xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision a1e9b7e646b76bf844e8a9a101ebd27de11992ff)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.ReturnAddresses)
884     Fn->addFnAttr("ptrauth-returns");
885   if (CodeGenOpts.PointerAuth.FunctionPointers)
886     Fn->addFnAttr("ptrauth-calls");
887   if (CodeGenOpts.PointerAuth.AuthTraps)
888     Fn->addFnAttr("ptrauth-auth-traps");
889   if (CodeGenOpts.PointerAuth.IndirectGotos)
890     Fn->addFnAttr("ptrauth-indirect-gotos");
891 
892   // Apply xray attributes to the function (as a string, for now)
893   bool AlwaysXRayAttr = false;
894   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
895     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
896             XRayInstrKind::FunctionEntry) ||
897         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
898             XRayInstrKind::FunctionExit)) {
899       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
900         Fn->addFnAttr("function-instrument", "xray-always");
901         AlwaysXRayAttr = true;
902       }
903       if (XRayAttr->neverXRayInstrument())
904         Fn->addFnAttr("function-instrument", "xray-never");
905       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
906         if (ShouldXRayInstrumentFunction())
907           Fn->addFnAttr("xray-log-args",
908                         llvm::utostr(LogArgs->getArgumentCount()));
909     }
910   } else {
911     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
912       Fn->addFnAttr(
913           "xray-instruction-threshold",
914           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
915   }
916 
917   if (ShouldXRayInstrumentFunction()) {
918     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
919       Fn->addFnAttr("xray-ignore-loops");
920 
921     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922             XRayInstrKind::FunctionExit))
923       Fn->addFnAttr("xray-skip-exit");
924 
925     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
926             XRayInstrKind::FunctionEntry))
927       Fn->addFnAttr("xray-skip-entry");
928 
929     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
930     if (FuncGroups > 1) {
931       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
932                                               CurFn->getName().bytes_end());
933       auto Group = crc32(FuncName) % FuncGroups;
934       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
935           !AlwaysXRayAttr)
936         Fn->addFnAttr("function-instrument", "xray-never");
937     }
938   }
939 
940   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
941     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
942     case ProfileList::Skip:
943       Fn->addFnAttr(llvm::Attribute::SkipProfile);
944       break;
945     case ProfileList::Forbid:
946       Fn->addFnAttr(llvm::Attribute::NoProfile);
947       break;
948     case ProfileList::Allow:
949       break;
950     }
951   }
952 
953   unsigned Count, Offset;
954   if (const auto *Attr =
955           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
956     Count = Attr->getCount();
957     Offset = Attr->getOffset();
958   } else {
959     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
960     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
961   }
962   if (Count && Offset <= Count) {
963     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
964     if (Offset)
965       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
966   }
967   // Instruct that functions for COFF/CodeView targets should start with a
968   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
969   // backends as they don't need it -- instructions on these architectures are
970   // always atomically patchable at runtime.
971   if (CGM.getCodeGenOpts().HotPatch &&
972       getContext().getTargetInfo().getTriple().isX86() &&
973       getContext().getTargetInfo().getTriple().getEnvironment() !=
974           llvm::Triple::CODE16)
975     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
976 
977   // Add no-jump-tables value.
978   if (CGM.getCodeGenOpts().NoUseJumpTables)
979     Fn->addFnAttr("no-jump-tables", "true");
980 
981   // Add no-inline-line-tables value.
982   if (CGM.getCodeGenOpts().NoInlineLineTables)
983     Fn->addFnAttr("no-inline-line-tables");
984 
985   // Add profile-sample-accurate value.
986   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
987     Fn->addFnAttr("profile-sample-accurate");
988 
989   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
990     Fn->addFnAttr("use-sample-profile");
991 
992   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
993     Fn->addFnAttr("cfi-canonical-jump-table");
994 
995   if (D && D->hasAttr<NoProfileFunctionAttr>())
996     Fn->addFnAttr(llvm::Attribute::NoProfile);
997 
998   if (D && D->hasAttr<HybridPatchableAttr>())
999     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1000 
1001   if (D) {
1002     // Function attributes take precedence over command line flags.
1003     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1004       switch (A->getThunkType()) {
1005       case FunctionReturnThunksAttr::Kind::Keep:
1006         break;
1007       case FunctionReturnThunksAttr::Kind::Extern:
1008         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1009         break;
1010       }
1011     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1012       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1013   }
1014 
1015   if (FD && (getLangOpts().OpenCL ||
1016              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1017               getLangOpts().CUDAIsDevice))) {
1018     // Add metadata for a kernel function.
1019     EmitKernelMetadata(FD, Fn);
1020   }
1021 
1022   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1023     Fn->setMetadata("clspv_libclc_builtin",
1024                     llvm::MDNode::get(getLLVMContext(), {}));
1025   }
1026 
1027   // If we are checking function types, emit a function type signature as
1028   // prologue data.
1029   if (FD && SanOpts.has(SanitizerKind::Function)) {
1030     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1031       llvm::LLVMContext &Ctx = Fn->getContext();
1032       llvm::MDBuilder MDB(Ctx);
1033       Fn->setMetadata(
1034           llvm::LLVMContext::MD_func_sanitize,
1035           MDB.createRTTIPointerPrologue(
1036               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1037     }
1038   }
1039 
1040   // If we're checking nullability, we need to know whether we can check the
1041   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1042   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1043     auto Nullability = FnRetTy->getNullability();
1044     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1045         !FnRetTy->isRecordType()) {
1046       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1047             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1048         RetValNullabilityPrecondition =
1049             llvm::ConstantInt::getTrue(getLLVMContext());
1050     }
1051   }
1052 
1053   // If we're in C++ mode and the function name is "main", it is guaranteed
1054   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1055   // used within a program").
1056   //
1057   // OpenCL C 2.0 v2.2-11 s6.9.i:
1058   //     Recursion is not supported.
1059   //
1060   // SYCL v1.2.1 s3.10:
1061   //     kernels cannot include RTTI information, exception classes,
1062   //     recursive code, virtual functions or make use of C++ libraries that
1063   //     are not compiled for the device.
1064   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1065              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1066              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1067     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1068 
1069   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1070   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1071       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1072   Builder.setDefaultConstrainedRounding(RM);
1073   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1074   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1075       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1076                RM != llvm::RoundingMode::NearestTiesToEven))) {
1077     Builder.setIsFPConstrained(true);
1078     Fn->addFnAttr(llvm::Attribute::StrictFP);
1079   }
1080 
1081   // If a custom alignment is used, force realigning to this alignment on
1082   // any main function which certainly will need it.
1083   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1084              CGM.getCodeGenOpts().StackAlignment))
1085     Fn->addFnAttr("stackrealign");
1086 
1087   // "main" doesn't need to zero out call-used registers.
1088   if (FD && FD->isMain())
1089     Fn->removeFnAttr("zero-call-used-regs");
1090 
1091   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1092 
1093   // Create a marker to make it easy to insert allocas into the entryblock
1094   // later.  Don't create this with the builder, because we don't want it
1095   // folded.
1096   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1097   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1098 
1099   ReturnBlock = getJumpDestInCurrentScope("return");
1100 
1101   Builder.SetInsertPoint(EntryBB);
1102 
1103   // If we're checking the return value, allocate space for a pointer to a
1104   // precise source location of the checked return statement.
1105   if (requiresReturnValueCheck()) {
1106     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1107     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1108                         ReturnLocation);
1109   }
1110 
1111   // Emit subprogram debug descriptor.
1112   if (CGDebugInfo *DI = getDebugInfo()) {
1113     // Reconstruct the type from the argument list so that implicit parameters,
1114     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1115     // convention.
1116     DI->emitFunctionStart(GD, Loc, StartLoc,
1117                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1118                           CurFuncIsThunk);
1119   }
1120 
1121   if (ShouldInstrumentFunction()) {
1122     if (CGM.getCodeGenOpts().InstrumentFunctions)
1123       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1124     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1125       CurFn->addFnAttr("instrument-function-entry-inlined",
1126                        "__cyg_profile_func_enter");
1127     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1128       CurFn->addFnAttr("instrument-function-entry-inlined",
1129                        "__cyg_profile_func_enter_bare");
1130   }
1131 
1132   // Since emitting the mcount call here impacts optimizations such as function
1133   // inlining, we just add an attribute to insert a mcount call in backend.
1134   // The attribute "counting-function" is set to mcount function name which is
1135   // architecture dependent.
1136   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1137     // Calls to fentry/mcount should not be generated if function has
1138     // the no_instrument_function attribute.
1139     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1140       if (CGM.getCodeGenOpts().CallFEntry)
1141         Fn->addFnAttr("fentry-call", "true");
1142       else {
1143         Fn->addFnAttr("instrument-function-entry-inlined",
1144                       getTarget().getMCountName());
1145       }
1146       if (CGM.getCodeGenOpts().MNopMCount) {
1147         if (!CGM.getCodeGenOpts().CallFEntry)
1148           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1149             << "-mnop-mcount" << "-mfentry";
1150         Fn->addFnAttr("mnop-mcount");
1151       }
1152 
1153       if (CGM.getCodeGenOpts().RecordMCount) {
1154         if (!CGM.getCodeGenOpts().CallFEntry)
1155           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1156             << "-mrecord-mcount" << "-mfentry";
1157         Fn->addFnAttr("mrecord-mcount");
1158       }
1159     }
1160   }
1161 
1162   if (CGM.getCodeGenOpts().PackedStack) {
1163     if (getContext().getTargetInfo().getTriple().getArch() !=
1164         llvm::Triple::systemz)
1165       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1166         << "-mpacked-stack";
1167     Fn->addFnAttr("packed-stack");
1168   }
1169 
1170   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1171       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1172     Fn->addFnAttr("warn-stack-size",
1173                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1174 
1175   if (RetTy->isVoidType()) {
1176     // Void type; nothing to return.
1177     ReturnValue = Address::invalid();
1178 
1179     // Count the implicit return.
1180     if (!endsWithReturn(D))
1181       ++NumReturnExprs;
1182   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1183     // Indirect return; emit returned value directly into sret slot.
1184     // This reduces code size, and affects correctness in C++.
1185     auto AI = CurFn->arg_begin();
1186     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1187       ++AI;
1188     ReturnValue = makeNaturalAddressForPointer(
1189         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1190         nullptr, nullptr, KnownNonNull);
1191     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1192       ReturnValuePointer =
1193           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1194       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1195                           ReturnValuePointer);
1196     }
1197   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1198              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1199     // Load the sret pointer from the argument struct and return into that.
1200     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1201     llvm::Function::arg_iterator EI = CurFn->arg_end();
1202     --EI;
1203     llvm::Value *Addr = Builder.CreateStructGEP(
1204         CurFnInfo->getArgStruct(), &*EI, Idx);
1205     llvm::Type *Ty =
1206         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1207     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1208     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1209     ReturnValue = Address(Addr, ConvertType(RetTy),
1210                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1211   } else {
1212     ReturnValue = CreateIRTemp(RetTy, "retval");
1213 
1214     // Tell the epilog emitter to autorelease the result.  We do this
1215     // now so that various specialized functions can suppress it
1216     // during their IR-generation.
1217     if (getLangOpts().ObjCAutoRefCount &&
1218         !CurFnInfo->isReturnsRetained() &&
1219         RetTy->isObjCRetainableType())
1220       AutoreleaseResult = true;
1221   }
1222 
1223   EmitStartEHSpec(CurCodeDecl);
1224 
1225   PrologueCleanupDepth = EHStack.stable_begin();
1226 
1227   // Emit OpenMP specific initialization of the device functions.
1228   if (getLangOpts().OpenMP && CurCodeDecl)
1229     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1230 
1231   if (FD && getLangOpts().HLSL) {
1232     // Handle emitting HLSL entry functions.
1233     if (FD->hasAttr<HLSLShaderAttr>()) {
1234       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1235     }
1236     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1237   }
1238 
1239   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1240 
1241   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1242       MD && !MD->isStatic()) {
1243     bool IsInLambda =
1244         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1245     if (MD->isImplicitObjectMemberFunction())
1246       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1247     if (IsInLambda) {
1248       // We're in a lambda; figure out the captures.
1249       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1250                                         LambdaThisCaptureField);
1251       if (LambdaThisCaptureField) {
1252         // If the lambda captures the object referred to by '*this' - either by
1253         // value or by reference, make sure CXXThisValue points to the correct
1254         // object.
1255 
1256         // Get the lvalue for the field (which is a copy of the enclosing object
1257         // or contains the address of the enclosing object).
1258         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1259         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1260           // If the enclosing object was captured by value, just use its
1261           // address. Sign this pointer.
1262           CXXThisValue = ThisFieldLValue.getPointer(*this);
1263         } else {
1264           // Load the lvalue pointed to by the field, since '*this' was captured
1265           // by reference.
1266           CXXThisValue =
1267               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1268         }
1269       }
1270       for (auto *FD : MD->getParent()->fields()) {
1271         if (FD->hasCapturedVLAType()) {
1272           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1273                                            SourceLocation()).getScalarVal();
1274           auto VAT = FD->getCapturedVLAType();
1275           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1276         }
1277       }
1278     } else if (MD->isImplicitObjectMemberFunction()) {
1279       // Not in a lambda; just use 'this' from the method.
1280       // FIXME: Should we generate a new load for each use of 'this'?  The
1281       // fast register allocator would be happier...
1282       CXXThisValue = CXXABIThisValue;
1283     }
1284 
1285     // Check the 'this' pointer once per function, if it's available.
1286     if (CXXABIThisValue) {
1287       SanitizerSet SkippedChecks;
1288       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1289       QualType ThisTy = MD->getThisType();
1290 
1291       // If this is the call operator of a lambda with no captures, it
1292       // may have a static invoker function, which may call this operator with
1293       // a null 'this' pointer.
1294       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1295         SkippedChecks.set(SanitizerKind::Null, true);
1296 
1297       EmitTypeCheck(
1298           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1299           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1300     }
1301   }
1302 
1303   // If any of the arguments have a variably modified type, make sure to
1304   // emit the type size, but only if the function is not naked. Naked functions
1305   // have no prolog to run this evaluation.
1306   if (!FD || !FD->hasAttr<NakedAttr>()) {
1307     for (const VarDecl *VD : Args) {
1308       // Dig out the type as written from ParmVarDecls; it's unclear whether
1309       // the standard (C99 6.9.1p10) requires this, but we're following the
1310       // precedent set by gcc.
1311       QualType Ty;
1312       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1313         Ty = PVD->getOriginalType();
1314       else
1315         Ty = VD->getType();
1316 
1317       if (Ty->isVariablyModifiedType())
1318         EmitVariablyModifiedType(Ty);
1319     }
1320   }
1321   // Emit a location at the end of the prologue.
1322   if (CGDebugInfo *DI = getDebugInfo())
1323     DI->EmitLocation(Builder, StartLoc);
1324   // TODO: Do we need to handle this in two places like we do with
1325   // target-features/target-cpu?
1326   if (CurFuncDecl)
1327     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1328       LargestVectorWidth = VecWidth->getVectorWidth();
1329 
1330   if (CGM.shouldEmitConvergenceTokens())
1331     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1332 }
1333 
1334 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1335   incrementProfileCounter(Body);
1336   maybeCreateMCDCCondBitmap();
1337   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1338     EmitCompoundStmtWithoutScope(*S);
1339   else
1340     EmitStmt(Body);
1341 }
1342 
1343 /// When instrumenting to collect profile data, the counts for some blocks
1344 /// such as switch cases need to not include the fall-through counts, so
1345 /// emit a branch around the instrumentation code. When not instrumenting,
1346 /// this just calls EmitBlock().
1347 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1348                                                const Stmt *S) {
1349   llvm::BasicBlock *SkipCountBB = nullptr;
1350   // Do not skip over the instrumentation when single byte coverage mode is
1351   // enabled.
1352   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1353       !llvm::EnableSingleByteCoverage) {
1354     // When instrumenting for profiling, the fallthrough to certain
1355     // statements needs to skip over the instrumentation code so that we
1356     // get an accurate count.
1357     SkipCountBB = createBasicBlock("skipcount");
1358     EmitBranch(SkipCountBB);
1359   }
1360   EmitBlock(BB);
1361   uint64_t CurrentCount = getCurrentProfileCount();
1362   incrementProfileCounter(S);
1363   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1364   if (SkipCountBB)
1365     EmitBlock(SkipCountBB);
1366 }
1367 
1368 /// Tries to mark the given function nounwind based on the
1369 /// non-existence of any throwing calls within it.  We believe this is
1370 /// lightweight enough to do at -O0.
1371 static void TryMarkNoThrow(llvm::Function *F) {
1372   // LLVM treats 'nounwind' on a function as part of the type, so we
1373   // can't do this on functions that can be overwritten.
1374   if (F->isInterposable()) return;
1375 
1376   for (llvm::BasicBlock &BB : *F)
1377     for (llvm::Instruction &I : BB)
1378       if (I.mayThrow())
1379         return;
1380 
1381   F->setDoesNotThrow();
1382 }
1383 
1384 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1385                                                FunctionArgList &Args) {
1386   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1387   QualType ResTy = FD->getReturnType();
1388 
1389   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1390   if (MD && MD->isImplicitObjectMemberFunction()) {
1391     if (CGM.getCXXABI().HasThisReturn(GD))
1392       ResTy = MD->getThisType();
1393     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1394       ResTy = CGM.getContext().VoidPtrTy;
1395     CGM.getCXXABI().buildThisParam(*this, Args);
1396   }
1397 
1398   // The base version of an inheriting constructor whose constructed base is a
1399   // virtual base is not passed any arguments (because it doesn't actually call
1400   // the inherited constructor).
1401   bool PassedParams = true;
1402   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1403     if (auto Inherited = CD->getInheritedConstructor())
1404       PassedParams =
1405           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1406 
1407   if (PassedParams) {
1408     for (auto *Param : FD->parameters()) {
1409       Args.push_back(Param);
1410       if (!Param->hasAttr<PassObjectSizeAttr>())
1411         continue;
1412 
1413       auto *Implicit = ImplicitParamDecl::Create(
1414           getContext(), Param->getDeclContext(), Param->getLocation(),
1415           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1416       SizeArguments[Param] = Implicit;
1417       Args.push_back(Implicit);
1418     }
1419   }
1420 
1421   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1422     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1423 
1424   return ResTy;
1425 }
1426 
1427 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1428                                    const CGFunctionInfo &FnInfo) {
1429   assert(Fn && "generating code for null Function");
1430   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1431   CurGD = GD;
1432 
1433   FunctionArgList Args;
1434   QualType ResTy = BuildFunctionArgList(GD, Args);
1435 
1436   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1437 
1438   if (FD->isInlineBuiltinDeclaration()) {
1439     // When generating code for a builtin with an inline declaration, use a
1440     // mangled name to hold the actual body, while keeping an external
1441     // definition in case the function pointer is referenced somewhere.
1442     std::string FDInlineName = (Fn->getName() + ".inline").str();
1443     llvm::Module *M = Fn->getParent();
1444     llvm::Function *Clone = M->getFunction(FDInlineName);
1445     if (!Clone) {
1446       Clone = llvm::Function::Create(Fn->getFunctionType(),
1447                                      llvm::GlobalValue::InternalLinkage,
1448                                      Fn->getAddressSpace(), FDInlineName, M);
1449       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1450     }
1451     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1452     Fn = Clone;
1453   } else {
1454     // Detect the unusual situation where an inline version is shadowed by a
1455     // non-inline version. In that case we should pick the external one
1456     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1457     // to detect that situation before we reach codegen, so do some late
1458     // replacement.
1459     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1460          PD = PD->getPreviousDecl()) {
1461       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1462         std::string FDInlineName = (Fn->getName() + ".inline").str();
1463         llvm::Module *M = Fn->getParent();
1464         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1465           Clone->replaceAllUsesWith(Fn);
1466           Clone->eraseFromParent();
1467         }
1468         break;
1469       }
1470     }
1471   }
1472 
1473   // Check if we should generate debug info for this function.
1474   if (FD->hasAttr<NoDebugAttr>()) {
1475     // Clear non-distinct debug info that was possibly attached to the function
1476     // due to an earlier declaration without the nodebug attribute
1477     Fn->setSubprogram(nullptr);
1478     // Disable debug info indefinitely for this function
1479     DebugInfo = nullptr;
1480   }
1481 
1482   // The function might not have a body if we're generating thunks for a
1483   // function declaration.
1484   SourceRange BodyRange;
1485   if (Stmt *Body = FD->getBody())
1486     BodyRange = Body->getSourceRange();
1487   else
1488     BodyRange = FD->getLocation();
1489   CurEHLocation = BodyRange.getEnd();
1490 
1491   // Use the location of the start of the function to determine where
1492   // the function definition is located. By default use the location
1493   // of the declaration as the location for the subprogram. A function
1494   // may lack a declaration in the source code if it is created by code
1495   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1496   SourceLocation Loc = FD->getLocation();
1497 
1498   // If this is a function specialization then use the pattern body
1499   // as the location for the function.
1500   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1501     if (SpecDecl->hasBody(SpecDecl))
1502       Loc = SpecDecl->getLocation();
1503 
1504   Stmt *Body = FD->getBody();
1505 
1506   if (Body) {
1507     // Coroutines always emit lifetime markers.
1508     if (isa<CoroutineBodyStmt>(Body))
1509       ShouldEmitLifetimeMarkers = true;
1510 
1511     // Initialize helper which will detect jumps which can cause invalid
1512     // lifetime markers.
1513     if (ShouldEmitLifetimeMarkers)
1514       Bypasses.Init(Body);
1515   }
1516 
1517   // Emit the standard function prologue.
1518   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1519 
1520   // Save parameters for coroutine function.
1521   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1522     llvm::append_range(FnArgs, FD->parameters());
1523 
1524   // Ensure that the function adheres to the forward progress guarantee, which
1525   // is required by certain optimizations.
1526   // In C++11 and up, the attribute will be removed if the body contains a
1527   // trivial empty loop.
1528   if (checkIfFunctionMustProgress())
1529     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1530 
1531   // Generate the body of the function.
1532   PGO.assignRegionCounters(GD, CurFn);
1533   if (isa<CXXDestructorDecl>(FD))
1534     EmitDestructorBody(Args);
1535   else if (isa<CXXConstructorDecl>(FD))
1536     EmitConstructorBody(Args);
1537   else if (getLangOpts().CUDA &&
1538            !getLangOpts().CUDAIsDevice &&
1539            FD->hasAttr<CUDAGlobalAttr>())
1540     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1541   else if (isa<CXXMethodDecl>(FD) &&
1542            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1543     // The lambda static invoker function is special, because it forwards or
1544     // clones the body of the function call operator (but is actually static).
1545     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1546   } else if (isa<CXXMethodDecl>(FD) &&
1547              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1548              !FnInfo.isDelegateCall() &&
1549              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1550              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1551     // If emitting a lambda with static invoker on X86 Windows, change
1552     // the call operator body.
1553     // Make sure that this is a call operator with an inalloca arg and check
1554     // for delegate call to make sure this is the original call op and not the
1555     // new forwarding function for the static invoker.
1556     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1557   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1558              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1559               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1560     // Implicit copy-assignment gets the same special treatment as implicit
1561     // copy-constructors.
1562     emitImplicitAssignmentOperatorBody(Args);
1563   } else if (Body) {
1564     EmitFunctionBody(Body);
1565   } else
1566     llvm_unreachable("no definition for emitted function");
1567 
1568   // C++11 [stmt.return]p2:
1569   //   Flowing off the end of a function [...] results in undefined behavior in
1570   //   a value-returning function.
1571   // C11 6.9.1p12:
1572   //   If the '}' that terminates a function is reached, and the value of the
1573   //   function call is used by the caller, the behavior is undefined.
1574   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1575       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1576     bool ShouldEmitUnreachable =
1577         CGM.getCodeGenOpts().StrictReturn ||
1578         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1579     if (SanOpts.has(SanitizerKind::Return)) {
1580       SanitizerScope SanScope(this);
1581       llvm::Value *IsFalse = Builder.getFalse();
1582       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1583                 SanitizerHandler::MissingReturn,
1584                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1585     } else if (ShouldEmitUnreachable) {
1586       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1587         EmitTrapCall(llvm::Intrinsic::trap);
1588     }
1589     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1590       Builder.CreateUnreachable();
1591       Builder.ClearInsertionPoint();
1592     }
1593   }
1594 
1595   // Emit the standard function epilogue.
1596   FinishFunction(BodyRange.getEnd());
1597 
1598   // If we haven't marked the function nothrow through other means, do
1599   // a quick pass now to see if we can.
1600   if (!CurFn->doesNotThrow())
1601     TryMarkNoThrow(CurFn);
1602 }
1603 
1604 /// ContainsLabel - Return true if the statement contains a label in it.  If
1605 /// this statement is not executed normally, it not containing a label means
1606 /// that we can just remove the code.
1607 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1608   // Null statement, not a label!
1609   if (!S) return false;
1610 
1611   // If this is a label, we have to emit the code, consider something like:
1612   // if (0) {  ...  foo:  bar(); }  goto foo;
1613   //
1614   // TODO: If anyone cared, we could track __label__'s, since we know that you
1615   // can't jump to one from outside their declared region.
1616   if (isa<LabelStmt>(S))
1617     return true;
1618 
1619   // If this is a case/default statement, and we haven't seen a switch, we have
1620   // to emit the code.
1621   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1622     return true;
1623 
1624   // If this is a switch statement, we want to ignore cases below it.
1625   if (isa<SwitchStmt>(S))
1626     IgnoreCaseStmts = true;
1627 
1628   // Scan subexpressions for verboten labels.
1629   for (const Stmt *SubStmt : S->children())
1630     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1631       return true;
1632 
1633   return false;
1634 }
1635 
1636 /// containsBreak - Return true if the statement contains a break out of it.
1637 /// If the statement (recursively) contains a switch or loop with a break
1638 /// inside of it, this is fine.
1639 bool CodeGenFunction::containsBreak(const Stmt *S) {
1640   // Null statement, not a label!
1641   if (!S) return false;
1642 
1643   // If this is a switch or loop that defines its own break scope, then we can
1644   // include it and anything inside of it.
1645   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1646       isa<ForStmt>(S))
1647     return false;
1648 
1649   if (isa<BreakStmt>(S))
1650     return true;
1651 
1652   // Scan subexpressions for verboten breaks.
1653   for (const Stmt *SubStmt : S->children())
1654     if (containsBreak(SubStmt))
1655       return true;
1656 
1657   return false;
1658 }
1659 
1660 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1661   if (!S) return false;
1662 
1663   // Some statement kinds add a scope and thus never add a decl to the current
1664   // scope. Note, this list is longer than the list of statements that might
1665   // have an unscoped decl nested within them, but this way is conservatively
1666   // correct even if more statement kinds are added.
1667   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1668       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1669       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1670       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1671     return false;
1672 
1673   if (isa<DeclStmt>(S))
1674     return true;
1675 
1676   for (const Stmt *SubStmt : S->children())
1677     if (mightAddDeclToScope(SubStmt))
1678       return true;
1679 
1680   return false;
1681 }
1682 
1683 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1684 /// to a constant, or if it does but contains a label, return false.  If it
1685 /// constant folds return true and set the boolean result in Result.
1686 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1687                                                    bool &ResultBool,
1688                                                    bool AllowLabels) {
1689   // If MC/DC is enabled, disable folding so that we can instrument all
1690   // conditions to yield complete test vectors. We still keep track of
1691   // folded conditions during region mapping and visualization.
1692   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1693       CGM.getCodeGenOpts().MCDCCoverage)
1694     return false;
1695 
1696   llvm::APSInt ResultInt;
1697   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1698     return false;
1699 
1700   ResultBool = ResultInt.getBoolValue();
1701   return true;
1702 }
1703 
1704 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1705 /// to a constant, or if it does but contains a label, return false.  If it
1706 /// constant folds return true and set the folded value.
1707 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1708                                                    llvm::APSInt &ResultInt,
1709                                                    bool AllowLabels) {
1710   // FIXME: Rename and handle conversion of other evaluatable things
1711   // to bool.
1712   Expr::EvalResult Result;
1713   if (!Cond->EvaluateAsInt(Result, getContext()))
1714     return false;  // Not foldable, not integer or not fully evaluatable.
1715 
1716   llvm::APSInt Int = Result.Val.getInt();
1717   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1718     return false;  // Contains a label.
1719 
1720   ResultInt = Int;
1721   return true;
1722 }
1723 
1724 /// Strip parentheses and simplistic logical-NOT operators.
1725 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1726   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1727     if (Op->getOpcode() != UO_LNot)
1728       break;
1729     C = Op->getSubExpr();
1730   }
1731   return C->IgnoreParens();
1732 }
1733 
1734 /// Determine whether the given condition is an instrumentable condition
1735 /// (i.e. no "&&" or "||").
1736 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1737   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1738   return (!BOp || !BOp->isLogicalOp());
1739 }
1740 
1741 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1742 /// increments a profile counter based on the semantics of the given logical
1743 /// operator opcode.  This is used to instrument branch condition coverage for
1744 /// logical operators.
1745 void CodeGenFunction::EmitBranchToCounterBlock(
1746     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1747     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1748     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1749   // If not instrumenting, just emit a branch.
1750   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1751   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1752     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1753 
1754   llvm::BasicBlock *ThenBlock = nullptr;
1755   llvm::BasicBlock *ElseBlock = nullptr;
1756   llvm::BasicBlock *NextBlock = nullptr;
1757 
1758   // Create the block we'll use to increment the appropriate counter.
1759   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1760 
1761   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1762   // means we need to evaluate the condition and increment the counter on TRUE:
1763   //
1764   // if (Cond)
1765   //   goto CounterIncrBlock;
1766   // else
1767   //   goto FalseBlock;
1768   //
1769   // CounterIncrBlock:
1770   //   Counter++;
1771   //   goto TrueBlock;
1772 
1773   if (LOp == BO_LAnd) {
1774     ThenBlock = CounterIncrBlock;
1775     ElseBlock = FalseBlock;
1776     NextBlock = TrueBlock;
1777   }
1778 
1779   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1780   // we need to evaluate the condition and increment the counter on FALSE:
1781   //
1782   // if (Cond)
1783   //   goto TrueBlock;
1784   // else
1785   //   goto CounterIncrBlock;
1786   //
1787   // CounterIncrBlock:
1788   //   Counter++;
1789   //   goto FalseBlock;
1790 
1791   else if (LOp == BO_LOr) {
1792     ThenBlock = TrueBlock;
1793     ElseBlock = CounterIncrBlock;
1794     NextBlock = FalseBlock;
1795   } else {
1796     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1797   }
1798 
1799   // Emit Branch based on condition.
1800   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1801 
1802   // Emit the block containing the counter increment(s).
1803   EmitBlock(CounterIncrBlock);
1804 
1805   // Increment corresponding counter; if index not provided, use Cond as index.
1806   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1807 
1808   // Go to the next block.
1809   EmitBranch(NextBlock);
1810 }
1811 
1812 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1813 /// statement) to the specified blocks.  Based on the condition, this might try
1814 /// to simplify the codegen of the conditional based on the branch.
1815 /// \param LH The value of the likelihood attribute on the True branch.
1816 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1817 /// ConditionalOperator (ternary) through a recursive call for the operator's
1818 /// LHS and RHS nodes.
1819 void CodeGenFunction::EmitBranchOnBoolExpr(
1820     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1821     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1822   Cond = Cond->IgnoreParens();
1823 
1824   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1825     // Handle X && Y in a condition.
1826     if (CondBOp->getOpcode() == BO_LAnd) {
1827       MCDCLogOpStack.push_back(CondBOp);
1828 
1829       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1830       // folded if the case was simple enough.
1831       bool ConstantBool = false;
1832       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1833           ConstantBool) {
1834         // br(1 && X) -> br(X).
1835         incrementProfileCounter(CondBOp);
1836         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1837                                  FalseBlock, TrueCount, LH);
1838         MCDCLogOpStack.pop_back();
1839         return;
1840       }
1841 
1842       // If we have "X && 1", simplify the code to use an uncond branch.
1843       // "X && 0" would have been constant folded to 0.
1844       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1845           ConstantBool) {
1846         // br(X && 1) -> br(X).
1847         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1848                                  FalseBlock, TrueCount, LH, CondBOp);
1849         MCDCLogOpStack.pop_back();
1850         return;
1851       }
1852 
1853       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1854       // want to jump to the FalseBlock.
1855       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1856       // The counter tells us how often we evaluate RHS, and all of TrueCount
1857       // can be propagated to that branch.
1858       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1859 
1860       ConditionalEvaluation eval(*this);
1861       {
1862         ApplyDebugLocation DL(*this, Cond);
1863         // Propagate the likelihood attribute like __builtin_expect
1864         // __builtin_expect(X && Y, 1) -> X and Y are likely
1865         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1866         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1867                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1868         EmitBlock(LHSTrue);
1869       }
1870 
1871       incrementProfileCounter(CondBOp);
1872       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1873 
1874       // Any temporaries created here are conditional.
1875       eval.begin(*this);
1876       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1877                                FalseBlock, TrueCount, LH);
1878       eval.end(*this);
1879       MCDCLogOpStack.pop_back();
1880       return;
1881     }
1882 
1883     if (CondBOp->getOpcode() == BO_LOr) {
1884       MCDCLogOpStack.push_back(CondBOp);
1885 
1886       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1887       // folded if the case was simple enough.
1888       bool ConstantBool = false;
1889       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1890           !ConstantBool) {
1891         // br(0 || X) -> br(X).
1892         incrementProfileCounter(CondBOp);
1893         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1894                                  FalseBlock, TrueCount, LH);
1895         MCDCLogOpStack.pop_back();
1896         return;
1897       }
1898 
1899       // If we have "X || 0", simplify the code to use an uncond branch.
1900       // "X || 1" would have been constant folded to 1.
1901       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1902           !ConstantBool) {
1903         // br(X || 0) -> br(X).
1904         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1905                                  FalseBlock, TrueCount, LH, CondBOp);
1906         MCDCLogOpStack.pop_back();
1907         return;
1908       }
1909       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1910       // want to jump to the TrueBlock.
1911       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1912       // We have the count for entry to the RHS and for the whole expression
1913       // being true, so we can divy up True count between the short circuit and
1914       // the RHS.
1915       uint64_t LHSCount =
1916           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1917       uint64_t RHSCount = TrueCount - LHSCount;
1918 
1919       ConditionalEvaluation eval(*this);
1920       {
1921         // Propagate the likelihood attribute like __builtin_expect
1922         // __builtin_expect(X || Y, 1) -> only Y is likely
1923         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1924         ApplyDebugLocation DL(*this, Cond);
1925         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1926                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1927         EmitBlock(LHSFalse);
1928       }
1929 
1930       incrementProfileCounter(CondBOp);
1931       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1932 
1933       // Any temporaries created here are conditional.
1934       eval.begin(*this);
1935       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1936                                RHSCount, LH);
1937 
1938       eval.end(*this);
1939       MCDCLogOpStack.pop_back();
1940       return;
1941     }
1942   }
1943 
1944   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1945     // br(!x, t, f) -> br(x, f, t)
1946     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1947     // LNot is taken as part of the condition for simplicity, and changing its
1948     // sense negatively impacts test vector tracking.
1949     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1950                          CGM.getCodeGenOpts().MCDCCoverage &&
1951                          isInstrumentedCondition(Cond);
1952     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1953       // Negate the count.
1954       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1955       // The values of the enum are chosen to make this negation possible.
1956       LH = static_cast<Stmt::Likelihood>(-LH);
1957       // Negate the condition and swap the destination blocks.
1958       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1959                                   FalseCount, LH);
1960     }
1961   }
1962 
1963   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1964     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1965     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1966     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1967 
1968     // The ConditionalOperator itself has no likelihood information for its
1969     // true and false branches. This matches the behavior of __builtin_expect.
1970     ConditionalEvaluation cond(*this);
1971     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1972                          getProfileCount(CondOp), Stmt::LH_None);
1973 
1974     // When computing PGO branch weights, we only know the overall count for
1975     // the true block. This code is essentially doing tail duplication of the
1976     // naive code-gen, introducing new edges for which counts are not
1977     // available. Divide the counts proportionally between the LHS and RHS of
1978     // the conditional operator.
1979     uint64_t LHSScaledTrueCount = 0;
1980     if (TrueCount) {
1981       double LHSRatio =
1982           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1983       LHSScaledTrueCount = TrueCount * LHSRatio;
1984     }
1985 
1986     cond.begin(*this);
1987     EmitBlock(LHSBlock);
1988     incrementProfileCounter(CondOp);
1989     {
1990       ApplyDebugLocation DL(*this, Cond);
1991       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1992                            LHSScaledTrueCount, LH, CondOp);
1993     }
1994     cond.end(*this);
1995 
1996     cond.begin(*this);
1997     EmitBlock(RHSBlock);
1998     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1999                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2000     cond.end(*this);
2001 
2002     return;
2003   }
2004 
2005   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2006     // Conditional operator handling can give us a throw expression as a
2007     // condition for a case like:
2008     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2009     // Fold this to:
2010     //   br(c, throw x, br(y, t, f))
2011     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2012     return;
2013   }
2014 
2015   // Emit the code with the fully general case.
2016   llvm::Value *CondV;
2017   {
2018     ApplyDebugLocation DL(*this, Cond);
2019     CondV = EvaluateExprAsBool(Cond);
2020   }
2021 
2022   // If not at the top of the logical operator nest, update MCDC temp with the
2023   // boolean result of the evaluated condition.
2024   if (!MCDCLogOpStack.empty()) {
2025     const Expr *MCDCBaseExpr = Cond;
2026     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2027     // expression, MC/DC tracks the result of the ternary, and this is tied to
2028     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2029     // this is the case, the ConditionalOperator expression is passed through
2030     // the ConditionalOp parameter and then used as the MCDC base expression.
2031     if (ConditionalOp)
2032       MCDCBaseExpr = ConditionalOp;
2033 
2034     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2035   }
2036 
2037   llvm::MDNode *Weights = nullptr;
2038   llvm::MDNode *Unpredictable = nullptr;
2039 
2040   // If the branch has a condition wrapped by __builtin_unpredictable,
2041   // create metadata that specifies that the branch is unpredictable.
2042   // Don't bother if not optimizing because that metadata would not be used.
2043   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2044   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2045     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2046     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2047       llvm::MDBuilder MDHelper(getLLVMContext());
2048       Unpredictable = MDHelper.createUnpredictable();
2049     }
2050   }
2051 
2052   // If there is a Likelihood knowledge for the cond, lower it.
2053   // Note that if not optimizing this won't emit anything.
2054   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2055   if (CondV != NewCondV)
2056     CondV = NewCondV;
2057   else {
2058     // Otherwise, lower profile counts. Note that we do this even at -O0.
2059     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2060     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2061   }
2062 
2063   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2064 }
2065 
2066 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2067 /// specified stmt yet.
2068 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2069   CGM.ErrorUnsupported(S, Type);
2070 }
2071 
2072 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2073 /// variable-length array whose elements have a non-zero bit-pattern.
2074 ///
2075 /// \param baseType the inner-most element type of the array
2076 /// \param src - a char* pointing to the bit-pattern for a single
2077 /// base element of the array
2078 /// \param sizeInChars - the total size of the VLA, in chars
2079 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2080                                Address dest, Address src,
2081                                llvm::Value *sizeInChars) {
2082   CGBuilderTy &Builder = CGF.Builder;
2083 
2084   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2085   llvm::Value *baseSizeInChars
2086     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2087 
2088   Address begin = dest.withElementType(CGF.Int8Ty);
2089   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2090                                                begin.emitRawPointer(CGF),
2091                                                sizeInChars, "vla.end");
2092 
2093   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2094   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2095   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2096 
2097   // Make a loop over the VLA.  C99 guarantees that the VLA element
2098   // count must be nonzero.
2099   CGF.EmitBlock(loopBB);
2100 
2101   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2102   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2103 
2104   CharUnits curAlign =
2105     dest.getAlignment().alignmentOfArrayElement(baseSize);
2106 
2107   // memcpy the individual element bit-pattern.
2108   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2109                        /*volatile*/ false);
2110 
2111   // Go to the next element.
2112   llvm::Value *next =
2113     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2114 
2115   // Leave if that's the end of the VLA.
2116   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2117   Builder.CreateCondBr(done, contBB, loopBB);
2118   cur->addIncoming(next, loopBB);
2119 
2120   CGF.EmitBlock(contBB);
2121 }
2122 
2123 void
2124 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2125   // Ignore empty classes in C++.
2126   if (getLangOpts().CPlusPlus) {
2127     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2128       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2129         return;
2130     }
2131   }
2132 
2133   if (DestPtr.getElementType() != Int8Ty)
2134     DestPtr = DestPtr.withElementType(Int8Ty);
2135 
2136   // Get size and alignment info for this aggregate.
2137   CharUnits size = getContext().getTypeSizeInChars(Ty);
2138 
2139   llvm::Value *SizeVal;
2140   const VariableArrayType *vla;
2141 
2142   // Don't bother emitting a zero-byte memset.
2143   if (size.isZero()) {
2144     // But note that getTypeInfo returns 0 for a VLA.
2145     if (const VariableArrayType *vlaType =
2146           dyn_cast_or_null<VariableArrayType>(
2147                                           getContext().getAsArrayType(Ty))) {
2148       auto VlaSize = getVLASize(vlaType);
2149       SizeVal = VlaSize.NumElts;
2150       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2151       if (!eltSize.isOne())
2152         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2153       vla = vlaType;
2154     } else {
2155       return;
2156     }
2157   } else {
2158     SizeVal = CGM.getSize(size);
2159     vla = nullptr;
2160   }
2161 
2162   // If the type contains a pointer to data member we can't memset it to zero.
2163   // Instead, create a null constant and copy it to the destination.
2164   // TODO: there are other patterns besides zero that we can usefully memset,
2165   // like -1, which happens to be the pattern used by member-pointers.
2166   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2167     // For a VLA, emit a single element, then splat that over the VLA.
2168     if (vla) Ty = getContext().getBaseElementType(vla);
2169 
2170     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2171 
2172     llvm::GlobalVariable *NullVariable =
2173       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2174                                /*isConstant=*/true,
2175                                llvm::GlobalVariable::PrivateLinkage,
2176                                NullConstant, Twine());
2177     CharUnits NullAlign = DestPtr.getAlignment();
2178     NullVariable->setAlignment(NullAlign.getAsAlign());
2179     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2180 
2181     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2182 
2183     // Get and call the appropriate llvm.memcpy overload.
2184     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2185     return;
2186   }
2187 
2188   // Otherwise, just memset the whole thing to zero.  This is legal
2189   // because in LLVM, all default initializers (other than the ones we just
2190   // handled above) are guaranteed to have a bit pattern of all zeros.
2191   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2192 }
2193 
2194 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2195   // Make sure that there is a block for the indirect goto.
2196   if (!IndirectBranch)
2197     GetIndirectGotoBlock();
2198 
2199   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2200 
2201   // Make sure the indirect branch includes all of the address-taken blocks.
2202   IndirectBranch->addDestination(BB);
2203   return llvm::BlockAddress::get(CurFn, BB);
2204 }
2205 
2206 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2207   // If we already made the indirect branch for indirect goto, return its block.
2208   if (IndirectBranch) return IndirectBranch->getParent();
2209 
2210   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2211 
2212   // Create the PHI node that indirect gotos will add entries to.
2213   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2214                                               "indirect.goto.dest");
2215 
2216   // Create the indirect branch instruction.
2217   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2218   return IndirectBranch->getParent();
2219 }
2220 
2221 /// Computes the length of an array in elements, as well as the base
2222 /// element type and a properly-typed first element pointer.
2223 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2224                                               QualType &baseType,
2225                                               Address &addr) {
2226   const ArrayType *arrayType = origArrayType;
2227 
2228   // If it's a VLA, we have to load the stored size.  Note that
2229   // this is the size of the VLA in bytes, not its size in elements.
2230   llvm::Value *numVLAElements = nullptr;
2231   if (isa<VariableArrayType>(arrayType)) {
2232     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2233 
2234     // Walk into all VLAs.  This doesn't require changes to addr,
2235     // which has type T* where T is the first non-VLA element type.
2236     do {
2237       QualType elementType = arrayType->getElementType();
2238       arrayType = getContext().getAsArrayType(elementType);
2239 
2240       // If we only have VLA components, 'addr' requires no adjustment.
2241       if (!arrayType) {
2242         baseType = elementType;
2243         return numVLAElements;
2244       }
2245     } while (isa<VariableArrayType>(arrayType));
2246 
2247     // We get out here only if we find a constant array type
2248     // inside the VLA.
2249   }
2250 
2251   // We have some number of constant-length arrays, so addr should
2252   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2253   // down to the first element of addr.
2254   SmallVector<llvm::Value*, 8> gepIndices;
2255 
2256   // GEP down to the array type.
2257   llvm::ConstantInt *zero = Builder.getInt32(0);
2258   gepIndices.push_back(zero);
2259 
2260   uint64_t countFromCLAs = 1;
2261   QualType eltType;
2262 
2263   llvm::ArrayType *llvmArrayType =
2264     dyn_cast<llvm::ArrayType>(addr.getElementType());
2265   while (llvmArrayType) {
2266     assert(isa<ConstantArrayType>(arrayType));
2267     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2268            llvmArrayType->getNumElements());
2269 
2270     gepIndices.push_back(zero);
2271     countFromCLAs *= llvmArrayType->getNumElements();
2272     eltType = arrayType->getElementType();
2273 
2274     llvmArrayType =
2275       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2276     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2277     assert((!llvmArrayType || arrayType) &&
2278            "LLVM and Clang types are out-of-synch");
2279   }
2280 
2281   if (arrayType) {
2282     // From this point onwards, the Clang array type has been emitted
2283     // as some other type (probably a packed struct). Compute the array
2284     // size, and just emit the 'begin' expression as a bitcast.
2285     while (arrayType) {
2286       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2287       eltType = arrayType->getElementType();
2288       arrayType = getContext().getAsArrayType(eltType);
2289     }
2290 
2291     llvm::Type *baseType = ConvertType(eltType);
2292     addr = addr.withElementType(baseType);
2293   } else {
2294     // Create the actual GEP.
2295     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2296                                              addr.emitRawPointer(*this),
2297                                              gepIndices, "array.begin"),
2298                    ConvertTypeForMem(eltType), addr.getAlignment());
2299   }
2300 
2301   baseType = eltType;
2302 
2303   llvm::Value *numElements
2304     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2305 
2306   // If we had any VLA dimensions, factor them in.
2307   if (numVLAElements)
2308     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2309 
2310   return numElements;
2311 }
2312 
2313 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2314   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2315   assert(vla && "type was not a variable array type!");
2316   return getVLASize(vla);
2317 }
2318 
2319 CodeGenFunction::VlaSizePair
2320 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2321   // The number of elements so far; always size_t.
2322   llvm::Value *numElements = nullptr;
2323 
2324   QualType elementType;
2325   do {
2326     elementType = type->getElementType();
2327     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2328     assert(vlaSize && "no size for VLA!");
2329     assert(vlaSize->getType() == SizeTy);
2330 
2331     if (!numElements) {
2332       numElements = vlaSize;
2333     } else {
2334       // It's undefined behavior if this wraps around, so mark it that way.
2335       // FIXME: Teach -fsanitize=undefined to trap this.
2336       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2337     }
2338   } while ((type = getContext().getAsVariableArrayType(elementType)));
2339 
2340   return { numElements, elementType };
2341 }
2342 
2343 CodeGenFunction::VlaSizePair
2344 CodeGenFunction::getVLAElements1D(QualType type) {
2345   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2346   assert(vla && "type was not a variable array type!");
2347   return getVLAElements1D(vla);
2348 }
2349 
2350 CodeGenFunction::VlaSizePair
2351 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2352   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2353   assert(VlaSize && "no size for VLA!");
2354   assert(VlaSize->getType() == SizeTy);
2355   return { VlaSize, Vla->getElementType() };
2356 }
2357 
2358 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2359   assert(type->isVariablyModifiedType() &&
2360          "Must pass variably modified type to EmitVLASizes!");
2361 
2362   EnsureInsertPoint();
2363 
2364   // We're going to walk down into the type and look for VLA
2365   // expressions.
2366   do {
2367     assert(type->isVariablyModifiedType());
2368 
2369     const Type *ty = type.getTypePtr();
2370     switch (ty->getTypeClass()) {
2371 
2372 #define TYPE(Class, Base)
2373 #define ABSTRACT_TYPE(Class, Base)
2374 #define NON_CANONICAL_TYPE(Class, Base)
2375 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2376 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2377 #include "clang/AST/TypeNodes.inc"
2378       llvm_unreachable("unexpected dependent type!");
2379 
2380     // These types are never variably-modified.
2381     case Type::Builtin:
2382     case Type::Complex:
2383     case Type::Vector:
2384     case Type::ExtVector:
2385     case Type::ConstantMatrix:
2386     case Type::Record:
2387     case Type::Enum:
2388     case Type::Using:
2389     case Type::TemplateSpecialization:
2390     case Type::ObjCTypeParam:
2391     case Type::ObjCObject:
2392     case Type::ObjCInterface:
2393     case Type::ObjCObjectPointer:
2394     case Type::BitInt:
2395       llvm_unreachable("type class is never variably-modified!");
2396 
2397     case Type::Elaborated:
2398       type = cast<ElaboratedType>(ty)->getNamedType();
2399       break;
2400 
2401     case Type::Adjusted:
2402       type = cast<AdjustedType>(ty)->getAdjustedType();
2403       break;
2404 
2405     case Type::Decayed:
2406       type = cast<DecayedType>(ty)->getPointeeType();
2407       break;
2408 
2409     case Type::Pointer:
2410       type = cast<PointerType>(ty)->getPointeeType();
2411       break;
2412 
2413     case Type::BlockPointer:
2414       type = cast<BlockPointerType>(ty)->getPointeeType();
2415       break;
2416 
2417     case Type::LValueReference:
2418     case Type::RValueReference:
2419       type = cast<ReferenceType>(ty)->getPointeeType();
2420       break;
2421 
2422     case Type::MemberPointer:
2423       type = cast<MemberPointerType>(ty)->getPointeeType();
2424       break;
2425 
2426     case Type::ArrayParameter:
2427     case Type::ConstantArray:
2428     case Type::IncompleteArray:
2429       // Losing element qualification here is fine.
2430       type = cast<ArrayType>(ty)->getElementType();
2431       break;
2432 
2433     case Type::VariableArray: {
2434       // Losing element qualification here is fine.
2435       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2436 
2437       // Unknown size indication requires no size computation.
2438       // Otherwise, evaluate and record it.
2439       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2440         // It's possible that we might have emitted this already,
2441         // e.g. with a typedef and a pointer to it.
2442         llvm::Value *&entry = VLASizeMap[sizeExpr];
2443         if (!entry) {
2444           llvm::Value *size = EmitScalarExpr(sizeExpr);
2445 
2446           // C11 6.7.6.2p5:
2447           //   If the size is an expression that is not an integer constant
2448           //   expression [...] each time it is evaluated it shall have a value
2449           //   greater than zero.
2450           if (SanOpts.has(SanitizerKind::VLABound)) {
2451             SanitizerScope SanScope(this);
2452             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2453             clang::QualType SEType = sizeExpr->getType();
2454             llvm::Value *CheckCondition =
2455                 SEType->isSignedIntegerType()
2456                     ? Builder.CreateICmpSGT(size, Zero)
2457                     : Builder.CreateICmpUGT(size, Zero);
2458             llvm::Constant *StaticArgs[] = {
2459                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2460                 EmitCheckTypeDescriptor(SEType)};
2461             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2462                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2463           }
2464 
2465           // Always zexting here would be wrong if it weren't
2466           // undefined behavior to have a negative bound.
2467           // FIXME: What about when size's type is larger than size_t?
2468           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2469         }
2470       }
2471       type = vat->getElementType();
2472       break;
2473     }
2474 
2475     case Type::FunctionProto:
2476     case Type::FunctionNoProto:
2477       type = cast<FunctionType>(ty)->getReturnType();
2478       break;
2479 
2480     case Type::Paren:
2481     case Type::TypeOf:
2482     case Type::UnaryTransform:
2483     case Type::Attributed:
2484     case Type::BTFTagAttributed:
2485     case Type::SubstTemplateTypeParm:
2486     case Type::MacroQualified:
2487     case Type::CountAttributed:
2488       // Keep walking after single level desugaring.
2489       type = type.getSingleStepDesugaredType(getContext());
2490       break;
2491 
2492     case Type::Typedef:
2493     case Type::Decltype:
2494     case Type::Auto:
2495     case Type::DeducedTemplateSpecialization:
2496     case Type::PackIndexing:
2497       // Stop walking: nothing to do.
2498       return;
2499 
2500     case Type::TypeOfExpr:
2501       // Stop walking: emit typeof expression.
2502       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2503       return;
2504 
2505     case Type::Atomic:
2506       type = cast<AtomicType>(ty)->getValueType();
2507       break;
2508 
2509     case Type::Pipe:
2510       type = cast<PipeType>(ty)->getElementType();
2511       break;
2512     }
2513   } while (type->isVariablyModifiedType());
2514 }
2515 
2516 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2517   if (getContext().getBuiltinVaListType()->isArrayType())
2518     return EmitPointerWithAlignment(E);
2519   return EmitLValue(E).getAddress();
2520 }
2521 
2522 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2523   return EmitLValue(E).getAddress();
2524 }
2525 
2526 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2527                                               const APValue &Init) {
2528   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2529   if (CGDebugInfo *Dbg = getDebugInfo())
2530     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2531       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2532 }
2533 
2534 CodeGenFunction::PeepholeProtection
2535 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2536   // At the moment, the only aggressive peephole we do in IR gen
2537   // is trunc(zext) folding, but if we add more, we can easily
2538   // extend this protection.
2539 
2540   if (!rvalue.isScalar()) return PeepholeProtection();
2541   llvm::Value *value = rvalue.getScalarVal();
2542   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2543 
2544   // Just make an extra bitcast.
2545   assert(HaveInsertPoint());
2546   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2547                                                   Builder.GetInsertBlock());
2548 
2549   PeepholeProtection protection;
2550   protection.Inst = inst;
2551   return protection;
2552 }
2553 
2554 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2555   if (!protection.Inst) return;
2556 
2557   // In theory, we could try to duplicate the peepholes now, but whatever.
2558   protection.Inst->eraseFromParent();
2559 }
2560 
2561 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2562                                               QualType Ty, SourceLocation Loc,
2563                                               SourceLocation AssumptionLoc,
2564                                               llvm::Value *Alignment,
2565                                               llvm::Value *OffsetValue) {
2566   if (Alignment->getType() != IntPtrTy)
2567     Alignment =
2568         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2569   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2570     OffsetValue =
2571         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2572   llvm::Value *TheCheck = nullptr;
2573   if (SanOpts.has(SanitizerKind::Alignment)) {
2574     llvm::Value *PtrIntValue =
2575         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2576 
2577     if (OffsetValue) {
2578       bool IsOffsetZero = false;
2579       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2580         IsOffsetZero = CI->isZero();
2581 
2582       if (!IsOffsetZero)
2583         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2584     }
2585 
2586     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2587     llvm::Value *Mask =
2588         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2589     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2590     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2591   }
2592   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2593       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2594 
2595   if (!SanOpts.has(SanitizerKind::Alignment))
2596     return;
2597   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2598                                OffsetValue, TheCheck, Assumption);
2599 }
2600 
2601 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2602                                               const Expr *E,
2603                                               SourceLocation AssumptionLoc,
2604                                               llvm::Value *Alignment,
2605                                               llvm::Value *OffsetValue) {
2606   QualType Ty = E->getType();
2607   SourceLocation Loc = E->getExprLoc();
2608 
2609   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2610                           OffsetValue);
2611 }
2612 
2613 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2614                                                  llvm::Value *AnnotatedVal,
2615                                                  StringRef AnnotationStr,
2616                                                  SourceLocation Location,
2617                                                  const AnnotateAttr *Attr) {
2618   SmallVector<llvm::Value *, 5> Args = {
2619       AnnotatedVal,
2620       CGM.EmitAnnotationString(AnnotationStr),
2621       CGM.EmitAnnotationUnit(Location),
2622       CGM.EmitAnnotationLineNo(Location),
2623   };
2624   if (Attr)
2625     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2626   return Builder.CreateCall(AnnotationFn, Args);
2627 }
2628 
2629 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2630   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2631   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2632     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2633                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2634                        V, I->getAnnotation(), D->getLocation(), I);
2635 }
2636 
2637 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2638                                               Address Addr) {
2639   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2640   llvm::Value *V = Addr.emitRawPointer(*this);
2641   llvm::Type *VTy = V->getType();
2642   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2643   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2644   llvm::PointerType *IntrinTy =
2645       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2646   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2647                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2648 
2649   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2650     // FIXME Always emit the cast inst so we can differentiate between
2651     // annotation on the first field of a struct and annotation on the struct
2652     // itself.
2653     if (VTy != IntrinTy)
2654       V = Builder.CreateBitCast(V, IntrinTy);
2655     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2656     V = Builder.CreateBitCast(V, VTy);
2657   }
2658 
2659   return Address(V, Addr.getElementType(), Addr.getAlignment());
2660 }
2661 
2662 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2663 
2664 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2665     : CGF(CGF) {
2666   assert(!CGF->IsSanitizerScope);
2667   CGF->IsSanitizerScope = true;
2668 }
2669 
2670 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2671   CGF->IsSanitizerScope = false;
2672 }
2673 
2674 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2675                                    const llvm::Twine &Name,
2676                                    llvm::BasicBlock::iterator InsertPt) const {
2677   LoopStack.InsertHelper(I);
2678   if (IsSanitizerScope)
2679     I->setNoSanitizeMetadata();
2680 }
2681 
2682 void CGBuilderInserter::InsertHelper(
2683     llvm::Instruction *I, const llvm::Twine &Name,
2684     llvm::BasicBlock::iterator InsertPt) const {
2685   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2686   if (CGF)
2687     CGF->InsertHelper(I, Name, InsertPt);
2688 }
2689 
2690 // Emits an error if we don't have a valid set of target features for the
2691 // called function.
2692 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2693                                           const FunctionDecl *TargetDecl) {
2694   // SemaChecking cannot handle below x86 builtins because they have different
2695   // parameter ranges with different TargetAttribute of caller.
2696   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2697     unsigned BuiltinID = TargetDecl->getBuiltinID();
2698     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2699         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2700         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2701         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2702       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2703       llvm::StringMap<bool> TargetFetureMap;
2704       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2705       llvm::APSInt Result =
2706           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2707       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2708         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2709             << TargetDecl->getDeclName() << "avx";
2710     }
2711   }
2712   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2713 }
2714 
2715 // Emits an error if we don't have a valid set of target features for the
2716 // called function.
2717 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2718                                           const FunctionDecl *TargetDecl) {
2719   // Early exit if this is an indirect call.
2720   if (!TargetDecl)
2721     return;
2722 
2723   // Get the current enclosing function if it exists. If it doesn't
2724   // we can't check the target features anyhow.
2725   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2726   if (!FD)
2727     return;
2728 
2729   // Grab the required features for the call. For a builtin this is listed in
2730   // the td file with the default cpu, for an always_inline function this is any
2731   // listed cpu and any listed features.
2732   unsigned BuiltinID = TargetDecl->getBuiltinID();
2733   std::string MissingFeature;
2734   llvm::StringMap<bool> CallerFeatureMap;
2735   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2736   // When compiling in HipStdPar mode we have to be conservative in rejecting
2737   // target specific features in the FE, and defer the possible error to the
2738   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2739   // referenced by an accelerator executable function, we emit an error.
2740   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2741   if (BuiltinID) {
2742     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2743     if (!Builtin::evaluateRequiredTargetFeatures(
2744         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2745       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2746           << TargetDecl->getDeclName()
2747           << FeatureList;
2748     }
2749   } else if (!TargetDecl->isMultiVersion() &&
2750              TargetDecl->hasAttr<TargetAttr>()) {
2751     // Get the required features for the callee.
2752 
2753     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2754     ParsedTargetAttr ParsedAttr =
2755         CGM.getContext().filterFunctionTargetAttrs(TD);
2756 
2757     SmallVector<StringRef, 1> ReqFeatures;
2758     llvm::StringMap<bool> CalleeFeatureMap;
2759     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2760 
2761     for (const auto &F : ParsedAttr.Features) {
2762       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2763         ReqFeatures.push_back(StringRef(F).substr(1));
2764     }
2765 
2766     for (const auto &F : CalleeFeatureMap) {
2767       // Only positive features are "required".
2768       if (F.getValue())
2769         ReqFeatures.push_back(F.getKey());
2770     }
2771     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2772       if (!CallerFeatureMap.lookup(Feature)) {
2773         MissingFeature = Feature.str();
2774         return false;
2775       }
2776       return true;
2777     }) && !IsHipStdPar)
2778       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2779           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2780   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2781     llvm::StringMap<bool> CalleeFeatureMap;
2782     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2783 
2784     for (const auto &F : CalleeFeatureMap) {
2785       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2786                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2787           !IsHipStdPar)
2788         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2789             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2790     }
2791   }
2792 }
2793 
2794 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2795   if (!CGM.getCodeGenOpts().SanitizeStats)
2796     return;
2797 
2798   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2799   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2800   CGM.getSanStats().create(IRB, SSK);
2801 }
2802 
2803 void CodeGenFunction::EmitKCFIOperandBundle(
2804     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2805   const FunctionProtoType *FP =
2806       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2807   if (FP)
2808     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2809 }
2810 
2811 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2812     const MultiVersionResolverOption &RO) {
2813   llvm::SmallVector<StringRef, 8> CondFeatures;
2814   for (const StringRef &Feature : RO.Conditions.Features)
2815     CondFeatures.push_back(Feature);
2816   if (!CondFeatures.empty()) {
2817     return EmitAArch64CpuSupports(CondFeatures);
2818   }
2819   return nullptr;
2820 }
2821 
2822 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2823     const MultiVersionResolverOption &RO) {
2824   llvm::Value *Condition = nullptr;
2825 
2826   if (!RO.Conditions.Architecture.empty()) {
2827     StringRef Arch = RO.Conditions.Architecture;
2828     // If arch= specifies an x86-64 micro-architecture level, test the feature
2829     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2830     if (Arch.starts_with("x86-64"))
2831       Condition = EmitX86CpuSupports({Arch});
2832     else
2833       Condition = EmitX86CpuIs(Arch);
2834   }
2835 
2836   if (!RO.Conditions.Features.empty()) {
2837     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2838     Condition =
2839         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2840   }
2841   return Condition;
2842 }
2843 
2844 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2845                                              llvm::Function *Resolver,
2846                                              CGBuilderTy &Builder,
2847                                              llvm::Function *FuncToReturn,
2848                                              bool SupportsIFunc) {
2849   if (SupportsIFunc) {
2850     Builder.CreateRet(FuncToReturn);
2851     return;
2852   }
2853 
2854   llvm::SmallVector<llvm::Value *, 10> Args(
2855       llvm::make_pointer_range(Resolver->args()));
2856 
2857   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2858   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2859 
2860   if (Resolver->getReturnType()->isVoidTy())
2861     Builder.CreateRetVoid();
2862   else
2863     Builder.CreateRet(Result);
2864 }
2865 
2866 void CodeGenFunction::EmitMultiVersionResolver(
2867     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2868 
2869   llvm::Triple::ArchType ArchType =
2870       getContext().getTargetInfo().getTriple().getArch();
2871 
2872   switch (ArchType) {
2873   case llvm::Triple::x86:
2874   case llvm::Triple::x86_64:
2875     EmitX86MultiVersionResolver(Resolver, Options);
2876     return;
2877   case llvm::Triple::aarch64:
2878     EmitAArch64MultiVersionResolver(Resolver, Options);
2879     return;
2880 
2881   default:
2882     assert(false && "Only implemented for x86 and AArch64 targets");
2883   }
2884 }
2885 
2886 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2887     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2888   assert(!Options.empty() && "No multiversion resolver options found");
2889   assert(Options.back().Conditions.Features.size() == 0 &&
2890          "Default case must be last");
2891   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2892   assert(SupportsIFunc &&
2893          "Multiversion resolver requires target IFUNC support");
2894   bool AArch64CpuInitialized = false;
2895   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2896 
2897   for (const MultiVersionResolverOption &RO : Options) {
2898     Builder.SetInsertPoint(CurBlock);
2899     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2900 
2901     // The 'default' or 'all features enabled' case.
2902     if (!Condition) {
2903       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2904                                        SupportsIFunc);
2905       return;
2906     }
2907 
2908     if (!AArch64CpuInitialized) {
2909       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2910       EmitAArch64CpuInit();
2911       AArch64CpuInitialized = true;
2912       Builder.SetInsertPoint(CurBlock);
2913     }
2914 
2915     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2916     CGBuilderTy RetBuilder(*this, RetBlock);
2917     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2918                                      SupportsIFunc);
2919     CurBlock = createBasicBlock("resolver_else", Resolver);
2920     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2921   }
2922 
2923   // If no default, emit an unreachable.
2924   Builder.SetInsertPoint(CurBlock);
2925   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2926   TrapCall->setDoesNotReturn();
2927   TrapCall->setDoesNotThrow();
2928   Builder.CreateUnreachable();
2929   Builder.ClearInsertionPoint();
2930 }
2931 
2932 void CodeGenFunction::EmitX86MultiVersionResolver(
2933     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2934 
2935   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2936 
2937   // Main function's basic block.
2938   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2939   Builder.SetInsertPoint(CurBlock);
2940   EmitX86CpuInit();
2941 
2942   for (const MultiVersionResolverOption &RO : Options) {
2943     Builder.SetInsertPoint(CurBlock);
2944     llvm::Value *Condition = FormX86ResolverCondition(RO);
2945 
2946     // The 'default' or 'generic' case.
2947     if (!Condition) {
2948       assert(&RO == Options.end() - 1 &&
2949              "Default or Generic case must be last");
2950       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2951                                        SupportsIFunc);
2952       return;
2953     }
2954 
2955     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2956     CGBuilderTy RetBuilder(*this, RetBlock);
2957     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2958                                      SupportsIFunc);
2959     CurBlock = createBasicBlock("resolver_else", Resolver);
2960     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2961   }
2962 
2963   // If no generic/default, emit an unreachable.
2964   Builder.SetInsertPoint(CurBlock);
2965   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2966   TrapCall->setDoesNotReturn();
2967   TrapCall->setDoesNotThrow();
2968   Builder.CreateUnreachable();
2969   Builder.ClearInsertionPoint();
2970 }
2971 
2972 // Loc - where the diagnostic will point, where in the source code this
2973 //  alignment has failed.
2974 // SecondaryLoc - if present (will be present if sufficiently different from
2975 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2976 //  It should be the location where the __attribute__((assume_aligned))
2977 //  was written e.g.
2978 void CodeGenFunction::emitAlignmentAssumptionCheck(
2979     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2980     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2981     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2982     llvm::Instruction *Assumption) {
2983   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2984          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2985              llvm::Intrinsic::getDeclaration(
2986                  Builder.GetInsertBlock()->getParent()->getParent(),
2987                  llvm::Intrinsic::assume) &&
2988          "Assumption should be a call to llvm.assume().");
2989   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2990          "Assumption should be the last instruction of the basic block, "
2991          "since the basic block is still being generated.");
2992 
2993   if (!SanOpts.has(SanitizerKind::Alignment))
2994     return;
2995 
2996   // Don't check pointers to volatile data. The behavior here is implementation-
2997   // defined.
2998   if (Ty->getPointeeType().isVolatileQualified())
2999     return;
3000 
3001   // We need to temorairly remove the assumption so we can insert the
3002   // sanitizer check before it, else the check will be dropped by optimizations.
3003   Assumption->removeFromParent();
3004 
3005   {
3006     SanitizerScope SanScope(this);
3007 
3008     if (!OffsetValue)
3009       OffsetValue = Builder.getInt1(false); // no offset.
3010 
3011     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3012                                     EmitCheckSourceLocation(SecondaryLoc),
3013                                     EmitCheckTypeDescriptor(Ty)};
3014     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3015                                   EmitCheckValue(Alignment),
3016                                   EmitCheckValue(OffsetValue)};
3017     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3018               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3019   }
3020 
3021   // We are now in the (new, empty) "cont" basic block.
3022   // Reintroduce the assumption.
3023   Builder.Insert(Assumption);
3024   // FIXME: Assumption still has it's original basic block as it's Parent.
3025 }
3026 
3027 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3028   if (CGDebugInfo *DI = getDebugInfo())
3029     return DI->SourceLocToDebugLoc(Location);
3030 
3031   return llvm::DebugLoc();
3032 }
3033 
3034 llvm::Value *
3035 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3036                                                       Stmt::Likelihood LH) {
3037   switch (LH) {
3038   case Stmt::LH_None:
3039     return Cond;
3040   case Stmt::LH_Likely:
3041   case Stmt::LH_Unlikely:
3042     // Don't generate llvm.expect on -O0 as the backend won't use it for
3043     // anything.
3044     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3045       return Cond;
3046     llvm::Type *CondTy = Cond->getType();
3047     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3048     llvm::Function *FnExpect =
3049         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3050     llvm::Value *ExpectedValueOfCond =
3051         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3052     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3053                               Cond->getName() + ".expval");
3054   }
3055   llvm_unreachable("Unknown Likelihood");
3056 }
3057 
3058 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3059                                                     unsigned NumElementsDst,
3060                                                     const llvm::Twine &Name) {
3061   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3062   unsigned NumElementsSrc = SrcTy->getNumElements();
3063   if (NumElementsSrc == NumElementsDst)
3064     return SrcVec;
3065 
3066   std::vector<int> ShuffleMask(NumElementsDst, -1);
3067   for (unsigned MaskIdx = 0;
3068        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3069     ShuffleMask[MaskIdx] = MaskIdx;
3070 
3071   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3072 }
3073 
3074 void CodeGenFunction::EmitPointerAuthOperandBundle(
3075     const CGPointerAuthInfo &PointerAuth,
3076     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3077   if (!PointerAuth.isSigned())
3078     return;
3079 
3080   auto *Key = Builder.getInt32(PointerAuth.getKey());
3081 
3082   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3083   if (!Discriminator)
3084     Discriminator = Builder.getSize(0);
3085 
3086   llvm::Value *Args[] = {Key, Discriminator};
3087   Bundles.emplace_back("ptrauth", Args);
3088 }
3089 
3090 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3091                                           const CGPointerAuthInfo &PointerAuth,
3092                                           llvm::Value *Pointer,
3093                                           unsigned IntrinsicID) {
3094   if (!PointerAuth)
3095     return Pointer;
3096 
3097   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3098 
3099   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3100   if (!Discriminator) {
3101     Discriminator = CGF.Builder.getSize(0);
3102   }
3103 
3104   // Convert the pointer to intptr_t before signing it.
3105   auto OrigType = Pointer->getType();
3106   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3107 
3108   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3109   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3110   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3111 
3112   // Convert back to the original type.
3113   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3114   return Pointer;
3115 }
3116 
3117 llvm::Value *
3118 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3119                                      llvm::Value *Pointer) {
3120   if (!PointerAuth.shouldSign())
3121     return Pointer;
3122   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3123                                llvm::Intrinsic::ptrauth_sign);
3124 }
3125 
3126 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3127                               const CGPointerAuthInfo &PointerAuth,
3128                               llvm::Value *Pointer) {
3129   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3130 
3131   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3132   // Convert the pointer to intptr_t before signing it.
3133   auto OrigType = Pointer->getType();
3134   Pointer = CGF.EmitRuntimeCall(
3135       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3136   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3137 }
3138 
3139 llvm::Value *
3140 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3141                                      llvm::Value *Pointer) {
3142   if (PointerAuth.shouldStrip()) {
3143     return EmitStrip(*this, PointerAuth, Pointer);
3144   }
3145   if (!PointerAuth.shouldAuth()) {
3146     return Pointer;
3147   }
3148 
3149   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3150                                llvm::Intrinsic::ptrauth_auth);
3151 }
3152