1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableSingleByteCoverage; 57 } // namespace llvm 58 59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 60 /// markers. 61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 62 const LangOptions &LangOpts) { 63 if (CGOpts.DisableLifetimeMarkers) 64 return false; 65 66 // Sanitizers may use markers. 67 if (CGOpts.SanitizeAddressUseAfterScope || 68 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 69 LangOpts.Sanitize.has(SanitizerKind::Memory)) 70 return true; 71 72 // For now, only in optimized builds. 73 return CGOpts.OptimizationLevel != 0; 74 } 75 76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 77 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 78 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 79 CGBuilderInserterTy(this)), 80 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 81 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 EHStack.setCGF(this); 87 88 SetFastMathFlags(CurFPFeatures); 89 } 90 91 CodeGenFunction::~CodeGenFunction() { 92 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 93 assert(DeferredDeactivationCleanupStack.empty() && 94 "missed to deactivate a cleanup"); 95 96 if (getLangOpts().OpenMP && CurFn) 97 CGM.getOpenMPRuntime().functionFinished(*this); 98 99 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 100 // outlining etc) at some point. Doing it once the function codegen is done 101 // seems to be a reasonable spot. We do it here, as opposed to the deletion 102 // time of the CodeGenModule, because we have to ensure the IR has not yet 103 // been "emitted" to the outside, thus, modifications are still sensible. 104 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 105 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 106 } 107 108 // Map the LangOption for exception behavior into 109 // the corresponding enum in the IR. 110 llvm::fp::ExceptionBehavior 111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 112 113 switch (Kind) { 114 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 115 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 116 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 117 default: 118 llvm_unreachable("Unsupported FP Exception Behavior"); 119 } 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 159 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 160 auto NewExceptionBehavior = 161 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 162 FPFeatures.getExceptionMode())); 163 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 164 165 CGF.SetFastMathFlags(FPFeatures); 166 167 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 168 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 169 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 170 (NewExceptionBehavior == llvm::fp::ebIgnore && 171 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 172 "FPConstrained should be enabled on entire function"); 173 174 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 175 auto OldValue = 176 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 177 auto NewValue = OldValue & Value; 178 if (OldValue != NewValue) 179 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 180 }; 181 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 182 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 183 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 184 mergeFnAttrValue( 185 "unsafe-fp-math", 186 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 188 FPFeatures.allowFPContractAcrossStatement()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 static LValue 198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 199 bool MightBeSigned, CodeGenFunction &CGF, 200 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = 206 MightBeSigned 207 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 208 nullptr, IsKnownNonNull) 209 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 210 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 215 KnownNonNull_t IsKnownNonNull) { 216 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 217 /*MightBeSigned*/ true, *this, 218 IsKnownNonNull); 219 } 220 221 LValue 222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 223 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 224 /*MightBeSigned*/ true, *this); 225 } 226 227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 228 QualType T) { 229 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 230 /*MightBeSigned*/ false, *this); 231 } 232 233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 234 QualType T) { 235 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 236 /*MightBeSigned*/ false, *this); 237 } 238 239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 240 return CGM.getTypes().ConvertTypeForMem(T); 241 } 242 243 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 244 return CGM.getTypes().ConvertType(T); 245 } 246 247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 248 llvm::Type *LLVMTy) { 249 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 250 } 251 252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 253 type = type.getCanonicalType(); 254 while (true) { 255 switch (type->getTypeClass()) { 256 #define TYPE(name, parent) 257 #define ABSTRACT_TYPE(name, parent) 258 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 259 #define DEPENDENT_TYPE(name, parent) case Type::name: 260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 261 #include "clang/AST/TypeNodes.inc" 262 llvm_unreachable("non-canonical or dependent type in IR-generation"); 263 264 case Type::Auto: 265 case Type::DeducedTemplateSpecialization: 266 llvm_unreachable("undeduced type in IR-generation"); 267 268 // Various scalar types. 269 case Type::Builtin: 270 case Type::Pointer: 271 case Type::BlockPointer: 272 case Type::LValueReference: 273 case Type::RValueReference: 274 case Type::MemberPointer: 275 case Type::Vector: 276 case Type::ExtVector: 277 case Type::ConstantMatrix: 278 case Type::FunctionProto: 279 case Type::FunctionNoProto: 280 case Type::Enum: 281 case Type::ObjCObjectPointer: 282 case Type::Pipe: 283 case Type::BitInt: 284 case Type::HLSLAttributedResource: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!getLangOpts().OpenCL) 639 return; 640 641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 642 QualType HintQTy = A->getTypeHint(); 643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 644 bool IsSignedInteger = 645 HintQTy->isSignedIntegerType() || 646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 647 llvm::Metadata *AttrMDArgs[] = { 648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 649 CGM.getTypes().ConvertType(A->getTypeHint()))), 650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 651 llvm::IntegerType::get(Context, 32), 652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 654 } 655 656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 662 } 663 664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 665 llvm::Metadata *AttrMDArgs[] = { 666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 670 } 671 672 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 674 llvm::Metadata *AttrMDArgs[] = { 675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 676 Fn->setMetadata("intel_reqd_sub_group_size", 677 llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 } 680 681 /// Determine whether the function F ends with a return stmt. 682 static bool endsWithReturn(const Decl* F) { 683 const Stmt *Body = nullptr; 684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 685 Body = FD->getBody(); 686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 687 Body = OMD->getBody(); 688 689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 690 auto LastStmt = CS->body_rbegin(); 691 if (LastStmt != CS->body_rend()) 692 return isa<ReturnStmt>(*LastStmt); 693 } 694 return false; 695 } 696 697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 698 if (SanOpts.has(SanitizerKind::Thread)) { 699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 701 } 702 } 703 704 /// Check if the return value of this function requires sanitization. 705 bool CodeGenFunction::requiresReturnValueCheck() const { 706 return requiresReturnValueNullabilityCheck() || 707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 708 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 709 } 710 711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 715 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 716 return false; 717 718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 719 return false; 720 721 if (MD->getNumParams() == 2) { 722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 723 if (!PT || !PT->isVoidPointerType() || 724 !PT->getPointeeType().isConstQualified()) 725 return false; 726 } 727 728 return true; 729 } 730 731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 734 } 735 736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 737 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 738 getTarget().getCXXABI().isMicrosoft() && 739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 740 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 741 }); 742 } 743 744 /// Return the UBSan prologue signature for \p FD if one is available. 745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 746 const FunctionDecl *FD) { 747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 748 if (!MD->isStatic()) 749 return nullptr; 750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 751 } 752 753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 754 llvm::Function *Fn, 755 const CGFunctionInfo &FnInfo, 756 const FunctionArgList &Args, 757 SourceLocation Loc, 758 SourceLocation StartLoc) { 759 assert(!CurFn && 760 "Do not use a CodeGenFunction object for more than one function"); 761 762 const Decl *D = GD.getDecl(); 763 764 DidCallStackSave = false; 765 CurCodeDecl = D; 766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 767 if (FD && FD->usesSEHTry()) 768 CurSEHParent = GD; 769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 770 FnRetTy = RetTy; 771 CurFn = Fn; 772 CurFnInfo = &FnInfo; 773 assert(CurFn->isDeclaration() && "Function already has body?"); 774 775 // If this function is ignored for any of the enabled sanitizers, 776 // disable the sanitizer for the function. 777 do { 778 #define SANITIZER(NAME, ID) \ 779 if (SanOpts.empty()) \ 780 break; \ 781 if (SanOpts.has(SanitizerKind::ID)) \ 782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 783 SanOpts.set(SanitizerKind::ID, false); 784 785 #include "clang/Basic/Sanitizers.def" 786 #undef SANITIZER 787 } while (false); 788 789 if (D) { 790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 791 SanitizerMask no_sanitize_mask; 792 bool NoSanitizeCoverage = false; 793 794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 795 no_sanitize_mask |= Attr->getMask(); 796 // SanitizeCoverage is not handled by SanOpts. 797 if (Attr->hasCoverage()) 798 NoSanitizeCoverage = true; 799 } 800 801 // Apply the no_sanitize* attributes to SanOpts. 802 SanOpts.Mask &= ~no_sanitize_mask; 803 if (no_sanitize_mask & SanitizerKind::Address) 804 SanOpts.set(SanitizerKind::KernelAddress, false); 805 if (no_sanitize_mask & SanitizerKind::KernelAddress) 806 SanOpts.set(SanitizerKind::Address, false); 807 if (no_sanitize_mask & SanitizerKind::HWAddress) 808 SanOpts.set(SanitizerKind::KernelHWAddress, false); 809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 810 SanOpts.set(SanitizerKind::HWAddress, false); 811 812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 814 815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 817 818 // Some passes need the non-negated no_sanitize attribute. Pass them on. 819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 820 if (no_sanitize_mask & SanitizerKind::Thread) 821 Fn->addFnAttr("no_sanitize_thread"); 822 } 823 } 824 825 if (ShouldSkipSanitizerInstrumentation()) { 826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 827 } else { 828 // Apply sanitizer attributes to the function. 829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 832 SanitizerKind::KernelHWAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 834 if (SanOpts.has(SanitizerKind::MemtagStack)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 836 if (SanOpts.has(SanitizerKind::Thread)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 838 if (SanOpts.has(SanitizerKind::NumericalStability)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 } 843 if (SanOpts.has(SanitizerKind::SafeStack)) 844 Fn->addFnAttr(llvm::Attribute::SafeStack); 845 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 847 848 if (SanOpts.has(SanitizerKind::Realtime)) 849 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 850 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 851 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 852 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 853 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) 854 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking); 855 } 856 857 // Apply fuzzing attribute to the function. 858 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 859 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 860 861 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 862 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 863 if (SanOpts.has(SanitizerKind::Thread)) { 864 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 865 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 866 if (OMD->getMethodFamily() == OMF_dealloc || 867 OMD->getMethodFamily() == OMF_initialize || 868 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 869 markAsIgnoreThreadCheckingAtRuntime(Fn); 870 } 871 } 872 } 873 874 // Ignore unrelated casts in STL allocate() since the allocator must cast 875 // from void* to T* before object initialization completes. Don't match on the 876 // namespace because not all allocators are in std:: 877 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 878 if (matchesStlAllocatorFn(D, getContext())) 879 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 880 } 881 882 // Ignore null checks in coroutine functions since the coroutines passes 883 // are not aware of how to move the extra UBSan instructions across the split 884 // coroutine boundaries. 885 if (D && SanOpts.has(SanitizerKind::Null)) 886 if (FD && FD->getBody() && 887 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 888 SanOpts.Mask &= ~SanitizerKind::Null; 889 890 // Add pointer authentication attributes. 891 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 892 if (CodeGenOpts.PointerAuth.ReturnAddresses) 893 Fn->addFnAttr("ptrauth-returns"); 894 if (CodeGenOpts.PointerAuth.FunctionPointers) 895 Fn->addFnAttr("ptrauth-calls"); 896 if (CodeGenOpts.PointerAuth.AuthTraps) 897 Fn->addFnAttr("ptrauth-auth-traps"); 898 if (CodeGenOpts.PointerAuth.IndirectGotos) 899 Fn->addFnAttr("ptrauth-indirect-gotos"); 900 901 // Apply xray attributes to the function (as a string, for now) 902 bool AlwaysXRayAttr = false; 903 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 904 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 905 XRayInstrKind::FunctionEntry) || 906 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 907 XRayInstrKind::FunctionExit)) { 908 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 909 Fn->addFnAttr("function-instrument", "xray-always"); 910 AlwaysXRayAttr = true; 911 } 912 if (XRayAttr->neverXRayInstrument()) 913 Fn->addFnAttr("function-instrument", "xray-never"); 914 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 915 if (ShouldXRayInstrumentFunction()) 916 Fn->addFnAttr("xray-log-args", 917 llvm::utostr(LogArgs->getArgumentCount())); 918 } 919 } else { 920 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 921 Fn->addFnAttr( 922 "xray-instruction-threshold", 923 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 924 } 925 926 if (ShouldXRayInstrumentFunction()) { 927 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 928 Fn->addFnAttr("xray-ignore-loops"); 929 930 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 931 XRayInstrKind::FunctionExit)) 932 Fn->addFnAttr("xray-skip-exit"); 933 934 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 935 XRayInstrKind::FunctionEntry)) 936 Fn->addFnAttr("xray-skip-entry"); 937 938 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 939 if (FuncGroups > 1) { 940 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 941 CurFn->getName().bytes_end()); 942 auto Group = crc32(FuncName) % FuncGroups; 943 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 944 !AlwaysXRayAttr) 945 Fn->addFnAttr("function-instrument", "xray-never"); 946 } 947 } 948 949 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 950 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 951 case ProfileList::Skip: 952 Fn->addFnAttr(llvm::Attribute::SkipProfile); 953 break; 954 case ProfileList::Forbid: 955 Fn->addFnAttr(llvm::Attribute::NoProfile); 956 break; 957 case ProfileList::Allow: 958 break; 959 } 960 } 961 962 unsigned Count, Offset; 963 if (const auto *Attr = 964 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 965 Count = Attr->getCount(); 966 Offset = Attr->getOffset(); 967 } else { 968 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 969 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 970 } 971 if (Count && Offset <= Count) { 972 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 973 if (Offset) 974 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 975 } 976 // Instruct that functions for COFF/CodeView targets should start with a 977 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 978 // backends as they don't need it -- instructions on these architectures are 979 // always atomically patchable at runtime. 980 if (CGM.getCodeGenOpts().HotPatch && 981 getContext().getTargetInfo().getTriple().isX86() && 982 getContext().getTargetInfo().getTriple().getEnvironment() != 983 llvm::Triple::CODE16) 984 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 985 986 // Add no-jump-tables value. 987 if (CGM.getCodeGenOpts().NoUseJumpTables) 988 Fn->addFnAttr("no-jump-tables", "true"); 989 990 // Add no-inline-line-tables value. 991 if (CGM.getCodeGenOpts().NoInlineLineTables) 992 Fn->addFnAttr("no-inline-line-tables"); 993 994 // Add profile-sample-accurate value. 995 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 996 Fn->addFnAttr("profile-sample-accurate"); 997 998 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 999 Fn->addFnAttr("use-sample-profile"); 1000 1001 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1002 Fn->addFnAttr("cfi-canonical-jump-table"); 1003 1004 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1005 Fn->addFnAttr(llvm::Attribute::NoProfile); 1006 1007 if (D && D->hasAttr<HybridPatchableAttr>()) 1008 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1009 1010 if (D) { 1011 // Function attributes take precedence over command line flags. 1012 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1013 switch (A->getThunkType()) { 1014 case FunctionReturnThunksAttr::Kind::Keep: 1015 break; 1016 case FunctionReturnThunksAttr::Kind::Extern: 1017 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1018 break; 1019 } 1020 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1021 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1022 } 1023 1024 if (FD && (getLangOpts().OpenCL || 1025 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1026 getLangOpts().CUDAIsDevice))) { 1027 // Add metadata for a kernel function. 1028 EmitKernelMetadata(FD, Fn); 1029 } 1030 1031 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1032 Fn->setMetadata("clspv_libclc_builtin", 1033 llvm::MDNode::get(getLLVMContext(), {})); 1034 } 1035 1036 // If we are checking function types, emit a function type signature as 1037 // prologue data. 1038 if (FD && SanOpts.has(SanitizerKind::Function)) { 1039 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1040 llvm::LLVMContext &Ctx = Fn->getContext(); 1041 llvm::MDBuilder MDB(Ctx); 1042 Fn->setMetadata( 1043 llvm::LLVMContext::MD_func_sanitize, 1044 MDB.createRTTIPointerPrologue( 1045 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1046 } 1047 } 1048 1049 // If we're checking nullability, we need to know whether we can check the 1050 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1051 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1052 auto Nullability = FnRetTy->getNullability(); 1053 if (Nullability && *Nullability == NullabilityKind::NonNull && 1054 !FnRetTy->isRecordType()) { 1055 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1056 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1057 RetValNullabilityPrecondition = 1058 llvm::ConstantInt::getTrue(getLLVMContext()); 1059 } 1060 } 1061 1062 // If we're in C++ mode and the function name is "main", it is guaranteed 1063 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1064 // used within a program"). 1065 // 1066 // OpenCL C 2.0 v2.2-11 s6.9.i: 1067 // Recursion is not supported. 1068 // 1069 // HLSL 1070 // Recursion is not supported. 1071 // 1072 // SYCL v1.2.1 s3.10: 1073 // kernels cannot include RTTI information, exception classes, 1074 // recursive code, virtual functions or make use of C++ libraries that 1075 // are not compiled for the device. 1076 if (FD && 1077 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1078 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1079 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1080 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1081 1082 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1083 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1084 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1085 Builder.setDefaultConstrainedRounding(RM); 1086 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1087 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1088 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1089 RM != llvm::RoundingMode::NearestTiesToEven))) { 1090 Builder.setIsFPConstrained(true); 1091 Fn->addFnAttr(llvm::Attribute::StrictFP); 1092 } 1093 1094 // If a custom alignment is used, force realigning to this alignment on 1095 // any main function which certainly will need it. 1096 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1097 CGM.getCodeGenOpts().StackAlignment)) 1098 Fn->addFnAttr("stackrealign"); 1099 1100 // "main" doesn't need to zero out call-used registers. 1101 if (FD && FD->isMain()) 1102 Fn->removeFnAttr("zero-call-used-regs"); 1103 1104 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1105 1106 // Create a marker to make it easy to insert allocas into the entryblock 1107 // later. Don't create this with the builder, because we don't want it 1108 // folded. 1109 llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty); 1110 AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB); 1111 1112 ReturnBlock = getJumpDestInCurrentScope("return"); 1113 1114 Builder.SetInsertPoint(EntryBB); 1115 1116 // If we're checking the return value, allocate space for a pointer to a 1117 // precise source location of the checked return statement. 1118 if (requiresReturnValueCheck()) { 1119 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1120 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1121 ReturnLocation); 1122 } 1123 1124 // Emit subprogram debug descriptor. 1125 if (CGDebugInfo *DI = getDebugInfo()) { 1126 // Reconstruct the type from the argument list so that implicit parameters, 1127 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1128 // convention. 1129 DI->emitFunctionStart(GD, Loc, StartLoc, 1130 DI->getFunctionType(FD, RetTy, Args), CurFn, 1131 CurFuncIsThunk); 1132 } 1133 1134 if (ShouldInstrumentFunction()) { 1135 if (CGM.getCodeGenOpts().InstrumentFunctions) 1136 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1137 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1138 CurFn->addFnAttr("instrument-function-entry-inlined", 1139 "__cyg_profile_func_enter"); 1140 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1141 CurFn->addFnAttr("instrument-function-entry-inlined", 1142 "__cyg_profile_func_enter_bare"); 1143 } 1144 1145 // Since emitting the mcount call here impacts optimizations such as function 1146 // inlining, we just add an attribute to insert a mcount call in backend. 1147 // The attribute "counting-function" is set to mcount function name which is 1148 // architecture dependent. 1149 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1150 // Calls to fentry/mcount should not be generated if function has 1151 // the no_instrument_function attribute. 1152 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1153 if (CGM.getCodeGenOpts().CallFEntry) 1154 Fn->addFnAttr("fentry-call", "true"); 1155 else { 1156 Fn->addFnAttr("instrument-function-entry-inlined", 1157 getTarget().getMCountName()); 1158 } 1159 if (CGM.getCodeGenOpts().MNopMCount) { 1160 if (!CGM.getCodeGenOpts().CallFEntry) 1161 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1162 << "-mnop-mcount" << "-mfentry"; 1163 Fn->addFnAttr("mnop-mcount"); 1164 } 1165 1166 if (CGM.getCodeGenOpts().RecordMCount) { 1167 if (!CGM.getCodeGenOpts().CallFEntry) 1168 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1169 << "-mrecord-mcount" << "-mfentry"; 1170 Fn->addFnAttr("mrecord-mcount"); 1171 } 1172 } 1173 } 1174 1175 if (CGM.getCodeGenOpts().PackedStack) { 1176 if (getContext().getTargetInfo().getTriple().getArch() != 1177 llvm::Triple::systemz) 1178 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1179 << "-mpacked-stack"; 1180 Fn->addFnAttr("packed-stack"); 1181 } 1182 1183 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1184 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1185 Fn->addFnAttr("warn-stack-size", 1186 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1187 1188 if (RetTy->isVoidType()) { 1189 // Void type; nothing to return. 1190 ReturnValue = Address::invalid(); 1191 1192 // Count the implicit return. 1193 if (!endsWithReturn(D)) 1194 ++NumReturnExprs; 1195 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1196 // Indirect return; emit returned value directly into sret slot. 1197 // This reduces code size, and affects correctness in C++. 1198 auto AI = CurFn->arg_begin(); 1199 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1200 ++AI; 1201 ReturnValue = makeNaturalAddressForPointer( 1202 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1203 nullptr, nullptr, KnownNonNull); 1204 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1205 ReturnValuePointer = 1206 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1207 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1208 ReturnValuePointer); 1209 } 1210 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1211 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1212 // Load the sret pointer from the argument struct and return into that. 1213 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1214 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1215 --EI; 1216 llvm::Value *Addr = Builder.CreateStructGEP( 1217 CurFnInfo->getArgStruct(), &*EI, Idx); 1218 llvm::Type *Ty = 1219 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1220 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1221 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1222 ReturnValue = Address(Addr, ConvertType(RetTy), 1223 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1224 } else { 1225 ReturnValue = CreateIRTemp(RetTy, "retval"); 1226 1227 // Tell the epilog emitter to autorelease the result. We do this 1228 // now so that various specialized functions can suppress it 1229 // during their IR-generation. 1230 if (getLangOpts().ObjCAutoRefCount && 1231 !CurFnInfo->isReturnsRetained() && 1232 RetTy->isObjCRetainableType()) 1233 AutoreleaseResult = true; 1234 } 1235 1236 EmitStartEHSpec(CurCodeDecl); 1237 1238 PrologueCleanupDepth = EHStack.stable_begin(); 1239 1240 // Emit OpenMP specific initialization of the device functions. 1241 if (getLangOpts().OpenMP && CurCodeDecl) 1242 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1243 1244 if (FD && getLangOpts().HLSL) { 1245 // Handle emitting HLSL entry functions. 1246 if (FD->hasAttr<HLSLShaderAttr>()) { 1247 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1248 } 1249 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1250 } 1251 1252 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1253 1254 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1255 MD && !MD->isStatic()) { 1256 bool IsInLambda = 1257 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1258 if (MD->isImplicitObjectMemberFunction()) 1259 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1260 if (IsInLambda) { 1261 // We're in a lambda; figure out the captures. 1262 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1263 LambdaThisCaptureField); 1264 if (LambdaThisCaptureField) { 1265 // If the lambda captures the object referred to by '*this' - either by 1266 // value or by reference, make sure CXXThisValue points to the correct 1267 // object. 1268 1269 // Get the lvalue for the field (which is a copy of the enclosing object 1270 // or contains the address of the enclosing object). 1271 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1272 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1273 // If the enclosing object was captured by value, just use its 1274 // address. Sign this pointer. 1275 CXXThisValue = ThisFieldLValue.getPointer(*this); 1276 } else { 1277 // Load the lvalue pointed to by the field, since '*this' was captured 1278 // by reference. 1279 CXXThisValue = 1280 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1281 } 1282 } 1283 for (auto *FD : MD->getParent()->fields()) { 1284 if (FD->hasCapturedVLAType()) { 1285 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1286 SourceLocation()).getScalarVal(); 1287 auto VAT = FD->getCapturedVLAType(); 1288 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1289 } 1290 } 1291 } else if (MD->isImplicitObjectMemberFunction()) { 1292 // Not in a lambda; just use 'this' from the method. 1293 // FIXME: Should we generate a new load for each use of 'this'? The 1294 // fast register allocator would be happier... 1295 CXXThisValue = CXXABIThisValue; 1296 } 1297 1298 // Check the 'this' pointer once per function, if it's available. 1299 if (CXXABIThisValue) { 1300 SanitizerSet SkippedChecks; 1301 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1302 QualType ThisTy = MD->getThisType(); 1303 1304 // If this is the call operator of a lambda with no captures, it 1305 // may have a static invoker function, which may call this operator with 1306 // a null 'this' pointer. 1307 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1308 SkippedChecks.set(SanitizerKind::Null, true); 1309 1310 EmitTypeCheck( 1311 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1312 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1313 } 1314 } 1315 1316 // If any of the arguments have a variably modified type, make sure to 1317 // emit the type size, but only if the function is not naked. Naked functions 1318 // have no prolog to run this evaluation. 1319 if (!FD || !FD->hasAttr<NakedAttr>()) { 1320 for (const VarDecl *VD : Args) { 1321 // Dig out the type as written from ParmVarDecls; it's unclear whether 1322 // the standard (C99 6.9.1p10) requires this, but we're following the 1323 // precedent set by gcc. 1324 QualType Ty; 1325 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1326 Ty = PVD->getOriginalType(); 1327 else 1328 Ty = VD->getType(); 1329 1330 if (Ty->isVariablyModifiedType()) 1331 EmitVariablyModifiedType(Ty); 1332 } 1333 } 1334 // Emit a location at the end of the prologue. 1335 if (CGDebugInfo *DI = getDebugInfo()) 1336 DI->EmitLocation(Builder, StartLoc); 1337 // TODO: Do we need to handle this in two places like we do with 1338 // target-features/target-cpu? 1339 if (CurFuncDecl) 1340 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1341 LargestVectorWidth = VecWidth->getVectorWidth(); 1342 1343 if (CGM.shouldEmitConvergenceTokens()) 1344 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1345 } 1346 1347 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1348 incrementProfileCounter(Body); 1349 maybeCreateMCDCCondBitmap(); 1350 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1351 EmitCompoundStmtWithoutScope(*S); 1352 else 1353 EmitStmt(Body); 1354 } 1355 1356 /// When instrumenting to collect profile data, the counts for some blocks 1357 /// such as switch cases need to not include the fall-through counts, so 1358 /// emit a branch around the instrumentation code. When not instrumenting, 1359 /// this just calls EmitBlock(). 1360 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1361 const Stmt *S) { 1362 llvm::BasicBlock *SkipCountBB = nullptr; 1363 // Do not skip over the instrumentation when single byte coverage mode is 1364 // enabled. 1365 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1366 !llvm::EnableSingleByteCoverage) { 1367 // When instrumenting for profiling, the fallthrough to certain 1368 // statements needs to skip over the instrumentation code so that we 1369 // get an accurate count. 1370 SkipCountBB = createBasicBlock("skipcount"); 1371 EmitBranch(SkipCountBB); 1372 } 1373 EmitBlock(BB); 1374 uint64_t CurrentCount = getCurrentProfileCount(); 1375 incrementProfileCounter(S); 1376 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1377 if (SkipCountBB) 1378 EmitBlock(SkipCountBB); 1379 } 1380 1381 /// Tries to mark the given function nounwind based on the 1382 /// non-existence of any throwing calls within it. We believe this is 1383 /// lightweight enough to do at -O0. 1384 static void TryMarkNoThrow(llvm::Function *F) { 1385 // LLVM treats 'nounwind' on a function as part of the type, so we 1386 // can't do this on functions that can be overwritten. 1387 if (F->isInterposable()) return; 1388 1389 for (llvm::BasicBlock &BB : *F) 1390 for (llvm::Instruction &I : BB) 1391 if (I.mayThrow()) 1392 return; 1393 1394 F->setDoesNotThrow(); 1395 } 1396 1397 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1398 FunctionArgList &Args) { 1399 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1400 QualType ResTy = FD->getReturnType(); 1401 1402 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1403 if (MD && MD->isImplicitObjectMemberFunction()) { 1404 if (CGM.getCXXABI().HasThisReturn(GD)) 1405 ResTy = MD->getThisType(); 1406 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1407 ResTy = CGM.getContext().VoidPtrTy; 1408 CGM.getCXXABI().buildThisParam(*this, Args); 1409 } 1410 1411 // The base version of an inheriting constructor whose constructed base is a 1412 // virtual base is not passed any arguments (because it doesn't actually call 1413 // the inherited constructor). 1414 bool PassedParams = true; 1415 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1416 if (auto Inherited = CD->getInheritedConstructor()) 1417 PassedParams = 1418 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1419 1420 if (PassedParams) { 1421 for (auto *Param : FD->parameters()) { 1422 Args.push_back(Param); 1423 if (!Param->hasAttr<PassObjectSizeAttr>()) 1424 continue; 1425 1426 auto *Implicit = ImplicitParamDecl::Create( 1427 getContext(), Param->getDeclContext(), Param->getLocation(), 1428 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1429 SizeArguments[Param] = Implicit; 1430 Args.push_back(Implicit); 1431 } 1432 } 1433 1434 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1435 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1436 1437 return ResTy; 1438 } 1439 1440 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1441 const CGFunctionInfo &FnInfo) { 1442 assert(Fn && "generating code for null Function"); 1443 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1444 CurGD = GD; 1445 1446 FunctionArgList Args; 1447 QualType ResTy = BuildFunctionArgList(GD, Args); 1448 1449 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1450 1451 if (FD->isInlineBuiltinDeclaration()) { 1452 // When generating code for a builtin with an inline declaration, use a 1453 // mangled name to hold the actual body, while keeping an external 1454 // definition in case the function pointer is referenced somewhere. 1455 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1456 llvm::Module *M = Fn->getParent(); 1457 llvm::Function *Clone = M->getFunction(FDInlineName); 1458 if (!Clone) { 1459 Clone = llvm::Function::Create(Fn->getFunctionType(), 1460 llvm::GlobalValue::InternalLinkage, 1461 Fn->getAddressSpace(), FDInlineName, M); 1462 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1463 } 1464 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1465 Fn = Clone; 1466 } else { 1467 // Detect the unusual situation where an inline version is shadowed by a 1468 // non-inline version. In that case we should pick the external one 1469 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1470 // to detect that situation before we reach codegen, so do some late 1471 // replacement. 1472 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1473 PD = PD->getPreviousDecl()) { 1474 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1475 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1476 llvm::Module *M = Fn->getParent(); 1477 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1478 Clone->replaceAllUsesWith(Fn); 1479 Clone->eraseFromParent(); 1480 } 1481 break; 1482 } 1483 } 1484 } 1485 1486 // Check if we should generate debug info for this function. 1487 if (FD->hasAttr<NoDebugAttr>()) { 1488 // Clear non-distinct debug info that was possibly attached to the function 1489 // due to an earlier declaration without the nodebug attribute 1490 Fn->setSubprogram(nullptr); 1491 // Disable debug info indefinitely for this function 1492 DebugInfo = nullptr; 1493 } 1494 1495 // The function might not have a body if we're generating thunks for a 1496 // function declaration. 1497 SourceRange BodyRange; 1498 if (Stmt *Body = FD->getBody()) 1499 BodyRange = Body->getSourceRange(); 1500 else 1501 BodyRange = FD->getLocation(); 1502 CurEHLocation = BodyRange.getEnd(); 1503 1504 // Use the location of the start of the function to determine where 1505 // the function definition is located. By default use the location 1506 // of the declaration as the location for the subprogram. A function 1507 // may lack a declaration in the source code if it is created by code 1508 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1509 SourceLocation Loc = FD->getLocation(); 1510 1511 // If this is a function specialization then use the pattern body 1512 // as the location for the function. 1513 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1514 if (SpecDecl->hasBody(SpecDecl)) 1515 Loc = SpecDecl->getLocation(); 1516 1517 Stmt *Body = FD->getBody(); 1518 1519 if (Body) { 1520 // Coroutines always emit lifetime markers. 1521 if (isa<CoroutineBodyStmt>(Body)) 1522 ShouldEmitLifetimeMarkers = true; 1523 1524 // Initialize helper which will detect jumps which can cause invalid 1525 // lifetime markers. 1526 if (ShouldEmitLifetimeMarkers) 1527 Bypasses.Init(Body); 1528 } 1529 1530 // Emit the standard function prologue. 1531 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1532 1533 // Save parameters for coroutine function. 1534 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1535 llvm::append_range(FnArgs, FD->parameters()); 1536 1537 // Ensure that the function adheres to the forward progress guarantee, which 1538 // is required by certain optimizations. 1539 // In C++11 and up, the attribute will be removed if the body contains a 1540 // trivial empty loop. 1541 if (checkIfFunctionMustProgress()) 1542 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1543 1544 // Generate the body of the function. 1545 PGO.assignRegionCounters(GD, CurFn); 1546 if (isa<CXXDestructorDecl>(FD)) 1547 EmitDestructorBody(Args); 1548 else if (isa<CXXConstructorDecl>(FD)) 1549 EmitConstructorBody(Args); 1550 else if (getLangOpts().CUDA && 1551 !getLangOpts().CUDAIsDevice && 1552 FD->hasAttr<CUDAGlobalAttr>()) 1553 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1554 else if (isa<CXXMethodDecl>(FD) && 1555 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1556 // The lambda static invoker function is special, because it forwards or 1557 // clones the body of the function call operator (but is actually static). 1558 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1559 } else if (isa<CXXMethodDecl>(FD) && 1560 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1561 !FnInfo.isDelegateCall() && 1562 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1563 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1564 // If emitting a lambda with static invoker on X86 Windows, change 1565 // the call operator body. 1566 // Make sure that this is a call operator with an inalloca arg and check 1567 // for delegate call to make sure this is the original call op and not the 1568 // new forwarding function for the static invoker. 1569 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1570 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1571 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1572 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1573 // Implicit copy-assignment gets the same special treatment as implicit 1574 // copy-constructors. 1575 emitImplicitAssignmentOperatorBody(Args); 1576 } else if (Body) { 1577 EmitFunctionBody(Body); 1578 } else 1579 llvm_unreachable("no definition for emitted function"); 1580 1581 // C++11 [stmt.return]p2: 1582 // Flowing off the end of a function [...] results in undefined behavior in 1583 // a value-returning function. 1584 // C11 6.9.1p12: 1585 // If the '}' that terminates a function is reached, and the value of the 1586 // function call is used by the caller, the behavior is undefined. 1587 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1588 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1589 bool ShouldEmitUnreachable = 1590 CGM.getCodeGenOpts().StrictReturn || 1591 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1592 if (SanOpts.has(SanitizerKind::Return)) { 1593 SanitizerScope SanScope(this); 1594 llvm::Value *IsFalse = Builder.getFalse(); 1595 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1596 SanitizerHandler::MissingReturn, 1597 EmitCheckSourceLocation(FD->getLocation()), {}); 1598 } else if (ShouldEmitUnreachable) { 1599 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1600 EmitTrapCall(llvm::Intrinsic::trap); 1601 } 1602 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1603 Builder.CreateUnreachable(); 1604 Builder.ClearInsertionPoint(); 1605 } 1606 } 1607 1608 // Emit the standard function epilogue. 1609 FinishFunction(BodyRange.getEnd()); 1610 1611 // If we haven't marked the function nothrow through other means, do 1612 // a quick pass now to see if we can. 1613 if (!CurFn->doesNotThrow()) 1614 TryMarkNoThrow(CurFn); 1615 } 1616 1617 /// ContainsLabel - Return true if the statement contains a label in it. If 1618 /// this statement is not executed normally, it not containing a label means 1619 /// that we can just remove the code. 1620 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1621 // Null statement, not a label! 1622 if (!S) return false; 1623 1624 // If this is a label, we have to emit the code, consider something like: 1625 // if (0) { ... foo: bar(); } goto foo; 1626 // 1627 // TODO: If anyone cared, we could track __label__'s, since we know that you 1628 // can't jump to one from outside their declared region. 1629 if (isa<LabelStmt>(S)) 1630 return true; 1631 1632 // If this is a case/default statement, and we haven't seen a switch, we have 1633 // to emit the code. 1634 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1635 return true; 1636 1637 // If this is a switch statement, we want to ignore cases below it. 1638 if (isa<SwitchStmt>(S)) 1639 IgnoreCaseStmts = true; 1640 1641 // Scan subexpressions for verboten labels. 1642 for (const Stmt *SubStmt : S->children()) 1643 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1644 return true; 1645 1646 return false; 1647 } 1648 1649 /// containsBreak - Return true if the statement contains a break out of it. 1650 /// If the statement (recursively) contains a switch or loop with a break 1651 /// inside of it, this is fine. 1652 bool CodeGenFunction::containsBreak(const Stmt *S) { 1653 // Null statement, not a label! 1654 if (!S) return false; 1655 1656 // If this is a switch or loop that defines its own break scope, then we can 1657 // include it and anything inside of it. 1658 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1659 isa<ForStmt>(S)) 1660 return false; 1661 1662 if (isa<BreakStmt>(S)) 1663 return true; 1664 1665 // Scan subexpressions for verboten breaks. 1666 for (const Stmt *SubStmt : S->children()) 1667 if (containsBreak(SubStmt)) 1668 return true; 1669 1670 return false; 1671 } 1672 1673 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1674 if (!S) return false; 1675 1676 // Some statement kinds add a scope and thus never add a decl to the current 1677 // scope. Note, this list is longer than the list of statements that might 1678 // have an unscoped decl nested within them, but this way is conservatively 1679 // correct even if more statement kinds are added. 1680 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1681 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1682 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1683 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1684 return false; 1685 1686 if (isa<DeclStmt>(S)) 1687 return true; 1688 1689 for (const Stmt *SubStmt : S->children()) 1690 if (mightAddDeclToScope(SubStmt)) 1691 return true; 1692 1693 return false; 1694 } 1695 1696 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1697 /// to a constant, or if it does but contains a label, return false. If it 1698 /// constant folds return true and set the boolean result in Result. 1699 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1700 bool &ResultBool, 1701 bool AllowLabels) { 1702 // If MC/DC is enabled, disable folding so that we can instrument all 1703 // conditions to yield complete test vectors. We still keep track of 1704 // folded conditions during region mapping and visualization. 1705 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1706 CGM.getCodeGenOpts().MCDCCoverage) 1707 return false; 1708 1709 llvm::APSInt ResultInt; 1710 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1711 return false; 1712 1713 ResultBool = ResultInt.getBoolValue(); 1714 return true; 1715 } 1716 1717 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1718 /// to a constant, or if it does but contains a label, return false. If it 1719 /// constant folds return true and set the folded value. 1720 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1721 llvm::APSInt &ResultInt, 1722 bool AllowLabels) { 1723 // FIXME: Rename and handle conversion of other evaluatable things 1724 // to bool. 1725 Expr::EvalResult Result; 1726 if (!Cond->EvaluateAsInt(Result, getContext())) 1727 return false; // Not foldable, not integer or not fully evaluatable. 1728 1729 llvm::APSInt Int = Result.Val.getInt(); 1730 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1731 return false; // Contains a label. 1732 1733 ResultInt = Int; 1734 return true; 1735 } 1736 1737 /// Strip parentheses and simplistic logical-NOT operators. 1738 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1739 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1740 if (Op->getOpcode() != UO_LNot) 1741 break; 1742 C = Op->getSubExpr(); 1743 } 1744 return C->IgnoreParens(); 1745 } 1746 1747 /// Determine whether the given condition is an instrumentable condition 1748 /// (i.e. no "&&" or "||"). 1749 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1750 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1751 return (!BOp || !BOp->isLogicalOp()); 1752 } 1753 1754 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1755 /// increments a profile counter based on the semantics of the given logical 1756 /// operator opcode. This is used to instrument branch condition coverage for 1757 /// logical operators. 1758 void CodeGenFunction::EmitBranchToCounterBlock( 1759 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1760 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1761 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1762 // If not instrumenting, just emit a branch. 1763 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1764 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1765 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1766 1767 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1768 1769 llvm::BasicBlock *ThenBlock = nullptr; 1770 llvm::BasicBlock *ElseBlock = nullptr; 1771 llvm::BasicBlock *NextBlock = nullptr; 1772 1773 // Create the block we'll use to increment the appropriate counter. 1774 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1775 1776 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1777 // means we need to evaluate the condition and increment the counter on TRUE: 1778 // 1779 // if (Cond) 1780 // goto CounterIncrBlock; 1781 // else 1782 // goto FalseBlock; 1783 // 1784 // CounterIncrBlock: 1785 // Counter++; 1786 // goto TrueBlock; 1787 1788 if (LOp == BO_LAnd) { 1789 ThenBlock = CounterIncrBlock; 1790 ElseBlock = FalseBlock; 1791 NextBlock = TrueBlock; 1792 } 1793 1794 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1795 // we need to evaluate the condition and increment the counter on FALSE: 1796 // 1797 // if (Cond) 1798 // goto TrueBlock; 1799 // else 1800 // goto CounterIncrBlock; 1801 // 1802 // CounterIncrBlock: 1803 // Counter++; 1804 // goto FalseBlock; 1805 1806 else if (LOp == BO_LOr) { 1807 ThenBlock = TrueBlock; 1808 ElseBlock = CounterIncrBlock; 1809 NextBlock = FalseBlock; 1810 } else { 1811 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1812 } 1813 1814 // Emit Branch based on condition. 1815 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1816 1817 // Emit the block containing the counter increment(s). 1818 EmitBlock(CounterIncrBlock); 1819 1820 // Increment corresponding counter; if index not provided, use Cond as index. 1821 incrementProfileCounter(CntrStmt); 1822 1823 // Go to the next block. 1824 EmitBranch(NextBlock); 1825 } 1826 1827 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1828 /// statement) to the specified blocks. Based on the condition, this might try 1829 /// to simplify the codegen of the conditional based on the branch. 1830 /// \param LH The value of the likelihood attribute on the True branch. 1831 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1832 /// ConditionalOperator (ternary) through a recursive call for the operator's 1833 /// LHS and RHS nodes. 1834 void CodeGenFunction::EmitBranchOnBoolExpr( 1835 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1836 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1837 Cond = Cond->IgnoreParens(); 1838 1839 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1840 // Handle X && Y in a condition. 1841 if (CondBOp->getOpcode() == BO_LAnd) { 1842 MCDCLogOpStack.push_back(CondBOp); 1843 1844 // If we have "1 && X", simplify the code. "0 && X" would have constant 1845 // folded if the case was simple enough. 1846 bool ConstantBool = false; 1847 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1848 ConstantBool) { 1849 // br(1 && X) -> br(X). 1850 incrementProfileCounter(CondBOp); 1851 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1852 FalseBlock, TrueCount, LH); 1853 MCDCLogOpStack.pop_back(); 1854 return; 1855 } 1856 1857 // If we have "X && 1", simplify the code to use an uncond branch. 1858 // "X && 0" would have been constant folded to 0. 1859 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1860 ConstantBool) { 1861 // br(X && 1) -> br(X). 1862 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1863 FalseBlock, TrueCount, LH, CondBOp); 1864 MCDCLogOpStack.pop_back(); 1865 return; 1866 } 1867 1868 // Emit the LHS as a conditional. If the LHS conditional is false, we 1869 // want to jump to the FalseBlock. 1870 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1871 // The counter tells us how often we evaluate RHS, and all of TrueCount 1872 // can be propagated to that branch. 1873 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1874 1875 ConditionalEvaluation eval(*this); 1876 { 1877 ApplyDebugLocation DL(*this, Cond); 1878 // Propagate the likelihood attribute like __builtin_expect 1879 // __builtin_expect(X && Y, 1) -> X and Y are likely 1880 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1881 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1882 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1883 EmitBlock(LHSTrue); 1884 } 1885 1886 incrementProfileCounter(CondBOp); 1887 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1888 1889 // Any temporaries created here are conditional. 1890 eval.begin(*this); 1891 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1892 FalseBlock, TrueCount, LH); 1893 eval.end(*this); 1894 MCDCLogOpStack.pop_back(); 1895 return; 1896 } 1897 1898 if (CondBOp->getOpcode() == BO_LOr) { 1899 MCDCLogOpStack.push_back(CondBOp); 1900 1901 // If we have "0 || X", simplify the code. "1 || X" would have constant 1902 // folded if the case was simple enough. 1903 bool ConstantBool = false; 1904 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1905 !ConstantBool) { 1906 // br(0 || X) -> br(X). 1907 incrementProfileCounter(CondBOp); 1908 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1909 FalseBlock, TrueCount, LH); 1910 MCDCLogOpStack.pop_back(); 1911 return; 1912 } 1913 1914 // If we have "X || 0", simplify the code to use an uncond branch. 1915 // "X || 1" would have been constant folded to 1. 1916 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1917 !ConstantBool) { 1918 // br(X || 0) -> br(X). 1919 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1920 FalseBlock, TrueCount, LH, CondBOp); 1921 MCDCLogOpStack.pop_back(); 1922 return; 1923 } 1924 // Emit the LHS as a conditional. If the LHS conditional is true, we 1925 // want to jump to the TrueBlock. 1926 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1927 // We have the count for entry to the RHS and for the whole expression 1928 // being true, so we can divy up True count between the short circuit and 1929 // the RHS. 1930 uint64_t LHSCount = 1931 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1932 uint64_t RHSCount = TrueCount - LHSCount; 1933 1934 ConditionalEvaluation eval(*this); 1935 { 1936 // Propagate the likelihood attribute like __builtin_expect 1937 // __builtin_expect(X || Y, 1) -> only Y is likely 1938 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1939 ApplyDebugLocation DL(*this, Cond); 1940 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1941 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1942 EmitBlock(LHSFalse); 1943 } 1944 1945 incrementProfileCounter(CondBOp); 1946 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1947 1948 // Any temporaries created here are conditional. 1949 eval.begin(*this); 1950 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1951 RHSCount, LH); 1952 1953 eval.end(*this); 1954 MCDCLogOpStack.pop_back(); 1955 return; 1956 } 1957 } 1958 1959 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1960 // br(!x, t, f) -> br(x, f, t) 1961 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1962 // LNot is taken as part of the condition for simplicity, and changing its 1963 // sense negatively impacts test vector tracking. 1964 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1965 CGM.getCodeGenOpts().MCDCCoverage && 1966 isInstrumentedCondition(Cond); 1967 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1968 // Negate the count. 1969 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1970 // The values of the enum are chosen to make this negation possible. 1971 LH = static_cast<Stmt::Likelihood>(-LH); 1972 // Negate the condition and swap the destination blocks. 1973 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1974 FalseCount, LH); 1975 } 1976 } 1977 1978 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1979 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1980 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1981 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1982 1983 // The ConditionalOperator itself has no likelihood information for its 1984 // true and false branches. This matches the behavior of __builtin_expect. 1985 ConditionalEvaluation cond(*this); 1986 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1987 getProfileCount(CondOp), Stmt::LH_None); 1988 1989 // When computing PGO branch weights, we only know the overall count for 1990 // the true block. This code is essentially doing tail duplication of the 1991 // naive code-gen, introducing new edges for which counts are not 1992 // available. Divide the counts proportionally between the LHS and RHS of 1993 // the conditional operator. 1994 uint64_t LHSScaledTrueCount = 0; 1995 if (TrueCount) { 1996 double LHSRatio = 1997 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1998 LHSScaledTrueCount = TrueCount * LHSRatio; 1999 } 2000 2001 cond.begin(*this); 2002 EmitBlock(LHSBlock); 2003 incrementProfileCounter(CondOp); 2004 { 2005 ApplyDebugLocation DL(*this, Cond); 2006 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2007 LHSScaledTrueCount, LH, CondOp); 2008 } 2009 cond.end(*this); 2010 2011 cond.begin(*this); 2012 EmitBlock(RHSBlock); 2013 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2014 TrueCount - LHSScaledTrueCount, LH, CondOp); 2015 cond.end(*this); 2016 2017 return; 2018 } 2019 2020 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2021 // Conditional operator handling can give us a throw expression as a 2022 // condition for a case like: 2023 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2024 // Fold this to: 2025 // br(c, throw x, br(y, t, f)) 2026 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2027 return; 2028 } 2029 2030 // Emit the code with the fully general case. 2031 llvm::Value *CondV; 2032 { 2033 ApplyDebugLocation DL(*this, Cond); 2034 CondV = EvaluateExprAsBool(Cond); 2035 } 2036 2037 // If not at the top of the logical operator nest, update MCDC temp with the 2038 // boolean result of the evaluated condition. 2039 if (!MCDCLogOpStack.empty()) { 2040 const Expr *MCDCBaseExpr = Cond; 2041 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2042 // expression, MC/DC tracks the result of the ternary, and this is tied to 2043 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2044 // this is the case, the ConditionalOperator expression is passed through 2045 // the ConditionalOp parameter and then used as the MCDC base expression. 2046 if (ConditionalOp) 2047 MCDCBaseExpr = ConditionalOp; 2048 2049 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2050 } 2051 2052 llvm::MDNode *Weights = nullptr; 2053 llvm::MDNode *Unpredictable = nullptr; 2054 2055 // If the branch has a condition wrapped by __builtin_unpredictable, 2056 // create metadata that specifies that the branch is unpredictable. 2057 // Don't bother if not optimizing because that metadata would not be used. 2058 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2059 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2060 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2061 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2062 llvm::MDBuilder MDHelper(getLLVMContext()); 2063 Unpredictable = MDHelper.createUnpredictable(); 2064 } 2065 } 2066 2067 // If there is a Likelihood knowledge for the cond, lower it. 2068 // Note that if not optimizing this won't emit anything. 2069 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2070 if (CondV != NewCondV) 2071 CondV = NewCondV; 2072 else { 2073 // Otherwise, lower profile counts. Note that we do this even at -O0. 2074 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2075 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2076 } 2077 2078 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2079 } 2080 2081 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2082 /// specified stmt yet. 2083 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2084 CGM.ErrorUnsupported(S, Type); 2085 } 2086 2087 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2088 /// variable-length array whose elements have a non-zero bit-pattern. 2089 /// 2090 /// \param baseType the inner-most element type of the array 2091 /// \param src - a char* pointing to the bit-pattern for a single 2092 /// base element of the array 2093 /// \param sizeInChars - the total size of the VLA, in chars 2094 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2095 Address dest, Address src, 2096 llvm::Value *sizeInChars) { 2097 CGBuilderTy &Builder = CGF.Builder; 2098 2099 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2100 llvm::Value *baseSizeInChars 2101 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2102 2103 Address begin = dest.withElementType(CGF.Int8Ty); 2104 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2105 begin.emitRawPointer(CGF), 2106 sizeInChars, "vla.end"); 2107 2108 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2109 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2110 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2111 2112 // Make a loop over the VLA. C99 guarantees that the VLA element 2113 // count must be nonzero. 2114 CGF.EmitBlock(loopBB); 2115 2116 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2117 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2118 2119 CharUnits curAlign = 2120 dest.getAlignment().alignmentOfArrayElement(baseSize); 2121 2122 // memcpy the individual element bit-pattern. 2123 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2124 /*volatile*/ false); 2125 2126 // Go to the next element. 2127 llvm::Value *next = 2128 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2129 2130 // Leave if that's the end of the VLA. 2131 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2132 Builder.CreateCondBr(done, contBB, loopBB); 2133 cur->addIncoming(next, loopBB); 2134 2135 CGF.EmitBlock(contBB); 2136 } 2137 2138 void 2139 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2140 // Ignore empty classes in C++. 2141 if (getLangOpts().CPlusPlus) { 2142 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2143 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2144 return; 2145 } 2146 } 2147 2148 if (DestPtr.getElementType() != Int8Ty) 2149 DestPtr = DestPtr.withElementType(Int8Ty); 2150 2151 // Get size and alignment info for this aggregate. 2152 CharUnits size = getContext().getTypeSizeInChars(Ty); 2153 2154 llvm::Value *SizeVal; 2155 const VariableArrayType *vla; 2156 2157 // Don't bother emitting a zero-byte memset. 2158 if (size.isZero()) { 2159 // But note that getTypeInfo returns 0 for a VLA. 2160 if (const VariableArrayType *vlaType = 2161 dyn_cast_or_null<VariableArrayType>( 2162 getContext().getAsArrayType(Ty))) { 2163 auto VlaSize = getVLASize(vlaType); 2164 SizeVal = VlaSize.NumElts; 2165 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2166 if (!eltSize.isOne()) 2167 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2168 vla = vlaType; 2169 } else { 2170 return; 2171 } 2172 } else { 2173 SizeVal = CGM.getSize(size); 2174 vla = nullptr; 2175 } 2176 2177 // If the type contains a pointer to data member we can't memset it to zero. 2178 // Instead, create a null constant and copy it to the destination. 2179 // TODO: there are other patterns besides zero that we can usefully memset, 2180 // like -1, which happens to be the pattern used by member-pointers. 2181 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2182 // For a VLA, emit a single element, then splat that over the VLA. 2183 if (vla) Ty = getContext().getBaseElementType(vla); 2184 2185 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2186 2187 llvm::GlobalVariable *NullVariable = 2188 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2189 /*isConstant=*/true, 2190 llvm::GlobalVariable::PrivateLinkage, 2191 NullConstant, Twine()); 2192 CharUnits NullAlign = DestPtr.getAlignment(); 2193 NullVariable->setAlignment(NullAlign.getAsAlign()); 2194 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2195 2196 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2197 2198 // Get and call the appropriate llvm.memcpy overload. 2199 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2200 return; 2201 } 2202 2203 // Otherwise, just memset the whole thing to zero. This is legal 2204 // because in LLVM, all default initializers (other than the ones we just 2205 // handled above) are guaranteed to have a bit pattern of all zeros. 2206 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2207 } 2208 2209 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2210 // Make sure that there is a block for the indirect goto. 2211 if (!IndirectBranch) 2212 GetIndirectGotoBlock(); 2213 2214 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2215 2216 // Make sure the indirect branch includes all of the address-taken blocks. 2217 IndirectBranch->addDestination(BB); 2218 return llvm::BlockAddress::get(CurFn, BB); 2219 } 2220 2221 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2222 // If we already made the indirect branch for indirect goto, return its block. 2223 if (IndirectBranch) return IndirectBranch->getParent(); 2224 2225 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2226 2227 // Create the PHI node that indirect gotos will add entries to. 2228 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2229 "indirect.goto.dest"); 2230 2231 // Create the indirect branch instruction. 2232 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2233 return IndirectBranch->getParent(); 2234 } 2235 2236 /// Computes the length of an array in elements, as well as the base 2237 /// element type and a properly-typed first element pointer. 2238 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2239 QualType &baseType, 2240 Address &addr) { 2241 const ArrayType *arrayType = origArrayType; 2242 2243 // If it's a VLA, we have to load the stored size. Note that 2244 // this is the size of the VLA in bytes, not its size in elements. 2245 llvm::Value *numVLAElements = nullptr; 2246 if (isa<VariableArrayType>(arrayType)) { 2247 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2248 2249 // Walk into all VLAs. This doesn't require changes to addr, 2250 // which has type T* where T is the first non-VLA element type. 2251 do { 2252 QualType elementType = arrayType->getElementType(); 2253 arrayType = getContext().getAsArrayType(elementType); 2254 2255 // If we only have VLA components, 'addr' requires no adjustment. 2256 if (!arrayType) { 2257 baseType = elementType; 2258 return numVLAElements; 2259 } 2260 } while (isa<VariableArrayType>(arrayType)); 2261 2262 // We get out here only if we find a constant array type 2263 // inside the VLA. 2264 } 2265 2266 // We have some number of constant-length arrays, so addr should 2267 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2268 // down to the first element of addr. 2269 SmallVector<llvm::Value*, 8> gepIndices; 2270 2271 // GEP down to the array type. 2272 llvm::ConstantInt *zero = Builder.getInt32(0); 2273 gepIndices.push_back(zero); 2274 2275 uint64_t countFromCLAs = 1; 2276 QualType eltType; 2277 2278 llvm::ArrayType *llvmArrayType = 2279 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2280 while (llvmArrayType) { 2281 assert(isa<ConstantArrayType>(arrayType)); 2282 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2283 llvmArrayType->getNumElements()); 2284 2285 gepIndices.push_back(zero); 2286 countFromCLAs *= llvmArrayType->getNumElements(); 2287 eltType = arrayType->getElementType(); 2288 2289 llvmArrayType = 2290 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2291 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2292 assert((!llvmArrayType || arrayType) && 2293 "LLVM and Clang types are out-of-synch"); 2294 } 2295 2296 if (arrayType) { 2297 // From this point onwards, the Clang array type has been emitted 2298 // as some other type (probably a packed struct). Compute the array 2299 // size, and just emit the 'begin' expression as a bitcast. 2300 while (arrayType) { 2301 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2302 eltType = arrayType->getElementType(); 2303 arrayType = getContext().getAsArrayType(eltType); 2304 } 2305 2306 llvm::Type *baseType = ConvertType(eltType); 2307 addr = addr.withElementType(baseType); 2308 } else { 2309 // Create the actual GEP. 2310 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2311 addr.emitRawPointer(*this), 2312 gepIndices, "array.begin"), 2313 ConvertTypeForMem(eltType), addr.getAlignment()); 2314 } 2315 2316 baseType = eltType; 2317 2318 llvm::Value *numElements 2319 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2320 2321 // If we had any VLA dimensions, factor them in. 2322 if (numVLAElements) 2323 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2324 2325 return numElements; 2326 } 2327 2328 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2329 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2330 assert(vla && "type was not a variable array type!"); 2331 return getVLASize(vla); 2332 } 2333 2334 CodeGenFunction::VlaSizePair 2335 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2336 // The number of elements so far; always size_t. 2337 llvm::Value *numElements = nullptr; 2338 2339 QualType elementType; 2340 do { 2341 elementType = type->getElementType(); 2342 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2343 assert(vlaSize && "no size for VLA!"); 2344 assert(vlaSize->getType() == SizeTy); 2345 2346 if (!numElements) { 2347 numElements = vlaSize; 2348 } else { 2349 // It's undefined behavior if this wraps around, so mark it that way. 2350 // FIXME: Teach -fsanitize=undefined to trap this. 2351 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2352 } 2353 } while ((type = getContext().getAsVariableArrayType(elementType))); 2354 2355 return { numElements, elementType }; 2356 } 2357 2358 CodeGenFunction::VlaSizePair 2359 CodeGenFunction::getVLAElements1D(QualType type) { 2360 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2361 assert(vla && "type was not a variable array type!"); 2362 return getVLAElements1D(vla); 2363 } 2364 2365 CodeGenFunction::VlaSizePair 2366 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2367 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2368 assert(VlaSize && "no size for VLA!"); 2369 assert(VlaSize->getType() == SizeTy); 2370 return { VlaSize, Vla->getElementType() }; 2371 } 2372 2373 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2374 assert(type->isVariablyModifiedType() && 2375 "Must pass variably modified type to EmitVLASizes!"); 2376 2377 EnsureInsertPoint(); 2378 2379 // We're going to walk down into the type and look for VLA 2380 // expressions. 2381 do { 2382 assert(type->isVariablyModifiedType()); 2383 2384 const Type *ty = type.getTypePtr(); 2385 switch (ty->getTypeClass()) { 2386 2387 #define TYPE(Class, Base) 2388 #define ABSTRACT_TYPE(Class, Base) 2389 #define NON_CANONICAL_TYPE(Class, Base) 2390 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2391 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2392 #include "clang/AST/TypeNodes.inc" 2393 llvm_unreachable("unexpected dependent type!"); 2394 2395 // These types are never variably-modified. 2396 case Type::Builtin: 2397 case Type::Complex: 2398 case Type::Vector: 2399 case Type::ExtVector: 2400 case Type::ConstantMatrix: 2401 case Type::Record: 2402 case Type::Enum: 2403 case Type::Using: 2404 case Type::TemplateSpecialization: 2405 case Type::ObjCTypeParam: 2406 case Type::ObjCObject: 2407 case Type::ObjCInterface: 2408 case Type::ObjCObjectPointer: 2409 case Type::BitInt: 2410 llvm_unreachable("type class is never variably-modified!"); 2411 2412 case Type::Elaborated: 2413 type = cast<ElaboratedType>(ty)->getNamedType(); 2414 break; 2415 2416 case Type::Adjusted: 2417 type = cast<AdjustedType>(ty)->getAdjustedType(); 2418 break; 2419 2420 case Type::Decayed: 2421 type = cast<DecayedType>(ty)->getPointeeType(); 2422 break; 2423 2424 case Type::Pointer: 2425 type = cast<PointerType>(ty)->getPointeeType(); 2426 break; 2427 2428 case Type::BlockPointer: 2429 type = cast<BlockPointerType>(ty)->getPointeeType(); 2430 break; 2431 2432 case Type::LValueReference: 2433 case Type::RValueReference: 2434 type = cast<ReferenceType>(ty)->getPointeeType(); 2435 break; 2436 2437 case Type::MemberPointer: 2438 type = cast<MemberPointerType>(ty)->getPointeeType(); 2439 break; 2440 2441 case Type::ArrayParameter: 2442 case Type::ConstantArray: 2443 case Type::IncompleteArray: 2444 // Losing element qualification here is fine. 2445 type = cast<ArrayType>(ty)->getElementType(); 2446 break; 2447 2448 case Type::VariableArray: { 2449 // Losing element qualification here is fine. 2450 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2451 2452 // Unknown size indication requires no size computation. 2453 // Otherwise, evaluate and record it. 2454 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2455 // It's possible that we might have emitted this already, 2456 // e.g. with a typedef and a pointer to it. 2457 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2458 if (!entry) { 2459 llvm::Value *size = EmitScalarExpr(sizeExpr); 2460 2461 // C11 6.7.6.2p5: 2462 // If the size is an expression that is not an integer constant 2463 // expression [...] each time it is evaluated it shall have a value 2464 // greater than zero. 2465 if (SanOpts.has(SanitizerKind::VLABound)) { 2466 SanitizerScope SanScope(this); 2467 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2468 clang::QualType SEType = sizeExpr->getType(); 2469 llvm::Value *CheckCondition = 2470 SEType->isSignedIntegerType() 2471 ? Builder.CreateICmpSGT(size, Zero) 2472 : Builder.CreateICmpUGT(size, Zero); 2473 llvm::Constant *StaticArgs[] = { 2474 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2475 EmitCheckTypeDescriptor(SEType)}; 2476 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2477 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2478 } 2479 2480 // Always zexting here would be wrong if it weren't 2481 // undefined behavior to have a negative bound. 2482 // FIXME: What about when size's type is larger than size_t? 2483 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2484 } 2485 } 2486 type = vat->getElementType(); 2487 break; 2488 } 2489 2490 case Type::FunctionProto: 2491 case Type::FunctionNoProto: 2492 type = cast<FunctionType>(ty)->getReturnType(); 2493 break; 2494 2495 case Type::Paren: 2496 case Type::TypeOf: 2497 case Type::UnaryTransform: 2498 case Type::Attributed: 2499 case Type::BTFTagAttributed: 2500 case Type::HLSLAttributedResource: 2501 case Type::SubstTemplateTypeParm: 2502 case Type::MacroQualified: 2503 case Type::CountAttributed: 2504 // Keep walking after single level desugaring. 2505 type = type.getSingleStepDesugaredType(getContext()); 2506 break; 2507 2508 case Type::Typedef: 2509 case Type::Decltype: 2510 case Type::Auto: 2511 case Type::DeducedTemplateSpecialization: 2512 case Type::PackIndexing: 2513 // Stop walking: nothing to do. 2514 return; 2515 2516 case Type::TypeOfExpr: 2517 // Stop walking: emit typeof expression. 2518 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2519 return; 2520 2521 case Type::Atomic: 2522 type = cast<AtomicType>(ty)->getValueType(); 2523 break; 2524 2525 case Type::Pipe: 2526 type = cast<PipeType>(ty)->getElementType(); 2527 break; 2528 } 2529 } while (type->isVariablyModifiedType()); 2530 } 2531 2532 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2533 if (getContext().getBuiltinVaListType()->isArrayType()) 2534 return EmitPointerWithAlignment(E); 2535 return EmitLValue(E).getAddress(); 2536 } 2537 2538 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2539 return EmitLValue(E).getAddress(); 2540 } 2541 2542 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2543 const APValue &Init) { 2544 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2545 if (CGDebugInfo *Dbg = getDebugInfo()) 2546 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2547 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2548 } 2549 2550 CodeGenFunction::PeepholeProtection 2551 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2552 // At the moment, the only aggressive peephole we do in IR gen 2553 // is trunc(zext) folding, but if we add more, we can easily 2554 // extend this protection. 2555 2556 if (!rvalue.isScalar()) return PeepholeProtection(); 2557 llvm::Value *value = rvalue.getScalarVal(); 2558 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2559 2560 // Just make an extra bitcast. 2561 assert(HaveInsertPoint()); 2562 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2563 Builder.GetInsertBlock()); 2564 2565 PeepholeProtection protection; 2566 protection.Inst = inst; 2567 return protection; 2568 } 2569 2570 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2571 if (!protection.Inst) return; 2572 2573 // In theory, we could try to duplicate the peepholes now, but whatever. 2574 protection.Inst->eraseFromParent(); 2575 } 2576 2577 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2578 QualType Ty, SourceLocation Loc, 2579 SourceLocation AssumptionLoc, 2580 llvm::Value *Alignment, 2581 llvm::Value *OffsetValue) { 2582 if (Alignment->getType() != IntPtrTy) 2583 Alignment = 2584 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2585 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2586 OffsetValue = 2587 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2588 llvm::Value *TheCheck = nullptr; 2589 if (SanOpts.has(SanitizerKind::Alignment)) { 2590 llvm::Value *PtrIntValue = 2591 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2592 2593 if (OffsetValue) { 2594 bool IsOffsetZero = false; 2595 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2596 IsOffsetZero = CI->isZero(); 2597 2598 if (!IsOffsetZero) 2599 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2600 } 2601 2602 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2603 llvm::Value *Mask = 2604 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2605 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2606 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2607 } 2608 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2609 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2610 2611 if (!SanOpts.has(SanitizerKind::Alignment)) 2612 return; 2613 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2614 OffsetValue, TheCheck, Assumption); 2615 } 2616 2617 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2618 const Expr *E, 2619 SourceLocation AssumptionLoc, 2620 llvm::Value *Alignment, 2621 llvm::Value *OffsetValue) { 2622 QualType Ty = E->getType(); 2623 SourceLocation Loc = E->getExprLoc(); 2624 2625 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2626 OffsetValue); 2627 } 2628 2629 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2630 llvm::Value *AnnotatedVal, 2631 StringRef AnnotationStr, 2632 SourceLocation Location, 2633 const AnnotateAttr *Attr) { 2634 SmallVector<llvm::Value *, 5> Args = { 2635 AnnotatedVal, 2636 CGM.EmitAnnotationString(AnnotationStr), 2637 CGM.EmitAnnotationUnit(Location), 2638 CGM.EmitAnnotationLineNo(Location), 2639 }; 2640 if (Attr) 2641 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2642 return Builder.CreateCall(AnnotationFn, Args); 2643 } 2644 2645 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2646 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2647 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2648 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2649 {V->getType(), CGM.ConstGlobalsPtrTy}), 2650 V, I->getAnnotation(), D->getLocation(), I); 2651 } 2652 2653 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2654 Address Addr) { 2655 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2656 llvm::Value *V = Addr.emitRawPointer(*this); 2657 llvm::Type *VTy = V->getType(); 2658 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2659 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2660 llvm::PointerType *IntrinTy = 2661 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2662 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2663 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2664 2665 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2666 // FIXME Always emit the cast inst so we can differentiate between 2667 // annotation on the first field of a struct and annotation on the struct 2668 // itself. 2669 if (VTy != IntrinTy) 2670 V = Builder.CreateBitCast(V, IntrinTy); 2671 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2672 V = Builder.CreateBitCast(V, VTy); 2673 } 2674 2675 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2676 } 2677 2678 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2679 2680 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2681 : CGF(CGF) { 2682 assert(!CGF->IsSanitizerScope); 2683 CGF->IsSanitizerScope = true; 2684 } 2685 2686 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2687 CGF->IsSanitizerScope = false; 2688 } 2689 2690 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2691 const llvm::Twine &Name, 2692 llvm::BasicBlock::iterator InsertPt) const { 2693 LoopStack.InsertHelper(I); 2694 if (IsSanitizerScope) 2695 I->setNoSanitizeMetadata(); 2696 } 2697 2698 void CGBuilderInserter::InsertHelper( 2699 llvm::Instruction *I, const llvm::Twine &Name, 2700 llvm::BasicBlock::iterator InsertPt) const { 2701 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2702 if (CGF) 2703 CGF->InsertHelper(I, Name, InsertPt); 2704 } 2705 2706 // Emits an error if we don't have a valid set of target features for the 2707 // called function. 2708 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2709 const FunctionDecl *TargetDecl) { 2710 // SemaChecking cannot handle below x86 builtins because they have different 2711 // parameter ranges with different TargetAttribute of caller. 2712 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2713 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2714 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2715 BuiltinID == X86::BI__builtin_ia32_cmpss || 2716 BuiltinID == X86::BI__builtin_ia32_cmppd || 2717 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2718 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2719 llvm::StringMap<bool> TargetFetureMap; 2720 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2721 llvm::APSInt Result = 2722 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2723 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2724 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2725 << TargetDecl->getDeclName() << "avx"; 2726 } 2727 } 2728 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2729 } 2730 2731 // Emits an error if we don't have a valid set of target features for the 2732 // called function. 2733 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2734 const FunctionDecl *TargetDecl) { 2735 // Early exit if this is an indirect call. 2736 if (!TargetDecl) 2737 return; 2738 2739 // Get the current enclosing function if it exists. If it doesn't 2740 // we can't check the target features anyhow. 2741 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2742 if (!FD) 2743 return; 2744 2745 // Grab the required features for the call. For a builtin this is listed in 2746 // the td file with the default cpu, for an always_inline function this is any 2747 // listed cpu and any listed features. 2748 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2749 std::string MissingFeature; 2750 llvm::StringMap<bool> CallerFeatureMap; 2751 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2752 // When compiling in HipStdPar mode we have to be conservative in rejecting 2753 // target specific features in the FE, and defer the possible error to the 2754 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2755 // referenced by an accelerator executable function, we emit an error. 2756 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2757 if (BuiltinID) { 2758 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2759 if (!Builtin::evaluateRequiredTargetFeatures( 2760 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2761 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2762 << TargetDecl->getDeclName() 2763 << FeatureList; 2764 } 2765 } else if (!TargetDecl->isMultiVersion() && 2766 TargetDecl->hasAttr<TargetAttr>()) { 2767 // Get the required features for the callee. 2768 2769 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2770 ParsedTargetAttr ParsedAttr = 2771 CGM.getContext().filterFunctionTargetAttrs(TD); 2772 2773 SmallVector<StringRef, 1> ReqFeatures; 2774 llvm::StringMap<bool> CalleeFeatureMap; 2775 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2776 2777 for (const auto &F : ParsedAttr.Features) { 2778 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2779 ReqFeatures.push_back(StringRef(F).substr(1)); 2780 } 2781 2782 for (const auto &F : CalleeFeatureMap) { 2783 // Only positive features are "required". 2784 if (F.getValue()) 2785 ReqFeatures.push_back(F.getKey()); 2786 } 2787 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2788 if (!CallerFeatureMap.lookup(Feature)) { 2789 MissingFeature = Feature.str(); 2790 return false; 2791 } 2792 return true; 2793 }) && !IsHipStdPar) 2794 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2795 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2796 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2797 llvm::StringMap<bool> CalleeFeatureMap; 2798 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2799 2800 for (const auto &F : CalleeFeatureMap) { 2801 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2802 !CallerFeatureMap.find(F.getKey())->getValue()) && 2803 !IsHipStdPar) 2804 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2805 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2806 } 2807 } 2808 } 2809 2810 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2811 if (!CGM.getCodeGenOpts().SanitizeStats) 2812 return; 2813 2814 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2815 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2816 CGM.getSanStats().create(IRB, SSK); 2817 } 2818 2819 void CodeGenFunction::EmitKCFIOperandBundle( 2820 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2821 const FunctionProtoType *FP = 2822 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2823 if (FP) 2824 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2825 } 2826 2827 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2828 const MultiVersionResolverOption &RO) { 2829 llvm::SmallVector<StringRef, 8> CondFeatures; 2830 for (const StringRef &Feature : RO.Conditions.Features) 2831 CondFeatures.push_back(Feature); 2832 if (!CondFeatures.empty()) { 2833 return EmitAArch64CpuSupports(CondFeatures); 2834 } 2835 return nullptr; 2836 } 2837 2838 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2839 const MultiVersionResolverOption &RO) { 2840 llvm::Value *Condition = nullptr; 2841 2842 if (!RO.Conditions.Architecture.empty()) { 2843 StringRef Arch = RO.Conditions.Architecture; 2844 // If arch= specifies an x86-64 micro-architecture level, test the feature 2845 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2846 if (Arch.starts_with("x86-64")) 2847 Condition = EmitX86CpuSupports({Arch}); 2848 else 2849 Condition = EmitX86CpuIs(Arch); 2850 } 2851 2852 if (!RO.Conditions.Features.empty()) { 2853 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2854 Condition = 2855 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2856 } 2857 return Condition; 2858 } 2859 2860 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2861 llvm::Function *Resolver, 2862 CGBuilderTy &Builder, 2863 llvm::Function *FuncToReturn, 2864 bool SupportsIFunc) { 2865 if (SupportsIFunc) { 2866 Builder.CreateRet(FuncToReturn); 2867 return; 2868 } 2869 2870 llvm::SmallVector<llvm::Value *, 10> Args( 2871 llvm::make_pointer_range(Resolver->args())); 2872 2873 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2874 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2875 2876 if (Resolver->getReturnType()->isVoidTy()) 2877 Builder.CreateRetVoid(); 2878 else 2879 Builder.CreateRet(Result); 2880 } 2881 2882 void CodeGenFunction::EmitMultiVersionResolver( 2883 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2884 2885 llvm::Triple::ArchType ArchType = 2886 getContext().getTargetInfo().getTriple().getArch(); 2887 2888 switch (ArchType) { 2889 case llvm::Triple::x86: 2890 case llvm::Triple::x86_64: 2891 EmitX86MultiVersionResolver(Resolver, Options); 2892 return; 2893 case llvm::Triple::aarch64: 2894 EmitAArch64MultiVersionResolver(Resolver, Options); 2895 return; 2896 case llvm::Triple::riscv32: 2897 case llvm::Triple::riscv64: 2898 EmitRISCVMultiVersionResolver(Resolver, Options); 2899 return; 2900 2901 default: 2902 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2903 } 2904 } 2905 2906 static unsigned getPriorityFromAttrString(StringRef AttrStr) { 2907 SmallVector<StringRef, 8> Attrs; 2908 2909 AttrStr.split(Attrs, ';'); 2910 2911 // Default Priority is zero. 2912 unsigned Priority = 0; 2913 for (auto Attr : Attrs) { 2914 if (Attr.consume_front("priority=")) { 2915 unsigned Result; 2916 if (!Attr.getAsInteger(0, Result)) 2917 Priority = Result; 2918 } 2919 } 2920 2921 return Priority; 2922 } 2923 2924 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2925 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2926 2927 if (getContext().getTargetInfo().getTriple().getOS() != 2928 llvm::Triple::OSType::Linux) { 2929 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2930 return; 2931 } 2932 2933 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2934 Builder.SetInsertPoint(CurBlock); 2935 EmitRISCVCpuInit(); 2936 2937 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2938 bool HasDefault = false; 2939 unsigned DefaultIndex = 0; 2940 2941 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions( 2942 Options); 2943 2944 llvm::stable_sort( 2945 CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2946 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2947 return getPriorityFromAttrString(LHS.Conditions.Features[0]) > 2948 getPriorityFromAttrString(RHS.Conditions.Features[0]); 2949 }); 2950 2951 // Check the each candidate function. 2952 for (unsigned Index = 0; Index < CurrOptions.size(); Index++) { 2953 2954 if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) { 2955 HasDefault = true; 2956 DefaultIndex = Index; 2957 continue; 2958 } 2959 2960 Builder.SetInsertPoint(CurBlock); 2961 2962 std::vector<std::string> TargetAttrFeats = 2963 getContext() 2964 .getTargetInfo() 2965 .parseTargetAttr(CurrOptions[Index].Conditions.Features[0]) 2966 .Features; 2967 2968 if (TargetAttrFeats.empty()) 2969 continue; 2970 2971 // FeaturesCondition: The bitmask of the required extension has been 2972 // enabled by the runtime object. 2973 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2974 // REQUIRED_BITMASK 2975 // 2976 // When condition is met, return this version of the function. 2977 // Otherwise, try the next version. 2978 // 2979 // if (FeaturesConditionVersion1) 2980 // return Version1; 2981 // else if (FeaturesConditionVersion2) 2982 // return Version2; 2983 // else if (FeaturesConditionVersion3) 2984 // return Version3; 2985 // ... 2986 // else 2987 // return DefaultVersion; 2988 2989 // TODO: Add a condition to check the length before accessing elements. 2990 // Without checking the length first, we may access an incorrect memory 2991 // address when using different versions. 2992 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2993 2994 for (auto &Feat : TargetAttrFeats) { 2995 StringRef CurrFeat = Feat; 2996 if (CurrFeat.starts_with('+')) 2997 CurrTargetAttrFeats.push_back(CurrFeat.substr(1)); 2998 } 2999 3000 Builder.SetInsertPoint(CurBlock); 3001 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 3002 3003 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3004 CGBuilderTy RetBuilder(*this, RetBlock); 3005 CreateMultiVersionResolverReturn( 3006 CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc); 3007 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 3008 3009 Builder.SetInsertPoint(CurBlock); 3010 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 3011 3012 CurBlock = ElseBlock; 3013 } 3014 3015 // Finally, emit the default one. 3016 if (HasDefault) { 3017 Builder.SetInsertPoint(CurBlock); 3018 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, 3019 CurrOptions[DefaultIndex].Function, 3020 SupportsIFunc); 3021 return; 3022 } 3023 3024 // If no generic/default, emit an unreachable. 3025 Builder.SetInsertPoint(CurBlock); 3026 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3027 TrapCall->setDoesNotReturn(); 3028 TrapCall->setDoesNotThrow(); 3029 Builder.CreateUnreachable(); 3030 Builder.ClearInsertionPoint(); 3031 } 3032 3033 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3034 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3035 assert(!Options.empty() && "No multiversion resolver options found"); 3036 assert(Options.back().Conditions.Features.size() == 0 && 3037 "Default case must be last"); 3038 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3039 assert(SupportsIFunc && 3040 "Multiversion resolver requires target IFUNC support"); 3041 bool AArch64CpuInitialized = false; 3042 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3043 3044 for (const MultiVersionResolverOption &RO : Options) { 3045 Builder.SetInsertPoint(CurBlock); 3046 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3047 3048 // The 'default' or 'all features enabled' case. 3049 if (!Condition) { 3050 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3051 SupportsIFunc); 3052 return; 3053 } 3054 3055 if (!AArch64CpuInitialized) { 3056 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3057 EmitAArch64CpuInit(); 3058 AArch64CpuInitialized = true; 3059 Builder.SetInsertPoint(CurBlock); 3060 } 3061 3062 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3063 CGBuilderTy RetBuilder(*this, RetBlock); 3064 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3065 SupportsIFunc); 3066 CurBlock = createBasicBlock("resolver_else", Resolver); 3067 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3068 } 3069 3070 // If no default, emit an unreachable. 3071 Builder.SetInsertPoint(CurBlock); 3072 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3073 TrapCall->setDoesNotReturn(); 3074 TrapCall->setDoesNotThrow(); 3075 Builder.CreateUnreachable(); 3076 Builder.ClearInsertionPoint(); 3077 } 3078 3079 void CodeGenFunction::EmitX86MultiVersionResolver( 3080 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3081 3082 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3083 3084 // Main function's basic block. 3085 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3086 Builder.SetInsertPoint(CurBlock); 3087 EmitX86CpuInit(); 3088 3089 for (const MultiVersionResolverOption &RO : Options) { 3090 Builder.SetInsertPoint(CurBlock); 3091 llvm::Value *Condition = FormX86ResolverCondition(RO); 3092 3093 // The 'default' or 'generic' case. 3094 if (!Condition) { 3095 assert(&RO == Options.end() - 1 && 3096 "Default or Generic case must be last"); 3097 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3098 SupportsIFunc); 3099 return; 3100 } 3101 3102 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3103 CGBuilderTy RetBuilder(*this, RetBlock); 3104 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3105 SupportsIFunc); 3106 CurBlock = createBasicBlock("resolver_else", Resolver); 3107 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3108 } 3109 3110 // If no generic/default, emit an unreachable. 3111 Builder.SetInsertPoint(CurBlock); 3112 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3113 TrapCall->setDoesNotReturn(); 3114 TrapCall->setDoesNotThrow(); 3115 Builder.CreateUnreachable(); 3116 Builder.ClearInsertionPoint(); 3117 } 3118 3119 // Loc - where the diagnostic will point, where in the source code this 3120 // alignment has failed. 3121 // SecondaryLoc - if present (will be present if sufficiently different from 3122 // Loc), the diagnostic will additionally point a "Note:" to this location. 3123 // It should be the location where the __attribute__((assume_aligned)) 3124 // was written e.g. 3125 void CodeGenFunction::emitAlignmentAssumptionCheck( 3126 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3127 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3128 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3129 llvm::Instruction *Assumption) { 3130 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3131 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3132 llvm::Intrinsic::getOrInsertDeclaration( 3133 Builder.GetInsertBlock()->getParent()->getParent(), 3134 llvm::Intrinsic::assume) && 3135 "Assumption should be a call to llvm.assume()."); 3136 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3137 "Assumption should be the last instruction of the basic block, " 3138 "since the basic block is still being generated."); 3139 3140 if (!SanOpts.has(SanitizerKind::Alignment)) 3141 return; 3142 3143 // Don't check pointers to volatile data. The behavior here is implementation- 3144 // defined. 3145 if (Ty->getPointeeType().isVolatileQualified()) 3146 return; 3147 3148 // We need to temorairly remove the assumption so we can insert the 3149 // sanitizer check before it, else the check will be dropped by optimizations. 3150 Assumption->removeFromParent(); 3151 3152 { 3153 SanitizerScope SanScope(this); 3154 3155 if (!OffsetValue) 3156 OffsetValue = Builder.getInt1(false); // no offset. 3157 3158 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3159 EmitCheckSourceLocation(SecondaryLoc), 3160 EmitCheckTypeDescriptor(Ty)}; 3161 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3162 EmitCheckValue(Alignment), 3163 EmitCheckValue(OffsetValue)}; 3164 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3165 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3166 } 3167 3168 // We are now in the (new, empty) "cont" basic block. 3169 // Reintroduce the assumption. 3170 Builder.Insert(Assumption); 3171 // FIXME: Assumption still has it's original basic block as it's Parent. 3172 } 3173 3174 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3175 if (CGDebugInfo *DI = getDebugInfo()) 3176 return DI->SourceLocToDebugLoc(Location); 3177 3178 return llvm::DebugLoc(); 3179 } 3180 3181 llvm::Value * 3182 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3183 Stmt::Likelihood LH) { 3184 switch (LH) { 3185 case Stmt::LH_None: 3186 return Cond; 3187 case Stmt::LH_Likely: 3188 case Stmt::LH_Unlikely: 3189 // Don't generate llvm.expect on -O0 as the backend won't use it for 3190 // anything. 3191 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3192 return Cond; 3193 llvm::Type *CondTy = Cond->getType(); 3194 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3195 llvm::Function *FnExpect = 3196 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3197 llvm::Value *ExpectedValueOfCond = 3198 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3199 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3200 Cond->getName() + ".expval"); 3201 } 3202 llvm_unreachable("Unknown Likelihood"); 3203 } 3204 3205 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3206 unsigned NumElementsDst, 3207 const llvm::Twine &Name) { 3208 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3209 unsigned NumElementsSrc = SrcTy->getNumElements(); 3210 if (NumElementsSrc == NumElementsDst) 3211 return SrcVec; 3212 3213 std::vector<int> ShuffleMask(NumElementsDst, -1); 3214 for (unsigned MaskIdx = 0; 3215 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3216 ShuffleMask[MaskIdx] = MaskIdx; 3217 3218 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3219 } 3220 3221 void CodeGenFunction::EmitPointerAuthOperandBundle( 3222 const CGPointerAuthInfo &PointerAuth, 3223 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3224 if (!PointerAuth.isSigned()) 3225 return; 3226 3227 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3228 3229 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3230 if (!Discriminator) 3231 Discriminator = Builder.getSize(0); 3232 3233 llvm::Value *Args[] = {Key, Discriminator}; 3234 Bundles.emplace_back("ptrauth", Args); 3235 } 3236 3237 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3238 const CGPointerAuthInfo &PointerAuth, 3239 llvm::Value *Pointer, 3240 unsigned IntrinsicID) { 3241 if (!PointerAuth) 3242 return Pointer; 3243 3244 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3245 3246 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3247 if (!Discriminator) { 3248 Discriminator = CGF.Builder.getSize(0); 3249 } 3250 3251 // Convert the pointer to intptr_t before signing it. 3252 auto OrigType = Pointer->getType(); 3253 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3254 3255 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3256 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3257 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3258 3259 // Convert back to the original type. 3260 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3261 return Pointer; 3262 } 3263 3264 llvm::Value * 3265 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3266 llvm::Value *Pointer) { 3267 if (!PointerAuth.shouldSign()) 3268 return Pointer; 3269 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3270 llvm::Intrinsic::ptrauth_sign); 3271 } 3272 3273 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3274 const CGPointerAuthInfo &PointerAuth, 3275 llvm::Value *Pointer) { 3276 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3277 3278 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3279 // Convert the pointer to intptr_t before signing it. 3280 auto OrigType = Pointer->getType(); 3281 Pointer = CGF.EmitRuntimeCall( 3282 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3283 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3284 } 3285 3286 llvm::Value * 3287 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3288 llvm::Value *Pointer) { 3289 if (PointerAuth.shouldStrip()) { 3290 return EmitStrip(*this, PointerAuth, Pointer); 3291 } 3292 if (!PointerAuth.shouldAuth()) { 3293 return Pointer; 3294 } 3295 3296 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3297 llvm::Intrinsic::ptrauth_auth); 3298 } 3299