1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 192 TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 204 } 205 206 207 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 208 return CGM.getTypes().ConvertTypeForMem(T); 209 } 210 211 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 212 return CGM.getTypes().ConvertType(T); 213 } 214 215 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 216 type = type.getCanonicalType(); 217 while (true) { 218 switch (type->getTypeClass()) { 219 #define TYPE(name, parent) 220 #define ABSTRACT_TYPE(name, parent) 221 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 222 #define DEPENDENT_TYPE(name, parent) case Type::name: 223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 224 #include "clang/AST/TypeNodes.inc" 225 llvm_unreachable("non-canonical or dependent type in IR-generation"); 226 227 case Type::Auto: 228 case Type::DeducedTemplateSpecialization: 229 llvm_unreachable("undeduced type in IR-generation"); 230 231 // Various scalar types. 232 case Type::Builtin: 233 case Type::Pointer: 234 case Type::BlockPointer: 235 case Type::LValueReference: 236 case Type::RValueReference: 237 case Type::MemberPointer: 238 case Type::Vector: 239 case Type::ExtVector: 240 case Type::ConstantMatrix: 241 case Type::FunctionProto: 242 case Type::FunctionNoProto: 243 case Type::Enum: 244 case Type::ObjCObjectPointer: 245 case Type::Pipe: 246 case Type::BitInt: 247 return TEK_Scalar; 248 249 // Complexes. 250 case Type::Complex: 251 return TEK_Complex; 252 253 // Arrays, records, and Objective-C objects. 254 case Type::ConstantArray: 255 case Type::IncompleteArray: 256 case Type::VariableArray: 257 case Type::Record: 258 case Type::ObjCObject: 259 case Type::ObjCInterface: 260 return TEK_Aggregate; 261 262 // We operate on atomic values according to their underlying type. 263 case Type::Atomic: 264 type = cast<AtomicType>(type)->getValueType(); 265 continue; 266 } 267 llvm_unreachable("unknown type kind!"); 268 } 269 } 270 271 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 272 // For cleanliness, we try to avoid emitting the return block for 273 // simple cases. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (CurBB) { 277 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 278 279 // We have a valid insert point, reuse it if it is empty or there are no 280 // explicit jumps to the return block. 281 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 282 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 283 delete ReturnBlock.getBlock(); 284 ReturnBlock = JumpDest(); 285 } else 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 // Otherwise, if the return block is the target of a single direct 291 // branch then we can just put the code in that block instead. This 292 // cleans up functions which started with a unified return block. 293 if (ReturnBlock.getBlock()->hasOneUse()) { 294 llvm::BranchInst *BI = 295 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 296 if (BI && BI->isUnconditional() && 297 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 298 // Record/return the DebugLoc of the simple 'return' expression to be used 299 // later by the actual 'ret' instruction. 300 llvm::DebugLoc Loc = BI->getDebugLoc(); 301 Builder.SetInsertPoint(BI->getParent()); 302 BI->eraseFromParent(); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 return Loc; 306 } 307 } 308 309 // FIXME: We are at an unreachable point, there is no reason to emit the block 310 // unless it has uses. However, we still need a place to put the debug 311 // region.end for now. 312 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 318 if (!BB) return; 319 if (!BB->use_empty()) 320 return CGF.CurFn->getBasicBlockList().push_back(BB); 321 delete BB; 322 } 323 324 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 325 assert(BreakContinueStack.empty() && 326 "mismatched push/pop in break/continue stack!"); 327 328 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 329 && NumSimpleReturnExprs == NumReturnExprs 330 && ReturnBlock.getBlock()->use_empty(); 331 // Usually the return expression is evaluated before the cleanup 332 // code. If the function contains only a simple return statement, 333 // such as a constant, the location before the cleanup code becomes 334 // the last useful breakpoint in the function, because the simple 335 // return expression will be evaluated after the cleanup code. To be 336 // safe, set the debug location for cleanup code to the location of 337 // the return statement. Otherwise the cleanup code should be at the 338 // end of the function's lexical scope. 339 // 340 // If there are multiple branches to the return block, the branch 341 // instructions will get the location of the return statements and 342 // all will be fine. 343 if (CGDebugInfo *DI = getDebugInfo()) { 344 if (OnlySimpleReturnStmts) 345 DI->EmitLocation(Builder, LastStopPoint); 346 else 347 DI->EmitLocation(Builder, EndLoc); 348 } 349 350 // Pop any cleanups that might have been associated with the 351 // parameters. Do this in whatever block we're currently in; it's 352 // important to do this before we enter the return block or return 353 // edges will be *really* confused. 354 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 355 bool HasOnlyLifetimeMarkers = 356 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 357 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 358 if (HasCleanups) { 359 // Make sure the line table doesn't jump back into the body for 360 // the ret after it's been at EndLoc. 361 Optional<ApplyDebugLocation> AL; 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, EndLoc); 365 else 366 // We may not have a valid end location. Try to apply it anyway, and 367 // fall back to an artificial location if needed. 368 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 369 } 370 371 PopCleanupBlocks(PrologueCleanupDepth); 372 } 373 374 // Emit function epilog (to return). 375 llvm::DebugLoc Loc = EmitReturnBlock(); 376 377 if (ShouldInstrumentFunction()) { 378 if (CGM.getCodeGenOpts().InstrumentFunctions) 379 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 380 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 381 CurFn->addFnAttr("instrument-function-exit-inlined", 382 "__cyg_profile_func_exit"); 383 } 384 385 if (ShouldSkipSanitizerInstrumentation()) 386 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 387 388 // Emit debug descriptor for function end. 389 if (CGDebugInfo *DI = getDebugInfo()) 390 DI->EmitFunctionEnd(Builder, CurFn); 391 392 // Reset the debug location to that of the simple 'return' expression, if any 393 // rather than that of the end of the function's scope '}'. 394 ApplyDebugLocation AL(*this, Loc); 395 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 396 EmitEndEHSpec(CurCodeDecl); 397 398 assert(EHStack.empty() && 399 "did not remove all scopes from cleanup stack!"); 400 401 // If someone did an indirect goto, emit the indirect goto block at the end of 402 // the function. 403 if (IndirectBranch) { 404 EmitBlock(IndirectBranch->getParent()); 405 Builder.ClearInsertionPoint(); 406 } 407 408 // If some of our locals escaped, insert a call to llvm.localescape in the 409 // entry block. 410 if (!EscapedLocals.empty()) { 411 // Invert the map from local to index into a simple vector. There should be 412 // no holes. 413 SmallVector<llvm::Value *, 4> EscapeArgs; 414 EscapeArgs.resize(EscapedLocals.size()); 415 for (auto &Pair : EscapedLocals) 416 EscapeArgs[Pair.second] = Pair.first; 417 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 418 &CGM.getModule(), llvm::Intrinsic::localescape); 419 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 420 } 421 422 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 423 llvm::Instruction *Ptr = AllocaInsertPt; 424 AllocaInsertPt = nullptr; 425 Ptr->eraseFromParent(); 426 427 // PostAllocaInsertPt, if created, was lazily created when it was required, 428 // remove it now since it was just created for our own convenience. 429 if (PostAllocaInsertPt) { 430 llvm::Instruction *PostPtr = PostAllocaInsertPt; 431 PostAllocaInsertPt = nullptr; 432 PostPtr->eraseFromParent(); 433 } 434 435 // If someone took the address of a label but never did an indirect goto, we 436 // made a zero entry PHI node, which is illegal, zap it now. 437 if (IndirectBranch) { 438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 439 if (PN->getNumIncomingValues() == 0) { 440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 441 PN->eraseFromParent(); 442 } 443 } 444 445 EmitIfUsed(*this, EHResumeBlock); 446 EmitIfUsed(*this, TerminateLandingPad); 447 EmitIfUsed(*this, TerminateHandler); 448 EmitIfUsed(*this, UnreachableBlock); 449 450 for (const auto &FuncletAndParent : TerminateFunclets) 451 EmitIfUsed(*this, FuncletAndParent.second); 452 453 if (CGM.getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 for (const auto &R : DeferredReplacements) { 457 if (llvm::Value *Old = R.first) { 458 Old->replaceAllUsesWith(R.second); 459 cast<llvm::Instruction>(Old)->eraseFromParent(); 460 } 461 } 462 DeferredReplacements.clear(); 463 464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 465 // PHIs if the current function is a coroutine. We don't do it for all 466 // functions as it may result in slight increase in numbers of instructions 467 // if compiled with no optimizations. We do it for coroutine as the lifetime 468 // of CleanupDestSlot alloca make correct coroutine frame building very 469 // difficult. 470 if (NormalCleanupDest.isValid() && isCoroutine()) { 471 llvm::DominatorTree DT(*CurFn); 472 llvm::PromoteMemToReg( 473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 474 NormalCleanupDest = Address::invalid(); 475 } 476 477 // Scan function arguments for vector width. 478 for (llvm::Argument &A : CurFn->args()) 479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 480 LargestVectorWidth = 481 std::max((uint64_t)LargestVectorWidth, 482 VT->getPrimitiveSizeInBits().getKnownMinSize()); 483 484 // Update vector width based on return type. 485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 486 LargestVectorWidth = 487 std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getKnownMinSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale_range attribute if appropriate. 500 Optional<std::pair<unsigned, unsigned>> VScaleRange = 501 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 502 if (VScaleRange) { 503 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 504 getLLVMContext(), VScaleRange.getValue().first, 505 VScaleRange.getValue().second)); 506 } 507 508 // If we generated an unreachable return block, delete it now. 509 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 510 Builder.ClearInsertionPoint(); 511 ReturnBlock.getBlock()->eraseFromParent(); 512 } 513 if (ReturnValue.isValid()) { 514 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 515 if (RetAlloca && RetAlloca->use_empty()) { 516 RetAlloca->eraseFromParent(); 517 ReturnValue = Address::invalid(); 518 } 519 } 520 } 521 522 /// ShouldInstrumentFunction - Return true if the current function should be 523 /// instrumented with __cyg_profile_func_* calls 524 bool CodeGenFunction::ShouldInstrumentFunction() { 525 if (!CGM.getCodeGenOpts().InstrumentFunctions && 526 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 527 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 528 return false; 529 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 530 return false; 531 return true; 532 } 533 534 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 535 if (!CurFuncDecl) 536 return false; 537 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 538 } 539 540 /// ShouldXRayInstrument - Return true if the current function should be 541 /// instrumented with XRay nop sleds. 542 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 543 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 544 } 545 546 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 547 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 548 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 549 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 550 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 551 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 552 XRayInstrKind::Custom); 553 } 554 555 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 556 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 557 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 558 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 559 XRayInstrKind::Typed); 560 } 561 562 llvm::Constant * 563 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 564 llvm::Constant *Addr) { 565 // Addresses stored in prologue data can't require run-time fixups and must 566 // be PC-relative. Run-time fixups are undesirable because they necessitate 567 // writable text segments, which are unsafe. And absolute addresses are 568 // undesirable because they break PIE mode. 569 570 // Add a layer of indirection through a private global. Taking its address 571 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 572 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 573 /*isConstant=*/true, 574 llvm::GlobalValue::PrivateLinkage, Addr); 575 576 // Create a PC-relative address. 577 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 578 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 579 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 580 return (IntPtrTy == Int32Ty) 581 ? PCRelAsInt 582 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 583 } 584 585 llvm::Value * 586 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 587 llvm::Value *EncodedAddr) { 588 // Reconstruct the address of the global. 589 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 590 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 591 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 592 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 593 594 // Load the original pointer through the global. 595 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 596 "decoded_addr"); 597 } 598 599 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 600 llvm::Function *Fn) 601 { 602 if (!FD->hasAttr<OpenCLKernelAttr>()) 603 return; 604 605 llvm::LLVMContext &Context = getLLVMContext(); 606 607 CGM.GenOpenCLArgMetadata(Fn, FD, this); 608 609 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 610 QualType HintQTy = A->getTypeHint(); 611 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 612 bool IsSignedInteger = 613 HintQTy->isSignedIntegerType() || 614 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 615 llvm::Metadata *AttrMDArgs[] = { 616 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 617 CGM.getTypes().ConvertType(A->getTypeHint()))), 618 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 619 llvm::IntegerType::get(Context, 32), 620 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 621 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 637 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 640 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 641 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 642 llvm::Metadata *AttrMDArgs[] = { 643 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 644 Fn->setMetadata("intel_reqd_sub_group_size", 645 llvm::MDNode::get(Context, AttrMDArgs)); 646 } 647 } 648 649 /// Determine whether the function F ends with a return stmt. 650 static bool endsWithReturn(const Decl* F) { 651 const Stmt *Body = nullptr; 652 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 653 Body = FD->getBody(); 654 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 655 Body = OMD->getBody(); 656 657 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 658 auto LastStmt = CS->body_rbegin(); 659 if (LastStmt != CS->body_rend()) 660 return isa<ReturnStmt>(*LastStmt); 661 } 662 return false; 663 } 664 665 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 666 if (SanOpts.has(SanitizerKind::Thread)) { 667 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 668 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 669 } 670 } 671 672 /// Check if the return value of this function requires sanitization. 673 bool CodeGenFunction::requiresReturnValueCheck() const { 674 return requiresReturnValueNullabilityCheck() || 675 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 676 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 677 } 678 679 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 680 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 681 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 682 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 683 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 684 return false; 685 686 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 687 return false; 688 689 if (MD->getNumParams() == 2) { 690 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 691 if (!PT || !PT->isVoidPointerType() || 692 !PT->getPointeeType().isConstQualified()) 693 return false; 694 } 695 696 return true; 697 } 698 699 /// Return the UBSan prologue signature for \p FD if one is available. 700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 701 const FunctionDecl *FD) { 702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 703 if (!MD->isStatic()) 704 return nullptr; 705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 709 llvm::Function *Fn, 710 const CGFunctionInfo &FnInfo, 711 const FunctionArgList &Args, 712 SourceLocation Loc, 713 SourceLocation StartLoc) { 714 assert(!CurFn && 715 "Do not use a CodeGenFunction object for more than one function"); 716 717 const Decl *D = GD.getDecl(); 718 719 DidCallStackSave = false; 720 CurCodeDecl = D; 721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 722 if (FD && FD->usesSEHTry()) 723 CurSEHParent = FD; 724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 725 FnRetTy = RetTy; 726 CurFn = Fn; 727 CurFnInfo = &FnInfo; 728 assert(CurFn->isDeclaration() && "Function already has body?"); 729 730 // If this function is ignored for any of the enabled sanitizers, 731 // disable the sanitizer for the function. 732 do { 733 #define SANITIZER(NAME, ID) \ 734 if (SanOpts.empty()) \ 735 break; \ 736 if (SanOpts.has(SanitizerKind::ID)) \ 737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 738 SanOpts.set(SanitizerKind::ID, false); 739 740 #include "clang/Basic/Sanitizers.def" 741 #undef SANITIZER 742 } while (0); 743 744 if (D) { 745 bool NoSanitizeCoverage = false; 746 747 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 748 // Apply the no_sanitize* attributes to SanOpts. 749 SanitizerMask mask = Attr->getMask(); 750 SanOpts.Mask &= ~mask; 751 if (mask & SanitizerKind::Address) 752 SanOpts.set(SanitizerKind::KernelAddress, false); 753 if (mask & SanitizerKind::KernelAddress) 754 SanOpts.set(SanitizerKind::Address, false); 755 if (mask & SanitizerKind::HWAddress) 756 SanOpts.set(SanitizerKind::KernelHWAddress, false); 757 if (mask & SanitizerKind::KernelHWAddress) 758 SanOpts.set(SanitizerKind::HWAddress, false); 759 760 // SanitizeCoverage is not handled by SanOpts. 761 if (Attr->hasCoverage()) 762 NoSanitizeCoverage = true; 763 } 764 765 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 766 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 767 } 768 769 // Apply sanitizer attributes to the function. 770 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 772 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 773 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 774 if (SanOpts.has(SanitizerKind::MemTag)) 775 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 776 if (SanOpts.has(SanitizerKind::Thread)) 777 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 778 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 779 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 780 if (SanOpts.has(SanitizerKind::SafeStack)) 781 Fn->addFnAttr(llvm::Attribute::SafeStack); 782 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 783 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 784 785 // Apply fuzzing attribute to the function. 786 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 787 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 788 789 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 790 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 791 if (SanOpts.has(SanitizerKind::Thread)) { 792 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 793 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (OMD->getMethodFamily() == OMF_dealloc || 795 OMD->getMethodFamily() == OMF_initialize || 796 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 797 markAsIgnoreThreadCheckingAtRuntime(Fn); 798 } 799 } 800 } 801 802 // Ignore unrelated casts in STL allocate() since the allocator must cast 803 // from void* to T* before object initialization completes. Don't match on the 804 // namespace because not all allocators are in std:: 805 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 806 if (matchesStlAllocatorFn(D, getContext())) 807 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 808 } 809 810 // Ignore null checks in coroutine functions since the coroutines passes 811 // are not aware of how to move the extra UBSan instructions across the split 812 // coroutine boundaries. 813 if (D && SanOpts.has(SanitizerKind::Null)) 814 if (FD && FD->getBody() && 815 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 816 SanOpts.Mask &= ~SanitizerKind::Null; 817 818 // Apply xray attributes to the function (as a string, for now) 819 bool AlwaysXRayAttr = false; 820 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 821 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 822 XRayInstrKind::FunctionEntry) || 823 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionExit)) { 825 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 826 Fn->addFnAttr("function-instrument", "xray-always"); 827 AlwaysXRayAttr = true; 828 } 829 if (XRayAttr->neverXRayInstrument()) 830 Fn->addFnAttr("function-instrument", "xray-never"); 831 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 832 if (ShouldXRayInstrumentFunction()) 833 Fn->addFnAttr("xray-log-args", 834 llvm::utostr(LogArgs->getArgumentCount())); 835 } 836 } else { 837 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 838 Fn->addFnAttr( 839 "xray-instruction-threshold", 840 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 841 } 842 843 if (ShouldXRayInstrumentFunction()) { 844 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 845 Fn->addFnAttr("xray-ignore-loops"); 846 847 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 848 XRayInstrKind::FunctionExit)) 849 Fn->addFnAttr("xray-skip-exit"); 850 851 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 852 XRayInstrKind::FunctionEntry)) 853 Fn->addFnAttr("xray-skip-entry"); 854 855 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 856 if (FuncGroups > 1) { 857 auto FuncName = llvm::makeArrayRef<uint8_t>( 858 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 859 auto Group = crc32(FuncName) % FuncGroups; 860 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 861 !AlwaysXRayAttr) 862 Fn->addFnAttr("function-instrument", "xray-never"); 863 } 864 } 865 866 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 867 if (CGM.isProfileInstrExcluded(Fn, Loc)) 868 Fn->addFnAttr(llvm::Attribute::NoProfile); 869 870 unsigned Count, Offset; 871 if (const auto *Attr = 872 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 873 Count = Attr->getCount(); 874 Offset = Attr->getOffset(); 875 } else { 876 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 877 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 878 } 879 if (Count && Offset <= Count) { 880 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 881 if (Offset) 882 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 883 } 884 885 // Add no-jump-tables value. 886 if (CGM.getCodeGenOpts().NoUseJumpTables) 887 Fn->addFnAttr("no-jump-tables", "true"); 888 889 // Add no-inline-line-tables value. 890 if (CGM.getCodeGenOpts().NoInlineLineTables) 891 Fn->addFnAttr("no-inline-line-tables"); 892 893 // Add profile-sample-accurate value. 894 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 895 Fn->addFnAttr("profile-sample-accurate"); 896 897 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 898 Fn->addFnAttr("use-sample-profile"); 899 900 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 901 Fn->addFnAttr("cfi-canonical-jump-table"); 902 903 if (D && D->hasAttr<NoProfileFunctionAttr>()) 904 Fn->addFnAttr(llvm::Attribute::NoProfile); 905 906 if (FD && getLangOpts().OpenCL) { 907 // Add metadata for a kernel function. 908 EmitOpenCLKernelMetadata(FD, Fn); 909 } 910 911 // If we are checking function types, emit a function type signature as 912 // prologue data. 913 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 914 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 915 // Remove any (C++17) exception specifications, to allow calling e.g. a 916 // noexcept function through a non-noexcept pointer. 917 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 918 FD->getType(), EST_None); 919 llvm::Constant *FTRTTIConst = 920 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 921 llvm::Constant *FTRTTIConstEncoded = 922 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 923 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 924 llvm::Constant *PrologueStructConst = 925 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 926 Fn->setPrologueData(PrologueStructConst); 927 } 928 } 929 930 // If we're checking nullability, we need to know whether we can check the 931 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 932 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 933 auto Nullability = FnRetTy->getNullability(getContext()); 934 if (Nullability && *Nullability == NullabilityKind::NonNull) { 935 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 936 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 937 RetValNullabilityPrecondition = 938 llvm::ConstantInt::getTrue(getLLVMContext()); 939 } 940 } 941 942 // If we're in C++ mode and the function name is "main", it is guaranteed 943 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 944 // used within a program"). 945 // 946 // OpenCL C 2.0 v2.2-11 s6.9.i: 947 // Recursion is not supported. 948 // 949 // SYCL v1.2.1 s3.10: 950 // kernels cannot include RTTI information, exception classes, 951 // recursive code, virtual functions or make use of C++ libraries that 952 // are not compiled for the device. 953 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 954 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 955 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 956 Fn->addFnAttr(llvm::Attribute::NoRecurse); 957 958 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 959 llvm::fp::ExceptionBehavior FPExceptionBehavior = 960 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 961 Builder.setDefaultConstrainedRounding(RM); 962 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 963 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 964 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 965 RM != llvm::RoundingMode::NearestTiesToEven))) { 966 Builder.setIsFPConstrained(true); 967 Fn->addFnAttr(llvm::Attribute::StrictFP); 968 } 969 970 // If a custom alignment is used, force realigning to this alignment on 971 // any main function which certainly will need it. 972 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 973 CGM.getCodeGenOpts().StackAlignment)) 974 Fn->addFnAttr("stackrealign"); 975 976 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 977 978 // Create a marker to make it easy to insert allocas into the entryblock 979 // later. Don't create this with the builder, because we don't want it 980 // folded. 981 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 982 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 983 984 ReturnBlock = getJumpDestInCurrentScope("return"); 985 986 Builder.SetInsertPoint(EntryBB); 987 988 // If we're checking the return value, allocate space for a pointer to a 989 // precise source location of the checked return statement. 990 if (requiresReturnValueCheck()) { 991 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 992 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 993 ReturnLocation); 994 } 995 996 // Emit subprogram debug descriptor. 997 if (CGDebugInfo *DI = getDebugInfo()) { 998 // Reconstruct the type from the argument list so that implicit parameters, 999 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1000 // convention. 1001 DI->emitFunctionStart(GD, Loc, StartLoc, 1002 DI->getFunctionType(FD, RetTy, Args), CurFn, 1003 CurFuncIsThunk); 1004 } 1005 1006 if (ShouldInstrumentFunction()) { 1007 if (CGM.getCodeGenOpts().InstrumentFunctions) 1008 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1009 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1010 CurFn->addFnAttr("instrument-function-entry-inlined", 1011 "__cyg_profile_func_enter"); 1012 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1013 CurFn->addFnAttr("instrument-function-entry-inlined", 1014 "__cyg_profile_func_enter_bare"); 1015 } 1016 1017 // Since emitting the mcount call here impacts optimizations such as function 1018 // inlining, we just add an attribute to insert a mcount call in backend. 1019 // The attribute "counting-function" is set to mcount function name which is 1020 // architecture dependent. 1021 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1022 // Calls to fentry/mcount should not be generated if function has 1023 // the no_instrument_function attribute. 1024 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1025 if (CGM.getCodeGenOpts().CallFEntry) 1026 Fn->addFnAttr("fentry-call", "true"); 1027 else { 1028 Fn->addFnAttr("instrument-function-entry-inlined", 1029 getTarget().getMCountName()); 1030 } 1031 if (CGM.getCodeGenOpts().MNopMCount) { 1032 if (!CGM.getCodeGenOpts().CallFEntry) 1033 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1034 << "-mnop-mcount" << "-mfentry"; 1035 Fn->addFnAttr("mnop-mcount"); 1036 } 1037 1038 if (CGM.getCodeGenOpts().RecordMCount) { 1039 if (!CGM.getCodeGenOpts().CallFEntry) 1040 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1041 << "-mrecord-mcount" << "-mfentry"; 1042 Fn->addFnAttr("mrecord-mcount"); 1043 } 1044 } 1045 } 1046 1047 if (CGM.getCodeGenOpts().PackedStack) { 1048 if (getContext().getTargetInfo().getTriple().getArch() != 1049 llvm::Triple::systemz) 1050 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1051 << "-mpacked-stack"; 1052 Fn->addFnAttr("packed-stack"); 1053 } 1054 1055 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1056 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1057 Fn->addFnAttr("warn-stack-size", 1058 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1059 1060 if (RetTy->isVoidType()) { 1061 // Void type; nothing to return. 1062 ReturnValue = Address::invalid(); 1063 1064 // Count the implicit return. 1065 if (!endsWithReturn(D)) 1066 ++NumReturnExprs; 1067 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1068 // Indirect return; emit returned value directly into sret slot. 1069 // This reduces code size, and affects correctness in C++. 1070 auto AI = CurFn->arg_begin(); 1071 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1072 ++AI; 1073 ReturnValue = Address(&*AI, ConvertTypeForMem(RetTy), 1074 CurFnInfo->getReturnInfo().getIndirectAlign()); 1075 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1076 ReturnValuePointer = 1077 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1078 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1079 ReturnValue.getPointer(), Int8PtrTy), 1080 ReturnValuePointer); 1081 } 1082 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1083 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1084 // Load the sret pointer from the argument struct and return into that. 1085 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1086 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1087 --EI; 1088 llvm::Value *Addr = Builder.CreateStructGEP( 1089 EI->getType()->getPointerElementType(), &*EI, Idx); 1090 llvm::Type *Ty = 1091 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1092 ReturnValuePointer = Address(Addr, getPointerAlign()); 1093 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1094 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1095 } else { 1096 ReturnValue = CreateIRTemp(RetTy, "retval"); 1097 1098 // Tell the epilog emitter to autorelease the result. We do this 1099 // now so that various specialized functions can suppress it 1100 // during their IR-generation. 1101 if (getLangOpts().ObjCAutoRefCount && 1102 !CurFnInfo->isReturnsRetained() && 1103 RetTy->isObjCRetainableType()) 1104 AutoreleaseResult = true; 1105 } 1106 1107 EmitStartEHSpec(CurCodeDecl); 1108 1109 PrologueCleanupDepth = EHStack.stable_begin(); 1110 1111 // Emit OpenMP specific initialization of the device functions. 1112 if (getLangOpts().OpenMP && CurCodeDecl) 1113 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1114 1115 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1116 1117 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1118 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1119 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1120 if (MD->getParent()->isLambda() && 1121 MD->getOverloadedOperator() == OO_Call) { 1122 // We're in a lambda; figure out the captures. 1123 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1124 LambdaThisCaptureField); 1125 if (LambdaThisCaptureField) { 1126 // If the lambda captures the object referred to by '*this' - either by 1127 // value or by reference, make sure CXXThisValue points to the correct 1128 // object. 1129 1130 // Get the lvalue for the field (which is a copy of the enclosing object 1131 // or contains the address of the enclosing object). 1132 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1133 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1134 // If the enclosing object was captured by value, just use its address. 1135 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1136 } else { 1137 // Load the lvalue pointed to by the field, since '*this' was captured 1138 // by reference. 1139 CXXThisValue = 1140 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1141 } 1142 } 1143 for (auto *FD : MD->getParent()->fields()) { 1144 if (FD->hasCapturedVLAType()) { 1145 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1146 SourceLocation()).getScalarVal(); 1147 auto VAT = FD->getCapturedVLAType(); 1148 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1149 } 1150 } 1151 } else { 1152 // Not in a lambda; just use 'this' from the method. 1153 // FIXME: Should we generate a new load for each use of 'this'? The 1154 // fast register allocator would be happier... 1155 CXXThisValue = CXXABIThisValue; 1156 } 1157 1158 // Check the 'this' pointer once per function, if it's available. 1159 if (CXXABIThisValue) { 1160 SanitizerSet SkippedChecks; 1161 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1162 QualType ThisTy = MD->getThisType(); 1163 1164 // If this is the call operator of a lambda with no capture-default, it 1165 // may have a static invoker function, which may call this operator with 1166 // a null 'this' pointer. 1167 if (isLambdaCallOperator(MD) && 1168 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1169 SkippedChecks.set(SanitizerKind::Null, true); 1170 1171 EmitTypeCheck( 1172 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1173 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1174 } 1175 } 1176 1177 // If any of the arguments have a variably modified type, make sure to 1178 // emit the type size. 1179 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1180 i != e; ++i) { 1181 const VarDecl *VD = *i; 1182 1183 // Dig out the type as written from ParmVarDecls; it's unclear whether 1184 // the standard (C99 6.9.1p10) requires this, but we're following the 1185 // precedent set by gcc. 1186 QualType Ty; 1187 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1188 Ty = PVD->getOriginalType(); 1189 else 1190 Ty = VD->getType(); 1191 1192 if (Ty->isVariablyModifiedType()) 1193 EmitVariablyModifiedType(Ty); 1194 } 1195 // Emit a location at the end of the prologue. 1196 if (CGDebugInfo *DI = getDebugInfo()) 1197 DI->EmitLocation(Builder, StartLoc); 1198 1199 // TODO: Do we need to handle this in two places like we do with 1200 // target-features/target-cpu? 1201 if (CurFuncDecl) 1202 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1203 LargestVectorWidth = VecWidth->getVectorWidth(); 1204 } 1205 1206 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1207 incrementProfileCounter(Body); 1208 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1209 EmitCompoundStmtWithoutScope(*S); 1210 else 1211 EmitStmt(Body); 1212 1213 // This is checked after emitting the function body so we know if there 1214 // are any permitted infinite loops. 1215 if (checkIfFunctionMustProgress()) 1216 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1217 } 1218 1219 /// When instrumenting to collect profile data, the counts for some blocks 1220 /// such as switch cases need to not include the fall-through counts, so 1221 /// emit a branch around the instrumentation code. When not instrumenting, 1222 /// this just calls EmitBlock(). 1223 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1224 const Stmt *S) { 1225 llvm::BasicBlock *SkipCountBB = nullptr; 1226 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1227 // When instrumenting for profiling, the fallthrough to certain 1228 // statements needs to skip over the instrumentation code so that we 1229 // get an accurate count. 1230 SkipCountBB = createBasicBlock("skipcount"); 1231 EmitBranch(SkipCountBB); 1232 } 1233 EmitBlock(BB); 1234 uint64_t CurrentCount = getCurrentProfileCount(); 1235 incrementProfileCounter(S); 1236 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1237 if (SkipCountBB) 1238 EmitBlock(SkipCountBB); 1239 } 1240 1241 /// Tries to mark the given function nounwind based on the 1242 /// non-existence of any throwing calls within it. We believe this is 1243 /// lightweight enough to do at -O0. 1244 static void TryMarkNoThrow(llvm::Function *F) { 1245 // LLVM treats 'nounwind' on a function as part of the type, so we 1246 // can't do this on functions that can be overwritten. 1247 if (F->isInterposable()) return; 1248 1249 for (llvm::BasicBlock &BB : *F) 1250 for (llvm::Instruction &I : BB) 1251 if (I.mayThrow()) 1252 return; 1253 1254 F->setDoesNotThrow(); 1255 } 1256 1257 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1258 FunctionArgList &Args) { 1259 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1260 QualType ResTy = FD->getReturnType(); 1261 1262 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1263 if (MD && MD->isInstance()) { 1264 if (CGM.getCXXABI().HasThisReturn(GD)) 1265 ResTy = MD->getThisType(); 1266 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1267 ResTy = CGM.getContext().VoidPtrTy; 1268 CGM.getCXXABI().buildThisParam(*this, Args); 1269 } 1270 1271 // The base version of an inheriting constructor whose constructed base is a 1272 // virtual base is not passed any arguments (because it doesn't actually call 1273 // the inherited constructor). 1274 bool PassedParams = true; 1275 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1276 if (auto Inherited = CD->getInheritedConstructor()) 1277 PassedParams = 1278 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1279 1280 if (PassedParams) { 1281 for (auto *Param : FD->parameters()) { 1282 Args.push_back(Param); 1283 if (!Param->hasAttr<PassObjectSizeAttr>()) 1284 continue; 1285 1286 auto *Implicit = ImplicitParamDecl::Create( 1287 getContext(), Param->getDeclContext(), Param->getLocation(), 1288 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1289 SizeArguments[Param] = Implicit; 1290 Args.push_back(Implicit); 1291 } 1292 } 1293 1294 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1295 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1296 1297 return ResTy; 1298 } 1299 1300 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1301 const CGFunctionInfo &FnInfo) { 1302 assert(Fn && "generating code for null Function"); 1303 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1304 CurGD = GD; 1305 1306 FunctionArgList Args; 1307 QualType ResTy = BuildFunctionArgList(GD, Args); 1308 1309 if (FD->isInlineBuiltinDeclaration()) { 1310 // When generating code for a builtin with an inline declaration, use a 1311 // mangled name to hold the actual body, while keeping an external 1312 // definition in case the function pointer is referenced somewhere. 1313 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1314 llvm::Module *M = Fn->getParent(); 1315 llvm::Function *Clone = M->getFunction(FDInlineName); 1316 if (!Clone) { 1317 Clone = llvm::Function::Create(Fn->getFunctionType(), 1318 llvm::GlobalValue::InternalLinkage, 1319 Fn->getAddressSpace(), FDInlineName, M); 1320 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1321 } 1322 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1323 Fn = Clone; 1324 } else { 1325 // Detect the unusual situation where an inline version is shadowed by a 1326 // non-inline version. In that case we should pick the external one 1327 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1328 // to detect that situation before we reach codegen, so do some late 1329 // replacement. 1330 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1331 PD = PD->getPreviousDecl()) { 1332 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1333 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1334 llvm::Module *M = Fn->getParent(); 1335 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1336 Clone->replaceAllUsesWith(Fn); 1337 Clone->eraseFromParent(); 1338 } 1339 break; 1340 } 1341 } 1342 } 1343 1344 // Check if we should generate debug info for this function. 1345 if (FD->hasAttr<NoDebugAttr>()) { 1346 // Clear non-distinct debug info that was possibly attached to the function 1347 // due to an earlier declaration without the nodebug attribute 1348 Fn->setSubprogram(nullptr); 1349 // Disable debug info indefinitely for this function 1350 DebugInfo = nullptr; 1351 } 1352 1353 // The function might not have a body if we're generating thunks for a 1354 // function declaration. 1355 SourceRange BodyRange; 1356 if (Stmt *Body = FD->getBody()) 1357 BodyRange = Body->getSourceRange(); 1358 else 1359 BodyRange = FD->getLocation(); 1360 CurEHLocation = BodyRange.getEnd(); 1361 1362 // Use the location of the start of the function to determine where 1363 // the function definition is located. By default use the location 1364 // of the declaration as the location for the subprogram. A function 1365 // may lack a declaration in the source code if it is created by code 1366 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1367 SourceLocation Loc = FD->getLocation(); 1368 1369 // If this is a function specialization then use the pattern body 1370 // as the location for the function. 1371 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1372 if (SpecDecl->hasBody(SpecDecl)) 1373 Loc = SpecDecl->getLocation(); 1374 1375 Stmt *Body = FD->getBody(); 1376 1377 if (Body) { 1378 // Coroutines always emit lifetime markers. 1379 if (isa<CoroutineBodyStmt>(Body)) 1380 ShouldEmitLifetimeMarkers = true; 1381 1382 // Initialize helper which will detect jumps which can cause invalid 1383 // lifetime markers. 1384 if (ShouldEmitLifetimeMarkers) 1385 Bypasses.Init(Body); 1386 } 1387 1388 // Emit the standard function prologue. 1389 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1390 1391 // Save parameters for coroutine function. 1392 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1393 for (const auto *ParamDecl : FD->parameters()) 1394 FnArgs.push_back(ParamDecl); 1395 1396 // Generate the body of the function. 1397 PGO.assignRegionCounters(GD, CurFn); 1398 if (isa<CXXDestructorDecl>(FD)) 1399 EmitDestructorBody(Args); 1400 else if (isa<CXXConstructorDecl>(FD)) 1401 EmitConstructorBody(Args); 1402 else if (getLangOpts().CUDA && 1403 !getLangOpts().CUDAIsDevice && 1404 FD->hasAttr<CUDAGlobalAttr>()) 1405 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1406 else if (isa<CXXMethodDecl>(FD) && 1407 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1408 // The lambda static invoker function is special, because it forwards or 1409 // clones the body of the function call operator (but is actually static). 1410 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1411 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1412 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1413 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1414 // Implicit copy-assignment gets the same special treatment as implicit 1415 // copy-constructors. 1416 emitImplicitAssignmentOperatorBody(Args); 1417 } else if (Body) { 1418 EmitFunctionBody(Body); 1419 } else 1420 llvm_unreachable("no definition for emitted function"); 1421 1422 // C++11 [stmt.return]p2: 1423 // Flowing off the end of a function [...] results in undefined behavior in 1424 // a value-returning function. 1425 // C11 6.9.1p12: 1426 // If the '}' that terminates a function is reached, and the value of the 1427 // function call is used by the caller, the behavior is undefined. 1428 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1429 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1430 bool ShouldEmitUnreachable = 1431 CGM.getCodeGenOpts().StrictReturn || 1432 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1433 if (SanOpts.has(SanitizerKind::Return)) { 1434 SanitizerScope SanScope(this); 1435 llvm::Value *IsFalse = Builder.getFalse(); 1436 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1437 SanitizerHandler::MissingReturn, 1438 EmitCheckSourceLocation(FD->getLocation()), None); 1439 } else if (ShouldEmitUnreachable) { 1440 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1441 EmitTrapCall(llvm::Intrinsic::trap); 1442 } 1443 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1444 Builder.CreateUnreachable(); 1445 Builder.ClearInsertionPoint(); 1446 } 1447 } 1448 1449 // Emit the standard function epilogue. 1450 FinishFunction(BodyRange.getEnd()); 1451 1452 // If we haven't marked the function nothrow through other means, do 1453 // a quick pass now to see if we can. 1454 if (!CurFn->doesNotThrow()) 1455 TryMarkNoThrow(CurFn); 1456 } 1457 1458 /// ContainsLabel - Return true if the statement contains a label in it. If 1459 /// this statement is not executed normally, it not containing a label means 1460 /// that we can just remove the code. 1461 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1462 // Null statement, not a label! 1463 if (!S) return false; 1464 1465 // If this is a label, we have to emit the code, consider something like: 1466 // if (0) { ... foo: bar(); } goto foo; 1467 // 1468 // TODO: If anyone cared, we could track __label__'s, since we know that you 1469 // can't jump to one from outside their declared region. 1470 if (isa<LabelStmt>(S)) 1471 return true; 1472 1473 // If this is a case/default statement, and we haven't seen a switch, we have 1474 // to emit the code. 1475 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1476 return true; 1477 1478 // If this is a switch statement, we want to ignore cases below it. 1479 if (isa<SwitchStmt>(S)) 1480 IgnoreCaseStmts = true; 1481 1482 // Scan subexpressions for verboten labels. 1483 for (const Stmt *SubStmt : S->children()) 1484 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1485 return true; 1486 1487 return false; 1488 } 1489 1490 /// containsBreak - Return true if the statement contains a break out of it. 1491 /// If the statement (recursively) contains a switch or loop with a break 1492 /// inside of it, this is fine. 1493 bool CodeGenFunction::containsBreak(const Stmt *S) { 1494 // Null statement, not a label! 1495 if (!S) return false; 1496 1497 // If this is a switch or loop that defines its own break scope, then we can 1498 // include it and anything inside of it. 1499 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1500 isa<ForStmt>(S)) 1501 return false; 1502 1503 if (isa<BreakStmt>(S)) 1504 return true; 1505 1506 // Scan subexpressions for verboten breaks. 1507 for (const Stmt *SubStmt : S->children()) 1508 if (containsBreak(SubStmt)) 1509 return true; 1510 1511 return false; 1512 } 1513 1514 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1515 if (!S) return false; 1516 1517 // Some statement kinds add a scope and thus never add a decl to the current 1518 // scope. Note, this list is longer than the list of statements that might 1519 // have an unscoped decl nested within them, but this way is conservatively 1520 // correct even if more statement kinds are added. 1521 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1522 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1523 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1524 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1525 return false; 1526 1527 if (isa<DeclStmt>(S)) 1528 return true; 1529 1530 for (const Stmt *SubStmt : S->children()) 1531 if (mightAddDeclToScope(SubStmt)) 1532 return true; 1533 1534 return false; 1535 } 1536 1537 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1538 /// to a constant, or if it does but contains a label, return false. If it 1539 /// constant folds return true and set the boolean result in Result. 1540 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1541 bool &ResultBool, 1542 bool AllowLabels) { 1543 llvm::APSInt ResultInt; 1544 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1545 return false; 1546 1547 ResultBool = ResultInt.getBoolValue(); 1548 return true; 1549 } 1550 1551 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1552 /// to a constant, or if it does but contains a label, return false. If it 1553 /// constant folds return true and set the folded value. 1554 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1555 llvm::APSInt &ResultInt, 1556 bool AllowLabels) { 1557 // FIXME: Rename and handle conversion of other evaluatable things 1558 // to bool. 1559 Expr::EvalResult Result; 1560 if (!Cond->EvaluateAsInt(Result, getContext())) 1561 return false; // Not foldable, not integer or not fully evaluatable. 1562 1563 llvm::APSInt Int = Result.Val.getInt(); 1564 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1565 return false; // Contains a label. 1566 1567 ResultInt = Int; 1568 return true; 1569 } 1570 1571 /// Determine whether the given condition is an instrumentable condition 1572 /// (i.e. no "&&" or "||"). 1573 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1574 // Bypass simplistic logical-NOT operator before determining whether the 1575 // condition contains any other logical operator. 1576 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1577 if (UnOp->getOpcode() == UO_LNot) 1578 C = UnOp->getSubExpr(); 1579 1580 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1581 return (!BOp || !BOp->isLogicalOp()); 1582 } 1583 1584 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1585 /// increments a profile counter based on the semantics of the given logical 1586 /// operator opcode. This is used to instrument branch condition coverage for 1587 /// logical operators. 1588 void CodeGenFunction::EmitBranchToCounterBlock( 1589 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1590 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1591 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1592 // If not instrumenting, just emit a branch. 1593 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1594 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1595 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1596 1597 llvm::BasicBlock *ThenBlock = NULL; 1598 llvm::BasicBlock *ElseBlock = NULL; 1599 llvm::BasicBlock *NextBlock = NULL; 1600 1601 // Create the block we'll use to increment the appropriate counter. 1602 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1603 1604 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1605 // means we need to evaluate the condition and increment the counter on TRUE: 1606 // 1607 // if (Cond) 1608 // goto CounterIncrBlock; 1609 // else 1610 // goto FalseBlock; 1611 // 1612 // CounterIncrBlock: 1613 // Counter++; 1614 // goto TrueBlock; 1615 1616 if (LOp == BO_LAnd) { 1617 ThenBlock = CounterIncrBlock; 1618 ElseBlock = FalseBlock; 1619 NextBlock = TrueBlock; 1620 } 1621 1622 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1623 // we need to evaluate the condition and increment the counter on FALSE: 1624 // 1625 // if (Cond) 1626 // goto TrueBlock; 1627 // else 1628 // goto CounterIncrBlock; 1629 // 1630 // CounterIncrBlock: 1631 // Counter++; 1632 // goto FalseBlock; 1633 1634 else if (LOp == BO_LOr) { 1635 ThenBlock = TrueBlock; 1636 ElseBlock = CounterIncrBlock; 1637 NextBlock = FalseBlock; 1638 } else { 1639 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1640 } 1641 1642 // Emit Branch based on condition. 1643 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1644 1645 // Emit the block containing the counter increment(s). 1646 EmitBlock(CounterIncrBlock); 1647 1648 // Increment corresponding counter; if index not provided, use Cond as index. 1649 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1650 1651 // Go to the next block. 1652 EmitBranch(NextBlock); 1653 } 1654 1655 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1656 /// statement) to the specified blocks. Based on the condition, this might try 1657 /// to simplify the codegen of the conditional based on the branch. 1658 /// \param LH The value of the likelihood attribute on the True branch. 1659 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1660 llvm::BasicBlock *TrueBlock, 1661 llvm::BasicBlock *FalseBlock, 1662 uint64_t TrueCount, 1663 Stmt::Likelihood LH) { 1664 Cond = Cond->IgnoreParens(); 1665 1666 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1667 1668 // Handle X && Y in a condition. 1669 if (CondBOp->getOpcode() == BO_LAnd) { 1670 // If we have "1 && X", simplify the code. "0 && X" would have constant 1671 // folded if the case was simple enough. 1672 bool ConstantBool = false; 1673 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1674 ConstantBool) { 1675 // br(1 && X) -> br(X). 1676 incrementProfileCounter(CondBOp); 1677 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1678 FalseBlock, TrueCount, LH); 1679 } 1680 1681 // If we have "X && 1", simplify the code to use an uncond branch. 1682 // "X && 0" would have been constant folded to 0. 1683 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1684 ConstantBool) { 1685 // br(X && 1) -> br(X). 1686 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1687 FalseBlock, TrueCount, LH, CondBOp); 1688 } 1689 1690 // Emit the LHS as a conditional. If the LHS conditional is false, we 1691 // want to jump to the FalseBlock. 1692 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1693 // The counter tells us how often we evaluate RHS, and all of TrueCount 1694 // can be propagated to that branch. 1695 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1696 1697 ConditionalEvaluation eval(*this); 1698 { 1699 ApplyDebugLocation DL(*this, Cond); 1700 // Propagate the likelihood attribute like __builtin_expect 1701 // __builtin_expect(X && Y, 1) -> X and Y are likely 1702 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1703 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1704 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1705 EmitBlock(LHSTrue); 1706 } 1707 1708 incrementProfileCounter(CondBOp); 1709 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1710 1711 // Any temporaries created here are conditional. 1712 eval.begin(*this); 1713 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1714 FalseBlock, TrueCount, LH); 1715 eval.end(*this); 1716 1717 return; 1718 } 1719 1720 if (CondBOp->getOpcode() == BO_LOr) { 1721 // If we have "0 || X", simplify the code. "1 || X" would have constant 1722 // folded if the case was simple enough. 1723 bool ConstantBool = false; 1724 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1725 !ConstantBool) { 1726 // br(0 || X) -> br(X). 1727 incrementProfileCounter(CondBOp); 1728 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1729 FalseBlock, TrueCount, LH); 1730 } 1731 1732 // If we have "X || 0", simplify the code to use an uncond branch. 1733 // "X || 1" would have been constant folded to 1. 1734 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1735 !ConstantBool) { 1736 // br(X || 0) -> br(X). 1737 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1738 FalseBlock, TrueCount, LH, CondBOp); 1739 } 1740 1741 // Emit the LHS as a conditional. If the LHS conditional is true, we 1742 // want to jump to the TrueBlock. 1743 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1744 // We have the count for entry to the RHS and for the whole expression 1745 // being true, so we can divy up True count between the short circuit and 1746 // the RHS. 1747 uint64_t LHSCount = 1748 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1749 uint64_t RHSCount = TrueCount - LHSCount; 1750 1751 ConditionalEvaluation eval(*this); 1752 { 1753 // Propagate the likelihood attribute like __builtin_expect 1754 // __builtin_expect(X || Y, 1) -> only Y is likely 1755 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1756 ApplyDebugLocation DL(*this, Cond); 1757 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1758 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1759 EmitBlock(LHSFalse); 1760 } 1761 1762 incrementProfileCounter(CondBOp); 1763 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1764 1765 // Any temporaries created here are conditional. 1766 eval.begin(*this); 1767 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1768 RHSCount, LH); 1769 1770 eval.end(*this); 1771 1772 return; 1773 } 1774 } 1775 1776 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1777 // br(!x, t, f) -> br(x, f, t) 1778 if (CondUOp->getOpcode() == UO_LNot) { 1779 // Negate the count. 1780 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1781 // The values of the enum are chosen to make this negation possible. 1782 LH = static_cast<Stmt::Likelihood>(-LH); 1783 // Negate the condition and swap the destination blocks. 1784 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1785 FalseCount, LH); 1786 } 1787 } 1788 1789 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1790 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1791 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1792 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1793 1794 // The ConditionalOperator itself has no likelihood information for its 1795 // true and false branches. This matches the behavior of __builtin_expect. 1796 ConditionalEvaluation cond(*this); 1797 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1798 getProfileCount(CondOp), Stmt::LH_None); 1799 1800 // When computing PGO branch weights, we only know the overall count for 1801 // the true block. This code is essentially doing tail duplication of the 1802 // naive code-gen, introducing new edges for which counts are not 1803 // available. Divide the counts proportionally between the LHS and RHS of 1804 // the conditional operator. 1805 uint64_t LHSScaledTrueCount = 0; 1806 if (TrueCount) { 1807 double LHSRatio = 1808 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1809 LHSScaledTrueCount = TrueCount * LHSRatio; 1810 } 1811 1812 cond.begin(*this); 1813 EmitBlock(LHSBlock); 1814 incrementProfileCounter(CondOp); 1815 { 1816 ApplyDebugLocation DL(*this, Cond); 1817 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1818 LHSScaledTrueCount, LH); 1819 } 1820 cond.end(*this); 1821 1822 cond.begin(*this); 1823 EmitBlock(RHSBlock); 1824 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1825 TrueCount - LHSScaledTrueCount, LH); 1826 cond.end(*this); 1827 1828 return; 1829 } 1830 1831 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1832 // Conditional operator handling can give us a throw expression as a 1833 // condition for a case like: 1834 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1835 // Fold this to: 1836 // br(c, throw x, br(y, t, f)) 1837 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1838 return; 1839 } 1840 1841 // Emit the code with the fully general case. 1842 llvm::Value *CondV; 1843 { 1844 ApplyDebugLocation DL(*this, Cond); 1845 CondV = EvaluateExprAsBool(Cond); 1846 } 1847 1848 llvm::MDNode *Weights = nullptr; 1849 llvm::MDNode *Unpredictable = nullptr; 1850 1851 // If the branch has a condition wrapped by __builtin_unpredictable, 1852 // create metadata that specifies that the branch is unpredictable. 1853 // Don't bother if not optimizing because that metadata would not be used. 1854 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1855 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1856 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1857 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1858 llvm::MDBuilder MDHelper(getLLVMContext()); 1859 Unpredictable = MDHelper.createUnpredictable(); 1860 } 1861 } 1862 1863 // If there is a Likelihood knowledge for the cond, lower it. 1864 // Note that if not optimizing this won't emit anything. 1865 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1866 if (CondV != NewCondV) 1867 CondV = NewCondV; 1868 else { 1869 // Otherwise, lower profile counts. Note that we do this even at -O0. 1870 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1871 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1872 } 1873 1874 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1875 } 1876 1877 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1878 /// specified stmt yet. 1879 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1880 CGM.ErrorUnsupported(S, Type); 1881 } 1882 1883 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1884 /// variable-length array whose elements have a non-zero bit-pattern. 1885 /// 1886 /// \param baseType the inner-most element type of the array 1887 /// \param src - a char* pointing to the bit-pattern for a single 1888 /// base element of the array 1889 /// \param sizeInChars - the total size of the VLA, in chars 1890 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1891 Address dest, Address src, 1892 llvm::Value *sizeInChars) { 1893 CGBuilderTy &Builder = CGF.Builder; 1894 1895 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1896 llvm::Value *baseSizeInChars 1897 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1898 1899 Address begin = 1900 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1901 llvm::Value *end = Builder.CreateInBoundsGEP( 1902 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1903 1904 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1905 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1906 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1907 1908 // Make a loop over the VLA. C99 guarantees that the VLA element 1909 // count must be nonzero. 1910 CGF.EmitBlock(loopBB); 1911 1912 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1913 cur->addIncoming(begin.getPointer(), originBB); 1914 1915 CharUnits curAlign = 1916 dest.getAlignment().alignmentOfArrayElement(baseSize); 1917 1918 // memcpy the individual element bit-pattern. 1919 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1920 /*volatile*/ false); 1921 1922 // Go to the next element. 1923 llvm::Value *next = 1924 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1925 1926 // Leave if that's the end of the VLA. 1927 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1928 Builder.CreateCondBr(done, contBB, loopBB); 1929 cur->addIncoming(next, loopBB); 1930 1931 CGF.EmitBlock(contBB); 1932 } 1933 1934 void 1935 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1936 // Ignore empty classes in C++. 1937 if (getLangOpts().CPlusPlus) { 1938 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1939 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1940 return; 1941 } 1942 } 1943 1944 // Cast the dest ptr to the appropriate i8 pointer type. 1945 if (DestPtr.getElementType() != Int8Ty) 1946 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1947 1948 // Get size and alignment info for this aggregate. 1949 CharUnits size = getContext().getTypeSizeInChars(Ty); 1950 1951 llvm::Value *SizeVal; 1952 const VariableArrayType *vla; 1953 1954 // Don't bother emitting a zero-byte memset. 1955 if (size.isZero()) { 1956 // But note that getTypeInfo returns 0 for a VLA. 1957 if (const VariableArrayType *vlaType = 1958 dyn_cast_or_null<VariableArrayType>( 1959 getContext().getAsArrayType(Ty))) { 1960 auto VlaSize = getVLASize(vlaType); 1961 SizeVal = VlaSize.NumElts; 1962 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1963 if (!eltSize.isOne()) 1964 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1965 vla = vlaType; 1966 } else { 1967 return; 1968 } 1969 } else { 1970 SizeVal = CGM.getSize(size); 1971 vla = nullptr; 1972 } 1973 1974 // If the type contains a pointer to data member we can't memset it to zero. 1975 // Instead, create a null constant and copy it to the destination. 1976 // TODO: there are other patterns besides zero that we can usefully memset, 1977 // like -1, which happens to be the pattern used by member-pointers. 1978 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1979 // For a VLA, emit a single element, then splat that over the VLA. 1980 if (vla) Ty = getContext().getBaseElementType(vla); 1981 1982 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1983 1984 llvm::GlobalVariable *NullVariable = 1985 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1986 /*isConstant=*/true, 1987 llvm::GlobalVariable::PrivateLinkage, 1988 NullConstant, Twine()); 1989 CharUnits NullAlign = DestPtr.getAlignment(); 1990 NullVariable->setAlignment(NullAlign.getAsAlign()); 1991 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1992 NullAlign); 1993 1994 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1995 1996 // Get and call the appropriate llvm.memcpy overload. 1997 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1998 return; 1999 } 2000 2001 // Otherwise, just memset the whole thing to zero. This is legal 2002 // because in LLVM, all default initializers (other than the ones we just 2003 // handled above) are guaranteed to have a bit pattern of all zeros. 2004 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2005 } 2006 2007 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2008 // Make sure that there is a block for the indirect goto. 2009 if (!IndirectBranch) 2010 GetIndirectGotoBlock(); 2011 2012 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2013 2014 // Make sure the indirect branch includes all of the address-taken blocks. 2015 IndirectBranch->addDestination(BB); 2016 return llvm::BlockAddress::get(CurFn, BB); 2017 } 2018 2019 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2020 // If we already made the indirect branch for indirect goto, return its block. 2021 if (IndirectBranch) return IndirectBranch->getParent(); 2022 2023 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2024 2025 // Create the PHI node that indirect gotos will add entries to. 2026 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2027 "indirect.goto.dest"); 2028 2029 // Create the indirect branch instruction. 2030 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2031 return IndirectBranch->getParent(); 2032 } 2033 2034 /// Computes the length of an array in elements, as well as the base 2035 /// element type and a properly-typed first element pointer. 2036 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2037 QualType &baseType, 2038 Address &addr) { 2039 const ArrayType *arrayType = origArrayType; 2040 2041 // If it's a VLA, we have to load the stored size. Note that 2042 // this is the size of the VLA in bytes, not its size in elements. 2043 llvm::Value *numVLAElements = nullptr; 2044 if (isa<VariableArrayType>(arrayType)) { 2045 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2046 2047 // Walk into all VLAs. This doesn't require changes to addr, 2048 // which has type T* where T is the first non-VLA element type. 2049 do { 2050 QualType elementType = arrayType->getElementType(); 2051 arrayType = getContext().getAsArrayType(elementType); 2052 2053 // If we only have VLA components, 'addr' requires no adjustment. 2054 if (!arrayType) { 2055 baseType = elementType; 2056 return numVLAElements; 2057 } 2058 } while (isa<VariableArrayType>(arrayType)); 2059 2060 // We get out here only if we find a constant array type 2061 // inside the VLA. 2062 } 2063 2064 // We have some number of constant-length arrays, so addr should 2065 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2066 // down to the first element of addr. 2067 SmallVector<llvm::Value*, 8> gepIndices; 2068 2069 // GEP down to the array type. 2070 llvm::ConstantInt *zero = Builder.getInt32(0); 2071 gepIndices.push_back(zero); 2072 2073 uint64_t countFromCLAs = 1; 2074 QualType eltType; 2075 2076 llvm::ArrayType *llvmArrayType = 2077 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2078 while (llvmArrayType) { 2079 assert(isa<ConstantArrayType>(arrayType)); 2080 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2081 == llvmArrayType->getNumElements()); 2082 2083 gepIndices.push_back(zero); 2084 countFromCLAs *= llvmArrayType->getNumElements(); 2085 eltType = arrayType->getElementType(); 2086 2087 llvmArrayType = 2088 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2089 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2090 assert((!llvmArrayType || arrayType) && 2091 "LLVM and Clang types are out-of-synch"); 2092 } 2093 2094 if (arrayType) { 2095 // From this point onwards, the Clang array type has been emitted 2096 // as some other type (probably a packed struct). Compute the array 2097 // size, and just emit the 'begin' expression as a bitcast. 2098 while (arrayType) { 2099 countFromCLAs *= 2100 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2101 eltType = arrayType->getElementType(); 2102 arrayType = getContext().getAsArrayType(eltType); 2103 } 2104 2105 llvm::Type *baseType = ConvertType(eltType); 2106 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2107 } else { 2108 // Create the actual GEP. 2109 addr = Address(Builder.CreateInBoundsGEP( 2110 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2111 addr.getAlignment()); 2112 } 2113 2114 baseType = eltType; 2115 2116 llvm::Value *numElements 2117 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2118 2119 // If we had any VLA dimensions, factor them in. 2120 if (numVLAElements) 2121 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2122 2123 return numElements; 2124 } 2125 2126 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2127 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2128 assert(vla && "type was not a variable array type!"); 2129 return getVLASize(vla); 2130 } 2131 2132 CodeGenFunction::VlaSizePair 2133 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2134 // The number of elements so far; always size_t. 2135 llvm::Value *numElements = nullptr; 2136 2137 QualType elementType; 2138 do { 2139 elementType = type->getElementType(); 2140 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2141 assert(vlaSize && "no size for VLA!"); 2142 assert(vlaSize->getType() == SizeTy); 2143 2144 if (!numElements) { 2145 numElements = vlaSize; 2146 } else { 2147 // It's undefined behavior if this wraps around, so mark it that way. 2148 // FIXME: Teach -fsanitize=undefined to trap this. 2149 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2150 } 2151 } while ((type = getContext().getAsVariableArrayType(elementType))); 2152 2153 return { numElements, elementType }; 2154 } 2155 2156 CodeGenFunction::VlaSizePair 2157 CodeGenFunction::getVLAElements1D(QualType type) { 2158 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2159 assert(vla && "type was not a variable array type!"); 2160 return getVLAElements1D(vla); 2161 } 2162 2163 CodeGenFunction::VlaSizePair 2164 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2165 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2166 assert(VlaSize && "no size for VLA!"); 2167 assert(VlaSize->getType() == SizeTy); 2168 return { VlaSize, Vla->getElementType() }; 2169 } 2170 2171 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2172 assert(type->isVariablyModifiedType() && 2173 "Must pass variably modified type to EmitVLASizes!"); 2174 2175 EnsureInsertPoint(); 2176 2177 // We're going to walk down into the type and look for VLA 2178 // expressions. 2179 do { 2180 assert(type->isVariablyModifiedType()); 2181 2182 const Type *ty = type.getTypePtr(); 2183 switch (ty->getTypeClass()) { 2184 2185 #define TYPE(Class, Base) 2186 #define ABSTRACT_TYPE(Class, Base) 2187 #define NON_CANONICAL_TYPE(Class, Base) 2188 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2189 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2190 #include "clang/AST/TypeNodes.inc" 2191 llvm_unreachable("unexpected dependent type!"); 2192 2193 // These types are never variably-modified. 2194 case Type::Builtin: 2195 case Type::Complex: 2196 case Type::Vector: 2197 case Type::ExtVector: 2198 case Type::ConstantMatrix: 2199 case Type::Record: 2200 case Type::Enum: 2201 case Type::Elaborated: 2202 case Type::TemplateSpecialization: 2203 case Type::ObjCTypeParam: 2204 case Type::ObjCObject: 2205 case Type::ObjCInterface: 2206 case Type::ObjCObjectPointer: 2207 case Type::BitInt: 2208 llvm_unreachable("type class is never variably-modified!"); 2209 2210 case Type::Adjusted: 2211 type = cast<AdjustedType>(ty)->getAdjustedType(); 2212 break; 2213 2214 case Type::Decayed: 2215 type = cast<DecayedType>(ty)->getPointeeType(); 2216 break; 2217 2218 case Type::Pointer: 2219 type = cast<PointerType>(ty)->getPointeeType(); 2220 break; 2221 2222 case Type::BlockPointer: 2223 type = cast<BlockPointerType>(ty)->getPointeeType(); 2224 break; 2225 2226 case Type::LValueReference: 2227 case Type::RValueReference: 2228 type = cast<ReferenceType>(ty)->getPointeeType(); 2229 break; 2230 2231 case Type::MemberPointer: 2232 type = cast<MemberPointerType>(ty)->getPointeeType(); 2233 break; 2234 2235 case Type::ConstantArray: 2236 case Type::IncompleteArray: 2237 // Losing element qualification here is fine. 2238 type = cast<ArrayType>(ty)->getElementType(); 2239 break; 2240 2241 case Type::VariableArray: { 2242 // Losing element qualification here is fine. 2243 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2244 2245 // Unknown size indication requires no size computation. 2246 // Otherwise, evaluate and record it. 2247 if (const Expr *size = vat->getSizeExpr()) { 2248 // It's possible that we might have emitted this already, 2249 // e.g. with a typedef and a pointer to it. 2250 llvm::Value *&entry = VLASizeMap[size]; 2251 if (!entry) { 2252 llvm::Value *Size = EmitScalarExpr(size); 2253 2254 // C11 6.7.6.2p5: 2255 // If the size is an expression that is not an integer constant 2256 // expression [...] each time it is evaluated it shall have a value 2257 // greater than zero. 2258 if (SanOpts.has(SanitizerKind::VLABound) && 2259 size->getType()->isSignedIntegerType()) { 2260 SanitizerScope SanScope(this); 2261 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2262 llvm::Constant *StaticArgs[] = { 2263 EmitCheckSourceLocation(size->getBeginLoc()), 2264 EmitCheckTypeDescriptor(size->getType())}; 2265 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2266 SanitizerKind::VLABound), 2267 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2268 } 2269 2270 // Always zexting here would be wrong if it weren't 2271 // undefined behavior to have a negative bound. 2272 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2273 } 2274 } 2275 type = vat->getElementType(); 2276 break; 2277 } 2278 2279 case Type::FunctionProto: 2280 case Type::FunctionNoProto: 2281 type = cast<FunctionType>(ty)->getReturnType(); 2282 break; 2283 2284 case Type::Paren: 2285 case Type::TypeOf: 2286 case Type::UnaryTransform: 2287 case Type::Attributed: 2288 case Type::SubstTemplateTypeParm: 2289 case Type::MacroQualified: 2290 // Keep walking after single level desugaring. 2291 type = type.getSingleStepDesugaredType(getContext()); 2292 break; 2293 2294 case Type::Typedef: 2295 case Type::Decltype: 2296 case Type::Auto: 2297 case Type::DeducedTemplateSpecialization: 2298 // Stop walking: nothing to do. 2299 return; 2300 2301 case Type::TypeOfExpr: 2302 // Stop walking: emit typeof expression. 2303 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2304 return; 2305 2306 case Type::Atomic: 2307 type = cast<AtomicType>(ty)->getValueType(); 2308 break; 2309 2310 case Type::Pipe: 2311 type = cast<PipeType>(ty)->getElementType(); 2312 break; 2313 } 2314 } while (type->isVariablyModifiedType()); 2315 } 2316 2317 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2318 if (getContext().getBuiltinVaListType()->isArrayType()) 2319 return EmitPointerWithAlignment(E); 2320 return EmitLValue(E).getAddress(*this); 2321 } 2322 2323 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2324 return EmitLValue(E).getAddress(*this); 2325 } 2326 2327 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2328 const APValue &Init) { 2329 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2330 if (CGDebugInfo *Dbg = getDebugInfo()) 2331 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2332 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2333 } 2334 2335 CodeGenFunction::PeepholeProtection 2336 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2337 // At the moment, the only aggressive peephole we do in IR gen 2338 // is trunc(zext) folding, but if we add more, we can easily 2339 // extend this protection. 2340 2341 if (!rvalue.isScalar()) return PeepholeProtection(); 2342 llvm::Value *value = rvalue.getScalarVal(); 2343 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2344 2345 // Just make an extra bitcast. 2346 assert(HaveInsertPoint()); 2347 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2348 Builder.GetInsertBlock()); 2349 2350 PeepholeProtection protection; 2351 protection.Inst = inst; 2352 return protection; 2353 } 2354 2355 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2356 if (!protection.Inst) return; 2357 2358 // In theory, we could try to duplicate the peepholes now, but whatever. 2359 protection.Inst->eraseFromParent(); 2360 } 2361 2362 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2363 QualType Ty, SourceLocation Loc, 2364 SourceLocation AssumptionLoc, 2365 llvm::Value *Alignment, 2366 llvm::Value *OffsetValue) { 2367 if (Alignment->getType() != IntPtrTy) 2368 Alignment = 2369 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2370 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2371 OffsetValue = 2372 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2373 llvm::Value *TheCheck = nullptr; 2374 if (SanOpts.has(SanitizerKind::Alignment)) { 2375 llvm::Value *PtrIntValue = 2376 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2377 2378 if (OffsetValue) { 2379 bool IsOffsetZero = false; 2380 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2381 IsOffsetZero = CI->isZero(); 2382 2383 if (!IsOffsetZero) 2384 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2385 } 2386 2387 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2388 llvm::Value *Mask = 2389 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2390 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2391 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2392 } 2393 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2394 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2395 2396 if (!SanOpts.has(SanitizerKind::Alignment)) 2397 return; 2398 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2399 OffsetValue, TheCheck, Assumption); 2400 } 2401 2402 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2403 const Expr *E, 2404 SourceLocation AssumptionLoc, 2405 llvm::Value *Alignment, 2406 llvm::Value *OffsetValue) { 2407 if (auto *CE = dyn_cast<CastExpr>(E)) 2408 E = CE->getSubExprAsWritten(); 2409 QualType Ty = E->getType(); 2410 SourceLocation Loc = E->getExprLoc(); 2411 2412 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2413 OffsetValue); 2414 } 2415 2416 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2417 llvm::Value *AnnotatedVal, 2418 StringRef AnnotationStr, 2419 SourceLocation Location, 2420 const AnnotateAttr *Attr) { 2421 SmallVector<llvm::Value *, 5> Args = { 2422 AnnotatedVal, 2423 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2424 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2425 CGM.EmitAnnotationLineNo(Location), 2426 }; 2427 if (Attr) 2428 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2429 return Builder.CreateCall(AnnotationFn, Args); 2430 } 2431 2432 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2433 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2434 // FIXME We create a new bitcast for every annotation because that's what 2435 // llvm-gcc was doing. 2436 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2437 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2438 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2439 I->getAnnotation(), D->getLocation(), I); 2440 } 2441 2442 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2443 Address Addr) { 2444 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2445 llvm::Value *V = Addr.getPointer(); 2446 llvm::Type *VTy = V->getType(); 2447 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2448 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2449 llvm::PointerType *IntrinTy = 2450 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2451 llvm::Function *F = 2452 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2453 2454 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2455 // FIXME Always emit the cast inst so we can differentiate between 2456 // annotation on the first field of a struct and annotation on the struct 2457 // itself. 2458 if (VTy != IntrinTy) 2459 V = Builder.CreateBitCast(V, IntrinTy); 2460 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2461 V = Builder.CreateBitCast(V, VTy); 2462 } 2463 2464 return Address(V, Addr.getAlignment()); 2465 } 2466 2467 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2468 2469 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2470 : CGF(CGF) { 2471 assert(!CGF->IsSanitizerScope); 2472 CGF->IsSanitizerScope = true; 2473 } 2474 2475 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2476 CGF->IsSanitizerScope = false; 2477 } 2478 2479 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2480 const llvm::Twine &Name, 2481 llvm::BasicBlock *BB, 2482 llvm::BasicBlock::iterator InsertPt) const { 2483 LoopStack.InsertHelper(I); 2484 if (IsSanitizerScope) 2485 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2486 } 2487 2488 void CGBuilderInserter::InsertHelper( 2489 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2490 llvm::BasicBlock::iterator InsertPt) const { 2491 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2492 if (CGF) 2493 CGF->InsertHelper(I, Name, BB, InsertPt); 2494 } 2495 2496 // Emits an error if we don't have a valid set of target features for the 2497 // called function. 2498 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2499 const FunctionDecl *TargetDecl) { 2500 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2501 } 2502 2503 // Emits an error if we don't have a valid set of target features for the 2504 // called function. 2505 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2506 const FunctionDecl *TargetDecl) { 2507 // Early exit if this is an indirect call. 2508 if (!TargetDecl) 2509 return; 2510 2511 // Get the current enclosing function if it exists. If it doesn't 2512 // we can't check the target features anyhow. 2513 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2514 if (!FD) 2515 return; 2516 2517 // Grab the required features for the call. For a builtin this is listed in 2518 // the td file with the default cpu, for an always_inline function this is any 2519 // listed cpu and any listed features. 2520 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2521 std::string MissingFeature; 2522 llvm::StringMap<bool> CallerFeatureMap; 2523 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2524 if (BuiltinID) { 2525 StringRef FeatureList( 2526 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2527 // Return if the builtin doesn't have any required features. 2528 if (FeatureList.empty()) 2529 return; 2530 assert(!FeatureList.contains(' ') && "Space in feature list"); 2531 TargetFeatures TF(CallerFeatureMap); 2532 if (!TF.hasRequiredFeatures(FeatureList)) 2533 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2534 << TargetDecl->getDeclName() << FeatureList; 2535 } else if (!TargetDecl->isMultiVersion() && 2536 TargetDecl->hasAttr<TargetAttr>()) { 2537 // Get the required features for the callee. 2538 2539 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2540 ParsedTargetAttr ParsedAttr = 2541 CGM.getContext().filterFunctionTargetAttrs(TD); 2542 2543 SmallVector<StringRef, 1> ReqFeatures; 2544 llvm::StringMap<bool> CalleeFeatureMap; 2545 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2546 2547 for (const auto &F : ParsedAttr.Features) { 2548 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2549 ReqFeatures.push_back(StringRef(F).substr(1)); 2550 } 2551 2552 for (const auto &F : CalleeFeatureMap) { 2553 // Only positive features are "required". 2554 if (F.getValue()) 2555 ReqFeatures.push_back(F.getKey()); 2556 } 2557 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2558 if (!CallerFeatureMap.lookup(Feature)) { 2559 MissingFeature = Feature.str(); 2560 return false; 2561 } 2562 return true; 2563 })) 2564 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2565 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2566 } 2567 } 2568 2569 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2570 if (!CGM.getCodeGenOpts().SanitizeStats) 2571 return; 2572 2573 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2574 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2575 CGM.getSanStats().create(IRB, SSK); 2576 } 2577 2578 llvm::Value * 2579 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2580 llvm::Value *Condition = nullptr; 2581 2582 if (!RO.Conditions.Architecture.empty()) 2583 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2584 2585 if (!RO.Conditions.Features.empty()) { 2586 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2587 Condition = 2588 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2589 } 2590 return Condition; 2591 } 2592 2593 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2594 llvm::Function *Resolver, 2595 CGBuilderTy &Builder, 2596 llvm::Function *FuncToReturn, 2597 bool SupportsIFunc) { 2598 if (SupportsIFunc) { 2599 Builder.CreateRet(FuncToReturn); 2600 return; 2601 } 2602 2603 llvm::SmallVector<llvm::Value *, 10> Args; 2604 llvm::for_each(Resolver->args(), 2605 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2606 2607 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2608 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2609 2610 if (Resolver->getReturnType()->isVoidTy()) 2611 Builder.CreateRetVoid(); 2612 else 2613 Builder.CreateRet(Result); 2614 } 2615 2616 void CodeGenFunction::EmitMultiVersionResolver( 2617 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2618 assert(getContext().getTargetInfo().getTriple().isX86() && 2619 "Only implemented for x86 targets"); 2620 2621 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2622 2623 // Main function's basic block. 2624 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2625 Builder.SetInsertPoint(CurBlock); 2626 EmitX86CpuInit(); 2627 2628 for (const MultiVersionResolverOption &RO : Options) { 2629 Builder.SetInsertPoint(CurBlock); 2630 llvm::Value *Condition = FormResolverCondition(RO); 2631 2632 // The 'default' or 'generic' case. 2633 if (!Condition) { 2634 assert(&RO == Options.end() - 1 && 2635 "Default or Generic case must be last"); 2636 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2637 SupportsIFunc); 2638 return; 2639 } 2640 2641 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2642 CGBuilderTy RetBuilder(*this, RetBlock); 2643 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2644 SupportsIFunc); 2645 CurBlock = createBasicBlock("resolver_else", Resolver); 2646 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2647 } 2648 2649 // If no generic/default, emit an unreachable. 2650 Builder.SetInsertPoint(CurBlock); 2651 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2652 TrapCall->setDoesNotReturn(); 2653 TrapCall->setDoesNotThrow(); 2654 Builder.CreateUnreachable(); 2655 Builder.ClearInsertionPoint(); 2656 } 2657 2658 // Loc - where the diagnostic will point, where in the source code this 2659 // alignment has failed. 2660 // SecondaryLoc - if present (will be present if sufficiently different from 2661 // Loc), the diagnostic will additionally point a "Note:" to this location. 2662 // It should be the location where the __attribute__((assume_aligned)) 2663 // was written e.g. 2664 void CodeGenFunction::emitAlignmentAssumptionCheck( 2665 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2666 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2667 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2668 llvm::Instruction *Assumption) { 2669 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2670 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2671 llvm::Intrinsic::getDeclaration( 2672 Builder.GetInsertBlock()->getParent()->getParent(), 2673 llvm::Intrinsic::assume) && 2674 "Assumption should be a call to llvm.assume()."); 2675 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2676 "Assumption should be the last instruction of the basic block, " 2677 "since the basic block is still being generated."); 2678 2679 if (!SanOpts.has(SanitizerKind::Alignment)) 2680 return; 2681 2682 // Don't check pointers to volatile data. The behavior here is implementation- 2683 // defined. 2684 if (Ty->getPointeeType().isVolatileQualified()) 2685 return; 2686 2687 // We need to temorairly remove the assumption so we can insert the 2688 // sanitizer check before it, else the check will be dropped by optimizations. 2689 Assumption->removeFromParent(); 2690 2691 { 2692 SanitizerScope SanScope(this); 2693 2694 if (!OffsetValue) 2695 OffsetValue = Builder.getInt1(0); // no offset. 2696 2697 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2698 EmitCheckSourceLocation(SecondaryLoc), 2699 EmitCheckTypeDescriptor(Ty)}; 2700 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2701 EmitCheckValue(Alignment), 2702 EmitCheckValue(OffsetValue)}; 2703 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2704 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2705 } 2706 2707 // We are now in the (new, empty) "cont" basic block. 2708 // Reintroduce the assumption. 2709 Builder.Insert(Assumption); 2710 // FIXME: Assumption still has it's original basic block as it's Parent. 2711 } 2712 2713 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2714 if (CGDebugInfo *DI = getDebugInfo()) 2715 return DI->SourceLocToDebugLoc(Location); 2716 2717 return llvm::DebugLoc(); 2718 } 2719 2720 llvm::Value * 2721 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2722 Stmt::Likelihood LH) { 2723 switch (LH) { 2724 case Stmt::LH_None: 2725 return Cond; 2726 case Stmt::LH_Likely: 2727 case Stmt::LH_Unlikely: 2728 // Don't generate llvm.expect on -O0 as the backend won't use it for 2729 // anything. 2730 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2731 return Cond; 2732 llvm::Type *CondTy = Cond->getType(); 2733 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2734 llvm::Function *FnExpect = 2735 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2736 llvm::Value *ExpectedValueOfCond = 2737 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2738 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2739 Cond->getName() + ".expval"); 2740 } 2741 llvm_unreachable("Unknown Likelihood"); 2742 } 2743