1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 112 llvm::FastMathFlags FMF; 113 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 114 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 115 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 116 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 117 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 118 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 119 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 120 Builder.setFastMathFlags(FMF); 121 } 122 123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 124 const Expr *E) 125 : CGF(CGF) { 126 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 127 } 128 129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 130 FPOptions FPFeatures) 131 : CGF(CGF) { 132 ConstructorHelper(FPFeatures); 133 } 134 135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 136 OldFPFeatures = CGF.CurFPFeatures; 137 CGF.CurFPFeatures = FPFeatures; 138 139 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 140 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 141 142 if (OldFPFeatures == FPFeatures) 143 return; 144 145 FMFGuard.emplace(CGF.Builder); 146 147 llvm::RoundingMode NewRoundingBehavior = 148 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 149 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 150 auto NewExceptionBehavior = 151 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 152 FPFeatures.getFPExceptionMode())); 153 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 154 155 CGF.SetFastMathFlags(FPFeatures); 156 157 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 158 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 159 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 160 (NewExceptionBehavior == llvm::fp::ebIgnore && 161 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 162 "FPConstrained should be enabled on entire function"); 163 164 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 165 auto OldValue = 166 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 167 auto NewValue = OldValue & Value; 168 if (OldValue != NewValue) 169 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 170 }; 171 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 172 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 173 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 174 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 175 FPFeatures.getAllowReciprocal() && 176 FPFeatures.getAllowApproxFunc() && 177 FPFeatures.getNoSignedZero()); 178 } 179 180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 181 CGF.CurFPFeatures = OldFPFeatures; 182 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 183 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 184 } 185 186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 187 LValueBaseInfo BaseInfo; 188 TBAAAccessInfo TBAAInfo; 189 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 190 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 191 TBAAInfo); 192 } 193 194 /// Given a value of type T* that may not be to a complete object, 195 /// construct an l-value with the natural pointee alignment of T. 196 LValue 197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 201 /* forPointeeType= */ true); 202 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 203 } 204 205 206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 207 return CGM.getTypes().ConvertTypeForMem(T); 208 } 209 210 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 211 return CGM.getTypes().ConvertType(T); 212 } 213 214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 215 type = type.getCanonicalType(); 216 while (true) { 217 switch (type->getTypeClass()) { 218 #define TYPE(name, parent) 219 #define ABSTRACT_TYPE(name, parent) 220 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 221 #define DEPENDENT_TYPE(name, parent) case Type::name: 222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 223 #include "clang/AST/TypeNodes.inc" 224 llvm_unreachable("non-canonical or dependent type in IR-generation"); 225 226 case Type::Auto: 227 case Type::DeducedTemplateSpecialization: 228 llvm_unreachable("undeduced type in IR-generation"); 229 230 // Various scalar types. 231 case Type::Builtin: 232 case Type::Pointer: 233 case Type::BlockPointer: 234 case Type::LValueReference: 235 case Type::RValueReference: 236 case Type::MemberPointer: 237 case Type::Vector: 238 case Type::ExtVector: 239 case Type::ConstantMatrix: 240 case Type::FunctionProto: 241 case Type::FunctionNoProto: 242 case Type::Enum: 243 case Type::ObjCObjectPointer: 244 case Type::Pipe: 245 case Type::ExtInt: 246 return TEK_Scalar; 247 248 // Complexes. 249 case Type::Complex: 250 return TEK_Complex; 251 252 // Arrays, records, and Objective-C objects. 253 case Type::ConstantArray: 254 case Type::IncompleteArray: 255 case Type::VariableArray: 256 case Type::Record: 257 case Type::ObjCObject: 258 case Type::ObjCInterface: 259 return TEK_Aggregate; 260 261 // We operate on atomic values according to their underlying type. 262 case Type::Atomic: 263 type = cast<AtomicType>(type)->getValueType(); 264 continue; 265 } 266 llvm_unreachable("unknown type kind!"); 267 } 268 } 269 270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 271 // For cleanliness, we try to avoid emitting the return block for 272 // simple cases. 273 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 274 275 if (CurBB) { 276 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 277 278 // We have a valid insert point, reuse it if it is empty or there are no 279 // explicit jumps to the return block. 280 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 281 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 282 delete ReturnBlock.getBlock(); 283 ReturnBlock = JumpDest(); 284 } else 285 EmitBlock(ReturnBlock.getBlock()); 286 return llvm::DebugLoc(); 287 } 288 289 // Otherwise, if the return block is the target of a single direct 290 // branch then we can just put the code in that block instead. This 291 // cleans up functions which started with a unified return block. 292 if (ReturnBlock.getBlock()->hasOneUse()) { 293 llvm::BranchInst *BI = 294 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 295 if (BI && BI->isUnconditional() && 296 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 297 // Record/return the DebugLoc of the simple 'return' expression to be used 298 // later by the actual 'ret' instruction. 299 llvm::DebugLoc Loc = BI->getDebugLoc(); 300 Builder.SetInsertPoint(BI->getParent()); 301 BI->eraseFromParent(); 302 delete ReturnBlock.getBlock(); 303 ReturnBlock = JumpDest(); 304 return Loc; 305 } 306 } 307 308 // FIXME: We are at an unreachable point, there is no reason to emit the block 309 // unless it has uses. However, we still need a place to put the debug 310 // region.end for now. 311 312 EmitBlock(ReturnBlock.getBlock()); 313 return llvm::DebugLoc(); 314 } 315 316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 317 if (!BB) return; 318 if (!BB->use_empty()) 319 return CGF.CurFn->getBasicBlockList().push_back(BB); 320 delete BB; 321 } 322 323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 324 assert(BreakContinueStack.empty() && 325 "mismatched push/pop in break/continue stack!"); 326 327 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 328 && NumSimpleReturnExprs == NumReturnExprs 329 && ReturnBlock.getBlock()->use_empty(); 330 // Usually the return expression is evaluated before the cleanup 331 // code. If the function contains only a simple return statement, 332 // such as a constant, the location before the cleanup code becomes 333 // the last useful breakpoint in the function, because the simple 334 // return expression will be evaluated after the cleanup code. To be 335 // safe, set the debug location for cleanup code to the location of 336 // the return statement. Otherwise the cleanup code should be at the 337 // end of the function's lexical scope. 338 // 339 // If there are multiple branches to the return block, the branch 340 // instructions will get the location of the return statements and 341 // all will be fine. 342 if (CGDebugInfo *DI = getDebugInfo()) { 343 if (OnlySimpleReturnStmts) 344 DI->EmitLocation(Builder, LastStopPoint); 345 else 346 DI->EmitLocation(Builder, EndLoc); 347 } 348 349 // Pop any cleanups that might have been associated with the 350 // parameters. Do this in whatever block we're currently in; it's 351 // important to do this before we enter the return block or return 352 // edges will be *really* confused. 353 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 354 bool HasOnlyLifetimeMarkers = 355 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 356 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 357 if (HasCleanups) { 358 // Make sure the line table doesn't jump back into the body for 359 // the ret after it's been at EndLoc. 360 Optional<ApplyDebugLocation> AL; 361 if (CGDebugInfo *DI = getDebugInfo()) { 362 if (OnlySimpleReturnStmts) 363 DI->EmitLocation(Builder, EndLoc); 364 else 365 // We may not have a valid end location. Try to apply it anyway, and 366 // fall back to an artificial location if needed. 367 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 368 } 369 370 PopCleanupBlocks(PrologueCleanupDepth); 371 } 372 373 // Emit function epilog (to return). 374 llvm::DebugLoc Loc = EmitReturnBlock(); 375 376 if (ShouldInstrumentFunction()) { 377 if (CGM.getCodeGenOpts().InstrumentFunctions) 378 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 379 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 380 CurFn->addFnAttr("instrument-function-exit-inlined", 381 "__cyg_profile_func_exit"); 382 } 383 384 if (ShouldSkipSanitizerInstrumentation()) 385 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 386 387 // Emit debug descriptor for function end. 388 if (CGDebugInfo *DI = getDebugInfo()) 389 DI->EmitFunctionEnd(Builder, CurFn); 390 391 // Reset the debug location to that of the simple 'return' expression, if any 392 // rather than that of the end of the function's scope '}'. 393 ApplyDebugLocation AL(*this, Loc); 394 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 395 EmitEndEHSpec(CurCodeDecl); 396 397 assert(EHStack.empty() && 398 "did not remove all scopes from cleanup stack!"); 399 400 // If someone did an indirect goto, emit the indirect goto block at the end of 401 // the function. 402 if (IndirectBranch) { 403 EmitBlock(IndirectBranch->getParent()); 404 Builder.ClearInsertionPoint(); 405 } 406 407 // If some of our locals escaped, insert a call to llvm.localescape in the 408 // entry block. 409 if (!EscapedLocals.empty()) { 410 // Invert the map from local to index into a simple vector. There should be 411 // no holes. 412 SmallVector<llvm::Value *, 4> EscapeArgs; 413 EscapeArgs.resize(EscapedLocals.size()); 414 for (auto &Pair : EscapedLocals) 415 EscapeArgs[Pair.second] = Pair.first; 416 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 417 &CGM.getModule(), llvm::Intrinsic::localescape); 418 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 419 } 420 421 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 422 llvm::Instruction *Ptr = AllocaInsertPt; 423 AllocaInsertPt = nullptr; 424 Ptr->eraseFromParent(); 425 426 // If someone took the address of a label but never did an indirect goto, we 427 // made a zero entry PHI node, which is illegal, zap it now. 428 if (IndirectBranch) { 429 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 430 if (PN->getNumIncomingValues() == 0) { 431 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 432 PN->eraseFromParent(); 433 } 434 } 435 436 EmitIfUsed(*this, EHResumeBlock); 437 EmitIfUsed(*this, TerminateLandingPad); 438 EmitIfUsed(*this, TerminateHandler); 439 EmitIfUsed(*this, UnreachableBlock); 440 441 for (const auto &FuncletAndParent : TerminateFunclets) 442 EmitIfUsed(*this, FuncletAndParent.second); 443 444 if (CGM.getCodeGenOpts().EmitDeclMetadata) 445 EmitDeclMetadata(); 446 447 for (const auto &R : DeferredReplacements) { 448 if (llvm::Value *Old = R.first) { 449 Old->replaceAllUsesWith(R.second); 450 cast<llvm::Instruction>(Old)->eraseFromParent(); 451 } 452 } 453 DeferredReplacements.clear(); 454 455 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 456 // PHIs if the current function is a coroutine. We don't do it for all 457 // functions as it may result in slight increase in numbers of instructions 458 // if compiled with no optimizations. We do it for coroutine as the lifetime 459 // of CleanupDestSlot alloca make correct coroutine frame building very 460 // difficult. 461 if (NormalCleanupDest.isValid() && isCoroutine()) { 462 llvm::DominatorTree DT(*CurFn); 463 llvm::PromoteMemToReg( 464 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 465 NormalCleanupDest = Address::invalid(); 466 } 467 468 // Scan function arguments for vector width. 469 for (llvm::Argument &A : CurFn->args()) 470 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 471 LargestVectorWidth = 472 std::max((uint64_t)LargestVectorWidth, 473 VT->getPrimitiveSizeInBits().getKnownMinSize()); 474 475 // Update vector width based on return type. 476 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 477 LargestVectorWidth = 478 std::max((uint64_t)LargestVectorWidth, 479 VT->getPrimitiveSizeInBits().getKnownMinSize()); 480 481 // Add the required-vector-width attribute. This contains the max width from: 482 // 1. min-vector-width attribute used in the source program. 483 // 2. Any builtins used that have a vector width specified. 484 // 3. Values passed in and out of inline assembly. 485 // 4. Width of vector arguments and return types for this function. 486 // 5. Width of vector aguments and return types for functions called by this 487 // function. 488 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 489 490 // Add vscale_range attribute if appropriate. 491 Optional<std::pair<unsigned, unsigned>> VScaleRange = 492 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 493 if (VScaleRange) { 494 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 495 getLLVMContext(), VScaleRange.getValue().first, 496 VScaleRange.getValue().second)); 497 } 498 499 // If we generated an unreachable return block, delete it now. 500 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 501 Builder.ClearInsertionPoint(); 502 ReturnBlock.getBlock()->eraseFromParent(); 503 } 504 if (ReturnValue.isValid()) { 505 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 506 if (RetAlloca && RetAlloca->use_empty()) { 507 RetAlloca->eraseFromParent(); 508 ReturnValue = Address::invalid(); 509 } 510 } 511 } 512 513 /// ShouldInstrumentFunction - Return true if the current function should be 514 /// instrumented with __cyg_profile_func_* calls 515 bool CodeGenFunction::ShouldInstrumentFunction() { 516 if (!CGM.getCodeGenOpts().InstrumentFunctions && 517 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 518 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 519 return false; 520 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 521 return false; 522 return true; 523 } 524 525 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 526 if (!CurFuncDecl) 527 return false; 528 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 529 } 530 531 /// ShouldXRayInstrument - Return true if the current function should be 532 /// instrumented with XRay nop sleds. 533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 535 } 536 537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Custom); 544 } 545 546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 547 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 548 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 549 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 550 XRayInstrKind::Typed); 551 } 552 553 llvm::Constant * 554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 555 llvm::Constant *Addr) { 556 // Addresses stored in prologue data can't require run-time fixups and must 557 // be PC-relative. Run-time fixups are undesirable because they necessitate 558 // writable text segments, which are unsafe. And absolute addresses are 559 // undesirable because they break PIE mode. 560 561 // Add a layer of indirection through a private global. Taking its address 562 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 563 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 564 /*isConstant=*/true, 565 llvm::GlobalValue::PrivateLinkage, Addr); 566 567 // Create a PC-relative address. 568 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 569 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 570 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 571 return (IntPtrTy == Int32Ty) 572 ? PCRelAsInt 573 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 574 } 575 576 llvm::Value * 577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 578 llvm::Value *EncodedAddr) { 579 // Reconstruct the address of the global. 580 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 581 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 582 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 583 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 584 585 // Load the original pointer through the global. 586 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 587 "decoded_addr"); 588 } 589 590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 591 llvm::Function *Fn) 592 { 593 if (!FD->hasAttr<OpenCLKernelAttr>()) 594 return; 595 596 llvm::LLVMContext &Context = getLLVMContext(); 597 598 CGM.GenOpenCLArgMetadata(Fn, FD, this); 599 600 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 601 QualType HintQTy = A->getTypeHint(); 602 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 603 bool IsSignedInteger = 604 HintQTy->isSignedIntegerType() || 605 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 606 llvm::Metadata *AttrMDArgs[] = { 607 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 608 CGM.getTypes().ConvertType(A->getTypeHint()))), 609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 610 llvm::IntegerType::get(Context, 32), 611 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 612 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 613 } 614 615 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 620 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 621 } 622 623 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 624 llvm::Metadata *AttrMDArgs[] = { 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 628 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 629 } 630 631 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 632 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 635 Fn->setMetadata("intel_reqd_sub_group_size", 636 llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 } 639 640 /// Determine whether the function F ends with a return stmt. 641 static bool endsWithReturn(const Decl* F) { 642 const Stmt *Body = nullptr; 643 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 644 Body = FD->getBody(); 645 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 646 Body = OMD->getBody(); 647 648 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 649 auto LastStmt = CS->body_rbegin(); 650 if (LastStmt != CS->body_rend()) 651 return isa<ReturnStmt>(*LastStmt); 652 } 653 return false; 654 } 655 656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 657 if (SanOpts.has(SanitizerKind::Thread)) { 658 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 659 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 660 } 661 } 662 663 /// Check if the return value of this function requires sanitization. 664 bool CodeGenFunction::requiresReturnValueCheck() const { 665 return requiresReturnValueNullabilityCheck() || 666 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 667 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 668 } 669 670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 671 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 672 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 673 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 674 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 675 return false; 676 677 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 678 return false; 679 680 if (MD->getNumParams() == 2) { 681 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 682 if (!PT || !PT->isVoidPointerType() || 683 !PT->getPointeeType().isConstQualified()) 684 return false; 685 } 686 687 return true; 688 } 689 690 /// Return the UBSan prologue signature for \p FD if one is available. 691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 692 const FunctionDecl *FD) { 693 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 694 if (!MD->isStatic()) 695 return nullptr; 696 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 697 } 698 699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 700 llvm::Function *Fn, 701 const CGFunctionInfo &FnInfo, 702 const FunctionArgList &Args, 703 SourceLocation Loc, 704 SourceLocation StartLoc) { 705 assert(!CurFn && 706 "Do not use a CodeGenFunction object for more than one function"); 707 708 const Decl *D = GD.getDecl(); 709 710 DidCallStackSave = false; 711 CurCodeDecl = D; 712 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 713 if (FD && FD->usesSEHTry()) 714 CurSEHParent = FD; 715 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 716 FnRetTy = RetTy; 717 CurFn = Fn; 718 CurFnInfo = &FnInfo; 719 assert(CurFn->isDeclaration() && "Function already has body?"); 720 721 // If this function is ignored for any of the enabled sanitizers, 722 // disable the sanitizer for the function. 723 do { 724 #define SANITIZER(NAME, ID) \ 725 if (SanOpts.empty()) \ 726 break; \ 727 if (SanOpts.has(SanitizerKind::ID)) \ 728 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 729 SanOpts.set(SanitizerKind::ID, false); 730 731 #include "clang/Basic/Sanitizers.def" 732 #undef SANITIZER 733 } while (0); 734 735 if (D) { 736 bool NoSanitizeCoverage = false; 737 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 // Apply the no_sanitize* attributes to SanOpts. 740 SanitizerMask mask = Attr->getMask(); 741 SanOpts.Mask &= ~mask; 742 if (mask & SanitizerKind::Address) 743 SanOpts.set(SanitizerKind::KernelAddress, false); 744 if (mask & SanitizerKind::KernelAddress) 745 SanOpts.set(SanitizerKind::Address, false); 746 if (mask & SanitizerKind::HWAddress) 747 SanOpts.set(SanitizerKind::KernelHWAddress, false); 748 if (mask & SanitizerKind::KernelHWAddress) 749 SanOpts.set(SanitizerKind::HWAddress, false); 750 751 // SanitizeCoverage is not handled by SanOpts. 752 if (Attr->hasCoverage()) 753 NoSanitizeCoverage = true; 754 } 755 756 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 757 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 758 } 759 760 // Apply sanitizer attributes to the function. 761 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 763 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 764 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 765 if (SanOpts.has(SanitizerKind::MemTag)) 766 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 767 if (SanOpts.has(SanitizerKind::Thread)) 768 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 769 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 770 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 771 if (SanOpts.has(SanitizerKind::SafeStack)) 772 Fn->addFnAttr(llvm::Attribute::SafeStack); 773 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 774 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 775 776 // Apply fuzzing attribute to the function. 777 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 778 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 779 780 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 781 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 782 if (SanOpts.has(SanitizerKind::Thread)) { 783 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 784 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 785 if (OMD->getMethodFamily() == OMF_dealloc || 786 OMD->getMethodFamily() == OMF_initialize || 787 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 788 markAsIgnoreThreadCheckingAtRuntime(Fn); 789 } 790 } 791 } 792 793 // Ignore unrelated casts in STL allocate() since the allocator must cast 794 // from void* to T* before object initialization completes. Don't match on the 795 // namespace because not all allocators are in std:: 796 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 797 if (matchesStlAllocatorFn(D, getContext())) 798 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 799 } 800 801 // Ignore null checks in coroutine functions since the coroutines passes 802 // are not aware of how to move the extra UBSan instructions across the split 803 // coroutine boundaries. 804 if (D && SanOpts.has(SanitizerKind::Null)) 805 if (FD && FD->getBody() && 806 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 807 SanOpts.Mask &= ~SanitizerKind::Null; 808 809 // Apply xray attributes to the function (as a string, for now) 810 bool AlwaysXRayAttr = false; 811 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 812 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 813 XRayInstrKind::FunctionEntry) || 814 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 815 XRayInstrKind::FunctionExit)) { 816 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 817 Fn->addFnAttr("function-instrument", "xray-always"); 818 AlwaysXRayAttr = true; 819 } 820 if (XRayAttr->neverXRayInstrument()) 821 Fn->addFnAttr("function-instrument", "xray-never"); 822 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 823 if (ShouldXRayInstrumentFunction()) 824 Fn->addFnAttr("xray-log-args", 825 llvm::utostr(LogArgs->getArgumentCount())); 826 } 827 } else { 828 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 829 Fn->addFnAttr( 830 "xray-instruction-threshold", 831 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 832 } 833 834 if (ShouldXRayInstrumentFunction()) { 835 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 836 Fn->addFnAttr("xray-ignore-loops"); 837 838 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 839 XRayInstrKind::FunctionExit)) 840 Fn->addFnAttr("xray-skip-exit"); 841 842 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 843 XRayInstrKind::FunctionEntry)) 844 Fn->addFnAttr("xray-skip-entry"); 845 846 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 847 if (FuncGroups > 1) { 848 auto FuncName = llvm::makeArrayRef<uint8_t>( 849 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 850 auto Group = crc32(FuncName) % FuncGroups; 851 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 852 !AlwaysXRayAttr) 853 Fn->addFnAttr("function-instrument", "xray-never"); 854 } 855 } 856 857 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 858 if (CGM.isProfileInstrExcluded(Fn, Loc)) 859 Fn->addFnAttr(llvm::Attribute::NoProfile); 860 861 unsigned Count, Offset; 862 if (const auto *Attr = 863 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 864 Count = Attr->getCount(); 865 Offset = Attr->getOffset(); 866 } else { 867 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 868 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 869 } 870 if (Count && Offset <= Count) { 871 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 872 if (Offset) 873 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 874 } 875 876 // Add no-jump-tables value. 877 if (CGM.getCodeGenOpts().NoUseJumpTables) 878 Fn->addFnAttr("no-jump-tables", "true"); 879 880 // Add no-inline-line-tables value. 881 if (CGM.getCodeGenOpts().NoInlineLineTables) 882 Fn->addFnAttr("no-inline-line-tables"); 883 884 // Add profile-sample-accurate value. 885 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 886 Fn->addFnAttr("profile-sample-accurate"); 887 888 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 889 Fn->addFnAttr("use-sample-profile"); 890 891 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 892 Fn->addFnAttr("cfi-canonical-jump-table"); 893 894 if (D && D->hasAttr<NoProfileFunctionAttr>()) 895 Fn->addFnAttr(llvm::Attribute::NoProfile); 896 897 if (FD && getLangOpts().OpenCL) { 898 // Add metadata for a kernel function. 899 EmitOpenCLKernelMetadata(FD, Fn); 900 } 901 902 // If we are checking function types, emit a function type signature as 903 // prologue data. 904 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 905 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 906 // Remove any (C++17) exception specifications, to allow calling e.g. a 907 // noexcept function through a non-noexcept pointer. 908 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 909 FD->getType(), EST_None); 910 llvm::Constant *FTRTTIConst = 911 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 912 llvm::Constant *FTRTTIConstEncoded = 913 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 914 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 915 llvm::Constant *PrologueStructConst = 916 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 917 Fn->setPrologueData(PrologueStructConst); 918 } 919 } 920 921 // If we're checking nullability, we need to know whether we can check the 922 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 923 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 924 auto Nullability = FnRetTy->getNullability(getContext()); 925 if (Nullability && *Nullability == NullabilityKind::NonNull) { 926 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 927 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 928 RetValNullabilityPrecondition = 929 llvm::ConstantInt::getTrue(getLLVMContext()); 930 } 931 } 932 933 // If we're in C++ mode and the function name is "main", it is guaranteed 934 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 935 // used within a program"). 936 // 937 // OpenCL C 2.0 v2.2-11 s6.9.i: 938 // Recursion is not supported. 939 // 940 // SYCL v1.2.1 s3.10: 941 // kernels cannot include RTTI information, exception classes, 942 // recursive code, virtual functions or make use of C++ libraries that 943 // are not compiled for the device. 944 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 945 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 946 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 947 Fn->addFnAttr(llvm::Attribute::NoRecurse); 948 949 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 950 llvm::fp::ExceptionBehavior FPExceptionBehavior = 951 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 952 Builder.setDefaultConstrainedRounding(RM); 953 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 954 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 955 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 956 RM != llvm::RoundingMode::NearestTiesToEven))) { 957 Builder.setIsFPConstrained(true); 958 Fn->addFnAttr(llvm::Attribute::StrictFP); 959 } 960 961 // If a custom alignment is used, force realigning to this alignment on 962 // any main function which certainly will need it. 963 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 964 CGM.getCodeGenOpts().StackAlignment)) 965 Fn->addFnAttr("stackrealign"); 966 967 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 968 969 // Create a marker to make it easy to insert allocas into the entryblock 970 // later. Don't create this with the builder, because we don't want it 971 // folded. 972 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 973 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 974 975 ReturnBlock = getJumpDestInCurrentScope("return"); 976 977 Builder.SetInsertPoint(EntryBB); 978 979 // If we're checking the return value, allocate space for a pointer to a 980 // precise source location of the checked return statement. 981 if (requiresReturnValueCheck()) { 982 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 983 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 984 } 985 986 // Emit subprogram debug descriptor. 987 if (CGDebugInfo *DI = getDebugInfo()) { 988 // Reconstruct the type from the argument list so that implicit parameters, 989 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 990 // convention. 991 CallingConv CC = CallingConv::CC_C; 992 if (FD) 993 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 994 CC = SrcFnTy->getCallConv(); 995 SmallVector<QualType, 16> ArgTypes; 996 for (const VarDecl *VD : Args) 997 ArgTypes.push_back(VD->getType()); 998 QualType FnType = getContext().getFunctionType( 999 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1000 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 1001 } 1002 1003 if (ShouldInstrumentFunction()) { 1004 if (CGM.getCodeGenOpts().InstrumentFunctions) 1005 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1006 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1007 CurFn->addFnAttr("instrument-function-entry-inlined", 1008 "__cyg_profile_func_enter"); 1009 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1010 CurFn->addFnAttr("instrument-function-entry-inlined", 1011 "__cyg_profile_func_enter_bare"); 1012 } 1013 1014 // Since emitting the mcount call here impacts optimizations such as function 1015 // inlining, we just add an attribute to insert a mcount call in backend. 1016 // The attribute "counting-function" is set to mcount function name which is 1017 // architecture dependent. 1018 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1019 // Calls to fentry/mcount should not be generated if function has 1020 // the no_instrument_function attribute. 1021 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1022 if (CGM.getCodeGenOpts().CallFEntry) 1023 Fn->addFnAttr("fentry-call", "true"); 1024 else { 1025 Fn->addFnAttr("instrument-function-entry-inlined", 1026 getTarget().getMCountName()); 1027 } 1028 if (CGM.getCodeGenOpts().MNopMCount) { 1029 if (!CGM.getCodeGenOpts().CallFEntry) 1030 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1031 << "-mnop-mcount" << "-mfentry"; 1032 Fn->addFnAttr("mnop-mcount"); 1033 } 1034 1035 if (CGM.getCodeGenOpts().RecordMCount) { 1036 if (!CGM.getCodeGenOpts().CallFEntry) 1037 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1038 << "-mrecord-mcount" << "-mfentry"; 1039 Fn->addFnAttr("mrecord-mcount"); 1040 } 1041 } 1042 } 1043 1044 if (CGM.getCodeGenOpts().PackedStack) { 1045 if (getContext().getTargetInfo().getTriple().getArch() != 1046 llvm::Triple::systemz) 1047 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1048 << "-mpacked-stack"; 1049 Fn->addFnAttr("packed-stack"); 1050 } 1051 1052 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX) 1053 Fn->addFnAttr("warn-stack-size", 1054 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1055 1056 if (RetTy->isVoidType()) { 1057 // Void type; nothing to return. 1058 ReturnValue = Address::invalid(); 1059 1060 // Count the implicit return. 1061 if (!endsWithReturn(D)) 1062 ++NumReturnExprs; 1063 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1064 // Indirect return; emit returned value directly into sret slot. 1065 // This reduces code size, and affects correctness in C++. 1066 auto AI = CurFn->arg_begin(); 1067 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1068 ++AI; 1069 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1070 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1071 ReturnValuePointer = 1072 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1073 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1074 ReturnValue.getPointer(), Int8PtrTy), 1075 ReturnValuePointer); 1076 } 1077 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1078 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1079 // Load the sret pointer from the argument struct and return into that. 1080 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1081 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1082 --EI; 1083 llvm::Value *Addr = Builder.CreateStructGEP( 1084 EI->getType()->getPointerElementType(), &*EI, Idx); 1085 llvm::Type *Ty = 1086 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1087 ReturnValuePointer = Address(Addr, getPointerAlign()); 1088 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1089 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1090 } else { 1091 ReturnValue = CreateIRTemp(RetTy, "retval"); 1092 1093 // Tell the epilog emitter to autorelease the result. We do this 1094 // now so that various specialized functions can suppress it 1095 // during their IR-generation. 1096 if (getLangOpts().ObjCAutoRefCount && 1097 !CurFnInfo->isReturnsRetained() && 1098 RetTy->isObjCRetainableType()) 1099 AutoreleaseResult = true; 1100 } 1101 1102 EmitStartEHSpec(CurCodeDecl); 1103 1104 PrologueCleanupDepth = EHStack.stable_begin(); 1105 1106 // Emit OpenMP specific initialization of the device functions. 1107 if (getLangOpts().OpenMP && CurCodeDecl) 1108 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1109 1110 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1111 1112 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1113 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1115 if (MD->getParent()->isLambda() && 1116 MD->getOverloadedOperator() == OO_Call) { 1117 // We're in a lambda; figure out the captures. 1118 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1119 LambdaThisCaptureField); 1120 if (LambdaThisCaptureField) { 1121 // If the lambda captures the object referred to by '*this' - either by 1122 // value or by reference, make sure CXXThisValue points to the correct 1123 // object. 1124 1125 // Get the lvalue for the field (which is a copy of the enclosing object 1126 // or contains the address of the enclosing object). 1127 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1128 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1129 // If the enclosing object was captured by value, just use its address. 1130 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1131 } else { 1132 // Load the lvalue pointed to by the field, since '*this' was captured 1133 // by reference. 1134 CXXThisValue = 1135 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1136 } 1137 } 1138 for (auto *FD : MD->getParent()->fields()) { 1139 if (FD->hasCapturedVLAType()) { 1140 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1141 SourceLocation()).getScalarVal(); 1142 auto VAT = FD->getCapturedVLAType(); 1143 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1144 } 1145 } 1146 } else { 1147 // Not in a lambda; just use 'this' from the method. 1148 // FIXME: Should we generate a new load for each use of 'this'? The 1149 // fast register allocator would be happier... 1150 CXXThisValue = CXXABIThisValue; 1151 } 1152 1153 // Check the 'this' pointer once per function, if it's available. 1154 if (CXXABIThisValue) { 1155 SanitizerSet SkippedChecks; 1156 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1157 QualType ThisTy = MD->getThisType(); 1158 1159 // If this is the call operator of a lambda with no capture-default, it 1160 // may have a static invoker function, which may call this operator with 1161 // a null 'this' pointer. 1162 if (isLambdaCallOperator(MD) && 1163 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1164 SkippedChecks.set(SanitizerKind::Null, true); 1165 1166 EmitTypeCheck( 1167 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1168 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1169 } 1170 } 1171 1172 // If any of the arguments have a variably modified type, make sure to 1173 // emit the type size. 1174 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1175 i != e; ++i) { 1176 const VarDecl *VD = *i; 1177 1178 // Dig out the type as written from ParmVarDecls; it's unclear whether 1179 // the standard (C99 6.9.1p10) requires this, but we're following the 1180 // precedent set by gcc. 1181 QualType Ty; 1182 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1183 Ty = PVD->getOriginalType(); 1184 else 1185 Ty = VD->getType(); 1186 1187 if (Ty->isVariablyModifiedType()) 1188 EmitVariablyModifiedType(Ty); 1189 } 1190 // Emit a location at the end of the prologue. 1191 if (CGDebugInfo *DI = getDebugInfo()) 1192 DI->EmitLocation(Builder, StartLoc); 1193 1194 // TODO: Do we need to handle this in two places like we do with 1195 // target-features/target-cpu? 1196 if (CurFuncDecl) 1197 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1198 LargestVectorWidth = VecWidth->getVectorWidth(); 1199 } 1200 1201 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1202 incrementProfileCounter(Body); 1203 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1204 EmitCompoundStmtWithoutScope(*S); 1205 else 1206 EmitStmt(Body); 1207 1208 // This is checked after emitting the function body so we know if there 1209 // are any permitted infinite loops. 1210 if (checkIfFunctionMustProgress()) 1211 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1212 } 1213 1214 /// When instrumenting to collect profile data, the counts for some blocks 1215 /// such as switch cases need to not include the fall-through counts, so 1216 /// emit a branch around the instrumentation code. When not instrumenting, 1217 /// this just calls EmitBlock(). 1218 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1219 const Stmt *S) { 1220 llvm::BasicBlock *SkipCountBB = nullptr; 1221 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1222 // When instrumenting for profiling, the fallthrough to certain 1223 // statements needs to skip over the instrumentation code so that we 1224 // get an accurate count. 1225 SkipCountBB = createBasicBlock("skipcount"); 1226 EmitBranch(SkipCountBB); 1227 } 1228 EmitBlock(BB); 1229 uint64_t CurrentCount = getCurrentProfileCount(); 1230 incrementProfileCounter(S); 1231 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1232 if (SkipCountBB) 1233 EmitBlock(SkipCountBB); 1234 } 1235 1236 /// Tries to mark the given function nounwind based on the 1237 /// non-existence of any throwing calls within it. We believe this is 1238 /// lightweight enough to do at -O0. 1239 static void TryMarkNoThrow(llvm::Function *F) { 1240 // LLVM treats 'nounwind' on a function as part of the type, so we 1241 // can't do this on functions that can be overwritten. 1242 if (F->isInterposable()) return; 1243 1244 for (llvm::BasicBlock &BB : *F) 1245 for (llvm::Instruction &I : BB) 1246 if (I.mayThrow()) 1247 return; 1248 1249 F->setDoesNotThrow(); 1250 } 1251 1252 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1253 FunctionArgList &Args) { 1254 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1255 QualType ResTy = FD->getReturnType(); 1256 1257 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1258 if (MD && MD->isInstance()) { 1259 if (CGM.getCXXABI().HasThisReturn(GD)) 1260 ResTy = MD->getThisType(); 1261 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1262 ResTy = CGM.getContext().VoidPtrTy; 1263 CGM.getCXXABI().buildThisParam(*this, Args); 1264 } 1265 1266 // The base version of an inheriting constructor whose constructed base is a 1267 // virtual base is not passed any arguments (because it doesn't actually call 1268 // the inherited constructor). 1269 bool PassedParams = true; 1270 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1271 if (auto Inherited = CD->getInheritedConstructor()) 1272 PassedParams = 1273 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1274 1275 if (PassedParams) { 1276 for (auto *Param : FD->parameters()) { 1277 Args.push_back(Param); 1278 if (!Param->hasAttr<PassObjectSizeAttr>()) 1279 continue; 1280 1281 auto *Implicit = ImplicitParamDecl::Create( 1282 getContext(), Param->getDeclContext(), Param->getLocation(), 1283 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1284 SizeArguments[Param] = Implicit; 1285 Args.push_back(Implicit); 1286 } 1287 } 1288 1289 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1290 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1291 1292 return ResTy; 1293 } 1294 1295 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1296 const CGFunctionInfo &FnInfo) { 1297 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1298 CurGD = GD; 1299 1300 FunctionArgList Args; 1301 QualType ResTy = BuildFunctionArgList(GD, Args); 1302 1303 // Check if we should generate debug info for this function. 1304 if (FD->hasAttr<NoDebugAttr>()) { 1305 // Clear non-distinct debug info that was possibly attached to the function 1306 // due to an earlier declaration without the nodebug attribute 1307 if (Fn) 1308 Fn->setSubprogram(nullptr); 1309 // Disable debug info indefinitely for this function 1310 DebugInfo = nullptr; 1311 } 1312 1313 // The function might not have a body if we're generating thunks for a 1314 // function declaration. 1315 SourceRange BodyRange; 1316 if (Stmt *Body = FD->getBody()) 1317 BodyRange = Body->getSourceRange(); 1318 else 1319 BodyRange = FD->getLocation(); 1320 CurEHLocation = BodyRange.getEnd(); 1321 1322 // Use the location of the start of the function to determine where 1323 // the function definition is located. By default use the location 1324 // of the declaration as the location for the subprogram. A function 1325 // may lack a declaration in the source code if it is created by code 1326 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1327 SourceLocation Loc = FD->getLocation(); 1328 1329 // If this is a function specialization then use the pattern body 1330 // as the location for the function. 1331 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1332 if (SpecDecl->hasBody(SpecDecl)) 1333 Loc = SpecDecl->getLocation(); 1334 1335 Stmt *Body = FD->getBody(); 1336 1337 if (Body) { 1338 // Coroutines always emit lifetime markers. 1339 if (isa<CoroutineBodyStmt>(Body)) 1340 ShouldEmitLifetimeMarkers = true; 1341 1342 // Initialize helper which will detect jumps which can cause invalid 1343 // lifetime markers. 1344 if (ShouldEmitLifetimeMarkers) 1345 Bypasses.Init(Body); 1346 } 1347 1348 // Emit the standard function prologue. 1349 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1350 1351 // Save parameters for coroutine function. 1352 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1353 for (const auto *ParamDecl : FD->parameters()) 1354 FnArgs.push_back(ParamDecl); 1355 1356 // Generate the body of the function. 1357 PGO.assignRegionCounters(GD, CurFn); 1358 if (isa<CXXDestructorDecl>(FD)) 1359 EmitDestructorBody(Args); 1360 else if (isa<CXXConstructorDecl>(FD)) 1361 EmitConstructorBody(Args); 1362 else if (getLangOpts().CUDA && 1363 !getLangOpts().CUDAIsDevice && 1364 FD->hasAttr<CUDAGlobalAttr>()) 1365 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1366 else if (isa<CXXMethodDecl>(FD) && 1367 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1368 // The lambda static invoker function is special, because it forwards or 1369 // clones the body of the function call operator (but is actually static). 1370 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1371 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1372 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1373 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1374 // Implicit copy-assignment gets the same special treatment as implicit 1375 // copy-constructors. 1376 emitImplicitAssignmentOperatorBody(Args); 1377 } else if (Body) { 1378 EmitFunctionBody(Body); 1379 } else 1380 llvm_unreachable("no definition for emitted function"); 1381 1382 // C++11 [stmt.return]p2: 1383 // Flowing off the end of a function [...] results in undefined behavior in 1384 // a value-returning function. 1385 // C11 6.9.1p12: 1386 // If the '}' that terminates a function is reached, and the value of the 1387 // function call is used by the caller, the behavior is undefined. 1388 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1389 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1390 bool ShouldEmitUnreachable = 1391 CGM.getCodeGenOpts().StrictReturn || 1392 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1393 if (SanOpts.has(SanitizerKind::Return)) { 1394 SanitizerScope SanScope(this); 1395 llvm::Value *IsFalse = Builder.getFalse(); 1396 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1397 SanitizerHandler::MissingReturn, 1398 EmitCheckSourceLocation(FD->getLocation()), None); 1399 } else if (ShouldEmitUnreachable) { 1400 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1401 EmitTrapCall(llvm::Intrinsic::trap); 1402 } 1403 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1404 Builder.CreateUnreachable(); 1405 Builder.ClearInsertionPoint(); 1406 } 1407 } 1408 1409 // Emit the standard function epilogue. 1410 FinishFunction(BodyRange.getEnd()); 1411 1412 // If we haven't marked the function nothrow through other means, do 1413 // a quick pass now to see if we can. 1414 if (!CurFn->doesNotThrow()) 1415 TryMarkNoThrow(CurFn); 1416 } 1417 1418 /// ContainsLabel - Return true if the statement contains a label in it. If 1419 /// this statement is not executed normally, it not containing a label means 1420 /// that we can just remove the code. 1421 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1422 // Null statement, not a label! 1423 if (!S) return false; 1424 1425 // If this is a label, we have to emit the code, consider something like: 1426 // if (0) { ... foo: bar(); } goto foo; 1427 // 1428 // TODO: If anyone cared, we could track __label__'s, since we know that you 1429 // can't jump to one from outside their declared region. 1430 if (isa<LabelStmt>(S)) 1431 return true; 1432 1433 // If this is a case/default statement, and we haven't seen a switch, we have 1434 // to emit the code. 1435 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1436 return true; 1437 1438 // If this is a switch statement, we want to ignore cases below it. 1439 if (isa<SwitchStmt>(S)) 1440 IgnoreCaseStmts = true; 1441 1442 // Scan subexpressions for verboten labels. 1443 for (const Stmt *SubStmt : S->children()) 1444 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1445 return true; 1446 1447 return false; 1448 } 1449 1450 /// containsBreak - Return true if the statement contains a break out of it. 1451 /// If the statement (recursively) contains a switch or loop with a break 1452 /// inside of it, this is fine. 1453 bool CodeGenFunction::containsBreak(const Stmt *S) { 1454 // Null statement, not a label! 1455 if (!S) return false; 1456 1457 // If this is a switch or loop that defines its own break scope, then we can 1458 // include it and anything inside of it. 1459 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1460 isa<ForStmt>(S)) 1461 return false; 1462 1463 if (isa<BreakStmt>(S)) 1464 return true; 1465 1466 // Scan subexpressions for verboten breaks. 1467 for (const Stmt *SubStmt : S->children()) 1468 if (containsBreak(SubStmt)) 1469 return true; 1470 1471 return false; 1472 } 1473 1474 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1475 if (!S) return false; 1476 1477 // Some statement kinds add a scope and thus never add a decl to the current 1478 // scope. Note, this list is longer than the list of statements that might 1479 // have an unscoped decl nested within them, but this way is conservatively 1480 // correct even if more statement kinds are added. 1481 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1482 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1483 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1484 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1485 return false; 1486 1487 if (isa<DeclStmt>(S)) 1488 return true; 1489 1490 for (const Stmt *SubStmt : S->children()) 1491 if (mightAddDeclToScope(SubStmt)) 1492 return true; 1493 1494 return false; 1495 } 1496 1497 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1498 /// to a constant, or if it does but contains a label, return false. If it 1499 /// constant folds return true and set the boolean result in Result. 1500 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1501 bool &ResultBool, 1502 bool AllowLabels) { 1503 llvm::APSInt ResultInt; 1504 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1505 return false; 1506 1507 ResultBool = ResultInt.getBoolValue(); 1508 return true; 1509 } 1510 1511 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1512 /// to a constant, or if it does but contains a label, return false. If it 1513 /// constant folds return true and set the folded value. 1514 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1515 llvm::APSInt &ResultInt, 1516 bool AllowLabels) { 1517 // FIXME: Rename and handle conversion of other evaluatable things 1518 // to bool. 1519 Expr::EvalResult Result; 1520 if (!Cond->EvaluateAsInt(Result, getContext())) 1521 return false; // Not foldable, not integer or not fully evaluatable. 1522 1523 llvm::APSInt Int = Result.Val.getInt(); 1524 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1525 return false; // Contains a label. 1526 1527 ResultInt = Int; 1528 return true; 1529 } 1530 1531 /// Determine whether the given condition is an instrumentable condition 1532 /// (i.e. no "&&" or "||"). 1533 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1534 // Bypass simplistic logical-NOT operator before determining whether the 1535 // condition contains any other logical operator. 1536 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1537 if (UnOp->getOpcode() == UO_LNot) 1538 C = UnOp->getSubExpr(); 1539 1540 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1541 return (!BOp || !BOp->isLogicalOp()); 1542 } 1543 1544 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1545 /// increments a profile counter based on the semantics of the given logical 1546 /// operator opcode. This is used to instrument branch condition coverage for 1547 /// logical operators. 1548 void CodeGenFunction::EmitBranchToCounterBlock( 1549 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1550 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1551 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1552 // If not instrumenting, just emit a branch. 1553 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1554 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1555 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1556 1557 llvm::BasicBlock *ThenBlock = NULL; 1558 llvm::BasicBlock *ElseBlock = NULL; 1559 llvm::BasicBlock *NextBlock = NULL; 1560 1561 // Create the block we'll use to increment the appropriate counter. 1562 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1563 1564 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1565 // means we need to evaluate the condition and increment the counter on TRUE: 1566 // 1567 // if (Cond) 1568 // goto CounterIncrBlock; 1569 // else 1570 // goto FalseBlock; 1571 // 1572 // CounterIncrBlock: 1573 // Counter++; 1574 // goto TrueBlock; 1575 1576 if (LOp == BO_LAnd) { 1577 ThenBlock = CounterIncrBlock; 1578 ElseBlock = FalseBlock; 1579 NextBlock = TrueBlock; 1580 } 1581 1582 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1583 // we need to evaluate the condition and increment the counter on FALSE: 1584 // 1585 // if (Cond) 1586 // goto TrueBlock; 1587 // else 1588 // goto CounterIncrBlock; 1589 // 1590 // CounterIncrBlock: 1591 // Counter++; 1592 // goto FalseBlock; 1593 1594 else if (LOp == BO_LOr) { 1595 ThenBlock = TrueBlock; 1596 ElseBlock = CounterIncrBlock; 1597 NextBlock = FalseBlock; 1598 } else { 1599 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1600 } 1601 1602 // Emit Branch based on condition. 1603 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1604 1605 // Emit the block containing the counter increment(s). 1606 EmitBlock(CounterIncrBlock); 1607 1608 // Increment corresponding counter; if index not provided, use Cond as index. 1609 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1610 1611 // Go to the next block. 1612 EmitBranch(NextBlock); 1613 } 1614 1615 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1616 /// statement) to the specified blocks. Based on the condition, this might try 1617 /// to simplify the codegen of the conditional based on the branch. 1618 /// \param LH The value of the likelihood attribute on the True branch. 1619 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1620 llvm::BasicBlock *TrueBlock, 1621 llvm::BasicBlock *FalseBlock, 1622 uint64_t TrueCount, 1623 Stmt::Likelihood LH) { 1624 Cond = Cond->IgnoreParens(); 1625 1626 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1627 1628 // Handle X && Y in a condition. 1629 if (CondBOp->getOpcode() == BO_LAnd) { 1630 // If we have "1 && X", simplify the code. "0 && X" would have constant 1631 // folded if the case was simple enough. 1632 bool ConstantBool = false; 1633 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1634 ConstantBool) { 1635 // br(1 && X) -> br(X). 1636 incrementProfileCounter(CondBOp); 1637 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1638 FalseBlock, TrueCount, LH); 1639 } 1640 1641 // If we have "X && 1", simplify the code to use an uncond branch. 1642 // "X && 0" would have been constant folded to 0. 1643 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1644 ConstantBool) { 1645 // br(X && 1) -> br(X). 1646 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1647 FalseBlock, TrueCount, LH, CondBOp); 1648 } 1649 1650 // Emit the LHS as a conditional. If the LHS conditional is false, we 1651 // want to jump to the FalseBlock. 1652 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1653 // The counter tells us how often we evaluate RHS, and all of TrueCount 1654 // can be propagated to that branch. 1655 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1656 1657 ConditionalEvaluation eval(*this); 1658 { 1659 ApplyDebugLocation DL(*this, Cond); 1660 // Propagate the likelihood attribute like __builtin_expect 1661 // __builtin_expect(X && Y, 1) -> X and Y are likely 1662 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1663 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1664 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1665 EmitBlock(LHSTrue); 1666 } 1667 1668 incrementProfileCounter(CondBOp); 1669 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1670 1671 // Any temporaries created here are conditional. 1672 eval.begin(*this); 1673 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1674 FalseBlock, TrueCount, LH); 1675 eval.end(*this); 1676 1677 return; 1678 } 1679 1680 if (CondBOp->getOpcode() == BO_LOr) { 1681 // If we have "0 || X", simplify the code. "1 || X" would have constant 1682 // folded if the case was simple enough. 1683 bool ConstantBool = false; 1684 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1685 !ConstantBool) { 1686 // br(0 || X) -> br(X). 1687 incrementProfileCounter(CondBOp); 1688 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1689 FalseBlock, TrueCount, LH); 1690 } 1691 1692 // If we have "X || 0", simplify the code to use an uncond branch. 1693 // "X || 1" would have been constant folded to 1. 1694 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1695 !ConstantBool) { 1696 // br(X || 0) -> br(X). 1697 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1698 FalseBlock, TrueCount, LH, CondBOp); 1699 } 1700 1701 // Emit the LHS as a conditional. If the LHS conditional is true, we 1702 // want to jump to the TrueBlock. 1703 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1704 // We have the count for entry to the RHS and for the whole expression 1705 // being true, so we can divy up True count between the short circuit and 1706 // the RHS. 1707 uint64_t LHSCount = 1708 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1709 uint64_t RHSCount = TrueCount - LHSCount; 1710 1711 ConditionalEvaluation eval(*this); 1712 { 1713 // Propagate the likelihood attribute like __builtin_expect 1714 // __builtin_expect(X || Y, 1) -> only Y is likely 1715 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1716 ApplyDebugLocation DL(*this, Cond); 1717 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1718 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1719 EmitBlock(LHSFalse); 1720 } 1721 1722 incrementProfileCounter(CondBOp); 1723 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1724 1725 // Any temporaries created here are conditional. 1726 eval.begin(*this); 1727 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1728 RHSCount, LH); 1729 1730 eval.end(*this); 1731 1732 return; 1733 } 1734 } 1735 1736 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1737 // br(!x, t, f) -> br(x, f, t) 1738 if (CondUOp->getOpcode() == UO_LNot) { 1739 // Negate the count. 1740 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1741 // The values of the enum are chosen to make this negation possible. 1742 LH = static_cast<Stmt::Likelihood>(-LH); 1743 // Negate the condition and swap the destination blocks. 1744 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1745 FalseCount, LH); 1746 } 1747 } 1748 1749 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1750 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1751 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1752 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1753 1754 // The ConditionalOperator itself has no likelihood information for its 1755 // true and false branches. This matches the behavior of __builtin_expect. 1756 ConditionalEvaluation cond(*this); 1757 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1758 getProfileCount(CondOp), Stmt::LH_None); 1759 1760 // When computing PGO branch weights, we only know the overall count for 1761 // the true block. This code is essentially doing tail duplication of the 1762 // naive code-gen, introducing new edges for which counts are not 1763 // available. Divide the counts proportionally between the LHS and RHS of 1764 // the conditional operator. 1765 uint64_t LHSScaledTrueCount = 0; 1766 if (TrueCount) { 1767 double LHSRatio = 1768 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1769 LHSScaledTrueCount = TrueCount * LHSRatio; 1770 } 1771 1772 cond.begin(*this); 1773 EmitBlock(LHSBlock); 1774 incrementProfileCounter(CondOp); 1775 { 1776 ApplyDebugLocation DL(*this, Cond); 1777 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1778 LHSScaledTrueCount, LH); 1779 } 1780 cond.end(*this); 1781 1782 cond.begin(*this); 1783 EmitBlock(RHSBlock); 1784 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1785 TrueCount - LHSScaledTrueCount, LH); 1786 cond.end(*this); 1787 1788 return; 1789 } 1790 1791 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1792 // Conditional operator handling can give us a throw expression as a 1793 // condition for a case like: 1794 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1795 // Fold this to: 1796 // br(c, throw x, br(y, t, f)) 1797 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1798 return; 1799 } 1800 1801 // Emit the code with the fully general case. 1802 llvm::Value *CondV; 1803 { 1804 ApplyDebugLocation DL(*this, Cond); 1805 CondV = EvaluateExprAsBool(Cond); 1806 } 1807 1808 llvm::MDNode *Weights = nullptr; 1809 llvm::MDNode *Unpredictable = nullptr; 1810 1811 // If the branch has a condition wrapped by __builtin_unpredictable, 1812 // create metadata that specifies that the branch is unpredictable. 1813 // Don't bother if not optimizing because that metadata would not be used. 1814 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1815 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1816 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1817 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1818 llvm::MDBuilder MDHelper(getLLVMContext()); 1819 Unpredictable = MDHelper.createUnpredictable(); 1820 } 1821 } 1822 1823 // If there is a Likelihood knowledge for the cond, lower it. 1824 // Note that if not optimizing this won't emit anything. 1825 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1826 if (CondV != NewCondV) 1827 CondV = NewCondV; 1828 else { 1829 // Otherwise, lower profile counts. Note that we do this even at -O0. 1830 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1831 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1832 } 1833 1834 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1835 } 1836 1837 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1838 /// specified stmt yet. 1839 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1840 CGM.ErrorUnsupported(S, Type); 1841 } 1842 1843 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1844 /// variable-length array whose elements have a non-zero bit-pattern. 1845 /// 1846 /// \param baseType the inner-most element type of the array 1847 /// \param src - a char* pointing to the bit-pattern for a single 1848 /// base element of the array 1849 /// \param sizeInChars - the total size of the VLA, in chars 1850 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1851 Address dest, Address src, 1852 llvm::Value *sizeInChars) { 1853 CGBuilderTy &Builder = CGF.Builder; 1854 1855 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1856 llvm::Value *baseSizeInChars 1857 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1858 1859 Address begin = 1860 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1861 llvm::Value *end = Builder.CreateInBoundsGEP( 1862 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1863 1864 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1865 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1866 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1867 1868 // Make a loop over the VLA. C99 guarantees that the VLA element 1869 // count must be nonzero. 1870 CGF.EmitBlock(loopBB); 1871 1872 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1873 cur->addIncoming(begin.getPointer(), originBB); 1874 1875 CharUnits curAlign = 1876 dest.getAlignment().alignmentOfArrayElement(baseSize); 1877 1878 // memcpy the individual element bit-pattern. 1879 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1880 /*volatile*/ false); 1881 1882 // Go to the next element. 1883 llvm::Value *next = 1884 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1885 1886 // Leave if that's the end of the VLA. 1887 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1888 Builder.CreateCondBr(done, contBB, loopBB); 1889 cur->addIncoming(next, loopBB); 1890 1891 CGF.EmitBlock(contBB); 1892 } 1893 1894 void 1895 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1896 // Ignore empty classes in C++. 1897 if (getLangOpts().CPlusPlus) { 1898 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1899 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1900 return; 1901 } 1902 } 1903 1904 // Cast the dest ptr to the appropriate i8 pointer type. 1905 if (DestPtr.getElementType() != Int8Ty) 1906 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1907 1908 // Get size and alignment info for this aggregate. 1909 CharUnits size = getContext().getTypeSizeInChars(Ty); 1910 1911 llvm::Value *SizeVal; 1912 const VariableArrayType *vla; 1913 1914 // Don't bother emitting a zero-byte memset. 1915 if (size.isZero()) { 1916 // But note that getTypeInfo returns 0 for a VLA. 1917 if (const VariableArrayType *vlaType = 1918 dyn_cast_or_null<VariableArrayType>( 1919 getContext().getAsArrayType(Ty))) { 1920 auto VlaSize = getVLASize(vlaType); 1921 SizeVal = VlaSize.NumElts; 1922 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1923 if (!eltSize.isOne()) 1924 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1925 vla = vlaType; 1926 } else { 1927 return; 1928 } 1929 } else { 1930 SizeVal = CGM.getSize(size); 1931 vla = nullptr; 1932 } 1933 1934 // If the type contains a pointer to data member we can't memset it to zero. 1935 // Instead, create a null constant and copy it to the destination. 1936 // TODO: there are other patterns besides zero that we can usefully memset, 1937 // like -1, which happens to be the pattern used by member-pointers. 1938 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1939 // For a VLA, emit a single element, then splat that over the VLA. 1940 if (vla) Ty = getContext().getBaseElementType(vla); 1941 1942 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1943 1944 llvm::GlobalVariable *NullVariable = 1945 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1946 /*isConstant=*/true, 1947 llvm::GlobalVariable::PrivateLinkage, 1948 NullConstant, Twine()); 1949 CharUnits NullAlign = DestPtr.getAlignment(); 1950 NullVariable->setAlignment(NullAlign.getAsAlign()); 1951 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1952 NullAlign); 1953 1954 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1955 1956 // Get and call the appropriate llvm.memcpy overload. 1957 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1958 return; 1959 } 1960 1961 // Otherwise, just memset the whole thing to zero. This is legal 1962 // because in LLVM, all default initializers (other than the ones we just 1963 // handled above) are guaranteed to have a bit pattern of all zeros. 1964 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1965 } 1966 1967 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1968 // Make sure that there is a block for the indirect goto. 1969 if (!IndirectBranch) 1970 GetIndirectGotoBlock(); 1971 1972 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1973 1974 // Make sure the indirect branch includes all of the address-taken blocks. 1975 IndirectBranch->addDestination(BB); 1976 return llvm::BlockAddress::get(CurFn, BB); 1977 } 1978 1979 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1980 // If we already made the indirect branch for indirect goto, return its block. 1981 if (IndirectBranch) return IndirectBranch->getParent(); 1982 1983 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1984 1985 // Create the PHI node that indirect gotos will add entries to. 1986 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1987 "indirect.goto.dest"); 1988 1989 // Create the indirect branch instruction. 1990 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1991 return IndirectBranch->getParent(); 1992 } 1993 1994 /// Computes the length of an array in elements, as well as the base 1995 /// element type and a properly-typed first element pointer. 1996 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1997 QualType &baseType, 1998 Address &addr) { 1999 const ArrayType *arrayType = origArrayType; 2000 2001 // If it's a VLA, we have to load the stored size. Note that 2002 // this is the size of the VLA in bytes, not its size in elements. 2003 llvm::Value *numVLAElements = nullptr; 2004 if (isa<VariableArrayType>(arrayType)) { 2005 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2006 2007 // Walk into all VLAs. This doesn't require changes to addr, 2008 // which has type T* where T is the first non-VLA element type. 2009 do { 2010 QualType elementType = arrayType->getElementType(); 2011 arrayType = getContext().getAsArrayType(elementType); 2012 2013 // If we only have VLA components, 'addr' requires no adjustment. 2014 if (!arrayType) { 2015 baseType = elementType; 2016 return numVLAElements; 2017 } 2018 } while (isa<VariableArrayType>(arrayType)); 2019 2020 // We get out here only if we find a constant array type 2021 // inside the VLA. 2022 } 2023 2024 // We have some number of constant-length arrays, so addr should 2025 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2026 // down to the first element of addr. 2027 SmallVector<llvm::Value*, 8> gepIndices; 2028 2029 // GEP down to the array type. 2030 llvm::ConstantInt *zero = Builder.getInt32(0); 2031 gepIndices.push_back(zero); 2032 2033 uint64_t countFromCLAs = 1; 2034 QualType eltType; 2035 2036 llvm::ArrayType *llvmArrayType = 2037 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2038 while (llvmArrayType) { 2039 assert(isa<ConstantArrayType>(arrayType)); 2040 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2041 == llvmArrayType->getNumElements()); 2042 2043 gepIndices.push_back(zero); 2044 countFromCLAs *= llvmArrayType->getNumElements(); 2045 eltType = arrayType->getElementType(); 2046 2047 llvmArrayType = 2048 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2049 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2050 assert((!llvmArrayType || arrayType) && 2051 "LLVM and Clang types are out-of-synch"); 2052 } 2053 2054 if (arrayType) { 2055 // From this point onwards, the Clang array type has been emitted 2056 // as some other type (probably a packed struct). Compute the array 2057 // size, and just emit the 'begin' expression as a bitcast. 2058 while (arrayType) { 2059 countFromCLAs *= 2060 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2061 eltType = arrayType->getElementType(); 2062 arrayType = getContext().getAsArrayType(eltType); 2063 } 2064 2065 llvm::Type *baseType = ConvertType(eltType); 2066 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2067 } else { 2068 // Create the actual GEP. 2069 addr = Address(Builder.CreateInBoundsGEP( 2070 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2071 addr.getAlignment()); 2072 } 2073 2074 baseType = eltType; 2075 2076 llvm::Value *numElements 2077 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2078 2079 // If we had any VLA dimensions, factor them in. 2080 if (numVLAElements) 2081 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2082 2083 return numElements; 2084 } 2085 2086 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2087 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2088 assert(vla && "type was not a variable array type!"); 2089 return getVLASize(vla); 2090 } 2091 2092 CodeGenFunction::VlaSizePair 2093 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2094 // The number of elements so far; always size_t. 2095 llvm::Value *numElements = nullptr; 2096 2097 QualType elementType; 2098 do { 2099 elementType = type->getElementType(); 2100 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2101 assert(vlaSize && "no size for VLA!"); 2102 assert(vlaSize->getType() == SizeTy); 2103 2104 if (!numElements) { 2105 numElements = vlaSize; 2106 } else { 2107 // It's undefined behavior if this wraps around, so mark it that way. 2108 // FIXME: Teach -fsanitize=undefined to trap this. 2109 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2110 } 2111 } while ((type = getContext().getAsVariableArrayType(elementType))); 2112 2113 return { numElements, elementType }; 2114 } 2115 2116 CodeGenFunction::VlaSizePair 2117 CodeGenFunction::getVLAElements1D(QualType type) { 2118 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2119 assert(vla && "type was not a variable array type!"); 2120 return getVLAElements1D(vla); 2121 } 2122 2123 CodeGenFunction::VlaSizePair 2124 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2125 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2126 assert(VlaSize && "no size for VLA!"); 2127 assert(VlaSize->getType() == SizeTy); 2128 return { VlaSize, Vla->getElementType() }; 2129 } 2130 2131 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2132 assert(type->isVariablyModifiedType() && 2133 "Must pass variably modified type to EmitVLASizes!"); 2134 2135 EnsureInsertPoint(); 2136 2137 // We're going to walk down into the type and look for VLA 2138 // expressions. 2139 do { 2140 assert(type->isVariablyModifiedType()); 2141 2142 const Type *ty = type.getTypePtr(); 2143 switch (ty->getTypeClass()) { 2144 2145 #define TYPE(Class, Base) 2146 #define ABSTRACT_TYPE(Class, Base) 2147 #define NON_CANONICAL_TYPE(Class, Base) 2148 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2149 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2150 #include "clang/AST/TypeNodes.inc" 2151 llvm_unreachable("unexpected dependent type!"); 2152 2153 // These types are never variably-modified. 2154 case Type::Builtin: 2155 case Type::Complex: 2156 case Type::Vector: 2157 case Type::ExtVector: 2158 case Type::ConstantMatrix: 2159 case Type::Record: 2160 case Type::Enum: 2161 case Type::Elaborated: 2162 case Type::TemplateSpecialization: 2163 case Type::ObjCTypeParam: 2164 case Type::ObjCObject: 2165 case Type::ObjCInterface: 2166 case Type::ObjCObjectPointer: 2167 case Type::ExtInt: 2168 llvm_unreachable("type class is never variably-modified!"); 2169 2170 case Type::Adjusted: 2171 type = cast<AdjustedType>(ty)->getAdjustedType(); 2172 break; 2173 2174 case Type::Decayed: 2175 type = cast<DecayedType>(ty)->getPointeeType(); 2176 break; 2177 2178 case Type::Pointer: 2179 type = cast<PointerType>(ty)->getPointeeType(); 2180 break; 2181 2182 case Type::BlockPointer: 2183 type = cast<BlockPointerType>(ty)->getPointeeType(); 2184 break; 2185 2186 case Type::LValueReference: 2187 case Type::RValueReference: 2188 type = cast<ReferenceType>(ty)->getPointeeType(); 2189 break; 2190 2191 case Type::MemberPointer: 2192 type = cast<MemberPointerType>(ty)->getPointeeType(); 2193 break; 2194 2195 case Type::ConstantArray: 2196 case Type::IncompleteArray: 2197 // Losing element qualification here is fine. 2198 type = cast<ArrayType>(ty)->getElementType(); 2199 break; 2200 2201 case Type::VariableArray: { 2202 // Losing element qualification here is fine. 2203 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2204 2205 // Unknown size indication requires no size computation. 2206 // Otherwise, evaluate and record it. 2207 if (const Expr *size = vat->getSizeExpr()) { 2208 // It's possible that we might have emitted this already, 2209 // e.g. with a typedef and a pointer to it. 2210 llvm::Value *&entry = VLASizeMap[size]; 2211 if (!entry) { 2212 llvm::Value *Size = EmitScalarExpr(size); 2213 2214 // C11 6.7.6.2p5: 2215 // If the size is an expression that is not an integer constant 2216 // expression [...] each time it is evaluated it shall have a value 2217 // greater than zero. 2218 if (SanOpts.has(SanitizerKind::VLABound) && 2219 size->getType()->isSignedIntegerType()) { 2220 SanitizerScope SanScope(this); 2221 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2222 llvm::Constant *StaticArgs[] = { 2223 EmitCheckSourceLocation(size->getBeginLoc()), 2224 EmitCheckTypeDescriptor(size->getType())}; 2225 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2226 SanitizerKind::VLABound), 2227 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2228 } 2229 2230 // Always zexting here would be wrong if it weren't 2231 // undefined behavior to have a negative bound. 2232 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2233 } 2234 } 2235 type = vat->getElementType(); 2236 break; 2237 } 2238 2239 case Type::FunctionProto: 2240 case Type::FunctionNoProto: 2241 type = cast<FunctionType>(ty)->getReturnType(); 2242 break; 2243 2244 case Type::Paren: 2245 case Type::TypeOf: 2246 case Type::UnaryTransform: 2247 case Type::Attributed: 2248 case Type::SubstTemplateTypeParm: 2249 case Type::MacroQualified: 2250 // Keep walking after single level desugaring. 2251 type = type.getSingleStepDesugaredType(getContext()); 2252 break; 2253 2254 case Type::Typedef: 2255 case Type::Decltype: 2256 case Type::Auto: 2257 case Type::DeducedTemplateSpecialization: 2258 // Stop walking: nothing to do. 2259 return; 2260 2261 case Type::TypeOfExpr: 2262 // Stop walking: emit typeof expression. 2263 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2264 return; 2265 2266 case Type::Atomic: 2267 type = cast<AtomicType>(ty)->getValueType(); 2268 break; 2269 2270 case Type::Pipe: 2271 type = cast<PipeType>(ty)->getElementType(); 2272 break; 2273 } 2274 } while (type->isVariablyModifiedType()); 2275 } 2276 2277 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2278 if (getContext().getBuiltinVaListType()->isArrayType()) 2279 return EmitPointerWithAlignment(E); 2280 return EmitLValue(E).getAddress(*this); 2281 } 2282 2283 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2284 return EmitLValue(E).getAddress(*this); 2285 } 2286 2287 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2288 const APValue &Init) { 2289 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2290 if (CGDebugInfo *Dbg = getDebugInfo()) 2291 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2292 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2293 } 2294 2295 CodeGenFunction::PeepholeProtection 2296 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2297 // At the moment, the only aggressive peephole we do in IR gen 2298 // is trunc(zext) folding, but if we add more, we can easily 2299 // extend this protection. 2300 2301 if (!rvalue.isScalar()) return PeepholeProtection(); 2302 llvm::Value *value = rvalue.getScalarVal(); 2303 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2304 2305 // Just make an extra bitcast. 2306 assert(HaveInsertPoint()); 2307 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2308 Builder.GetInsertBlock()); 2309 2310 PeepholeProtection protection; 2311 protection.Inst = inst; 2312 return protection; 2313 } 2314 2315 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2316 if (!protection.Inst) return; 2317 2318 // In theory, we could try to duplicate the peepholes now, but whatever. 2319 protection.Inst->eraseFromParent(); 2320 } 2321 2322 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2323 QualType Ty, SourceLocation Loc, 2324 SourceLocation AssumptionLoc, 2325 llvm::Value *Alignment, 2326 llvm::Value *OffsetValue) { 2327 if (Alignment->getType() != IntPtrTy) 2328 Alignment = 2329 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2330 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2331 OffsetValue = 2332 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2333 llvm::Value *TheCheck = nullptr; 2334 if (SanOpts.has(SanitizerKind::Alignment)) { 2335 llvm::Value *PtrIntValue = 2336 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2337 2338 if (OffsetValue) { 2339 bool IsOffsetZero = false; 2340 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2341 IsOffsetZero = CI->isZero(); 2342 2343 if (!IsOffsetZero) 2344 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2345 } 2346 2347 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2348 llvm::Value *Mask = 2349 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2350 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2351 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2352 } 2353 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2354 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2355 2356 if (!SanOpts.has(SanitizerKind::Alignment)) 2357 return; 2358 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2359 OffsetValue, TheCheck, Assumption); 2360 } 2361 2362 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2363 const Expr *E, 2364 SourceLocation AssumptionLoc, 2365 llvm::Value *Alignment, 2366 llvm::Value *OffsetValue) { 2367 if (auto *CE = dyn_cast<CastExpr>(E)) 2368 E = CE->getSubExprAsWritten(); 2369 QualType Ty = E->getType(); 2370 SourceLocation Loc = E->getExprLoc(); 2371 2372 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2373 OffsetValue); 2374 } 2375 2376 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2377 llvm::Value *AnnotatedVal, 2378 StringRef AnnotationStr, 2379 SourceLocation Location, 2380 const AnnotateAttr *Attr) { 2381 SmallVector<llvm::Value *, 5> Args = { 2382 AnnotatedVal, 2383 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2384 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2385 CGM.EmitAnnotationLineNo(Location), 2386 }; 2387 if (Attr) 2388 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2389 return Builder.CreateCall(AnnotationFn, Args); 2390 } 2391 2392 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2393 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2394 // FIXME We create a new bitcast for every annotation because that's what 2395 // llvm-gcc was doing. 2396 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2397 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2398 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2399 I->getAnnotation(), D->getLocation(), I); 2400 } 2401 2402 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2403 Address Addr) { 2404 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2405 llvm::Value *V = Addr.getPointer(); 2406 llvm::Type *VTy = V->getType(); 2407 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2408 CGM.Int8PtrTy); 2409 2410 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2411 // FIXME Always emit the cast inst so we can differentiate between 2412 // annotation on the first field of a struct and annotation on the struct 2413 // itself. 2414 if (VTy != CGM.Int8PtrTy) 2415 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2416 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2417 V = Builder.CreateBitCast(V, VTy); 2418 } 2419 2420 return Address(V, Addr.getAlignment()); 2421 } 2422 2423 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2424 2425 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2426 : CGF(CGF) { 2427 assert(!CGF->IsSanitizerScope); 2428 CGF->IsSanitizerScope = true; 2429 } 2430 2431 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2432 CGF->IsSanitizerScope = false; 2433 } 2434 2435 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2436 const llvm::Twine &Name, 2437 llvm::BasicBlock *BB, 2438 llvm::BasicBlock::iterator InsertPt) const { 2439 LoopStack.InsertHelper(I); 2440 if (IsSanitizerScope) 2441 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2442 } 2443 2444 void CGBuilderInserter::InsertHelper( 2445 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2446 llvm::BasicBlock::iterator InsertPt) const { 2447 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2448 if (CGF) 2449 CGF->InsertHelper(I, Name, BB, InsertPt); 2450 } 2451 2452 // Emits an error if we don't have a valid set of target features for the 2453 // called function. 2454 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2455 const FunctionDecl *TargetDecl) { 2456 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2457 } 2458 2459 // Emits an error if we don't have a valid set of target features for the 2460 // called function. 2461 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2462 const FunctionDecl *TargetDecl) { 2463 // Early exit if this is an indirect call. 2464 if (!TargetDecl) 2465 return; 2466 2467 // Get the current enclosing function if it exists. If it doesn't 2468 // we can't check the target features anyhow. 2469 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2470 if (!FD) 2471 return; 2472 2473 // Grab the required features for the call. For a builtin this is listed in 2474 // the td file with the default cpu, for an always_inline function this is any 2475 // listed cpu and any listed features. 2476 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2477 std::string MissingFeature; 2478 llvm::StringMap<bool> CallerFeatureMap; 2479 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2480 if (BuiltinID) { 2481 StringRef FeatureList( 2482 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2483 // Return if the builtin doesn't have any required features. 2484 if (FeatureList.empty()) 2485 return; 2486 assert(FeatureList.find(' ') == StringRef::npos && 2487 "Space in feature list"); 2488 TargetFeatures TF(CallerFeatureMap); 2489 if (!TF.hasRequiredFeatures(FeatureList)) 2490 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2491 << TargetDecl->getDeclName() << FeatureList; 2492 } else if (!TargetDecl->isMultiVersion() && 2493 TargetDecl->hasAttr<TargetAttr>()) { 2494 // Get the required features for the callee. 2495 2496 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2497 ParsedTargetAttr ParsedAttr = 2498 CGM.getContext().filterFunctionTargetAttrs(TD); 2499 2500 SmallVector<StringRef, 1> ReqFeatures; 2501 llvm::StringMap<bool> CalleeFeatureMap; 2502 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2503 2504 for (const auto &F : ParsedAttr.Features) { 2505 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2506 ReqFeatures.push_back(StringRef(F).substr(1)); 2507 } 2508 2509 for (const auto &F : CalleeFeatureMap) { 2510 // Only positive features are "required". 2511 if (F.getValue()) 2512 ReqFeatures.push_back(F.getKey()); 2513 } 2514 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2515 if (!CallerFeatureMap.lookup(Feature)) { 2516 MissingFeature = Feature.str(); 2517 return false; 2518 } 2519 return true; 2520 })) 2521 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2522 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2523 } 2524 } 2525 2526 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2527 if (!CGM.getCodeGenOpts().SanitizeStats) 2528 return; 2529 2530 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2531 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2532 CGM.getSanStats().create(IRB, SSK); 2533 } 2534 2535 llvm::Value * 2536 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2537 llvm::Value *Condition = nullptr; 2538 2539 if (!RO.Conditions.Architecture.empty()) 2540 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2541 2542 if (!RO.Conditions.Features.empty()) { 2543 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2544 Condition = 2545 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2546 } 2547 return Condition; 2548 } 2549 2550 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2551 llvm::Function *Resolver, 2552 CGBuilderTy &Builder, 2553 llvm::Function *FuncToReturn, 2554 bool SupportsIFunc) { 2555 if (SupportsIFunc) { 2556 Builder.CreateRet(FuncToReturn); 2557 return; 2558 } 2559 2560 llvm::SmallVector<llvm::Value *, 10> Args; 2561 llvm::for_each(Resolver->args(), 2562 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2563 2564 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2565 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2566 2567 if (Resolver->getReturnType()->isVoidTy()) 2568 Builder.CreateRetVoid(); 2569 else 2570 Builder.CreateRet(Result); 2571 } 2572 2573 void CodeGenFunction::EmitMultiVersionResolver( 2574 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2575 assert(getContext().getTargetInfo().getTriple().isX86() && 2576 "Only implemented for x86 targets"); 2577 2578 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2579 2580 // Main function's basic block. 2581 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2582 Builder.SetInsertPoint(CurBlock); 2583 EmitX86CpuInit(); 2584 2585 for (const MultiVersionResolverOption &RO : Options) { 2586 Builder.SetInsertPoint(CurBlock); 2587 llvm::Value *Condition = FormResolverCondition(RO); 2588 2589 // The 'default' or 'generic' case. 2590 if (!Condition) { 2591 assert(&RO == Options.end() - 1 && 2592 "Default or Generic case must be last"); 2593 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2594 SupportsIFunc); 2595 return; 2596 } 2597 2598 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2599 CGBuilderTy RetBuilder(*this, RetBlock); 2600 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2601 SupportsIFunc); 2602 CurBlock = createBasicBlock("resolver_else", Resolver); 2603 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2604 } 2605 2606 // If no generic/default, emit an unreachable. 2607 Builder.SetInsertPoint(CurBlock); 2608 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2609 TrapCall->setDoesNotReturn(); 2610 TrapCall->setDoesNotThrow(); 2611 Builder.CreateUnreachable(); 2612 Builder.ClearInsertionPoint(); 2613 } 2614 2615 // Loc - where the diagnostic will point, where in the source code this 2616 // alignment has failed. 2617 // SecondaryLoc - if present (will be present if sufficiently different from 2618 // Loc), the diagnostic will additionally point a "Note:" to this location. 2619 // It should be the location where the __attribute__((assume_aligned)) 2620 // was written e.g. 2621 void CodeGenFunction::emitAlignmentAssumptionCheck( 2622 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2623 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2624 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2625 llvm::Instruction *Assumption) { 2626 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2627 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2628 llvm::Intrinsic::getDeclaration( 2629 Builder.GetInsertBlock()->getParent()->getParent(), 2630 llvm::Intrinsic::assume) && 2631 "Assumption should be a call to llvm.assume()."); 2632 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2633 "Assumption should be the last instruction of the basic block, " 2634 "since the basic block is still being generated."); 2635 2636 if (!SanOpts.has(SanitizerKind::Alignment)) 2637 return; 2638 2639 // Don't check pointers to volatile data. The behavior here is implementation- 2640 // defined. 2641 if (Ty->getPointeeType().isVolatileQualified()) 2642 return; 2643 2644 // We need to temorairly remove the assumption so we can insert the 2645 // sanitizer check before it, else the check will be dropped by optimizations. 2646 Assumption->removeFromParent(); 2647 2648 { 2649 SanitizerScope SanScope(this); 2650 2651 if (!OffsetValue) 2652 OffsetValue = Builder.getInt1(0); // no offset. 2653 2654 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2655 EmitCheckSourceLocation(SecondaryLoc), 2656 EmitCheckTypeDescriptor(Ty)}; 2657 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2658 EmitCheckValue(Alignment), 2659 EmitCheckValue(OffsetValue)}; 2660 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2661 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2662 } 2663 2664 // We are now in the (new, empty) "cont" basic block. 2665 // Reintroduce the assumption. 2666 Builder.Insert(Assumption); 2667 // FIXME: Assumption still has it's original basic block as it's Parent. 2668 } 2669 2670 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2671 if (CGDebugInfo *DI = getDebugInfo()) 2672 return DI->SourceLocToDebugLoc(Location); 2673 2674 return llvm::DebugLoc(); 2675 } 2676 2677 llvm::Value * 2678 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2679 Stmt::Likelihood LH) { 2680 switch (LH) { 2681 case Stmt::LH_None: 2682 return Cond; 2683 case Stmt::LH_Likely: 2684 case Stmt::LH_Unlikely: 2685 // Don't generate llvm.expect on -O0 as the backend won't use it for 2686 // anything. 2687 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2688 return Cond; 2689 llvm::Type *CondTy = Cond->getType(); 2690 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2691 llvm::Function *FnExpect = 2692 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2693 llvm::Value *ExpectedValueOfCond = 2694 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2695 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2696 Cond->getName() + ".expval"); 2697 } 2698 llvm_unreachable("Unknown Likelihood"); 2699 } 2700