1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableSingleByteCoverage; 57 } // namespace llvm 58 59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 60 /// markers. 61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 62 const LangOptions &LangOpts) { 63 if (CGOpts.DisableLifetimeMarkers) 64 return false; 65 66 // Sanitizers may use markers. 67 if (CGOpts.SanitizeAddressUseAfterScope || 68 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 69 LangOpts.Sanitize.has(SanitizerKind::Memory)) 70 return true; 71 72 // For now, only in optimized builds. 73 return CGOpts.OptimizationLevel != 0; 74 } 75 76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 77 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 78 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 79 CGBuilderInserterTy(this)), 80 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 81 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 EHStack.setCGF(this); 87 88 SetFastMathFlags(CurFPFeatures); 89 } 90 91 CodeGenFunction::~CodeGenFunction() { 92 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 93 assert(DeferredDeactivationCleanupStack.empty() && 94 "missed to deactivate a cleanup"); 95 96 if (getLangOpts().OpenMP && CurFn) 97 CGM.getOpenMPRuntime().functionFinished(*this); 98 99 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 100 // outlining etc) at some point. Doing it once the function codegen is done 101 // seems to be a reasonable spot. We do it here, as opposed to the deletion 102 // time of the CodeGenModule, because we have to ensure the IR has not yet 103 // been "emitted" to the outside, thus, modifications are still sensible. 104 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 105 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 106 } 107 108 // Map the LangOption for exception behavior into 109 // the corresponding enum in the IR. 110 llvm::fp::ExceptionBehavior 111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 112 113 switch (Kind) { 114 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 115 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 116 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 117 default: 118 llvm_unreachable("Unsupported FP Exception Behavior"); 119 } 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 159 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 160 auto NewExceptionBehavior = 161 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 162 FPFeatures.getExceptionMode())); 163 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 164 165 CGF.SetFastMathFlags(FPFeatures); 166 167 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 168 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 169 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 170 (NewExceptionBehavior == llvm::fp::ebIgnore && 171 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 172 "FPConstrained should be enabled on entire function"); 173 174 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 175 auto OldValue = 176 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 177 auto NewValue = OldValue & Value; 178 if (OldValue != NewValue) 179 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 180 }; 181 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 182 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 183 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 184 mergeFnAttrValue( 185 "unsafe-fp-math", 186 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 188 FPFeatures.allowFPContractAcrossStatement()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 static LValue 198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 199 bool MightBeSigned, CodeGenFunction &CGF, 200 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = 206 MightBeSigned 207 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 208 nullptr, IsKnownNonNull) 209 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 210 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 215 KnownNonNull_t IsKnownNonNull) { 216 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 217 /*MightBeSigned*/ true, *this, 218 IsKnownNonNull); 219 } 220 221 LValue 222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 223 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 224 /*MightBeSigned*/ true, *this); 225 } 226 227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 228 QualType T) { 229 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 230 /*MightBeSigned*/ false, *this); 231 } 232 233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 234 QualType T) { 235 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 236 /*MightBeSigned*/ false, *this); 237 } 238 239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 240 return CGM.getTypes().ConvertTypeForMem(T); 241 } 242 243 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 244 return CGM.getTypes().ConvertType(T); 245 } 246 247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 248 llvm::Type *LLVMTy) { 249 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 250 } 251 252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 253 type = type.getCanonicalType(); 254 while (true) { 255 switch (type->getTypeClass()) { 256 #define TYPE(name, parent) 257 #define ABSTRACT_TYPE(name, parent) 258 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 259 #define DEPENDENT_TYPE(name, parent) case Type::name: 260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 261 #include "clang/AST/TypeNodes.inc" 262 llvm_unreachable("non-canonical or dependent type in IR-generation"); 263 264 case Type::Auto: 265 case Type::DeducedTemplateSpecialization: 266 llvm_unreachable("undeduced type in IR-generation"); 267 268 // Various scalar types. 269 case Type::Builtin: 270 case Type::Pointer: 271 case Type::BlockPointer: 272 case Type::LValueReference: 273 case Type::RValueReference: 274 case Type::MemberPointer: 275 case Type::Vector: 276 case Type::ExtVector: 277 case Type::ConstantMatrix: 278 case Type::FunctionProto: 279 case Type::FunctionNoProto: 280 case Type::Enum: 281 case Type::ObjCObjectPointer: 282 case Type::Pipe: 283 case Type::BitInt: 284 case Type::HLSLAttributedResource: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!(getLangOpts().OpenCL || 639 (getLangOpts().CUDA && 640 getContext().getTargetInfo().getTriple().isSPIRV()))) 641 return; 642 643 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 644 QualType HintQTy = A->getTypeHint(); 645 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 646 bool IsSignedInteger = 647 HintQTy->isSignedIntegerType() || 648 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 649 llvm::Metadata *AttrMDArgs[] = { 650 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 651 CGM.getTypes().ConvertType(A->getTypeHint()))), 652 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 653 llvm::IntegerType::get(Context, 32), 654 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 655 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 656 } 657 658 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 659 llvm::Metadata *AttrMDArgs[] = { 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 662 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 663 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 664 } 665 666 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 667 llvm::Metadata *AttrMDArgs[] = { 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 670 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 671 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 672 } 673 674 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 675 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 676 llvm::Metadata *AttrMDArgs[] = { 677 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 678 Fn->setMetadata("intel_reqd_sub_group_size", 679 llvm::MDNode::get(Context, AttrMDArgs)); 680 } 681 } 682 683 /// Determine whether the function F ends with a return stmt. 684 static bool endsWithReturn(const Decl* F) { 685 const Stmt *Body = nullptr; 686 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 687 Body = FD->getBody(); 688 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 689 Body = OMD->getBody(); 690 691 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 692 auto LastStmt = CS->body_rbegin(); 693 if (LastStmt != CS->body_rend()) 694 return isa<ReturnStmt>(*LastStmt); 695 } 696 return false; 697 } 698 699 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 700 if (SanOpts.has(SanitizerKind::Thread)) { 701 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 702 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 703 } 704 } 705 706 /// Check if the return value of this function requires sanitization. 707 bool CodeGenFunction::requiresReturnValueCheck() const { 708 return requiresReturnValueNullabilityCheck() || 709 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 710 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 711 } 712 713 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 714 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 715 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 716 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 717 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 718 return false; 719 720 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 721 return false; 722 723 if (MD->getNumParams() == 2) { 724 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 725 if (!PT || !PT->isVoidPointerType() || 726 !PT->getPointeeType().isConstQualified()) 727 return false; 728 } 729 730 return true; 731 } 732 733 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 734 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 735 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 736 } 737 738 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 739 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 740 getTarget().getCXXABI().isMicrosoft() && 741 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 742 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 743 }); 744 } 745 746 /// Return the UBSan prologue signature for \p FD if one is available. 747 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 748 const FunctionDecl *FD) { 749 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 750 if (!MD->isStatic()) 751 return nullptr; 752 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 753 } 754 755 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 756 llvm::Function *Fn, 757 const CGFunctionInfo &FnInfo, 758 const FunctionArgList &Args, 759 SourceLocation Loc, 760 SourceLocation StartLoc) { 761 assert(!CurFn && 762 "Do not use a CodeGenFunction object for more than one function"); 763 764 const Decl *D = GD.getDecl(); 765 766 DidCallStackSave = false; 767 CurCodeDecl = D; 768 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 769 if (FD && FD->usesSEHTry()) 770 CurSEHParent = GD; 771 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 772 FnRetTy = RetTy; 773 CurFn = Fn; 774 CurFnInfo = &FnInfo; 775 assert(CurFn->isDeclaration() && "Function already has body?"); 776 777 // If this function is ignored for any of the enabled sanitizers, 778 // disable the sanitizer for the function. 779 do { 780 #define SANITIZER(NAME, ID) \ 781 if (SanOpts.empty()) \ 782 break; \ 783 if (SanOpts.has(SanitizerKind::ID)) \ 784 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 785 SanOpts.set(SanitizerKind::ID, false); 786 787 #include "clang/Basic/Sanitizers.def" 788 #undef SANITIZER 789 } while (false); 790 791 if (D) { 792 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 793 SanitizerMask no_sanitize_mask; 794 bool NoSanitizeCoverage = false; 795 796 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 797 no_sanitize_mask |= Attr->getMask(); 798 // SanitizeCoverage is not handled by SanOpts. 799 if (Attr->hasCoverage()) 800 NoSanitizeCoverage = true; 801 } 802 803 // Apply the no_sanitize* attributes to SanOpts. 804 SanOpts.Mask &= ~no_sanitize_mask; 805 if (no_sanitize_mask & SanitizerKind::Address) 806 SanOpts.set(SanitizerKind::KernelAddress, false); 807 if (no_sanitize_mask & SanitizerKind::KernelAddress) 808 SanOpts.set(SanitizerKind::Address, false); 809 if (no_sanitize_mask & SanitizerKind::HWAddress) 810 SanOpts.set(SanitizerKind::KernelHWAddress, false); 811 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 812 SanOpts.set(SanitizerKind::HWAddress, false); 813 814 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 815 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 816 817 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 818 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 819 820 // Some passes need the non-negated no_sanitize attribute. Pass them on. 821 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 822 if (no_sanitize_mask & SanitizerKind::Thread) 823 Fn->addFnAttr("no_sanitize_thread"); 824 } 825 } 826 827 if (ShouldSkipSanitizerInstrumentation()) { 828 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 829 } else { 830 // Apply sanitizer attributes to the function. 831 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 832 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 833 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 834 SanitizerKind::KernelHWAddress)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 836 if (SanOpts.has(SanitizerKind::MemtagStack)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 838 if (SanOpts.has(SanitizerKind::Thread)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 840 if (SanOpts.has(SanitizerKind::Type)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeType); 842 if (SanOpts.has(SanitizerKind::NumericalStability)) 843 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 844 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 845 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 846 } 847 if (SanOpts.has(SanitizerKind::SafeStack)) 848 Fn->addFnAttr(llvm::Attribute::SafeStack); 849 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 850 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 851 852 if (SanOpts.has(SanitizerKind::Realtime)) 853 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 854 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 855 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 856 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 857 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) 858 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking); 859 } 860 861 // Apply fuzzing attribute to the function. 862 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 863 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 864 865 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 866 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 867 if (SanOpts.has(SanitizerKind::Thread)) { 868 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 869 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 870 if (OMD->getMethodFamily() == OMF_dealloc || 871 OMD->getMethodFamily() == OMF_initialize || 872 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 873 markAsIgnoreThreadCheckingAtRuntime(Fn); 874 } 875 } 876 } 877 878 // Ignore unrelated casts in STL allocate() since the allocator must cast 879 // from void* to T* before object initialization completes. Don't match on the 880 // namespace because not all allocators are in std:: 881 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 882 if (matchesStlAllocatorFn(D, getContext())) 883 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 884 } 885 886 // Ignore null checks in coroutine functions since the coroutines passes 887 // are not aware of how to move the extra UBSan instructions across the split 888 // coroutine boundaries. 889 if (D && SanOpts.has(SanitizerKind::Null)) 890 if (FD && FD->getBody() && 891 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 892 SanOpts.Mask &= ~SanitizerKind::Null; 893 894 // Add pointer authentication attributes. 895 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 896 if (CodeGenOpts.PointerAuth.ReturnAddresses) 897 Fn->addFnAttr("ptrauth-returns"); 898 if (CodeGenOpts.PointerAuth.FunctionPointers) 899 Fn->addFnAttr("ptrauth-calls"); 900 if (CodeGenOpts.PointerAuth.AuthTraps) 901 Fn->addFnAttr("ptrauth-auth-traps"); 902 if (CodeGenOpts.PointerAuth.IndirectGotos) 903 Fn->addFnAttr("ptrauth-indirect-gotos"); 904 if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening) 905 Fn->addFnAttr("aarch64-jump-table-hardening"); 906 907 // Apply xray attributes to the function (as a string, for now) 908 bool AlwaysXRayAttr = false; 909 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 910 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 911 XRayInstrKind::FunctionEntry) || 912 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 913 XRayInstrKind::FunctionExit)) { 914 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 915 Fn->addFnAttr("function-instrument", "xray-always"); 916 AlwaysXRayAttr = true; 917 } 918 if (XRayAttr->neverXRayInstrument()) 919 Fn->addFnAttr("function-instrument", "xray-never"); 920 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 921 if (ShouldXRayInstrumentFunction()) 922 Fn->addFnAttr("xray-log-args", 923 llvm::utostr(LogArgs->getArgumentCount())); 924 } 925 } else { 926 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 927 Fn->addFnAttr( 928 "xray-instruction-threshold", 929 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 930 } 931 932 if (ShouldXRayInstrumentFunction()) { 933 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 934 Fn->addFnAttr("xray-ignore-loops"); 935 936 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 937 XRayInstrKind::FunctionExit)) 938 Fn->addFnAttr("xray-skip-exit"); 939 940 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 941 XRayInstrKind::FunctionEntry)) 942 Fn->addFnAttr("xray-skip-entry"); 943 944 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 945 if (FuncGroups > 1) { 946 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 947 CurFn->getName().bytes_end()); 948 auto Group = crc32(FuncName) % FuncGroups; 949 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 950 !AlwaysXRayAttr) 951 Fn->addFnAttr("function-instrument", "xray-never"); 952 } 953 } 954 955 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 956 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 957 case ProfileList::Skip: 958 Fn->addFnAttr(llvm::Attribute::SkipProfile); 959 break; 960 case ProfileList::Forbid: 961 Fn->addFnAttr(llvm::Attribute::NoProfile); 962 break; 963 case ProfileList::Allow: 964 break; 965 } 966 } 967 968 unsigned Count, Offset; 969 if (const auto *Attr = 970 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 971 Count = Attr->getCount(); 972 Offset = Attr->getOffset(); 973 } else { 974 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 975 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 976 } 977 if (Count && Offset <= Count) { 978 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 979 if (Offset) 980 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 981 } 982 // Instruct that functions for COFF/CodeView targets should start with a 983 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 984 // backends as they don't need it -- instructions on these architectures are 985 // always atomically patchable at runtime. 986 if (CGM.getCodeGenOpts().HotPatch && 987 getContext().getTargetInfo().getTriple().isX86() && 988 getContext().getTargetInfo().getTriple().getEnvironment() != 989 llvm::Triple::CODE16) 990 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 991 992 // Add no-jump-tables value. 993 if (CGM.getCodeGenOpts().NoUseJumpTables) 994 Fn->addFnAttr("no-jump-tables", "true"); 995 996 // Add no-inline-line-tables value. 997 if (CGM.getCodeGenOpts().NoInlineLineTables) 998 Fn->addFnAttr("no-inline-line-tables"); 999 1000 // Add profile-sample-accurate value. 1001 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 1002 Fn->addFnAttr("profile-sample-accurate"); 1003 1004 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 1005 Fn->addFnAttr("use-sample-profile"); 1006 1007 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1008 Fn->addFnAttr("cfi-canonical-jump-table"); 1009 1010 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1011 Fn->addFnAttr(llvm::Attribute::NoProfile); 1012 1013 if (D && D->hasAttr<HybridPatchableAttr>()) 1014 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1015 1016 if (D) { 1017 // Function attributes take precedence over command line flags. 1018 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1019 switch (A->getThunkType()) { 1020 case FunctionReturnThunksAttr::Kind::Keep: 1021 break; 1022 case FunctionReturnThunksAttr::Kind::Extern: 1023 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1024 break; 1025 } 1026 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1027 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1028 } 1029 1030 if (FD && (getLangOpts().OpenCL || 1031 (getLangOpts().CUDA && 1032 getContext().getTargetInfo().getTriple().isSPIRV()) || 1033 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1034 getLangOpts().CUDAIsDevice))) { 1035 // Add metadata for a kernel function. 1036 EmitKernelMetadata(FD, Fn); 1037 } 1038 1039 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1040 Fn->setMetadata("clspv_libclc_builtin", 1041 llvm::MDNode::get(getLLVMContext(), {})); 1042 } 1043 1044 // If we are checking function types, emit a function type signature as 1045 // prologue data. 1046 if (FD && SanOpts.has(SanitizerKind::Function)) { 1047 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1048 llvm::LLVMContext &Ctx = Fn->getContext(); 1049 llvm::MDBuilder MDB(Ctx); 1050 Fn->setMetadata( 1051 llvm::LLVMContext::MD_func_sanitize, 1052 MDB.createRTTIPointerPrologue( 1053 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1054 } 1055 } 1056 1057 // If we're checking nullability, we need to know whether we can check the 1058 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1059 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1060 auto Nullability = FnRetTy->getNullability(); 1061 if (Nullability && *Nullability == NullabilityKind::NonNull && 1062 !FnRetTy->isRecordType()) { 1063 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1064 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1065 RetValNullabilityPrecondition = 1066 llvm::ConstantInt::getTrue(getLLVMContext()); 1067 } 1068 } 1069 1070 // If we're in C++ mode and the function name is "main", it is guaranteed 1071 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1072 // used within a program"). 1073 // 1074 // OpenCL C 2.0 v2.2-11 s6.9.i: 1075 // Recursion is not supported. 1076 // 1077 // HLSL 1078 // Recursion is not supported. 1079 // 1080 // SYCL v1.2.1 s3.10: 1081 // kernels cannot include RTTI information, exception classes, 1082 // recursive code, virtual functions or make use of C++ libraries that 1083 // are not compiled for the device. 1084 if (FD && 1085 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1086 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1087 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1088 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1089 1090 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1091 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1092 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1093 Builder.setDefaultConstrainedRounding(RM); 1094 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1095 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1096 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1097 RM != llvm::RoundingMode::NearestTiesToEven))) { 1098 Builder.setIsFPConstrained(true); 1099 Fn->addFnAttr(llvm::Attribute::StrictFP); 1100 } 1101 1102 // If a custom alignment is used, force realigning to this alignment on 1103 // any main function which certainly will need it. 1104 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1105 CGM.getCodeGenOpts().StackAlignment)) 1106 Fn->addFnAttr("stackrealign"); 1107 1108 // "main" doesn't need to zero out call-used registers. 1109 if (FD && FD->isMain()) 1110 Fn->removeFnAttr("zero-call-used-regs"); 1111 1112 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1113 1114 // Create a marker to make it easy to insert allocas into the entryblock 1115 // later. Don't create this with the builder, because we don't want it 1116 // folded. 1117 llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty); 1118 AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB); 1119 1120 ReturnBlock = getJumpDestInCurrentScope("return"); 1121 1122 Builder.SetInsertPoint(EntryBB); 1123 1124 // If we're checking the return value, allocate space for a pointer to a 1125 // precise source location of the checked return statement. 1126 if (requiresReturnValueCheck()) { 1127 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1128 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1129 ReturnLocation); 1130 } 1131 1132 // Emit subprogram debug descriptor. 1133 if (CGDebugInfo *DI = getDebugInfo()) { 1134 // Reconstruct the type from the argument list so that implicit parameters, 1135 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1136 // convention. 1137 DI->emitFunctionStart(GD, Loc, StartLoc, 1138 DI->getFunctionType(FD, RetTy, Args), CurFn, 1139 CurFuncIsThunk); 1140 } 1141 1142 if (ShouldInstrumentFunction()) { 1143 if (CGM.getCodeGenOpts().InstrumentFunctions) 1144 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1145 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1146 CurFn->addFnAttr("instrument-function-entry-inlined", 1147 "__cyg_profile_func_enter"); 1148 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1149 CurFn->addFnAttr("instrument-function-entry-inlined", 1150 "__cyg_profile_func_enter_bare"); 1151 } 1152 1153 // Since emitting the mcount call here impacts optimizations such as function 1154 // inlining, we just add an attribute to insert a mcount call in backend. 1155 // The attribute "counting-function" is set to mcount function name which is 1156 // architecture dependent. 1157 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1158 // Calls to fentry/mcount should not be generated if function has 1159 // the no_instrument_function attribute. 1160 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1161 if (CGM.getCodeGenOpts().CallFEntry) 1162 Fn->addFnAttr("fentry-call", "true"); 1163 else { 1164 Fn->addFnAttr("instrument-function-entry-inlined", 1165 getTarget().getMCountName()); 1166 } 1167 if (CGM.getCodeGenOpts().MNopMCount) { 1168 if (!CGM.getCodeGenOpts().CallFEntry) 1169 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1170 << "-mnop-mcount" << "-mfentry"; 1171 Fn->addFnAttr("mnop-mcount"); 1172 } 1173 1174 if (CGM.getCodeGenOpts().RecordMCount) { 1175 if (!CGM.getCodeGenOpts().CallFEntry) 1176 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1177 << "-mrecord-mcount" << "-mfentry"; 1178 Fn->addFnAttr("mrecord-mcount"); 1179 } 1180 } 1181 } 1182 1183 if (CGM.getCodeGenOpts().PackedStack) { 1184 if (getContext().getTargetInfo().getTriple().getArch() != 1185 llvm::Triple::systemz) 1186 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1187 << "-mpacked-stack"; 1188 Fn->addFnAttr("packed-stack"); 1189 } 1190 1191 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1192 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1193 Fn->addFnAttr("warn-stack-size", 1194 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1195 1196 if (RetTy->isVoidType()) { 1197 // Void type; nothing to return. 1198 ReturnValue = Address::invalid(); 1199 1200 // Count the implicit return. 1201 if (!endsWithReturn(D)) 1202 ++NumReturnExprs; 1203 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1204 // Indirect return; emit returned value directly into sret slot. 1205 // This reduces code size, and affects correctness in C++. 1206 auto AI = CurFn->arg_begin(); 1207 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1208 ++AI; 1209 ReturnValue = makeNaturalAddressForPointer( 1210 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1211 nullptr, nullptr, KnownNonNull); 1212 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1213 ReturnValuePointer = 1214 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1215 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1216 ReturnValuePointer); 1217 } 1218 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1219 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1220 // Load the sret pointer from the argument struct and return into that. 1221 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1222 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1223 --EI; 1224 llvm::Value *Addr = Builder.CreateStructGEP( 1225 CurFnInfo->getArgStruct(), &*EI, Idx); 1226 llvm::Type *Ty = 1227 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1228 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1229 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1230 ReturnValue = Address(Addr, ConvertType(RetTy), 1231 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1232 } else { 1233 ReturnValue = CreateIRTemp(RetTy, "retval"); 1234 1235 // Tell the epilog emitter to autorelease the result. We do this 1236 // now so that various specialized functions can suppress it 1237 // during their IR-generation. 1238 if (getLangOpts().ObjCAutoRefCount && 1239 !CurFnInfo->isReturnsRetained() && 1240 RetTy->isObjCRetainableType()) 1241 AutoreleaseResult = true; 1242 } 1243 1244 EmitStartEHSpec(CurCodeDecl); 1245 1246 PrologueCleanupDepth = EHStack.stable_begin(); 1247 1248 // Emit OpenMP specific initialization of the device functions. 1249 if (getLangOpts().OpenMP && CurCodeDecl) 1250 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1251 1252 if (FD && getLangOpts().HLSL) { 1253 // Handle emitting HLSL entry functions. 1254 if (FD->hasAttr<HLSLShaderAttr>()) { 1255 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1256 } 1257 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1258 } 1259 1260 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1261 1262 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1263 MD && !MD->isStatic()) { 1264 bool IsInLambda = 1265 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1266 if (MD->isImplicitObjectMemberFunction()) 1267 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1268 if (IsInLambda) { 1269 // We're in a lambda; figure out the captures. 1270 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1271 LambdaThisCaptureField); 1272 if (LambdaThisCaptureField) { 1273 // If the lambda captures the object referred to by '*this' - either by 1274 // value or by reference, make sure CXXThisValue points to the correct 1275 // object. 1276 1277 // Get the lvalue for the field (which is a copy of the enclosing object 1278 // or contains the address of the enclosing object). 1279 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1280 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1281 // If the enclosing object was captured by value, just use its 1282 // address. Sign this pointer. 1283 CXXThisValue = ThisFieldLValue.getPointer(*this); 1284 } else { 1285 // Load the lvalue pointed to by the field, since '*this' was captured 1286 // by reference. 1287 CXXThisValue = 1288 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1289 } 1290 } 1291 for (auto *FD : MD->getParent()->fields()) { 1292 if (FD->hasCapturedVLAType()) { 1293 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1294 SourceLocation()).getScalarVal(); 1295 auto VAT = FD->getCapturedVLAType(); 1296 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1297 } 1298 } 1299 } else if (MD->isImplicitObjectMemberFunction()) { 1300 // Not in a lambda; just use 'this' from the method. 1301 // FIXME: Should we generate a new load for each use of 'this'? The 1302 // fast register allocator would be happier... 1303 CXXThisValue = CXXABIThisValue; 1304 } 1305 1306 // Check the 'this' pointer once per function, if it's available. 1307 if (CXXABIThisValue) { 1308 SanitizerSet SkippedChecks; 1309 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1310 QualType ThisTy = MD->getThisType(); 1311 1312 // If this is the call operator of a lambda with no captures, it 1313 // may have a static invoker function, which may call this operator with 1314 // a null 'this' pointer. 1315 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1316 SkippedChecks.set(SanitizerKind::Null, true); 1317 1318 EmitTypeCheck( 1319 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1320 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1321 } 1322 } 1323 1324 // If any of the arguments have a variably modified type, make sure to 1325 // emit the type size, but only if the function is not naked. Naked functions 1326 // have no prolog to run this evaluation. 1327 if (!FD || !FD->hasAttr<NakedAttr>()) { 1328 for (const VarDecl *VD : Args) { 1329 // Dig out the type as written from ParmVarDecls; it's unclear whether 1330 // the standard (C99 6.9.1p10) requires this, but we're following the 1331 // precedent set by gcc. 1332 QualType Ty; 1333 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1334 Ty = PVD->getOriginalType(); 1335 else 1336 Ty = VD->getType(); 1337 1338 if (Ty->isVariablyModifiedType()) 1339 EmitVariablyModifiedType(Ty); 1340 } 1341 } 1342 // Emit a location at the end of the prologue. 1343 if (CGDebugInfo *DI = getDebugInfo()) 1344 DI->EmitLocation(Builder, StartLoc); 1345 // TODO: Do we need to handle this in two places like we do with 1346 // target-features/target-cpu? 1347 if (CurFuncDecl) 1348 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1349 LargestVectorWidth = VecWidth->getVectorWidth(); 1350 1351 if (CGM.shouldEmitConvergenceTokens()) 1352 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1353 } 1354 1355 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1356 incrementProfileCounter(Body); 1357 maybeCreateMCDCCondBitmap(); 1358 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1359 EmitCompoundStmtWithoutScope(*S); 1360 else 1361 EmitStmt(Body); 1362 } 1363 1364 /// When instrumenting to collect profile data, the counts for some blocks 1365 /// such as switch cases need to not include the fall-through counts, so 1366 /// emit a branch around the instrumentation code. When not instrumenting, 1367 /// this just calls EmitBlock(). 1368 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1369 const Stmt *S) { 1370 llvm::BasicBlock *SkipCountBB = nullptr; 1371 // Do not skip over the instrumentation when single byte coverage mode is 1372 // enabled. 1373 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1374 !llvm::EnableSingleByteCoverage) { 1375 // When instrumenting for profiling, the fallthrough to certain 1376 // statements needs to skip over the instrumentation code so that we 1377 // get an accurate count. 1378 SkipCountBB = createBasicBlock("skipcount"); 1379 EmitBranch(SkipCountBB); 1380 } 1381 EmitBlock(BB); 1382 uint64_t CurrentCount = getCurrentProfileCount(); 1383 incrementProfileCounter(S); 1384 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1385 if (SkipCountBB) 1386 EmitBlock(SkipCountBB); 1387 } 1388 1389 /// Tries to mark the given function nounwind based on the 1390 /// non-existence of any throwing calls within it. We believe this is 1391 /// lightweight enough to do at -O0. 1392 static void TryMarkNoThrow(llvm::Function *F) { 1393 // LLVM treats 'nounwind' on a function as part of the type, so we 1394 // can't do this on functions that can be overwritten. 1395 if (F->isInterposable()) return; 1396 1397 for (llvm::BasicBlock &BB : *F) 1398 for (llvm::Instruction &I : BB) 1399 if (I.mayThrow()) 1400 return; 1401 1402 F->setDoesNotThrow(); 1403 } 1404 1405 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1406 FunctionArgList &Args) { 1407 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1408 QualType ResTy = FD->getReturnType(); 1409 1410 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1411 if (MD && MD->isImplicitObjectMemberFunction()) { 1412 if (CGM.getCXXABI().HasThisReturn(GD)) 1413 ResTy = MD->getThisType(); 1414 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1415 ResTy = CGM.getContext().VoidPtrTy; 1416 CGM.getCXXABI().buildThisParam(*this, Args); 1417 } 1418 1419 // The base version of an inheriting constructor whose constructed base is a 1420 // virtual base is not passed any arguments (because it doesn't actually call 1421 // the inherited constructor). 1422 bool PassedParams = true; 1423 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1424 if (auto Inherited = CD->getInheritedConstructor()) 1425 PassedParams = 1426 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1427 1428 if (PassedParams) { 1429 for (auto *Param : FD->parameters()) { 1430 Args.push_back(Param); 1431 if (!Param->hasAttr<PassObjectSizeAttr>()) 1432 continue; 1433 1434 auto *Implicit = ImplicitParamDecl::Create( 1435 getContext(), Param->getDeclContext(), Param->getLocation(), 1436 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1437 SizeArguments[Param] = Implicit; 1438 Args.push_back(Implicit); 1439 } 1440 } 1441 1442 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1443 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1444 1445 return ResTy; 1446 } 1447 1448 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1449 const CGFunctionInfo &FnInfo) { 1450 assert(Fn && "generating code for null Function"); 1451 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1452 CurGD = GD; 1453 1454 FunctionArgList Args; 1455 QualType ResTy = BuildFunctionArgList(GD, Args); 1456 1457 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1458 1459 if (FD->isInlineBuiltinDeclaration()) { 1460 // When generating code for a builtin with an inline declaration, use a 1461 // mangled name to hold the actual body, while keeping an external 1462 // definition in case the function pointer is referenced somewhere. 1463 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1464 llvm::Module *M = Fn->getParent(); 1465 llvm::Function *Clone = M->getFunction(FDInlineName); 1466 if (!Clone) { 1467 Clone = llvm::Function::Create(Fn->getFunctionType(), 1468 llvm::GlobalValue::InternalLinkage, 1469 Fn->getAddressSpace(), FDInlineName, M); 1470 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1471 } 1472 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1473 Fn = Clone; 1474 } else { 1475 // Detect the unusual situation where an inline version is shadowed by a 1476 // non-inline version. In that case we should pick the external one 1477 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1478 // to detect that situation before we reach codegen, so do some late 1479 // replacement. 1480 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1481 PD = PD->getPreviousDecl()) { 1482 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1483 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1484 llvm::Module *M = Fn->getParent(); 1485 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1486 Clone->replaceAllUsesWith(Fn); 1487 Clone->eraseFromParent(); 1488 } 1489 break; 1490 } 1491 } 1492 } 1493 1494 // Check if we should generate debug info for this function. 1495 if (FD->hasAttr<NoDebugAttr>()) { 1496 // Clear non-distinct debug info that was possibly attached to the function 1497 // due to an earlier declaration without the nodebug attribute 1498 Fn->setSubprogram(nullptr); 1499 // Disable debug info indefinitely for this function 1500 DebugInfo = nullptr; 1501 } 1502 1503 // The function might not have a body if we're generating thunks for a 1504 // function declaration. 1505 SourceRange BodyRange; 1506 if (Stmt *Body = FD->getBody()) 1507 BodyRange = Body->getSourceRange(); 1508 else 1509 BodyRange = FD->getLocation(); 1510 CurEHLocation = BodyRange.getEnd(); 1511 1512 // Use the location of the start of the function to determine where 1513 // the function definition is located. By default use the location 1514 // of the declaration as the location for the subprogram. A function 1515 // may lack a declaration in the source code if it is created by code 1516 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1517 SourceLocation Loc = FD->getLocation(); 1518 1519 // If this is a function specialization then use the pattern body 1520 // as the location for the function. 1521 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1522 if (SpecDecl->hasBody(SpecDecl)) 1523 Loc = SpecDecl->getLocation(); 1524 1525 Stmt *Body = FD->getBody(); 1526 1527 if (Body) { 1528 // Coroutines always emit lifetime markers. 1529 if (isa<CoroutineBodyStmt>(Body)) 1530 ShouldEmitLifetimeMarkers = true; 1531 1532 // Initialize helper which will detect jumps which can cause invalid 1533 // lifetime markers. 1534 if (ShouldEmitLifetimeMarkers) 1535 Bypasses.Init(Body); 1536 } 1537 1538 // Emit the standard function prologue. 1539 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1540 1541 // Save parameters for coroutine function. 1542 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1543 llvm::append_range(FnArgs, FD->parameters()); 1544 1545 // Ensure that the function adheres to the forward progress guarantee, which 1546 // is required by certain optimizations. 1547 // In C++11 and up, the attribute will be removed if the body contains a 1548 // trivial empty loop. 1549 if (checkIfFunctionMustProgress()) 1550 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1551 1552 // Generate the body of the function. 1553 PGO.assignRegionCounters(GD, CurFn); 1554 if (isa<CXXDestructorDecl>(FD)) 1555 EmitDestructorBody(Args); 1556 else if (isa<CXXConstructorDecl>(FD)) 1557 EmitConstructorBody(Args); 1558 else if (getLangOpts().CUDA && 1559 !getLangOpts().CUDAIsDevice && 1560 FD->hasAttr<CUDAGlobalAttr>()) 1561 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1562 else if (isa<CXXMethodDecl>(FD) && 1563 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1564 // The lambda static invoker function is special, because it forwards or 1565 // clones the body of the function call operator (but is actually static). 1566 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1567 } else if (isa<CXXMethodDecl>(FD) && 1568 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1569 !FnInfo.isDelegateCall() && 1570 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1571 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1572 // If emitting a lambda with static invoker on X86 Windows, change 1573 // the call operator body. 1574 // Make sure that this is a call operator with an inalloca arg and check 1575 // for delegate call to make sure this is the original call op and not the 1576 // new forwarding function for the static invoker. 1577 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1578 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1579 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1580 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1581 // Implicit copy-assignment gets the same special treatment as implicit 1582 // copy-constructors. 1583 emitImplicitAssignmentOperatorBody(Args); 1584 } else if (Body) { 1585 EmitFunctionBody(Body); 1586 } else 1587 llvm_unreachable("no definition for emitted function"); 1588 1589 // C++11 [stmt.return]p2: 1590 // Flowing off the end of a function [...] results in undefined behavior in 1591 // a value-returning function. 1592 // C11 6.9.1p12: 1593 // If the '}' that terminates a function is reached, and the value of the 1594 // function call is used by the caller, the behavior is undefined. 1595 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1596 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1597 bool ShouldEmitUnreachable = 1598 CGM.getCodeGenOpts().StrictReturn || 1599 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1600 if (SanOpts.has(SanitizerKind::Return)) { 1601 SanitizerScope SanScope(this); 1602 llvm::Value *IsFalse = Builder.getFalse(); 1603 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1604 SanitizerHandler::MissingReturn, 1605 EmitCheckSourceLocation(FD->getLocation()), {}); 1606 } else if (ShouldEmitUnreachable) { 1607 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1608 EmitTrapCall(llvm::Intrinsic::trap); 1609 } 1610 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1611 Builder.CreateUnreachable(); 1612 Builder.ClearInsertionPoint(); 1613 } 1614 } 1615 1616 // Emit the standard function epilogue. 1617 FinishFunction(BodyRange.getEnd()); 1618 1619 // If we haven't marked the function nothrow through other means, do 1620 // a quick pass now to see if we can. 1621 if (!CurFn->doesNotThrow()) 1622 TryMarkNoThrow(CurFn); 1623 } 1624 1625 /// ContainsLabel - Return true if the statement contains a label in it. If 1626 /// this statement is not executed normally, it not containing a label means 1627 /// that we can just remove the code. 1628 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1629 // Null statement, not a label! 1630 if (!S) return false; 1631 1632 // If this is a label, we have to emit the code, consider something like: 1633 // if (0) { ... foo: bar(); } goto foo; 1634 // 1635 // TODO: If anyone cared, we could track __label__'s, since we know that you 1636 // can't jump to one from outside their declared region. 1637 if (isa<LabelStmt>(S)) 1638 return true; 1639 1640 // If this is a case/default statement, and we haven't seen a switch, we have 1641 // to emit the code. 1642 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1643 return true; 1644 1645 // If this is a switch statement, we want to ignore cases below it. 1646 if (isa<SwitchStmt>(S)) 1647 IgnoreCaseStmts = true; 1648 1649 // Scan subexpressions for verboten labels. 1650 for (const Stmt *SubStmt : S->children()) 1651 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1652 return true; 1653 1654 return false; 1655 } 1656 1657 /// containsBreak - Return true if the statement contains a break out of it. 1658 /// If the statement (recursively) contains a switch or loop with a break 1659 /// inside of it, this is fine. 1660 bool CodeGenFunction::containsBreak(const Stmt *S) { 1661 // Null statement, not a label! 1662 if (!S) return false; 1663 1664 // If this is a switch or loop that defines its own break scope, then we can 1665 // include it and anything inside of it. 1666 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1667 isa<ForStmt>(S)) 1668 return false; 1669 1670 if (isa<BreakStmt>(S)) 1671 return true; 1672 1673 // Scan subexpressions for verboten breaks. 1674 for (const Stmt *SubStmt : S->children()) 1675 if (containsBreak(SubStmt)) 1676 return true; 1677 1678 return false; 1679 } 1680 1681 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1682 if (!S) return false; 1683 1684 // Some statement kinds add a scope and thus never add a decl to the current 1685 // scope. Note, this list is longer than the list of statements that might 1686 // have an unscoped decl nested within them, but this way is conservatively 1687 // correct even if more statement kinds are added. 1688 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1689 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1690 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1691 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1692 return false; 1693 1694 if (isa<DeclStmt>(S)) 1695 return true; 1696 1697 for (const Stmt *SubStmt : S->children()) 1698 if (mightAddDeclToScope(SubStmt)) 1699 return true; 1700 1701 return false; 1702 } 1703 1704 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1705 /// to a constant, or if it does but contains a label, return false. If it 1706 /// constant folds return true and set the boolean result in Result. 1707 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1708 bool &ResultBool, 1709 bool AllowLabels) { 1710 // If MC/DC is enabled, disable folding so that we can instrument all 1711 // conditions to yield complete test vectors. We still keep track of 1712 // folded conditions during region mapping and visualization. 1713 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1714 CGM.getCodeGenOpts().MCDCCoverage) 1715 return false; 1716 1717 llvm::APSInt ResultInt; 1718 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1719 return false; 1720 1721 ResultBool = ResultInt.getBoolValue(); 1722 return true; 1723 } 1724 1725 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1726 /// to a constant, or if it does but contains a label, return false. If it 1727 /// constant folds return true and set the folded value. 1728 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1729 llvm::APSInt &ResultInt, 1730 bool AllowLabels) { 1731 // FIXME: Rename and handle conversion of other evaluatable things 1732 // to bool. 1733 Expr::EvalResult Result; 1734 if (!Cond->EvaluateAsInt(Result, getContext())) 1735 return false; // Not foldable, not integer or not fully evaluatable. 1736 1737 llvm::APSInt Int = Result.Val.getInt(); 1738 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1739 return false; // Contains a label. 1740 1741 ResultInt = Int; 1742 return true; 1743 } 1744 1745 /// Strip parentheses and simplistic logical-NOT operators. 1746 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1747 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1748 if (Op->getOpcode() != UO_LNot) 1749 break; 1750 C = Op->getSubExpr(); 1751 } 1752 return C->IgnoreParens(); 1753 } 1754 1755 /// Determine whether the given condition is an instrumentable condition 1756 /// (i.e. no "&&" or "||"). 1757 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1758 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1759 return (!BOp || !BOp->isLogicalOp()); 1760 } 1761 1762 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1763 /// increments a profile counter based on the semantics of the given logical 1764 /// operator opcode. This is used to instrument branch condition coverage for 1765 /// logical operators. 1766 void CodeGenFunction::EmitBranchToCounterBlock( 1767 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1768 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1769 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1770 // If not instrumenting, just emit a branch. 1771 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1772 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1773 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1774 1775 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1776 1777 llvm::BasicBlock *ThenBlock = nullptr; 1778 llvm::BasicBlock *ElseBlock = nullptr; 1779 llvm::BasicBlock *NextBlock = nullptr; 1780 1781 // Create the block we'll use to increment the appropriate counter. 1782 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1783 1784 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1785 // means we need to evaluate the condition and increment the counter on TRUE: 1786 // 1787 // if (Cond) 1788 // goto CounterIncrBlock; 1789 // else 1790 // goto FalseBlock; 1791 // 1792 // CounterIncrBlock: 1793 // Counter++; 1794 // goto TrueBlock; 1795 1796 if (LOp == BO_LAnd) { 1797 ThenBlock = CounterIncrBlock; 1798 ElseBlock = FalseBlock; 1799 NextBlock = TrueBlock; 1800 } 1801 1802 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1803 // we need to evaluate the condition and increment the counter on FALSE: 1804 // 1805 // if (Cond) 1806 // goto TrueBlock; 1807 // else 1808 // goto CounterIncrBlock; 1809 // 1810 // CounterIncrBlock: 1811 // Counter++; 1812 // goto FalseBlock; 1813 1814 else if (LOp == BO_LOr) { 1815 ThenBlock = TrueBlock; 1816 ElseBlock = CounterIncrBlock; 1817 NextBlock = FalseBlock; 1818 } else { 1819 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1820 } 1821 1822 // Emit Branch based on condition. 1823 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1824 1825 // Emit the block containing the counter increment(s). 1826 EmitBlock(CounterIncrBlock); 1827 1828 // Increment corresponding counter; if index not provided, use Cond as index. 1829 incrementProfileCounter(CntrStmt); 1830 1831 // Go to the next block. 1832 EmitBranch(NextBlock); 1833 } 1834 1835 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1836 /// statement) to the specified blocks. Based on the condition, this might try 1837 /// to simplify the codegen of the conditional based on the branch. 1838 /// \param LH The value of the likelihood attribute on the True branch. 1839 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1840 /// ConditionalOperator (ternary) through a recursive call for the operator's 1841 /// LHS and RHS nodes. 1842 void CodeGenFunction::EmitBranchOnBoolExpr( 1843 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1844 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1845 Cond = Cond->IgnoreParens(); 1846 1847 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1848 // Handle X && Y in a condition. 1849 if (CondBOp->getOpcode() == BO_LAnd) { 1850 MCDCLogOpStack.push_back(CondBOp); 1851 1852 // If we have "1 && X", simplify the code. "0 && X" would have constant 1853 // folded if the case was simple enough. 1854 bool ConstantBool = false; 1855 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1856 ConstantBool) { 1857 // br(1 && X) -> br(X). 1858 incrementProfileCounter(CondBOp); 1859 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1860 FalseBlock, TrueCount, LH); 1861 MCDCLogOpStack.pop_back(); 1862 return; 1863 } 1864 1865 // If we have "X && 1", simplify the code to use an uncond branch. 1866 // "X && 0" would have been constant folded to 0. 1867 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1868 ConstantBool) { 1869 // br(X && 1) -> br(X). 1870 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1871 FalseBlock, TrueCount, LH, CondBOp); 1872 MCDCLogOpStack.pop_back(); 1873 return; 1874 } 1875 1876 // Emit the LHS as a conditional. If the LHS conditional is false, we 1877 // want to jump to the FalseBlock. 1878 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1879 // The counter tells us how often we evaluate RHS, and all of TrueCount 1880 // can be propagated to that branch. 1881 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1882 1883 ConditionalEvaluation eval(*this); 1884 { 1885 ApplyDebugLocation DL(*this, Cond); 1886 // Propagate the likelihood attribute like __builtin_expect 1887 // __builtin_expect(X && Y, 1) -> X and Y are likely 1888 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1889 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1890 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1891 EmitBlock(LHSTrue); 1892 } 1893 1894 incrementProfileCounter(CondBOp); 1895 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1896 1897 // Any temporaries created here are conditional. 1898 eval.begin(*this); 1899 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1900 FalseBlock, TrueCount, LH); 1901 eval.end(*this); 1902 MCDCLogOpStack.pop_back(); 1903 return; 1904 } 1905 1906 if (CondBOp->getOpcode() == BO_LOr) { 1907 MCDCLogOpStack.push_back(CondBOp); 1908 1909 // If we have "0 || X", simplify the code. "1 || X" would have constant 1910 // folded if the case was simple enough. 1911 bool ConstantBool = false; 1912 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1913 !ConstantBool) { 1914 // br(0 || X) -> br(X). 1915 incrementProfileCounter(CondBOp); 1916 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1917 FalseBlock, TrueCount, LH); 1918 MCDCLogOpStack.pop_back(); 1919 return; 1920 } 1921 1922 // If we have "X || 0", simplify the code to use an uncond branch. 1923 // "X || 1" would have been constant folded to 1. 1924 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1925 !ConstantBool) { 1926 // br(X || 0) -> br(X). 1927 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1928 FalseBlock, TrueCount, LH, CondBOp); 1929 MCDCLogOpStack.pop_back(); 1930 return; 1931 } 1932 // Emit the LHS as a conditional. If the LHS conditional is true, we 1933 // want to jump to the TrueBlock. 1934 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1935 // We have the count for entry to the RHS and for the whole expression 1936 // being true, so we can divy up True count between the short circuit and 1937 // the RHS. 1938 uint64_t LHSCount = 1939 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1940 uint64_t RHSCount = TrueCount - LHSCount; 1941 1942 ConditionalEvaluation eval(*this); 1943 { 1944 // Propagate the likelihood attribute like __builtin_expect 1945 // __builtin_expect(X || Y, 1) -> only Y is likely 1946 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1947 ApplyDebugLocation DL(*this, Cond); 1948 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1949 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1950 EmitBlock(LHSFalse); 1951 } 1952 1953 incrementProfileCounter(CondBOp); 1954 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1955 1956 // Any temporaries created here are conditional. 1957 eval.begin(*this); 1958 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1959 RHSCount, LH); 1960 1961 eval.end(*this); 1962 MCDCLogOpStack.pop_back(); 1963 return; 1964 } 1965 } 1966 1967 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1968 // br(!x, t, f) -> br(x, f, t) 1969 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1970 // LNot is taken as part of the condition for simplicity, and changing its 1971 // sense negatively impacts test vector tracking. 1972 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1973 CGM.getCodeGenOpts().MCDCCoverage && 1974 isInstrumentedCondition(Cond); 1975 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1976 // Negate the count. 1977 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1978 // The values of the enum are chosen to make this negation possible. 1979 LH = static_cast<Stmt::Likelihood>(-LH); 1980 // Negate the condition and swap the destination blocks. 1981 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1982 FalseCount, LH); 1983 } 1984 } 1985 1986 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1987 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1988 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1989 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1990 1991 // The ConditionalOperator itself has no likelihood information for its 1992 // true and false branches. This matches the behavior of __builtin_expect. 1993 ConditionalEvaluation cond(*this); 1994 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1995 getProfileCount(CondOp), Stmt::LH_None); 1996 1997 // When computing PGO branch weights, we only know the overall count for 1998 // the true block. This code is essentially doing tail duplication of the 1999 // naive code-gen, introducing new edges for which counts are not 2000 // available. Divide the counts proportionally between the LHS and RHS of 2001 // the conditional operator. 2002 uint64_t LHSScaledTrueCount = 0; 2003 if (TrueCount) { 2004 double LHSRatio = 2005 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 2006 LHSScaledTrueCount = TrueCount * LHSRatio; 2007 } 2008 2009 cond.begin(*this); 2010 EmitBlock(LHSBlock); 2011 incrementProfileCounter(CondOp); 2012 { 2013 ApplyDebugLocation DL(*this, Cond); 2014 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2015 LHSScaledTrueCount, LH, CondOp); 2016 } 2017 cond.end(*this); 2018 2019 cond.begin(*this); 2020 EmitBlock(RHSBlock); 2021 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2022 TrueCount - LHSScaledTrueCount, LH, CondOp); 2023 cond.end(*this); 2024 2025 return; 2026 } 2027 2028 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2029 // Conditional operator handling can give us a throw expression as a 2030 // condition for a case like: 2031 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2032 // Fold this to: 2033 // br(c, throw x, br(y, t, f)) 2034 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2035 return; 2036 } 2037 2038 // Emit the code with the fully general case. 2039 llvm::Value *CondV; 2040 { 2041 ApplyDebugLocation DL(*this, Cond); 2042 CondV = EvaluateExprAsBool(Cond); 2043 } 2044 2045 // If not at the top of the logical operator nest, update MCDC temp with the 2046 // boolean result of the evaluated condition. 2047 if (!MCDCLogOpStack.empty()) { 2048 const Expr *MCDCBaseExpr = Cond; 2049 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2050 // expression, MC/DC tracks the result of the ternary, and this is tied to 2051 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2052 // this is the case, the ConditionalOperator expression is passed through 2053 // the ConditionalOp parameter and then used as the MCDC base expression. 2054 if (ConditionalOp) 2055 MCDCBaseExpr = ConditionalOp; 2056 2057 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2058 } 2059 2060 llvm::MDNode *Weights = nullptr; 2061 llvm::MDNode *Unpredictable = nullptr; 2062 2063 // If the branch has a condition wrapped by __builtin_unpredictable, 2064 // create metadata that specifies that the branch is unpredictable. 2065 // Don't bother if not optimizing because that metadata would not be used. 2066 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2067 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2068 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2069 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2070 llvm::MDBuilder MDHelper(getLLVMContext()); 2071 Unpredictable = MDHelper.createUnpredictable(); 2072 } 2073 } 2074 2075 // If there is a Likelihood knowledge for the cond, lower it. 2076 // Note that if not optimizing this won't emit anything. 2077 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2078 if (CondV != NewCondV) 2079 CondV = NewCondV; 2080 else { 2081 // Otherwise, lower profile counts. Note that we do this even at -O0. 2082 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2083 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2084 } 2085 2086 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2087 } 2088 2089 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2090 /// specified stmt yet. 2091 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2092 CGM.ErrorUnsupported(S, Type); 2093 } 2094 2095 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2096 /// variable-length array whose elements have a non-zero bit-pattern. 2097 /// 2098 /// \param baseType the inner-most element type of the array 2099 /// \param src - a char* pointing to the bit-pattern for a single 2100 /// base element of the array 2101 /// \param sizeInChars - the total size of the VLA, in chars 2102 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2103 Address dest, Address src, 2104 llvm::Value *sizeInChars) { 2105 CGBuilderTy &Builder = CGF.Builder; 2106 2107 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2108 llvm::Value *baseSizeInChars 2109 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2110 2111 Address begin = dest.withElementType(CGF.Int8Ty); 2112 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2113 begin.emitRawPointer(CGF), 2114 sizeInChars, "vla.end"); 2115 2116 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2117 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2118 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2119 2120 // Make a loop over the VLA. C99 guarantees that the VLA element 2121 // count must be nonzero. 2122 CGF.EmitBlock(loopBB); 2123 2124 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2125 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2126 2127 CharUnits curAlign = 2128 dest.getAlignment().alignmentOfArrayElement(baseSize); 2129 2130 // memcpy the individual element bit-pattern. 2131 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2132 /*volatile*/ false); 2133 2134 // Go to the next element. 2135 llvm::Value *next = 2136 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2137 2138 // Leave if that's the end of the VLA. 2139 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2140 Builder.CreateCondBr(done, contBB, loopBB); 2141 cur->addIncoming(next, loopBB); 2142 2143 CGF.EmitBlock(contBB); 2144 } 2145 2146 void 2147 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2148 // Ignore empty classes in C++. 2149 if (getLangOpts().CPlusPlus) { 2150 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2151 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2152 return; 2153 } 2154 } 2155 2156 if (DestPtr.getElementType() != Int8Ty) 2157 DestPtr = DestPtr.withElementType(Int8Ty); 2158 2159 // Get size and alignment info for this aggregate. 2160 CharUnits size = getContext().getTypeSizeInChars(Ty); 2161 2162 llvm::Value *SizeVal; 2163 const VariableArrayType *vla; 2164 2165 // Don't bother emitting a zero-byte memset. 2166 if (size.isZero()) { 2167 // But note that getTypeInfo returns 0 for a VLA. 2168 if (const VariableArrayType *vlaType = 2169 dyn_cast_or_null<VariableArrayType>( 2170 getContext().getAsArrayType(Ty))) { 2171 auto VlaSize = getVLASize(vlaType); 2172 SizeVal = VlaSize.NumElts; 2173 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2174 if (!eltSize.isOne()) 2175 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2176 vla = vlaType; 2177 } else { 2178 return; 2179 } 2180 } else { 2181 SizeVal = CGM.getSize(size); 2182 vla = nullptr; 2183 } 2184 2185 // If the type contains a pointer to data member we can't memset it to zero. 2186 // Instead, create a null constant and copy it to the destination. 2187 // TODO: there are other patterns besides zero that we can usefully memset, 2188 // like -1, which happens to be the pattern used by member-pointers. 2189 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2190 // For a VLA, emit a single element, then splat that over the VLA. 2191 if (vla) Ty = getContext().getBaseElementType(vla); 2192 2193 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2194 2195 llvm::GlobalVariable *NullVariable = 2196 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2197 /*isConstant=*/true, 2198 llvm::GlobalVariable::PrivateLinkage, 2199 NullConstant, Twine()); 2200 CharUnits NullAlign = DestPtr.getAlignment(); 2201 NullVariable->setAlignment(NullAlign.getAsAlign()); 2202 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2203 2204 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2205 2206 // Get and call the appropriate llvm.memcpy overload. 2207 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2208 return; 2209 } 2210 2211 // Otherwise, just memset the whole thing to zero. This is legal 2212 // because in LLVM, all default initializers (other than the ones we just 2213 // handled above) are guaranteed to have a bit pattern of all zeros. 2214 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2215 } 2216 2217 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2218 // Make sure that there is a block for the indirect goto. 2219 if (!IndirectBranch) 2220 GetIndirectGotoBlock(); 2221 2222 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2223 2224 // Make sure the indirect branch includes all of the address-taken blocks. 2225 IndirectBranch->addDestination(BB); 2226 return llvm::BlockAddress::get(CurFn, BB); 2227 } 2228 2229 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2230 // If we already made the indirect branch for indirect goto, return its block. 2231 if (IndirectBranch) return IndirectBranch->getParent(); 2232 2233 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2234 2235 // Create the PHI node that indirect gotos will add entries to. 2236 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2237 "indirect.goto.dest"); 2238 2239 // Create the indirect branch instruction. 2240 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2241 return IndirectBranch->getParent(); 2242 } 2243 2244 /// Computes the length of an array in elements, as well as the base 2245 /// element type and a properly-typed first element pointer. 2246 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2247 QualType &baseType, 2248 Address &addr) { 2249 const ArrayType *arrayType = origArrayType; 2250 2251 // If it's a VLA, we have to load the stored size. Note that 2252 // this is the size of the VLA in bytes, not its size in elements. 2253 llvm::Value *numVLAElements = nullptr; 2254 if (isa<VariableArrayType>(arrayType)) { 2255 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2256 2257 // Walk into all VLAs. This doesn't require changes to addr, 2258 // which has type T* where T is the first non-VLA element type. 2259 do { 2260 QualType elementType = arrayType->getElementType(); 2261 arrayType = getContext().getAsArrayType(elementType); 2262 2263 // If we only have VLA components, 'addr' requires no adjustment. 2264 if (!arrayType) { 2265 baseType = elementType; 2266 return numVLAElements; 2267 } 2268 } while (isa<VariableArrayType>(arrayType)); 2269 2270 // We get out here only if we find a constant array type 2271 // inside the VLA. 2272 } 2273 2274 // We have some number of constant-length arrays, so addr should 2275 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2276 // down to the first element of addr. 2277 SmallVector<llvm::Value*, 8> gepIndices; 2278 2279 // GEP down to the array type. 2280 llvm::ConstantInt *zero = Builder.getInt32(0); 2281 gepIndices.push_back(zero); 2282 2283 uint64_t countFromCLAs = 1; 2284 QualType eltType; 2285 2286 llvm::ArrayType *llvmArrayType = 2287 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2288 while (llvmArrayType) { 2289 assert(isa<ConstantArrayType>(arrayType)); 2290 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2291 llvmArrayType->getNumElements()); 2292 2293 gepIndices.push_back(zero); 2294 countFromCLAs *= llvmArrayType->getNumElements(); 2295 eltType = arrayType->getElementType(); 2296 2297 llvmArrayType = 2298 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2299 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2300 assert((!llvmArrayType || arrayType) && 2301 "LLVM and Clang types are out-of-synch"); 2302 } 2303 2304 if (arrayType) { 2305 // From this point onwards, the Clang array type has been emitted 2306 // as some other type (probably a packed struct). Compute the array 2307 // size, and just emit the 'begin' expression as a bitcast. 2308 while (arrayType) { 2309 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2310 eltType = arrayType->getElementType(); 2311 arrayType = getContext().getAsArrayType(eltType); 2312 } 2313 2314 llvm::Type *baseType = ConvertType(eltType); 2315 addr = addr.withElementType(baseType); 2316 } else { 2317 // Create the actual GEP. 2318 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2319 addr.emitRawPointer(*this), 2320 gepIndices, "array.begin"), 2321 ConvertTypeForMem(eltType), addr.getAlignment()); 2322 } 2323 2324 baseType = eltType; 2325 2326 llvm::Value *numElements 2327 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2328 2329 // If we had any VLA dimensions, factor them in. 2330 if (numVLAElements) 2331 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2332 2333 return numElements; 2334 } 2335 2336 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2337 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2338 assert(vla && "type was not a variable array type!"); 2339 return getVLASize(vla); 2340 } 2341 2342 CodeGenFunction::VlaSizePair 2343 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2344 // The number of elements so far; always size_t. 2345 llvm::Value *numElements = nullptr; 2346 2347 QualType elementType; 2348 do { 2349 elementType = type->getElementType(); 2350 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2351 assert(vlaSize && "no size for VLA!"); 2352 assert(vlaSize->getType() == SizeTy); 2353 2354 if (!numElements) { 2355 numElements = vlaSize; 2356 } else { 2357 // It's undefined behavior if this wraps around, so mark it that way. 2358 // FIXME: Teach -fsanitize=undefined to trap this. 2359 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2360 } 2361 } while ((type = getContext().getAsVariableArrayType(elementType))); 2362 2363 return { numElements, elementType }; 2364 } 2365 2366 CodeGenFunction::VlaSizePair 2367 CodeGenFunction::getVLAElements1D(QualType type) { 2368 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2369 assert(vla && "type was not a variable array type!"); 2370 return getVLAElements1D(vla); 2371 } 2372 2373 CodeGenFunction::VlaSizePair 2374 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2375 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2376 assert(VlaSize && "no size for VLA!"); 2377 assert(VlaSize->getType() == SizeTy); 2378 return { VlaSize, Vla->getElementType() }; 2379 } 2380 2381 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2382 assert(type->isVariablyModifiedType() && 2383 "Must pass variably modified type to EmitVLASizes!"); 2384 2385 EnsureInsertPoint(); 2386 2387 // We're going to walk down into the type and look for VLA 2388 // expressions. 2389 do { 2390 assert(type->isVariablyModifiedType()); 2391 2392 const Type *ty = type.getTypePtr(); 2393 switch (ty->getTypeClass()) { 2394 2395 #define TYPE(Class, Base) 2396 #define ABSTRACT_TYPE(Class, Base) 2397 #define NON_CANONICAL_TYPE(Class, Base) 2398 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2399 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2400 #include "clang/AST/TypeNodes.inc" 2401 llvm_unreachable("unexpected dependent type!"); 2402 2403 // These types are never variably-modified. 2404 case Type::Builtin: 2405 case Type::Complex: 2406 case Type::Vector: 2407 case Type::ExtVector: 2408 case Type::ConstantMatrix: 2409 case Type::Record: 2410 case Type::Enum: 2411 case Type::Using: 2412 case Type::TemplateSpecialization: 2413 case Type::ObjCTypeParam: 2414 case Type::ObjCObject: 2415 case Type::ObjCInterface: 2416 case Type::ObjCObjectPointer: 2417 case Type::BitInt: 2418 llvm_unreachable("type class is never variably-modified!"); 2419 2420 case Type::Elaborated: 2421 type = cast<ElaboratedType>(ty)->getNamedType(); 2422 break; 2423 2424 case Type::Adjusted: 2425 type = cast<AdjustedType>(ty)->getAdjustedType(); 2426 break; 2427 2428 case Type::Decayed: 2429 type = cast<DecayedType>(ty)->getPointeeType(); 2430 break; 2431 2432 case Type::Pointer: 2433 type = cast<PointerType>(ty)->getPointeeType(); 2434 break; 2435 2436 case Type::BlockPointer: 2437 type = cast<BlockPointerType>(ty)->getPointeeType(); 2438 break; 2439 2440 case Type::LValueReference: 2441 case Type::RValueReference: 2442 type = cast<ReferenceType>(ty)->getPointeeType(); 2443 break; 2444 2445 case Type::MemberPointer: 2446 type = cast<MemberPointerType>(ty)->getPointeeType(); 2447 break; 2448 2449 case Type::ArrayParameter: 2450 case Type::ConstantArray: 2451 case Type::IncompleteArray: 2452 // Losing element qualification here is fine. 2453 type = cast<ArrayType>(ty)->getElementType(); 2454 break; 2455 2456 case Type::VariableArray: { 2457 // Losing element qualification here is fine. 2458 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2459 2460 // Unknown size indication requires no size computation. 2461 // Otherwise, evaluate and record it. 2462 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2463 // It's possible that we might have emitted this already, 2464 // e.g. with a typedef and a pointer to it. 2465 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2466 if (!entry) { 2467 llvm::Value *size = EmitScalarExpr(sizeExpr); 2468 2469 // C11 6.7.6.2p5: 2470 // If the size is an expression that is not an integer constant 2471 // expression [...] each time it is evaluated it shall have a value 2472 // greater than zero. 2473 if (SanOpts.has(SanitizerKind::VLABound)) { 2474 SanitizerScope SanScope(this); 2475 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2476 clang::QualType SEType = sizeExpr->getType(); 2477 llvm::Value *CheckCondition = 2478 SEType->isSignedIntegerType() 2479 ? Builder.CreateICmpSGT(size, Zero) 2480 : Builder.CreateICmpUGT(size, Zero); 2481 llvm::Constant *StaticArgs[] = { 2482 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2483 EmitCheckTypeDescriptor(SEType)}; 2484 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2485 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2486 } 2487 2488 // Always zexting here would be wrong if it weren't 2489 // undefined behavior to have a negative bound. 2490 // FIXME: What about when size's type is larger than size_t? 2491 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2492 } 2493 } 2494 type = vat->getElementType(); 2495 break; 2496 } 2497 2498 case Type::FunctionProto: 2499 case Type::FunctionNoProto: 2500 type = cast<FunctionType>(ty)->getReturnType(); 2501 break; 2502 2503 case Type::Paren: 2504 case Type::TypeOf: 2505 case Type::UnaryTransform: 2506 case Type::Attributed: 2507 case Type::BTFTagAttributed: 2508 case Type::HLSLAttributedResource: 2509 case Type::SubstTemplateTypeParm: 2510 case Type::MacroQualified: 2511 case Type::CountAttributed: 2512 // Keep walking after single level desugaring. 2513 type = type.getSingleStepDesugaredType(getContext()); 2514 break; 2515 2516 case Type::Typedef: 2517 case Type::Decltype: 2518 case Type::Auto: 2519 case Type::DeducedTemplateSpecialization: 2520 case Type::PackIndexing: 2521 // Stop walking: nothing to do. 2522 return; 2523 2524 case Type::TypeOfExpr: 2525 // Stop walking: emit typeof expression. 2526 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2527 return; 2528 2529 case Type::Atomic: 2530 type = cast<AtomicType>(ty)->getValueType(); 2531 break; 2532 2533 case Type::Pipe: 2534 type = cast<PipeType>(ty)->getElementType(); 2535 break; 2536 } 2537 } while (type->isVariablyModifiedType()); 2538 } 2539 2540 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2541 if (getContext().getBuiltinVaListType()->isArrayType()) 2542 return EmitPointerWithAlignment(E); 2543 return EmitLValue(E).getAddress(); 2544 } 2545 2546 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2547 return EmitLValue(E).getAddress(); 2548 } 2549 2550 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2551 const APValue &Init) { 2552 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2553 if (CGDebugInfo *Dbg = getDebugInfo()) 2554 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2555 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2556 } 2557 2558 CodeGenFunction::PeepholeProtection 2559 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2560 // At the moment, the only aggressive peephole we do in IR gen 2561 // is trunc(zext) folding, but if we add more, we can easily 2562 // extend this protection. 2563 2564 if (!rvalue.isScalar()) return PeepholeProtection(); 2565 llvm::Value *value = rvalue.getScalarVal(); 2566 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2567 2568 // Just make an extra bitcast. 2569 assert(HaveInsertPoint()); 2570 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2571 Builder.GetInsertBlock()); 2572 2573 PeepholeProtection protection; 2574 protection.Inst = inst; 2575 return protection; 2576 } 2577 2578 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2579 if (!protection.Inst) return; 2580 2581 // In theory, we could try to duplicate the peepholes now, but whatever. 2582 protection.Inst->eraseFromParent(); 2583 } 2584 2585 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2586 QualType Ty, SourceLocation Loc, 2587 SourceLocation AssumptionLoc, 2588 llvm::Value *Alignment, 2589 llvm::Value *OffsetValue) { 2590 if (Alignment->getType() != IntPtrTy) 2591 Alignment = 2592 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2593 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2594 OffsetValue = 2595 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2596 llvm::Value *TheCheck = nullptr; 2597 if (SanOpts.has(SanitizerKind::Alignment)) { 2598 llvm::Value *PtrIntValue = 2599 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2600 2601 if (OffsetValue) { 2602 bool IsOffsetZero = false; 2603 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2604 IsOffsetZero = CI->isZero(); 2605 2606 if (!IsOffsetZero) 2607 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2608 } 2609 2610 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2611 llvm::Value *Mask = 2612 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2613 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2614 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2615 } 2616 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2617 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2618 2619 if (!SanOpts.has(SanitizerKind::Alignment)) 2620 return; 2621 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2622 OffsetValue, TheCheck, Assumption); 2623 } 2624 2625 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2626 const Expr *E, 2627 SourceLocation AssumptionLoc, 2628 llvm::Value *Alignment, 2629 llvm::Value *OffsetValue) { 2630 QualType Ty = E->getType(); 2631 SourceLocation Loc = E->getExprLoc(); 2632 2633 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2634 OffsetValue); 2635 } 2636 2637 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2638 llvm::Value *AnnotatedVal, 2639 StringRef AnnotationStr, 2640 SourceLocation Location, 2641 const AnnotateAttr *Attr) { 2642 SmallVector<llvm::Value *, 5> Args = { 2643 AnnotatedVal, 2644 CGM.EmitAnnotationString(AnnotationStr), 2645 CGM.EmitAnnotationUnit(Location), 2646 CGM.EmitAnnotationLineNo(Location), 2647 }; 2648 if (Attr) 2649 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2650 return Builder.CreateCall(AnnotationFn, Args); 2651 } 2652 2653 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2654 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2655 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2656 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2657 {V->getType(), CGM.ConstGlobalsPtrTy}), 2658 V, I->getAnnotation(), D->getLocation(), I); 2659 } 2660 2661 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2662 Address Addr) { 2663 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2664 llvm::Value *V = Addr.emitRawPointer(*this); 2665 llvm::Type *VTy = V->getType(); 2666 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2667 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2668 llvm::PointerType *IntrinTy = 2669 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2670 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2671 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2672 2673 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2674 // FIXME Always emit the cast inst so we can differentiate between 2675 // annotation on the first field of a struct and annotation on the struct 2676 // itself. 2677 if (VTy != IntrinTy) 2678 V = Builder.CreateBitCast(V, IntrinTy); 2679 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2680 V = Builder.CreateBitCast(V, VTy); 2681 } 2682 2683 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2684 } 2685 2686 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2687 2688 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2689 : CGF(CGF) { 2690 assert(!CGF->IsSanitizerScope); 2691 CGF->IsSanitizerScope = true; 2692 } 2693 2694 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2695 CGF->IsSanitizerScope = false; 2696 } 2697 2698 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2699 const llvm::Twine &Name, 2700 llvm::BasicBlock::iterator InsertPt) const { 2701 LoopStack.InsertHelper(I); 2702 if (IsSanitizerScope) 2703 I->setNoSanitizeMetadata(); 2704 } 2705 2706 void CGBuilderInserter::InsertHelper( 2707 llvm::Instruction *I, const llvm::Twine &Name, 2708 llvm::BasicBlock::iterator InsertPt) const { 2709 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2710 if (CGF) 2711 CGF->InsertHelper(I, Name, InsertPt); 2712 } 2713 2714 // Emits an error if we don't have a valid set of target features for the 2715 // called function. 2716 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2717 const FunctionDecl *TargetDecl) { 2718 // SemaChecking cannot handle below x86 builtins because they have different 2719 // parameter ranges with different TargetAttribute of caller. 2720 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2721 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2722 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2723 BuiltinID == X86::BI__builtin_ia32_cmpss || 2724 BuiltinID == X86::BI__builtin_ia32_cmppd || 2725 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2726 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2727 llvm::StringMap<bool> TargetFetureMap; 2728 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2729 llvm::APSInt Result = 2730 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2731 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2732 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2733 << TargetDecl->getDeclName() << "avx"; 2734 } 2735 } 2736 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2737 } 2738 2739 // Emits an error if we don't have a valid set of target features for the 2740 // called function. 2741 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2742 const FunctionDecl *TargetDecl) { 2743 // Early exit if this is an indirect call. 2744 if (!TargetDecl) 2745 return; 2746 2747 // Get the current enclosing function if it exists. If it doesn't 2748 // we can't check the target features anyhow. 2749 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2750 if (!FD) 2751 return; 2752 2753 // Grab the required features for the call. For a builtin this is listed in 2754 // the td file with the default cpu, for an always_inline function this is any 2755 // listed cpu and any listed features. 2756 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2757 std::string MissingFeature; 2758 llvm::StringMap<bool> CallerFeatureMap; 2759 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2760 // When compiling in HipStdPar mode we have to be conservative in rejecting 2761 // target specific features in the FE, and defer the possible error to the 2762 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2763 // referenced by an accelerator executable function, we emit an error. 2764 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2765 if (BuiltinID) { 2766 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2767 if (!Builtin::evaluateRequiredTargetFeatures( 2768 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2769 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2770 << TargetDecl->getDeclName() 2771 << FeatureList; 2772 } 2773 } else if (!TargetDecl->isMultiVersion() && 2774 TargetDecl->hasAttr<TargetAttr>()) { 2775 // Get the required features for the callee. 2776 2777 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2778 ParsedTargetAttr ParsedAttr = 2779 CGM.getContext().filterFunctionTargetAttrs(TD); 2780 2781 SmallVector<StringRef, 1> ReqFeatures; 2782 llvm::StringMap<bool> CalleeFeatureMap; 2783 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2784 2785 for (const auto &F : ParsedAttr.Features) { 2786 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2787 ReqFeatures.push_back(StringRef(F).substr(1)); 2788 } 2789 2790 for (const auto &F : CalleeFeatureMap) { 2791 // Only positive features are "required". 2792 if (F.getValue()) 2793 ReqFeatures.push_back(F.getKey()); 2794 } 2795 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2796 if (!CallerFeatureMap.lookup(Feature)) { 2797 MissingFeature = Feature.str(); 2798 return false; 2799 } 2800 return true; 2801 }) && !IsHipStdPar) 2802 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2803 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2804 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2805 llvm::StringMap<bool> CalleeFeatureMap; 2806 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2807 2808 for (const auto &F : CalleeFeatureMap) { 2809 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2810 !CallerFeatureMap.find(F.getKey())->getValue()) && 2811 !IsHipStdPar) 2812 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2813 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2814 } 2815 } 2816 } 2817 2818 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2819 if (!CGM.getCodeGenOpts().SanitizeStats) 2820 return; 2821 2822 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2823 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2824 CGM.getSanStats().create(IRB, SSK); 2825 } 2826 2827 void CodeGenFunction::EmitKCFIOperandBundle( 2828 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2829 const FunctionProtoType *FP = 2830 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2831 if (FP) 2832 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2833 } 2834 2835 llvm::Value * 2836 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) { 2837 return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features); 2838 } 2839 2840 llvm::Value * 2841 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) { 2842 llvm::Value *Condition = nullptr; 2843 2844 if (RO.Architecture) { 2845 StringRef Arch = *RO.Architecture; 2846 // If arch= specifies an x86-64 micro-architecture level, test the feature 2847 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2848 if (Arch.starts_with("x86-64")) 2849 Condition = EmitX86CpuSupports({Arch}); 2850 else 2851 Condition = EmitX86CpuIs(Arch); 2852 } 2853 2854 if (!RO.Features.empty()) { 2855 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features); 2856 Condition = 2857 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2858 } 2859 return Condition; 2860 } 2861 2862 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2863 llvm::Function *Resolver, 2864 CGBuilderTy &Builder, 2865 llvm::Function *FuncToReturn, 2866 bool SupportsIFunc) { 2867 if (SupportsIFunc) { 2868 Builder.CreateRet(FuncToReturn); 2869 return; 2870 } 2871 2872 llvm::SmallVector<llvm::Value *, 10> Args( 2873 llvm::make_pointer_range(Resolver->args())); 2874 2875 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2876 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2877 2878 if (Resolver->getReturnType()->isVoidTy()) 2879 Builder.CreateRetVoid(); 2880 else 2881 Builder.CreateRet(Result); 2882 } 2883 2884 void CodeGenFunction::EmitMultiVersionResolver( 2885 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 2886 2887 llvm::Triple::ArchType ArchType = 2888 getContext().getTargetInfo().getTriple().getArch(); 2889 2890 switch (ArchType) { 2891 case llvm::Triple::x86: 2892 case llvm::Triple::x86_64: 2893 EmitX86MultiVersionResolver(Resolver, Options); 2894 return; 2895 case llvm::Triple::aarch64: 2896 EmitAArch64MultiVersionResolver(Resolver, Options); 2897 return; 2898 case llvm::Triple::riscv32: 2899 case llvm::Triple::riscv64: 2900 EmitRISCVMultiVersionResolver(Resolver, Options); 2901 return; 2902 2903 default: 2904 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2905 } 2906 } 2907 2908 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2909 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 2910 2911 if (getContext().getTargetInfo().getTriple().getOS() != 2912 llvm::Triple::OSType::Linux) { 2913 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2914 return; 2915 } 2916 2917 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2918 Builder.SetInsertPoint(CurBlock); 2919 EmitRISCVCpuInit(); 2920 2921 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2922 bool HasDefault = false; 2923 unsigned DefaultIndex = 0; 2924 2925 // Check the each candidate function. 2926 for (unsigned Index = 0; Index < Options.size(); Index++) { 2927 2928 if (Options[Index].Features.empty()) { 2929 HasDefault = true; 2930 DefaultIndex = Index; 2931 continue; 2932 } 2933 2934 Builder.SetInsertPoint(CurBlock); 2935 2936 // FeaturesCondition: The bitmask of the required extension has been 2937 // enabled by the runtime object. 2938 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2939 // REQUIRED_BITMASK 2940 // 2941 // When condition is met, return this version of the function. 2942 // Otherwise, try the next version. 2943 // 2944 // if (FeaturesConditionVersion1) 2945 // return Version1; 2946 // else if (FeaturesConditionVersion2) 2947 // return Version2; 2948 // else if (FeaturesConditionVersion3) 2949 // return Version3; 2950 // ... 2951 // else 2952 // return DefaultVersion; 2953 2954 // TODO: Add a condition to check the length before accessing elements. 2955 // Without checking the length first, we may access an incorrect memory 2956 // address when using different versions. 2957 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2958 llvm::SmallVector<std::string, 8> TargetAttrFeats; 2959 2960 for (StringRef Feat : Options[Index].Features) { 2961 std::vector<std::string> FeatStr = 2962 getContext().getTargetInfo().parseTargetAttr(Feat).Features; 2963 2964 assert(FeatStr.size() == 1 && "Feature string not delimited"); 2965 2966 std::string &CurrFeat = FeatStr.front(); 2967 if (CurrFeat[0] == '+') 2968 TargetAttrFeats.push_back(CurrFeat.substr(1)); 2969 } 2970 2971 if (TargetAttrFeats.empty()) 2972 continue; 2973 2974 for (std::string &Feat : TargetAttrFeats) 2975 CurrTargetAttrFeats.push_back(Feat); 2976 2977 Builder.SetInsertPoint(CurBlock); 2978 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 2979 2980 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2981 CGBuilderTy RetBuilder(*this, RetBlock); 2982 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, 2983 Options[Index].Function, SupportsIFunc); 2984 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 2985 2986 Builder.SetInsertPoint(CurBlock); 2987 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 2988 2989 CurBlock = ElseBlock; 2990 } 2991 2992 // Finally, emit the default one. 2993 if (HasDefault) { 2994 Builder.SetInsertPoint(CurBlock); 2995 CreateMultiVersionResolverReturn( 2996 CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc); 2997 return; 2998 } 2999 3000 // If no generic/default, emit an unreachable. 3001 Builder.SetInsertPoint(CurBlock); 3002 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3003 TrapCall->setDoesNotReturn(); 3004 TrapCall->setDoesNotThrow(); 3005 Builder.CreateUnreachable(); 3006 Builder.ClearInsertionPoint(); 3007 } 3008 3009 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3010 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 3011 assert(!Options.empty() && "No multiversion resolver options found"); 3012 assert(Options.back().Features.size() == 0 && "Default case must be last"); 3013 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3014 assert(SupportsIFunc && 3015 "Multiversion resolver requires target IFUNC support"); 3016 bool AArch64CpuInitialized = false; 3017 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3018 3019 for (const FMVResolverOption &RO : Options) { 3020 Builder.SetInsertPoint(CurBlock); 3021 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3022 3023 // The 'default' or 'all features enabled' case. 3024 if (!Condition) { 3025 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3026 SupportsIFunc); 3027 return; 3028 } 3029 3030 if (!AArch64CpuInitialized) { 3031 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3032 EmitAArch64CpuInit(); 3033 AArch64CpuInitialized = true; 3034 Builder.SetInsertPoint(CurBlock); 3035 } 3036 3037 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3038 CGBuilderTy RetBuilder(*this, RetBlock); 3039 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3040 SupportsIFunc); 3041 CurBlock = createBasicBlock("resolver_else", Resolver); 3042 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3043 } 3044 3045 // If no default, emit an unreachable. 3046 Builder.SetInsertPoint(CurBlock); 3047 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3048 TrapCall->setDoesNotReturn(); 3049 TrapCall->setDoesNotThrow(); 3050 Builder.CreateUnreachable(); 3051 Builder.ClearInsertionPoint(); 3052 } 3053 3054 void CodeGenFunction::EmitX86MultiVersionResolver( 3055 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 3056 3057 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3058 3059 // Main function's basic block. 3060 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3061 Builder.SetInsertPoint(CurBlock); 3062 EmitX86CpuInit(); 3063 3064 for (const FMVResolverOption &RO : Options) { 3065 Builder.SetInsertPoint(CurBlock); 3066 llvm::Value *Condition = FormX86ResolverCondition(RO); 3067 3068 // The 'default' or 'generic' case. 3069 if (!Condition) { 3070 assert(&RO == Options.end() - 1 && 3071 "Default or Generic case must be last"); 3072 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3073 SupportsIFunc); 3074 return; 3075 } 3076 3077 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3078 CGBuilderTy RetBuilder(*this, RetBlock); 3079 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3080 SupportsIFunc); 3081 CurBlock = createBasicBlock("resolver_else", Resolver); 3082 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3083 } 3084 3085 // If no generic/default, emit an unreachable. 3086 Builder.SetInsertPoint(CurBlock); 3087 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3088 TrapCall->setDoesNotReturn(); 3089 TrapCall->setDoesNotThrow(); 3090 Builder.CreateUnreachable(); 3091 Builder.ClearInsertionPoint(); 3092 } 3093 3094 // Loc - where the diagnostic will point, where in the source code this 3095 // alignment has failed. 3096 // SecondaryLoc - if present (will be present if sufficiently different from 3097 // Loc), the diagnostic will additionally point a "Note:" to this location. 3098 // It should be the location where the __attribute__((assume_aligned)) 3099 // was written e.g. 3100 void CodeGenFunction::emitAlignmentAssumptionCheck( 3101 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3102 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3103 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3104 llvm::Instruction *Assumption) { 3105 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3106 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3107 llvm::Intrinsic::getOrInsertDeclaration( 3108 Builder.GetInsertBlock()->getParent()->getParent(), 3109 llvm::Intrinsic::assume) && 3110 "Assumption should be a call to llvm.assume()."); 3111 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3112 "Assumption should be the last instruction of the basic block, " 3113 "since the basic block is still being generated."); 3114 3115 if (!SanOpts.has(SanitizerKind::Alignment)) 3116 return; 3117 3118 // Don't check pointers to volatile data. The behavior here is implementation- 3119 // defined. 3120 if (Ty->getPointeeType().isVolatileQualified()) 3121 return; 3122 3123 // We need to temorairly remove the assumption so we can insert the 3124 // sanitizer check before it, else the check will be dropped by optimizations. 3125 Assumption->removeFromParent(); 3126 3127 { 3128 SanitizerScope SanScope(this); 3129 3130 if (!OffsetValue) 3131 OffsetValue = Builder.getInt1(false); // no offset. 3132 3133 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3134 EmitCheckSourceLocation(SecondaryLoc), 3135 EmitCheckTypeDescriptor(Ty)}; 3136 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3137 EmitCheckValue(Alignment), 3138 EmitCheckValue(OffsetValue)}; 3139 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3140 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3141 } 3142 3143 // We are now in the (new, empty) "cont" basic block. 3144 // Reintroduce the assumption. 3145 Builder.Insert(Assumption); 3146 // FIXME: Assumption still has it's original basic block as it's Parent. 3147 } 3148 3149 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3150 if (CGDebugInfo *DI = getDebugInfo()) 3151 return DI->SourceLocToDebugLoc(Location); 3152 3153 return llvm::DebugLoc(); 3154 } 3155 3156 llvm::Value * 3157 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3158 Stmt::Likelihood LH) { 3159 switch (LH) { 3160 case Stmt::LH_None: 3161 return Cond; 3162 case Stmt::LH_Likely: 3163 case Stmt::LH_Unlikely: 3164 // Don't generate llvm.expect on -O0 as the backend won't use it for 3165 // anything. 3166 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3167 return Cond; 3168 llvm::Type *CondTy = Cond->getType(); 3169 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3170 llvm::Function *FnExpect = 3171 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3172 llvm::Value *ExpectedValueOfCond = 3173 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3174 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3175 Cond->getName() + ".expval"); 3176 } 3177 llvm_unreachable("Unknown Likelihood"); 3178 } 3179 3180 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3181 unsigned NumElementsDst, 3182 const llvm::Twine &Name) { 3183 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3184 unsigned NumElementsSrc = SrcTy->getNumElements(); 3185 if (NumElementsSrc == NumElementsDst) 3186 return SrcVec; 3187 3188 std::vector<int> ShuffleMask(NumElementsDst, -1); 3189 for (unsigned MaskIdx = 0; 3190 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3191 ShuffleMask[MaskIdx] = MaskIdx; 3192 3193 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3194 } 3195 3196 void CodeGenFunction::EmitPointerAuthOperandBundle( 3197 const CGPointerAuthInfo &PointerAuth, 3198 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3199 if (!PointerAuth.isSigned()) 3200 return; 3201 3202 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3203 3204 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3205 if (!Discriminator) 3206 Discriminator = Builder.getSize(0); 3207 3208 llvm::Value *Args[] = {Key, Discriminator}; 3209 Bundles.emplace_back("ptrauth", Args); 3210 } 3211 3212 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3213 const CGPointerAuthInfo &PointerAuth, 3214 llvm::Value *Pointer, 3215 unsigned IntrinsicID) { 3216 if (!PointerAuth) 3217 return Pointer; 3218 3219 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3220 3221 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3222 if (!Discriminator) { 3223 Discriminator = CGF.Builder.getSize(0); 3224 } 3225 3226 // Convert the pointer to intptr_t before signing it. 3227 auto OrigType = Pointer->getType(); 3228 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3229 3230 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3231 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3232 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3233 3234 // Convert back to the original type. 3235 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3236 return Pointer; 3237 } 3238 3239 llvm::Value * 3240 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3241 llvm::Value *Pointer) { 3242 if (!PointerAuth.shouldSign()) 3243 return Pointer; 3244 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3245 llvm::Intrinsic::ptrauth_sign); 3246 } 3247 3248 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3249 const CGPointerAuthInfo &PointerAuth, 3250 llvm::Value *Pointer) { 3251 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3252 3253 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3254 // Convert the pointer to intptr_t before signing it. 3255 auto OrigType = Pointer->getType(); 3256 Pointer = CGF.EmitRuntimeCall( 3257 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3258 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3259 } 3260 3261 llvm::Value * 3262 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3263 llvm::Value *Pointer) { 3264 if (PointerAuth.shouldStrip()) { 3265 return EmitStrip(*this, PointerAuth, Pointer); 3266 } 3267 if (!PointerAuth.shouldAuth()) { 3268 return Pointer; 3269 } 3270 3271 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3272 llvm::Intrinsic::ptrauth_auth); 3273 } 3274