(size, Zero)
2443                     : Builder.CreateICmpUGT(size, Zero);
2444             llvm::Constant *StaticArgs[] = {
2445                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2446                 EmitCheckTypeDescriptor(SEType)};
2447             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2448                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2449           }
2450 
2451           // Always zexting here would be wrong if it weren't
2452           // undefined behavior to have a negative bound.
2453           // FIXME: What about when size's type is larger than size_t?
2454           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2455         }
2456       }
2457       type = vat->getElementType();
2458       break;
2459     }
2460 
2461     case Type::FunctionProto:
2462     case Type::FunctionNoProto:
2463       type = cast<FunctionType>(ty)->getReturnType();
2464       break;
2465 
2466     case Type::Paren:
2467     case Type::TypeOf:
2468     case Type::UnaryTransform:
2469     case Type::Attributed:
2470     case Type::BTFTagAttributed:
2471     case Type::SubstTemplateTypeParm:
2472     case Type::MacroQualified:
2473     case Type::CountAttributed:
2474       // Keep walking after single level desugaring.
2475       type = type.getSingleStepDesugaredType(getContext());
2476       break;
2477 
2478     case Type::Typedef:
2479     case Type::Decltype:
2480     case Type::Auto:
2481     case Type::DeducedTemplateSpecialization:
2482     case Type::PackIndexing:
2483       // Stop walking: nothing to do.
2484       return;
2485 
2486     case Type::TypeOfExpr:
2487       // Stop walking: emit typeof expression.
2488       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2489       return;
2490 
2491     case Type::Atomic:
2492       type = cast<AtomicType>(ty)->getValueType();
2493       break;
2494 
2495     case Type::Pipe:
2496       type = cast<PipeType>(ty)->getElementType();
2497       break;
2498     }
2499   } while (type->isVariablyModifiedType());
2500 }
2501 
2502 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2503   if (getContext().getBuiltinVaListType()->isArrayType())
2504     return EmitPointerWithAlignment(E);
2505   return EmitLValue(E).getAddress();
2506 }
2507 
2508 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2509   return EmitLValue(E).getAddress();
2510 }
2511 
2512 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2513                                               const APValue &Init) {
2514   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2515   if (CGDebugInfo *Dbg = getDebugInfo())
2516     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2517       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2518 }
2519 
2520 CodeGenFunction::PeepholeProtection
2521 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2522   // At the moment, the only aggressive peephole we do in IR gen
2523   // is trunc(zext) folding, but if we add more, we can easily
2524   // extend this protection.
2525 
2526   if (!rvalue.isScalar()) return PeepholeProtection();
2527   llvm::Value *value = rvalue.getScalarVal();
2528   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2529 
2530   // Just make an extra bitcast.
2531   assert(HaveInsertPoint());
2532   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2533                                                   Builder.GetInsertBlock());
2534 
2535   PeepholeProtection protection;
2536   protection.Inst = inst;
2537   return protection;
2538 }
2539 
2540 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2541   if (!protection.Inst) return;
2542 
2543   // In theory, we could try to duplicate the peepholes now, but whatever.
2544   protection.Inst->eraseFromParent();
2545 }
2546 
2547 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2548                                               QualType Ty, SourceLocation Loc,
2549                                               SourceLocation AssumptionLoc,
2550                                               llvm::Value *Alignment,
2551                                               llvm::Value *OffsetValue) {
2552   if (Alignment->getType() != IntPtrTy)
2553     Alignment =
2554         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2555   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2556     OffsetValue =
2557         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2558   llvm::Value *TheCheck = nullptr;
2559   if (SanOpts.has(SanitizerKind::Alignment)) {
2560     llvm::Value *PtrIntValue =
2561         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2562 
2563     if (OffsetValue) {
2564       bool IsOffsetZero = false;
2565       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2566         IsOffsetZero = CI->isZero();
2567 
2568       if (!IsOffsetZero)
2569         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2570     }
2571 
2572     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2573     llvm::Value *Mask =
2574         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2575     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2576     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2577   }
2578   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2579       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2580 
2581   if (!SanOpts.has(SanitizerKind::Alignment))
2582     return;
2583   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2584                                OffsetValue, TheCheck, Assumption);
2585 }
2586 
2587 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2588                                               const Expr *E,
2589                                               SourceLocation AssumptionLoc,
2590                                               llvm::Value *Alignment,
2591                                               llvm::Value *OffsetValue) {
2592   QualType Ty = E->getType();
2593   SourceLocation Loc = E->getExprLoc();
2594 
2595   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2596                           OffsetValue);
2597 }
2598 
2599 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2600                                                  llvm::Value *AnnotatedVal,
2601                                                  StringRef AnnotationStr,
2602                                                  SourceLocation Location,
2603                                                  const AnnotateAttr *Attr) {
2604   SmallVector<llvm::Value *, 5> Args = {
2605       AnnotatedVal,
2606       CGM.EmitAnnotationString(AnnotationStr),
2607       CGM.EmitAnnotationUnit(Location),
2608       CGM.EmitAnnotationLineNo(Location),
2609   };
2610   if (Attr)
2611     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2612   return Builder.CreateCall(AnnotationFn, Args);
2613 }
2614 
2615 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2616   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2617   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2618     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2619                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2620                        V, I->getAnnotation(), D->getLocation(), I);
2621 }
2622 
2623 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2624                                               Address Addr) {
2625   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2626   llvm::Value *V = Addr.emitRawPointer(*this);
2627   llvm::Type *VTy = V->getType();
2628   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2629   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2630   llvm::PointerType *IntrinTy =
2631       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2632   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2633                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2634 
2635   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2636     // FIXME Always emit the cast inst so we can differentiate between
2637     // annotation on the first field of a struct and annotation on the struct
2638     // itself.
2639     if (VTy != IntrinTy)
2640       V = Builder.CreateBitCast(V, IntrinTy);
2641     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2642     V = Builder.CreateBitCast(V, VTy);
2643   }
2644 
2645   return Address(V, Addr.getElementType(), Addr.getAlignment());
2646 }
2647 
2648 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2649 
2650 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2651     : CGF(CGF) {
2652   assert(!CGF->IsSanitizerScope);
2653   CGF->IsSanitizerScope = true;
2654 }
2655 
2656 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2657   CGF->IsSanitizerScope = false;
2658 }
2659 
2660 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2661                                    const llvm::Twine &Name,
2662                                    llvm::BasicBlock::iterator InsertPt) const {
2663   LoopStack.InsertHelper(I);
2664   if (IsSanitizerScope)
2665     I->setNoSanitizeMetadata();
2666 }
2667 
2668 void CGBuilderInserter::InsertHelper(
2669     llvm::Instruction *I, const llvm::Twine &Name,
2670     llvm::BasicBlock::iterator InsertPt) const {
2671   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2672   if (CGF)
2673     CGF->InsertHelper(I, Name, InsertPt);
2674 }
2675 
2676 // Emits an error if we don't have a valid set of target features for the
2677 // called function.
2678 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2679                                           const FunctionDecl *TargetDecl) {
2680   // SemaChecking cannot handle below x86 builtins because they have different
2681   // parameter ranges with different TargetAttribute of caller.
2682   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2683     unsigned BuiltinID = TargetDecl->getBuiltinID();
2684     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2685         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2686         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2687         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2688       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2689       llvm::StringMap<bool> TargetFetureMap;
2690       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2691       llvm::APSInt Result =
2692           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2693       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2694         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2695             << TargetDecl->getDeclName() << "avx";
2696     }
2697   }
2698   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2699 }
2700 
2701 // Emits an error if we don't have a valid set of target features for the
2702 // called function.
2703 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2704                                           const FunctionDecl *TargetDecl) {
2705   // Early exit if this is an indirect call.
2706   if (!TargetDecl)
2707     return;
2708 
2709   // Get the current enclosing function if it exists. If it doesn't
2710   // we can't check the target features anyhow.
2711   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2712   if (!FD)
2713     return;
2714 
2715   // Grab the required features for the call. For a builtin this is listed in
2716   // the td file with the default cpu, for an always_inline function this is any
2717   // listed cpu and any listed features.
2718   unsigned BuiltinID = TargetDecl->getBuiltinID();
2719   std::string MissingFeature;
2720   llvm::StringMap<bool> CallerFeatureMap;
2721   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2722   // When compiling in HipStdPar mode we have to be conservative in rejecting
2723   // target specific features in the FE, and defer the possible error to the
2724   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2725   // referenced by an accelerator executable function, we emit an error.
2726   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2727   if (BuiltinID) {
2728     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2729     if (!Builtin::evaluateRequiredTargetFeatures(
2730         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2731       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2732           << TargetDecl->getDeclName()
2733           << FeatureList;
2734     }
2735   } else if (!TargetDecl->isMultiVersion() &&
2736              TargetDecl->hasAttr<TargetAttr>()) {
2737     // Get the required features for the callee.
2738 
2739     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2740     ParsedTargetAttr ParsedAttr =
2741         CGM.getContext().filterFunctionTargetAttrs(TD);
2742 
2743     SmallVector<StringRef, 1> ReqFeatures;
2744     llvm::StringMap<bool> CalleeFeatureMap;
2745     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2746 
2747     for (const auto &F : ParsedAttr.Features) {
2748       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2749         ReqFeatures.push_back(StringRef(F).substr(1));
2750     }
2751 
2752     for (const auto &F : CalleeFeatureMap) {
2753       // Only positive features are "required".
2754       if (F.getValue())
2755         ReqFeatures.push_back(F.getKey());
2756     }
2757     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2758       if (!CallerFeatureMap.lookup(Feature)) {
2759         MissingFeature = Feature.str();
2760         return false;
2761       }
2762       return true;
2763     }) && !IsHipStdPar)
2764       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2765           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2766   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2767     llvm::StringMap<bool> CalleeFeatureMap;
2768     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2769 
2770     for (const auto &F : CalleeFeatureMap) {
2771       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2772                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2773           !IsHipStdPar)
2774         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2775             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2776     }
2777   }
2778 }
2779 
2780 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2781   if (!CGM.getCodeGenOpts().SanitizeStats)
2782     return;
2783 
2784   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2785   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2786   CGM.getSanStats().create(IRB, SSK);
2787 }
2788 
2789 void CodeGenFunction::EmitKCFIOperandBundle(
2790     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2791   const FunctionProtoType *FP =
2792       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2793   if (FP)
2794     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2795 }
2796 
2797 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2798     const MultiVersionResolverOption &RO) {
2799   llvm::SmallVector<StringRef, 8> CondFeatures;
2800   for (const StringRef &Feature : RO.Conditions.Features)
2801     CondFeatures.push_back(Feature);
2802   if (!CondFeatures.empty()) {
2803     return EmitAArch64CpuSupports(CondFeatures);
2804   }
2805   return nullptr;
2806 }
2807 
2808 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2809     const MultiVersionResolverOption &RO) {
2810   llvm::Value *Condition = nullptr;
2811 
2812   if (!RO.Conditions.Architecture.empty()) {
2813     StringRef Arch = RO.Conditions.Architecture;
2814     // If arch= specifies an x86-64 micro-architecture level, test the feature
2815     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2816     if (Arch.starts_with("x86-64"))
2817       Condition = EmitX86CpuSupports({Arch});
2818     else
2819       Condition = EmitX86CpuIs(Arch);
2820   }
2821 
2822   if (!RO.Conditions.Features.empty()) {
2823     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2824     Condition =
2825         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2826   }
2827   return Condition;
2828 }
2829 
2830 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2831                                              llvm::Function *Resolver,
2832                                              CGBuilderTy &Builder,
2833                                              llvm::Function *FuncToReturn,
2834                                              bool SupportsIFunc) {
2835   if (SupportsIFunc) {
2836     Builder.CreateRet(FuncToReturn);
2837     return;
2838   }
2839 
2840   llvm::SmallVector<llvm::Value *, 10> Args(
2841       llvm::make_pointer_range(Resolver->args()));
2842 
2843   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2844   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2845 
2846   if (Resolver->getReturnType()->isVoidTy())
2847     Builder.CreateRetVoid();
2848   else
2849     Builder.CreateRet(Result);
2850 }
2851 
2852 void CodeGenFunction::EmitMultiVersionResolver(
2853     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2854 
2855   llvm::Triple::ArchType ArchType =
2856       getContext().getTargetInfo().getTriple().getArch();
2857 
2858   switch (ArchType) {
2859   case llvm::Triple::x86:
2860   case llvm::Triple::x86_64:
2861     EmitX86MultiVersionResolver(Resolver, Options);
2862     return;
2863   case llvm::Triple::aarch64:
2864     EmitAArch64MultiVersionResolver(Resolver, Options);
2865     return;
2866 
2867   default:
2868     assert(false && "Only implemented for x86 and AArch64 targets");
2869   }
2870 }
2871 
2872 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2873     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2874   assert(!Options.empty() && "No multiversion resolver options found");
2875   assert(Options.back().Conditions.Features.size() == 0 &&
2876          "Default case must be last");
2877   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2878   assert(SupportsIFunc &&
2879          "Multiversion resolver requires target IFUNC support");
2880   bool AArch64CpuInitialized = false;
2881   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2882 
2883   for (const MultiVersionResolverOption &RO : Options) {
2884     Builder.SetInsertPoint(CurBlock);
2885     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2886 
2887     // The 'default' or 'all features enabled' case.
2888     if (!Condition) {
2889       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2890                                        SupportsIFunc);
2891       return;
2892     }
2893 
2894     if (!AArch64CpuInitialized) {
2895       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2896       EmitAArch64CpuInit();
2897       AArch64CpuInitialized = true;
2898       Builder.SetInsertPoint(CurBlock);
2899     }
2900 
2901     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2902     CGBuilderTy RetBuilder(*this, RetBlock);
2903     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2904                                      SupportsIFunc);
2905     CurBlock = createBasicBlock("resolver_else", Resolver);
2906     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2907   }
2908 
2909   // If no default, emit an unreachable.
2910   Builder.SetInsertPoint(CurBlock);
2911   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2912   TrapCall->setDoesNotReturn();
2913   TrapCall->setDoesNotThrow();
2914   Builder.CreateUnreachable();
2915   Builder.ClearInsertionPoint();
2916 }
2917 
2918 void CodeGenFunction::EmitX86MultiVersionResolver(
2919     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2920 
2921   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2922 
2923   // Main function's basic block.
2924   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2925   Builder.SetInsertPoint(CurBlock);
2926   EmitX86CpuInit();
2927 
2928   for (const MultiVersionResolverOption &RO : Options) {
2929     Builder.SetInsertPoint(CurBlock);
2930     llvm::Value *Condition = FormX86ResolverCondition(RO);
2931 
2932     // The 'default' or 'generic' case.
2933     if (!Condition) {
2934       assert(&RO == Options.end() - 1 &&
2935              "Default or Generic case must be last");
2936       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2937                                        SupportsIFunc);
2938       return;
2939     }
2940 
2941     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2942     CGBuilderTy RetBuilder(*this, RetBlock);
2943     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2944                                      SupportsIFunc);
2945     CurBlock = createBasicBlock("resolver_else", Resolver);
2946     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2947   }
2948 
2949   // If no generic/default, emit an unreachable.
2950   Builder.SetInsertPoint(CurBlock);
2951   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2952   TrapCall->setDoesNotReturn();
2953   TrapCall->setDoesNotThrow();
2954   Builder.CreateUnreachable();
2955   Builder.ClearInsertionPoint();
2956 }
2957 
2958 // Loc - where the diagnostic will point, where in the source code this
2959 //  alignment has failed.
2960 // SecondaryLoc - if present (will be present if sufficiently different from
2961 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2962 //  It should be the location where the __attribute__((assume_aligned))
2963 //  was written e.g.
2964 void CodeGenFunction::emitAlignmentAssumptionCheck(
2965     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2966     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2967     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2968     llvm::Instruction *Assumption) {
2969   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2970          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2971              llvm::Intrinsic::getDeclaration(
2972                  Builder.GetInsertBlock()->getParent()->getParent(),
2973                  llvm::Intrinsic::assume) &&
2974          "Assumption should be a call to llvm.assume().");
2975   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2976          "Assumption should be the last instruction of the basic block, "
2977          "since the basic block is still being generated.");
2978 
2979   if (!SanOpts.has(SanitizerKind::Alignment))
2980     return;
2981 
2982   // Don't check pointers to volatile data. The behavior here is implementation-
2983   // defined.
2984   if (Ty->getPointeeType().isVolatileQualified())
2985     return;
2986 
2987   // We need to temorairly remove the assumption so we can insert the
2988   // sanitizer check before it, else the check will be dropped by optimizations.
2989   Assumption->removeFromParent();
2990 
2991   {
2992     SanitizerScope SanScope(this);
2993 
2994     if (!OffsetValue)
2995       OffsetValue = Builder.getInt1(false); // no offset.
2996 
2997     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2998                                     EmitCheckSourceLocation(SecondaryLoc),
2999                                     EmitCheckTypeDescriptor(Ty)};
3000     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3001                                   EmitCheckValue(Alignment),
3002                                   EmitCheckValue(OffsetValue)};
3003     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3004               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3005   }
3006 
3007   // We are now in the (new, empty) "cont" basic block.
3008   // Reintroduce the assumption.
3009   Builder.Insert(Assumption);
3010   // FIXME: Assumption still has it's original basic block as it's Parent.
3011 }
3012 
3013 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3014   if (CGDebugInfo *DI = getDebugInfo())
3015     return DI->SourceLocToDebugLoc(Location);
3016 
3017   return llvm::DebugLoc();
3018 }
3019 
3020 llvm::Value *
3021 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3022                                                       Stmt::Likelihood LH) {
3023   switch (LH) {
3024   case Stmt::LH_None:
3025     return Cond;
3026   case Stmt::LH_Likely:
3027   case Stmt::LH_Unlikely:
3028     // Don't generate llvm.expect on -O0 as the backend won't use it for
3029     // anything.
3030     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3031       return Cond;
3032     llvm::Type *CondTy = Cond->getType();
3033     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3034     llvm::Function *FnExpect =
3035         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3036     llvm::Value *ExpectedValueOfCond =
3037         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3038     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3039                               Cond->getName() + ".expval");
3040   }
3041   llvm_unreachable("Unknown Likelihood");
3042 }
3043 
3044 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3045                                                     unsigned NumElementsDst,
3046                                                     const llvm::Twine &Name) {
3047   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3048   unsigned NumElementsSrc = SrcTy->getNumElements();
3049   if (NumElementsSrc == NumElementsDst)
3050     return SrcVec;
3051 
3052   std::vector<int> ShuffleMask(NumElementsDst, -1);
3053   for (unsigned MaskIdx = 0;
3054        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3055     ShuffleMask[MaskIdx] = MaskIdx;
3056 
3057   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3058 }
3059 
3060 void CodeGenFunction::EmitPointerAuthOperandBundle(
3061     const CGPointerAuthInfo &PointerAuth,
3062     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3063   if (!PointerAuth.isSigned())
3064     return;
3065 
3066   auto *Key = Builder.getInt32(PointerAuth.getKey());
3067 
3068   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3069   if (!Discriminator)
3070     Discriminator = Builder.getSize(0);
3071 
3072   llvm::Value *Args[] = {Key, Discriminator};
3073   Bundles.emplace_back("ptrauth", Args);
3074 }
3075 
3076 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3077                                           const CGPointerAuthInfo &PointerAuth,
3078                                           llvm::Value *Pointer,
3079                                           unsigned IntrinsicID) {
3080   if (!PointerAuth)
3081     return Pointer;
3082 
3083   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3084 
3085   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3086   if (!Discriminator) {
3087     Discriminator = CGF.Builder.getSize(0);
3088   }
3089 
3090   // Convert the pointer to intptr_t before signing it.
3091   auto OrigType = Pointer->getType();
3092   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3093 
3094   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3095   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3096   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3097 
3098   // Convert back to the original type.
3099   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3100   return Pointer;
3101 }
3102 
3103 llvm::Value *
3104 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3105                                      llvm::Value *Pointer) {
3106   if (!PointerAuth.shouldSign())
3107     return Pointer;
3108   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3109                                llvm::Intrinsic::ptrauth_sign);
3110 }
3111 
3112 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3113                               const CGPointerAuthInfo &PointerAuth,
3114                               llvm::Value *Pointer) {
3115   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3116 
3117   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3118   // Convert the pointer to intptr_t before signing it.
3119   auto OrigType = Pointer->getType();
3120   Pointer = CGF.EmitRuntimeCall(
3121       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3122   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3123 }
3124 
3125 llvm::Value *
3126 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3127                                      llvm::Value *Pointer) {
3128   if (PointerAuth.shouldStrip()) {
3129     return EmitStrip(*this, PointerAuth, Pointer);
3130   }
3131   if (!PointerAuth.shouldAuth()) {
3132     return Pointer;
3133   }
3134 
3135   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3136                                llvm::Intrinsic::ptrauth_auth);
3137 }
3138