1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!getLangOpts().OpenCL) 639 return; 640 641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 642 QualType HintQTy = A->getTypeHint(); 643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 644 bool IsSignedInteger = 645 HintQTy->isSignedIntegerType() || 646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 647 llvm::Metadata *AttrMDArgs[] = { 648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 649 CGM.getTypes().ConvertType(A->getTypeHint()))), 650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 651 llvm::IntegerType::get(Context, 32), 652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 654 } 655 656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 662 } 663 664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 665 llvm::Metadata *AttrMDArgs[] = { 666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 670 } 671 672 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 674 llvm::Metadata *AttrMDArgs[] = { 675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 676 Fn->setMetadata("intel_reqd_sub_group_size", 677 llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 } 680 681 /// Determine whether the function F ends with a return stmt. 682 static bool endsWithReturn(const Decl* F) { 683 const Stmt *Body = nullptr; 684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 685 Body = FD->getBody(); 686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 687 Body = OMD->getBody(); 688 689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 690 auto LastStmt = CS->body_rbegin(); 691 if (LastStmt != CS->body_rend()) 692 return isa<ReturnStmt>(*LastStmt); 693 } 694 return false; 695 } 696 697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 698 if (SanOpts.has(SanitizerKind::Thread)) { 699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 701 } 702 } 703 704 /// Check if the return value of this function requires sanitization. 705 bool CodeGenFunction::requiresReturnValueCheck() const { 706 return requiresReturnValueNullabilityCheck() || 707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 708 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 709 } 710 711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 715 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 716 return false; 717 718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 719 return false; 720 721 if (MD->getNumParams() == 2) { 722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 723 if (!PT || !PT->isVoidPointerType() || 724 !PT->getPointeeType().isConstQualified()) 725 return false; 726 } 727 728 return true; 729 } 730 731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 734 } 735 736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 737 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 738 getTarget().getCXXABI().isMicrosoft() && 739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 740 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 741 }); 742 } 743 744 /// Return the UBSan prologue signature for \p FD if one is available. 745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 746 const FunctionDecl *FD) { 747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 748 if (!MD->isStatic()) 749 return nullptr; 750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 751 } 752 753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 754 llvm::Function *Fn, 755 const CGFunctionInfo &FnInfo, 756 const FunctionArgList &Args, 757 SourceLocation Loc, 758 SourceLocation StartLoc) { 759 assert(!CurFn && 760 "Do not use a CodeGenFunction object for more than one function"); 761 762 const Decl *D = GD.getDecl(); 763 764 DidCallStackSave = false; 765 CurCodeDecl = D; 766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 767 if (FD && FD->usesSEHTry()) 768 CurSEHParent = GD; 769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 770 FnRetTy = RetTy; 771 CurFn = Fn; 772 CurFnInfo = &FnInfo; 773 assert(CurFn->isDeclaration() && "Function already has body?"); 774 775 // If this function is ignored for any of the enabled sanitizers, 776 // disable the sanitizer for the function. 777 do { 778 #define SANITIZER(NAME, ID) \ 779 if (SanOpts.empty()) \ 780 break; \ 781 if (SanOpts.has(SanitizerKind::ID)) \ 782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 783 SanOpts.set(SanitizerKind::ID, false); 784 785 #include "clang/Basic/Sanitizers.def" 786 #undef SANITIZER 787 } while (false); 788 789 if (D) { 790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 791 SanitizerMask no_sanitize_mask; 792 bool NoSanitizeCoverage = false; 793 794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 795 no_sanitize_mask |= Attr->getMask(); 796 // SanitizeCoverage is not handled by SanOpts. 797 if (Attr->hasCoverage()) 798 NoSanitizeCoverage = true; 799 } 800 801 // Apply the no_sanitize* attributes to SanOpts. 802 SanOpts.Mask &= ~no_sanitize_mask; 803 if (no_sanitize_mask & SanitizerKind::Address) 804 SanOpts.set(SanitizerKind::KernelAddress, false); 805 if (no_sanitize_mask & SanitizerKind::KernelAddress) 806 SanOpts.set(SanitizerKind::Address, false); 807 if (no_sanitize_mask & SanitizerKind::HWAddress) 808 SanOpts.set(SanitizerKind::KernelHWAddress, false); 809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 810 SanOpts.set(SanitizerKind::HWAddress, false); 811 812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 814 815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 817 818 // Some passes need the non-negated no_sanitize attribute. Pass them on. 819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 820 if (no_sanitize_mask & SanitizerKind::Thread) 821 Fn->addFnAttr("no_sanitize_thread"); 822 } 823 } 824 825 if (ShouldSkipSanitizerInstrumentation()) { 826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 827 } else { 828 // Apply sanitizer attributes to the function. 829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 832 SanitizerKind::KernelHWAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 834 if (SanOpts.has(SanitizerKind::MemtagStack)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 836 if (SanOpts.has(SanitizerKind::Thread)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 838 if (SanOpts.has(SanitizerKind::NumericalStability)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 } 843 if (SanOpts.has(SanitizerKind::SafeStack)) 844 Fn->addFnAttr(llvm::Attribute::SafeStack); 845 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 847 848 // Apply fuzzing attribute to the function. 849 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 850 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 851 852 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 853 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 854 if (SanOpts.has(SanitizerKind::Thread)) { 855 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 856 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 857 if (OMD->getMethodFamily() == OMF_dealloc || 858 OMD->getMethodFamily() == OMF_initialize || 859 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 860 markAsIgnoreThreadCheckingAtRuntime(Fn); 861 } 862 } 863 } 864 865 // Ignore unrelated casts in STL allocate() since the allocator must cast 866 // from void* to T* before object initialization completes. Don't match on the 867 // namespace because not all allocators are in std:: 868 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 869 if (matchesStlAllocatorFn(D, getContext())) 870 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 871 } 872 873 // Ignore null checks in coroutine functions since the coroutines passes 874 // are not aware of how to move the extra UBSan instructions across the split 875 // coroutine boundaries. 876 if (D && SanOpts.has(SanitizerKind::Null)) 877 if (FD && FD->getBody() && 878 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 879 SanOpts.Mask &= ~SanitizerKind::Null; 880 881 // Add pointer authentication attributes. 882 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 883 if (CodeGenOpts.PointerAuth.FunctionPointers) 884 Fn->addFnAttr("ptrauth-calls"); 885 886 // Apply xray attributes to the function (as a string, for now) 887 bool AlwaysXRayAttr = false; 888 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 889 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 890 XRayInstrKind::FunctionEntry) || 891 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 892 XRayInstrKind::FunctionExit)) { 893 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 894 Fn->addFnAttr("function-instrument", "xray-always"); 895 AlwaysXRayAttr = true; 896 } 897 if (XRayAttr->neverXRayInstrument()) 898 Fn->addFnAttr("function-instrument", "xray-never"); 899 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 900 if (ShouldXRayInstrumentFunction()) 901 Fn->addFnAttr("xray-log-args", 902 llvm::utostr(LogArgs->getArgumentCount())); 903 } 904 } else { 905 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 906 Fn->addFnAttr( 907 "xray-instruction-threshold", 908 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 909 } 910 911 if (ShouldXRayInstrumentFunction()) { 912 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 913 Fn->addFnAttr("xray-ignore-loops"); 914 915 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 916 XRayInstrKind::FunctionExit)) 917 Fn->addFnAttr("xray-skip-exit"); 918 919 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 920 XRayInstrKind::FunctionEntry)) 921 Fn->addFnAttr("xray-skip-entry"); 922 923 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 924 if (FuncGroups > 1) { 925 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 926 CurFn->getName().bytes_end()); 927 auto Group = crc32(FuncName) % FuncGroups; 928 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 929 !AlwaysXRayAttr) 930 Fn->addFnAttr("function-instrument", "xray-never"); 931 } 932 } 933 934 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 935 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 936 case ProfileList::Skip: 937 Fn->addFnAttr(llvm::Attribute::SkipProfile); 938 break; 939 case ProfileList::Forbid: 940 Fn->addFnAttr(llvm::Attribute::NoProfile); 941 break; 942 case ProfileList::Allow: 943 break; 944 } 945 } 946 947 unsigned Count, Offset; 948 if (const auto *Attr = 949 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 950 Count = Attr->getCount(); 951 Offset = Attr->getOffset(); 952 } else { 953 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 954 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 955 } 956 if (Count && Offset <= Count) { 957 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 958 if (Offset) 959 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 960 } 961 // Instruct that functions for COFF/CodeView targets should start with a 962 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 963 // backends as they don't need it -- instructions on these architectures are 964 // always atomically patchable at runtime. 965 if (CGM.getCodeGenOpts().HotPatch && 966 getContext().getTargetInfo().getTriple().isX86() && 967 getContext().getTargetInfo().getTriple().getEnvironment() != 968 llvm::Triple::CODE16) 969 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 970 971 // Add no-jump-tables value. 972 if (CGM.getCodeGenOpts().NoUseJumpTables) 973 Fn->addFnAttr("no-jump-tables", "true"); 974 975 // Add no-inline-line-tables value. 976 if (CGM.getCodeGenOpts().NoInlineLineTables) 977 Fn->addFnAttr("no-inline-line-tables"); 978 979 // Add profile-sample-accurate value. 980 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 981 Fn->addFnAttr("profile-sample-accurate"); 982 983 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 984 Fn->addFnAttr("use-sample-profile"); 985 986 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 987 Fn->addFnAttr("cfi-canonical-jump-table"); 988 989 if (D && D->hasAttr<NoProfileFunctionAttr>()) 990 Fn->addFnAttr(llvm::Attribute::NoProfile); 991 992 if (D) { 993 // Function attributes take precedence over command line flags. 994 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 995 switch (A->getThunkType()) { 996 case FunctionReturnThunksAttr::Kind::Keep: 997 break; 998 case FunctionReturnThunksAttr::Kind::Extern: 999 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1000 break; 1001 } 1002 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1003 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1004 } 1005 1006 if (FD && (getLangOpts().OpenCL || 1007 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 1008 // Add metadata for a kernel function. 1009 EmitKernelMetadata(FD, Fn); 1010 } 1011 1012 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1013 Fn->setMetadata("clspv_libclc_builtin", 1014 llvm::MDNode::get(getLLVMContext(), {})); 1015 } 1016 1017 // If we are checking function types, emit a function type signature as 1018 // prologue data. 1019 if (FD && SanOpts.has(SanitizerKind::Function)) { 1020 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1021 llvm::LLVMContext &Ctx = Fn->getContext(); 1022 llvm::MDBuilder MDB(Ctx); 1023 Fn->setMetadata( 1024 llvm::LLVMContext::MD_func_sanitize, 1025 MDB.createRTTIPointerPrologue( 1026 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1027 } 1028 } 1029 1030 // If we're checking nullability, we need to know whether we can check the 1031 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1032 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1033 auto Nullability = FnRetTy->getNullability(); 1034 if (Nullability && *Nullability == NullabilityKind::NonNull && 1035 !FnRetTy->isRecordType()) { 1036 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1037 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1038 RetValNullabilityPrecondition = 1039 llvm::ConstantInt::getTrue(getLLVMContext()); 1040 } 1041 } 1042 1043 // If we're in C++ mode and the function name is "main", it is guaranteed 1044 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1045 // used within a program"). 1046 // 1047 // OpenCL C 2.0 v2.2-11 s6.9.i: 1048 // Recursion is not supported. 1049 // 1050 // SYCL v1.2.1 s3.10: 1051 // kernels cannot include RTTI information, exception classes, 1052 // recursive code, virtual functions or make use of C++ libraries that 1053 // are not compiled for the device. 1054 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1055 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1056 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1057 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1058 1059 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1060 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1061 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1062 Builder.setDefaultConstrainedRounding(RM); 1063 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1064 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1065 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1066 RM != llvm::RoundingMode::NearestTiesToEven))) { 1067 Builder.setIsFPConstrained(true); 1068 Fn->addFnAttr(llvm::Attribute::StrictFP); 1069 } 1070 1071 // If a custom alignment is used, force realigning to this alignment on 1072 // any main function which certainly will need it. 1073 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1074 CGM.getCodeGenOpts().StackAlignment)) 1075 Fn->addFnAttr("stackrealign"); 1076 1077 // "main" doesn't need to zero out call-used registers. 1078 if (FD && FD->isMain()) 1079 Fn->removeFnAttr("zero-call-used-regs"); 1080 1081 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1082 1083 // Create a marker to make it easy to insert allocas into the entryblock 1084 // later. Don't create this with the builder, because we don't want it 1085 // folded. 1086 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1087 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1088 1089 ReturnBlock = getJumpDestInCurrentScope("return"); 1090 1091 Builder.SetInsertPoint(EntryBB); 1092 1093 // If we're checking the return value, allocate space for a pointer to a 1094 // precise source location of the checked return statement. 1095 if (requiresReturnValueCheck()) { 1096 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1097 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1098 ReturnLocation); 1099 } 1100 1101 // Emit subprogram debug descriptor. 1102 if (CGDebugInfo *DI = getDebugInfo()) { 1103 // Reconstruct the type from the argument list so that implicit parameters, 1104 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1105 // convention. 1106 DI->emitFunctionStart(GD, Loc, StartLoc, 1107 DI->getFunctionType(FD, RetTy, Args), CurFn, 1108 CurFuncIsThunk); 1109 } 1110 1111 if (ShouldInstrumentFunction()) { 1112 if (CGM.getCodeGenOpts().InstrumentFunctions) 1113 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1114 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1115 CurFn->addFnAttr("instrument-function-entry-inlined", 1116 "__cyg_profile_func_enter"); 1117 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1118 CurFn->addFnAttr("instrument-function-entry-inlined", 1119 "__cyg_profile_func_enter_bare"); 1120 } 1121 1122 // Since emitting the mcount call here impacts optimizations such as function 1123 // inlining, we just add an attribute to insert a mcount call in backend. 1124 // The attribute "counting-function" is set to mcount function name which is 1125 // architecture dependent. 1126 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1127 // Calls to fentry/mcount should not be generated if function has 1128 // the no_instrument_function attribute. 1129 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1130 if (CGM.getCodeGenOpts().CallFEntry) 1131 Fn->addFnAttr("fentry-call", "true"); 1132 else { 1133 Fn->addFnAttr("instrument-function-entry-inlined", 1134 getTarget().getMCountName()); 1135 } 1136 if (CGM.getCodeGenOpts().MNopMCount) { 1137 if (!CGM.getCodeGenOpts().CallFEntry) 1138 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1139 << "-mnop-mcount" << "-mfentry"; 1140 Fn->addFnAttr("mnop-mcount"); 1141 } 1142 1143 if (CGM.getCodeGenOpts().RecordMCount) { 1144 if (!CGM.getCodeGenOpts().CallFEntry) 1145 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1146 << "-mrecord-mcount" << "-mfentry"; 1147 Fn->addFnAttr("mrecord-mcount"); 1148 } 1149 } 1150 } 1151 1152 if (CGM.getCodeGenOpts().PackedStack) { 1153 if (getContext().getTargetInfo().getTriple().getArch() != 1154 llvm::Triple::systemz) 1155 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1156 << "-mpacked-stack"; 1157 Fn->addFnAttr("packed-stack"); 1158 } 1159 1160 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1161 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1162 Fn->addFnAttr("warn-stack-size", 1163 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1164 1165 if (RetTy->isVoidType()) { 1166 // Void type; nothing to return. 1167 ReturnValue = Address::invalid(); 1168 1169 // Count the implicit return. 1170 if (!endsWithReturn(D)) 1171 ++NumReturnExprs; 1172 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1173 // Indirect return; emit returned value directly into sret slot. 1174 // This reduces code size, and affects correctness in C++. 1175 auto AI = CurFn->arg_begin(); 1176 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1177 ++AI; 1178 ReturnValue = makeNaturalAddressForPointer( 1179 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1180 nullptr, nullptr, KnownNonNull); 1181 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1182 ReturnValuePointer = 1183 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1184 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1185 ReturnValuePointer); 1186 } 1187 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1188 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1189 // Load the sret pointer from the argument struct and return into that. 1190 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1191 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1192 --EI; 1193 llvm::Value *Addr = Builder.CreateStructGEP( 1194 CurFnInfo->getArgStruct(), &*EI, Idx); 1195 llvm::Type *Ty = 1196 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1197 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1198 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1199 ReturnValue = Address(Addr, ConvertType(RetTy), 1200 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1201 } else { 1202 ReturnValue = CreateIRTemp(RetTy, "retval"); 1203 1204 // Tell the epilog emitter to autorelease the result. We do this 1205 // now so that various specialized functions can suppress it 1206 // during their IR-generation. 1207 if (getLangOpts().ObjCAutoRefCount && 1208 !CurFnInfo->isReturnsRetained() && 1209 RetTy->isObjCRetainableType()) 1210 AutoreleaseResult = true; 1211 } 1212 1213 EmitStartEHSpec(CurCodeDecl); 1214 1215 PrologueCleanupDepth = EHStack.stable_begin(); 1216 1217 // Emit OpenMP specific initialization of the device functions. 1218 if (getLangOpts().OpenMP && CurCodeDecl) 1219 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1220 1221 // Handle emitting HLSL entry functions. 1222 if (D && D->hasAttr<HLSLShaderAttr>()) 1223 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1224 1225 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1226 1227 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1228 MD && !MD->isStatic()) { 1229 bool IsInLambda = 1230 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1231 if (MD->isImplicitObjectMemberFunction()) 1232 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1233 if (IsInLambda) { 1234 // We're in a lambda; figure out the captures. 1235 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1236 LambdaThisCaptureField); 1237 if (LambdaThisCaptureField) { 1238 // If the lambda captures the object referred to by '*this' - either by 1239 // value or by reference, make sure CXXThisValue points to the correct 1240 // object. 1241 1242 // Get the lvalue for the field (which is a copy of the enclosing object 1243 // or contains the address of the enclosing object). 1244 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1245 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1246 // If the enclosing object was captured by value, just use its 1247 // address. Sign this pointer. 1248 CXXThisValue = ThisFieldLValue.getPointer(*this); 1249 } else { 1250 // Load the lvalue pointed to by the field, since '*this' was captured 1251 // by reference. 1252 CXXThisValue = 1253 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1254 } 1255 } 1256 for (auto *FD : MD->getParent()->fields()) { 1257 if (FD->hasCapturedVLAType()) { 1258 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1259 SourceLocation()).getScalarVal(); 1260 auto VAT = FD->getCapturedVLAType(); 1261 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1262 } 1263 } 1264 } else if (MD->isImplicitObjectMemberFunction()) { 1265 // Not in a lambda; just use 'this' from the method. 1266 // FIXME: Should we generate a new load for each use of 'this'? The 1267 // fast register allocator would be happier... 1268 CXXThisValue = CXXABIThisValue; 1269 } 1270 1271 // Check the 'this' pointer once per function, if it's available. 1272 if (CXXABIThisValue) { 1273 SanitizerSet SkippedChecks; 1274 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1275 QualType ThisTy = MD->getThisType(); 1276 1277 // If this is the call operator of a lambda with no captures, it 1278 // may have a static invoker function, which may call this operator with 1279 // a null 'this' pointer. 1280 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1281 SkippedChecks.set(SanitizerKind::Null, true); 1282 1283 EmitTypeCheck( 1284 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1285 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1286 } 1287 } 1288 1289 // If any of the arguments have a variably modified type, make sure to 1290 // emit the type size, but only if the function is not naked. Naked functions 1291 // have no prolog to run this evaluation. 1292 if (!FD || !FD->hasAttr<NakedAttr>()) { 1293 for (const VarDecl *VD : Args) { 1294 // Dig out the type as written from ParmVarDecls; it's unclear whether 1295 // the standard (C99 6.9.1p10) requires this, but we're following the 1296 // precedent set by gcc. 1297 QualType Ty; 1298 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1299 Ty = PVD->getOriginalType(); 1300 else 1301 Ty = VD->getType(); 1302 1303 if (Ty->isVariablyModifiedType()) 1304 EmitVariablyModifiedType(Ty); 1305 } 1306 } 1307 // Emit a location at the end of the prologue. 1308 if (CGDebugInfo *DI = getDebugInfo()) 1309 DI->EmitLocation(Builder, StartLoc); 1310 // TODO: Do we need to handle this in two places like we do with 1311 // target-features/target-cpu? 1312 if (CurFuncDecl) 1313 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1314 LargestVectorWidth = VecWidth->getVectorWidth(); 1315 1316 if (CGM.shouldEmitConvergenceTokens()) 1317 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1318 } 1319 1320 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1321 incrementProfileCounter(Body); 1322 maybeCreateMCDCCondBitmap(); 1323 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1324 EmitCompoundStmtWithoutScope(*S); 1325 else 1326 EmitStmt(Body); 1327 } 1328 1329 /// When instrumenting to collect profile data, the counts for some blocks 1330 /// such as switch cases need to not include the fall-through counts, so 1331 /// emit a branch around the instrumentation code. When not instrumenting, 1332 /// this just calls EmitBlock(). 1333 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1334 const Stmt *S) { 1335 llvm::BasicBlock *SkipCountBB = nullptr; 1336 // Do not skip over the instrumentation when single byte coverage mode is 1337 // enabled. 1338 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1339 !llvm::EnableSingleByteCoverage) { 1340 // When instrumenting for profiling, the fallthrough to certain 1341 // statements needs to skip over the instrumentation code so that we 1342 // get an accurate count. 1343 SkipCountBB = createBasicBlock("skipcount"); 1344 EmitBranch(SkipCountBB); 1345 } 1346 EmitBlock(BB); 1347 uint64_t CurrentCount = getCurrentProfileCount(); 1348 incrementProfileCounter(S); 1349 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1350 if (SkipCountBB) 1351 EmitBlock(SkipCountBB); 1352 } 1353 1354 /// Tries to mark the given function nounwind based on the 1355 /// non-existence of any throwing calls within it. We believe this is 1356 /// lightweight enough to do at -O0. 1357 static void TryMarkNoThrow(llvm::Function *F) { 1358 // LLVM treats 'nounwind' on a function as part of the type, so we 1359 // can't do this on functions that can be overwritten. 1360 if (F->isInterposable()) return; 1361 1362 for (llvm::BasicBlock &BB : *F) 1363 for (llvm::Instruction &I : BB) 1364 if (I.mayThrow()) 1365 return; 1366 1367 F->setDoesNotThrow(); 1368 } 1369 1370 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1371 FunctionArgList &Args) { 1372 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1373 QualType ResTy = FD->getReturnType(); 1374 1375 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1376 if (MD && MD->isImplicitObjectMemberFunction()) { 1377 if (CGM.getCXXABI().HasThisReturn(GD)) 1378 ResTy = MD->getThisType(); 1379 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1380 ResTy = CGM.getContext().VoidPtrTy; 1381 CGM.getCXXABI().buildThisParam(*this, Args); 1382 } 1383 1384 // The base version of an inheriting constructor whose constructed base is a 1385 // virtual base is not passed any arguments (because it doesn't actually call 1386 // the inherited constructor). 1387 bool PassedParams = true; 1388 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1389 if (auto Inherited = CD->getInheritedConstructor()) 1390 PassedParams = 1391 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1392 1393 if (PassedParams) { 1394 for (auto *Param : FD->parameters()) { 1395 Args.push_back(Param); 1396 if (!Param->hasAttr<PassObjectSizeAttr>()) 1397 continue; 1398 1399 auto *Implicit = ImplicitParamDecl::Create( 1400 getContext(), Param->getDeclContext(), Param->getLocation(), 1401 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1402 SizeArguments[Param] = Implicit; 1403 Args.push_back(Implicit); 1404 } 1405 } 1406 1407 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1408 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1409 1410 return ResTy; 1411 } 1412 1413 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1414 const CGFunctionInfo &FnInfo) { 1415 assert(Fn && "generating code for null Function"); 1416 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1417 CurGD = GD; 1418 1419 FunctionArgList Args; 1420 QualType ResTy = BuildFunctionArgList(GD, Args); 1421 1422 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1423 1424 if (FD->isInlineBuiltinDeclaration()) { 1425 // When generating code for a builtin with an inline declaration, use a 1426 // mangled name to hold the actual body, while keeping an external 1427 // definition in case the function pointer is referenced somewhere. 1428 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1429 llvm::Module *M = Fn->getParent(); 1430 llvm::Function *Clone = M->getFunction(FDInlineName); 1431 if (!Clone) { 1432 Clone = llvm::Function::Create(Fn->getFunctionType(), 1433 llvm::GlobalValue::InternalLinkage, 1434 Fn->getAddressSpace(), FDInlineName, M); 1435 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1436 } 1437 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1438 Fn = Clone; 1439 } else { 1440 // Detect the unusual situation where an inline version is shadowed by a 1441 // non-inline version. In that case we should pick the external one 1442 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1443 // to detect that situation before we reach codegen, so do some late 1444 // replacement. 1445 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1446 PD = PD->getPreviousDecl()) { 1447 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1448 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1449 llvm::Module *M = Fn->getParent(); 1450 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1451 Clone->replaceAllUsesWith(Fn); 1452 Clone->eraseFromParent(); 1453 } 1454 break; 1455 } 1456 } 1457 } 1458 1459 // Check if we should generate debug info for this function. 1460 if (FD->hasAttr<NoDebugAttr>()) { 1461 // Clear non-distinct debug info that was possibly attached to the function 1462 // due to an earlier declaration without the nodebug attribute 1463 Fn->setSubprogram(nullptr); 1464 // Disable debug info indefinitely for this function 1465 DebugInfo = nullptr; 1466 } 1467 1468 // The function might not have a body if we're generating thunks for a 1469 // function declaration. 1470 SourceRange BodyRange; 1471 if (Stmt *Body = FD->getBody()) 1472 BodyRange = Body->getSourceRange(); 1473 else 1474 BodyRange = FD->getLocation(); 1475 CurEHLocation = BodyRange.getEnd(); 1476 1477 // Use the location of the start of the function to determine where 1478 // the function definition is located. By default use the location 1479 // of the declaration as the location for the subprogram. A function 1480 // may lack a declaration in the source code if it is created by code 1481 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1482 SourceLocation Loc = FD->getLocation(); 1483 1484 // If this is a function specialization then use the pattern body 1485 // as the location for the function. 1486 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1487 if (SpecDecl->hasBody(SpecDecl)) 1488 Loc = SpecDecl->getLocation(); 1489 1490 Stmt *Body = FD->getBody(); 1491 1492 if (Body) { 1493 // Coroutines always emit lifetime markers. 1494 if (isa<CoroutineBodyStmt>(Body)) 1495 ShouldEmitLifetimeMarkers = true; 1496 1497 // Initialize helper which will detect jumps which can cause invalid 1498 // lifetime markers. 1499 if (ShouldEmitLifetimeMarkers) 1500 Bypasses.Init(Body); 1501 } 1502 1503 // Emit the standard function prologue. 1504 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1505 1506 // Save parameters for coroutine function. 1507 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1508 llvm::append_range(FnArgs, FD->parameters()); 1509 1510 // Ensure that the function adheres to the forward progress guarantee, which 1511 // is required by certain optimizations. 1512 // In C++11 and up, the attribute will be removed if the body contains a 1513 // trivial empty loop. 1514 if (checkIfFunctionMustProgress()) 1515 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1516 1517 // Generate the body of the function. 1518 PGO.assignRegionCounters(GD, CurFn); 1519 if (isa<CXXDestructorDecl>(FD)) 1520 EmitDestructorBody(Args); 1521 else if (isa<CXXConstructorDecl>(FD)) 1522 EmitConstructorBody(Args); 1523 else if (getLangOpts().CUDA && 1524 !getLangOpts().CUDAIsDevice && 1525 FD->hasAttr<CUDAGlobalAttr>()) 1526 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1527 else if (isa<CXXMethodDecl>(FD) && 1528 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1529 // The lambda static invoker function is special, because it forwards or 1530 // clones the body of the function call operator (but is actually static). 1531 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1532 } else if (isa<CXXMethodDecl>(FD) && 1533 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1534 !FnInfo.isDelegateCall() && 1535 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1536 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1537 // If emitting a lambda with static invoker on X86 Windows, change 1538 // the call operator body. 1539 // Make sure that this is a call operator with an inalloca arg and check 1540 // for delegate call to make sure this is the original call op and not the 1541 // new forwarding function for the static invoker. 1542 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1543 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1544 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1545 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1546 // Implicit copy-assignment gets the same special treatment as implicit 1547 // copy-constructors. 1548 emitImplicitAssignmentOperatorBody(Args); 1549 } else if (Body) { 1550 EmitFunctionBody(Body); 1551 } else 1552 llvm_unreachable("no definition for emitted function"); 1553 1554 // C++11 [stmt.return]p2: 1555 // Flowing off the end of a function [...] results in undefined behavior in 1556 // a value-returning function. 1557 // C11 6.9.1p12: 1558 // If the '}' that terminates a function is reached, and the value of the 1559 // function call is used by the caller, the behavior is undefined. 1560 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1561 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1562 bool ShouldEmitUnreachable = 1563 CGM.getCodeGenOpts().StrictReturn || 1564 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1565 if (SanOpts.has(SanitizerKind::Return)) { 1566 SanitizerScope SanScope(this); 1567 llvm::Value *IsFalse = Builder.getFalse(); 1568 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1569 SanitizerHandler::MissingReturn, 1570 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1571 } else if (ShouldEmitUnreachable) { 1572 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1573 EmitTrapCall(llvm::Intrinsic::trap); 1574 } 1575 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1576 Builder.CreateUnreachable(); 1577 Builder.ClearInsertionPoint(); 1578 } 1579 } 1580 1581 // Emit the standard function epilogue. 1582 FinishFunction(BodyRange.getEnd()); 1583 1584 // If we haven't marked the function nothrow through other means, do 1585 // a quick pass now to see if we can. 1586 if (!CurFn->doesNotThrow()) 1587 TryMarkNoThrow(CurFn); 1588 } 1589 1590 /// ContainsLabel - Return true if the statement contains a label in it. If 1591 /// this statement is not executed normally, it not containing a label means 1592 /// that we can just remove the code. 1593 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1594 // Null statement, not a label! 1595 if (!S) return false; 1596 1597 // If this is a label, we have to emit the code, consider something like: 1598 // if (0) { ... foo: bar(); } goto foo; 1599 // 1600 // TODO: If anyone cared, we could track __label__'s, since we know that you 1601 // can't jump to one from outside their declared region. 1602 if (isa<LabelStmt>(S)) 1603 return true; 1604 1605 // If this is a case/default statement, and we haven't seen a switch, we have 1606 // to emit the code. 1607 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1608 return true; 1609 1610 // If this is a switch statement, we want to ignore cases below it. 1611 if (isa<SwitchStmt>(S)) 1612 IgnoreCaseStmts = true; 1613 1614 // Scan subexpressions for verboten labels. 1615 for (const Stmt *SubStmt : S->children()) 1616 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1617 return true; 1618 1619 return false; 1620 } 1621 1622 /// containsBreak - Return true if the statement contains a break out of it. 1623 /// If the statement (recursively) contains a switch or loop with a break 1624 /// inside of it, this is fine. 1625 bool CodeGenFunction::containsBreak(const Stmt *S) { 1626 // Null statement, not a label! 1627 if (!S) return false; 1628 1629 // If this is a switch or loop that defines its own break scope, then we can 1630 // include it and anything inside of it. 1631 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1632 isa<ForStmt>(S)) 1633 return false; 1634 1635 if (isa<BreakStmt>(S)) 1636 return true; 1637 1638 // Scan subexpressions for verboten breaks. 1639 for (const Stmt *SubStmt : S->children()) 1640 if (containsBreak(SubStmt)) 1641 return true; 1642 1643 return false; 1644 } 1645 1646 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1647 if (!S) return false; 1648 1649 // Some statement kinds add a scope and thus never add a decl to the current 1650 // scope. Note, this list is longer than the list of statements that might 1651 // have an unscoped decl nested within them, but this way is conservatively 1652 // correct even if more statement kinds are added. 1653 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1654 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1655 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1656 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1657 return false; 1658 1659 if (isa<DeclStmt>(S)) 1660 return true; 1661 1662 for (const Stmt *SubStmt : S->children()) 1663 if (mightAddDeclToScope(SubStmt)) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1670 /// to a constant, or if it does but contains a label, return false. If it 1671 /// constant folds return true and set the boolean result in Result. 1672 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1673 bool &ResultBool, 1674 bool AllowLabels) { 1675 // If MC/DC is enabled, disable folding so that we can instrument all 1676 // conditions to yield complete test vectors. We still keep track of 1677 // folded conditions during region mapping and visualization. 1678 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1679 CGM.getCodeGenOpts().MCDCCoverage) 1680 return false; 1681 1682 llvm::APSInt ResultInt; 1683 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1684 return false; 1685 1686 ResultBool = ResultInt.getBoolValue(); 1687 return true; 1688 } 1689 1690 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1691 /// to a constant, or if it does but contains a label, return false. If it 1692 /// constant folds return true and set the folded value. 1693 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1694 llvm::APSInt &ResultInt, 1695 bool AllowLabels) { 1696 // FIXME: Rename and handle conversion of other evaluatable things 1697 // to bool. 1698 Expr::EvalResult Result; 1699 if (!Cond->EvaluateAsInt(Result, getContext())) 1700 return false; // Not foldable, not integer or not fully evaluatable. 1701 1702 llvm::APSInt Int = Result.Val.getInt(); 1703 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1704 return false; // Contains a label. 1705 1706 ResultInt = Int; 1707 return true; 1708 } 1709 1710 /// Strip parentheses and simplistic logical-NOT operators. 1711 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1712 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1713 if (Op->getOpcode() != UO_LNot) 1714 break; 1715 C = Op->getSubExpr(); 1716 } 1717 return C->IgnoreParens(); 1718 } 1719 1720 /// Determine whether the given condition is an instrumentable condition 1721 /// (i.e. no "&&" or "||"). 1722 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1723 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1724 return (!BOp || !BOp->isLogicalOp()); 1725 } 1726 1727 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1728 /// increments a profile counter based on the semantics of the given logical 1729 /// operator opcode. This is used to instrument branch condition coverage for 1730 /// logical operators. 1731 void CodeGenFunction::EmitBranchToCounterBlock( 1732 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1733 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1734 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1735 // If not instrumenting, just emit a branch. 1736 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1737 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1738 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1739 1740 llvm::BasicBlock *ThenBlock = nullptr; 1741 llvm::BasicBlock *ElseBlock = nullptr; 1742 llvm::BasicBlock *NextBlock = nullptr; 1743 1744 // Create the block we'll use to increment the appropriate counter. 1745 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1746 1747 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1748 // means we need to evaluate the condition and increment the counter on TRUE: 1749 // 1750 // if (Cond) 1751 // goto CounterIncrBlock; 1752 // else 1753 // goto FalseBlock; 1754 // 1755 // CounterIncrBlock: 1756 // Counter++; 1757 // goto TrueBlock; 1758 1759 if (LOp == BO_LAnd) { 1760 ThenBlock = CounterIncrBlock; 1761 ElseBlock = FalseBlock; 1762 NextBlock = TrueBlock; 1763 } 1764 1765 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1766 // we need to evaluate the condition and increment the counter on FALSE: 1767 // 1768 // if (Cond) 1769 // goto TrueBlock; 1770 // else 1771 // goto CounterIncrBlock; 1772 // 1773 // CounterIncrBlock: 1774 // Counter++; 1775 // goto FalseBlock; 1776 1777 else if (LOp == BO_LOr) { 1778 ThenBlock = TrueBlock; 1779 ElseBlock = CounterIncrBlock; 1780 NextBlock = FalseBlock; 1781 } else { 1782 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1783 } 1784 1785 // Emit Branch based on condition. 1786 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1787 1788 // Emit the block containing the counter increment(s). 1789 EmitBlock(CounterIncrBlock); 1790 1791 // Increment corresponding counter; if index not provided, use Cond as index. 1792 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1793 1794 // Go to the next block. 1795 EmitBranch(NextBlock); 1796 } 1797 1798 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1799 /// statement) to the specified blocks. Based on the condition, this might try 1800 /// to simplify the codegen of the conditional based on the branch. 1801 /// \param LH The value of the likelihood attribute on the True branch. 1802 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1803 /// ConditionalOperator (ternary) through a recursive call for the operator's 1804 /// LHS and RHS nodes. 1805 void CodeGenFunction::EmitBranchOnBoolExpr( 1806 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1807 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1808 Cond = Cond->IgnoreParens(); 1809 1810 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1811 // Handle X && Y in a condition. 1812 if (CondBOp->getOpcode() == BO_LAnd) { 1813 MCDCLogOpStack.push_back(CondBOp); 1814 1815 // If we have "1 && X", simplify the code. "0 && X" would have constant 1816 // folded if the case was simple enough. 1817 bool ConstantBool = false; 1818 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1819 ConstantBool) { 1820 // br(1 && X) -> br(X). 1821 incrementProfileCounter(CondBOp); 1822 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1823 FalseBlock, TrueCount, LH); 1824 MCDCLogOpStack.pop_back(); 1825 return; 1826 } 1827 1828 // If we have "X && 1", simplify the code to use an uncond branch. 1829 // "X && 0" would have been constant folded to 0. 1830 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1831 ConstantBool) { 1832 // br(X && 1) -> br(X). 1833 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1834 FalseBlock, TrueCount, LH, CondBOp); 1835 MCDCLogOpStack.pop_back(); 1836 return; 1837 } 1838 1839 // Emit the LHS as a conditional. If the LHS conditional is false, we 1840 // want to jump to the FalseBlock. 1841 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1842 // The counter tells us how often we evaluate RHS, and all of TrueCount 1843 // can be propagated to that branch. 1844 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1845 1846 ConditionalEvaluation eval(*this); 1847 { 1848 ApplyDebugLocation DL(*this, Cond); 1849 // Propagate the likelihood attribute like __builtin_expect 1850 // __builtin_expect(X && Y, 1) -> X and Y are likely 1851 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1852 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1853 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1854 EmitBlock(LHSTrue); 1855 } 1856 1857 incrementProfileCounter(CondBOp); 1858 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1859 1860 // Any temporaries created here are conditional. 1861 eval.begin(*this); 1862 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1863 FalseBlock, TrueCount, LH); 1864 eval.end(*this); 1865 MCDCLogOpStack.pop_back(); 1866 return; 1867 } 1868 1869 if (CondBOp->getOpcode() == BO_LOr) { 1870 MCDCLogOpStack.push_back(CondBOp); 1871 1872 // If we have "0 || X", simplify the code. "1 || X" would have constant 1873 // folded if the case was simple enough. 1874 bool ConstantBool = false; 1875 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1876 !ConstantBool) { 1877 // br(0 || X) -> br(X). 1878 incrementProfileCounter(CondBOp); 1879 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1880 FalseBlock, TrueCount, LH); 1881 MCDCLogOpStack.pop_back(); 1882 return; 1883 } 1884 1885 // If we have "X || 0", simplify the code to use an uncond branch. 1886 // "X || 1" would have been constant folded to 1. 1887 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1888 !ConstantBool) { 1889 // br(X || 0) -> br(X). 1890 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1891 FalseBlock, TrueCount, LH, CondBOp); 1892 MCDCLogOpStack.pop_back(); 1893 return; 1894 } 1895 // Emit the LHS as a conditional. If the LHS conditional is true, we 1896 // want to jump to the TrueBlock. 1897 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1898 // We have the count for entry to the RHS and for the whole expression 1899 // being true, so we can divy up True count between the short circuit and 1900 // the RHS. 1901 uint64_t LHSCount = 1902 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1903 uint64_t RHSCount = TrueCount - LHSCount; 1904 1905 ConditionalEvaluation eval(*this); 1906 { 1907 // Propagate the likelihood attribute like __builtin_expect 1908 // __builtin_expect(X || Y, 1) -> only Y is likely 1909 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1910 ApplyDebugLocation DL(*this, Cond); 1911 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1912 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1913 EmitBlock(LHSFalse); 1914 } 1915 1916 incrementProfileCounter(CondBOp); 1917 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1918 1919 // Any temporaries created here are conditional. 1920 eval.begin(*this); 1921 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1922 RHSCount, LH); 1923 1924 eval.end(*this); 1925 MCDCLogOpStack.pop_back(); 1926 return; 1927 } 1928 } 1929 1930 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1931 // br(!x, t, f) -> br(x, f, t) 1932 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1933 // LNot is taken as part of the condition for simplicity, and changing its 1934 // sense negatively impacts test vector tracking. 1935 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1936 CGM.getCodeGenOpts().MCDCCoverage && 1937 isInstrumentedCondition(Cond); 1938 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1939 // Negate the count. 1940 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1941 // The values of the enum are chosen to make this negation possible. 1942 LH = static_cast<Stmt::Likelihood>(-LH); 1943 // Negate the condition and swap the destination blocks. 1944 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1945 FalseCount, LH); 1946 } 1947 } 1948 1949 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1950 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1951 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1952 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1953 1954 // The ConditionalOperator itself has no likelihood information for its 1955 // true and false branches. This matches the behavior of __builtin_expect. 1956 ConditionalEvaluation cond(*this); 1957 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1958 getProfileCount(CondOp), Stmt::LH_None); 1959 1960 // When computing PGO branch weights, we only know the overall count for 1961 // the true block. This code is essentially doing tail duplication of the 1962 // naive code-gen, introducing new edges for which counts are not 1963 // available. Divide the counts proportionally between the LHS and RHS of 1964 // the conditional operator. 1965 uint64_t LHSScaledTrueCount = 0; 1966 if (TrueCount) { 1967 double LHSRatio = 1968 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1969 LHSScaledTrueCount = TrueCount * LHSRatio; 1970 } 1971 1972 cond.begin(*this); 1973 EmitBlock(LHSBlock); 1974 incrementProfileCounter(CondOp); 1975 { 1976 ApplyDebugLocation DL(*this, Cond); 1977 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1978 LHSScaledTrueCount, LH, CondOp); 1979 } 1980 cond.end(*this); 1981 1982 cond.begin(*this); 1983 EmitBlock(RHSBlock); 1984 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1985 TrueCount - LHSScaledTrueCount, LH, CondOp); 1986 cond.end(*this); 1987 1988 return; 1989 } 1990 1991 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1992 // Conditional operator handling can give us a throw expression as a 1993 // condition for a case like: 1994 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1995 // Fold this to: 1996 // br(c, throw x, br(y, t, f)) 1997 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1998 return; 1999 } 2000 2001 // Emit the code with the fully general case. 2002 llvm::Value *CondV; 2003 { 2004 ApplyDebugLocation DL(*this, Cond); 2005 CondV = EvaluateExprAsBool(Cond); 2006 } 2007 2008 // If not at the top of the logical operator nest, update MCDC temp with the 2009 // boolean result of the evaluated condition. 2010 if (!MCDCLogOpStack.empty()) { 2011 const Expr *MCDCBaseExpr = Cond; 2012 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2013 // expression, MC/DC tracks the result of the ternary, and this is tied to 2014 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2015 // this is the case, the ConditionalOperator expression is passed through 2016 // the ConditionalOp parameter and then used as the MCDC base expression. 2017 if (ConditionalOp) 2018 MCDCBaseExpr = ConditionalOp; 2019 2020 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2021 } 2022 2023 llvm::MDNode *Weights = nullptr; 2024 llvm::MDNode *Unpredictable = nullptr; 2025 2026 // If the branch has a condition wrapped by __builtin_unpredictable, 2027 // create metadata that specifies that the branch is unpredictable. 2028 // Don't bother if not optimizing because that metadata would not be used. 2029 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2030 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2031 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2032 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2033 llvm::MDBuilder MDHelper(getLLVMContext()); 2034 Unpredictable = MDHelper.createUnpredictable(); 2035 } 2036 } 2037 2038 // If there is a Likelihood knowledge for the cond, lower it. 2039 // Note that if not optimizing this won't emit anything. 2040 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2041 if (CondV != NewCondV) 2042 CondV = NewCondV; 2043 else { 2044 // Otherwise, lower profile counts. Note that we do this even at -O0. 2045 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2046 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2047 } 2048 2049 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2050 } 2051 2052 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2053 /// specified stmt yet. 2054 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2055 CGM.ErrorUnsupported(S, Type); 2056 } 2057 2058 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2059 /// variable-length array whose elements have a non-zero bit-pattern. 2060 /// 2061 /// \param baseType the inner-most element type of the array 2062 /// \param src - a char* pointing to the bit-pattern for a single 2063 /// base element of the array 2064 /// \param sizeInChars - the total size of the VLA, in chars 2065 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2066 Address dest, Address src, 2067 llvm::Value *sizeInChars) { 2068 CGBuilderTy &Builder = CGF.Builder; 2069 2070 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2071 llvm::Value *baseSizeInChars 2072 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2073 2074 Address begin = dest.withElementType(CGF.Int8Ty); 2075 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2076 begin.emitRawPointer(CGF), 2077 sizeInChars, "vla.end"); 2078 2079 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2080 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2081 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2082 2083 // Make a loop over the VLA. C99 guarantees that the VLA element 2084 // count must be nonzero. 2085 CGF.EmitBlock(loopBB); 2086 2087 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2088 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2089 2090 CharUnits curAlign = 2091 dest.getAlignment().alignmentOfArrayElement(baseSize); 2092 2093 // memcpy the individual element bit-pattern. 2094 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2095 /*volatile*/ false); 2096 2097 // Go to the next element. 2098 llvm::Value *next = 2099 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2100 2101 // Leave if that's the end of the VLA. 2102 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2103 Builder.CreateCondBr(done, contBB, loopBB); 2104 cur->addIncoming(next, loopBB); 2105 2106 CGF.EmitBlock(contBB); 2107 } 2108 2109 void 2110 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2111 // Ignore empty classes in C++. 2112 if (getLangOpts().CPlusPlus) { 2113 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2114 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2115 return; 2116 } 2117 } 2118 2119 if (DestPtr.getElementType() != Int8Ty) 2120 DestPtr = DestPtr.withElementType(Int8Ty); 2121 2122 // Get size and alignment info for this aggregate. 2123 CharUnits size = getContext().getTypeSizeInChars(Ty); 2124 2125 llvm::Value *SizeVal; 2126 const VariableArrayType *vla; 2127 2128 // Don't bother emitting a zero-byte memset. 2129 if (size.isZero()) { 2130 // But note that getTypeInfo returns 0 for a VLA. 2131 if (const VariableArrayType *vlaType = 2132 dyn_cast_or_null<VariableArrayType>( 2133 getContext().getAsArrayType(Ty))) { 2134 auto VlaSize = getVLASize(vlaType); 2135 SizeVal = VlaSize.NumElts; 2136 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2137 if (!eltSize.isOne()) 2138 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2139 vla = vlaType; 2140 } else { 2141 return; 2142 } 2143 } else { 2144 SizeVal = CGM.getSize(size); 2145 vla = nullptr; 2146 } 2147 2148 // If the type contains a pointer to data member we can't memset it to zero. 2149 // Instead, create a null constant and copy it to the destination. 2150 // TODO: there are other patterns besides zero that we can usefully memset, 2151 // like -1, which happens to be the pattern used by member-pointers. 2152 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2153 // For a VLA, emit a single element, then splat that over the VLA. 2154 if (vla) Ty = getContext().getBaseElementType(vla); 2155 2156 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2157 2158 llvm::GlobalVariable *NullVariable = 2159 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2160 /*isConstant=*/true, 2161 llvm::GlobalVariable::PrivateLinkage, 2162 NullConstant, Twine()); 2163 CharUnits NullAlign = DestPtr.getAlignment(); 2164 NullVariable->setAlignment(NullAlign.getAsAlign()); 2165 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2166 2167 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2168 2169 // Get and call the appropriate llvm.memcpy overload. 2170 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2171 return; 2172 } 2173 2174 // Otherwise, just memset the whole thing to zero. This is legal 2175 // because in LLVM, all default initializers (other than the ones we just 2176 // handled above) are guaranteed to have a bit pattern of all zeros. 2177 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2178 } 2179 2180 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2181 // Make sure that there is a block for the indirect goto. 2182 if (!IndirectBranch) 2183 GetIndirectGotoBlock(); 2184 2185 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2186 2187 // Make sure the indirect branch includes all of the address-taken blocks. 2188 IndirectBranch->addDestination(BB); 2189 return llvm::BlockAddress::get(CurFn, BB); 2190 } 2191 2192 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2193 // If we already made the indirect branch for indirect goto, return its block. 2194 if (IndirectBranch) return IndirectBranch->getParent(); 2195 2196 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2197 2198 // Create the PHI node that indirect gotos will add entries to. 2199 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2200 "indirect.goto.dest"); 2201 2202 // Create the indirect branch instruction. 2203 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2204 return IndirectBranch->getParent(); 2205 } 2206 2207 /// Computes the length of an array in elements, as well as the base 2208 /// element type and a properly-typed first element pointer. 2209 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2210 QualType &baseType, 2211 Address &addr) { 2212 const ArrayType *arrayType = origArrayType; 2213 2214 // If it's a VLA, we have to load the stored size. Note that 2215 // this is the size of the VLA in bytes, not its size in elements. 2216 llvm::Value *numVLAElements = nullptr; 2217 if (isa<VariableArrayType>(arrayType)) { 2218 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2219 2220 // Walk into all VLAs. This doesn't require changes to addr, 2221 // which has type T* where T is the first non-VLA element type. 2222 do { 2223 QualType elementType = arrayType->getElementType(); 2224 arrayType = getContext().getAsArrayType(elementType); 2225 2226 // If we only have VLA components, 'addr' requires no adjustment. 2227 if (!arrayType) { 2228 baseType = elementType; 2229 return numVLAElements; 2230 } 2231 } while (isa<VariableArrayType>(arrayType)); 2232 2233 // We get out here only if we find a constant array type 2234 // inside the VLA. 2235 } 2236 2237 // We have some number of constant-length arrays, so addr should 2238 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2239 // down to the first element of addr. 2240 SmallVector<llvm::Value*, 8> gepIndices; 2241 2242 // GEP down to the array type. 2243 llvm::ConstantInt *zero = Builder.getInt32(0); 2244 gepIndices.push_back(zero); 2245 2246 uint64_t countFromCLAs = 1; 2247 QualType eltType; 2248 2249 llvm::ArrayType *llvmArrayType = 2250 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2251 while (llvmArrayType) { 2252 assert(isa<ConstantArrayType>(arrayType)); 2253 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2254 llvmArrayType->getNumElements()); 2255 2256 gepIndices.push_back(zero); 2257 countFromCLAs *= llvmArrayType->getNumElements(); 2258 eltType = arrayType->getElementType(); 2259 2260 llvmArrayType = 2261 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2262 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2263 assert((!llvmArrayType || arrayType) && 2264 "LLVM and Clang types are out-of-synch"); 2265 } 2266 2267 if (arrayType) { 2268 // From this point onwards, the Clang array type has been emitted 2269 // as some other type (probably a packed struct). Compute the array 2270 // size, and just emit the 'begin' expression as a bitcast. 2271 while (arrayType) { 2272 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2273 eltType = arrayType->getElementType(); 2274 arrayType = getContext().getAsArrayType(eltType); 2275 } 2276 2277 llvm::Type *baseType = ConvertType(eltType); 2278 addr = addr.withElementType(baseType); 2279 } else { 2280 // Create the actual GEP. 2281 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2282 addr.emitRawPointer(*this), 2283 gepIndices, "array.begin"), 2284 ConvertTypeForMem(eltType), addr.getAlignment()); 2285 } 2286 2287 baseType = eltType; 2288 2289 llvm::Value *numElements 2290 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2291 2292 // If we had any VLA dimensions, factor them in. 2293 if (numVLAElements) 2294 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2295 2296 return numElements; 2297 } 2298 2299 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2300 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2301 assert(vla && "type was not a variable array type!"); 2302 return getVLASize(vla); 2303 } 2304 2305 CodeGenFunction::VlaSizePair 2306 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2307 // The number of elements so far; always size_t. 2308 llvm::Value *numElements = nullptr; 2309 2310 QualType elementType; 2311 do { 2312 elementType = type->getElementType(); 2313 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2314 assert(vlaSize && "no size for VLA!"); 2315 assert(vlaSize->getType() == SizeTy); 2316 2317 if (!numElements) { 2318 numElements = vlaSize; 2319 } else { 2320 // It's undefined behavior if this wraps around, so mark it that way. 2321 // FIXME: Teach -fsanitize=undefined to trap this. 2322 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2323 } 2324 } while ((type = getContext().getAsVariableArrayType(elementType))); 2325 2326 return { numElements, elementType }; 2327 } 2328 2329 CodeGenFunction::VlaSizePair 2330 CodeGenFunction::getVLAElements1D(QualType type) { 2331 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2332 assert(vla && "type was not a variable array type!"); 2333 return getVLAElements1D(vla); 2334 } 2335 2336 CodeGenFunction::VlaSizePair 2337 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2338 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2339 assert(VlaSize && "no size for VLA!"); 2340 assert(VlaSize->getType() == SizeTy); 2341 return { VlaSize, Vla->getElementType() }; 2342 } 2343 2344 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2345 assert(type->isVariablyModifiedType() && 2346 "Must pass variably modified type to EmitVLASizes!"); 2347 2348 EnsureInsertPoint(); 2349 2350 // We're going to walk down into the type and look for VLA 2351 // expressions. 2352 do { 2353 assert(type->isVariablyModifiedType()); 2354 2355 const Type *ty = type.getTypePtr(); 2356 switch (ty->getTypeClass()) { 2357 2358 #define TYPE(Class, Base) 2359 #define ABSTRACT_TYPE(Class, Base) 2360 #define NON_CANONICAL_TYPE(Class, Base) 2361 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2362 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2363 #include "clang/AST/TypeNodes.inc" 2364 llvm_unreachable("unexpected dependent type!"); 2365 2366 // These types are never variably-modified. 2367 case Type::Builtin: 2368 case Type::Complex: 2369 case Type::Vector: 2370 case Type::ExtVector: 2371 case Type::ConstantMatrix: 2372 case Type::Record: 2373 case Type::Enum: 2374 case Type::Using: 2375 case Type::TemplateSpecialization: 2376 case Type::ObjCTypeParam: 2377 case Type::ObjCObject: 2378 case Type::ObjCInterface: 2379 case Type::ObjCObjectPointer: 2380 case Type::BitInt: 2381 llvm_unreachable("type class is never variably-modified!"); 2382 2383 case Type::Elaborated: 2384 type = cast<ElaboratedType>(ty)->getNamedType(); 2385 break; 2386 2387 case Type::Adjusted: 2388 type = cast<AdjustedType>(ty)->getAdjustedType(); 2389 break; 2390 2391 case Type::Decayed: 2392 type = cast<DecayedType>(ty)->getPointeeType(); 2393 break; 2394 2395 case Type::Pointer: 2396 type = cast<PointerType>(ty)->getPointeeType(); 2397 break; 2398 2399 case Type::BlockPointer: 2400 type = cast<BlockPointerType>(ty)->getPointeeType(); 2401 break; 2402 2403 case Type::LValueReference: 2404 case Type::RValueReference: 2405 type = cast<ReferenceType>(ty)->getPointeeType(); 2406 break; 2407 2408 case Type::MemberPointer: 2409 type = cast<MemberPointerType>(ty)->getPointeeType(); 2410 break; 2411 2412 case Type::ArrayParameter: 2413 case Type::ConstantArray: 2414 case Type::IncompleteArray: 2415 // Losing element qualification here is fine. 2416 type = cast<ArrayType>(ty)->getElementType(); 2417 break; 2418 2419 case Type::VariableArray: { 2420 // Losing element qualification here is fine. 2421 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2422 2423 // Unknown size indication requires no size computation. 2424 // Otherwise, evaluate and record it. 2425 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2426 // It's possible that we might have emitted this already, 2427 // e.g. with a typedef and a pointer to it. 2428 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2429 if (!entry) { 2430 llvm::Value *size = EmitScalarExpr(sizeExpr); 2431 2432 // C11 6.7.6.2p5: 2433 // If the size is an expression that is not an integer constant 2434 // expression [...] each time it is evaluated it shall have a value 2435 // greater than zero. 2436 if (SanOpts.has(SanitizerKind::VLABound)) { 2437 SanitizerScope SanScope(this); 2438 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2439 clang::QualType SEType = sizeExpr->getType(); 2440 llvm::Value *CheckCondition = 2441 SEType->isSignedIntegerType() 2442 ? Builder.CreateICmpSGT(size, Zero) 2443 : Builder.CreateICmpUGT(size, Zero); 2444 llvm::Constant *StaticArgs[] = { 2445 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2446 EmitCheckTypeDescriptor(SEType)}; 2447 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2448 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2449 } 2450 2451 // Always zexting here would be wrong if it weren't 2452 // undefined behavior to have a negative bound. 2453 // FIXME: What about when size's type is larger than size_t? 2454 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2455 } 2456 } 2457 type = vat->getElementType(); 2458 break; 2459 } 2460 2461 case Type::FunctionProto: 2462 case Type::FunctionNoProto: 2463 type = cast<FunctionType>(ty)->getReturnType(); 2464 break; 2465 2466 case Type::Paren: 2467 case Type::TypeOf: 2468 case Type::UnaryTransform: 2469 case Type::Attributed: 2470 case Type::BTFTagAttributed: 2471 case Type::SubstTemplateTypeParm: 2472 case Type::MacroQualified: 2473 case Type::CountAttributed: 2474 // Keep walking after single level desugaring. 2475 type = type.getSingleStepDesugaredType(getContext()); 2476 break; 2477 2478 case Type::Typedef: 2479 case Type::Decltype: 2480 case Type::Auto: 2481 case Type::DeducedTemplateSpecialization: 2482 case Type::PackIndexing: 2483 // Stop walking: nothing to do. 2484 return; 2485 2486 case Type::TypeOfExpr: 2487 // Stop walking: emit typeof expression. 2488 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2489 return; 2490 2491 case Type::Atomic: 2492 type = cast<AtomicType>(ty)->getValueType(); 2493 break; 2494 2495 case Type::Pipe: 2496 type = cast<PipeType>(ty)->getElementType(); 2497 break; 2498 } 2499 } while (type->isVariablyModifiedType()); 2500 } 2501 2502 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2503 if (getContext().getBuiltinVaListType()->isArrayType()) 2504 return EmitPointerWithAlignment(E); 2505 return EmitLValue(E).getAddress(); 2506 } 2507 2508 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2509 return EmitLValue(E).getAddress(); 2510 } 2511 2512 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2513 const APValue &Init) { 2514 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2515 if (CGDebugInfo *Dbg = getDebugInfo()) 2516 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2517 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2518 } 2519 2520 CodeGenFunction::PeepholeProtection 2521 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2522 // At the moment, the only aggressive peephole we do in IR gen 2523 // is trunc(zext) folding, but if we add more, we can easily 2524 // extend this protection. 2525 2526 if (!rvalue.isScalar()) return PeepholeProtection(); 2527 llvm::Value *value = rvalue.getScalarVal(); 2528 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2529 2530 // Just make an extra bitcast. 2531 assert(HaveInsertPoint()); 2532 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2533 Builder.GetInsertBlock()); 2534 2535 PeepholeProtection protection; 2536 protection.Inst = inst; 2537 return protection; 2538 } 2539 2540 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2541 if (!protection.Inst) return; 2542 2543 // In theory, we could try to duplicate the peepholes now, but whatever. 2544 protection.Inst->eraseFromParent(); 2545 } 2546 2547 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2548 QualType Ty, SourceLocation Loc, 2549 SourceLocation AssumptionLoc, 2550 llvm::Value *Alignment, 2551 llvm::Value *OffsetValue) { 2552 if (Alignment->getType() != IntPtrTy) 2553 Alignment = 2554 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2555 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2556 OffsetValue = 2557 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2558 llvm::Value *TheCheck = nullptr; 2559 if (SanOpts.has(SanitizerKind::Alignment)) { 2560 llvm::Value *PtrIntValue = 2561 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2562 2563 if (OffsetValue) { 2564 bool IsOffsetZero = false; 2565 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2566 IsOffsetZero = CI->isZero(); 2567 2568 if (!IsOffsetZero) 2569 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2570 } 2571 2572 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2573 llvm::Value *Mask = 2574 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2575 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2576 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2577 } 2578 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2579 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2580 2581 if (!SanOpts.has(SanitizerKind::Alignment)) 2582 return; 2583 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2584 OffsetValue, TheCheck, Assumption); 2585 } 2586 2587 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2588 const Expr *E, 2589 SourceLocation AssumptionLoc, 2590 llvm::Value *Alignment, 2591 llvm::Value *OffsetValue) { 2592 QualType Ty = E->getType(); 2593 SourceLocation Loc = E->getExprLoc(); 2594 2595 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2596 OffsetValue); 2597 } 2598 2599 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2600 llvm::Value *AnnotatedVal, 2601 StringRef AnnotationStr, 2602 SourceLocation Location, 2603 const AnnotateAttr *Attr) { 2604 SmallVector<llvm::Value *, 5> Args = { 2605 AnnotatedVal, 2606 CGM.EmitAnnotationString(AnnotationStr), 2607 CGM.EmitAnnotationUnit(Location), 2608 CGM.EmitAnnotationLineNo(Location), 2609 }; 2610 if (Attr) 2611 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2612 return Builder.CreateCall(AnnotationFn, Args); 2613 } 2614 2615 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2616 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2617 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2618 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2619 {V->getType(), CGM.ConstGlobalsPtrTy}), 2620 V, I->getAnnotation(), D->getLocation(), I); 2621 } 2622 2623 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2624 Address Addr) { 2625 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2626 llvm::Value *V = Addr.emitRawPointer(*this); 2627 llvm::Type *VTy = V->getType(); 2628 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2629 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2630 llvm::PointerType *IntrinTy = 2631 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2632 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2633 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2634 2635 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2636 // FIXME Always emit the cast inst so we can differentiate between 2637 // annotation on the first field of a struct and annotation on the struct 2638 // itself. 2639 if (VTy != IntrinTy) 2640 V = Builder.CreateBitCast(V, IntrinTy); 2641 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2642 V = Builder.CreateBitCast(V, VTy); 2643 } 2644 2645 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2646 } 2647 2648 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2649 2650 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2651 : CGF(CGF) { 2652 assert(!CGF->IsSanitizerScope); 2653 CGF->IsSanitizerScope = true; 2654 } 2655 2656 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2657 CGF->IsSanitizerScope = false; 2658 } 2659 2660 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2661 const llvm::Twine &Name, 2662 llvm::BasicBlock::iterator InsertPt) const { 2663 LoopStack.InsertHelper(I); 2664 if (IsSanitizerScope) 2665 I->setNoSanitizeMetadata(); 2666 } 2667 2668 void CGBuilderInserter::InsertHelper( 2669 llvm::Instruction *I, const llvm::Twine &Name, 2670 llvm::BasicBlock::iterator InsertPt) const { 2671 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2672 if (CGF) 2673 CGF->InsertHelper(I, Name, InsertPt); 2674 } 2675 2676 // Emits an error if we don't have a valid set of target features for the 2677 // called function. 2678 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2679 const FunctionDecl *TargetDecl) { 2680 // SemaChecking cannot handle below x86 builtins because they have different 2681 // parameter ranges with different TargetAttribute of caller. 2682 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2683 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2684 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2685 BuiltinID == X86::BI__builtin_ia32_cmpss || 2686 BuiltinID == X86::BI__builtin_ia32_cmppd || 2687 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2688 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2689 llvm::StringMap<bool> TargetFetureMap; 2690 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2691 llvm::APSInt Result = 2692 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2693 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2694 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2695 << TargetDecl->getDeclName() << "avx"; 2696 } 2697 } 2698 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2699 } 2700 2701 // Emits an error if we don't have a valid set of target features for the 2702 // called function. 2703 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2704 const FunctionDecl *TargetDecl) { 2705 // Early exit if this is an indirect call. 2706 if (!TargetDecl) 2707 return; 2708 2709 // Get the current enclosing function if it exists. If it doesn't 2710 // we can't check the target features anyhow. 2711 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2712 if (!FD) 2713 return; 2714 2715 // Grab the required features for the call. For a builtin this is listed in 2716 // the td file with the default cpu, for an always_inline function this is any 2717 // listed cpu and any listed features. 2718 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2719 std::string MissingFeature; 2720 llvm::StringMap<bool> CallerFeatureMap; 2721 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2722 // When compiling in HipStdPar mode we have to be conservative in rejecting 2723 // target specific features in the FE, and defer the possible error to the 2724 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2725 // referenced by an accelerator executable function, we emit an error. 2726 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2727 if (BuiltinID) { 2728 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2729 if (!Builtin::evaluateRequiredTargetFeatures( 2730 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2731 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2732 << TargetDecl->getDeclName() 2733 << FeatureList; 2734 } 2735 } else if (!TargetDecl->isMultiVersion() && 2736 TargetDecl->hasAttr<TargetAttr>()) { 2737 // Get the required features for the callee. 2738 2739 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2740 ParsedTargetAttr ParsedAttr = 2741 CGM.getContext().filterFunctionTargetAttrs(TD); 2742 2743 SmallVector<StringRef, 1> ReqFeatures; 2744 llvm::StringMap<bool> CalleeFeatureMap; 2745 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2746 2747 for (const auto &F : ParsedAttr.Features) { 2748 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2749 ReqFeatures.push_back(StringRef(F).substr(1)); 2750 } 2751 2752 for (const auto &F : CalleeFeatureMap) { 2753 // Only positive features are "required". 2754 if (F.getValue()) 2755 ReqFeatures.push_back(F.getKey()); 2756 } 2757 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2758 if (!CallerFeatureMap.lookup(Feature)) { 2759 MissingFeature = Feature.str(); 2760 return false; 2761 } 2762 return true; 2763 }) && !IsHipStdPar) 2764 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2765 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2766 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2767 llvm::StringMap<bool> CalleeFeatureMap; 2768 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2769 2770 for (const auto &F : CalleeFeatureMap) { 2771 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2772 !CallerFeatureMap.find(F.getKey())->getValue()) && 2773 !IsHipStdPar) 2774 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2775 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2776 } 2777 } 2778 } 2779 2780 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2781 if (!CGM.getCodeGenOpts().SanitizeStats) 2782 return; 2783 2784 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2785 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2786 CGM.getSanStats().create(IRB, SSK); 2787 } 2788 2789 void CodeGenFunction::EmitKCFIOperandBundle( 2790 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2791 const FunctionProtoType *FP = 2792 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2793 if (FP) 2794 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2795 } 2796 2797 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2798 const MultiVersionResolverOption &RO) { 2799 llvm::SmallVector<StringRef, 8> CondFeatures; 2800 for (const StringRef &Feature : RO.Conditions.Features) 2801 CondFeatures.push_back(Feature); 2802 if (!CondFeatures.empty()) { 2803 return EmitAArch64CpuSupports(CondFeatures); 2804 } 2805 return nullptr; 2806 } 2807 2808 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2809 const MultiVersionResolverOption &RO) { 2810 llvm::Value *Condition = nullptr; 2811 2812 if (!RO.Conditions.Architecture.empty()) { 2813 StringRef Arch = RO.Conditions.Architecture; 2814 // If arch= specifies an x86-64 micro-architecture level, test the feature 2815 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2816 if (Arch.starts_with("x86-64")) 2817 Condition = EmitX86CpuSupports({Arch}); 2818 else 2819 Condition = EmitX86CpuIs(Arch); 2820 } 2821 2822 if (!RO.Conditions.Features.empty()) { 2823 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2824 Condition = 2825 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2826 } 2827 return Condition; 2828 } 2829 2830 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2831 llvm::Function *Resolver, 2832 CGBuilderTy &Builder, 2833 llvm::Function *FuncToReturn, 2834 bool SupportsIFunc) { 2835 if (SupportsIFunc) { 2836 Builder.CreateRet(FuncToReturn); 2837 return; 2838 } 2839 2840 llvm::SmallVector<llvm::Value *, 10> Args( 2841 llvm::make_pointer_range(Resolver->args())); 2842 2843 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2844 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2845 2846 if (Resolver->getReturnType()->isVoidTy()) 2847 Builder.CreateRetVoid(); 2848 else 2849 Builder.CreateRet(Result); 2850 } 2851 2852 void CodeGenFunction::EmitMultiVersionResolver( 2853 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2854 2855 llvm::Triple::ArchType ArchType = 2856 getContext().getTargetInfo().getTriple().getArch(); 2857 2858 switch (ArchType) { 2859 case llvm::Triple::x86: 2860 case llvm::Triple::x86_64: 2861 EmitX86MultiVersionResolver(Resolver, Options); 2862 return; 2863 case llvm::Triple::aarch64: 2864 EmitAArch64MultiVersionResolver(Resolver, Options); 2865 return; 2866 2867 default: 2868 assert(false && "Only implemented for x86 and AArch64 targets"); 2869 } 2870 } 2871 2872 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2873 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2874 assert(!Options.empty() && "No multiversion resolver options found"); 2875 assert(Options.back().Conditions.Features.size() == 0 && 2876 "Default case must be last"); 2877 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2878 assert(SupportsIFunc && 2879 "Multiversion resolver requires target IFUNC support"); 2880 bool AArch64CpuInitialized = false; 2881 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2882 2883 for (const MultiVersionResolverOption &RO : Options) { 2884 Builder.SetInsertPoint(CurBlock); 2885 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2886 2887 // The 'default' or 'all features enabled' case. 2888 if (!Condition) { 2889 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2890 SupportsIFunc); 2891 return; 2892 } 2893 2894 if (!AArch64CpuInitialized) { 2895 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2896 EmitAArch64CpuInit(); 2897 AArch64CpuInitialized = true; 2898 Builder.SetInsertPoint(CurBlock); 2899 } 2900 2901 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2902 CGBuilderTy RetBuilder(*this, RetBlock); 2903 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2904 SupportsIFunc); 2905 CurBlock = createBasicBlock("resolver_else", Resolver); 2906 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2907 } 2908 2909 // If no default, emit an unreachable. 2910 Builder.SetInsertPoint(CurBlock); 2911 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2912 TrapCall->setDoesNotReturn(); 2913 TrapCall->setDoesNotThrow(); 2914 Builder.CreateUnreachable(); 2915 Builder.ClearInsertionPoint(); 2916 } 2917 2918 void CodeGenFunction::EmitX86MultiVersionResolver( 2919 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2920 2921 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2922 2923 // Main function's basic block. 2924 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2925 Builder.SetInsertPoint(CurBlock); 2926 EmitX86CpuInit(); 2927 2928 for (const MultiVersionResolverOption &RO : Options) { 2929 Builder.SetInsertPoint(CurBlock); 2930 llvm::Value *Condition = FormX86ResolverCondition(RO); 2931 2932 // The 'default' or 'generic' case. 2933 if (!Condition) { 2934 assert(&RO == Options.end() - 1 && 2935 "Default or Generic case must be last"); 2936 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2937 SupportsIFunc); 2938 return; 2939 } 2940 2941 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2942 CGBuilderTy RetBuilder(*this, RetBlock); 2943 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2944 SupportsIFunc); 2945 CurBlock = createBasicBlock("resolver_else", Resolver); 2946 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2947 } 2948 2949 // If no generic/default, emit an unreachable. 2950 Builder.SetInsertPoint(CurBlock); 2951 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2952 TrapCall->setDoesNotReturn(); 2953 TrapCall->setDoesNotThrow(); 2954 Builder.CreateUnreachable(); 2955 Builder.ClearInsertionPoint(); 2956 } 2957 2958 // Loc - where the diagnostic will point, where in the source code this 2959 // alignment has failed. 2960 // SecondaryLoc - if present (will be present if sufficiently different from 2961 // Loc), the diagnostic will additionally point a "Note:" to this location. 2962 // It should be the location where the __attribute__((assume_aligned)) 2963 // was written e.g. 2964 void CodeGenFunction::emitAlignmentAssumptionCheck( 2965 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2966 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2967 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2968 llvm::Instruction *Assumption) { 2969 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 2970 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2971 llvm::Intrinsic::getDeclaration( 2972 Builder.GetInsertBlock()->getParent()->getParent(), 2973 llvm::Intrinsic::assume) && 2974 "Assumption should be a call to llvm.assume()."); 2975 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2976 "Assumption should be the last instruction of the basic block, " 2977 "since the basic block is still being generated."); 2978 2979 if (!SanOpts.has(SanitizerKind::Alignment)) 2980 return; 2981 2982 // Don't check pointers to volatile data. The behavior here is implementation- 2983 // defined. 2984 if (Ty->getPointeeType().isVolatileQualified()) 2985 return; 2986 2987 // We need to temorairly remove the assumption so we can insert the 2988 // sanitizer check before it, else the check will be dropped by optimizations. 2989 Assumption->removeFromParent(); 2990 2991 { 2992 SanitizerScope SanScope(this); 2993 2994 if (!OffsetValue) 2995 OffsetValue = Builder.getInt1(false); // no offset. 2996 2997 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2998 EmitCheckSourceLocation(SecondaryLoc), 2999 EmitCheckTypeDescriptor(Ty)}; 3000 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3001 EmitCheckValue(Alignment), 3002 EmitCheckValue(OffsetValue)}; 3003 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3004 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3005 } 3006 3007 // We are now in the (new, empty) "cont" basic block. 3008 // Reintroduce the assumption. 3009 Builder.Insert(Assumption); 3010 // FIXME: Assumption still has it's original basic block as it's Parent. 3011 } 3012 3013 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3014 if (CGDebugInfo *DI = getDebugInfo()) 3015 return DI->SourceLocToDebugLoc(Location); 3016 3017 return llvm::DebugLoc(); 3018 } 3019 3020 llvm::Value * 3021 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3022 Stmt::Likelihood LH) { 3023 switch (LH) { 3024 case Stmt::LH_None: 3025 return Cond; 3026 case Stmt::LH_Likely: 3027 case Stmt::LH_Unlikely: 3028 // Don't generate llvm.expect on -O0 as the backend won't use it for 3029 // anything. 3030 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3031 return Cond; 3032 llvm::Type *CondTy = Cond->getType(); 3033 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3034 llvm::Function *FnExpect = 3035 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3036 llvm::Value *ExpectedValueOfCond = 3037 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3038 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3039 Cond->getName() + ".expval"); 3040 } 3041 llvm_unreachable("Unknown Likelihood"); 3042 } 3043 3044 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3045 unsigned NumElementsDst, 3046 const llvm::Twine &Name) { 3047 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3048 unsigned NumElementsSrc = SrcTy->getNumElements(); 3049 if (NumElementsSrc == NumElementsDst) 3050 return SrcVec; 3051 3052 std::vector<int> ShuffleMask(NumElementsDst, -1); 3053 for (unsigned MaskIdx = 0; 3054 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3055 ShuffleMask[MaskIdx] = MaskIdx; 3056 3057 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3058 } 3059 3060 void CodeGenFunction::EmitPointerAuthOperandBundle( 3061 const CGPointerAuthInfo &PointerAuth, 3062 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3063 if (!PointerAuth.isSigned()) 3064 return; 3065 3066 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3067 3068 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3069 if (!Discriminator) 3070 Discriminator = Builder.getSize(0); 3071 3072 llvm::Value *Args[] = {Key, Discriminator}; 3073 Bundles.emplace_back("ptrauth", Args); 3074 } 3075 3076 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3077 const CGPointerAuthInfo &PointerAuth, 3078 llvm::Value *Pointer, 3079 unsigned IntrinsicID) { 3080 if (!PointerAuth) 3081 return Pointer; 3082 3083 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3084 3085 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3086 if (!Discriminator) { 3087 Discriminator = CGF.Builder.getSize(0); 3088 } 3089 3090 // Convert the pointer to intptr_t before signing it. 3091 auto OrigType = Pointer->getType(); 3092 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3093 3094 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3095 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3096 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3097 3098 // Convert back to the original type. 3099 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3100 return Pointer; 3101 } 3102 3103 llvm::Value * 3104 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3105 llvm::Value *Pointer) { 3106 if (!PointerAuth.shouldSign()) 3107 return Pointer; 3108 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3109 llvm::Intrinsic::ptrauth_sign); 3110 } 3111 3112 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3113 const CGPointerAuthInfo &PointerAuth, 3114 llvm::Value *Pointer) { 3115 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3116 3117 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3118 // Convert the pointer to intptr_t before signing it. 3119 auto OrigType = Pointer->getType(); 3120 Pointer = CGF.EmitRuntimeCall( 3121 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3122 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3123 } 3124 3125 llvm::Value * 3126 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3127 llvm::Value *Pointer) { 3128 if (PointerAuth.shouldStrip()) { 3129 return EmitStrip(*this, PointerAuth, Pointer); 3130 } 3131 if (!PointerAuth.shouldAuth()) { 3132 return Pointer; 3133 } 3134 3135 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3136 llvm::Intrinsic::ptrauth_auth); 3137 } 3138