xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision b66f6b25cb5107d4c8f78d13b08d2bdba39ad919)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableSingleByteCoverage;
57 } // namespace llvm
58 
59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
60 /// markers.
61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
62                                       const LangOptions &LangOpts) {
63   if (CGOpts.DisableLifetimeMarkers)
64     return false;
65 
66   // Sanitizers may use markers.
67   if (CGOpts.SanitizeAddressUseAfterScope ||
68       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
69       LangOpts.Sanitize.has(SanitizerKind::Memory))
70     return true;
71 
72   // For now, only in optimized builds.
73   return CGOpts.OptimizationLevel != 0;
74 }
75 
76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
77     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
78       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
79               CGBuilderInserterTy(this)),
80       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
81       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86   EHStack.setCGF(this);
87 
88   SetFastMathFlags(CurFPFeatures);
89 }
90 
91 CodeGenFunction::~CodeGenFunction() {
92   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
93   assert(DeferredDeactivationCleanupStack.empty() &&
94          "missed to deactivate a cleanup");
95 
96   if (getLangOpts().OpenMP && CurFn)
97     CGM.getOpenMPRuntime().functionFinished(*this);
98 
99   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
100   // outlining etc) at some point. Doing it once the function codegen is done
101   // seems to be a reasonable spot. We do it here, as opposed to the deletion
102   // time of the CodeGenModule, because we have to ensure the IR has not yet
103   // been "emitted" to the outside, thus, modifications are still sensible.
104   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
105     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
106 }
107 
108 // Map the LangOption for exception behavior into
109 // the corresponding enum in the IR.
110 llvm::fp::ExceptionBehavior
111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
112 
113   switch (Kind) {
114   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
115   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
116   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
117   default:
118     llvm_unreachable("Unsupported FP Exception Behavior");
119   }
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
159   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
160   auto NewExceptionBehavior =
161       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
162           FPFeatures.getExceptionMode()));
163   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
164 
165   CGF.SetFastMathFlags(FPFeatures);
166 
167   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
168           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
169           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
170           (NewExceptionBehavior == llvm::fp::ebIgnore &&
171            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
172          "FPConstrained should be enabled on entire function");
173 
174   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
175     auto OldValue =
176         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
177     auto NewValue = OldValue & Value;
178     if (OldValue != NewValue)
179       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
180   };
181   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
182   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
183   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
184   mergeFnAttrValue(
185       "unsafe-fp-math",
186       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
187           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
188           FPFeatures.allowFPContractAcrossStatement());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 static LValue
198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
199                            bool MightBeSigned, CodeGenFunction &CGF,
200                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr =
206       MightBeSigned
207           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
208                                              nullptr, IsKnownNonNull)
209           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
210   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
215                                             KnownNonNull_t IsKnownNonNull) {
216   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
217                                       /*MightBeSigned*/ true, *this,
218                                       IsKnownNonNull);
219 }
220 
221 LValue
222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
223   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
224                                       /*MightBeSigned*/ true, *this);
225 }
226 
227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
228                                                       QualType T) {
229   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
230                                       /*MightBeSigned*/ false, *this);
231 }
232 
233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
234                                                              QualType T) {
235   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
236                                       /*MightBeSigned*/ false, *this);
237 }
238 
239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
240   return CGM.getTypes().ConvertTypeForMem(T);
241 }
242 
243 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
244   return CGM.getTypes().ConvertType(T);
245 }
246 
247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
248                                                      llvm::Type *LLVMTy) {
249   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
250 }
251 
252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
253   type = type.getCanonicalType();
254   while (true) {
255     switch (type->getTypeClass()) {
256 #define TYPE(name, parent)
257 #define ABSTRACT_TYPE(name, parent)
258 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
259 #define DEPENDENT_TYPE(name, parent) case Type::name:
260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
261 #include "clang/AST/TypeNodes.inc"
262       llvm_unreachable("non-canonical or dependent type in IR-generation");
263 
264     case Type::Auto:
265     case Type::DeducedTemplateSpecialization:
266       llvm_unreachable("undeduced type in IR-generation");
267 
268     // Various scalar types.
269     case Type::Builtin:
270     case Type::Pointer:
271     case Type::BlockPointer:
272     case Type::LValueReference:
273     case Type::RValueReference:
274     case Type::MemberPointer:
275     case Type::Vector:
276     case Type::ExtVector:
277     case Type::ConstantMatrix:
278     case Type::FunctionProto:
279     case Type::FunctionNoProto:
280     case Type::Enum:
281     case Type::ObjCObjectPointer:
282     case Type::Pipe:
283     case Type::BitInt:
284     case Type::HLSLAttributedResource:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!(getLangOpts().OpenCL ||
639         (getLangOpts().CUDA &&
640          getContext().getTargetInfo().getTriple().isSPIRV())))
641     return;
642 
643   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
644     QualType HintQTy = A->getTypeHint();
645     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
646     bool IsSignedInteger =
647         HintQTy->isSignedIntegerType() ||
648         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
649     llvm::Metadata *AttrMDArgs[] = {
650         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
651             CGM.getTypes().ConvertType(A->getTypeHint()))),
652         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653             llvm::IntegerType::get(Context, 32),
654             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
655     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
656   }
657 
658   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
659     llvm::Metadata *AttrMDArgs[] = {
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
663     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
664   }
665 
666   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
667     llvm::Metadata *AttrMDArgs[] = {
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
671     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
672   }
673 
674   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
675           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
676     llvm::Metadata *AttrMDArgs[] = {
677         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
678     Fn->setMetadata("intel_reqd_sub_group_size",
679                     llvm::MDNode::get(Context, AttrMDArgs));
680   }
681 }
682 
683 /// Determine whether the function F ends with a return stmt.
684 static bool endsWithReturn(const Decl* F) {
685   const Stmt *Body = nullptr;
686   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
687     Body = FD->getBody();
688   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
689     Body = OMD->getBody();
690 
691   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
692     auto LastStmt = CS->body_rbegin();
693     if (LastStmt != CS->body_rend())
694       return isa<ReturnStmt>(*LastStmt);
695   }
696   return false;
697 }
698 
699 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
700   if (SanOpts.has(SanitizerKind::Thread)) {
701     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
702     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
703   }
704 }
705 
706 /// Check if the return value of this function requires sanitization.
707 bool CodeGenFunction::requiresReturnValueCheck() const {
708   return requiresReturnValueNullabilityCheck() ||
709          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
710           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
711 }
712 
713 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
714   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
715   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
716       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
717       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
718     return false;
719 
720   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
721     return false;
722 
723   if (MD->getNumParams() == 2) {
724     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
725     if (!PT || !PT->isVoidPointerType() ||
726         !PT->getPointeeType().isConstQualified())
727       return false;
728   }
729 
730   return true;
731 }
732 
733 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
734   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
735   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
736 }
737 
738 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
739   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
740          getTarget().getCXXABI().isMicrosoft() &&
741          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
742            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
743          });
744 }
745 
746 /// Return the UBSan prologue signature for \p FD if one is available.
747 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
748                                             const FunctionDecl *FD) {
749   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
750     if (!MD->isStatic())
751       return nullptr;
752   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
753 }
754 
755 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
756                                     llvm::Function *Fn,
757                                     const CGFunctionInfo &FnInfo,
758                                     const FunctionArgList &Args,
759                                     SourceLocation Loc,
760                                     SourceLocation StartLoc) {
761   assert(!CurFn &&
762          "Do not use a CodeGenFunction object for more than one function");
763 
764   const Decl *D = GD.getDecl();
765 
766   DidCallStackSave = false;
767   CurCodeDecl = D;
768   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
769   if (FD && FD->usesSEHTry())
770     CurSEHParent = GD;
771   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
772   FnRetTy = RetTy;
773   CurFn = Fn;
774   CurFnInfo = &FnInfo;
775   assert(CurFn->isDeclaration() && "Function already has body?");
776 
777   // If this function is ignored for any of the enabled sanitizers,
778   // disable the sanitizer for the function.
779   do {
780 #define SANITIZER(NAME, ID)                                                    \
781   if (SanOpts.empty())                                                         \
782     break;                                                                     \
783   if (SanOpts.has(SanitizerKind::ID))                                          \
784     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
785       SanOpts.set(SanitizerKind::ID, false);
786 
787 #include "clang/Basic/Sanitizers.def"
788 #undef SANITIZER
789   } while (false);
790 
791   if (D) {
792     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
793     SanitizerMask no_sanitize_mask;
794     bool NoSanitizeCoverage = false;
795 
796     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
797       no_sanitize_mask |= Attr->getMask();
798       // SanitizeCoverage is not handled by SanOpts.
799       if (Attr->hasCoverage())
800         NoSanitizeCoverage = true;
801     }
802 
803     // Apply the no_sanitize* attributes to SanOpts.
804     SanOpts.Mask &= ~no_sanitize_mask;
805     if (no_sanitize_mask & SanitizerKind::Address)
806       SanOpts.set(SanitizerKind::KernelAddress, false);
807     if (no_sanitize_mask & SanitizerKind::KernelAddress)
808       SanOpts.set(SanitizerKind::Address, false);
809     if (no_sanitize_mask & SanitizerKind::HWAddress)
810       SanOpts.set(SanitizerKind::KernelHWAddress, false);
811     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
812       SanOpts.set(SanitizerKind::HWAddress, false);
813 
814     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
815       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
816 
817     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
818       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
819 
820     // Some passes need the non-negated no_sanitize attribute. Pass them on.
821     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
822       if (no_sanitize_mask & SanitizerKind::Thread)
823         Fn->addFnAttr("no_sanitize_thread");
824     }
825   }
826 
827   if (ShouldSkipSanitizerInstrumentation()) {
828     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
829   } else {
830     // Apply sanitizer attributes to the function.
831     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
832       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
833     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
834                          SanitizerKind::KernelHWAddress))
835       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
836     if (SanOpts.has(SanitizerKind::MemtagStack))
837       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
838     if (SanOpts.has(SanitizerKind::Thread))
839       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
840     if (SanOpts.has(SanitizerKind::Type))
841       Fn->addFnAttr(llvm::Attribute::SanitizeType);
842     if (SanOpts.has(SanitizerKind::NumericalStability))
843       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
844     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
845       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
846   }
847   if (SanOpts.has(SanitizerKind::SafeStack))
848     Fn->addFnAttr(llvm::Attribute::SafeStack);
849   if (SanOpts.has(SanitizerKind::ShadowCallStack))
850     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
851 
852   if (SanOpts.has(SanitizerKind::Realtime))
853     if (FD && FD->getASTContext().hasAnyFunctionEffects())
854       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
855         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
856           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
857         else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
858           Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
859       }
860 
861   // Apply fuzzing attribute to the function.
862   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
863     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
864 
865   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
866   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
867   if (SanOpts.has(SanitizerKind::Thread)) {
868     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
869       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
870       if (OMD->getMethodFamily() == OMF_dealloc ||
871           OMD->getMethodFamily() == OMF_initialize ||
872           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
873         markAsIgnoreThreadCheckingAtRuntime(Fn);
874       }
875     }
876   }
877 
878   // Ignore unrelated casts in STL allocate() since the allocator must cast
879   // from void* to T* before object initialization completes. Don't match on the
880   // namespace because not all allocators are in std::
881   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
882     if (matchesStlAllocatorFn(D, getContext()))
883       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
884   }
885 
886   // Ignore null checks in coroutine functions since the coroutines passes
887   // are not aware of how to move the extra UBSan instructions across the split
888   // coroutine boundaries.
889   if (D && SanOpts.has(SanitizerKind::Null))
890     if (FD && FD->getBody() &&
891         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
892       SanOpts.Mask &= ~SanitizerKind::Null;
893 
894   // Add pointer authentication attributes.
895   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
896   if (CodeGenOpts.PointerAuth.ReturnAddresses)
897     Fn->addFnAttr("ptrauth-returns");
898   if (CodeGenOpts.PointerAuth.FunctionPointers)
899     Fn->addFnAttr("ptrauth-calls");
900   if (CodeGenOpts.PointerAuth.AuthTraps)
901     Fn->addFnAttr("ptrauth-auth-traps");
902   if (CodeGenOpts.PointerAuth.IndirectGotos)
903     Fn->addFnAttr("ptrauth-indirect-gotos");
904   if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening)
905     Fn->addFnAttr("aarch64-jump-table-hardening");
906 
907   // Apply xray attributes to the function (as a string, for now)
908   bool AlwaysXRayAttr = false;
909   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
910     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
911             XRayInstrKind::FunctionEntry) ||
912         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
913             XRayInstrKind::FunctionExit)) {
914       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
915         Fn->addFnAttr("function-instrument", "xray-always");
916         AlwaysXRayAttr = true;
917       }
918       if (XRayAttr->neverXRayInstrument())
919         Fn->addFnAttr("function-instrument", "xray-never");
920       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
921         if (ShouldXRayInstrumentFunction())
922           Fn->addFnAttr("xray-log-args",
923                         llvm::utostr(LogArgs->getArgumentCount()));
924     }
925   } else {
926     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
927       Fn->addFnAttr(
928           "xray-instruction-threshold",
929           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
930   }
931 
932   if (ShouldXRayInstrumentFunction()) {
933     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
934       Fn->addFnAttr("xray-ignore-loops");
935 
936     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
937             XRayInstrKind::FunctionExit))
938       Fn->addFnAttr("xray-skip-exit");
939 
940     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
941             XRayInstrKind::FunctionEntry))
942       Fn->addFnAttr("xray-skip-entry");
943 
944     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
945     if (FuncGroups > 1) {
946       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
947                                               CurFn->getName().bytes_end());
948       auto Group = crc32(FuncName) % FuncGroups;
949       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
950           !AlwaysXRayAttr)
951         Fn->addFnAttr("function-instrument", "xray-never");
952     }
953   }
954 
955   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
956     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
957     case ProfileList::Skip:
958       Fn->addFnAttr(llvm::Attribute::SkipProfile);
959       break;
960     case ProfileList::Forbid:
961       Fn->addFnAttr(llvm::Attribute::NoProfile);
962       break;
963     case ProfileList::Allow:
964       break;
965     }
966   }
967 
968   unsigned Count, Offset;
969   if (const auto *Attr =
970           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
971     Count = Attr->getCount();
972     Offset = Attr->getOffset();
973   } else {
974     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
975     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
976   }
977   if (Count && Offset <= Count) {
978     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
979     if (Offset)
980       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
981   }
982   // Instruct that functions for COFF/CodeView targets should start with a
983   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
984   // backends as they don't need it -- instructions on these architectures are
985   // always atomically patchable at runtime.
986   if (CGM.getCodeGenOpts().HotPatch &&
987       getContext().getTargetInfo().getTriple().isX86() &&
988       getContext().getTargetInfo().getTriple().getEnvironment() !=
989           llvm::Triple::CODE16)
990     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
991 
992   // Add no-jump-tables value.
993   if (CGM.getCodeGenOpts().NoUseJumpTables)
994     Fn->addFnAttr("no-jump-tables", "true");
995 
996   // Add no-inline-line-tables value.
997   if (CGM.getCodeGenOpts().NoInlineLineTables)
998     Fn->addFnAttr("no-inline-line-tables");
999 
1000   // Add profile-sample-accurate value.
1001   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
1002     Fn->addFnAttr("profile-sample-accurate");
1003 
1004   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
1005     Fn->addFnAttr("use-sample-profile");
1006 
1007   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1008     Fn->addFnAttr("cfi-canonical-jump-table");
1009 
1010   if (D && D->hasAttr<NoProfileFunctionAttr>())
1011     Fn->addFnAttr(llvm::Attribute::NoProfile);
1012 
1013   if (D && D->hasAttr<HybridPatchableAttr>())
1014     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1015 
1016   if (D) {
1017     // Function attributes take precedence over command line flags.
1018     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1019       switch (A->getThunkType()) {
1020       case FunctionReturnThunksAttr::Kind::Keep:
1021         break;
1022       case FunctionReturnThunksAttr::Kind::Extern:
1023         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1024         break;
1025       }
1026     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1027       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1028   }
1029 
1030   if (FD && (getLangOpts().OpenCL ||
1031              (getLangOpts().CUDA &&
1032               getContext().getTargetInfo().getTriple().isSPIRV()) ||
1033              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1034               getLangOpts().CUDAIsDevice))) {
1035     // Add metadata for a kernel function.
1036     EmitKernelMetadata(FD, Fn);
1037   }
1038 
1039   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1040     Fn->setMetadata("clspv_libclc_builtin",
1041                     llvm::MDNode::get(getLLVMContext(), {}));
1042   }
1043 
1044   // If we are checking function types, emit a function type signature as
1045   // prologue data.
1046   if (FD && SanOpts.has(SanitizerKind::Function)) {
1047     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1048       llvm::LLVMContext &Ctx = Fn->getContext();
1049       llvm::MDBuilder MDB(Ctx);
1050       Fn->setMetadata(
1051           llvm::LLVMContext::MD_func_sanitize,
1052           MDB.createRTTIPointerPrologue(
1053               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1054     }
1055   }
1056 
1057   // If we're checking nullability, we need to know whether we can check the
1058   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1059   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1060     auto Nullability = FnRetTy->getNullability();
1061     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1062         !FnRetTy->isRecordType()) {
1063       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1064             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1065         RetValNullabilityPrecondition =
1066             llvm::ConstantInt::getTrue(getLLVMContext());
1067     }
1068   }
1069 
1070   // If we're in C++ mode and the function name is "main", it is guaranteed
1071   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1072   // used within a program").
1073   //
1074   // OpenCL C 2.0 v2.2-11 s6.9.i:
1075   //     Recursion is not supported.
1076   //
1077   // HLSL
1078   //     Recursion is not supported.
1079   //
1080   // SYCL v1.2.1 s3.10:
1081   //     kernels cannot include RTTI information, exception classes,
1082   //     recursive code, virtual functions or make use of C++ libraries that
1083   //     are not compiled for the device.
1084   if (FD &&
1085       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1086        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1087        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1088     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1089 
1090   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1091   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1092       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1093   Builder.setDefaultConstrainedRounding(RM);
1094   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1095   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1096       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1097                RM != llvm::RoundingMode::NearestTiesToEven))) {
1098     Builder.setIsFPConstrained(true);
1099     Fn->addFnAttr(llvm::Attribute::StrictFP);
1100   }
1101 
1102   // If a custom alignment is used, force realigning to this alignment on
1103   // any main function which certainly will need it.
1104   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1105              CGM.getCodeGenOpts().StackAlignment))
1106     Fn->addFnAttr("stackrealign");
1107 
1108   // "main" doesn't need to zero out call-used registers.
1109   if (FD && FD->isMain())
1110     Fn->removeFnAttr("zero-call-used-regs");
1111 
1112   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1113 
1114   // Create a marker to make it easy to insert allocas into the entryblock
1115   // later.  Don't create this with the builder, because we don't want it
1116   // folded.
1117   llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1118   AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1119 
1120   ReturnBlock = getJumpDestInCurrentScope("return");
1121 
1122   Builder.SetInsertPoint(EntryBB);
1123 
1124   // If we're checking the return value, allocate space for a pointer to a
1125   // precise source location of the checked return statement.
1126   if (requiresReturnValueCheck()) {
1127     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1128     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1129                         ReturnLocation);
1130   }
1131 
1132   // Emit subprogram debug descriptor.
1133   if (CGDebugInfo *DI = getDebugInfo()) {
1134     // Reconstruct the type from the argument list so that implicit parameters,
1135     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1136     // convention.
1137     DI->emitFunctionStart(GD, Loc, StartLoc,
1138                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1139                           CurFuncIsThunk);
1140   }
1141 
1142   if (ShouldInstrumentFunction()) {
1143     if (CGM.getCodeGenOpts().InstrumentFunctions)
1144       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1145     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1146       CurFn->addFnAttr("instrument-function-entry-inlined",
1147                        "__cyg_profile_func_enter");
1148     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1149       CurFn->addFnAttr("instrument-function-entry-inlined",
1150                        "__cyg_profile_func_enter_bare");
1151   }
1152 
1153   // Since emitting the mcount call here impacts optimizations such as function
1154   // inlining, we just add an attribute to insert a mcount call in backend.
1155   // The attribute "counting-function" is set to mcount function name which is
1156   // architecture dependent.
1157   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1158     // Calls to fentry/mcount should not be generated if function has
1159     // the no_instrument_function attribute.
1160     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1161       if (CGM.getCodeGenOpts().CallFEntry)
1162         Fn->addFnAttr("fentry-call", "true");
1163       else {
1164         Fn->addFnAttr("instrument-function-entry-inlined",
1165                       getTarget().getMCountName());
1166       }
1167       if (CGM.getCodeGenOpts().MNopMCount) {
1168         if (!CGM.getCodeGenOpts().CallFEntry)
1169           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1170             << "-mnop-mcount" << "-mfentry";
1171         Fn->addFnAttr("mnop-mcount");
1172       }
1173 
1174       if (CGM.getCodeGenOpts().RecordMCount) {
1175         if (!CGM.getCodeGenOpts().CallFEntry)
1176           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1177             << "-mrecord-mcount" << "-mfentry";
1178         Fn->addFnAttr("mrecord-mcount");
1179       }
1180     }
1181   }
1182 
1183   if (CGM.getCodeGenOpts().PackedStack) {
1184     if (getContext().getTargetInfo().getTriple().getArch() !=
1185         llvm::Triple::systemz)
1186       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1187         << "-mpacked-stack";
1188     Fn->addFnAttr("packed-stack");
1189   }
1190 
1191   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1192       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1193     Fn->addFnAttr("warn-stack-size",
1194                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1195 
1196   if (RetTy->isVoidType()) {
1197     // Void type; nothing to return.
1198     ReturnValue = Address::invalid();
1199 
1200     // Count the implicit return.
1201     if (!endsWithReturn(D))
1202       ++NumReturnExprs;
1203   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1204     // Indirect return; emit returned value directly into sret slot.
1205     // This reduces code size, and affects correctness in C++.
1206     auto AI = CurFn->arg_begin();
1207     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1208       ++AI;
1209     ReturnValue = makeNaturalAddressForPointer(
1210         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1211         nullptr, nullptr, KnownNonNull);
1212     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1213       ReturnValuePointer =
1214           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1215       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1216                           ReturnValuePointer);
1217     }
1218   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1219              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1220     // Load the sret pointer from the argument struct and return into that.
1221     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1222     llvm::Function::arg_iterator EI = CurFn->arg_end();
1223     --EI;
1224     llvm::Value *Addr = Builder.CreateStructGEP(
1225         CurFnInfo->getArgStruct(), &*EI, Idx);
1226     llvm::Type *Ty =
1227         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1228     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1229     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1230     ReturnValue = Address(Addr, ConvertType(RetTy),
1231                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1232   } else {
1233     ReturnValue = CreateIRTemp(RetTy, "retval");
1234 
1235     // Tell the epilog emitter to autorelease the result.  We do this
1236     // now so that various specialized functions can suppress it
1237     // during their IR-generation.
1238     if (getLangOpts().ObjCAutoRefCount &&
1239         !CurFnInfo->isReturnsRetained() &&
1240         RetTy->isObjCRetainableType())
1241       AutoreleaseResult = true;
1242   }
1243 
1244   EmitStartEHSpec(CurCodeDecl);
1245 
1246   PrologueCleanupDepth = EHStack.stable_begin();
1247 
1248   // Emit OpenMP specific initialization of the device functions.
1249   if (getLangOpts().OpenMP && CurCodeDecl)
1250     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1251 
1252   if (FD && getLangOpts().HLSL) {
1253     // Handle emitting HLSL entry functions.
1254     if (FD->hasAttr<HLSLShaderAttr>()) {
1255       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1256     }
1257     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1258   }
1259 
1260   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1261 
1262   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1263       MD && !MD->isStatic()) {
1264     bool IsInLambda =
1265         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1266     if (MD->isImplicitObjectMemberFunction())
1267       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1268     if (IsInLambda) {
1269       // We're in a lambda; figure out the captures.
1270       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1271                                         LambdaThisCaptureField);
1272       if (LambdaThisCaptureField) {
1273         // If the lambda captures the object referred to by '*this' - either by
1274         // value or by reference, make sure CXXThisValue points to the correct
1275         // object.
1276 
1277         // Get the lvalue for the field (which is a copy of the enclosing object
1278         // or contains the address of the enclosing object).
1279         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1280         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1281           // If the enclosing object was captured by value, just use its
1282           // address. Sign this pointer.
1283           CXXThisValue = ThisFieldLValue.getPointer(*this);
1284         } else {
1285           // Load the lvalue pointed to by the field, since '*this' was captured
1286           // by reference.
1287           CXXThisValue =
1288               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1289         }
1290       }
1291       for (auto *FD : MD->getParent()->fields()) {
1292         if (FD->hasCapturedVLAType()) {
1293           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1294                                            SourceLocation()).getScalarVal();
1295           auto VAT = FD->getCapturedVLAType();
1296           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1297         }
1298       }
1299     } else if (MD->isImplicitObjectMemberFunction()) {
1300       // Not in a lambda; just use 'this' from the method.
1301       // FIXME: Should we generate a new load for each use of 'this'?  The
1302       // fast register allocator would be happier...
1303       CXXThisValue = CXXABIThisValue;
1304     }
1305 
1306     // Check the 'this' pointer once per function, if it's available.
1307     if (CXXABIThisValue) {
1308       SanitizerSet SkippedChecks;
1309       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1310       QualType ThisTy = MD->getThisType();
1311 
1312       // If this is the call operator of a lambda with no captures, it
1313       // may have a static invoker function, which may call this operator with
1314       // a null 'this' pointer.
1315       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1316         SkippedChecks.set(SanitizerKind::Null, true);
1317 
1318       EmitTypeCheck(
1319           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1320           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1321     }
1322   }
1323 
1324   // If any of the arguments have a variably modified type, make sure to
1325   // emit the type size, but only if the function is not naked. Naked functions
1326   // have no prolog to run this evaluation.
1327   if (!FD || !FD->hasAttr<NakedAttr>()) {
1328     for (const VarDecl *VD : Args) {
1329       // Dig out the type as written from ParmVarDecls; it's unclear whether
1330       // the standard (C99 6.9.1p10) requires this, but we're following the
1331       // precedent set by gcc.
1332       QualType Ty;
1333       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1334         Ty = PVD->getOriginalType();
1335       else
1336         Ty = VD->getType();
1337 
1338       if (Ty->isVariablyModifiedType())
1339         EmitVariablyModifiedType(Ty);
1340     }
1341   }
1342   // Emit a location at the end of the prologue.
1343   if (CGDebugInfo *DI = getDebugInfo())
1344     DI->EmitLocation(Builder, StartLoc);
1345   // TODO: Do we need to handle this in two places like we do with
1346   // target-features/target-cpu?
1347   if (CurFuncDecl)
1348     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1349       LargestVectorWidth = VecWidth->getVectorWidth();
1350 
1351   if (CGM.shouldEmitConvergenceTokens())
1352     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1353 }
1354 
1355 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1356   incrementProfileCounter(Body);
1357   maybeCreateMCDCCondBitmap();
1358   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1359     EmitCompoundStmtWithoutScope(*S);
1360   else
1361     EmitStmt(Body);
1362 }
1363 
1364 /// When instrumenting to collect profile data, the counts for some blocks
1365 /// such as switch cases need to not include the fall-through counts, so
1366 /// emit a branch around the instrumentation code. When not instrumenting,
1367 /// this just calls EmitBlock().
1368 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1369                                                const Stmt *S) {
1370   llvm::BasicBlock *SkipCountBB = nullptr;
1371   // Do not skip over the instrumentation when single byte coverage mode is
1372   // enabled.
1373   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1374       !llvm::EnableSingleByteCoverage) {
1375     // When instrumenting for profiling, the fallthrough to certain
1376     // statements needs to skip over the instrumentation code so that we
1377     // get an accurate count.
1378     SkipCountBB = createBasicBlock("skipcount");
1379     EmitBranch(SkipCountBB);
1380   }
1381   EmitBlock(BB);
1382   uint64_t CurrentCount = getCurrentProfileCount();
1383   incrementProfileCounter(S);
1384   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1385   if (SkipCountBB)
1386     EmitBlock(SkipCountBB);
1387 }
1388 
1389 /// Tries to mark the given function nounwind based on the
1390 /// non-existence of any throwing calls within it.  We believe this is
1391 /// lightweight enough to do at -O0.
1392 static void TryMarkNoThrow(llvm::Function *F) {
1393   // LLVM treats 'nounwind' on a function as part of the type, so we
1394   // can't do this on functions that can be overwritten.
1395   if (F->isInterposable()) return;
1396 
1397   for (llvm::BasicBlock &BB : *F)
1398     for (llvm::Instruction &I : BB)
1399       if (I.mayThrow())
1400         return;
1401 
1402   F->setDoesNotThrow();
1403 }
1404 
1405 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1406                                                FunctionArgList &Args) {
1407   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1408   QualType ResTy = FD->getReturnType();
1409 
1410   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1411   if (MD && MD->isImplicitObjectMemberFunction()) {
1412     if (CGM.getCXXABI().HasThisReturn(GD))
1413       ResTy = MD->getThisType();
1414     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1415       ResTy = CGM.getContext().VoidPtrTy;
1416     CGM.getCXXABI().buildThisParam(*this, Args);
1417   }
1418 
1419   // The base version of an inheriting constructor whose constructed base is a
1420   // virtual base is not passed any arguments (because it doesn't actually call
1421   // the inherited constructor).
1422   bool PassedParams = true;
1423   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1424     if (auto Inherited = CD->getInheritedConstructor())
1425       PassedParams =
1426           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1427 
1428   if (PassedParams) {
1429     for (auto *Param : FD->parameters()) {
1430       Args.push_back(Param);
1431       if (!Param->hasAttr<PassObjectSizeAttr>())
1432         continue;
1433 
1434       auto *Implicit = ImplicitParamDecl::Create(
1435           getContext(), Param->getDeclContext(), Param->getLocation(),
1436           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1437       SizeArguments[Param] = Implicit;
1438       Args.push_back(Implicit);
1439     }
1440   }
1441 
1442   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1443     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1444 
1445   return ResTy;
1446 }
1447 
1448 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1449                                    const CGFunctionInfo &FnInfo) {
1450   assert(Fn && "generating code for null Function");
1451   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1452   CurGD = GD;
1453 
1454   FunctionArgList Args;
1455   QualType ResTy = BuildFunctionArgList(GD, Args);
1456 
1457   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1458 
1459   if (FD->isInlineBuiltinDeclaration()) {
1460     // When generating code for a builtin with an inline declaration, use a
1461     // mangled name to hold the actual body, while keeping an external
1462     // definition in case the function pointer is referenced somewhere.
1463     std::string FDInlineName = (Fn->getName() + ".inline").str();
1464     llvm::Module *M = Fn->getParent();
1465     llvm::Function *Clone = M->getFunction(FDInlineName);
1466     if (!Clone) {
1467       Clone = llvm::Function::Create(Fn->getFunctionType(),
1468                                      llvm::GlobalValue::InternalLinkage,
1469                                      Fn->getAddressSpace(), FDInlineName, M);
1470       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1471     }
1472     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1473     Fn = Clone;
1474   } else {
1475     // Detect the unusual situation where an inline version is shadowed by a
1476     // non-inline version. In that case we should pick the external one
1477     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1478     // to detect that situation before we reach codegen, so do some late
1479     // replacement.
1480     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1481          PD = PD->getPreviousDecl()) {
1482       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1483         std::string FDInlineName = (Fn->getName() + ".inline").str();
1484         llvm::Module *M = Fn->getParent();
1485         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1486           Clone->replaceAllUsesWith(Fn);
1487           Clone->eraseFromParent();
1488         }
1489         break;
1490       }
1491     }
1492   }
1493 
1494   // Check if we should generate debug info for this function.
1495   if (FD->hasAttr<NoDebugAttr>()) {
1496     // Clear non-distinct debug info that was possibly attached to the function
1497     // due to an earlier declaration without the nodebug attribute
1498     Fn->setSubprogram(nullptr);
1499     // Disable debug info indefinitely for this function
1500     DebugInfo = nullptr;
1501   }
1502 
1503   // The function might not have a body if we're generating thunks for a
1504   // function declaration.
1505   SourceRange BodyRange;
1506   if (Stmt *Body = FD->getBody())
1507     BodyRange = Body->getSourceRange();
1508   else
1509     BodyRange = FD->getLocation();
1510   CurEHLocation = BodyRange.getEnd();
1511 
1512   // Use the location of the start of the function to determine where
1513   // the function definition is located. By default use the location
1514   // of the declaration as the location for the subprogram. A function
1515   // may lack a declaration in the source code if it is created by code
1516   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1517   SourceLocation Loc = FD->getLocation();
1518 
1519   // If this is a function specialization then use the pattern body
1520   // as the location for the function.
1521   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1522     if (SpecDecl->hasBody(SpecDecl))
1523       Loc = SpecDecl->getLocation();
1524 
1525   Stmt *Body = FD->getBody();
1526 
1527   if (Body) {
1528     // Coroutines always emit lifetime markers.
1529     if (isa<CoroutineBodyStmt>(Body))
1530       ShouldEmitLifetimeMarkers = true;
1531 
1532     // Initialize helper which will detect jumps which can cause invalid
1533     // lifetime markers.
1534     if (ShouldEmitLifetimeMarkers)
1535       Bypasses.Init(Body);
1536   }
1537 
1538   // Emit the standard function prologue.
1539   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1540 
1541   // Save parameters for coroutine function.
1542   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1543     llvm::append_range(FnArgs, FD->parameters());
1544 
1545   // Ensure that the function adheres to the forward progress guarantee, which
1546   // is required by certain optimizations.
1547   // In C++11 and up, the attribute will be removed if the body contains a
1548   // trivial empty loop.
1549   if (checkIfFunctionMustProgress())
1550     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1551 
1552   // Generate the body of the function.
1553   PGO.assignRegionCounters(GD, CurFn);
1554   if (isa<CXXDestructorDecl>(FD))
1555     EmitDestructorBody(Args);
1556   else if (isa<CXXConstructorDecl>(FD))
1557     EmitConstructorBody(Args);
1558   else if (getLangOpts().CUDA &&
1559            !getLangOpts().CUDAIsDevice &&
1560            FD->hasAttr<CUDAGlobalAttr>())
1561     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1562   else if (isa<CXXMethodDecl>(FD) &&
1563            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1564     // The lambda static invoker function is special, because it forwards or
1565     // clones the body of the function call operator (but is actually static).
1566     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1567   } else if (isa<CXXMethodDecl>(FD) &&
1568              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1569              !FnInfo.isDelegateCall() &&
1570              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1571              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1572     // If emitting a lambda with static invoker on X86 Windows, change
1573     // the call operator body.
1574     // Make sure that this is a call operator with an inalloca arg and check
1575     // for delegate call to make sure this is the original call op and not the
1576     // new forwarding function for the static invoker.
1577     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1578   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1579              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1580               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1581     // Implicit copy-assignment gets the same special treatment as implicit
1582     // copy-constructors.
1583     emitImplicitAssignmentOperatorBody(Args);
1584   } else if (Body) {
1585     EmitFunctionBody(Body);
1586   } else
1587     llvm_unreachable("no definition for emitted function");
1588 
1589   // C++11 [stmt.return]p2:
1590   //   Flowing off the end of a function [...] results in undefined behavior in
1591   //   a value-returning function.
1592   // C11 6.9.1p12:
1593   //   If the '}' that terminates a function is reached, and the value of the
1594   //   function call is used by the caller, the behavior is undefined.
1595   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1596       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1597     bool ShouldEmitUnreachable =
1598         CGM.getCodeGenOpts().StrictReturn ||
1599         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1600     if (SanOpts.has(SanitizerKind::Return)) {
1601       SanitizerScope SanScope(this);
1602       llvm::Value *IsFalse = Builder.getFalse();
1603       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1604                 SanitizerHandler::MissingReturn,
1605                 EmitCheckSourceLocation(FD->getLocation()), {});
1606     } else if (ShouldEmitUnreachable) {
1607       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1608         EmitTrapCall(llvm::Intrinsic::trap);
1609     }
1610     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1611       Builder.CreateUnreachable();
1612       Builder.ClearInsertionPoint();
1613     }
1614   }
1615 
1616   // Emit the standard function epilogue.
1617   FinishFunction(BodyRange.getEnd());
1618 
1619   // If we haven't marked the function nothrow through other means, do
1620   // a quick pass now to see if we can.
1621   if (!CurFn->doesNotThrow())
1622     TryMarkNoThrow(CurFn);
1623 }
1624 
1625 /// ContainsLabel - Return true if the statement contains a label in it.  If
1626 /// this statement is not executed normally, it not containing a label means
1627 /// that we can just remove the code.
1628 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1629   // Null statement, not a label!
1630   if (!S) return false;
1631 
1632   // If this is a label, we have to emit the code, consider something like:
1633   // if (0) {  ...  foo:  bar(); }  goto foo;
1634   //
1635   // TODO: If anyone cared, we could track __label__'s, since we know that you
1636   // can't jump to one from outside their declared region.
1637   if (isa<LabelStmt>(S))
1638     return true;
1639 
1640   // If this is a case/default statement, and we haven't seen a switch, we have
1641   // to emit the code.
1642   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1643     return true;
1644 
1645   // If this is a switch statement, we want to ignore cases below it.
1646   if (isa<SwitchStmt>(S))
1647     IgnoreCaseStmts = true;
1648 
1649   // Scan subexpressions for verboten labels.
1650   for (const Stmt *SubStmt : S->children())
1651     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1652       return true;
1653 
1654   return false;
1655 }
1656 
1657 /// containsBreak - Return true if the statement contains a break out of it.
1658 /// If the statement (recursively) contains a switch or loop with a break
1659 /// inside of it, this is fine.
1660 bool CodeGenFunction::containsBreak(const Stmt *S) {
1661   // Null statement, not a label!
1662   if (!S) return false;
1663 
1664   // If this is a switch or loop that defines its own break scope, then we can
1665   // include it and anything inside of it.
1666   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1667       isa<ForStmt>(S))
1668     return false;
1669 
1670   if (isa<BreakStmt>(S))
1671     return true;
1672 
1673   // Scan subexpressions for verboten breaks.
1674   for (const Stmt *SubStmt : S->children())
1675     if (containsBreak(SubStmt))
1676       return true;
1677 
1678   return false;
1679 }
1680 
1681 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1682   if (!S) return false;
1683 
1684   // Some statement kinds add a scope and thus never add a decl to the current
1685   // scope. Note, this list is longer than the list of statements that might
1686   // have an unscoped decl nested within them, but this way is conservatively
1687   // correct even if more statement kinds are added.
1688   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1689       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1690       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1691       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1692     return false;
1693 
1694   if (isa<DeclStmt>(S))
1695     return true;
1696 
1697   for (const Stmt *SubStmt : S->children())
1698     if (mightAddDeclToScope(SubStmt))
1699       return true;
1700 
1701   return false;
1702 }
1703 
1704 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1705 /// to a constant, or if it does but contains a label, return false.  If it
1706 /// constant folds return true and set the boolean result in Result.
1707 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1708                                                    bool &ResultBool,
1709                                                    bool AllowLabels) {
1710   // If MC/DC is enabled, disable folding so that we can instrument all
1711   // conditions to yield complete test vectors. We still keep track of
1712   // folded conditions during region mapping and visualization.
1713   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1714       CGM.getCodeGenOpts().MCDCCoverage)
1715     return false;
1716 
1717   llvm::APSInt ResultInt;
1718   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1719     return false;
1720 
1721   ResultBool = ResultInt.getBoolValue();
1722   return true;
1723 }
1724 
1725 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1726 /// to a constant, or if it does but contains a label, return false.  If it
1727 /// constant folds return true and set the folded value.
1728 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1729                                                    llvm::APSInt &ResultInt,
1730                                                    bool AllowLabels) {
1731   // FIXME: Rename and handle conversion of other evaluatable things
1732   // to bool.
1733   Expr::EvalResult Result;
1734   if (!Cond->EvaluateAsInt(Result, getContext()))
1735     return false;  // Not foldable, not integer or not fully evaluatable.
1736 
1737   llvm::APSInt Int = Result.Val.getInt();
1738   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1739     return false;  // Contains a label.
1740 
1741   ResultInt = Int;
1742   return true;
1743 }
1744 
1745 /// Strip parentheses and simplistic logical-NOT operators.
1746 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1747   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1748     if (Op->getOpcode() != UO_LNot)
1749       break;
1750     C = Op->getSubExpr();
1751   }
1752   return C->IgnoreParens();
1753 }
1754 
1755 /// Determine whether the given condition is an instrumentable condition
1756 /// (i.e. no "&&" or "||").
1757 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1758   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1759   return (!BOp || !BOp->isLogicalOp());
1760 }
1761 
1762 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1763 /// increments a profile counter based on the semantics of the given logical
1764 /// operator opcode.  This is used to instrument branch condition coverage for
1765 /// logical operators.
1766 void CodeGenFunction::EmitBranchToCounterBlock(
1767     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1768     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1769     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1770   // If not instrumenting, just emit a branch.
1771   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1772   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1773     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1774 
1775   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1776 
1777   llvm::BasicBlock *ThenBlock = nullptr;
1778   llvm::BasicBlock *ElseBlock = nullptr;
1779   llvm::BasicBlock *NextBlock = nullptr;
1780 
1781   // Create the block we'll use to increment the appropriate counter.
1782   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1783 
1784   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1785   // means we need to evaluate the condition and increment the counter on TRUE:
1786   //
1787   // if (Cond)
1788   //   goto CounterIncrBlock;
1789   // else
1790   //   goto FalseBlock;
1791   //
1792   // CounterIncrBlock:
1793   //   Counter++;
1794   //   goto TrueBlock;
1795 
1796   if (LOp == BO_LAnd) {
1797     ThenBlock = CounterIncrBlock;
1798     ElseBlock = FalseBlock;
1799     NextBlock = TrueBlock;
1800   }
1801 
1802   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1803   // we need to evaluate the condition and increment the counter on FALSE:
1804   //
1805   // if (Cond)
1806   //   goto TrueBlock;
1807   // else
1808   //   goto CounterIncrBlock;
1809   //
1810   // CounterIncrBlock:
1811   //   Counter++;
1812   //   goto FalseBlock;
1813 
1814   else if (LOp == BO_LOr) {
1815     ThenBlock = TrueBlock;
1816     ElseBlock = CounterIncrBlock;
1817     NextBlock = FalseBlock;
1818   } else {
1819     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1820   }
1821 
1822   // Emit Branch based on condition.
1823   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1824 
1825   // Emit the block containing the counter increment(s).
1826   EmitBlock(CounterIncrBlock);
1827 
1828   // Increment corresponding counter; if index not provided, use Cond as index.
1829   incrementProfileCounter(CntrStmt);
1830 
1831   // Go to the next block.
1832   EmitBranch(NextBlock);
1833 }
1834 
1835 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1836 /// statement) to the specified blocks.  Based on the condition, this might try
1837 /// to simplify the codegen of the conditional based on the branch.
1838 /// \param LH The value of the likelihood attribute on the True branch.
1839 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1840 /// ConditionalOperator (ternary) through a recursive call for the operator's
1841 /// LHS and RHS nodes.
1842 void CodeGenFunction::EmitBranchOnBoolExpr(
1843     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1844     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1845   Cond = Cond->IgnoreParens();
1846 
1847   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1848     // Handle X && Y in a condition.
1849     if (CondBOp->getOpcode() == BO_LAnd) {
1850       MCDCLogOpStack.push_back(CondBOp);
1851 
1852       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1853       // folded if the case was simple enough.
1854       bool ConstantBool = false;
1855       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1856           ConstantBool) {
1857         // br(1 && X) -> br(X).
1858         incrementProfileCounter(CondBOp);
1859         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1860                                  FalseBlock, TrueCount, LH);
1861         MCDCLogOpStack.pop_back();
1862         return;
1863       }
1864 
1865       // If we have "X && 1", simplify the code to use an uncond branch.
1866       // "X && 0" would have been constant folded to 0.
1867       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1868           ConstantBool) {
1869         // br(X && 1) -> br(X).
1870         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1871                                  FalseBlock, TrueCount, LH, CondBOp);
1872         MCDCLogOpStack.pop_back();
1873         return;
1874       }
1875 
1876       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1877       // want to jump to the FalseBlock.
1878       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1879       // The counter tells us how often we evaluate RHS, and all of TrueCount
1880       // can be propagated to that branch.
1881       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1882 
1883       ConditionalEvaluation eval(*this);
1884       {
1885         ApplyDebugLocation DL(*this, Cond);
1886         // Propagate the likelihood attribute like __builtin_expect
1887         // __builtin_expect(X && Y, 1) -> X and Y are likely
1888         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1889         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1890                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1891         EmitBlock(LHSTrue);
1892       }
1893 
1894       incrementProfileCounter(CondBOp);
1895       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1896 
1897       // Any temporaries created here are conditional.
1898       eval.begin(*this);
1899       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1900                                FalseBlock, TrueCount, LH);
1901       eval.end(*this);
1902       MCDCLogOpStack.pop_back();
1903       return;
1904     }
1905 
1906     if (CondBOp->getOpcode() == BO_LOr) {
1907       MCDCLogOpStack.push_back(CondBOp);
1908 
1909       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1910       // folded if the case was simple enough.
1911       bool ConstantBool = false;
1912       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1913           !ConstantBool) {
1914         // br(0 || X) -> br(X).
1915         incrementProfileCounter(CondBOp);
1916         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1917                                  FalseBlock, TrueCount, LH);
1918         MCDCLogOpStack.pop_back();
1919         return;
1920       }
1921 
1922       // If we have "X || 0", simplify the code to use an uncond branch.
1923       // "X || 1" would have been constant folded to 1.
1924       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1925           !ConstantBool) {
1926         // br(X || 0) -> br(X).
1927         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1928                                  FalseBlock, TrueCount, LH, CondBOp);
1929         MCDCLogOpStack.pop_back();
1930         return;
1931       }
1932       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1933       // want to jump to the TrueBlock.
1934       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1935       // We have the count for entry to the RHS and for the whole expression
1936       // being true, so we can divy up True count between the short circuit and
1937       // the RHS.
1938       uint64_t LHSCount =
1939           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1940       uint64_t RHSCount = TrueCount - LHSCount;
1941 
1942       ConditionalEvaluation eval(*this);
1943       {
1944         // Propagate the likelihood attribute like __builtin_expect
1945         // __builtin_expect(X || Y, 1) -> only Y is likely
1946         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1947         ApplyDebugLocation DL(*this, Cond);
1948         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1949                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1950         EmitBlock(LHSFalse);
1951       }
1952 
1953       incrementProfileCounter(CondBOp);
1954       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1955 
1956       // Any temporaries created here are conditional.
1957       eval.begin(*this);
1958       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1959                                RHSCount, LH);
1960 
1961       eval.end(*this);
1962       MCDCLogOpStack.pop_back();
1963       return;
1964     }
1965   }
1966 
1967   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1968     // br(!x, t, f) -> br(x, f, t)
1969     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1970     // LNot is taken as part of the condition for simplicity, and changing its
1971     // sense negatively impacts test vector tracking.
1972     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1973                          CGM.getCodeGenOpts().MCDCCoverage &&
1974                          isInstrumentedCondition(Cond);
1975     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1976       // Negate the count.
1977       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1978       // The values of the enum are chosen to make this negation possible.
1979       LH = static_cast<Stmt::Likelihood>(-LH);
1980       // Negate the condition and swap the destination blocks.
1981       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1982                                   FalseCount, LH);
1983     }
1984   }
1985 
1986   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1987     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1988     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1989     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1990 
1991     // The ConditionalOperator itself has no likelihood information for its
1992     // true and false branches. This matches the behavior of __builtin_expect.
1993     ConditionalEvaluation cond(*this);
1994     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1995                          getProfileCount(CondOp), Stmt::LH_None);
1996 
1997     // When computing PGO branch weights, we only know the overall count for
1998     // the true block. This code is essentially doing tail duplication of the
1999     // naive code-gen, introducing new edges for which counts are not
2000     // available. Divide the counts proportionally between the LHS and RHS of
2001     // the conditional operator.
2002     uint64_t LHSScaledTrueCount = 0;
2003     if (TrueCount) {
2004       double LHSRatio =
2005           getProfileCount(CondOp) / (double)getCurrentProfileCount();
2006       LHSScaledTrueCount = TrueCount * LHSRatio;
2007     }
2008 
2009     cond.begin(*this);
2010     EmitBlock(LHSBlock);
2011     incrementProfileCounter(CondOp);
2012     {
2013       ApplyDebugLocation DL(*this, Cond);
2014       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2015                            LHSScaledTrueCount, LH, CondOp);
2016     }
2017     cond.end(*this);
2018 
2019     cond.begin(*this);
2020     EmitBlock(RHSBlock);
2021     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2022                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2023     cond.end(*this);
2024 
2025     return;
2026   }
2027 
2028   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2029     // Conditional operator handling can give us a throw expression as a
2030     // condition for a case like:
2031     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2032     // Fold this to:
2033     //   br(c, throw x, br(y, t, f))
2034     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2035     return;
2036   }
2037 
2038   // Emit the code with the fully general case.
2039   llvm::Value *CondV;
2040   {
2041     ApplyDebugLocation DL(*this, Cond);
2042     CondV = EvaluateExprAsBool(Cond);
2043   }
2044 
2045   // If not at the top of the logical operator nest, update MCDC temp with the
2046   // boolean result of the evaluated condition.
2047   if (!MCDCLogOpStack.empty()) {
2048     const Expr *MCDCBaseExpr = Cond;
2049     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2050     // expression, MC/DC tracks the result of the ternary, and this is tied to
2051     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2052     // this is the case, the ConditionalOperator expression is passed through
2053     // the ConditionalOp parameter and then used as the MCDC base expression.
2054     if (ConditionalOp)
2055       MCDCBaseExpr = ConditionalOp;
2056 
2057     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2058   }
2059 
2060   llvm::MDNode *Weights = nullptr;
2061   llvm::MDNode *Unpredictable = nullptr;
2062 
2063   // If the branch has a condition wrapped by __builtin_unpredictable,
2064   // create metadata that specifies that the branch is unpredictable.
2065   // Don't bother if not optimizing because that metadata would not be used.
2066   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2067   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2068     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2069     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2070       llvm::MDBuilder MDHelper(getLLVMContext());
2071       Unpredictable = MDHelper.createUnpredictable();
2072     }
2073   }
2074 
2075   // If there is a Likelihood knowledge for the cond, lower it.
2076   // Note that if not optimizing this won't emit anything.
2077   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2078   if (CondV != NewCondV)
2079     CondV = NewCondV;
2080   else {
2081     // Otherwise, lower profile counts. Note that we do this even at -O0.
2082     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2083     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2084   }
2085 
2086   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2087 }
2088 
2089 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2090 /// specified stmt yet.
2091 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2092   CGM.ErrorUnsupported(S, Type);
2093 }
2094 
2095 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2096 /// variable-length array whose elements have a non-zero bit-pattern.
2097 ///
2098 /// \param baseType the inner-most element type of the array
2099 /// \param src - a char* pointing to the bit-pattern for a single
2100 /// base element of the array
2101 /// \param sizeInChars - the total size of the VLA, in chars
2102 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2103                                Address dest, Address src,
2104                                llvm::Value *sizeInChars) {
2105   CGBuilderTy &Builder = CGF.Builder;
2106 
2107   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2108   llvm::Value *baseSizeInChars
2109     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2110 
2111   Address begin = dest.withElementType(CGF.Int8Ty);
2112   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2113                                                begin.emitRawPointer(CGF),
2114                                                sizeInChars, "vla.end");
2115 
2116   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2117   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2118   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2119 
2120   // Make a loop over the VLA.  C99 guarantees that the VLA element
2121   // count must be nonzero.
2122   CGF.EmitBlock(loopBB);
2123 
2124   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2125   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2126 
2127   CharUnits curAlign =
2128     dest.getAlignment().alignmentOfArrayElement(baseSize);
2129 
2130   // memcpy the individual element bit-pattern.
2131   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2132                        /*volatile*/ false);
2133 
2134   // Go to the next element.
2135   llvm::Value *next =
2136     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2137 
2138   // Leave if that's the end of the VLA.
2139   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2140   Builder.CreateCondBr(done, contBB, loopBB);
2141   cur->addIncoming(next, loopBB);
2142 
2143   CGF.EmitBlock(contBB);
2144 }
2145 
2146 void
2147 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2148   // Ignore empty classes in C++.
2149   if (getLangOpts().CPlusPlus) {
2150     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2151       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2152         return;
2153     }
2154   }
2155 
2156   if (DestPtr.getElementType() != Int8Ty)
2157     DestPtr = DestPtr.withElementType(Int8Ty);
2158 
2159   // Get size and alignment info for this aggregate.
2160   CharUnits size = getContext().getTypeSizeInChars(Ty);
2161 
2162   llvm::Value *SizeVal;
2163   const VariableArrayType *vla;
2164 
2165   // Don't bother emitting a zero-byte memset.
2166   if (size.isZero()) {
2167     // But note that getTypeInfo returns 0 for a VLA.
2168     if (const VariableArrayType *vlaType =
2169           dyn_cast_or_null<VariableArrayType>(
2170                                           getContext().getAsArrayType(Ty))) {
2171       auto VlaSize = getVLASize(vlaType);
2172       SizeVal = VlaSize.NumElts;
2173       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2174       if (!eltSize.isOne())
2175         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2176       vla = vlaType;
2177     } else {
2178       return;
2179     }
2180   } else {
2181     SizeVal = CGM.getSize(size);
2182     vla = nullptr;
2183   }
2184 
2185   // If the type contains a pointer to data member we can't memset it to zero.
2186   // Instead, create a null constant and copy it to the destination.
2187   // TODO: there are other patterns besides zero that we can usefully memset,
2188   // like -1, which happens to be the pattern used by member-pointers.
2189   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2190     // For a VLA, emit a single element, then splat that over the VLA.
2191     if (vla) Ty = getContext().getBaseElementType(vla);
2192 
2193     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2194 
2195     llvm::GlobalVariable *NullVariable =
2196       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2197                                /*isConstant=*/true,
2198                                llvm::GlobalVariable::PrivateLinkage,
2199                                NullConstant, Twine());
2200     CharUnits NullAlign = DestPtr.getAlignment();
2201     NullVariable->setAlignment(NullAlign.getAsAlign());
2202     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2203 
2204     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2205 
2206     // Get and call the appropriate llvm.memcpy overload.
2207     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2208     return;
2209   }
2210 
2211   // Otherwise, just memset the whole thing to zero.  This is legal
2212   // because in LLVM, all default initializers (other than the ones we just
2213   // handled above) are guaranteed to have a bit pattern of all zeros.
2214   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2215 }
2216 
2217 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2218   // Make sure that there is a block for the indirect goto.
2219   if (!IndirectBranch)
2220     GetIndirectGotoBlock();
2221 
2222   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2223 
2224   // Make sure the indirect branch includes all of the address-taken blocks.
2225   IndirectBranch->addDestination(BB);
2226   return llvm::BlockAddress::get(CurFn, BB);
2227 }
2228 
2229 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2230   // If we already made the indirect branch for indirect goto, return its block.
2231   if (IndirectBranch) return IndirectBranch->getParent();
2232 
2233   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2234 
2235   // Create the PHI node that indirect gotos will add entries to.
2236   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2237                                               "indirect.goto.dest");
2238 
2239   // Create the indirect branch instruction.
2240   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2241   return IndirectBranch->getParent();
2242 }
2243 
2244 /// Computes the length of an array in elements, as well as the base
2245 /// element type and a properly-typed first element pointer.
2246 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2247                                               QualType &baseType,
2248                                               Address &addr) {
2249   const ArrayType *arrayType = origArrayType;
2250 
2251   // If it's a VLA, we have to load the stored size.  Note that
2252   // this is the size of the VLA in bytes, not its size in elements.
2253   llvm::Value *numVLAElements = nullptr;
2254   if (isa<VariableArrayType>(arrayType)) {
2255     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2256 
2257     // Walk into all VLAs.  This doesn't require changes to addr,
2258     // which has type T* where T is the first non-VLA element type.
2259     do {
2260       QualType elementType = arrayType->getElementType();
2261       arrayType = getContext().getAsArrayType(elementType);
2262 
2263       // If we only have VLA components, 'addr' requires no adjustment.
2264       if (!arrayType) {
2265         baseType = elementType;
2266         return numVLAElements;
2267       }
2268     } while (isa<VariableArrayType>(arrayType));
2269 
2270     // We get out here only if we find a constant array type
2271     // inside the VLA.
2272   }
2273 
2274   // We have some number of constant-length arrays, so addr should
2275   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2276   // down to the first element of addr.
2277   SmallVector<llvm::Value*, 8> gepIndices;
2278 
2279   // GEP down to the array type.
2280   llvm::ConstantInt *zero = Builder.getInt32(0);
2281   gepIndices.push_back(zero);
2282 
2283   uint64_t countFromCLAs = 1;
2284   QualType eltType;
2285 
2286   llvm::ArrayType *llvmArrayType =
2287     dyn_cast<llvm::ArrayType>(addr.getElementType());
2288   while (llvmArrayType) {
2289     assert(isa<ConstantArrayType>(arrayType));
2290     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2291            llvmArrayType->getNumElements());
2292 
2293     gepIndices.push_back(zero);
2294     countFromCLAs *= llvmArrayType->getNumElements();
2295     eltType = arrayType->getElementType();
2296 
2297     llvmArrayType =
2298       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2299     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2300     assert((!llvmArrayType || arrayType) &&
2301            "LLVM and Clang types are out-of-synch");
2302   }
2303 
2304   if (arrayType) {
2305     // From this point onwards, the Clang array type has been emitted
2306     // as some other type (probably a packed struct). Compute the array
2307     // size, and just emit the 'begin' expression as a bitcast.
2308     while (arrayType) {
2309       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2310       eltType = arrayType->getElementType();
2311       arrayType = getContext().getAsArrayType(eltType);
2312     }
2313 
2314     llvm::Type *baseType = ConvertType(eltType);
2315     addr = addr.withElementType(baseType);
2316   } else {
2317     // Create the actual GEP.
2318     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2319                                              addr.emitRawPointer(*this),
2320                                              gepIndices, "array.begin"),
2321                    ConvertTypeForMem(eltType), addr.getAlignment());
2322   }
2323 
2324   baseType = eltType;
2325 
2326   llvm::Value *numElements
2327     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2328 
2329   // If we had any VLA dimensions, factor them in.
2330   if (numVLAElements)
2331     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2332 
2333   return numElements;
2334 }
2335 
2336 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2337   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2338   assert(vla && "type was not a variable array type!");
2339   return getVLASize(vla);
2340 }
2341 
2342 CodeGenFunction::VlaSizePair
2343 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2344   // The number of elements so far; always size_t.
2345   llvm::Value *numElements = nullptr;
2346 
2347   QualType elementType;
2348   do {
2349     elementType = type->getElementType();
2350     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2351     assert(vlaSize && "no size for VLA!");
2352     assert(vlaSize->getType() == SizeTy);
2353 
2354     if (!numElements) {
2355       numElements = vlaSize;
2356     } else {
2357       // It's undefined behavior if this wraps around, so mark it that way.
2358       // FIXME: Teach -fsanitize=undefined to trap this.
2359       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2360     }
2361   } while ((type = getContext().getAsVariableArrayType(elementType)));
2362 
2363   return { numElements, elementType };
2364 }
2365 
2366 CodeGenFunction::VlaSizePair
2367 CodeGenFunction::getVLAElements1D(QualType type) {
2368   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2369   assert(vla && "type was not a variable array type!");
2370   return getVLAElements1D(vla);
2371 }
2372 
2373 CodeGenFunction::VlaSizePair
2374 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2375   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2376   assert(VlaSize && "no size for VLA!");
2377   assert(VlaSize->getType() == SizeTy);
2378   return { VlaSize, Vla->getElementType() };
2379 }
2380 
2381 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2382   assert(type->isVariablyModifiedType() &&
2383          "Must pass variably modified type to EmitVLASizes!");
2384 
2385   EnsureInsertPoint();
2386 
2387   // We're going to walk down into the type and look for VLA
2388   // expressions.
2389   do {
2390     assert(type->isVariablyModifiedType());
2391 
2392     const Type *ty = type.getTypePtr();
2393     switch (ty->getTypeClass()) {
2394 
2395 #define TYPE(Class, Base)
2396 #define ABSTRACT_TYPE(Class, Base)
2397 #define NON_CANONICAL_TYPE(Class, Base)
2398 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2399 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2400 #include "clang/AST/TypeNodes.inc"
2401       llvm_unreachable("unexpected dependent type!");
2402 
2403     // These types are never variably-modified.
2404     case Type::Builtin:
2405     case Type::Complex:
2406     case Type::Vector:
2407     case Type::ExtVector:
2408     case Type::ConstantMatrix:
2409     case Type::Record:
2410     case Type::Enum:
2411     case Type::Using:
2412     case Type::TemplateSpecialization:
2413     case Type::ObjCTypeParam:
2414     case Type::ObjCObject:
2415     case Type::ObjCInterface:
2416     case Type::ObjCObjectPointer:
2417     case Type::BitInt:
2418       llvm_unreachable("type class is never variably-modified!");
2419 
2420     case Type::Elaborated:
2421       type = cast<ElaboratedType>(ty)->getNamedType();
2422       break;
2423 
2424     case Type::Adjusted:
2425       type = cast<AdjustedType>(ty)->getAdjustedType();
2426       break;
2427 
2428     case Type::Decayed:
2429       type = cast<DecayedType>(ty)->getPointeeType();
2430       break;
2431 
2432     case Type::Pointer:
2433       type = cast<PointerType>(ty)->getPointeeType();
2434       break;
2435 
2436     case Type::BlockPointer:
2437       type = cast<BlockPointerType>(ty)->getPointeeType();
2438       break;
2439 
2440     case Type::LValueReference:
2441     case Type::RValueReference:
2442       type = cast<ReferenceType>(ty)->getPointeeType();
2443       break;
2444 
2445     case Type::MemberPointer:
2446       type = cast<MemberPointerType>(ty)->getPointeeType();
2447       break;
2448 
2449     case Type::ArrayParameter:
2450     case Type::ConstantArray:
2451     case Type::IncompleteArray:
2452       // Losing element qualification here is fine.
2453       type = cast<ArrayType>(ty)->getElementType();
2454       break;
2455 
2456     case Type::VariableArray: {
2457       // Losing element qualification here is fine.
2458       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2459 
2460       // Unknown size indication requires no size computation.
2461       // Otherwise, evaluate and record it.
2462       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2463         // It's possible that we might have emitted this already,
2464         // e.g. with a typedef and a pointer to it.
2465         llvm::Value *&entry = VLASizeMap[sizeExpr];
2466         if (!entry) {
2467           llvm::Value *size = EmitScalarExpr(sizeExpr);
2468 
2469           // C11 6.7.6.2p5:
2470           //   If the size is an expression that is not an integer constant
2471           //   expression [...] each time it is evaluated it shall have a value
2472           //   greater than zero.
2473           if (SanOpts.has(SanitizerKind::VLABound)) {
2474             SanitizerScope SanScope(this);
2475             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2476             clang::QualType SEType = sizeExpr->getType();
2477             llvm::Value *CheckCondition =
2478                 SEType->isSignedIntegerType()
2479                     ? Builder.CreateICmpSGT(size, Zero)
2480                     : Builder.CreateICmpUGT(size, Zero);
2481             llvm::Constant *StaticArgs[] = {
2482                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2483                 EmitCheckTypeDescriptor(SEType)};
2484             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2485                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2486           }
2487 
2488           // Always zexting here would be wrong if it weren't
2489           // undefined behavior to have a negative bound.
2490           // FIXME: What about when size's type is larger than size_t?
2491           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2492         }
2493       }
2494       type = vat->getElementType();
2495       break;
2496     }
2497 
2498     case Type::FunctionProto:
2499     case Type::FunctionNoProto:
2500       type = cast<FunctionType>(ty)->getReturnType();
2501       break;
2502 
2503     case Type::Paren:
2504     case Type::TypeOf:
2505     case Type::UnaryTransform:
2506     case Type::Attributed:
2507     case Type::BTFTagAttributed:
2508     case Type::HLSLAttributedResource:
2509     case Type::SubstTemplateTypeParm:
2510     case Type::MacroQualified:
2511     case Type::CountAttributed:
2512       // Keep walking after single level desugaring.
2513       type = type.getSingleStepDesugaredType(getContext());
2514       break;
2515 
2516     case Type::Typedef:
2517     case Type::Decltype:
2518     case Type::Auto:
2519     case Type::DeducedTemplateSpecialization:
2520     case Type::PackIndexing:
2521       // Stop walking: nothing to do.
2522       return;
2523 
2524     case Type::TypeOfExpr:
2525       // Stop walking: emit typeof expression.
2526       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2527       return;
2528 
2529     case Type::Atomic:
2530       type = cast<AtomicType>(ty)->getValueType();
2531       break;
2532 
2533     case Type::Pipe:
2534       type = cast<PipeType>(ty)->getElementType();
2535       break;
2536     }
2537   } while (type->isVariablyModifiedType());
2538 }
2539 
2540 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2541   if (getContext().getBuiltinVaListType()->isArrayType())
2542     return EmitPointerWithAlignment(E);
2543   return EmitLValue(E).getAddress();
2544 }
2545 
2546 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2547   return EmitLValue(E).getAddress();
2548 }
2549 
2550 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2551                                               const APValue &Init) {
2552   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2553   if (CGDebugInfo *Dbg = getDebugInfo())
2554     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2555       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2556 }
2557 
2558 CodeGenFunction::PeepholeProtection
2559 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2560   // At the moment, the only aggressive peephole we do in IR gen
2561   // is trunc(zext) folding, but if we add more, we can easily
2562   // extend this protection.
2563 
2564   if (!rvalue.isScalar()) return PeepholeProtection();
2565   llvm::Value *value = rvalue.getScalarVal();
2566   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2567 
2568   // Just make an extra bitcast.
2569   assert(HaveInsertPoint());
2570   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2571                                                   Builder.GetInsertBlock());
2572 
2573   PeepholeProtection protection;
2574   protection.Inst = inst;
2575   return protection;
2576 }
2577 
2578 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2579   if (!protection.Inst) return;
2580 
2581   // In theory, we could try to duplicate the peepholes now, but whatever.
2582   protection.Inst->eraseFromParent();
2583 }
2584 
2585 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2586                                               QualType Ty, SourceLocation Loc,
2587                                               SourceLocation AssumptionLoc,
2588                                               llvm::Value *Alignment,
2589                                               llvm::Value *OffsetValue) {
2590   if (Alignment->getType() != IntPtrTy)
2591     Alignment =
2592         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2593   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2594     OffsetValue =
2595         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2596   llvm::Value *TheCheck = nullptr;
2597   if (SanOpts.has(SanitizerKind::Alignment)) {
2598     llvm::Value *PtrIntValue =
2599         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2600 
2601     if (OffsetValue) {
2602       bool IsOffsetZero = false;
2603       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2604         IsOffsetZero = CI->isZero();
2605 
2606       if (!IsOffsetZero)
2607         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2608     }
2609 
2610     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2611     llvm::Value *Mask =
2612         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2613     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2614     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2615   }
2616   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2617       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2618 
2619   if (!SanOpts.has(SanitizerKind::Alignment))
2620     return;
2621   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2622                                OffsetValue, TheCheck, Assumption);
2623 }
2624 
2625 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2626                                               const Expr *E,
2627                                               SourceLocation AssumptionLoc,
2628                                               llvm::Value *Alignment,
2629                                               llvm::Value *OffsetValue) {
2630   QualType Ty = E->getType();
2631   SourceLocation Loc = E->getExprLoc();
2632 
2633   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2634                           OffsetValue);
2635 }
2636 
2637 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2638                                                  llvm::Value *AnnotatedVal,
2639                                                  StringRef AnnotationStr,
2640                                                  SourceLocation Location,
2641                                                  const AnnotateAttr *Attr) {
2642   SmallVector<llvm::Value *, 5> Args = {
2643       AnnotatedVal,
2644       CGM.EmitAnnotationString(AnnotationStr),
2645       CGM.EmitAnnotationUnit(Location),
2646       CGM.EmitAnnotationLineNo(Location),
2647   };
2648   if (Attr)
2649     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2650   return Builder.CreateCall(AnnotationFn, Args);
2651 }
2652 
2653 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2654   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2655   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2656     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2657                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2658                        V, I->getAnnotation(), D->getLocation(), I);
2659 }
2660 
2661 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2662                                               Address Addr) {
2663   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2664   llvm::Value *V = Addr.emitRawPointer(*this);
2665   llvm::Type *VTy = V->getType();
2666   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2667   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2668   llvm::PointerType *IntrinTy =
2669       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2670   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2671                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2672 
2673   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2674     // FIXME Always emit the cast inst so we can differentiate between
2675     // annotation on the first field of a struct and annotation on the struct
2676     // itself.
2677     if (VTy != IntrinTy)
2678       V = Builder.CreateBitCast(V, IntrinTy);
2679     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2680     V = Builder.CreateBitCast(V, VTy);
2681   }
2682 
2683   return Address(V, Addr.getElementType(), Addr.getAlignment());
2684 }
2685 
2686 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2687 
2688 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2689     : CGF(CGF) {
2690   assert(!CGF->IsSanitizerScope);
2691   CGF->IsSanitizerScope = true;
2692 }
2693 
2694 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2695   CGF->IsSanitizerScope = false;
2696 }
2697 
2698 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2699                                    const llvm::Twine &Name,
2700                                    llvm::BasicBlock::iterator InsertPt) const {
2701   LoopStack.InsertHelper(I);
2702   if (IsSanitizerScope)
2703     I->setNoSanitizeMetadata();
2704 }
2705 
2706 void CGBuilderInserter::InsertHelper(
2707     llvm::Instruction *I, const llvm::Twine &Name,
2708     llvm::BasicBlock::iterator InsertPt) const {
2709   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2710   if (CGF)
2711     CGF->InsertHelper(I, Name, InsertPt);
2712 }
2713 
2714 // Emits an error if we don't have a valid set of target features for the
2715 // called function.
2716 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2717                                           const FunctionDecl *TargetDecl) {
2718   // SemaChecking cannot handle below x86 builtins because they have different
2719   // parameter ranges with different TargetAttribute of caller.
2720   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2721     unsigned BuiltinID = TargetDecl->getBuiltinID();
2722     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2723         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2724         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2725         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2726       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2727       llvm::StringMap<bool> TargetFetureMap;
2728       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2729       llvm::APSInt Result =
2730           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2731       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2732         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2733             << TargetDecl->getDeclName() << "avx";
2734     }
2735   }
2736   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2737 }
2738 
2739 // Emits an error if we don't have a valid set of target features for the
2740 // called function.
2741 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2742                                           const FunctionDecl *TargetDecl) {
2743   // Early exit if this is an indirect call.
2744   if (!TargetDecl)
2745     return;
2746 
2747   // Get the current enclosing function if it exists. If it doesn't
2748   // we can't check the target features anyhow.
2749   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2750   if (!FD)
2751     return;
2752 
2753   // Grab the required features for the call. For a builtin this is listed in
2754   // the td file with the default cpu, for an always_inline function this is any
2755   // listed cpu and any listed features.
2756   unsigned BuiltinID = TargetDecl->getBuiltinID();
2757   std::string MissingFeature;
2758   llvm::StringMap<bool> CallerFeatureMap;
2759   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2760   // When compiling in HipStdPar mode we have to be conservative in rejecting
2761   // target specific features in the FE, and defer the possible error to the
2762   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2763   // referenced by an accelerator executable function, we emit an error.
2764   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2765   if (BuiltinID) {
2766     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2767     if (!Builtin::evaluateRequiredTargetFeatures(
2768         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2769       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2770           << TargetDecl->getDeclName()
2771           << FeatureList;
2772     }
2773   } else if (!TargetDecl->isMultiVersion() &&
2774              TargetDecl->hasAttr<TargetAttr>()) {
2775     // Get the required features for the callee.
2776 
2777     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2778     ParsedTargetAttr ParsedAttr =
2779         CGM.getContext().filterFunctionTargetAttrs(TD);
2780 
2781     SmallVector<StringRef, 1> ReqFeatures;
2782     llvm::StringMap<bool> CalleeFeatureMap;
2783     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2784 
2785     for (const auto &F : ParsedAttr.Features) {
2786       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2787         ReqFeatures.push_back(StringRef(F).substr(1));
2788     }
2789 
2790     for (const auto &F : CalleeFeatureMap) {
2791       // Only positive features are "required".
2792       if (F.getValue())
2793         ReqFeatures.push_back(F.getKey());
2794     }
2795     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2796       if (!CallerFeatureMap.lookup(Feature)) {
2797         MissingFeature = Feature.str();
2798         return false;
2799       }
2800       return true;
2801     }) && !IsHipStdPar)
2802       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2803           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2804   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2805     llvm::StringMap<bool> CalleeFeatureMap;
2806     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2807 
2808     for (const auto &F : CalleeFeatureMap) {
2809       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2810                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2811           !IsHipStdPar)
2812         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2813             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2814     }
2815   }
2816 }
2817 
2818 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2819   if (!CGM.getCodeGenOpts().SanitizeStats)
2820     return;
2821 
2822   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2823   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2824   CGM.getSanStats().create(IRB, SSK);
2825 }
2826 
2827 void CodeGenFunction::EmitKCFIOperandBundle(
2828     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2829   const FunctionProtoType *FP =
2830       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2831   if (FP)
2832     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2833 }
2834 
2835 llvm::Value *
2836 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) {
2837   return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features);
2838 }
2839 
2840 llvm::Value *
2841 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) {
2842   llvm::Value *Condition = nullptr;
2843 
2844   if (RO.Architecture) {
2845     StringRef Arch = *RO.Architecture;
2846     // If arch= specifies an x86-64 micro-architecture level, test the feature
2847     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2848     if (Arch.starts_with("x86-64"))
2849       Condition = EmitX86CpuSupports({Arch});
2850     else
2851       Condition = EmitX86CpuIs(Arch);
2852   }
2853 
2854   if (!RO.Features.empty()) {
2855     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features);
2856     Condition =
2857         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2858   }
2859   return Condition;
2860 }
2861 
2862 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2863                                              llvm::Function *Resolver,
2864                                              CGBuilderTy &Builder,
2865                                              llvm::Function *FuncToReturn,
2866                                              bool SupportsIFunc) {
2867   if (SupportsIFunc) {
2868     Builder.CreateRet(FuncToReturn);
2869     return;
2870   }
2871 
2872   llvm::SmallVector<llvm::Value *, 10> Args(
2873       llvm::make_pointer_range(Resolver->args()));
2874 
2875   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2876   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2877 
2878   if (Resolver->getReturnType()->isVoidTy())
2879     Builder.CreateRetVoid();
2880   else
2881     Builder.CreateRet(Result);
2882 }
2883 
2884 void CodeGenFunction::EmitMultiVersionResolver(
2885     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2886 
2887   llvm::Triple::ArchType ArchType =
2888       getContext().getTargetInfo().getTriple().getArch();
2889 
2890   switch (ArchType) {
2891   case llvm::Triple::x86:
2892   case llvm::Triple::x86_64:
2893     EmitX86MultiVersionResolver(Resolver, Options);
2894     return;
2895   case llvm::Triple::aarch64:
2896     EmitAArch64MultiVersionResolver(Resolver, Options);
2897     return;
2898   case llvm::Triple::riscv32:
2899   case llvm::Triple::riscv64:
2900     EmitRISCVMultiVersionResolver(Resolver, Options);
2901     return;
2902 
2903   default:
2904     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2905   }
2906 }
2907 
2908 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2909     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2910 
2911   if (getContext().getTargetInfo().getTriple().getOS() !=
2912       llvm::Triple::OSType::Linux) {
2913     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2914     return;
2915   }
2916 
2917   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2918   Builder.SetInsertPoint(CurBlock);
2919   EmitRISCVCpuInit();
2920 
2921   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2922   bool HasDefault = false;
2923   unsigned DefaultIndex = 0;
2924 
2925   // Check the each candidate function.
2926   for (unsigned Index = 0; Index < Options.size(); Index++) {
2927 
2928     if (Options[Index].Features.empty()) {
2929       HasDefault = true;
2930       DefaultIndex = Index;
2931       continue;
2932     }
2933 
2934     Builder.SetInsertPoint(CurBlock);
2935 
2936     // FeaturesCondition: The bitmask of the required extension has been
2937     // enabled by the runtime object.
2938     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2939     // REQUIRED_BITMASK
2940     //
2941     // When condition is met, return this version of the function.
2942     // Otherwise, try the next version.
2943     //
2944     // if (FeaturesConditionVersion1)
2945     //     return Version1;
2946     // else if (FeaturesConditionVersion2)
2947     //     return Version2;
2948     // else if (FeaturesConditionVersion3)
2949     //     return Version3;
2950     // ...
2951     // else
2952     //     return DefaultVersion;
2953 
2954     // TODO: Add a condition to check the length before accessing elements.
2955     // Without checking the length first, we may access an incorrect memory
2956     // address when using different versions.
2957     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2958     llvm::SmallVector<std::string, 8> TargetAttrFeats;
2959 
2960     for (StringRef Feat : Options[Index].Features) {
2961       std::vector<std::string> FeatStr =
2962           getContext().getTargetInfo().parseTargetAttr(Feat).Features;
2963 
2964       assert(FeatStr.size() == 1 && "Feature string not delimited");
2965 
2966       std::string &CurrFeat = FeatStr.front();
2967       if (CurrFeat[0] == '+')
2968         TargetAttrFeats.push_back(CurrFeat.substr(1));
2969     }
2970 
2971     if (TargetAttrFeats.empty())
2972       continue;
2973 
2974     for (std::string &Feat : TargetAttrFeats)
2975       CurrTargetAttrFeats.push_back(Feat);
2976 
2977     Builder.SetInsertPoint(CurBlock);
2978     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
2979 
2980     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2981     CGBuilderTy RetBuilder(*this, RetBlock);
2982     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder,
2983                                      Options[Index].Function, SupportsIFunc);
2984     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
2985 
2986     Builder.SetInsertPoint(CurBlock);
2987     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
2988 
2989     CurBlock = ElseBlock;
2990   }
2991 
2992   // Finally, emit the default one.
2993   if (HasDefault) {
2994     Builder.SetInsertPoint(CurBlock);
2995     CreateMultiVersionResolverReturn(
2996         CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc);
2997     return;
2998   }
2999 
3000   // If no generic/default, emit an unreachable.
3001   Builder.SetInsertPoint(CurBlock);
3002   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3003   TrapCall->setDoesNotReturn();
3004   TrapCall->setDoesNotThrow();
3005   Builder.CreateUnreachable();
3006   Builder.ClearInsertionPoint();
3007 }
3008 
3009 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3010     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3011   assert(!Options.empty() && "No multiversion resolver options found");
3012   assert(Options.back().Features.size() == 0 && "Default case must be last");
3013   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3014   assert(SupportsIFunc &&
3015          "Multiversion resolver requires target IFUNC support");
3016   bool AArch64CpuInitialized = false;
3017   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3018 
3019   for (const FMVResolverOption &RO : Options) {
3020     Builder.SetInsertPoint(CurBlock);
3021     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3022 
3023     // The 'default' or 'all features enabled' case.
3024     if (!Condition) {
3025       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3026                                        SupportsIFunc);
3027       return;
3028     }
3029 
3030     if (!AArch64CpuInitialized) {
3031       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3032       EmitAArch64CpuInit();
3033       AArch64CpuInitialized = true;
3034       Builder.SetInsertPoint(CurBlock);
3035     }
3036 
3037     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3038     CGBuilderTy RetBuilder(*this, RetBlock);
3039     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3040                                      SupportsIFunc);
3041     CurBlock = createBasicBlock("resolver_else", Resolver);
3042     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3043   }
3044 
3045   // If no default, emit an unreachable.
3046   Builder.SetInsertPoint(CurBlock);
3047   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3048   TrapCall->setDoesNotReturn();
3049   TrapCall->setDoesNotThrow();
3050   Builder.CreateUnreachable();
3051   Builder.ClearInsertionPoint();
3052 }
3053 
3054 void CodeGenFunction::EmitX86MultiVersionResolver(
3055     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3056 
3057   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3058 
3059   // Main function's basic block.
3060   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3061   Builder.SetInsertPoint(CurBlock);
3062   EmitX86CpuInit();
3063 
3064   for (const FMVResolverOption &RO : Options) {
3065     Builder.SetInsertPoint(CurBlock);
3066     llvm::Value *Condition = FormX86ResolverCondition(RO);
3067 
3068     // The 'default' or 'generic' case.
3069     if (!Condition) {
3070       assert(&RO == Options.end() - 1 &&
3071              "Default or Generic case must be last");
3072       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3073                                        SupportsIFunc);
3074       return;
3075     }
3076 
3077     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3078     CGBuilderTy RetBuilder(*this, RetBlock);
3079     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3080                                      SupportsIFunc);
3081     CurBlock = createBasicBlock("resolver_else", Resolver);
3082     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3083   }
3084 
3085   // If no generic/default, emit an unreachable.
3086   Builder.SetInsertPoint(CurBlock);
3087   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3088   TrapCall->setDoesNotReturn();
3089   TrapCall->setDoesNotThrow();
3090   Builder.CreateUnreachable();
3091   Builder.ClearInsertionPoint();
3092 }
3093 
3094 // Loc - where the diagnostic will point, where in the source code this
3095 //  alignment has failed.
3096 // SecondaryLoc - if present (will be present if sufficiently different from
3097 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3098 //  It should be the location where the __attribute__((assume_aligned))
3099 //  was written e.g.
3100 void CodeGenFunction::emitAlignmentAssumptionCheck(
3101     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3102     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3103     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3104     llvm::Instruction *Assumption) {
3105   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3106          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3107              llvm::Intrinsic::getOrInsertDeclaration(
3108                  Builder.GetInsertBlock()->getParent()->getParent(),
3109                  llvm::Intrinsic::assume) &&
3110          "Assumption should be a call to llvm.assume().");
3111   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3112          "Assumption should be the last instruction of the basic block, "
3113          "since the basic block is still being generated.");
3114 
3115   if (!SanOpts.has(SanitizerKind::Alignment))
3116     return;
3117 
3118   // Don't check pointers to volatile data. The behavior here is implementation-
3119   // defined.
3120   if (Ty->getPointeeType().isVolatileQualified())
3121     return;
3122 
3123   // We need to temorairly remove the assumption so we can insert the
3124   // sanitizer check before it, else the check will be dropped by optimizations.
3125   Assumption->removeFromParent();
3126 
3127   {
3128     SanitizerScope SanScope(this);
3129 
3130     if (!OffsetValue)
3131       OffsetValue = Builder.getInt1(false); // no offset.
3132 
3133     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3134                                     EmitCheckSourceLocation(SecondaryLoc),
3135                                     EmitCheckTypeDescriptor(Ty)};
3136     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3137                                   EmitCheckValue(Alignment),
3138                                   EmitCheckValue(OffsetValue)};
3139     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3140               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3141   }
3142 
3143   // We are now in the (new, empty) "cont" basic block.
3144   // Reintroduce the assumption.
3145   Builder.Insert(Assumption);
3146   // FIXME: Assumption still has it's original basic block as it's Parent.
3147 }
3148 
3149 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3150   if (CGDebugInfo *DI = getDebugInfo())
3151     return DI->SourceLocToDebugLoc(Location);
3152 
3153   return llvm::DebugLoc();
3154 }
3155 
3156 llvm::Value *
3157 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3158                                                       Stmt::Likelihood LH) {
3159   switch (LH) {
3160   case Stmt::LH_None:
3161     return Cond;
3162   case Stmt::LH_Likely:
3163   case Stmt::LH_Unlikely:
3164     // Don't generate llvm.expect on -O0 as the backend won't use it for
3165     // anything.
3166     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3167       return Cond;
3168     llvm::Type *CondTy = Cond->getType();
3169     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3170     llvm::Function *FnExpect =
3171         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3172     llvm::Value *ExpectedValueOfCond =
3173         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3174     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3175                               Cond->getName() + ".expval");
3176   }
3177   llvm_unreachable("Unknown Likelihood");
3178 }
3179 
3180 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3181                                                     unsigned NumElementsDst,
3182                                                     const llvm::Twine &Name) {
3183   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3184   unsigned NumElementsSrc = SrcTy->getNumElements();
3185   if (NumElementsSrc == NumElementsDst)
3186     return SrcVec;
3187 
3188   std::vector<int> ShuffleMask(NumElementsDst, -1);
3189   for (unsigned MaskIdx = 0;
3190        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3191     ShuffleMask[MaskIdx] = MaskIdx;
3192 
3193   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3194 }
3195 
3196 void CodeGenFunction::EmitPointerAuthOperandBundle(
3197     const CGPointerAuthInfo &PointerAuth,
3198     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3199   if (!PointerAuth.isSigned())
3200     return;
3201 
3202   auto *Key = Builder.getInt32(PointerAuth.getKey());
3203 
3204   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3205   if (!Discriminator)
3206     Discriminator = Builder.getSize(0);
3207 
3208   llvm::Value *Args[] = {Key, Discriminator};
3209   Bundles.emplace_back("ptrauth", Args);
3210 }
3211 
3212 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3213                                           const CGPointerAuthInfo &PointerAuth,
3214                                           llvm::Value *Pointer,
3215                                           unsigned IntrinsicID) {
3216   if (!PointerAuth)
3217     return Pointer;
3218 
3219   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3220 
3221   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3222   if (!Discriminator) {
3223     Discriminator = CGF.Builder.getSize(0);
3224   }
3225 
3226   // Convert the pointer to intptr_t before signing it.
3227   auto OrigType = Pointer->getType();
3228   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3229 
3230   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3231   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3232   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3233 
3234   // Convert back to the original type.
3235   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3236   return Pointer;
3237 }
3238 
3239 llvm::Value *
3240 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3241                                      llvm::Value *Pointer) {
3242   if (!PointerAuth.shouldSign())
3243     return Pointer;
3244   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3245                                llvm::Intrinsic::ptrauth_sign);
3246 }
3247 
3248 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3249                               const CGPointerAuthInfo &PointerAuth,
3250                               llvm::Value *Pointer) {
3251   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3252 
3253   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3254   // Convert the pointer to intptr_t before signing it.
3255   auto OrigType = Pointer->getType();
3256   Pointer = CGF.EmitRuntimeCall(
3257       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3258   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3259 }
3260 
3261 llvm::Value *
3262 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3263                                      llvm::Value *Pointer) {
3264   if (PointerAuth.shouldStrip()) {
3265     return EmitStrip(*this, PointerAuth, Pointer);
3266   }
3267   if (!PointerAuth.shouldAuth()) {
3268     return Pointer;
3269   }
3270 
3271   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3272                                llvm::Intrinsic::ptrauth_auth);
3273 }
3274