xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 9cd93774098c861c260090a690f428b7ae031c65)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   if (SanOpts.has(SanitizerKind::Realtime))
849     if (FD && FD->getASTContext().hasAnyFunctionEffects())
850       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
851         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
852           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
853       }
854 
855   // Apply fuzzing attribute to the function.
856   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
857     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
858 
859   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
860   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
861   if (SanOpts.has(SanitizerKind::Thread)) {
862     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
863       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
864       if (OMD->getMethodFamily() == OMF_dealloc ||
865           OMD->getMethodFamily() == OMF_initialize ||
866           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
867         markAsIgnoreThreadCheckingAtRuntime(Fn);
868       }
869     }
870   }
871 
872   // Ignore unrelated casts in STL allocate() since the allocator must cast
873   // from void* to T* before object initialization completes. Don't match on the
874   // namespace because not all allocators are in std::
875   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
876     if (matchesStlAllocatorFn(D, getContext()))
877       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
878   }
879 
880   // Ignore null checks in coroutine functions since the coroutines passes
881   // are not aware of how to move the extra UBSan instructions across the split
882   // coroutine boundaries.
883   if (D && SanOpts.has(SanitizerKind::Null))
884     if (FD && FD->getBody() &&
885         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
886       SanOpts.Mask &= ~SanitizerKind::Null;
887 
888   // Add pointer authentication attributes.
889   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
890   if (CodeGenOpts.PointerAuth.ReturnAddresses)
891     Fn->addFnAttr("ptrauth-returns");
892   if (CodeGenOpts.PointerAuth.FunctionPointers)
893     Fn->addFnAttr("ptrauth-calls");
894   if (CodeGenOpts.PointerAuth.AuthTraps)
895     Fn->addFnAttr("ptrauth-auth-traps");
896   if (CodeGenOpts.PointerAuth.IndirectGotos)
897     Fn->addFnAttr("ptrauth-indirect-gotos");
898 
899   // Apply xray attributes to the function (as a string, for now)
900   bool AlwaysXRayAttr = false;
901   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
902     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
903             XRayInstrKind::FunctionEntry) ||
904         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
905             XRayInstrKind::FunctionExit)) {
906       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
907         Fn->addFnAttr("function-instrument", "xray-always");
908         AlwaysXRayAttr = true;
909       }
910       if (XRayAttr->neverXRayInstrument())
911         Fn->addFnAttr("function-instrument", "xray-never");
912       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
913         if (ShouldXRayInstrumentFunction())
914           Fn->addFnAttr("xray-log-args",
915                         llvm::utostr(LogArgs->getArgumentCount()));
916     }
917   } else {
918     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
919       Fn->addFnAttr(
920           "xray-instruction-threshold",
921           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
922   }
923 
924   if (ShouldXRayInstrumentFunction()) {
925     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
926       Fn->addFnAttr("xray-ignore-loops");
927 
928     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
929             XRayInstrKind::FunctionExit))
930       Fn->addFnAttr("xray-skip-exit");
931 
932     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
933             XRayInstrKind::FunctionEntry))
934       Fn->addFnAttr("xray-skip-entry");
935 
936     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
937     if (FuncGroups > 1) {
938       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
939                                               CurFn->getName().bytes_end());
940       auto Group = crc32(FuncName) % FuncGroups;
941       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
942           !AlwaysXRayAttr)
943         Fn->addFnAttr("function-instrument", "xray-never");
944     }
945   }
946 
947   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
948     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
949     case ProfileList::Skip:
950       Fn->addFnAttr(llvm::Attribute::SkipProfile);
951       break;
952     case ProfileList::Forbid:
953       Fn->addFnAttr(llvm::Attribute::NoProfile);
954       break;
955     case ProfileList::Allow:
956       break;
957     }
958   }
959 
960   unsigned Count, Offset;
961   if (const auto *Attr =
962           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
963     Count = Attr->getCount();
964     Offset = Attr->getOffset();
965   } else {
966     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
967     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
968   }
969   if (Count && Offset <= Count) {
970     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
971     if (Offset)
972       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
973   }
974   // Instruct that functions for COFF/CodeView targets should start with a
975   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
976   // backends as they don't need it -- instructions on these architectures are
977   // always atomically patchable at runtime.
978   if (CGM.getCodeGenOpts().HotPatch &&
979       getContext().getTargetInfo().getTriple().isX86() &&
980       getContext().getTargetInfo().getTriple().getEnvironment() !=
981           llvm::Triple::CODE16)
982     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
983 
984   // Add no-jump-tables value.
985   if (CGM.getCodeGenOpts().NoUseJumpTables)
986     Fn->addFnAttr("no-jump-tables", "true");
987 
988   // Add no-inline-line-tables value.
989   if (CGM.getCodeGenOpts().NoInlineLineTables)
990     Fn->addFnAttr("no-inline-line-tables");
991 
992   // Add profile-sample-accurate value.
993   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
994     Fn->addFnAttr("profile-sample-accurate");
995 
996   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
997     Fn->addFnAttr("use-sample-profile");
998 
999   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1000     Fn->addFnAttr("cfi-canonical-jump-table");
1001 
1002   if (D && D->hasAttr<NoProfileFunctionAttr>())
1003     Fn->addFnAttr(llvm::Attribute::NoProfile);
1004 
1005   if (D && D->hasAttr<HybridPatchableAttr>())
1006     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1007 
1008   if (D) {
1009     // Function attributes take precedence over command line flags.
1010     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1011       switch (A->getThunkType()) {
1012       case FunctionReturnThunksAttr::Kind::Keep:
1013         break;
1014       case FunctionReturnThunksAttr::Kind::Extern:
1015         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1016         break;
1017       }
1018     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1019       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1020   }
1021 
1022   if (FD && (getLangOpts().OpenCL ||
1023              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1024               getLangOpts().CUDAIsDevice))) {
1025     // Add metadata for a kernel function.
1026     EmitKernelMetadata(FD, Fn);
1027   }
1028 
1029   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1030     Fn->setMetadata("clspv_libclc_builtin",
1031                     llvm::MDNode::get(getLLVMContext(), {}));
1032   }
1033 
1034   // If we are checking function types, emit a function type signature as
1035   // prologue data.
1036   if (FD && SanOpts.has(SanitizerKind::Function)) {
1037     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1038       llvm::LLVMContext &Ctx = Fn->getContext();
1039       llvm::MDBuilder MDB(Ctx);
1040       Fn->setMetadata(
1041           llvm::LLVMContext::MD_func_sanitize,
1042           MDB.createRTTIPointerPrologue(
1043               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1044     }
1045   }
1046 
1047   // If we're checking nullability, we need to know whether we can check the
1048   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1049   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1050     auto Nullability = FnRetTy->getNullability();
1051     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1052         !FnRetTy->isRecordType()) {
1053       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1054             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1055         RetValNullabilityPrecondition =
1056             llvm::ConstantInt::getTrue(getLLVMContext());
1057     }
1058   }
1059 
1060   // If we're in C++ mode and the function name is "main", it is guaranteed
1061   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1062   // used within a program").
1063   //
1064   // OpenCL C 2.0 v2.2-11 s6.9.i:
1065   //     Recursion is not supported.
1066   //
1067   // HLSL
1068   //     Recursion is not supported.
1069   //
1070   // SYCL v1.2.1 s3.10:
1071   //     kernels cannot include RTTI information, exception classes,
1072   //     recursive code, virtual functions or make use of C++ libraries that
1073   //     are not compiled for the device.
1074   if (FD &&
1075       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1076        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1077        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1078     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1079 
1080   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1081   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1082       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1083   Builder.setDefaultConstrainedRounding(RM);
1084   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1085   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1086       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1087                RM != llvm::RoundingMode::NearestTiesToEven))) {
1088     Builder.setIsFPConstrained(true);
1089     Fn->addFnAttr(llvm::Attribute::StrictFP);
1090   }
1091 
1092   // If a custom alignment is used, force realigning to this alignment on
1093   // any main function which certainly will need it.
1094   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1095              CGM.getCodeGenOpts().StackAlignment))
1096     Fn->addFnAttr("stackrealign");
1097 
1098   // "main" doesn't need to zero out call-used registers.
1099   if (FD && FD->isMain())
1100     Fn->removeFnAttr("zero-call-used-regs");
1101 
1102   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1103 
1104   // Create a marker to make it easy to insert allocas into the entryblock
1105   // later.  Don't create this with the builder, because we don't want it
1106   // folded.
1107   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1108   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1109 
1110   ReturnBlock = getJumpDestInCurrentScope("return");
1111 
1112   Builder.SetInsertPoint(EntryBB);
1113 
1114   // If we're checking the return value, allocate space for a pointer to a
1115   // precise source location of the checked return statement.
1116   if (requiresReturnValueCheck()) {
1117     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1118     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1119                         ReturnLocation);
1120   }
1121 
1122   // Emit subprogram debug descriptor.
1123   if (CGDebugInfo *DI = getDebugInfo()) {
1124     // Reconstruct the type from the argument list so that implicit parameters,
1125     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1126     // convention.
1127     DI->emitFunctionStart(GD, Loc, StartLoc,
1128                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1129                           CurFuncIsThunk);
1130   }
1131 
1132   if (ShouldInstrumentFunction()) {
1133     if (CGM.getCodeGenOpts().InstrumentFunctions)
1134       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1135     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1136       CurFn->addFnAttr("instrument-function-entry-inlined",
1137                        "__cyg_profile_func_enter");
1138     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1139       CurFn->addFnAttr("instrument-function-entry-inlined",
1140                        "__cyg_profile_func_enter_bare");
1141   }
1142 
1143   // Since emitting the mcount call here impacts optimizations such as function
1144   // inlining, we just add an attribute to insert a mcount call in backend.
1145   // The attribute "counting-function" is set to mcount function name which is
1146   // architecture dependent.
1147   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1148     // Calls to fentry/mcount should not be generated if function has
1149     // the no_instrument_function attribute.
1150     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1151       if (CGM.getCodeGenOpts().CallFEntry)
1152         Fn->addFnAttr("fentry-call", "true");
1153       else {
1154         Fn->addFnAttr("instrument-function-entry-inlined",
1155                       getTarget().getMCountName());
1156       }
1157       if (CGM.getCodeGenOpts().MNopMCount) {
1158         if (!CGM.getCodeGenOpts().CallFEntry)
1159           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1160             << "-mnop-mcount" << "-mfentry";
1161         Fn->addFnAttr("mnop-mcount");
1162       }
1163 
1164       if (CGM.getCodeGenOpts().RecordMCount) {
1165         if (!CGM.getCodeGenOpts().CallFEntry)
1166           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1167             << "-mrecord-mcount" << "-mfentry";
1168         Fn->addFnAttr("mrecord-mcount");
1169       }
1170     }
1171   }
1172 
1173   if (CGM.getCodeGenOpts().PackedStack) {
1174     if (getContext().getTargetInfo().getTriple().getArch() !=
1175         llvm::Triple::systemz)
1176       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1177         << "-mpacked-stack";
1178     Fn->addFnAttr("packed-stack");
1179   }
1180 
1181   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1182       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1183     Fn->addFnAttr("warn-stack-size",
1184                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1185 
1186   if (RetTy->isVoidType()) {
1187     // Void type; nothing to return.
1188     ReturnValue = Address::invalid();
1189 
1190     // Count the implicit return.
1191     if (!endsWithReturn(D))
1192       ++NumReturnExprs;
1193   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1194     // Indirect return; emit returned value directly into sret slot.
1195     // This reduces code size, and affects correctness in C++.
1196     auto AI = CurFn->arg_begin();
1197     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1198       ++AI;
1199     ReturnValue = makeNaturalAddressForPointer(
1200         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1201         nullptr, nullptr, KnownNonNull);
1202     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1203       ReturnValuePointer =
1204           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1205       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1206                           ReturnValuePointer);
1207     }
1208   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1209              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1210     // Load the sret pointer from the argument struct and return into that.
1211     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1212     llvm::Function::arg_iterator EI = CurFn->arg_end();
1213     --EI;
1214     llvm::Value *Addr = Builder.CreateStructGEP(
1215         CurFnInfo->getArgStruct(), &*EI, Idx);
1216     llvm::Type *Ty =
1217         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1218     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1219     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1220     ReturnValue = Address(Addr, ConvertType(RetTy),
1221                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1222   } else {
1223     ReturnValue = CreateIRTemp(RetTy, "retval");
1224 
1225     // Tell the epilog emitter to autorelease the result.  We do this
1226     // now so that various specialized functions can suppress it
1227     // during their IR-generation.
1228     if (getLangOpts().ObjCAutoRefCount &&
1229         !CurFnInfo->isReturnsRetained() &&
1230         RetTy->isObjCRetainableType())
1231       AutoreleaseResult = true;
1232   }
1233 
1234   EmitStartEHSpec(CurCodeDecl);
1235 
1236   PrologueCleanupDepth = EHStack.stable_begin();
1237 
1238   // Emit OpenMP specific initialization of the device functions.
1239   if (getLangOpts().OpenMP && CurCodeDecl)
1240     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1241 
1242   if (FD && getLangOpts().HLSL) {
1243     // Handle emitting HLSL entry functions.
1244     if (FD->hasAttr<HLSLShaderAttr>()) {
1245       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1246     }
1247     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1248   }
1249 
1250   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1251 
1252   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1253       MD && !MD->isStatic()) {
1254     bool IsInLambda =
1255         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1256     if (MD->isImplicitObjectMemberFunction())
1257       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1258     if (IsInLambda) {
1259       // We're in a lambda; figure out the captures.
1260       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1261                                         LambdaThisCaptureField);
1262       if (LambdaThisCaptureField) {
1263         // If the lambda captures the object referred to by '*this' - either by
1264         // value or by reference, make sure CXXThisValue points to the correct
1265         // object.
1266 
1267         // Get the lvalue for the field (which is a copy of the enclosing object
1268         // or contains the address of the enclosing object).
1269         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1270         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1271           // If the enclosing object was captured by value, just use its
1272           // address. Sign this pointer.
1273           CXXThisValue = ThisFieldLValue.getPointer(*this);
1274         } else {
1275           // Load the lvalue pointed to by the field, since '*this' was captured
1276           // by reference.
1277           CXXThisValue =
1278               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1279         }
1280       }
1281       for (auto *FD : MD->getParent()->fields()) {
1282         if (FD->hasCapturedVLAType()) {
1283           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1284                                            SourceLocation()).getScalarVal();
1285           auto VAT = FD->getCapturedVLAType();
1286           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1287         }
1288       }
1289     } else if (MD->isImplicitObjectMemberFunction()) {
1290       // Not in a lambda; just use 'this' from the method.
1291       // FIXME: Should we generate a new load for each use of 'this'?  The
1292       // fast register allocator would be happier...
1293       CXXThisValue = CXXABIThisValue;
1294     }
1295 
1296     // Check the 'this' pointer once per function, if it's available.
1297     if (CXXABIThisValue) {
1298       SanitizerSet SkippedChecks;
1299       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1300       QualType ThisTy = MD->getThisType();
1301 
1302       // If this is the call operator of a lambda with no captures, it
1303       // may have a static invoker function, which may call this operator with
1304       // a null 'this' pointer.
1305       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1306         SkippedChecks.set(SanitizerKind::Null, true);
1307 
1308       EmitTypeCheck(
1309           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1310           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1311     }
1312   }
1313 
1314   // If any of the arguments have a variably modified type, make sure to
1315   // emit the type size, but only if the function is not naked. Naked functions
1316   // have no prolog to run this evaluation.
1317   if (!FD || !FD->hasAttr<NakedAttr>()) {
1318     for (const VarDecl *VD : Args) {
1319       // Dig out the type as written from ParmVarDecls; it's unclear whether
1320       // the standard (C99 6.9.1p10) requires this, but we're following the
1321       // precedent set by gcc.
1322       QualType Ty;
1323       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1324         Ty = PVD->getOriginalType();
1325       else
1326         Ty = VD->getType();
1327 
1328       if (Ty->isVariablyModifiedType())
1329         EmitVariablyModifiedType(Ty);
1330     }
1331   }
1332   // Emit a location at the end of the prologue.
1333   if (CGDebugInfo *DI = getDebugInfo())
1334     DI->EmitLocation(Builder, StartLoc);
1335   // TODO: Do we need to handle this in two places like we do with
1336   // target-features/target-cpu?
1337   if (CurFuncDecl)
1338     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1339       LargestVectorWidth = VecWidth->getVectorWidth();
1340 
1341   if (CGM.shouldEmitConvergenceTokens())
1342     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1343 }
1344 
1345 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1346   incrementProfileCounter(Body);
1347   maybeCreateMCDCCondBitmap();
1348   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1349     EmitCompoundStmtWithoutScope(*S);
1350   else
1351     EmitStmt(Body);
1352 }
1353 
1354 /// When instrumenting to collect profile data, the counts for some blocks
1355 /// such as switch cases need to not include the fall-through counts, so
1356 /// emit a branch around the instrumentation code. When not instrumenting,
1357 /// this just calls EmitBlock().
1358 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1359                                                const Stmt *S) {
1360   llvm::BasicBlock *SkipCountBB = nullptr;
1361   // Do not skip over the instrumentation when single byte coverage mode is
1362   // enabled.
1363   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1364       !llvm::EnableSingleByteCoverage) {
1365     // When instrumenting for profiling, the fallthrough to certain
1366     // statements needs to skip over the instrumentation code so that we
1367     // get an accurate count.
1368     SkipCountBB = createBasicBlock("skipcount");
1369     EmitBranch(SkipCountBB);
1370   }
1371   EmitBlock(BB);
1372   uint64_t CurrentCount = getCurrentProfileCount();
1373   incrementProfileCounter(S);
1374   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1375   if (SkipCountBB)
1376     EmitBlock(SkipCountBB);
1377 }
1378 
1379 /// Tries to mark the given function nounwind based on the
1380 /// non-existence of any throwing calls within it.  We believe this is
1381 /// lightweight enough to do at -O0.
1382 static void TryMarkNoThrow(llvm::Function *F) {
1383   // LLVM treats 'nounwind' on a function as part of the type, so we
1384   // can't do this on functions that can be overwritten.
1385   if (F->isInterposable()) return;
1386 
1387   for (llvm::BasicBlock &BB : *F)
1388     for (llvm::Instruction &I : BB)
1389       if (I.mayThrow())
1390         return;
1391 
1392   F->setDoesNotThrow();
1393 }
1394 
1395 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1396                                                FunctionArgList &Args) {
1397   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1398   QualType ResTy = FD->getReturnType();
1399 
1400   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1401   if (MD && MD->isImplicitObjectMemberFunction()) {
1402     if (CGM.getCXXABI().HasThisReturn(GD))
1403       ResTy = MD->getThisType();
1404     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1405       ResTy = CGM.getContext().VoidPtrTy;
1406     CGM.getCXXABI().buildThisParam(*this, Args);
1407   }
1408 
1409   // The base version of an inheriting constructor whose constructed base is a
1410   // virtual base is not passed any arguments (because it doesn't actually call
1411   // the inherited constructor).
1412   bool PassedParams = true;
1413   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1414     if (auto Inherited = CD->getInheritedConstructor())
1415       PassedParams =
1416           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1417 
1418   if (PassedParams) {
1419     for (auto *Param : FD->parameters()) {
1420       Args.push_back(Param);
1421       if (!Param->hasAttr<PassObjectSizeAttr>())
1422         continue;
1423 
1424       auto *Implicit = ImplicitParamDecl::Create(
1425           getContext(), Param->getDeclContext(), Param->getLocation(),
1426           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1427       SizeArguments[Param] = Implicit;
1428       Args.push_back(Implicit);
1429     }
1430   }
1431 
1432   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1433     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1434 
1435   return ResTy;
1436 }
1437 
1438 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1439                                    const CGFunctionInfo &FnInfo) {
1440   assert(Fn && "generating code for null Function");
1441   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1442   CurGD = GD;
1443 
1444   FunctionArgList Args;
1445   QualType ResTy = BuildFunctionArgList(GD, Args);
1446 
1447   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1448 
1449   if (FD->isInlineBuiltinDeclaration()) {
1450     // When generating code for a builtin with an inline declaration, use a
1451     // mangled name to hold the actual body, while keeping an external
1452     // definition in case the function pointer is referenced somewhere.
1453     std::string FDInlineName = (Fn->getName() + ".inline").str();
1454     llvm::Module *M = Fn->getParent();
1455     llvm::Function *Clone = M->getFunction(FDInlineName);
1456     if (!Clone) {
1457       Clone = llvm::Function::Create(Fn->getFunctionType(),
1458                                      llvm::GlobalValue::InternalLinkage,
1459                                      Fn->getAddressSpace(), FDInlineName, M);
1460       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1461     }
1462     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1463     Fn = Clone;
1464   } else {
1465     // Detect the unusual situation where an inline version is shadowed by a
1466     // non-inline version. In that case we should pick the external one
1467     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1468     // to detect that situation before we reach codegen, so do some late
1469     // replacement.
1470     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1471          PD = PD->getPreviousDecl()) {
1472       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1473         std::string FDInlineName = (Fn->getName() + ".inline").str();
1474         llvm::Module *M = Fn->getParent();
1475         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1476           Clone->replaceAllUsesWith(Fn);
1477           Clone->eraseFromParent();
1478         }
1479         break;
1480       }
1481     }
1482   }
1483 
1484   // Check if we should generate debug info for this function.
1485   if (FD->hasAttr<NoDebugAttr>()) {
1486     // Clear non-distinct debug info that was possibly attached to the function
1487     // due to an earlier declaration without the nodebug attribute
1488     Fn->setSubprogram(nullptr);
1489     // Disable debug info indefinitely for this function
1490     DebugInfo = nullptr;
1491   }
1492 
1493   // The function might not have a body if we're generating thunks for a
1494   // function declaration.
1495   SourceRange BodyRange;
1496   if (Stmt *Body = FD->getBody())
1497     BodyRange = Body->getSourceRange();
1498   else
1499     BodyRange = FD->getLocation();
1500   CurEHLocation = BodyRange.getEnd();
1501 
1502   // Use the location of the start of the function to determine where
1503   // the function definition is located. By default use the location
1504   // of the declaration as the location for the subprogram. A function
1505   // may lack a declaration in the source code if it is created by code
1506   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1507   SourceLocation Loc = FD->getLocation();
1508 
1509   // If this is a function specialization then use the pattern body
1510   // as the location for the function.
1511   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1512     if (SpecDecl->hasBody(SpecDecl))
1513       Loc = SpecDecl->getLocation();
1514 
1515   Stmt *Body = FD->getBody();
1516 
1517   if (Body) {
1518     // Coroutines always emit lifetime markers.
1519     if (isa<CoroutineBodyStmt>(Body))
1520       ShouldEmitLifetimeMarkers = true;
1521 
1522     // Initialize helper which will detect jumps which can cause invalid
1523     // lifetime markers.
1524     if (ShouldEmitLifetimeMarkers)
1525       Bypasses.Init(Body);
1526   }
1527 
1528   // Emit the standard function prologue.
1529   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1530 
1531   // Save parameters for coroutine function.
1532   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1533     llvm::append_range(FnArgs, FD->parameters());
1534 
1535   // Ensure that the function adheres to the forward progress guarantee, which
1536   // is required by certain optimizations.
1537   // In C++11 and up, the attribute will be removed if the body contains a
1538   // trivial empty loop.
1539   if (checkIfFunctionMustProgress())
1540     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1541 
1542   // Generate the body of the function.
1543   PGO.assignRegionCounters(GD, CurFn);
1544   if (isa<CXXDestructorDecl>(FD))
1545     EmitDestructorBody(Args);
1546   else if (isa<CXXConstructorDecl>(FD))
1547     EmitConstructorBody(Args);
1548   else if (getLangOpts().CUDA &&
1549            !getLangOpts().CUDAIsDevice &&
1550            FD->hasAttr<CUDAGlobalAttr>())
1551     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1552   else if (isa<CXXMethodDecl>(FD) &&
1553            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1554     // The lambda static invoker function is special, because it forwards or
1555     // clones the body of the function call operator (but is actually static).
1556     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1557   } else if (isa<CXXMethodDecl>(FD) &&
1558              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1559              !FnInfo.isDelegateCall() &&
1560              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1561              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1562     // If emitting a lambda with static invoker on X86 Windows, change
1563     // the call operator body.
1564     // Make sure that this is a call operator with an inalloca arg and check
1565     // for delegate call to make sure this is the original call op and not the
1566     // new forwarding function for the static invoker.
1567     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1568   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1569              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1570               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1571     // Implicit copy-assignment gets the same special treatment as implicit
1572     // copy-constructors.
1573     emitImplicitAssignmentOperatorBody(Args);
1574   } else if (Body) {
1575     EmitFunctionBody(Body);
1576   } else
1577     llvm_unreachable("no definition for emitted function");
1578 
1579   // C++11 [stmt.return]p2:
1580   //   Flowing off the end of a function [...] results in undefined behavior in
1581   //   a value-returning function.
1582   // C11 6.9.1p12:
1583   //   If the '}' that terminates a function is reached, and the value of the
1584   //   function call is used by the caller, the behavior is undefined.
1585   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1586       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1587     bool ShouldEmitUnreachable =
1588         CGM.getCodeGenOpts().StrictReturn ||
1589         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1590     if (SanOpts.has(SanitizerKind::Return)) {
1591       SanitizerScope SanScope(this);
1592       llvm::Value *IsFalse = Builder.getFalse();
1593       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1594                 SanitizerHandler::MissingReturn,
1595                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1596     } else if (ShouldEmitUnreachable) {
1597       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1598         EmitTrapCall(llvm::Intrinsic::trap);
1599     }
1600     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1601       Builder.CreateUnreachable();
1602       Builder.ClearInsertionPoint();
1603     }
1604   }
1605 
1606   // Emit the standard function epilogue.
1607   FinishFunction(BodyRange.getEnd());
1608 
1609   // If we haven't marked the function nothrow through other means, do
1610   // a quick pass now to see if we can.
1611   if (!CurFn->doesNotThrow())
1612     TryMarkNoThrow(CurFn);
1613 }
1614 
1615 /// ContainsLabel - Return true if the statement contains a label in it.  If
1616 /// this statement is not executed normally, it not containing a label means
1617 /// that we can just remove the code.
1618 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1619   // Null statement, not a label!
1620   if (!S) return false;
1621 
1622   // If this is a label, we have to emit the code, consider something like:
1623   // if (0) {  ...  foo:  bar(); }  goto foo;
1624   //
1625   // TODO: If anyone cared, we could track __label__'s, since we know that you
1626   // can't jump to one from outside their declared region.
1627   if (isa<LabelStmt>(S))
1628     return true;
1629 
1630   // If this is a case/default statement, and we haven't seen a switch, we have
1631   // to emit the code.
1632   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1633     return true;
1634 
1635   // If this is a switch statement, we want to ignore cases below it.
1636   if (isa<SwitchStmt>(S))
1637     IgnoreCaseStmts = true;
1638 
1639   // Scan subexpressions for verboten labels.
1640   for (const Stmt *SubStmt : S->children())
1641     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1642       return true;
1643 
1644   return false;
1645 }
1646 
1647 /// containsBreak - Return true if the statement contains a break out of it.
1648 /// If the statement (recursively) contains a switch or loop with a break
1649 /// inside of it, this is fine.
1650 bool CodeGenFunction::containsBreak(const Stmt *S) {
1651   // Null statement, not a label!
1652   if (!S) return false;
1653 
1654   // If this is a switch or loop that defines its own break scope, then we can
1655   // include it and anything inside of it.
1656   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1657       isa<ForStmt>(S))
1658     return false;
1659 
1660   if (isa<BreakStmt>(S))
1661     return true;
1662 
1663   // Scan subexpressions for verboten breaks.
1664   for (const Stmt *SubStmt : S->children())
1665     if (containsBreak(SubStmt))
1666       return true;
1667 
1668   return false;
1669 }
1670 
1671 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1672   if (!S) return false;
1673 
1674   // Some statement kinds add a scope and thus never add a decl to the current
1675   // scope. Note, this list is longer than the list of statements that might
1676   // have an unscoped decl nested within them, but this way is conservatively
1677   // correct even if more statement kinds are added.
1678   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1679       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1680       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1681       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1682     return false;
1683 
1684   if (isa<DeclStmt>(S))
1685     return true;
1686 
1687   for (const Stmt *SubStmt : S->children())
1688     if (mightAddDeclToScope(SubStmt))
1689       return true;
1690 
1691   return false;
1692 }
1693 
1694 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1695 /// to a constant, or if it does but contains a label, return false.  If it
1696 /// constant folds return true and set the boolean result in Result.
1697 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1698                                                    bool &ResultBool,
1699                                                    bool AllowLabels) {
1700   // If MC/DC is enabled, disable folding so that we can instrument all
1701   // conditions to yield complete test vectors. We still keep track of
1702   // folded conditions during region mapping and visualization.
1703   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1704       CGM.getCodeGenOpts().MCDCCoverage)
1705     return false;
1706 
1707   llvm::APSInt ResultInt;
1708   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1709     return false;
1710 
1711   ResultBool = ResultInt.getBoolValue();
1712   return true;
1713 }
1714 
1715 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1716 /// to a constant, or if it does but contains a label, return false.  If it
1717 /// constant folds return true and set the folded value.
1718 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1719                                                    llvm::APSInt &ResultInt,
1720                                                    bool AllowLabels) {
1721   // FIXME: Rename and handle conversion of other evaluatable things
1722   // to bool.
1723   Expr::EvalResult Result;
1724   if (!Cond->EvaluateAsInt(Result, getContext()))
1725     return false;  // Not foldable, not integer or not fully evaluatable.
1726 
1727   llvm::APSInt Int = Result.Val.getInt();
1728   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1729     return false;  // Contains a label.
1730 
1731   ResultInt = Int;
1732   return true;
1733 }
1734 
1735 /// Strip parentheses and simplistic logical-NOT operators.
1736 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1737   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1738     if (Op->getOpcode() != UO_LNot)
1739       break;
1740     C = Op->getSubExpr();
1741   }
1742   return C->IgnoreParens();
1743 }
1744 
1745 /// Determine whether the given condition is an instrumentable condition
1746 /// (i.e. no "&&" or "||").
1747 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1748   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1749   return (!BOp || !BOp->isLogicalOp());
1750 }
1751 
1752 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1753 /// increments a profile counter based on the semantics of the given logical
1754 /// operator opcode.  This is used to instrument branch condition coverage for
1755 /// logical operators.
1756 void CodeGenFunction::EmitBranchToCounterBlock(
1757     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1758     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1759     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1760   // If not instrumenting, just emit a branch.
1761   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1762   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1763     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1764 
1765   llvm::BasicBlock *ThenBlock = nullptr;
1766   llvm::BasicBlock *ElseBlock = nullptr;
1767   llvm::BasicBlock *NextBlock = nullptr;
1768 
1769   // Create the block we'll use to increment the appropriate counter.
1770   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1771 
1772   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1773   // means we need to evaluate the condition and increment the counter on TRUE:
1774   //
1775   // if (Cond)
1776   //   goto CounterIncrBlock;
1777   // else
1778   //   goto FalseBlock;
1779   //
1780   // CounterIncrBlock:
1781   //   Counter++;
1782   //   goto TrueBlock;
1783 
1784   if (LOp == BO_LAnd) {
1785     ThenBlock = CounterIncrBlock;
1786     ElseBlock = FalseBlock;
1787     NextBlock = TrueBlock;
1788   }
1789 
1790   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1791   // we need to evaluate the condition and increment the counter on FALSE:
1792   //
1793   // if (Cond)
1794   //   goto TrueBlock;
1795   // else
1796   //   goto CounterIncrBlock;
1797   //
1798   // CounterIncrBlock:
1799   //   Counter++;
1800   //   goto FalseBlock;
1801 
1802   else if (LOp == BO_LOr) {
1803     ThenBlock = TrueBlock;
1804     ElseBlock = CounterIncrBlock;
1805     NextBlock = FalseBlock;
1806   } else {
1807     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1808   }
1809 
1810   // Emit Branch based on condition.
1811   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1812 
1813   // Emit the block containing the counter increment(s).
1814   EmitBlock(CounterIncrBlock);
1815 
1816   // Increment corresponding counter; if index not provided, use Cond as index.
1817   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1818 
1819   // Go to the next block.
1820   EmitBranch(NextBlock);
1821 }
1822 
1823 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1824 /// statement) to the specified blocks.  Based on the condition, this might try
1825 /// to simplify the codegen of the conditional based on the branch.
1826 /// \param LH The value of the likelihood attribute on the True branch.
1827 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1828 /// ConditionalOperator (ternary) through a recursive call for the operator's
1829 /// LHS and RHS nodes.
1830 void CodeGenFunction::EmitBranchOnBoolExpr(
1831     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1832     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1833   Cond = Cond->IgnoreParens();
1834 
1835   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1836     // Handle X && Y in a condition.
1837     if (CondBOp->getOpcode() == BO_LAnd) {
1838       MCDCLogOpStack.push_back(CondBOp);
1839 
1840       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1841       // folded if the case was simple enough.
1842       bool ConstantBool = false;
1843       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1844           ConstantBool) {
1845         // br(1 && X) -> br(X).
1846         incrementProfileCounter(CondBOp);
1847         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1848                                  FalseBlock, TrueCount, LH);
1849         MCDCLogOpStack.pop_back();
1850         return;
1851       }
1852 
1853       // If we have "X && 1", simplify the code to use an uncond branch.
1854       // "X && 0" would have been constant folded to 0.
1855       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1856           ConstantBool) {
1857         // br(X && 1) -> br(X).
1858         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1859                                  FalseBlock, TrueCount, LH, CondBOp);
1860         MCDCLogOpStack.pop_back();
1861         return;
1862       }
1863 
1864       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1865       // want to jump to the FalseBlock.
1866       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1867       // The counter tells us how often we evaluate RHS, and all of TrueCount
1868       // can be propagated to that branch.
1869       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1870 
1871       ConditionalEvaluation eval(*this);
1872       {
1873         ApplyDebugLocation DL(*this, Cond);
1874         // Propagate the likelihood attribute like __builtin_expect
1875         // __builtin_expect(X && Y, 1) -> X and Y are likely
1876         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1877         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1878                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1879         EmitBlock(LHSTrue);
1880       }
1881 
1882       incrementProfileCounter(CondBOp);
1883       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1884 
1885       // Any temporaries created here are conditional.
1886       eval.begin(*this);
1887       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1888                                FalseBlock, TrueCount, LH);
1889       eval.end(*this);
1890       MCDCLogOpStack.pop_back();
1891       return;
1892     }
1893 
1894     if (CondBOp->getOpcode() == BO_LOr) {
1895       MCDCLogOpStack.push_back(CondBOp);
1896 
1897       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1898       // folded if the case was simple enough.
1899       bool ConstantBool = false;
1900       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1901           !ConstantBool) {
1902         // br(0 || X) -> br(X).
1903         incrementProfileCounter(CondBOp);
1904         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1905                                  FalseBlock, TrueCount, LH);
1906         MCDCLogOpStack.pop_back();
1907         return;
1908       }
1909 
1910       // If we have "X || 0", simplify the code to use an uncond branch.
1911       // "X || 1" would have been constant folded to 1.
1912       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1913           !ConstantBool) {
1914         // br(X || 0) -> br(X).
1915         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1916                                  FalseBlock, TrueCount, LH, CondBOp);
1917         MCDCLogOpStack.pop_back();
1918         return;
1919       }
1920       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1921       // want to jump to the TrueBlock.
1922       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1923       // We have the count for entry to the RHS and for the whole expression
1924       // being true, so we can divy up True count between the short circuit and
1925       // the RHS.
1926       uint64_t LHSCount =
1927           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1928       uint64_t RHSCount = TrueCount - LHSCount;
1929 
1930       ConditionalEvaluation eval(*this);
1931       {
1932         // Propagate the likelihood attribute like __builtin_expect
1933         // __builtin_expect(X || Y, 1) -> only Y is likely
1934         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1935         ApplyDebugLocation DL(*this, Cond);
1936         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1937                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1938         EmitBlock(LHSFalse);
1939       }
1940 
1941       incrementProfileCounter(CondBOp);
1942       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1943 
1944       // Any temporaries created here are conditional.
1945       eval.begin(*this);
1946       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1947                                RHSCount, LH);
1948 
1949       eval.end(*this);
1950       MCDCLogOpStack.pop_back();
1951       return;
1952     }
1953   }
1954 
1955   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1956     // br(!x, t, f) -> br(x, f, t)
1957     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1958     // LNot is taken as part of the condition for simplicity, and changing its
1959     // sense negatively impacts test vector tracking.
1960     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1961                          CGM.getCodeGenOpts().MCDCCoverage &&
1962                          isInstrumentedCondition(Cond);
1963     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1964       // Negate the count.
1965       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1966       // The values of the enum are chosen to make this negation possible.
1967       LH = static_cast<Stmt::Likelihood>(-LH);
1968       // Negate the condition and swap the destination blocks.
1969       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1970                                   FalseCount, LH);
1971     }
1972   }
1973 
1974   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1975     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1976     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1977     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1978 
1979     // The ConditionalOperator itself has no likelihood information for its
1980     // true and false branches. This matches the behavior of __builtin_expect.
1981     ConditionalEvaluation cond(*this);
1982     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1983                          getProfileCount(CondOp), Stmt::LH_None);
1984 
1985     // When computing PGO branch weights, we only know the overall count for
1986     // the true block. This code is essentially doing tail duplication of the
1987     // naive code-gen, introducing new edges for which counts are not
1988     // available. Divide the counts proportionally between the LHS and RHS of
1989     // the conditional operator.
1990     uint64_t LHSScaledTrueCount = 0;
1991     if (TrueCount) {
1992       double LHSRatio =
1993           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1994       LHSScaledTrueCount = TrueCount * LHSRatio;
1995     }
1996 
1997     cond.begin(*this);
1998     EmitBlock(LHSBlock);
1999     incrementProfileCounter(CondOp);
2000     {
2001       ApplyDebugLocation DL(*this, Cond);
2002       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2003                            LHSScaledTrueCount, LH, CondOp);
2004     }
2005     cond.end(*this);
2006 
2007     cond.begin(*this);
2008     EmitBlock(RHSBlock);
2009     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2010                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2011     cond.end(*this);
2012 
2013     return;
2014   }
2015 
2016   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2017     // Conditional operator handling can give us a throw expression as a
2018     // condition for a case like:
2019     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2020     // Fold this to:
2021     //   br(c, throw x, br(y, t, f))
2022     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2023     return;
2024   }
2025 
2026   // Emit the code with the fully general case.
2027   llvm::Value *CondV;
2028   {
2029     ApplyDebugLocation DL(*this, Cond);
2030     CondV = EvaluateExprAsBool(Cond);
2031   }
2032 
2033   // If not at the top of the logical operator nest, update MCDC temp with the
2034   // boolean result of the evaluated condition.
2035   if (!MCDCLogOpStack.empty()) {
2036     const Expr *MCDCBaseExpr = Cond;
2037     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2038     // expression, MC/DC tracks the result of the ternary, and this is tied to
2039     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2040     // this is the case, the ConditionalOperator expression is passed through
2041     // the ConditionalOp parameter and then used as the MCDC base expression.
2042     if (ConditionalOp)
2043       MCDCBaseExpr = ConditionalOp;
2044 
2045     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2046   }
2047 
2048   llvm::MDNode *Weights = nullptr;
2049   llvm::MDNode *Unpredictable = nullptr;
2050 
2051   // If the branch has a condition wrapped by __builtin_unpredictable,
2052   // create metadata that specifies that the branch is unpredictable.
2053   // Don't bother if not optimizing because that metadata would not be used.
2054   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2055   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2056     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2057     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2058       llvm::MDBuilder MDHelper(getLLVMContext());
2059       Unpredictable = MDHelper.createUnpredictable();
2060     }
2061   }
2062 
2063   // If there is a Likelihood knowledge for the cond, lower it.
2064   // Note that if not optimizing this won't emit anything.
2065   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2066   if (CondV != NewCondV)
2067     CondV = NewCondV;
2068   else {
2069     // Otherwise, lower profile counts. Note that we do this even at -O0.
2070     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2071     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2072   }
2073 
2074   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2075 }
2076 
2077 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2078 /// specified stmt yet.
2079 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2080   CGM.ErrorUnsupported(S, Type);
2081 }
2082 
2083 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2084 /// variable-length array whose elements have a non-zero bit-pattern.
2085 ///
2086 /// \param baseType the inner-most element type of the array
2087 /// \param src - a char* pointing to the bit-pattern for a single
2088 /// base element of the array
2089 /// \param sizeInChars - the total size of the VLA, in chars
2090 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2091                                Address dest, Address src,
2092                                llvm::Value *sizeInChars) {
2093   CGBuilderTy &Builder = CGF.Builder;
2094 
2095   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2096   llvm::Value *baseSizeInChars
2097     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2098 
2099   Address begin = dest.withElementType(CGF.Int8Ty);
2100   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2101                                                begin.emitRawPointer(CGF),
2102                                                sizeInChars, "vla.end");
2103 
2104   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2105   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2106   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2107 
2108   // Make a loop over the VLA.  C99 guarantees that the VLA element
2109   // count must be nonzero.
2110   CGF.EmitBlock(loopBB);
2111 
2112   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2113   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2114 
2115   CharUnits curAlign =
2116     dest.getAlignment().alignmentOfArrayElement(baseSize);
2117 
2118   // memcpy the individual element bit-pattern.
2119   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2120                        /*volatile*/ false);
2121 
2122   // Go to the next element.
2123   llvm::Value *next =
2124     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2125 
2126   // Leave if that's the end of the VLA.
2127   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2128   Builder.CreateCondBr(done, contBB, loopBB);
2129   cur->addIncoming(next, loopBB);
2130 
2131   CGF.EmitBlock(contBB);
2132 }
2133 
2134 void
2135 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2136   // Ignore empty classes in C++.
2137   if (getLangOpts().CPlusPlus) {
2138     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2139       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2140         return;
2141     }
2142   }
2143 
2144   if (DestPtr.getElementType() != Int8Ty)
2145     DestPtr = DestPtr.withElementType(Int8Ty);
2146 
2147   // Get size and alignment info for this aggregate.
2148   CharUnits size = getContext().getTypeSizeInChars(Ty);
2149 
2150   llvm::Value *SizeVal;
2151   const VariableArrayType *vla;
2152 
2153   // Don't bother emitting a zero-byte memset.
2154   if (size.isZero()) {
2155     // But note that getTypeInfo returns 0 for a VLA.
2156     if (const VariableArrayType *vlaType =
2157           dyn_cast_or_null<VariableArrayType>(
2158                                           getContext().getAsArrayType(Ty))) {
2159       auto VlaSize = getVLASize(vlaType);
2160       SizeVal = VlaSize.NumElts;
2161       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2162       if (!eltSize.isOne())
2163         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2164       vla = vlaType;
2165     } else {
2166       return;
2167     }
2168   } else {
2169     SizeVal = CGM.getSize(size);
2170     vla = nullptr;
2171   }
2172 
2173   // If the type contains a pointer to data member we can't memset it to zero.
2174   // Instead, create a null constant and copy it to the destination.
2175   // TODO: there are other patterns besides zero that we can usefully memset,
2176   // like -1, which happens to be the pattern used by member-pointers.
2177   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2178     // For a VLA, emit a single element, then splat that over the VLA.
2179     if (vla) Ty = getContext().getBaseElementType(vla);
2180 
2181     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2182 
2183     llvm::GlobalVariable *NullVariable =
2184       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2185                                /*isConstant=*/true,
2186                                llvm::GlobalVariable::PrivateLinkage,
2187                                NullConstant, Twine());
2188     CharUnits NullAlign = DestPtr.getAlignment();
2189     NullVariable->setAlignment(NullAlign.getAsAlign());
2190     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2191 
2192     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2193 
2194     // Get and call the appropriate llvm.memcpy overload.
2195     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2196     return;
2197   }
2198 
2199   // Otherwise, just memset the whole thing to zero.  This is legal
2200   // because in LLVM, all default initializers (other than the ones we just
2201   // handled above) are guaranteed to have a bit pattern of all zeros.
2202   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2203 }
2204 
2205 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2206   // Make sure that there is a block for the indirect goto.
2207   if (!IndirectBranch)
2208     GetIndirectGotoBlock();
2209 
2210   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2211 
2212   // Make sure the indirect branch includes all of the address-taken blocks.
2213   IndirectBranch->addDestination(BB);
2214   return llvm::BlockAddress::get(CurFn, BB);
2215 }
2216 
2217 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2218   // If we already made the indirect branch for indirect goto, return its block.
2219   if (IndirectBranch) return IndirectBranch->getParent();
2220 
2221   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2222 
2223   // Create the PHI node that indirect gotos will add entries to.
2224   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2225                                               "indirect.goto.dest");
2226 
2227   // Create the indirect branch instruction.
2228   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2229   return IndirectBranch->getParent();
2230 }
2231 
2232 /// Computes the length of an array in elements, as well as the base
2233 /// element type and a properly-typed first element pointer.
2234 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2235                                               QualType &baseType,
2236                                               Address &addr) {
2237   const ArrayType *arrayType = origArrayType;
2238 
2239   // If it's a VLA, we have to load the stored size.  Note that
2240   // this is the size of the VLA in bytes, not its size in elements.
2241   llvm::Value *numVLAElements = nullptr;
2242   if (isa<VariableArrayType>(arrayType)) {
2243     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2244 
2245     // Walk into all VLAs.  This doesn't require changes to addr,
2246     // which has type T* where T is the first non-VLA element type.
2247     do {
2248       QualType elementType = arrayType->getElementType();
2249       arrayType = getContext().getAsArrayType(elementType);
2250 
2251       // If we only have VLA components, 'addr' requires no adjustment.
2252       if (!arrayType) {
2253         baseType = elementType;
2254         return numVLAElements;
2255       }
2256     } while (isa<VariableArrayType>(arrayType));
2257 
2258     // We get out here only if we find a constant array type
2259     // inside the VLA.
2260   }
2261 
2262   // We have some number of constant-length arrays, so addr should
2263   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2264   // down to the first element of addr.
2265   SmallVector<llvm::Value*, 8> gepIndices;
2266 
2267   // GEP down to the array type.
2268   llvm::ConstantInt *zero = Builder.getInt32(0);
2269   gepIndices.push_back(zero);
2270 
2271   uint64_t countFromCLAs = 1;
2272   QualType eltType;
2273 
2274   llvm::ArrayType *llvmArrayType =
2275     dyn_cast<llvm::ArrayType>(addr.getElementType());
2276   while (llvmArrayType) {
2277     assert(isa<ConstantArrayType>(arrayType));
2278     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2279            llvmArrayType->getNumElements());
2280 
2281     gepIndices.push_back(zero);
2282     countFromCLAs *= llvmArrayType->getNumElements();
2283     eltType = arrayType->getElementType();
2284 
2285     llvmArrayType =
2286       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2287     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2288     assert((!llvmArrayType || arrayType) &&
2289            "LLVM and Clang types are out-of-synch");
2290   }
2291 
2292   if (arrayType) {
2293     // From this point onwards, the Clang array type has been emitted
2294     // as some other type (probably a packed struct). Compute the array
2295     // size, and just emit the 'begin' expression as a bitcast.
2296     while (arrayType) {
2297       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2298       eltType = arrayType->getElementType();
2299       arrayType = getContext().getAsArrayType(eltType);
2300     }
2301 
2302     llvm::Type *baseType = ConvertType(eltType);
2303     addr = addr.withElementType(baseType);
2304   } else {
2305     // Create the actual GEP.
2306     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2307                                              addr.emitRawPointer(*this),
2308                                              gepIndices, "array.begin"),
2309                    ConvertTypeForMem(eltType), addr.getAlignment());
2310   }
2311 
2312   baseType = eltType;
2313 
2314   llvm::Value *numElements
2315     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2316 
2317   // If we had any VLA dimensions, factor them in.
2318   if (numVLAElements)
2319     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2320 
2321   return numElements;
2322 }
2323 
2324 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2325   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2326   assert(vla && "type was not a variable array type!");
2327   return getVLASize(vla);
2328 }
2329 
2330 CodeGenFunction::VlaSizePair
2331 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2332   // The number of elements so far; always size_t.
2333   llvm::Value *numElements = nullptr;
2334 
2335   QualType elementType;
2336   do {
2337     elementType = type->getElementType();
2338     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2339     assert(vlaSize && "no size for VLA!");
2340     assert(vlaSize->getType() == SizeTy);
2341 
2342     if (!numElements) {
2343       numElements = vlaSize;
2344     } else {
2345       // It's undefined behavior if this wraps around, so mark it that way.
2346       // FIXME: Teach -fsanitize=undefined to trap this.
2347       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2348     }
2349   } while ((type = getContext().getAsVariableArrayType(elementType)));
2350 
2351   return { numElements, elementType };
2352 }
2353 
2354 CodeGenFunction::VlaSizePair
2355 CodeGenFunction::getVLAElements1D(QualType type) {
2356   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2357   assert(vla && "type was not a variable array type!");
2358   return getVLAElements1D(vla);
2359 }
2360 
2361 CodeGenFunction::VlaSizePair
2362 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2363   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2364   assert(VlaSize && "no size for VLA!");
2365   assert(VlaSize->getType() == SizeTy);
2366   return { VlaSize, Vla->getElementType() };
2367 }
2368 
2369 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2370   assert(type->isVariablyModifiedType() &&
2371          "Must pass variably modified type to EmitVLASizes!");
2372 
2373   EnsureInsertPoint();
2374 
2375   // We're going to walk down into the type and look for VLA
2376   // expressions.
2377   do {
2378     assert(type->isVariablyModifiedType());
2379 
2380     const Type *ty = type.getTypePtr();
2381     switch (ty->getTypeClass()) {
2382 
2383 #define TYPE(Class, Base)
2384 #define ABSTRACT_TYPE(Class, Base)
2385 #define NON_CANONICAL_TYPE(Class, Base)
2386 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2387 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2388 #include "clang/AST/TypeNodes.inc"
2389       llvm_unreachable("unexpected dependent type!");
2390 
2391     // These types are never variably-modified.
2392     case Type::Builtin:
2393     case Type::Complex:
2394     case Type::Vector:
2395     case Type::ExtVector:
2396     case Type::ConstantMatrix:
2397     case Type::Record:
2398     case Type::Enum:
2399     case Type::Using:
2400     case Type::TemplateSpecialization:
2401     case Type::ObjCTypeParam:
2402     case Type::ObjCObject:
2403     case Type::ObjCInterface:
2404     case Type::ObjCObjectPointer:
2405     case Type::BitInt:
2406       llvm_unreachable("type class is never variably-modified!");
2407 
2408     case Type::Elaborated:
2409       type = cast<ElaboratedType>(ty)->getNamedType();
2410       break;
2411 
2412     case Type::Adjusted:
2413       type = cast<AdjustedType>(ty)->getAdjustedType();
2414       break;
2415 
2416     case Type::Decayed:
2417       type = cast<DecayedType>(ty)->getPointeeType();
2418       break;
2419 
2420     case Type::Pointer:
2421       type = cast<PointerType>(ty)->getPointeeType();
2422       break;
2423 
2424     case Type::BlockPointer:
2425       type = cast<BlockPointerType>(ty)->getPointeeType();
2426       break;
2427 
2428     case Type::LValueReference:
2429     case Type::RValueReference:
2430       type = cast<ReferenceType>(ty)->getPointeeType();
2431       break;
2432 
2433     case Type::MemberPointer:
2434       type = cast<MemberPointerType>(ty)->getPointeeType();
2435       break;
2436 
2437     case Type::ArrayParameter:
2438     case Type::ConstantArray:
2439     case Type::IncompleteArray:
2440       // Losing element qualification here is fine.
2441       type = cast<ArrayType>(ty)->getElementType();
2442       break;
2443 
2444     case Type::VariableArray: {
2445       // Losing element qualification here is fine.
2446       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2447 
2448       // Unknown size indication requires no size computation.
2449       // Otherwise, evaluate and record it.
2450       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2451         // It's possible that we might have emitted this already,
2452         // e.g. with a typedef and a pointer to it.
2453         llvm::Value *&entry = VLASizeMap[sizeExpr];
2454         if (!entry) {
2455           llvm::Value *size = EmitScalarExpr(sizeExpr);
2456 
2457           // C11 6.7.6.2p5:
2458           //   If the size is an expression that is not an integer constant
2459           //   expression [...] each time it is evaluated it shall have a value
2460           //   greater than zero.
2461           if (SanOpts.has(SanitizerKind::VLABound)) {
2462             SanitizerScope SanScope(this);
2463             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2464             clang::QualType SEType = sizeExpr->getType();
2465             llvm::Value *CheckCondition =
2466                 SEType->isSignedIntegerType()
2467                     ? Builder.CreateICmpSGT(size, Zero)
2468                     : Builder.CreateICmpUGT(size, Zero);
2469             llvm::Constant *StaticArgs[] = {
2470                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2471                 EmitCheckTypeDescriptor(SEType)};
2472             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2473                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2474           }
2475 
2476           // Always zexting here would be wrong if it weren't
2477           // undefined behavior to have a negative bound.
2478           // FIXME: What about when size's type is larger than size_t?
2479           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2480         }
2481       }
2482       type = vat->getElementType();
2483       break;
2484     }
2485 
2486     case Type::FunctionProto:
2487     case Type::FunctionNoProto:
2488       type = cast<FunctionType>(ty)->getReturnType();
2489       break;
2490 
2491     case Type::Paren:
2492     case Type::TypeOf:
2493     case Type::UnaryTransform:
2494     case Type::Attributed:
2495     case Type::BTFTagAttributed:
2496     case Type::HLSLAttributedResource:
2497     case Type::SubstTemplateTypeParm:
2498     case Type::MacroQualified:
2499     case Type::CountAttributed:
2500       // Keep walking after single level desugaring.
2501       type = type.getSingleStepDesugaredType(getContext());
2502       break;
2503 
2504     case Type::Typedef:
2505     case Type::Decltype:
2506     case Type::Auto:
2507     case Type::DeducedTemplateSpecialization:
2508     case Type::PackIndexing:
2509       // Stop walking: nothing to do.
2510       return;
2511 
2512     case Type::TypeOfExpr:
2513       // Stop walking: emit typeof expression.
2514       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2515       return;
2516 
2517     case Type::Atomic:
2518       type = cast<AtomicType>(ty)->getValueType();
2519       break;
2520 
2521     case Type::Pipe:
2522       type = cast<PipeType>(ty)->getElementType();
2523       break;
2524     }
2525   } while (type->isVariablyModifiedType());
2526 }
2527 
2528 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2529   if (getContext().getBuiltinVaListType()->isArrayType())
2530     return EmitPointerWithAlignment(E);
2531   return EmitLValue(E).getAddress();
2532 }
2533 
2534 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2535   return EmitLValue(E).getAddress();
2536 }
2537 
2538 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2539                                               const APValue &Init) {
2540   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2541   if (CGDebugInfo *Dbg = getDebugInfo())
2542     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2543       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2544 }
2545 
2546 CodeGenFunction::PeepholeProtection
2547 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2548   // At the moment, the only aggressive peephole we do in IR gen
2549   // is trunc(zext) folding, but if we add more, we can easily
2550   // extend this protection.
2551 
2552   if (!rvalue.isScalar()) return PeepholeProtection();
2553   llvm::Value *value = rvalue.getScalarVal();
2554   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2555 
2556   // Just make an extra bitcast.
2557   assert(HaveInsertPoint());
2558   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2559                                                   Builder.GetInsertBlock());
2560 
2561   PeepholeProtection protection;
2562   protection.Inst = inst;
2563   return protection;
2564 }
2565 
2566 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2567   if (!protection.Inst) return;
2568 
2569   // In theory, we could try to duplicate the peepholes now, but whatever.
2570   protection.Inst->eraseFromParent();
2571 }
2572 
2573 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2574                                               QualType Ty, SourceLocation Loc,
2575                                               SourceLocation AssumptionLoc,
2576                                               llvm::Value *Alignment,
2577                                               llvm::Value *OffsetValue) {
2578   if (Alignment->getType() != IntPtrTy)
2579     Alignment =
2580         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2581   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2582     OffsetValue =
2583         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2584   llvm::Value *TheCheck = nullptr;
2585   if (SanOpts.has(SanitizerKind::Alignment)) {
2586     llvm::Value *PtrIntValue =
2587         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2588 
2589     if (OffsetValue) {
2590       bool IsOffsetZero = false;
2591       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2592         IsOffsetZero = CI->isZero();
2593 
2594       if (!IsOffsetZero)
2595         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2596     }
2597 
2598     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2599     llvm::Value *Mask =
2600         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2601     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2602     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2603   }
2604   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2605       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2606 
2607   if (!SanOpts.has(SanitizerKind::Alignment))
2608     return;
2609   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2610                                OffsetValue, TheCheck, Assumption);
2611 }
2612 
2613 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2614                                               const Expr *E,
2615                                               SourceLocation AssumptionLoc,
2616                                               llvm::Value *Alignment,
2617                                               llvm::Value *OffsetValue) {
2618   QualType Ty = E->getType();
2619   SourceLocation Loc = E->getExprLoc();
2620 
2621   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2622                           OffsetValue);
2623 }
2624 
2625 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2626                                                  llvm::Value *AnnotatedVal,
2627                                                  StringRef AnnotationStr,
2628                                                  SourceLocation Location,
2629                                                  const AnnotateAttr *Attr) {
2630   SmallVector<llvm::Value *, 5> Args = {
2631       AnnotatedVal,
2632       CGM.EmitAnnotationString(AnnotationStr),
2633       CGM.EmitAnnotationUnit(Location),
2634       CGM.EmitAnnotationLineNo(Location),
2635   };
2636   if (Attr)
2637     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2638   return Builder.CreateCall(AnnotationFn, Args);
2639 }
2640 
2641 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2642   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2643   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2644     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2645                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2646                        V, I->getAnnotation(), D->getLocation(), I);
2647 }
2648 
2649 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2650                                               Address Addr) {
2651   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2652   llvm::Value *V = Addr.emitRawPointer(*this);
2653   llvm::Type *VTy = V->getType();
2654   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2655   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2656   llvm::PointerType *IntrinTy =
2657       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2658   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2659                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2660 
2661   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2662     // FIXME Always emit the cast inst so we can differentiate between
2663     // annotation on the first field of a struct and annotation on the struct
2664     // itself.
2665     if (VTy != IntrinTy)
2666       V = Builder.CreateBitCast(V, IntrinTy);
2667     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2668     V = Builder.CreateBitCast(V, VTy);
2669   }
2670 
2671   return Address(V, Addr.getElementType(), Addr.getAlignment());
2672 }
2673 
2674 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2675 
2676 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2677     : CGF(CGF) {
2678   assert(!CGF->IsSanitizerScope);
2679   CGF->IsSanitizerScope = true;
2680 }
2681 
2682 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2683   CGF->IsSanitizerScope = false;
2684 }
2685 
2686 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2687                                    const llvm::Twine &Name,
2688                                    llvm::BasicBlock::iterator InsertPt) const {
2689   LoopStack.InsertHelper(I);
2690   if (IsSanitizerScope)
2691     I->setNoSanitizeMetadata();
2692 }
2693 
2694 void CGBuilderInserter::InsertHelper(
2695     llvm::Instruction *I, const llvm::Twine &Name,
2696     llvm::BasicBlock::iterator InsertPt) const {
2697   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2698   if (CGF)
2699     CGF->InsertHelper(I, Name, InsertPt);
2700 }
2701 
2702 // Emits an error if we don't have a valid set of target features for the
2703 // called function.
2704 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2705                                           const FunctionDecl *TargetDecl) {
2706   // SemaChecking cannot handle below x86 builtins because they have different
2707   // parameter ranges with different TargetAttribute of caller.
2708   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2709     unsigned BuiltinID = TargetDecl->getBuiltinID();
2710     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2711         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2712         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2713         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2714       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2715       llvm::StringMap<bool> TargetFetureMap;
2716       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2717       llvm::APSInt Result =
2718           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2719       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2720         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2721             << TargetDecl->getDeclName() << "avx";
2722     }
2723   }
2724   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2725 }
2726 
2727 // Emits an error if we don't have a valid set of target features for the
2728 // called function.
2729 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2730                                           const FunctionDecl *TargetDecl) {
2731   // Early exit if this is an indirect call.
2732   if (!TargetDecl)
2733     return;
2734 
2735   // Get the current enclosing function if it exists. If it doesn't
2736   // we can't check the target features anyhow.
2737   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2738   if (!FD)
2739     return;
2740 
2741   // Grab the required features for the call. For a builtin this is listed in
2742   // the td file with the default cpu, for an always_inline function this is any
2743   // listed cpu and any listed features.
2744   unsigned BuiltinID = TargetDecl->getBuiltinID();
2745   std::string MissingFeature;
2746   llvm::StringMap<bool> CallerFeatureMap;
2747   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2748   // When compiling in HipStdPar mode we have to be conservative in rejecting
2749   // target specific features in the FE, and defer the possible error to the
2750   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2751   // referenced by an accelerator executable function, we emit an error.
2752   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2753   if (BuiltinID) {
2754     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2755     if (!Builtin::evaluateRequiredTargetFeatures(
2756         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2757       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2758           << TargetDecl->getDeclName()
2759           << FeatureList;
2760     }
2761   } else if (!TargetDecl->isMultiVersion() &&
2762              TargetDecl->hasAttr<TargetAttr>()) {
2763     // Get the required features for the callee.
2764 
2765     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2766     ParsedTargetAttr ParsedAttr =
2767         CGM.getContext().filterFunctionTargetAttrs(TD);
2768 
2769     SmallVector<StringRef, 1> ReqFeatures;
2770     llvm::StringMap<bool> CalleeFeatureMap;
2771     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2772 
2773     for (const auto &F : ParsedAttr.Features) {
2774       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2775         ReqFeatures.push_back(StringRef(F).substr(1));
2776     }
2777 
2778     for (const auto &F : CalleeFeatureMap) {
2779       // Only positive features are "required".
2780       if (F.getValue())
2781         ReqFeatures.push_back(F.getKey());
2782     }
2783     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2784       if (!CallerFeatureMap.lookup(Feature)) {
2785         MissingFeature = Feature.str();
2786         return false;
2787       }
2788       return true;
2789     }) && !IsHipStdPar)
2790       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2791           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2792   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2793     llvm::StringMap<bool> CalleeFeatureMap;
2794     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2795 
2796     for (const auto &F : CalleeFeatureMap) {
2797       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2798                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2799           !IsHipStdPar)
2800         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2801             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2802     }
2803   }
2804 }
2805 
2806 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2807   if (!CGM.getCodeGenOpts().SanitizeStats)
2808     return;
2809 
2810   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2811   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2812   CGM.getSanStats().create(IRB, SSK);
2813 }
2814 
2815 void CodeGenFunction::EmitKCFIOperandBundle(
2816     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2817   const FunctionProtoType *FP =
2818       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2819   if (FP)
2820     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2821 }
2822 
2823 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2824     const MultiVersionResolverOption &RO) {
2825   llvm::SmallVector<StringRef, 8> CondFeatures;
2826   for (const StringRef &Feature : RO.Conditions.Features)
2827     CondFeatures.push_back(Feature);
2828   if (!CondFeatures.empty()) {
2829     return EmitAArch64CpuSupports(CondFeatures);
2830   }
2831   return nullptr;
2832 }
2833 
2834 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2835     const MultiVersionResolverOption &RO) {
2836   llvm::Value *Condition = nullptr;
2837 
2838   if (!RO.Conditions.Architecture.empty()) {
2839     StringRef Arch = RO.Conditions.Architecture;
2840     // If arch= specifies an x86-64 micro-architecture level, test the feature
2841     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2842     if (Arch.starts_with("x86-64"))
2843       Condition = EmitX86CpuSupports({Arch});
2844     else
2845       Condition = EmitX86CpuIs(Arch);
2846   }
2847 
2848   if (!RO.Conditions.Features.empty()) {
2849     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2850     Condition =
2851         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2852   }
2853   return Condition;
2854 }
2855 
2856 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2857                                              llvm::Function *Resolver,
2858                                              CGBuilderTy &Builder,
2859                                              llvm::Function *FuncToReturn,
2860                                              bool SupportsIFunc) {
2861   if (SupportsIFunc) {
2862     Builder.CreateRet(FuncToReturn);
2863     return;
2864   }
2865 
2866   llvm::SmallVector<llvm::Value *, 10> Args(
2867       llvm::make_pointer_range(Resolver->args()));
2868 
2869   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2870   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2871 
2872   if (Resolver->getReturnType()->isVoidTy())
2873     Builder.CreateRetVoid();
2874   else
2875     Builder.CreateRet(Result);
2876 }
2877 
2878 void CodeGenFunction::EmitMultiVersionResolver(
2879     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2880 
2881   llvm::Triple::ArchType ArchType =
2882       getContext().getTargetInfo().getTriple().getArch();
2883 
2884   switch (ArchType) {
2885   case llvm::Triple::x86:
2886   case llvm::Triple::x86_64:
2887     EmitX86MultiVersionResolver(Resolver, Options);
2888     return;
2889   case llvm::Triple::aarch64:
2890     EmitAArch64MultiVersionResolver(Resolver, Options);
2891     return;
2892   case llvm::Triple::riscv32:
2893   case llvm::Triple::riscv64:
2894     EmitRISCVMultiVersionResolver(Resolver, Options);
2895     return;
2896 
2897   default:
2898     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2899   }
2900 }
2901 
2902 static int getPriorityFromAttrString(StringRef AttrStr) {
2903   SmallVector<StringRef, 8> Attrs;
2904 
2905   AttrStr.split(Attrs, ';');
2906 
2907   // Default Priority is zero.
2908   int Priority = 0;
2909   for (auto Attr : Attrs) {
2910     if (Attr.consume_front("priority=")) {
2911       int Result;
2912       if (!Attr.getAsInteger(0, Result)) {
2913         Priority = Result;
2914       }
2915     }
2916   }
2917 
2918   return Priority;
2919 }
2920 
2921 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2922     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2923 
2924   if (getContext().getTargetInfo().getTriple().getOS() !=
2925       llvm::Triple::OSType::Linux) {
2926     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2927     return;
2928   }
2929 
2930   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2931   Builder.SetInsertPoint(CurBlock);
2932   EmitRISCVCpuInit();
2933 
2934   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2935   bool HasDefault = false;
2936   unsigned DefaultIndex = 0;
2937 
2938   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions(
2939       Options);
2940 
2941   llvm::stable_sort(
2942       CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2943                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
2944         return getPriorityFromAttrString(LHS.Conditions.Features[0]) >
2945                getPriorityFromAttrString(RHS.Conditions.Features[0]);
2946       });
2947 
2948   // Check the each candidate function.
2949   for (unsigned Index = 0; Index < CurrOptions.size(); Index++) {
2950 
2951     if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) {
2952       HasDefault = true;
2953       DefaultIndex = Index;
2954       continue;
2955     }
2956 
2957     Builder.SetInsertPoint(CurBlock);
2958 
2959     std::vector<std::string> TargetAttrFeats =
2960         getContext()
2961             .getTargetInfo()
2962             .parseTargetAttr(CurrOptions[Index].Conditions.Features[0])
2963             .Features;
2964 
2965     if (TargetAttrFeats.empty())
2966       continue;
2967 
2968     // FeaturesCondition: The bitmask of the required extension has been
2969     // enabled by the runtime object.
2970     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2971     // REQUIRED_BITMASK
2972     //
2973     // When condition is met, return this version of the function.
2974     // Otherwise, try the next version.
2975     //
2976     // if (FeaturesConditionVersion1)
2977     //     return Version1;
2978     // else if (FeaturesConditionVersion2)
2979     //     return Version2;
2980     // else if (FeaturesConditionVersion3)
2981     //     return Version3;
2982     // ...
2983     // else
2984     //     return DefaultVersion;
2985 
2986     // TODO: Add a condition to check the length before accessing elements.
2987     // Without checking the length first, we may access an incorrect memory
2988     // address when using different versions.
2989     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2990 
2991     for (auto &Feat : TargetAttrFeats) {
2992       StringRef CurrFeat = Feat;
2993       if (CurrFeat.starts_with('+'))
2994         CurrTargetAttrFeats.push_back(CurrFeat.substr(1));
2995     }
2996 
2997     Builder.SetInsertPoint(CurBlock);
2998     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
2999 
3000     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3001     CGBuilderTy RetBuilder(*this, RetBlock);
3002     CreateMultiVersionResolverReturn(
3003         CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc);
3004     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3005 
3006     Builder.SetInsertPoint(CurBlock);
3007     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3008 
3009     CurBlock = ElseBlock;
3010   }
3011 
3012   // Finally, emit the default one.
3013   if (HasDefault) {
3014     Builder.SetInsertPoint(CurBlock);
3015     CreateMultiVersionResolverReturn(CGM, Resolver, Builder,
3016                                      CurrOptions[DefaultIndex].Function,
3017                                      SupportsIFunc);
3018     return;
3019   }
3020 
3021   // If no generic/default, emit an unreachable.
3022   Builder.SetInsertPoint(CurBlock);
3023   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3024   TrapCall->setDoesNotReturn();
3025   TrapCall->setDoesNotThrow();
3026   Builder.CreateUnreachable();
3027   Builder.ClearInsertionPoint();
3028 }
3029 
3030 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3031     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3032   assert(!Options.empty() && "No multiversion resolver options found");
3033   assert(Options.back().Conditions.Features.size() == 0 &&
3034          "Default case must be last");
3035   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3036   assert(SupportsIFunc &&
3037          "Multiversion resolver requires target IFUNC support");
3038   bool AArch64CpuInitialized = false;
3039   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3040 
3041   for (const MultiVersionResolverOption &RO : Options) {
3042     Builder.SetInsertPoint(CurBlock);
3043     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3044 
3045     // The 'default' or 'all features enabled' case.
3046     if (!Condition) {
3047       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3048                                        SupportsIFunc);
3049       return;
3050     }
3051 
3052     if (!AArch64CpuInitialized) {
3053       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3054       EmitAArch64CpuInit();
3055       AArch64CpuInitialized = true;
3056       Builder.SetInsertPoint(CurBlock);
3057     }
3058 
3059     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3060     CGBuilderTy RetBuilder(*this, RetBlock);
3061     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3062                                      SupportsIFunc);
3063     CurBlock = createBasicBlock("resolver_else", Resolver);
3064     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3065   }
3066 
3067   // If no default, emit an unreachable.
3068   Builder.SetInsertPoint(CurBlock);
3069   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3070   TrapCall->setDoesNotReturn();
3071   TrapCall->setDoesNotThrow();
3072   Builder.CreateUnreachable();
3073   Builder.ClearInsertionPoint();
3074 }
3075 
3076 void CodeGenFunction::EmitX86MultiVersionResolver(
3077     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3078 
3079   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3080 
3081   // Main function's basic block.
3082   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3083   Builder.SetInsertPoint(CurBlock);
3084   EmitX86CpuInit();
3085 
3086   for (const MultiVersionResolverOption &RO : Options) {
3087     Builder.SetInsertPoint(CurBlock);
3088     llvm::Value *Condition = FormX86ResolverCondition(RO);
3089 
3090     // The 'default' or 'generic' case.
3091     if (!Condition) {
3092       assert(&RO == Options.end() - 1 &&
3093              "Default or Generic case must be last");
3094       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3095                                        SupportsIFunc);
3096       return;
3097     }
3098 
3099     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3100     CGBuilderTy RetBuilder(*this, RetBlock);
3101     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3102                                      SupportsIFunc);
3103     CurBlock = createBasicBlock("resolver_else", Resolver);
3104     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3105   }
3106 
3107   // If no generic/default, emit an unreachable.
3108   Builder.SetInsertPoint(CurBlock);
3109   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3110   TrapCall->setDoesNotReturn();
3111   TrapCall->setDoesNotThrow();
3112   Builder.CreateUnreachable();
3113   Builder.ClearInsertionPoint();
3114 }
3115 
3116 // Loc - where the diagnostic will point, where in the source code this
3117 //  alignment has failed.
3118 // SecondaryLoc - if present (will be present if sufficiently different from
3119 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3120 //  It should be the location where the __attribute__((assume_aligned))
3121 //  was written e.g.
3122 void CodeGenFunction::emitAlignmentAssumptionCheck(
3123     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3124     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3125     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3126     llvm::Instruction *Assumption) {
3127   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3128          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3129              llvm::Intrinsic::getDeclaration(
3130                  Builder.GetInsertBlock()->getParent()->getParent(),
3131                  llvm::Intrinsic::assume) &&
3132          "Assumption should be a call to llvm.assume().");
3133   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3134          "Assumption should be the last instruction of the basic block, "
3135          "since the basic block is still being generated.");
3136 
3137   if (!SanOpts.has(SanitizerKind::Alignment))
3138     return;
3139 
3140   // Don't check pointers to volatile data. The behavior here is implementation-
3141   // defined.
3142   if (Ty->getPointeeType().isVolatileQualified())
3143     return;
3144 
3145   // We need to temorairly remove the assumption so we can insert the
3146   // sanitizer check before it, else the check will be dropped by optimizations.
3147   Assumption->removeFromParent();
3148 
3149   {
3150     SanitizerScope SanScope(this);
3151 
3152     if (!OffsetValue)
3153       OffsetValue = Builder.getInt1(false); // no offset.
3154 
3155     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3156                                     EmitCheckSourceLocation(SecondaryLoc),
3157                                     EmitCheckTypeDescriptor(Ty)};
3158     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3159                                   EmitCheckValue(Alignment),
3160                                   EmitCheckValue(OffsetValue)};
3161     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3162               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3163   }
3164 
3165   // We are now in the (new, empty) "cont" basic block.
3166   // Reintroduce the assumption.
3167   Builder.Insert(Assumption);
3168   // FIXME: Assumption still has it's original basic block as it's Parent.
3169 }
3170 
3171 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3172   if (CGDebugInfo *DI = getDebugInfo())
3173     return DI->SourceLocToDebugLoc(Location);
3174 
3175   return llvm::DebugLoc();
3176 }
3177 
3178 llvm::Value *
3179 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3180                                                       Stmt::Likelihood LH) {
3181   switch (LH) {
3182   case Stmt::LH_None:
3183     return Cond;
3184   case Stmt::LH_Likely:
3185   case Stmt::LH_Unlikely:
3186     // Don't generate llvm.expect on -O0 as the backend won't use it for
3187     // anything.
3188     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3189       return Cond;
3190     llvm::Type *CondTy = Cond->getType();
3191     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3192     llvm::Function *FnExpect =
3193         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3194     llvm::Value *ExpectedValueOfCond =
3195         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3196     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3197                               Cond->getName() + ".expval");
3198   }
3199   llvm_unreachable("Unknown Likelihood");
3200 }
3201 
3202 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3203                                                     unsigned NumElementsDst,
3204                                                     const llvm::Twine &Name) {
3205   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3206   unsigned NumElementsSrc = SrcTy->getNumElements();
3207   if (NumElementsSrc == NumElementsDst)
3208     return SrcVec;
3209 
3210   std::vector<int> ShuffleMask(NumElementsDst, -1);
3211   for (unsigned MaskIdx = 0;
3212        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3213     ShuffleMask[MaskIdx] = MaskIdx;
3214 
3215   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3216 }
3217 
3218 void CodeGenFunction::EmitPointerAuthOperandBundle(
3219     const CGPointerAuthInfo &PointerAuth,
3220     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3221   if (!PointerAuth.isSigned())
3222     return;
3223 
3224   auto *Key = Builder.getInt32(PointerAuth.getKey());
3225 
3226   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3227   if (!Discriminator)
3228     Discriminator = Builder.getSize(0);
3229 
3230   llvm::Value *Args[] = {Key, Discriminator};
3231   Bundles.emplace_back("ptrauth", Args);
3232 }
3233 
3234 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3235                                           const CGPointerAuthInfo &PointerAuth,
3236                                           llvm::Value *Pointer,
3237                                           unsigned IntrinsicID) {
3238   if (!PointerAuth)
3239     return Pointer;
3240 
3241   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3242 
3243   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3244   if (!Discriminator) {
3245     Discriminator = CGF.Builder.getSize(0);
3246   }
3247 
3248   // Convert the pointer to intptr_t before signing it.
3249   auto OrigType = Pointer->getType();
3250   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3251 
3252   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3253   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3254   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3255 
3256   // Convert back to the original type.
3257   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3258   return Pointer;
3259 }
3260 
3261 llvm::Value *
3262 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3263                                      llvm::Value *Pointer) {
3264   if (!PointerAuth.shouldSign())
3265     return Pointer;
3266   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3267                                llvm::Intrinsic::ptrauth_sign);
3268 }
3269 
3270 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3271                               const CGPointerAuthInfo &PointerAuth,
3272                               llvm::Value *Pointer) {
3273   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3274 
3275   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3276   // Convert the pointer to intptr_t before signing it.
3277   auto OrigType = Pointer->getType();
3278   Pointer = CGF.EmitRuntimeCall(
3279       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3280   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3281 }
3282 
3283 llvm::Value *
3284 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3285                                      llvm::Value *Pointer) {
3286   if (PointerAuth.shouldStrip()) {
3287     return EmitStrip(*this, PointerAuth, Pointer);
3288   }
3289   if (!PointerAuth.shouldAuth()) {
3290     return Pointer;
3291   }
3292 
3293   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3294                                llvm::Intrinsic::ptrauth_auth);
3295 }
3296