xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision b0afa6bab9581abc91f23c854b3bb45095cbb057)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableSingleByteCoverage;
57 } // namespace llvm
58 
59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
60 /// markers.
61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
62                                       const LangOptions &LangOpts) {
63   if (CGOpts.DisableLifetimeMarkers)
64     return false;
65 
66   // Sanitizers may use markers.
67   if (CGOpts.SanitizeAddressUseAfterScope ||
68       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
69       LangOpts.Sanitize.has(SanitizerKind::Memory))
70     return true;
71 
72   // For now, only in optimized builds.
73   return CGOpts.OptimizationLevel != 0;
74 }
75 
76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
77     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
78       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
79               CGBuilderInserterTy(this)),
80       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
81       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86   EHStack.setCGF(this);
87 
88   SetFastMathFlags(CurFPFeatures);
89 }
90 
91 CodeGenFunction::~CodeGenFunction() {
92   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
93   assert(DeferredDeactivationCleanupStack.empty() &&
94          "missed to deactivate a cleanup");
95 
96   if (getLangOpts().OpenMP && CurFn)
97     CGM.getOpenMPRuntime().functionFinished(*this);
98 
99   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
100   // outlining etc) at some point. Doing it once the function codegen is done
101   // seems to be a reasonable spot. We do it here, as opposed to the deletion
102   // time of the CodeGenModule, because we have to ensure the IR has not yet
103   // been "emitted" to the outside, thus, modifications are still sensible.
104   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
105     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
106 }
107 
108 // Map the LangOption for exception behavior into
109 // the corresponding enum in the IR.
110 llvm::fp::ExceptionBehavior
111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
112 
113   switch (Kind) {
114   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
115   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
116   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
117   default:
118     llvm_unreachable("Unsupported FP Exception Behavior");
119   }
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
159   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
160   auto NewExceptionBehavior =
161       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
162           FPFeatures.getExceptionMode()));
163   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
164 
165   CGF.SetFastMathFlags(FPFeatures);
166 
167   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
168           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
169           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
170           (NewExceptionBehavior == llvm::fp::ebIgnore &&
171            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
172          "FPConstrained should be enabled on entire function");
173 
174   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
175     auto OldValue =
176         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
177     auto NewValue = OldValue & Value;
178     if (OldValue != NewValue)
179       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
180   };
181   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
182   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
183   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
184   mergeFnAttrValue(
185       "unsafe-fp-math",
186       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
187           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
188           FPFeatures.allowFPContractAcrossStatement());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 static LValue
198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
199                            bool MightBeSigned, CodeGenFunction &CGF,
200                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr =
206       MightBeSigned
207           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
208                                              nullptr, IsKnownNonNull)
209           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
210   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
215                                             KnownNonNull_t IsKnownNonNull) {
216   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
217                                       /*MightBeSigned*/ true, *this,
218                                       IsKnownNonNull);
219 }
220 
221 LValue
222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
223   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
224                                       /*MightBeSigned*/ true, *this);
225 }
226 
227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
228                                                       QualType T) {
229   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
230                                       /*MightBeSigned*/ false, *this);
231 }
232 
233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
234                                                              QualType T) {
235   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
236                                       /*MightBeSigned*/ false, *this);
237 }
238 
239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
240   return CGM.getTypes().ConvertTypeForMem(T);
241 }
242 
243 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
244   return CGM.getTypes().ConvertType(T);
245 }
246 
247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
248                                                      llvm::Type *LLVMTy) {
249   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
250 }
251 
252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
253   type = type.getCanonicalType();
254   while (true) {
255     switch (type->getTypeClass()) {
256 #define TYPE(name, parent)
257 #define ABSTRACT_TYPE(name, parent)
258 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
259 #define DEPENDENT_TYPE(name, parent) case Type::name:
260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
261 #include "clang/AST/TypeNodes.inc"
262       llvm_unreachable("non-canonical or dependent type in IR-generation");
263 
264     case Type::Auto:
265     case Type::DeducedTemplateSpecialization:
266       llvm_unreachable("undeduced type in IR-generation");
267 
268     // Various scalar types.
269     case Type::Builtin:
270     case Type::Pointer:
271     case Type::BlockPointer:
272     case Type::LValueReference:
273     case Type::RValueReference:
274     case Type::MemberPointer:
275     case Type::Vector:
276     case Type::ExtVector:
277     case Type::ConstantMatrix:
278     case Type::FunctionProto:
279     case Type::FunctionNoProto:
280     case Type::Enum:
281     case Type::ObjCObjectPointer:
282     case Type::Pipe:
283     case Type::BitInt:
284     case Type::HLSLAttributedResource:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   if (SanOpts.has(SanitizerKind::Realtime))
849     if (FD && FD->getASTContext().hasAnyFunctionEffects())
850       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
851         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
852           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
853         else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
854           Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
855       }
856 
857   // Apply fuzzing attribute to the function.
858   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
859     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
860 
861   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
862   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
863   if (SanOpts.has(SanitizerKind::Thread)) {
864     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
865       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
866       if (OMD->getMethodFamily() == OMF_dealloc ||
867           OMD->getMethodFamily() == OMF_initialize ||
868           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
869         markAsIgnoreThreadCheckingAtRuntime(Fn);
870       }
871     }
872   }
873 
874   // Ignore unrelated casts in STL allocate() since the allocator must cast
875   // from void* to T* before object initialization completes. Don't match on the
876   // namespace because not all allocators are in std::
877   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
878     if (matchesStlAllocatorFn(D, getContext()))
879       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
880   }
881 
882   // Ignore null checks in coroutine functions since the coroutines passes
883   // are not aware of how to move the extra UBSan instructions across the split
884   // coroutine boundaries.
885   if (D && SanOpts.has(SanitizerKind::Null))
886     if (FD && FD->getBody() &&
887         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
888       SanOpts.Mask &= ~SanitizerKind::Null;
889 
890   // Add pointer authentication attributes.
891   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
892   if (CodeGenOpts.PointerAuth.ReturnAddresses)
893     Fn->addFnAttr("ptrauth-returns");
894   if (CodeGenOpts.PointerAuth.FunctionPointers)
895     Fn->addFnAttr("ptrauth-calls");
896   if (CodeGenOpts.PointerAuth.AuthTraps)
897     Fn->addFnAttr("ptrauth-auth-traps");
898   if (CodeGenOpts.PointerAuth.IndirectGotos)
899     Fn->addFnAttr("ptrauth-indirect-gotos");
900 
901   // Apply xray attributes to the function (as a string, for now)
902   bool AlwaysXRayAttr = false;
903   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
904     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
905             XRayInstrKind::FunctionEntry) ||
906         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
907             XRayInstrKind::FunctionExit)) {
908       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
909         Fn->addFnAttr("function-instrument", "xray-always");
910         AlwaysXRayAttr = true;
911       }
912       if (XRayAttr->neverXRayInstrument())
913         Fn->addFnAttr("function-instrument", "xray-never");
914       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
915         if (ShouldXRayInstrumentFunction())
916           Fn->addFnAttr("xray-log-args",
917                         llvm::utostr(LogArgs->getArgumentCount()));
918     }
919   } else {
920     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
921       Fn->addFnAttr(
922           "xray-instruction-threshold",
923           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
924   }
925 
926   if (ShouldXRayInstrumentFunction()) {
927     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
928       Fn->addFnAttr("xray-ignore-loops");
929 
930     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
931             XRayInstrKind::FunctionExit))
932       Fn->addFnAttr("xray-skip-exit");
933 
934     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
935             XRayInstrKind::FunctionEntry))
936       Fn->addFnAttr("xray-skip-entry");
937 
938     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
939     if (FuncGroups > 1) {
940       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
941                                               CurFn->getName().bytes_end());
942       auto Group = crc32(FuncName) % FuncGroups;
943       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
944           !AlwaysXRayAttr)
945         Fn->addFnAttr("function-instrument", "xray-never");
946     }
947   }
948 
949   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
950     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
951     case ProfileList::Skip:
952       Fn->addFnAttr(llvm::Attribute::SkipProfile);
953       break;
954     case ProfileList::Forbid:
955       Fn->addFnAttr(llvm::Attribute::NoProfile);
956       break;
957     case ProfileList::Allow:
958       break;
959     }
960   }
961 
962   unsigned Count, Offset;
963   if (const auto *Attr =
964           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
965     Count = Attr->getCount();
966     Offset = Attr->getOffset();
967   } else {
968     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
969     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
970   }
971   if (Count && Offset <= Count) {
972     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
973     if (Offset)
974       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
975   }
976   // Instruct that functions for COFF/CodeView targets should start with a
977   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
978   // backends as they don't need it -- instructions on these architectures are
979   // always atomically patchable at runtime.
980   if (CGM.getCodeGenOpts().HotPatch &&
981       getContext().getTargetInfo().getTriple().isX86() &&
982       getContext().getTargetInfo().getTriple().getEnvironment() !=
983           llvm::Triple::CODE16)
984     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
985 
986   // Add no-jump-tables value.
987   if (CGM.getCodeGenOpts().NoUseJumpTables)
988     Fn->addFnAttr("no-jump-tables", "true");
989 
990   // Add no-inline-line-tables value.
991   if (CGM.getCodeGenOpts().NoInlineLineTables)
992     Fn->addFnAttr("no-inline-line-tables");
993 
994   // Add profile-sample-accurate value.
995   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
996     Fn->addFnAttr("profile-sample-accurate");
997 
998   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
999     Fn->addFnAttr("use-sample-profile");
1000 
1001   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1002     Fn->addFnAttr("cfi-canonical-jump-table");
1003 
1004   if (D && D->hasAttr<NoProfileFunctionAttr>())
1005     Fn->addFnAttr(llvm::Attribute::NoProfile);
1006 
1007   if (D && D->hasAttr<HybridPatchableAttr>())
1008     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1009 
1010   if (D) {
1011     // Function attributes take precedence over command line flags.
1012     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1013       switch (A->getThunkType()) {
1014       case FunctionReturnThunksAttr::Kind::Keep:
1015         break;
1016       case FunctionReturnThunksAttr::Kind::Extern:
1017         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1018         break;
1019       }
1020     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1021       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1022   }
1023 
1024   if (FD && (getLangOpts().OpenCL ||
1025              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1026               getLangOpts().CUDAIsDevice))) {
1027     // Add metadata for a kernel function.
1028     EmitKernelMetadata(FD, Fn);
1029   }
1030 
1031   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1032     Fn->setMetadata("clspv_libclc_builtin",
1033                     llvm::MDNode::get(getLLVMContext(), {}));
1034   }
1035 
1036   // If we are checking function types, emit a function type signature as
1037   // prologue data.
1038   if (FD && SanOpts.has(SanitizerKind::Function)) {
1039     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1040       llvm::LLVMContext &Ctx = Fn->getContext();
1041       llvm::MDBuilder MDB(Ctx);
1042       Fn->setMetadata(
1043           llvm::LLVMContext::MD_func_sanitize,
1044           MDB.createRTTIPointerPrologue(
1045               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1046     }
1047   }
1048 
1049   // If we're checking nullability, we need to know whether we can check the
1050   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1051   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1052     auto Nullability = FnRetTy->getNullability();
1053     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1054         !FnRetTy->isRecordType()) {
1055       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1056             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1057         RetValNullabilityPrecondition =
1058             llvm::ConstantInt::getTrue(getLLVMContext());
1059     }
1060   }
1061 
1062   // If we're in C++ mode and the function name is "main", it is guaranteed
1063   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1064   // used within a program").
1065   //
1066   // OpenCL C 2.0 v2.2-11 s6.9.i:
1067   //     Recursion is not supported.
1068   //
1069   // HLSL
1070   //     Recursion is not supported.
1071   //
1072   // SYCL v1.2.1 s3.10:
1073   //     kernels cannot include RTTI information, exception classes,
1074   //     recursive code, virtual functions or make use of C++ libraries that
1075   //     are not compiled for the device.
1076   if (FD &&
1077       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1078        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1079        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1080     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1081 
1082   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1083   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1084       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1085   Builder.setDefaultConstrainedRounding(RM);
1086   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1087   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1088       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1089                RM != llvm::RoundingMode::NearestTiesToEven))) {
1090     Builder.setIsFPConstrained(true);
1091     Fn->addFnAttr(llvm::Attribute::StrictFP);
1092   }
1093 
1094   // If a custom alignment is used, force realigning to this alignment on
1095   // any main function which certainly will need it.
1096   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1097              CGM.getCodeGenOpts().StackAlignment))
1098     Fn->addFnAttr("stackrealign");
1099 
1100   // "main" doesn't need to zero out call-used registers.
1101   if (FD && FD->isMain())
1102     Fn->removeFnAttr("zero-call-used-regs");
1103 
1104   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1105 
1106   // Create a marker to make it easy to insert allocas into the entryblock
1107   // later.  Don't create this with the builder, because we don't want it
1108   // folded.
1109   llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1110   AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1111 
1112   ReturnBlock = getJumpDestInCurrentScope("return");
1113 
1114   Builder.SetInsertPoint(EntryBB);
1115 
1116   // If we're checking the return value, allocate space for a pointer to a
1117   // precise source location of the checked return statement.
1118   if (requiresReturnValueCheck()) {
1119     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1120     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1121                         ReturnLocation);
1122   }
1123 
1124   // Emit subprogram debug descriptor.
1125   if (CGDebugInfo *DI = getDebugInfo()) {
1126     // Reconstruct the type from the argument list so that implicit parameters,
1127     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1128     // convention.
1129     DI->emitFunctionStart(GD, Loc, StartLoc,
1130                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1131                           CurFuncIsThunk);
1132   }
1133 
1134   if (ShouldInstrumentFunction()) {
1135     if (CGM.getCodeGenOpts().InstrumentFunctions)
1136       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1137     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1138       CurFn->addFnAttr("instrument-function-entry-inlined",
1139                        "__cyg_profile_func_enter");
1140     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1141       CurFn->addFnAttr("instrument-function-entry-inlined",
1142                        "__cyg_profile_func_enter_bare");
1143   }
1144 
1145   // Since emitting the mcount call here impacts optimizations such as function
1146   // inlining, we just add an attribute to insert a mcount call in backend.
1147   // The attribute "counting-function" is set to mcount function name which is
1148   // architecture dependent.
1149   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1150     // Calls to fentry/mcount should not be generated if function has
1151     // the no_instrument_function attribute.
1152     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1153       if (CGM.getCodeGenOpts().CallFEntry)
1154         Fn->addFnAttr("fentry-call", "true");
1155       else {
1156         Fn->addFnAttr("instrument-function-entry-inlined",
1157                       getTarget().getMCountName());
1158       }
1159       if (CGM.getCodeGenOpts().MNopMCount) {
1160         if (!CGM.getCodeGenOpts().CallFEntry)
1161           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1162             << "-mnop-mcount" << "-mfentry";
1163         Fn->addFnAttr("mnop-mcount");
1164       }
1165 
1166       if (CGM.getCodeGenOpts().RecordMCount) {
1167         if (!CGM.getCodeGenOpts().CallFEntry)
1168           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1169             << "-mrecord-mcount" << "-mfentry";
1170         Fn->addFnAttr("mrecord-mcount");
1171       }
1172     }
1173   }
1174 
1175   if (CGM.getCodeGenOpts().PackedStack) {
1176     if (getContext().getTargetInfo().getTriple().getArch() !=
1177         llvm::Triple::systemz)
1178       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1179         << "-mpacked-stack";
1180     Fn->addFnAttr("packed-stack");
1181   }
1182 
1183   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1184       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1185     Fn->addFnAttr("warn-stack-size",
1186                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1187 
1188   if (RetTy->isVoidType()) {
1189     // Void type; nothing to return.
1190     ReturnValue = Address::invalid();
1191 
1192     // Count the implicit return.
1193     if (!endsWithReturn(D))
1194       ++NumReturnExprs;
1195   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1196     // Indirect return; emit returned value directly into sret slot.
1197     // This reduces code size, and affects correctness in C++.
1198     auto AI = CurFn->arg_begin();
1199     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1200       ++AI;
1201     ReturnValue = makeNaturalAddressForPointer(
1202         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1203         nullptr, nullptr, KnownNonNull);
1204     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1205       ReturnValuePointer =
1206           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1207       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1208                           ReturnValuePointer);
1209     }
1210   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1211              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1212     // Load the sret pointer from the argument struct and return into that.
1213     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1214     llvm::Function::arg_iterator EI = CurFn->arg_end();
1215     --EI;
1216     llvm::Value *Addr = Builder.CreateStructGEP(
1217         CurFnInfo->getArgStruct(), &*EI, Idx);
1218     llvm::Type *Ty =
1219         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1220     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1221     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1222     ReturnValue = Address(Addr, ConvertType(RetTy),
1223                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1224   } else {
1225     ReturnValue = CreateIRTemp(RetTy, "retval");
1226 
1227     // Tell the epilog emitter to autorelease the result.  We do this
1228     // now so that various specialized functions can suppress it
1229     // during their IR-generation.
1230     if (getLangOpts().ObjCAutoRefCount &&
1231         !CurFnInfo->isReturnsRetained() &&
1232         RetTy->isObjCRetainableType())
1233       AutoreleaseResult = true;
1234   }
1235 
1236   EmitStartEHSpec(CurCodeDecl);
1237 
1238   PrologueCleanupDepth = EHStack.stable_begin();
1239 
1240   // Emit OpenMP specific initialization of the device functions.
1241   if (getLangOpts().OpenMP && CurCodeDecl)
1242     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1243 
1244   if (FD && getLangOpts().HLSL) {
1245     // Handle emitting HLSL entry functions.
1246     if (FD->hasAttr<HLSLShaderAttr>()) {
1247       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1248     }
1249     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1250   }
1251 
1252   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1253 
1254   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1255       MD && !MD->isStatic()) {
1256     bool IsInLambda =
1257         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1258     if (MD->isImplicitObjectMemberFunction())
1259       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1260     if (IsInLambda) {
1261       // We're in a lambda; figure out the captures.
1262       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1263                                         LambdaThisCaptureField);
1264       if (LambdaThisCaptureField) {
1265         // If the lambda captures the object referred to by '*this' - either by
1266         // value or by reference, make sure CXXThisValue points to the correct
1267         // object.
1268 
1269         // Get the lvalue for the field (which is a copy of the enclosing object
1270         // or contains the address of the enclosing object).
1271         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1272         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1273           // If the enclosing object was captured by value, just use its
1274           // address. Sign this pointer.
1275           CXXThisValue = ThisFieldLValue.getPointer(*this);
1276         } else {
1277           // Load the lvalue pointed to by the field, since '*this' was captured
1278           // by reference.
1279           CXXThisValue =
1280               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1281         }
1282       }
1283       for (auto *FD : MD->getParent()->fields()) {
1284         if (FD->hasCapturedVLAType()) {
1285           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1286                                            SourceLocation()).getScalarVal();
1287           auto VAT = FD->getCapturedVLAType();
1288           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1289         }
1290       }
1291     } else if (MD->isImplicitObjectMemberFunction()) {
1292       // Not in a lambda; just use 'this' from the method.
1293       // FIXME: Should we generate a new load for each use of 'this'?  The
1294       // fast register allocator would be happier...
1295       CXXThisValue = CXXABIThisValue;
1296     }
1297 
1298     // Check the 'this' pointer once per function, if it's available.
1299     if (CXXABIThisValue) {
1300       SanitizerSet SkippedChecks;
1301       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1302       QualType ThisTy = MD->getThisType();
1303 
1304       // If this is the call operator of a lambda with no captures, it
1305       // may have a static invoker function, which may call this operator with
1306       // a null 'this' pointer.
1307       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1308         SkippedChecks.set(SanitizerKind::Null, true);
1309 
1310       EmitTypeCheck(
1311           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1312           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1313     }
1314   }
1315 
1316   // If any of the arguments have a variably modified type, make sure to
1317   // emit the type size, but only if the function is not naked. Naked functions
1318   // have no prolog to run this evaluation.
1319   if (!FD || !FD->hasAttr<NakedAttr>()) {
1320     for (const VarDecl *VD : Args) {
1321       // Dig out the type as written from ParmVarDecls; it's unclear whether
1322       // the standard (C99 6.9.1p10) requires this, but we're following the
1323       // precedent set by gcc.
1324       QualType Ty;
1325       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1326         Ty = PVD->getOriginalType();
1327       else
1328         Ty = VD->getType();
1329 
1330       if (Ty->isVariablyModifiedType())
1331         EmitVariablyModifiedType(Ty);
1332     }
1333   }
1334   // Emit a location at the end of the prologue.
1335   if (CGDebugInfo *DI = getDebugInfo())
1336     DI->EmitLocation(Builder, StartLoc);
1337   // TODO: Do we need to handle this in two places like we do with
1338   // target-features/target-cpu?
1339   if (CurFuncDecl)
1340     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1341       LargestVectorWidth = VecWidth->getVectorWidth();
1342 
1343   if (CGM.shouldEmitConvergenceTokens())
1344     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1345 }
1346 
1347 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1348   incrementProfileCounter(Body);
1349   maybeCreateMCDCCondBitmap();
1350   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1351     EmitCompoundStmtWithoutScope(*S);
1352   else
1353     EmitStmt(Body);
1354 }
1355 
1356 /// When instrumenting to collect profile data, the counts for some blocks
1357 /// such as switch cases need to not include the fall-through counts, so
1358 /// emit a branch around the instrumentation code. When not instrumenting,
1359 /// this just calls EmitBlock().
1360 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1361                                                const Stmt *S) {
1362   llvm::BasicBlock *SkipCountBB = nullptr;
1363   // Do not skip over the instrumentation when single byte coverage mode is
1364   // enabled.
1365   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1366       !llvm::EnableSingleByteCoverage) {
1367     // When instrumenting for profiling, the fallthrough to certain
1368     // statements needs to skip over the instrumentation code so that we
1369     // get an accurate count.
1370     SkipCountBB = createBasicBlock("skipcount");
1371     EmitBranch(SkipCountBB);
1372   }
1373   EmitBlock(BB);
1374   uint64_t CurrentCount = getCurrentProfileCount();
1375   incrementProfileCounter(S);
1376   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1377   if (SkipCountBB)
1378     EmitBlock(SkipCountBB);
1379 }
1380 
1381 /// Tries to mark the given function nounwind based on the
1382 /// non-existence of any throwing calls within it.  We believe this is
1383 /// lightweight enough to do at -O0.
1384 static void TryMarkNoThrow(llvm::Function *F) {
1385   // LLVM treats 'nounwind' on a function as part of the type, so we
1386   // can't do this on functions that can be overwritten.
1387   if (F->isInterposable()) return;
1388 
1389   for (llvm::BasicBlock &BB : *F)
1390     for (llvm::Instruction &I : BB)
1391       if (I.mayThrow())
1392         return;
1393 
1394   F->setDoesNotThrow();
1395 }
1396 
1397 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1398                                                FunctionArgList &Args) {
1399   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1400   QualType ResTy = FD->getReturnType();
1401 
1402   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1403   if (MD && MD->isImplicitObjectMemberFunction()) {
1404     if (CGM.getCXXABI().HasThisReturn(GD))
1405       ResTy = MD->getThisType();
1406     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1407       ResTy = CGM.getContext().VoidPtrTy;
1408     CGM.getCXXABI().buildThisParam(*this, Args);
1409   }
1410 
1411   // The base version of an inheriting constructor whose constructed base is a
1412   // virtual base is not passed any arguments (because it doesn't actually call
1413   // the inherited constructor).
1414   bool PassedParams = true;
1415   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1416     if (auto Inherited = CD->getInheritedConstructor())
1417       PassedParams =
1418           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1419 
1420   if (PassedParams) {
1421     for (auto *Param : FD->parameters()) {
1422       Args.push_back(Param);
1423       if (!Param->hasAttr<PassObjectSizeAttr>())
1424         continue;
1425 
1426       auto *Implicit = ImplicitParamDecl::Create(
1427           getContext(), Param->getDeclContext(), Param->getLocation(),
1428           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1429       SizeArguments[Param] = Implicit;
1430       Args.push_back(Implicit);
1431     }
1432   }
1433 
1434   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1435     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1436 
1437   return ResTy;
1438 }
1439 
1440 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1441                                    const CGFunctionInfo &FnInfo) {
1442   assert(Fn && "generating code for null Function");
1443   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1444   CurGD = GD;
1445 
1446   FunctionArgList Args;
1447   QualType ResTy = BuildFunctionArgList(GD, Args);
1448 
1449   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1450 
1451   if (FD->isInlineBuiltinDeclaration()) {
1452     // When generating code for a builtin with an inline declaration, use a
1453     // mangled name to hold the actual body, while keeping an external
1454     // definition in case the function pointer is referenced somewhere.
1455     std::string FDInlineName = (Fn->getName() + ".inline").str();
1456     llvm::Module *M = Fn->getParent();
1457     llvm::Function *Clone = M->getFunction(FDInlineName);
1458     if (!Clone) {
1459       Clone = llvm::Function::Create(Fn->getFunctionType(),
1460                                      llvm::GlobalValue::InternalLinkage,
1461                                      Fn->getAddressSpace(), FDInlineName, M);
1462       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1463     }
1464     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1465     Fn = Clone;
1466   } else {
1467     // Detect the unusual situation where an inline version is shadowed by a
1468     // non-inline version. In that case we should pick the external one
1469     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1470     // to detect that situation before we reach codegen, so do some late
1471     // replacement.
1472     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1473          PD = PD->getPreviousDecl()) {
1474       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1475         std::string FDInlineName = (Fn->getName() + ".inline").str();
1476         llvm::Module *M = Fn->getParent();
1477         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1478           Clone->replaceAllUsesWith(Fn);
1479           Clone->eraseFromParent();
1480         }
1481         break;
1482       }
1483     }
1484   }
1485 
1486   // Check if we should generate debug info for this function.
1487   if (FD->hasAttr<NoDebugAttr>()) {
1488     // Clear non-distinct debug info that was possibly attached to the function
1489     // due to an earlier declaration without the nodebug attribute
1490     Fn->setSubprogram(nullptr);
1491     // Disable debug info indefinitely for this function
1492     DebugInfo = nullptr;
1493   }
1494 
1495   // The function might not have a body if we're generating thunks for a
1496   // function declaration.
1497   SourceRange BodyRange;
1498   if (Stmt *Body = FD->getBody())
1499     BodyRange = Body->getSourceRange();
1500   else
1501     BodyRange = FD->getLocation();
1502   CurEHLocation = BodyRange.getEnd();
1503 
1504   // Use the location of the start of the function to determine where
1505   // the function definition is located. By default use the location
1506   // of the declaration as the location for the subprogram. A function
1507   // may lack a declaration in the source code if it is created by code
1508   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1509   SourceLocation Loc = FD->getLocation();
1510 
1511   // If this is a function specialization then use the pattern body
1512   // as the location for the function.
1513   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1514     if (SpecDecl->hasBody(SpecDecl))
1515       Loc = SpecDecl->getLocation();
1516 
1517   Stmt *Body = FD->getBody();
1518 
1519   if (Body) {
1520     // Coroutines always emit lifetime markers.
1521     if (isa<CoroutineBodyStmt>(Body))
1522       ShouldEmitLifetimeMarkers = true;
1523 
1524     // Initialize helper which will detect jumps which can cause invalid
1525     // lifetime markers.
1526     if (ShouldEmitLifetimeMarkers)
1527       Bypasses.Init(Body);
1528   }
1529 
1530   // Emit the standard function prologue.
1531   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1532 
1533   // Save parameters for coroutine function.
1534   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1535     llvm::append_range(FnArgs, FD->parameters());
1536 
1537   // Ensure that the function adheres to the forward progress guarantee, which
1538   // is required by certain optimizations.
1539   // In C++11 and up, the attribute will be removed if the body contains a
1540   // trivial empty loop.
1541   if (checkIfFunctionMustProgress())
1542     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1543 
1544   // Generate the body of the function.
1545   PGO.assignRegionCounters(GD, CurFn);
1546   if (isa<CXXDestructorDecl>(FD))
1547     EmitDestructorBody(Args);
1548   else if (isa<CXXConstructorDecl>(FD))
1549     EmitConstructorBody(Args);
1550   else if (getLangOpts().CUDA &&
1551            !getLangOpts().CUDAIsDevice &&
1552            FD->hasAttr<CUDAGlobalAttr>())
1553     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1554   else if (isa<CXXMethodDecl>(FD) &&
1555            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1556     // The lambda static invoker function is special, because it forwards or
1557     // clones the body of the function call operator (but is actually static).
1558     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1559   } else if (isa<CXXMethodDecl>(FD) &&
1560              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1561              !FnInfo.isDelegateCall() &&
1562              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1563              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1564     // If emitting a lambda with static invoker on X86 Windows, change
1565     // the call operator body.
1566     // Make sure that this is a call operator with an inalloca arg and check
1567     // for delegate call to make sure this is the original call op and not the
1568     // new forwarding function for the static invoker.
1569     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1570   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1571              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1572               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1573     // Implicit copy-assignment gets the same special treatment as implicit
1574     // copy-constructors.
1575     emitImplicitAssignmentOperatorBody(Args);
1576   } else if (Body) {
1577     EmitFunctionBody(Body);
1578   } else
1579     llvm_unreachable("no definition for emitted function");
1580 
1581   // C++11 [stmt.return]p2:
1582   //   Flowing off the end of a function [...] results in undefined behavior in
1583   //   a value-returning function.
1584   // C11 6.9.1p12:
1585   //   If the '}' that terminates a function is reached, and the value of the
1586   //   function call is used by the caller, the behavior is undefined.
1587   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1588       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1589     bool ShouldEmitUnreachable =
1590         CGM.getCodeGenOpts().StrictReturn ||
1591         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1592     if (SanOpts.has(SanitizerKind::Return)) {
1593       SanitizerScope SanScope(this);
1594       llvm::Value *IsFalse = Builder.getFalse();
1595       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1596                 SanitizerHandler::MissingReturn,
1597                 EmitCheckSourceLocation(FD->getLocation()), {});
1598     } else if (ShouldEmitUnreachable) {
1599       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1600         EmitTrapCall(llvm::Intrinsic::trap);
1601     }
1602     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1603       Builder.CreateUnreachable();
1604       Builder.ClearInsertionPoint();
1605     }
1606   }
1607 
1608   // Emit the standard function epilogue.
1609   FinishFunction(BodyRange.getEnd());
1610 
1611   // If we haven't marked the function nothrow through other means, do
1612   // a quick pass now to see if we can.
1613   if (!CurFn->doesNotThrow())
1614     TryMarkNoThrow(CurFn);
1615 }
1616 
1617 /// ContainsLabel - Return true if the statement contains a label in it.  If
1618 /// this statement is not executed normally, it not containing a label means
1619 /// that we can just remove the code.
1620 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1621   // Null statement, not a label!
1622   if (!S) return false;
1623 
1624   // If this is a label, we have to emit the code, consider something like:
1625   // if (0) {  ...  foo:  bar(); }  goto foo;
1626   //
1627   // TODO: If anyone cared, we could track __label__'s, since we know that you
1628   // can't jump to one from outside their declared region.
1629   if (isa<LabelStmt>(S))
1630     return true;
1631 
1632   // If this is a case/default statement, and we haven't seen a switch, we have
1633   // to emit the code.
1634   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1635     return true;
1636 
1637   // If this is a switch statement, we want to ignore cases below it.
1638   if (isa<SwitchStmt>(S))
1639     IgnoreCaseStmts = true;
1640 
1641   // Scan subexpressions for verboten labels.
1642   for (const Stmt *SubStmt : S->children())
1643     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1644       return true;
1645 
1646   return false;
1647 }
1648 
1649 /// containsBreak - Return true if the statement contains a break out of it.
1650 /// If the statement (recursively) contains a switch or loop with a break
1651 /// inside of it, this is fine.
1652 bool CodeGenFunction::containsBreak(const Stmt *S) {
1653   // Null statement, not a label!
1654   if (!S) return false;
1655 
1656   // If this is a switch or loop that defines its own break scope, then we can
1657   // include it and anything inside of it.
1658   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1659       isa<ForStmt>(S))
1660     return false;
1661 
1662   if (isa<BreakStmt>(S))
1663     return true;
1664 
1665   // Scan subexpressions for verboten breaks.
1666   for (const Stmt *SubStmt : S->children())
1667     if (containsBreak(SubStmt))
1668       return true;
1669 
1670   return false;
1671 }
1672 
1673 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1674   if (!S) return false;
1675 
1676   // Some statement kinds add a scope and thus never add a decl to the current
1677   // scope. Note, this list is longer than the list of statements that might
1678   // have an unscoped decl nested within them, but this way is conservatively
1679   // correct even if more statement kinds are added.
1680   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1681       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1682       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1683       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1684     return false;
1685 
1686   if (isa<DeclStmt>(S))
1687     return true;
1688 
1689   for (const Stmt *SubStmt : S->children())
1690     if (mightAddDeclToScope(SubStmt))
1691       return true;
1692 
1693   return false;
1694 }
1695 
1696 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1697 /// to a constant, or if it does but contains a label, return false.  If it
1698 /// constant folds return true and set the boolean result in Result.
1699 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1700                                                    bool &ResultBool,
1701                                                    bool AllowLabels) {
1702   // If MC/DC is enabled, disable folding so that we can instrument all
1703   // conditions to yield complete test vectors. We still keep track of
1704   // folded conditions during region mapping and visualization.
1705   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1706       CGM.getCodeGenOpts().MCDCCoverage)
1707     return false;
1708 
1709   llvm::APSInt ResultInt;
1710   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1711     return false;
1712 
1713   ResultBool = ResultInt.getBoolValue();
1714   return true;
1715 }
1716 
1717 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1718 /// to a constant, or if it does but contains a label, return false.  If it
1719 /// constant folds return true and set the folded value.
1720 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1721                                                    llvm::APSInt &ResultInt,
1722                                                    bool AllowLabels) {
1723   // FIXME: Rename and handle conversion of other evaluatable things
1724   // to bool.
1725   Expr::EvalResult Result;
1726   if (!Cond->EvaluateAsInt(Result, getContext()))
1727     return false;  // Not foldable, not integer or not fully evaluatable.
1728 
1729   llvm::APSInt Int = Result.Val.getInt();
1730   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1731     return false;  // Contains a label.
1732 
1733   ResultInt = Int;
1734   return true;
1735 }
1736 
1737 /// Strip parentheses and simplistic logical-NOT operators.
1738 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1739   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1740     if (Op->getOpcode() != UO_LNot)
1741       break;
1742     C = Op->getSubExpr();
1743   }
1744   return C->IgnoreParens();
1745 }
1746 
1747 /// Determine whether the given condition is an instrumentable condition
1748 /// (i.e. no "&&" or "||").
1749 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1750   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1751   return (!BOp || !BOp->isLogicalOp());
1752 }
1753 
1754 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1755 /// increments a profile counter based on the semantics of the given logical
1756 /// operator opcode.  This is used to instrument branch condition coverage for
1757 /// logical operators.
1758 void CodeGenFunction::EmitBranchToCounterBlock(
1759     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1760     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1761     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1762   // If not instrumenting, just emit a branch.
1763   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1764   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1765     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1766 
1767   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1768 
1769   llvm::BasicBlock *ThenBlock = nullptr;
1770   llvm::BasicBlock *ElseBlock = nullptr;
1771   llvm::BasicBlock *NextBlock = nullptr;
1772 
1773   // Create the block we'll use to increment the appropriate counter.
1774   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1775 
1776   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1777   // means we need to evaluate the condition and increment the counter on TRUE:
1778   //
1779   // if (Cond)
1780   //   goto CounterIncrBlock;
1781   // else
1782   //   goto FalseBlock;
1783   //
1784   // CounterIncrBlock:
1785   //   Counter++;
1786   //   goto TrueBlock;
1787 
1788   if (LOp == BO_LAnd) {
1789     ThenBlock = CounterIncrBlock;
1790     ElseBlock = FalseBlock;
1791     NextBlock = TrueBlock;
1792   }
1793 
1794   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1795   // we need to evaluate the condition and increment the counter on FALSE:
1796   //
1797   // if (Cond)
1798   //   goto TrueBlock;
1799   // else
1800   //   goto CounterIncrBlock;
1801   //
1802   // CounterIncrBlock:
1803   //   Counter++;
1804   //   goto FalseBlock;
1805 
1806   else if (LOp == BO_LOr) {
1807     ThenBlock = TrueBlock;
1808     ElseBlock = CounterIncrBlock;
1809     NextBlock = FalseBlock;
1810   } else {
1811     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1812   }
1813 
1814   // Emit Branch based on condition.
1815   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1816 
1817   // Emit the block containing the counter increment(s).
1818   EmitBlock(CounterIncrBlock);
1819 
1820   // Increment corresponding counter; if index not provided, use Cond as index.
1821   incrementProfileCounter(CntrStmt);
1822 
1823   // Go to the next block.
1824   EmitBranch(NextBlock);
1825 }
1826 
1827 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1828 /// statement) to the specified blocks.  Based on the condition, this might try
1829 /// to simplify the codegen of the conditional based on the branch.
1830 /// \param LH The value of the likelihood attribute on the True branch.
1831 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1832 /// ConditionalOperator (ternary) through a recursive call for the operator's
1833 /// LHS and RHS nodes.
1834 void CodeGenFunction::EmitBranchOnBoolExpr(
1835     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1836     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1837   Cond = Cond->IgnoreParens();
1838 
1839   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1840     // Handle X && Y in a condition.
1841     if (CondBOp->getOpcode() == BO_LAnd) {
1842       MCDCLogOpStack.push_back(CondBOp);
1843 
1844       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1845       // folded if the case was simple enough.
1846       bool ConstantBool = false;
1847       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1848           ConstantBool) {
1849         // br(1 && X) -> br(X).
1850         incrementProfileCounter(CondBOp);
1851         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1852                                  FalseBlock, TrueCount, LH);
1853         MCDCLogOpStack.pop_back();
1854         return;
1855       }
1856 
1857       // If we have "X && 1", simplify the code to use an uncond branch.
1858       // "X && 0" would have been constant folded to 0.
1859       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1860           ConstantBool) {
1861         // br(X && 1) -> br(X).
1862         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1863                                  FalseBlock, TrueCount, LH, CondBOp);
1864         MCDCLogOpStack.pop_back();
1865         return;
1866       }
1867 
1868       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1869       // want to jump to the FalseBlock.
1870       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1871       // The counter tells us how often we evaluate RHS, and all of TrueCount
1872       // can be propagated to that branch.
1873       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1874 
1875       ConditionalEvaluation eval(*this);
1876       {
1877         ApplyDebugLocation DL(*this, Cond);
1878         // Propagate the likelihood attribute like __builtin_expect
1879         // __builtin_expect(X && Y, 1) -> X and Y are likely
1880         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1881         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1882                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1883         EmitBlock(LHSTrue);
1884       }
1885 
1886       incrementProfileCounter(CondBOp);
1887       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1888 
1889       // Any temporaries created here are conditional.
1890       eval.begin(*this);
1891       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1892                                FalseBlock, TrueCount, LH);
1893       eval.end(*this);
1894       MCDCLogOpStack.pop_back();
1895       return;
1896     }
1897 
1898     if (CondBOp->getOpcode() == BO_LOr) {
1899       MCDCLogOpStack.push_back(CondBOp);
1900 
1901       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1902       // folded if the case was simple enough.
1903       bool ConstantBool = false;
1904       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1905           !ConstantBool) {
1906         // br(0 || X) -> br(X).
1907         incrementProfileCounter(CondBOp);
1908         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1909                                  FalseBlock, TrueCount, LH);
1910         MCDCLogOpStack.pop_back();
1911         return;
1912       }
1913 
1914       // If we have "X || 0", simplify the code to use an uncond branch.
1915       // "X || 1" would have been constant folded to 1.
1916       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1917           !ConstantBool) {
1918         // br(X || 0) -> br(X).
1919         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1920                                  FalseBlock, TrueCount, LH, CondBOp);
1921         MCDCLogOpStack.pop_back();
1922         return;
1923       }
1924       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1925       // want to jump to the TrueBlock.
1926       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1927       // We have the count for entry to the RHS and for the whole expression
1928       // being true, so we can divy up True count between the short circuit and
1929       // the RHS.
1930       uint64_t LHSCount =
1931           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1932       uint64_t RHSCount = TrueCount - LHSCount;
1933 
1934       ConditionalEvaluation eval(*this);
1935       {
1936         // Propagate the likelihood attribute like __builtin_expect
1937         // __builtin_expect(X || Y, 1) -> only Y is likely
1938         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1939         ApplyDebugLocation DL(*this, Cond);
1940         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1941                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1942         EmitBlock(LHSFalse);
1943       }
1944 
1945       incrementProfileCounter(CondBOp);
1946       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1947 
1948       // Any temporaries created here are conditional.
1949       eval.begin(*this);
1950       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1951                                RHSCount, LH);
1952 
1953       eval.end(*this);
1954       MCDCLogOpStack.pop_back();
1955       return;
1956     }
1957   }
1958 
1959   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1960     // br(!x, t, f) -> br(x, f, t)
1961     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1962     // LNot is taken as part of the condition for simplicity, and changing its
1963     // sense negatively impacts test vector tracking.
1964     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1965                          CGM.getCodeGenOpts().MCDCCoverage &&
1966                          isInstrumentedCondition(Cond);
1967     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1968       // Negate the count.
1969       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1970       // The values of the enum are chosen to make this negation possible.
1971       LH = static_cast<Stmt::Likelihood>(-LH);
1972       // Negate the condition and swap the destination blocks.
1973       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1974                                   FalseCount, LH);
1975     }
1976   }
1977 
1978   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1979     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1980     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1981     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1982 
1983     // The ConditionalOperator itself has no likelihood information for its
1984     // true and false branches. This matches the behavior of __builtin_expect.
1985     ConditionalEvaluation cond(*this);
1986     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1987                          getProfileCount(CondOp), Stmt::LH_None);
1988 
1989     // When computing PGO branch weights, we only know the overall count for
1990     // the true block. This code is essentially doing tail duplication of the
1991     // naive code-gen, introducing new edges for which counts are not
1992     // available. Divide the counts proportionally between the LHS and RHS of
1993     // the conditional operator.
1994     uint64_t LHSScaledTrueCount = 0;
1995     if (TrueCount) {
1996       double LHSRatio =
1997           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1998       LHSScaledTrueCount = TrueCount * LHSRatio;
1999     }
2000 
2001     cond.begin(*this);
2002     EmitBlock(LHSBlock);
2003     incrementProfileCounter(CondOp);
2004     {
2005       ApplyDebugLocation DL(*this, Cond);
2006       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2007                            LHSScaledTrueCount, LH, CondOp);
2008     }
2009     cond.end(*this);
2010 
2011     cond.begin(*this);
2012     EmitBlock(RHSBlock);
2013     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2014                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2015     cond.end(*this);
2016 
2017     return;
2018   }
2019 
2020   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2021     // Conditional operator handling can give us a throw expression as a
2022     // condition for a case like:
2023     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2024     // Fold this to:
2025     //   br(c, throw x, br(y, t, f))
2026     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2027     return;
2028   }
2029 
2030   // Emit the code with the fully general case.
2031   llvm::Value *CondV;
2032   {
2033     ApplyDebugLocation DL(*this, Cond);
2034     CondV = EvaluateExprAsBool(Cond);
2035   }
2036 
2037   // If not at the top of the logical operator nest, update MCDC temp with the
2038   // boolean result of the evaluated condition.
2039   if (!MCDCLogOpStack.empty()) {
2040     const Expr *MCDCBaseExpr = Cond;
2041     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2042     // expression, MC/DC tracks the result of the ternary, and this is tied to
2043     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2044     // this is the case, the ConditionalOperator expression is passed through
2045     // the ConditionalOp parameter and then used as the MCDC base expression.
2046     if (ConditionalOp)
2047       MCDCBaseExpr = ConditionalOp;
2048 
2049     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2050   }
2051 
2052   llvm::MDNode *Weights = nullptr;
2053   llvm::MDNode *Unpredictable = nullptr;
2054 
2055   // If the branch has a condition wrapped by __builtin_unpredictable,
2056   // create metadata that specifies that the branch is unpredictable.
2057   // Don't bother if not optimizing because that metadata would not be used.
2058   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2059   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2060     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2061     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2062       llvm::MDBuilder MDHelper(getLLVMContext());
2063       Unpredictable = MDHelper.createUnpredictable();
2064     }
2065   }
2066 
2067   // If there is a Likelihood knowledge for the cond, lower it.
2068   // Note that if not optimizing this won't emit anything.
2069   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2070   if (CondV != NewCondV)
2071     CondV = NewCondV;
2072   else {
2073     // Otherwise, lower profile counts. Note that we do this even at -O0.
2074     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2075     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2076   }
2077 
2078   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2079 }
2080 
2081 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2082 /// specified stmt yet.
2083 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2084   CGM.ErrorUnsupported(S, Type);
2085 }
2086 
2087 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2088 /// variable-length array whose elements have a non-zero bit-pattern.
2089 ///
2090 /// \param baseType the inner-most element type of the array
2091 /// \param src - a char* pointing to the bit-pattern for a single
2092 /// base element of the array
2093 /// \param sizeInChars - the total size of the VLA, in chars
2094 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2095                                Address dest, Address src,
2096                                llvm::Value *sizeInChars) {
2097   CGBuilderTy &Builder = CGF.Builder;
2098 
2099   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2100   llvm::Value *baseSizeInChars
2101     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2102 
2103   Address begin = dest.withElementType(CGF.Int8Ty);
2104   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2105                                                begin.emitRawPointer(CGF),
2106                                                sizeInChars, "vla.end");
2107 
2108   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2109   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2110   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2111 
2112   // Make a loop over the VLA.  C99 guarantees that the VLA element
2113   // count must be nonzero.
2114   CGF.EmitBlock(loopBB);
2115 
2116   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2117   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2118 
2119   CharUnits curAlign =
2120     dest.getAlignment().alignmentOfArrayElement(baseSize);
2121 
2122   // memcpy the individual element bit-pattern.
2123   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2124                        /*volatile*/ false);
2125 
2126   // Go to the next element.
2127   llvm::Value *next =
2128     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2129 
2130   // Leave if that's the end of the VLA.
2131   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2132   Builder.CreateCondBr(done, contBB, loopBB);
2133   cur->addIncoming(next, loopBB);
2134 
2135   CGF.EmitBlock(contBB);
2136 }
2137 
2138 void
2139 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2140   // Ignore empty classes in C++.
2141   if (getLangOpts().CPlusPlus) {
2142     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2143       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2144         return;
2145     }
2146   }
2147 
2148   if (DestPtr.getElementType() != Int8Ty)
2149     DestPtr = DestPtr.withElementType(Int8Ty);
2150 
2151   // Get size and alignment info for this aggregate.
2152   CharUnits size = getContext().getTypeSizeInChars(Ty);
2153 
2154   llvm::Value *SizeVal;
2155   const VariableArrayType *vla;
2156 
2157   // Don't bother emitting a zero-byte memset.
2158   if (size.isZero()) {
2159     // But note that getTypeInfo returns 0 for a VLA.
2160     if (const VariableArrayType *vlaType =
2161           dyn_cast_or_null<VariableArrayType>(
2162                                           getContext().getAsArrayType(Ty))) {
2163       auto VlaSize = getVLASize(vlaType);
2164       SizeVal = VlaSize.NumElts;
2165       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2166       if (!eltSize.isOne())
2167         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2168       vla = vlaType;
2169     } else {
2170       return;
2171     }
2172   } else {
2173     SizeVal = CGM.getSize(size);
2174     vla = nullptr;
2175   }
2176 
2177   // If the type contains a pointer to data member we can't memset it to zero.
2178   // Instead, create a null constant and copy it to the destination.
2179   // TODO: there are other patterns besides zero that we can usefully memset,
2180   // like -1, which happens to be the pattern used by member-pointers.
2181   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2182     // For a VLA, emit a single element, then splat that over the VLA.
2183     if (vla) Ty = getContext().getBaseElementType(vla);
2184 
2185     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2186 
2187     llvm::GlobalVariable *NullVariable =
2188       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2189                                /*isConstant=*/true,
2190                                llvm::GlobalVariable::PrivateLinkage,
2191                                NullConstant, Twine());
2192     CharUnits NullAlign = DestPtr.getAlignment();
2193     NullVariable->setAlignment(NullAlign.getAsAlign());
2194     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2195 
2196     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2197 
2198     // Get and call the appropriate llvm.memcpy overload.
2199     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2200     return;
2201   }
2202 
2203   // Otherwise, just memset the whole thing to zero.  This is legal
2204   // because in LLVM, all default initializers (other than the ones we just
2205   // handled above) are guaranteed to have a bit pattern of all zeros.
2206   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2207 }
2208 
2209 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2210   // Make sure that there is a block for the indirect goto.
2211   if (!IndirectBranch)
2212     GetIndirectGotoBlock();
2213 
2214   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2215 
2216   // Make sure the indirect branch includes all of the address-taken blocks.
2217   IndirectBranch->addDestination(BB);
2218   return llvm::BlockAddress::get(CurFn, BB);
2219 }
2220 
2221 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2222   // If we already made the indirect branch for indirect goto, return its block.
2223   if (IndirectBranch) return IndirectBranch->getParent();
2224 
2225   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2226 
2227   // Create the PHI node that indirect gotos will add entries to.
2228   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2229                                               "indirect.goto.dest");
2230 
2231   // Create the indirect branch instruction.
2232   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2233   return IndirectBranch->getParent();
2234 }
2235 
2236 /// Computes the length of an array in elements, as well as the base
2237 /// element type and a properly-typed first element pointer.
2238 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2239                                               QualType &baseType,
2240                                               Address &addr) {
2241   const ArrayType *arrayType = origArrayType;
2242 
2243   // If it's a VLA, we have to load the stored size.  Note that
2244   // this is the size of the VLA in bytes, not its size in elements.
2245   llvm::Value *numVLAElements = nullptr;
2246   if (isa<VariableArrayType>(arrayType)) {
2247     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2248 
2249     // Walk into all VLAs.  This doesn't require changes to addr,
2250     // which has type T* where T is the first non-VLA element type.
2251     do {
2252       QualType elementType = arrayType->getElementType();
2253       arrayType = getContext().getAsArrayType(elementType);
2254 
2255       // If we only have VLA components, 'addr' requires no adjustment.
2256       if (!arrayType) {
2257         baseType = elementType;
2258         return numVLAElements;
2259       }
2260     } while (isa<VariableArrayType>(arrayType));
2261 
2262     // We get out here only if we find a constant array type
2263     // inside the VLA.
2264   }
2265 
2266   // We have some number of constant-length arrays, so addr should
2267   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2268   // down to the first element of addr.
2269   SmallVector<llvm::Value*, 8> gepIndices;
2270 
2271   // GEP down to the array type.
2272   llvm::ConstantInt *zero = Builder.getInt32(0);
2273   gepIndices.push_back(zero);
2274 
2275   uint64_t countFromCLAs = 1;
2276   QualType eltType;
2277 
2278   llvm::ArrayType *llvmArrayType =
2279     dyn_cast<llvm::ArrayType>(addr.getElementType());
2280   while (llvmArrayType) {
2281     assert(isa<ConstantArrayType>(arrayType));
2282     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2283            llvmArrayType->getNumElements());
2284 
2285     gepIndices.push_back(zero);
2286     countFromCLAs *= llvmArrayType->getNumElements();
2287     eltType = arrayType->getElementType();
2288 
2289     llvmArrayType =
2290       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2291     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2292     assert((!llvmArrayType || arrayType) &&
2293            "LLVM and Clang types are out-of-synch");
2294   }
2295 
2296   if (arrayType) {
2297     // From this point onwards, the Clang array type has been emitted
2298     // as some other type (probably a packed struct). Compute the array
2299     // size, and just emit the 'begin' expression as a bitcast.
2300     while (arrayType) {
2301       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2302       eltType = arrayType->getElementType();
2303       arrayType = getContext().getAsArrayType(eltType);
2304     }
2305 
2306     llvm::Type *baseType = ConvertType(eltType);
2307     addr = addr.withElementType(baseType);
2308   } else {
2309     // Create the actual GEP.
2310     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2311                                              addr.emitRawPointer(*this),
2312                                              gepIndices, "array.begin"),
2313                    ConvertTypeForMem(eltType), addr.getAlignment());
2314   }
2315 
2316   baseType = eltType;
2317 
2318   llvm::Value *numElements
2319     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2320 
2321   // If we had any VLA dimensions, factor them in.
2322   if (numVLAElements)
2323     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2324 
2325   return numElements;
2326 }
2327 
2328 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2329   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2330   assert(vla && "type was not a variable array type!");
2331   return getVLASize(vla);
2332 }
2333 
2334 CodeGenFunction::VlaSizePair
2335 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2336   // The number of elements so far; always size_t.
2337   llvm::Value *numElements = nullptr;
2338 
2339   QualType elementType;
2340   do {
2341     elementType = type->getElementType();
2342     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2343     assert(vlaSize && "no size for VLA!");
2344     assert(vlaSize->getType() == SizeTy);
2345 
2346     if (!numElements) {
2347       numElements = vlaSize;
2348     } else {
2349       // It's undefined behavior if this wraps around, so mark it that way.
2350       // FIXME: Teach -fsanitize=undefined to trap this.
2351       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2352     }
2353   } while ((type = getContext().getAsVariableArrayType(elementType)));
2354 
2355   return { numElements, elementType };
2356 }
2357 
2358 CodeGenFunction::VlaSizePair
2359 CodeGenFunction::getVLAElements1D(QualType type) {
2360   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2361   assert(vla && "type was not a variable array type!");
2362   return getVLAElements1D(vla);
2363 }
2364 
2365 CodeGenFunction::VlaSizePair
2366 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2367   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2368   assert(VlaSize && "no size for VLA!");
2369   assert(VlaSize->getType() == SizeTy);
2370   return { VlaSize, Vla->getElementType() };
2371 }
2372 
2373 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2374   assert(type->isVariablyModifiedType() &&
2375          "Must pass variably modified type to EmitVLASizes!");
2376 
2377   EnsureInsertPoint();
2378 
2379   // We're going to walk down into the type and look for VLA
2380   // expressions.
2381   do {
2382     assert(type->isVariablyModifiedType());
2383 
2384     const Type *ty = type.getTypePtr();
2385     switch (ty->getTypeClass()) {
2386 
2387 #define TYPE(Class, Base)
2388 #define ABSTRACT_TYPE(Class, Base)
2389 #define NON_CANONICAL_TYPE(Class, Base)
2390 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2391 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2392 #include "clang/AST/TypeNodes.inc"
2393       llvm_unreachable("unexpected dependent type!");
2394 
2395     // These types are never variably-modified.
2396     case Type::Builtin:
2397     case Type::Complex:
2398     case Type::Vector:
2399     case Type::ExtVector:
2400     case Type::ConstantMatrix:
2401     case Type::Record:
2402     case Type::Enum:
2403     case Type::Using:
2404     case Type::TemplateSpecialization:
2405     case Type::ObjCTypeParam:
2406     case Type::ObjCObject:
2407     case Type::ObjCInterface:
2408     case Type::ObjCObjectPointer:
2409     case Type::BitInt:
2410       llvm_unreachable("type class is never variably-modified!");
2411 
2412     case Type::Elaborated:
2413       type = cast<ElaboratedType>(ty)->getNamedType();
2414       break;
2415 
2416     case Type::Adjusted:
2417       type = cast<AdjustedType>(ty)->getAdjustedType();
2418       break;
2419 
2420     case Type::Decayed:
2421       type = cast<DecayedType>(ty)->getPointeeType();
2422       break;
2423 
2424     case Type::Pointer:
2425       type = cast<PointerType>(ty)->getPointeeType();
2426       break;
2427 
2428     case Type::BlockPointer:
2429       type = cast<BlockPointerType>(ty)->getPointeeType();
2430       break;
2431 
2432     case Type::LValueReference:
2433     case Type::RValueReference:
2434       type = cast<ReferenceType>(ty)->getPointeeType();
2435       break;
2436 
2437     case Type::MemberPointer:
2438       type = cast<MemberPointerType>(ty)->getPointeeType();
2439       break;
2440 
2441     case Type::ArrayParameter:
2442     case Type::ConstantArray:
2443     case Type::IncompleteArray:
2444       // Losing element qualification here is fine.
2445       type = cast<ArrayType>(ty)->getElementType();
2446       break;
2447 
2448     case Type::VariableArray: {
2449       // Losing element qualification here is fine.
2450       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2451 
2452       // Unknown size indication requires no size computation.
2453       // Otherwise, evaluate and record it.
2454       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2455         // It's possible that we might have emitted this already,
2456         // e.g. with a typedef and a pointer to it.
2457         llvm::Value *&entry = VLASizeMap[sizeExpr];
2458         if (!entry) {
2459           llvm::Value *size = EmitScalarExpr(sizeExpr);
2460 
2461           // C11 6.7.6.2p5:
2462           //   If the size is an expression that is not an integer constant
2463           //   expression [...] each time it is evaluated it shall have a value
2464           //   greater than zero.
2465           if (SanOpts.has(SanitizerKind::VLABound)) {
2466             SanitizerScope SanScope(this);
2467             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2468             clang::QualType SEType = sizeExpr->getType();
2469             llvm::Value *CheckCondition =
2470                 SEType->isSignedIntegerType()
2471                     ? Builder.CreateICmpSGT(size, Zero)
2472                     : Builder.CreateICmpUGT(size, Zero);
2473             llvm::Constant *StaticArgs[] = {
2474                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2475                 EmitCheckTypeDescriptor(SEType)};
2476             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2477                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2478           }
2479 
2480           // Always zexting here would be wrong if it weren't
2481           // undefined behavior to have a negative bound.
2482           // FIXME: What about when size's type is larger than size_t?
2483           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2484         }
2485       }
2486       type = vat->getElementType();
2487       break;
2488     }
2489 
2490     case Type::FunctionProto:
2491     case Type::FunctionNoProto:
2492       type = cast<FunctionType>(ty)->getReturnType();
2493       break;
2494 
2495     case Type::Paren:
2496     case Type::TypeOf:
2497     case Type::UnaryTransform:
2498     case Type::Attributed:
2499     case Type::BTFTagAttributed:
2500     case Type::HLSLAttributedResource:
2501     case Type::SubstTemplateTypeParm:
2502     case Type::MacroQualified:
2503     case Type::CountAttributed:
2504       // Keep walking after single level desugaring.
2505       type = type.getSingleStepDesugaredType(getContext());
2506       break;
2507 
2508     case Type::Typedef:
2509     case Type::Decltype:
2510     case Type::Auto:
2511     case Type::DeducedTemplateSpecialization:
2512     case Type::PackIndexing:
2513       // Stop walking: nothing to do.
2514       return;
2515 
2516     case Type::TypeOfExpr:
2517       // Stop walking: emit typeof expression.
2518       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2519       return;
2520 
2521     case Type::Atomic:
2522       type = cast<AtomicType>(ty)->getValueType();
2523       break;
2524 
2525     case Type::Pipe:
2526       type = cast<PipeType>(ty)->getElementType();
2527       break;
2528     }
2529   } while (type->isVariablyModifiedType());
2530 }
2531 
2532 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2533   if (getContext().getBuiltinVaListType()->isArrayType())
2534     return EmitPointerWithAlignment(E);
2535   return EmitLValue(E).getAddress();
2536 }
2537 
2538 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2539   return EmitLValue(E).getAddress();
2540 }
2541 
2542 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2543                                               const APValue &Init) {
2544   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2545   if (CGDebugInfo *Dbg = getDebugInfo())
2546     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2547       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2548 }
2549 
2550 CodeGenFunction::PeepholeProtection
2551 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2552   // At the moment, the only aggressive peephole we do in IR gen
2553   // is trunc(zext) folding, but if we add more, we can easily
2554   // extend this protection.
2555 
2556   if (!rvalue.isScalar()) return PeepholeProtection();
2557   llvm::Value *value = rvalue.getScalarVal();
2558   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2559 
2560   // Just make an extra bitcast.
2561   assert(HaveInsertPoint());
2562   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2563                                                   Builder.GetInsertBlock());
2564 
2565   PeepholeProtection protection;
2566   protection.Inst = inst;
2567   return protection;
2568 }
2569 
2570 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2571   if (!protection.Inst) return;
2572 
2573   // In theory, we could try to duplicate the peepholes now, but whatever.
2574   protection.Inst->eraseFromParent();
2575 }
2576 
2577 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2578                                               QualType Ty, SourceLocation Loc,
2579                                               SourceLocation AssumptionLoc,
2580                                               llvm::Value *Alignment,
2581                                               llvm::Value *OffsetValue) {
2582   if (Alignment->getType() != IntPtrTy)
2583     Alignment =
2584         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2585   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2586     OffsetValue =
2587         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2588   llvm::Value *TheCheck = nullptr;
2589   if (SanOpts.has(SanitizerKind::Alignment)) {
2590     llvm::Value *PtrIntValue =
2591         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2592 
2593     if (OffsetValue) {
2594       bool IsOffsetZero = false;
2595       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2596         IsOffsetZero = CI->isZero();
2597 
2598       if (!IsOffsetZero)
2599         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2600     }
2601 
2602     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2603     llvm::Value *Mask =
2604         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2605     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2606     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2607   }
2608   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2609       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2610 
2611   if (!SanOpts.has(SanitizerKind::Alignment))
2612     return;
2613   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2614                                OffsetValue, TheCheck, Assumption);
2615 }
2616 
2617 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2618                                               const Expr *E,
2619                                               SourceLocation AssumptionLoc,
2620                                               llvm::Value *Alignment,
2621                                               llvm::Value *OffsetValue) {
2622   QualType Ty = E->getType();
2623   SourceLocation Loc = E->getExprLoc();
2624 
2625   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2626                           OffsetValue);
2627 }
2628 
2629 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2630                                                  llvm::Value *AnnotatedVal,
2631                                                  StringRef AnnotationStr,
2632                                                  SourceLocation Location,
2633                                                  const AnnotateAttr *Attr) {
2634   SmallVector<llvm::Value *, 5> Args = {
2635       AnnotatedVal,
2636       CGM.EmitAnnotationString(AnnotationStr),
2637       CGM.EmitAnnotationUnit(Location),
2638       CGM.EmitAnnotationLineNo(Location),
2639   };
2640   if (Attr)
2641     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2642   return Builder.CreateCall(AnnotationFn, Args);
2643 }
2644 
2645 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2646   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2647   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2648     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2649                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2650                        V, I->getAnnotation(), D->getLocation(), I);
2651 }
2652 
2653 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2654                                               Address Addr) {
2655   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2656   llvm::Value *V = Addr.emitRawPointer(*this);
2657   llvm::Type *VTy = V->getType();
2658   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2659   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2660   llvm::PointerType *IntrinTy =
2661       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2662   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2663                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2664 
2665   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2666     // FIXME Always emit the cast inst so we can differentiate between
2667     // annotation on the first field of a struct and annotation on the struct
2668     // itself.
2669     if (VTy != IntrinTy)
2670       V = Builder.CreateBitCast(V, IntrinTy);
2671     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2672     V = Builder.CreateBitCast(V, VTy);
2673   }
2674 
2675   return Address(V, Addr.getElementType(), Addr.getAlignment());
2676 }
2677 
2678 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2679 
2680 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2681     : CGF(CGF) {
2682   assert(!CGF->IsSanitizerScope);
2683   CGF->IsSanitizerScope = true;
2684 }
2685 
2686 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2687   CGF->IsSanitizerScope = false;
2688 }
2689 
2690 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2691                                    const llvm::Twine &Name,
2692                                    llvm::BasicBlock::iterator InsertPt) const {
2693   LoopStack.InsertHelper(I);
2694   if (IsSanitizerScope)
2695     I->setNoSanitizeMetadata();
2696 }
2697 
2698 void CGBuilderInserter::InsertHelper(
2699     llvm::Instruction *I, const llvm::Twine &Name,
2700     llvm::BasicBlock::iterator InsertPt) const {
2701   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2702   if (CGF)
2703     CGF->InsertHelper(I, Name, InsertPt);
2704 }
2705 
2706 // Emits an error if we don't have a valid set of target features for the
2707 // called function.
2708 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2709                                           const FunctionDecl *TargetDecl) {
2710   // SemaChecking cannot handle below x86 builtins because they have different
2711   // parameter ranges with different TargetAttribute of caller.
2712   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2713     unsigned BuiltinID = TargetDecl->getBuiltinID();
2714     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2715         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2716         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2717         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2718       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2719       llvm::StringMap<bool> TargetFetureMap;
2720       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2721       llvm::APSInt Result =
2722           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2723       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2724         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2725             << TargetDecl->getDeclName() << "avx";
2726     }
2727   }
2728   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2729 }
2730 
2731 // Emits an error if we don't have a valid set of target features for the
2732 // called function.
2733 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2734                                           const FunctionDecl *TargetDecl) {
2735   // Early exit if this is an indirect call.
2736   if (!TargetDecl)
2737     return;
2738 
2739   // Get the current enclosing function if it exists. If it doesn't
2740   // we can't check the target features anyhow.
2741   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2742   if (!FD)
2743     return;
2744 
2745   // Grab the required features for the call. For a builtin this is listed in
2746   // the td file with the default cpu, for an always_inline function this is any
2747   // listed cpu and any listed features.
2748   unsigned BuiltinID = TargetDecl->getBuiltinID();
2749   std::string MissingFeature;
2750   llvm::StringMap<bool> CallerFeatureMap;
2751   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2752   // When compiling in HipStdPar mode we have to be conservative in rejecting
2753   // target specific features in the FE, and defer the possible error to the
2754   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2755   // referenced by an accelerator executable function, we emit an error.
2756   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2757   if (BuiltinID) {
2758     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2759     if (!Builtin::evaluateRequiredTargetFeatures(
2760         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2761       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2762           << TargetDecl->getDeclName()
2763           << FeatureList;
2764     }
2765   } else if (!TargetDecl->isMultiVersion() &&
2766              TargetDecl->hasAttr<TargetAttr>()) {
2767     // Get the required features for the callee.
2768 
2769     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2770     ParsedTargetAttr ParsedAttr =
2771         CGM.getContext().filterFunctionTargetAttrs(TD);
2772 
2773     SmallVector<StringRef, 1> ReqFeatures;
2774     llvm::StringMap<bool> CalleeFeatureMap;
2775     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2776 
2777     for (const auto &F : ParsedAttr.Features) {
2778       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2779         ReqFeatures.push_back(StringRef(F).substr(1));
2780     }
2781 
2782     for (const auto &F : CalleeFeatureMap) {
2783       // Only positive features are "required".
2784       if (F.getValue())
2785         ReqFeatures.push_back(F.getKey());
2786     }
2787     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2788       if (!CallerFeatureMap.lookup(Feature)) {
2789         MissingFeature = Feature.str();
2790         return false;
2791       }
2792       return true;
2793     }) && !IsHipStdPar)
2794       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2795           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2796   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2797     llvm::StringMap<bool> CalleeFeatureMap;
2798     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2799 
2800     for (const auto &F : CalleeFeatureMap) {
2801       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2802                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2803           !IsHipStdPar)
2804         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2805             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2806     }
2807   }
2808 }
2809 
2810 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2811   if (!CGM.getCodeGenOpts().SanitizeStats)
2812     return;
2813 
2814   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2815   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2816   CGM.getSanStats().create(IRB, SSK);
2817 }
2818 
2819 void CodeGenFunction::EmitKCFIOperandBundle(
2820     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2821   const FunctionProtoType *FP =
2822       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2823   if (FP)
2824     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2825 }
2826 
2827 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2828     const MultiVersionResolverOption &RO) {
2829   llvm::SmallVector<StringRef, 8> CondFeatures;
2830   for (const StringRef &Feature : RO.Conditions.Features)
2831     CondFeatures.push_back(Feature);
2832   if (!CondFeatures.empty()) {
2833     return EmitAArch64CpuSupports(CondFeatures);
2834   }
2835   return nullptr;
2836 }
2837 
2838 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2839     const MultiVersionResolverOption &RO) {
2840   llvm::Value *Condition = nullptr;
2841 
2842   if (!RO.Conditions.Architecture.empty()) {
2843     StringRef Arch = RO.Conditions.Architecture;
2844     // If arch= specifies an x86-64 micro-architecture level, test the feature
2845     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2846     if (Arch.starts_with("x86-64"))
2847       Condition = EmitX86CpuSupports({Arch});
2848     else
2849       Condition = EmitX86CpuIs(Arch);
2850   }
2851 
2852   if (!RO.Conditions.Features.empty()) {
2853     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2854     Condition =
2855         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2856   }
2857   return Condition;
2858 }
2859 
2860 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2861                                              llvm::Function *Resolver,
2862                                              CGBuilderTy &Builder,
2863                                              llvm::Function *FuncToReturn,
2864                                              bool SupportsIFunc) {
2865   if (SupportsIFunc) {
2866     Builder.CreateRet(FuncToReturn);
2867     return;
2868   }
2869 
2870   llvm::SmallVector<llvm::Value *, 10> Args(
2871       llvm::make_pointer_range(Resolver->args()));
2872 
2873   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2874   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2875 
2876   if (Resolver->getReturnType()->isVoidTy())
2877     Builder.CreateRetVoid();
2878   else
2879     Builder.CreateRet(Result);
2880 }
2881 
2882 void CodeGenFunction::EmitMultiVersionResolver(
2883     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2884 
2885   llvm::Triple::ArchType ArchType =
2886       getContext().getTargetInfo().getTriple().getArch();
2887 
2888   switch (ArchType) {
2889   case llvm::Triple::x86:
2890   case llvm::Triple::x86_64:
2891     EmitX86MultiVersionResolver(Resolver, Options);
2892     return;
2893   case llvm::Triple::aarch64:
2894     EmitAArch64MultiVersionResolver(Resolver, Options);
2895     return;
2896   case llvm::Triple::riscv32:
2897   case llvm::Triple::riscv64:
2898     EmitRISCVMultiVersionResolver(Resolver, Options);
2899     return;
2900 
2901   default:
2902     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2903   }
2904 }
2905 
2906 static unsigned getPriorityFromAttrString(StringRef AttrStr) {
2907   SmallVector<StringRef, 8> Attrs;
2908 
2909   AttrStr.split(Attrs, ';');
2910 
2911   // Default Priority is zero.
2912   unsigned Priority = 0;
2913   for (auto Attr : Attrs) {
2914     if (Attr.consume_front("priority=")) {
2915       unsigned Result;
2916       if (!Attr.getAsInteger(0, Result))
2917         Priority = Result;
2918     }
2919   }
2920 
2921   return Priority;
2922 }
2923 
2924 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2925     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2926 
2927   if (getContext().getTargetInfo().getTriple().getOS() !=
2928       llvm::Triple::OSType::Linux) {
2929     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2930     return;
2931   }
2932 
2933   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2934   Builder.SetInsertPoint(CurBlock);
2935   EmitRISCVCpuInit();
2936 
2937   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2938   bool HasDefault = false;
2939   unsigned DefaultIndex = 0;
2940 
2941   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions(
2942       Options);
2943 
2944   llvm::stable_sort(
2945       CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2946                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
2947         return getPriorityFromAttrString(LHS.Conditions.Features[0]) >
2948                getPriorityFromAttrString(RHS.Conditions.Features[0]);
2949       });
2950 
2951   // Check the each candidate function.
2952   for (unsigned Index = 0; Index < CurrOptions.size(); Index++) {
2953 
2954     if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) {
2955       HasDefault = true;
2956       DefaultIndex = Index;
2957       continue;
2958     }
2959 
2960     Builder.SetInsertPoint(CurBlock);
2961 
2962     std::vector<std::string> TargetAttrFeats =
2963         getContext()
2964             .getTargetInfo()
2965             .parseTargetAttr(CurrOptions[Index].Conditions.Features[0])
2966             .Features;
2967 
2968     if (TargetAttrFeats.empty())
2969       continue;
2970 
2971     // FeaturesCondition: The bitmask of the required extension has been
2972     // enabled by the runtime object.
2973     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2974     // REQUIRED_BITMASK
2975     //
2976     // When condition is met, return this version of the function.
2977     // Otherwise, try the next version.
2978     //
2979     // if (FeaturesConditionVersion1)
2980     //     return Version1;
2981     // else if (FeaturesConditionVersion2)
2982     //     return Version2;
2983     // else if (FeaturesConditionVersion3)
2984     //     return Version3;
2985     // ...
2986     // else
2987     //     return DefaultVersion;
2988 
2989     // TODO: Add a condition to check the length before accessing elements.
2990     // Without checking the length first, we may access an incorrect memory
2991     // address when using different versions.
2992     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2993 
2994     for (auto &Feat : TargetAttrFeats) {
2995       StringRef CurrFeat = Feat;
2996       if (CurrFeat.starts_with('+'))
2997         CurrTargetAttrFeats.push_back(CurrFeat.substr(1));
2998     }
2999 
3000     Builder.SetInsertPoint(CurBlock);
3001     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
3002 
3003     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3004     CGBuilderTy RetBuilder(*this, RetBlock);
3005     CreateMultiVersionResolverReturn(
3006         CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc);
3007     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3008 
3009     Builder.SetInsertPoint(CurBlock);
3010     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3011 
3012     CurBlock = ElseBlock;
3013   }
3014 
3015   // Finally, emit the default one.
3016   if (HasDefault) {
3017     Builder.SetInsertPoint(CurBlock);
3018     CreateMultiVersionResolverReturn(CGM, Resolver, Builder,
3019                                      CurrOptions[DefaultIndex].Function,
3020                                      SupportsIFunc);
3021     return;
3022   }
3023 
3024   // If no generic/default, emit an unreachable.
3025   Builder.SetInsertPoint(CurBlock);
3026   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3027   TrapCall->setDoesNotReturn();
3028   TrapCall->setDoesNotThrow();
3029   Builder.CreateUnreachable();
3030   Builder.ClearInsertionPoint();
3031 }
3032 
3033 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3034     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3035   assert(!Options.empty() && "No multiversion resolver options found");
3036   assert(Options.back().Conditions.Features.size() == 0 &&
3037          "Default case must be last");
3038   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3039   assert(SupportsIFunc &&
3040          "Multiversion resolver requires target IFUNC support");
3041   bool AArch64CpuInitialized = false;
3042   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3043 
3044   for (const MultiVersionResolverOption &RO : Options) {
3045     Builder.SetInsertPoint(CurBlock);
3046     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3047 
3048     // The 'default' or 'all features enabled' case.
3049     if (!Condition) {
3050       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3051                                        SupportsIFunc);
3052       return;
3053     }
3054 
3055     if (!AArch64CpuInitialized) {
3056       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3057       EmitAArch64CpuInit();
3058       AArch64CpuInitialized = true;
3059       Builder.SetInsertPoint(CurBlock);
3060     }
3061 
3062     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3063     CGBuilderTy RetBuilder(*this, RetBlock);
3064     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3065                                      SupportsIFunc);
3066     CurBlock = createBasicBlock("resolver_else", Resolver);
3067     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3068   }
3069 
3070   // If no default, emit an unreachable.
3071   Builder.SetInsertPoint(CurBlock);
3072   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3073   TrapCall->setDoesNotReturn();
3074   TrapCall->setDoesNotThrow();
3075   Builder.CreateUnreachable();
3076   Builder.ClearInsertionPoint();
3077 }
3078 
3079 void CodeGenFunction::EmitX86MultiVersionResolver(
3080     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3081 
3082   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3083 
3084   // Main function's basic block.
3085   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3086   Builder.SetInsertPoint(CurBlock);
3087   EmitX86CpuInit();
3088 
3089   for (const MultiVersionResolverOption &RO : Options) {
3090     Builder.SetInsertPoint(CurBlock);
3091     llvm::Value *Condition = FormX86ResolverCondition(RO);
3092 
3093     // The 'default' or 'generic' case.
3094     if (!Condition) {
3095       assert(&RO == Options.end() - 1 &&
3096              "Default or Generic case must be last");
3097       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3098                                        SupportsIFunc);
3099       return;
3100     }
3101 
3102     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3103     CGBuilderTy RetBuilder(*this, RetBlock);
3104     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3105                                      SupportsIFunc);
3106     CurBlock = createBasicBlock("resolver_else", Resolver);
3107     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3108   }
3109 
3110   // If no generic/default, emit an unreachable.
3111   Builder.SetInsertPoint(CurBlock);
3112   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3113   TrapCall->setDoesNotReturn();
3114   TrapCall->setDoesNotThrow();
3115   Builder.CreateUnreachable();
3116   Builder.ClearInsertionPoint();
3117 }
3118 
3119 // Loc - where the diagnostic will point, where in the source code this
3120 //  alignment has failed.
3121 // SecondaryLoc - if present (will be present if sufficiently different from
3122 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3123 //  It should be the location where the __attribute__((assume_aligned))
3124 //  was written e.g.
3125 void CodeGenFunction::emitAlignmentAssumptionCheck(
3126     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3127     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3128     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3129     llvm::Instruction *Assumption) {
3130   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3131          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3132              llvm::Intrinsic::getOrInsertDeclaration(
3133                  Builder.GetInsertBlock()->getParent()->getParent(),
3134                  llvm::Intrinsic::assume) &&
3135          "Assumption should be a call to llvm.assume().");
3136   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3137          "Assumption should be the last instruction of the basic block, "
3138          "since the basic block is still being generated.");
3139 
3140   if (!SanOpts.has(SanitizerKind::Alignment))
3141     return;
3142 
3143   // Don't check pointers to volatile data. The behavior here is implementation-
3144   // defined.
3145   if (Ty->getPointeeType().isVolatileQualified())
3146     return;
3147 
3148   // We need to temorairly remove the assumption so we can insert the
3149   // sanitizer check before it, else the check will be dropped by optimizations.
3150   Assumption->removeFromParent();
3151 
3152   {
3153     SanitizerScope SanScope(this);
3154 
3155     if (!OffsetValue)
3156       OffsetValue = Builder.getInt1(false); // no offset.
3157 
3158     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3159                                     EmitCheckSourceLocation(SecondaryLoc),
3160                                     EmitCheckTypeDescriptor(Ty)};
3161     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3162                                   EmitCheckValue(Alignment),
3163                                   EmitCheckValue(OffsetValue)};
3164     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3165               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3166   }
3167 
3168   // We are now in the (new, empty) "cont" basic block.
3169   // Reintroduce the assumption.
3170   Builder.Insert(Assumption);
3171   // FIXME: Assumption still has it's original basic block as it's Parent.
3172 }
3173 
3174 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3175   if (CGDebugInfo *DI = getDebugInfo())
3176     return DI->SourceLocToDebugLoc(Location);
3177 
3178   return llvm::DebugLoc();
3179 }
3180 
3181 llvm::Value *
3182 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3183                                                       Stmt::Likelihood LH) {
3184   switch (LH) {
3185   case Stmt::LH_None:
3186     return Cond;
3187   case Stmt::LH_Likely:
3188   case Stmt::LH_Unlikely:
3189     // Don't generate llvm.expect on -O0 as the backend won't use it for
3190     // anything.
3191     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3192       return Cond;
3193     llvm::Type *CondTy = Cond->getType();
3194     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3195     llvm::Function *FnExpect =
3196         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3197     llvm::Value *ExpectedValueOfCond =
3198         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3199     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3200                               Cond->getName() + ".expval");
3201   }
3202   llvm_unreachable("Unknown Likelihood");
3203 }
3204 
3205 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3206                                                     unsigned NumElementsDst,
3207                                                     const llvm::Twine &Name) {
3208   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3209   unsigned NumElementsSrc = SrcTy->getNumElements();
3210   if (NumElementsSrc == NumElementsDst)
3211     return SrcVec;
3212 
3213   std::vector<int> ShuffleMask(NumElementsDst, -1);
3214   for (unsigned MaskIdx = 0;
3215        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3216     ShuffleMask[MaskIdx] = MaskIdx;
3217 
3218   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3219 }
3220 
3221 void CodeGenFunction::EmitPointerAuthOperandBundle(
3222     const CGPointerAuthInfo &PointerAuth,
3223     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3224   if (!PointerAuth.isSigned())
3225     return;
3226 
3227   auto *Key = Builder.getInt32(PointerAuth.getKey());
3228 
3229   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3230   if (!Discriminator)
3231     Discriminator = Builder.getSize(0);
3232 
3233   llvm::Value *Args[] = {Key, Discriminator};
3234   Bundles.emplace_back("ptrauth", Args);
3235 }
3236 
3237 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3238                                           const CGPointerAuthInfo &PointerAuth,
3239                                           llvm::Value *Pointer,
3240                                           unsigned IntrinsicID) {
3241   if (!PointerAuth)
3242     return Pointer;
3243 
3244   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3245 
3246   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3247   if (!Discriminator) {
3248     Discriminator = CGF.Builder.getSize(0);
3249   }
3250 
3251   // Convert the pointer to intptr_t before signing it.
3252   auto OrigType = Pointer->getType();
3253   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3254 
3255   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3256   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3257   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3258 
3259   // Convert back to the original type.
3260   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3261   return Pointer;
3262 }
3263 
3264 llvm::Value *
3265 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3266                                      llvm::Value *Pointer) {
3267   if (!PointerAuth.shouldSign())
3268     return Pointer;
3269   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3270                                llvm::Intrinsic::ptrauth_sign);
3271 }
3272 
3273 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3274                               const CGPointerAuthInfo &PointerAuth,
3275                               llvm::Value *Pointer) {
3276   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3277 
3278   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3279   // Convert the pointer to intptr_t before signing it.
3280   auto OrigType = Pointer->getType();
3281   Pointer = CGF.EmitRuntimeCall(
3282       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3283   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3284 }
3285 
3286 llvm::Value *
3287 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3288                                      llvm::Value *Pointer) {
3289   if (PointerAuth.shouldStrip()) {
3290     return EmitStrip(*this, PointerAuth, Pointer);
3291   }
3292   if (!PointerAuth.shouldAuth()) {
3293     return Pointer;
3294   }
3295 
3296   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3297                                llvm::Intrinsic::ptrauth_auth);
3298 }
3299