1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 199 bool ForPointeeType, 200 CodeGenFunction &CGF) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment); 206 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 215 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 216 } 217 218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 219 QualType T) { 220 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 221 } 222 223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 224 QualType T) { 225 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 226 } 227 228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 229 return CGM.getTypes().ConvertTypeForMem(T); 230 } 231 232 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 233 return CGM.getTypes().ConvertType(T); 234 } 235 236 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 237 llvm::Type *LLVMTy) { 238 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 239 } 240 241 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 242 type = type.getCanonicalType(); 243 while (true) { 244 switch (type->getTypeClass()) { 245 #define TYPE(name, parent) 246 #define ABSTRACT_TYPE(name, parent) 247 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 248 #define DEPENDENT_TYPE(name, parent) case Type::name: 249 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 250 #include "clang/AST/TypeNodes.inc" 251 llvm_unreachable("non-canonical or dependent type in IR-generation"); 252 253 case Type::Auto: 254 case Type::DeducedTemplateSpecialization: 255 llvm_unreachable("undeduced type in IR-generation"); 256 257 // Various scalar types. 258 case Type::Builtin: 259 case Type::Pointer: 260 case Type::BlockPointer: 261 case Type::LValueReference: 262 case Type::RValueReference: 263 case Type::MemberPointer: 264 case Type::Vector: 265 case Type::ExtVector: 266 case Type::ConstantMatrix: 267 case Type::FunctionProto: 268 case Type::FunctionNoProto: 269 case Type::Enum: 270 case Type::ObjCObjectPointer: 271 case Type::Pipe: 272 case Type::BitInt: 273 return TEK_Scalar; 274 275 // Complexes. 276 case Type::Complex: 277 return TEK_Complex; 278 279 // Arrays, records, and Objective-C objects. 280 case Type::ConstantArray: 281 case Type::IncompleteArray: 282 case Type::VariableArray: 283 case Type::Record: 284 case Type::ObjCObject: 285 case Type::ObjCInterface: 286 case Type::ArrayParameter: 287 return TEK_Aggregate; 288 289 // We operate on atomic values according to their underlying type. 290 case Type::Atomic: 291 type = cast<AtomicType>(type)->getValueType(); 292 continue; 293 } 294 llvm_unreachable("unknown type kind!"); 295 } 296 } 297 298 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 299 // For cleanliness, we try to avoid emitting the return block for 300 // simple cases. 301 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 302 303 if (CurBB) { 304 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 305 306 // We have a valid insert point, reuse it if it is empty or there are no 307 // explicit jumps to the return block. 308 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 309 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 310 delete ReturnBlock.getBlock(); 311 ReturnBlock = JumpDest(); 312 } else 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 // Otherwise, if the return block is the target of a single direct 318 // branch then we can just put the code in that block instead. This 319 // cleans up functions which started with a unified return block. 320 if (ReturnBlock.getBlock()->hasOneUse()) { 321 llvm::BranchInst *BI = 322 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 323 if (BI && BI->isUnconditional() && 324 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 325 // Record/return the DebugLoc of the simple 'return' expression to be used 326 // later by the actual 'ret' instruction. 327 llvm::DebugLoc Loc = BI->getDebugLoc(); 328 Builder.SetInsertPoint(BI->getParent()); 329 BI->eraseFromParent(); 330 delete ReturnBlock.getBlock(); 331 ReturnBlock = JumpDest(); 332 return Loc; 333 } 334 } 335 336 // FIXME: We are at an unreachable point, there is no reason to emit the block 337 // unless it has uses. However, we still need a place to put the debug 338 // region.end for now. 339 340 EmitBlock(ReturnBlock.getBlock()); 341 return llvm::DebugLoc(); 342 } 343 344 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 345 if (!BB) return; 346 if (!BB->use_empty()) { 347 CGF.CurFn->insert(CGF.CurFn->end(), BB); 348 return; 349 } 350 delete BB; 351 } 352 353 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 354 assert(BreakContinueStack.empty() && 355 "mismatched push/pop in break/continue stack!"); 356 assert(LifetimeExtendedCleanupStack.empty() && 357 "mismatched push/pop of cleanups in EHStack!"); 358 assert(DeferredDeactivationCleanupStack.empty() && 359 "mismatched activate/deactivate of cleanups!"); 360 361 if (CGM.shouldEmitConvergenceTokens()) { 362 ConvergenceTokenStack.pop_back(); 363 assert(ConvergenceTokenStack.empty() && 364 "mismatched push/pop in convergence stack!"); 365 } 366 367 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 368 && NumSimpleReturnExprs == NumReturnExprs 369 && ReturnBlock.getBlock()->use_empty(); 370 // Usually the return expression is evaluated before the cleanup 371 // code. If the function contains only a simple return statement, 372 // such as a constant, the location before the cleanup code becomes 373 // the last useful breakpoint in the function, because the simple 374 // return expression will be evaluated after the cleanup code. To be 375 // safe, set the debug location for cleanup code to the location of 376 // the return statement. Otherwise the cleanup code should be at the 377 // end of the function's lexical scope. 378 // 379 // If there are multiple branches to the return block, the branch 380 // instructions will get the location of the return statements and 381 // all will be fine. 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, LastStopPoint); 385 else 386 DI->EmitLocation(Builder, EndLoc); 387 } 388 389 // Pop any cleanups that might have been associated with the 390 // parameters. Do this in whatever block we're currently in; it's 391 // important to do this before we enter the return block or return 392 // edges will be *really* confused. 393 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 394 bool HasOnlyLifetimeMarkers = 395 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 396 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 397 398 std::optional<ApplyDebugLocation> OAL; 399 if (HasCleanups) { 400 // Make sure the line table doesn't jump back into the body for 401 // the ret after it's been at EndLoc. 402 if (CGDebugInfo *DI = getDebugInfo()) { 403 if (OnlySimpleReturnStmts) 404 DI->EmitLocation(Builder, EndLoc); 405 else 406 // We may not have a valid end location. Try to apply it anyway, and 407 // fall back to an artificial location if needed. 408 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 409 } 410 411 PopCleanupBlocks(PrologueCleanupDepth); 412 } 413 414 // Emit function epilog (to return). 415 llvm::DebugLoc Loc = EmitReturnBlock(); 416 417 if (ShouldInstrumentFunction()) { 418 if (CGM.getCodeGenOpts().InstrumentFunctions) 419 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 420 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 421 CurFn->addFnAttr("instrument-function-exit-inlined", 422 "__cyg_profile_func_exit"); 423 } 424 425 // Emit debug descriptor for function end. 426 if (CGDebugInfo *DI = getDebugInfo()) 427 DI->EmitFunctionEnd(Builder, CurFn); 428 429 // Reset the debug location to that of the simple 'return' expression, if any 430 // rather than that of the end of the function's scope '}'. 431 ApplyDebugLocation AL(*this, Loc); 432 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 433 EmitEndEHSpec(CurCodeDecl); 434 435 assert(EHStack.empty() && 436 "did not remove all scopes from cleanup stack!"); 437 438 // If someone did an indirect goto, emit the indirect goto block at the end of 439 // the function. 440 if (IndirectBranch) { 441 EmitBlock(IndirectBranch->getParent()); 442 Builder.ClearInsertionPoint(); 443 } 444 445 // If some of our locals escaped, insert a call to llvm.localescape in the 446 // entry block. 447 if (!EscapedLocals.empty()) { 448 // Invert the map from local to index into a simple vector. There should be 449 // no holes. 450 SmallVector<llvm::Value *, 4> EscapeArgs; 451 EscapeArgs.resize(EscapedLocals.size()); 452 for (auto &Pair : EscapedLocals) 453 EscapeArgs[Pair.second] = Pair.first; 454 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 455 &CGM.getModule(), llvm::Intrinsic::localescape); 456 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 457 } 458 459 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 460 llvm::Instruction *Ptr = AllocaInsertPt; 461 AllocaInsertPt = nullptr; 462 Ptr->eraseFromParent(); 463 464 // PostAllocaInsertPt, if created, was lazily created when it was required, 465 // remove it now since it was just created for our own convenience. 466 if (PostAllocaInsertPt) { 467 llvm::Instruction *PostPtr = PostAllocaInsertPt; 468 PostAllocaInsertPt = nullptr; 469 PostPtr->eraseFromParent(); 470 } 471 472 // If someone took the address of a label but never did an indirect goto, we 473 // made a zero entry PHI node, which is illegal, zap it now. 474 if (IndirectBranch) { 475 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 476 if (PN->getNumIncomingValues() == 0) { 477 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 478 PN->eraseFromParent(); 479 } 480 } 481 482 EmitIfUsed(*this, EHResumeBlock); 483 EmitIfUsed(*this, TerminateLandingPad); 484 EmitIfUsed(*this, TerminateHandler); 485 EmitIfUsed(*this, UnreachableBlock); 486 487 for (const auto &FuncletAndParent : TerminateFunclets) 488 EmitIfUsed(*this, FuncletAndParent.second); 489 490 if (CGM.getCodeGenOpts().EmitDeclMetadata) 491 EmitDeclMetadata(); 492 493 for (const auto &R : DeferredReplacements) { 494 if (llvm::Value *Old = R.first) { 495 Old->replaceAllUsesWith(R.second); 496 cast<llvm::Instruction>(Old)->eraseFromParent(); 497 } 498 } 499 DeferredReplacements.clear(); 500 501 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 502 // PHIs if the current function is a coroutine. We don't do it for all 503 // functions as it may result in slight increase in numbers of instructions 504 // if compiled with no optimizations. We do it for coroutine as the lifetime 505 // of CleanupDestSlot alloca make correct coroutine frame building very 506 // difficult. 507 if (NormalCleanupDest.isValid() && isCoroutine()) { 508 llvm::DominatorTree DT(*CurFn); 509 llvm::PromoteMemToReg( 510 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 511 NormalCleanupDest = Address::invalid(); 512 } 513 514 // Scan function arguments for vector width. 515 for (llvm::Argument &A : CurFn->args()) 516 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 517 LargestVectorWidth = 518 std::max((uint64_t)LargestVectorWidth, 519 VT->getPrimitiveSizeInBits().getKnownMinValue()); 520 521 // Update vector width based on return type. 522 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 523 LargestVectorWidth = 524 std::max((uint64_t)LargestVectorWidth, 525 VT->getPrimitiveSizeInBits().getKnownMinValue()); 526 527 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 528 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 529 530 // Add the min-legal-vector-width attribute. This contains the max width from: 531 // 1. min-vector-width attribute used in the source program. 532 // 2. Any builtins used that have a vector width specified. 533 // 3. Values passed in and out of inline assembly. 534 // 4. Width of vector arguments and return types for this function. 535 // 5. Width of vector arguments and return types for functions called by this 536 // function. 537 if (getContext().getTargetInfo().getTriple().isX86()) 538 CurFn->addFnAttr("min-legal-vector-width", 539 llvm::utostr(LargestVectorWidth)); 540 541 // Add vscale_range attribute if appropriate. 542 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 543 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 544 if (VScaleRange) { 545 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 546 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 547 } 548 549 // If we generated an unreachable return block, delete it now. 550 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 551 Builder.ClearInsertionPoint(); 552 ReturnBlock.getBlock()->eraseFromParent(); 553 } 554 if (ReturnValue.isValid()) { 555 auto *RetAlloca = 556 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 557 if (RetAlloca && RetAlloca->use_empty()) { 558 RetAlloca->eraseFromParent(); 559 ReturnValue = Address::invalid(); 560 } 561 } 562 } 563 564 /// ShouldInstrumentFunction - Return true if the current function should be 565 /// instrumented with __cyg_profile_func_* calls 566 bool CodeGenFunction::ShouldInstrumentFunction() { 567 if (!CGM.getCodeGenOpts().InstrumentFunctions && 568 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 569 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 570 return false; 571 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 572 return false; 573 return true; 574 } 575 576 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 577 if (!CurFuncDecl) 578 return false; 579 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 580 } 581 582 /// ShouldXRayInstrument - Return true if the current function should be 583 /// instrumented with XRay nop sleds. 584 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 585 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 586 } 587 588 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 589 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 590 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 591 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 592 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 593 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 594 XRayInstrKind::Custom); 595 } 596 597 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 598 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 599 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 600 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 601 XRayInstrKind::Typed); 602 } 603 604 llvm::ConstantInt * 605 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 606 // Remove any (C++17) exception specifications, to allow calling e.g. a 607 // noexcept function through a non-noexcept pointer. 608 if (!Ty->isFunctionNoProtoType()) 609 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 610 std::string Mangled; 611 llvm::raw_string_ostream Out(Mangled); 612 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 613 return llvm::ConstantInt::get( 614 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 615 } 616 617 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 618 llvm::Function *Fn) { 619 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 620 return; 621 622 llvm::LLVMContext &Context = getLLVMContext(); 623 624 CGM.GenKernelArgMetadata(Fn, FD, this); 625 626 if (!getLangOpts().OpenCL) 627 return; 628 629 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 630 QualType HintQTy = A->getTypeHint(); 631 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 632 bool IsSignedInteger = 633 HintQTy->isSignedIntegerType() || 634 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 635 llvm::Metadata *AttrMDArgs[] = { 636 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 637 CGM.getTypes().ConvertType(A->getTypeHint()))), 638 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 639 llvm::IntegerType::get(Context, 32), 640 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 641 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 642 } 643 644 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 645 llvm::Metadata *AttrMDArgs[] = { 646 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 647 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 648 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 649 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 650 } 651 652 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 653 llvm::Metadata *AttrMDArgs[] = { 654 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 655 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 656 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 657 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 658 } 659 660 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 661 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 662 llvm::Metadata *AttrMDArgs[] = { 663 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 664 Fn->setMetadata("intel_reqd_sub_group_size", 665 llvm::MDNode::get(Context, AttrMDArgs)); 666 } 667 } 668 669 /// Determine whether the function F ends with a return stmt. 670 static bool endsWithReturn(const Decl* F) { 671 const Stmt *Body = nullptr; 672 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 673 Body = FD->getBody(); 674 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 675 Body = OMD->getBody(); 676 677 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 678 auto LastStmt = CS->body_rbegin(); 679 if (LastStmt != CS->body_rend()) 680 return isa<ReturnStmt>(*LastStmt); 681 } 682 return false; 683 } 684 685 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 686 if (SanOpts.has(SanitizerKind::Thread)) { 687 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 688 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 689 } 690 } 691 692 /// Check if the return value of this function requires sanitization. 693 bool CodeGenFunction::requiresReturnValueCheck() const { 694 return requiresReturnValueNullabilityCheck() || 695 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 696 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 697 } 698 699 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 700 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 701 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 702 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 703 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 704 return false; 705 706 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 707 return false; 708 709 if (MD->getNumParams() == 2) { 710 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 711 if (!PT || !PT->isVoidPointerType() || 712 !PT->getPointeeType().isConstQualified()) 713 return false; 714 } 715 716 return true; 717 } 718 719 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 720 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 721 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 722 } 723 724 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 725 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 726 getTarget().getCXXABI().isMicrosoft() && 727 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 728 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 729 }); 730 } 731 732 /// Return the UBSan prologue signature for \p FD if one is available. 733 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 734 const FunctionDecl *FD) { 735 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 736 if (!MD->isStatic()) 737 return nullptr; 738 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 739 } 740 741 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 742 llvm::Function *Fn, 743 const CGFunctionInfo &FnInfo, 744 const FunctionArgList &Args, 745 SourceLocation Loc, 746 SourceLocation StartLoc) { 747 assert(!CurFn && 748 "Do not use a CodeGenFunction object for more than one function"); 749 750 const Decl *D = GD.getDecl(); 751 752 DidCallStackSave = false; 753 CurCodeDecl = D; 754 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 755 if (FD && FD->usesSEHTry()) 756 CurSEHParent = GD; 757 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 758 FnRetTy = RetTy; 759 CurFn = Fn; 760 CurFnInfo = &FnInfo; 761 assert(CurFn->isDeclaration() && "Function already has body?"); 762 763 // If this function is ignored for any of the enabled sanitizers, 764 // disable the sanitizer for the function. 765 do { 766 #define SANITIZER(NAME, ID) \ 767 if (SanOpts.empty()) \ 768 break; \ 769 if (SanOpts.has(SanitizerKind::ID)) \ 770 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 771 SanOpts.set(SanitizerKind::ID, false); 772 773 #include "clang/Basic/Sanitizers.def" 774 #undef SANITIZER 775 } while (false); 776 777 if (D) { 778 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 779 SanitizerMask no_sanitize_mask; 780 bool NoSanitizeCoverage = false; 781 782 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 783 no_sanitize_mask |= Attr->getMask(); 784 // SanitizeCoverage is not handled by SanOpts. 785 if (Attr->hasCoverage()) 786 NoSanitizeCoverage = true; 787 } 788 789 // Apply the no_sanitize* attributes to SanOpts. 790 SanOpts.Mask &= ~no_sanitize_mask; 791 if (no_sanitize_mask & SanitizerKind::Address) 792 SanOpts.set(SanitizerKind::KernelAddress, false); 793 if (no_sanitize_mask & SanitizerKind::KernelAddress) 794 SanOpts.set(SanitizerKind::Address, false); 795 if (no_sanitize_mask & SanitizerKind::HWAddress) 796 SanOpts.set(SanitizerKind::KernelHWAddress, false); 797 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 798 SanOpts.set(SanitizerKind::HWAddress, false); 799 800 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 801 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 802 803 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 804 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 805 806 // Some passes need the non-negated no_sanitize attribute. Pass them on. 807 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 808 if (no_sanitize_mask & SanitizerKind::Thread) 809 Fn->addFnAttr("no_sanitize_thread"); 810 } 811 } 812 813 if (ShouldSkipSanitizerInstrumentation()) { 814 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 815 } else { 816 // Apply sanitizer attributes to the function. 817 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 818 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 819 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 820 SanitizerKind::KernelHWAddress)) 821 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 822 if (SanOpts.has(SanitizerKind::MemtagStack)) 823 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 824 if (SanOpts.has(SanitizerKind::Thread)) 825 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 826 if (SanOpts.has(SanitizerKind::NumericalStability)) 827 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 828 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 829 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 830 } 831 if (SanOpts.has(SanitizerKind::SafeStack)) 832 Fn->addFnAttr(llvm::Attribute::SafeStack); 833 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 834 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 835 836 // Apply fuzzing attribute to the function. 837 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 838 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 839 840 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 841 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 842 if (SanOpts.has(SanitizerKind::Thread)) { 843 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 844 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 845 if (OMD->getMethodFamily() == OMF_dealloc || 846 OMD->getMethodFamily() == OMF_initialize || 847 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 848 markAsIgnoreThreadCheckingAtRuntime(Fn); 849 } 850 } 851 } 852 853 // Ignore unrelated casts in STL allocate() since the allocator must cast 854 // from void* to T* before object initialization completes. Don't match on the 855 // namespace because not all allocators are in std:: 856 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 857 if (matchesStlAllocatorFn(D, getContext())) 858 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 859 } 860 861 // Ignore null checks in coroutine functions since the coroutines passes 862 // are not aware of how to move the extra UBSan instructions across the split 863 // coroutine boundaries. 864 if (D && SanOpts.has(SanitizerKind::Null)) 865 if (FD && FD->getBody() && 866 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 867 SanOpts.Mask &= ~SanitizerKind::Null; 868 869 // Add pointer authentication attributes. 870 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 871 if (CodeGenOpts.PointerAuth.FunctionPointers) 872 Fn->addFnAttr("ptrauth-calls"); 873 874 // Apply xray attributes to the function (as a string, for now) 875 bool AlwaysXRayAttr = false; 876 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 877 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 878 XRayInstrKind::FunctionEntry) || 879 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 880 XRayInstrKind::FunctionExit)) { 881 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 882 Fn->addFnAttr("function-instrument", "xray-always"); 883 AlwaysXRayAttr = true; 884 } 885 if (XRayAttr->neverXRayInstrument()) 886 Fn->addFnAttr("function-instrument", "xray-never"); 887 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 888 if (ShouldXRayInstrumentFunction()) 889 Fn->addFnAttr("xray-log-args", 890 llvm::utostr(LogArgs->getArgumentCount())); 891 } 892 } else { 893 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 894 Fn->addFnAttr( 895 "xray-instruction-threshold", 896 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 897 } 898 899 if (ShouldXRayInstrumentFunction()) { 900 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 901 Fn->addFnAttr("xray-ignore-loops"); 902 903 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 904 XRayInstrKind::FunctionExit)) 905 Fn->addFnAttr("xray-skip-exit"); 906 907 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 908 XRayInstrKind::FunctionEntry)) 909 Fn->addFnAttr("xray-skip-entry"); 910 911 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 912 if (FuncGroups > 1) { 913 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 914 CurFn->getName().bytes_end()); 915 auto Group = crc32(FuncName) % FuncGroups; 916 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 917 !AlwaysXRayAttr) 918 Fn->addFnAttr("function-instrument", "xray-never"); 919 } 920 } 921 922 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 923 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 924 case ProfileList::Skip: 925 Fn->addFnAttr(llvm::Attribute::SkipProfile); 926 break; 927 case ProfileList::Forbid: 928 Fn->addFnAttr(llvm::Attribute::NoProfile); 929 break; 930 case ProfileList::Allow: 931 break; 932 } 933 } 934 935 unsigned Count, Offset; 936 if (const auto *Attr = 937 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 938 Count = Attr->getCount(); 939 Offset = Attr->getOffset(); 940 } else { 941 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 942 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 943 } 944 if (Count && Offset <= Count) { 945 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 946 if (Offset) 947 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 948 } 949 // Instruct that functions for COFF/CodeView targets should start with a 950 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 951 // backends as they don't need it -- instructions on these architectures are 952 // always atomically patchable at runtime. 953 if (CGM.getCodeGenOpts().HotPatch && 954 getContext().getTargetInfo().getTriple().isX86() && 955 getContext().getTargetInfo().getTriple().getEnvironment() != 956 llvm::Triple::CODE16) 957 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 958 959 // Add no-jump-tables value. 960 if (CGM.getCodeGenOpts().NoUseJumpTables) 961 Fn->addFnAttr("no-jump-tables", "true"); 962 963 // Add no-inline-line-tables value. 964 if (CGM.getCodeGenOpts().NoInlineLineTables) 965 Fn->addFnAttr("no-inline-line-tables"); 966 967 // Add profile-sample-accurate value. 968 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 969 Fn->addFnAttr("profile-sample-accurate"); 970 971 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 972 Fn->addFnAttr("use-sample-profile"); 973 974 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 975 Fn->addFnAttr("cfi-canonical-jump-table"); 976 977 if (D && D->hasAttr<NoProfileFunctionAttr>()) 978 Fn->addFnAttr(llvm::Attribute::NoProfile); 979 980 if (D) { 981 // Function attributes take precedence over command line flags. 982 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 983 switch (A->getThunkType()) { 984 case FunctionReturnThunksAttr::Kind::Keep: 985 break; 986 case FunctionReturnThunksAttr::Kind::Extern: 987 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 988 break; 989 } 990 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 991 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 992 } 993 994 if (FD && (getLangOpts().OpenCL || 995 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 996 // Add metadata for a kernel function. 997 EmitKernelMetadata(FD, Fn); 998 } 999 1000 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1001 Fn->setMetadata("clspv_libclc_builtin", 1002 llvm::MDNode::get(getLLVMContext(), {})); 1003 } 1004 1005 // If we are checking function types, emit a function type signature as 1006 // prologue data. 1007 if (FD && SanOpts.has(SanitizerKind::Function)) { 1008 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1009 llvm::LLVMContext &Ctx = Fn->getContext(); 1010 llvm::MDBuilder MDB(Ctx); 1011 Fn->setMetadata( 1012 llvm::LLVMContext::MD_func_sanitize, 1013 MDB.createRTTIPointerPrologue( 1014 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1015 } 1016 } 1017 1018 // If we're checking nullability, we need to know whether we can check the 1019 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1020 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1021 auto Nullability = FnRetTy->getNullability(); 1022 if (Nullability && *Nullability == NullabilityKind::NonNull && 1023 !FnRetTy->isRecordType()) { 1024 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1025 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1026 RetValNullabilityPrecondition = 1027 llvm::ConstantInt::getTrue(getLLVMContext()); 1028 } 1029 } 1030 1031 // If we're in C++ mode and the function name is "main", it is guaranteed 1032 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1033 // used within a program"). 1034 // 1035 // OpenCL C 2.0 v2.2-11 s6.9.i: 1036 // Recursion is not supported. 1037 // 1038 // SYCL v1.2.1 s3.10: 1039 // kernels cannot include RTTI information, exception classes, 1040 // recursive code, virtual functions or make use of C++ libraries that 1041 // are not compiled for the device. 1042 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1043 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1044 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1045 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1046 1047 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1048 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1049 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1050 Builder.setDefaultConstrainedRounding(RM); 1051 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1052 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1053 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1054 RM != llvm::RoundingMode::NearestTiesToEven))) { 1055 Builder.setIsFPConstrained(true); 1056 Fn->addFnAttr(llvm::Attribute::StrictFP); 1057 } 1058 1059 // If a custom alignment is used, force realigning to this alignment on 1060 // any main function which certainly will need it. 1061 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1062 CGM.getCodeGenOpts().StackAlignment)) 1063 Fn->addFnAttr("stackrealign"); 1064 1065 // "main" doesn't need to zero out call-used registers. 1066 if (FD && FD->isMain()) 1067 Fn->removeFnAttr("zero-call-used-regs"); 1068 1069 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1070 1071 // Create a marker to make it easy to insert allocas into the entryblock 1072 // later. Don't create this with the builder, because we don't want it 1073 // folded. 1074 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1075 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1076 1077 ReturnBlock = getJumpDestInCurrentScope("return"); 1078 1079 Builder.SetInsertPoint(EntryBB); 1080 1081 // If we're checking the return value, allocate space for a pointer to a 1082 // precise source location of the checked return statement. 1083 if (requiresReturnValueCheck()) { 1084 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1085 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1086 ReturnLocation); 1087 } 1088 1089 // Emit subprogram debug descriptor. 1090 if (CGDebugInfo *DI = getDebugInfo()) { 1091 // Reconstruct the type from the argument list so that implicit parameters, 1092 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1093 // convention. 1094 DI->emitFunctionStart(GD, Loc, StartLoc, 1095 DI->getFunctionType(FD, RetTy, Args), CurFn, 1096 CurFuncIsThunk); 1097 } 1098 1099 if (ShouldInstrumentFunction()) { 1100 if (CGM.getCodeGenOpts().InstrumentFunctions) 1101 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1102 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1103 CurFn->addFnAttr("instrument-function-entry-inlined", 1104 "__cyg_profile_func_enter"); 1105 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1106 CurFn->addFnAttr("instrument-function-entry-inlined", 1107 "__cyg_profile_func_enter_bare"); 1108 } 1109 1110 // Since emitting the mcount call here impacts optimizations such as function 1111 // inlining, we just add an attribute to insert a mcount call in backend. 1112 // The attribute "counting-function" is set to mcount function name which is 1113 // architecture dependent. 1114 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1115 // Calls to fentry/mcount should not be generated if function has 1116 // the no_instrument_function attribute. 1117 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1118 if (CGM.getCodeGenOpts().CallFEntry) 1119 Fn->addFnAttr("fentry-call", "true"); 1120 else { 1121 Fn->addFnAttr("instrument-function-entry-inlined", 1122 getTarget().getMCountName()); 1123 } 1124 if (CGM.getCodeGenOpts().MNopMCount) { 1125 if (!CGM.getCodeGenOpts().CallFEntry) 1126 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1127 << "-mnop-mcount" << "-mfentry"; 1128 Fn->addFnAttr("mnop-mcount"); 1129 } 1130 1131 if (CGM.getCodeGenOpts().RecordMCount) { 1132 if (!CGM.getCodeGenOpts().CallFEntry) 1133 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1134 << "-mrecord-mcount" << "-mfentry"; 1135 Fn->addFnAttr("mrecord-mcount"); 1136 } 1137 } 1138 } 1139 1140 if (CGM.getCodeGenOpts().PackedStack) { 1141 if (getContext().getTargetInfo().getTriple().getArch() != 1142 llvm::Triple::systemz) 1143 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1144 << "-mpacked-stack"; 1145 Fn->addFnAttr("packed-stack"); 1146 } 1147 1148 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1149 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1150 Fn->addFnAttr("warn-stack-size", 1151 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1152 1153 if (RetTy->isVoidType()) { 1154 // Void type; nothing to return. 1155 ReturnValue = Address::invalid(); 1156 1157 // Count the implicit return. 1158 if (!endsWithReturn(D)) 1159 ++NumReturnExprs; 1160 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1161 // Indirect return; emit returned value directly into sret slot. 1162 // This reduces code size, and affects correctness in C++. 1163 auto AI = CurFn->arg_begin(); 1164 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1165 ++AI; 1166 ReturnValue = makeNaturalAddressForPointer( 1167 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1168 nullptr, nullptr, KnownNonNull); 1169 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1170 ReturnValuePointer = 1171 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1172 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1173 ReturnValuePointer); 1174 } 1175 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1176 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1177 // Load the sret pointer from the argument struct and return into that. 1178 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1179 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1180 --EI; 1181 llvm::Value *Addr = Builder.CreateStructGEP( 1182 CurFnInfo->getArgStruct(), &*EI, Idx); 1183 llvm::Type *Ty = 1184 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1185 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1186 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1187 ReturnValue = Address(Addr, ConvertType(RetTy), 1188 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1189 } else { 1190 ReturnValue = CreateIRTemp(RetTy, "retval"); 1191 1192 // Tell the epilog emitter to autorelease the result. We do this 1193 // now so that various specialized functions can suppress it 1194 // during their IR-generation. 1195 if (getLangOpts().ObjCAutoRefCount && 1196 !CurFnInfo->isReturnsRetained() && 1197 RetTy->isObjCRetainableType()) 1198 AutoreleaseResult = true; 1199 } 1200 1201 EmitStartEHSpec(CurCodeDecl); 1202 1203 PrologueCleanupDepth = EHStack.stable_begin(); 1204 1205 // Emit OpenMP specific initialization of the device functions. 1206 if (getLangOpts().OpenMP && CurCodeDecl) 1207 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1208 1209 // Handle emitting HLSL entry functions. 1210 if (D && D->hasAttr<HLSLShaderAttr>()) 1211 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1212 1213 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1214 1215 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1216 MD && !MD->isStatic()) { 1217 bool IsInLambda = 1218 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1219 if (MD->isImplicitObjectMemberFunction()) 1220 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1221 if (IsInLambda) { 1222 // We're in a lambda; figure out the captures. 1223 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1224 LambdaThisCaptureField); 1225 if (LambdaThisCaptureField) { 1226 // If the lambda captures the object referred to by '*this' - either by 1227 // value or by reference, make sure CXXThisValue points to the correct 1228 // object. 1229 1230 // Get the lvalue for the field (which is a copy of the enclosing object 1231 // or contains the address of the enclosing object). 1232 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1233 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1234 // If the enclosing object was captured by value, just use its 1235 // address. Sign this pointer. 1236 CXXThisValue = ThisFieldLValue.getPointer(*this); 1237 } else { 1238 // Load the lvalue pointed to by the field, since '*this' was captured 1239 // by reference. 1240 CXXThisValue = 1241 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1242 } 1243 } 1244 for (auto *FD : MD->getParent()->fields()) { 1245 if (FD->hasCapturedVLAType()) { 1246 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1247 SourceLocation()).getScalarVal(); 1248 auto VAT = FD->getCapturedVLAType(); 1249 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1250 } 1251 } 1252 } else if (MD->isImplicitObjectMemberFunction()) { 1253 // Not in a lambda; just use 'this' from the method. 1254 // FIXME: Should we generate a new load for each use of 'this'? The 1255 // fast register allocator would be happier... 1256 CXXThisValue = CXXABIThisValue; 1257 } 1258 1259 // Check the 'this' pointer once per function, if it's available. 1260 if (CXXABIThisValue) { 1261 SanitizerSet SkippedChecks; 1262 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1263 QualType ThisTy = MD->getThisType(); 1264 1265 // If this is the call operator of a lambda with no captures, it 1266 // may have a static invoker function, which may call this operator with 1267 // a null 'this' pointer. 1268 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1269 SkippedChecks.set(SanitizerKind::Null, true); 1270 1271 EmitTypeCheck( 1272 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1273 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1274 } 1275 } 1276 1277 // If any of the arguments have a variably modified type, make sure to 1278 // emit the type size, but only if the function is not naked. Naked functions 1279 // have no prolog to run this evaluation. 1280 if (!FD || !FD->hasAttr<NakedAttr>()) { 1281 for (const VarDecl *VD : Args) { 1282 // Dig out the type as written from ParmVarDecls; it's unclear whether 1283 // the standard (C99 6.9.1p10) requires this, but we're following the 1284 // precedent set by gcc. 1285 QualType Ty; 1286 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1287 Ty = PVD->getOriginalType(); 1288 else 1289 Ty = VD->getType(); 1290 1291 if (Ty->isVariablyModifiedType()) 1292 EmitVariablyModifiedType(Ty); 1293 } 1294 } 1295 // Emit a location at the end of the prologue. 1296 if (CGDebugInfo *DI = getDebugInfo()) 1297 DI->EmitLocation(Builder, StartLoc); 1298 // TODO: Do we need to handle this in two places like we do with 1299 // target-features/target-cpu? 1300 if (CurFuncDecl) 1301 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1302 LargestVectorWidth = VecWidth->getVectorWidth(); 1303 1304 if (CGM.shouldEmitConvergenceTokens()) 1305 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1306 } 1307 1308 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1309 incrementProfileCounter(Body); 1310 maybeCreateMCDCCondBitmap(); 1311 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1312 EmitCompoundStmtWithoutScope(*S); 1313 else 1314 EmitStmt(Body); 1315 } 1316 1317 /// When instrumenting to collect profile data, the counts for some blocks 1318 /// such as switch cases need to not include the fall-through counts, so 1319 /// emit a branch around the instrumentation code. When not instrumenting, 1320 /// this just calls EmitBlock(). 1321 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1322 const Stmt *S) { 1323 llvm::BasicBlock *SkipCountBB = nullptr; 1324 // Do not skip over the instrumentation when single byte coverage mode is 1325 // enabled. 1326 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1327 !llvm::EnableSingleByteCoverage) { 1328 // When instrumenting for profiling, the fallthrough to certain 1329 // statements needs to skip over the instrumentation code so that we 1330 // get an accurate count. 1331 SkipCountBB = createBasicBlock("skipcount"); 1332 EmitBranch(SkipCountBB); 1333 } 1334 EmitBlock(BB); 1335 uint64_t CurrentCount = getCurrentProfileCount(); 1336 incrementProfileCounter(S); 1337 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1338 if (SkipCountBB) 1339 EmitBlock(SkipCountBB); 1340 } 1341 1342 /// Tries to mark the given function nounwind based on the 1343 /// non-existence of any throwing calls within it. We believe this is 1344 /// lightweight enough to do at -O0. 1345 static void TryMarkNoThrow(llvm::Function *F) { 1346 // LLVM treats 'nounwind' on a function as part of the type, so we 1347 // can't do this on functions that can be overwritten. 1348 if (F->isInterposable()) return; 1349 1350 for (llvm::BasicBlock &BB : *F) 1351 for (llvm::Instruction &I : BB) 1352 if (I.mayThrow()) 1353 return; 1354 1355 F->setDoesNotThrow(); 1356 } 1357 1358 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1359 FunctionArgList &Args) { 1360 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1361 QualType ResTy = FD->getReturnType(); 1362 1363 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1364 if (MD && MD->isImplicitObjectMemberFunction()) { 1365 if (CGM.getCXXABI().HasThisReturn(GD)) 1366 ResTy = MD->getThisType(); 1367 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1368 ResTy = CGM.getContext().VoidPtrTy; 1369 CGM.getCXXABI().buildThisParam(*this, Args); 1370 } 1371 1372 // The base version of an inheriting constructor whose constructed base is a 1373 // virtual base is not passed any arguments (because it doesn't actually call 1374 // the inherited constructor). 1375 bool PassedParams = true; 1376 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1377 if (auto Inherited = CD->getInheritedConstructor()) 1378 PassedParams = 1379 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1380 1381 if (PassedParams) { 1382 for (auto *Param : FD->parameters()) { 1383 Args.push_back(Param); 1384 if (!Param->hasAttr<PassObjectSizeAttr>()) 1385 continue; 1386 1387 auto *Implicit = ImplicitParamDecl::Create( 1388 getContext(), Param->getDeclContext(), Param->getLocation(), 1389 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1390 SizeArguments[Param] = Implicit; 1391 Args.push_back(Implicit); 1392 } 1393 } 1394 1395 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1396 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1397 1398 return ResTy; 1399 } 1400 1401 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1402 const CGFunctionInfo &FnInfo) { 1403 assert(Fn && "generating code for null Function"); 1404 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1405 CurGD = GD; 1406 1407 FunctionArgList Args; 1408 QualType ResTy = BuildFunctionArgList(GD, Args); 1409 1410 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1411 1412 if (FD->isInlineBuiltinDeclaration()) { 1413 // When generating code for a builtin with an inline declaration, use a 1414 // mangled name to hold the actual body, while keeping an external 1415 // definition in case the function pointer is referenced somewhere. 1416 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1417 llvm::Module *M = Fn->getParent(); 1418 llvm::Function *Clone = M->getFunction(FDInlineName); 1419 if (!Clone) { 1420 Clone = llvm::Function::Create(Fn->getFunctionType(), 1421 llvm::GlobalValue::InternalLinkage, 1422 Fn->getAddressSpace(), FDInlineName, M); 1423 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1424 } 1425 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1426 Fn = Clone; 1427 } else { 1428 // Detect the unusual situation where an inline version is shadowed by a 1429 // non-inline version. In that case we should pick the external one 1430 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1431 // to detect that situation before we reach codegen, so do some late 1432 // replacement. 1433 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1434 PD = PD->getPreviousDecl()) { 1435 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1436 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1437 llvm::Module *M = Fn->getParent(); 1438 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1439 Clone->replaceAllUsesWith(Fn); 1440 Clone->eraseFromParent(); 1441 } 1442 break; 1443 } 1444 } 1445 } 1446 1447 // Check if we should generate debug info for this function. 1448 if (FD->hasAttr<NoDebugAttr>()) { 1449 // Clear non-distinct debug info that was possibly attached to the function 1450 // due to an earlier declaration without the nodebug attribute 1451 Fn->setSubprogram(nullptr); 1452 // Disable debug info indefinitely for this function 1453 DebugInfo = nullptr; 1454 } 1455 1456 // The function might not have a body if we're generating thunks for a 1457 // function declaration. 1458 SourceRange BodyRange; 1459 if (Stmt *Body = FD->getBody()) 1460 BodyRange = Body->getSourceRange(); 1461 else 1462 BodyRange = FD->getLocation(); 1463 CurEHLocation = BodyRange.getEnd(); 1464 1465 // Use the location of the start of the function to determine where 1466 // the function definition is located. By default use the location 1467 // of the declaration as the location for the subprogram. A function 1468 // may lack a declaration in the source code if it is created by code 1469 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1470 SourceLocation Loc = FD->getLocation(); 1471 1472 // If this is a function specialization then use the pattern body 1473 // as the location for the function. 1474 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1475 if (SpecDecl->hasBody(SpecDecl)) 1476 Loc = SpecDecl->getLocation(); 1477 1478 Stmt *Body = FD->getBody(); 1479 1480 if (Body) { 1481 // Coroutines always emit lifetime markers. 1482 if (isa<CoroutineBodyStmt>(Body)) 1483 ShouldEmitLifetimeMarkers = true; 1484 1485 // Initialize helper which will detect jumps which can cause invalid 1486 // lifetime markers. 1487 if (ShouldEmitLifetimeMarkers) 1488 Bypasses.Init(Body); 1489 } 1490 1491 // Emit the standard function prologue. 1492 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1493 1494 // Save parameters for coroutine function. 1495 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1496 llvm::append_range(FnArgs, FD->parameters()); 1497 1498 // Ensure that the function adheres to the forward progress guarantee, which 1499 // is required by certain optimizations. 1500 // In C++11 and up, the attribute will be removed if the body contains a 1501 // trivial empty loop. 1502 if (checkIfFunctionMustProgress()) 1503 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1504 1505 // Generate the body of the function. 1506 PGO.assignRegionCounters(GD, CurFn); 1507 if (isa<CXXDestructorDecl>(FD)) 1508 EmitDestructorBody(Args); 1509 else if (isa<CXXConstructorDecl>(FD)) 1510 EmitConstructorBody(Args); 1511 else if (getLangOpts().CUDA && 1512 !getLangOpts().CUDAIsDevice && 1513 FD->hasAttr<CUDAGlobalAttr>()) 1514 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1515 else if (isa<CXXMethodDecl>(FD) && 1516 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1517 // The lambda static invoker function is special, because it forwards or 1518 // clones the body of the function call operator (but is actually static). 1519 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1520 } else if (isa<CXXMethodDecl>(FD) && 1521 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1522 !FnInfo.isDelegateCall() && 1523 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1524 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1525 // If emitting a lambda with static invoker on X86 Windows, change 1526 // the call operator body. 1527 // Make sure that this is a call operator with an inalloca arg and check 1528 // for delegate call to make sure this is the original call op and not the 1529 // new forwarding function for the static invoker. 1530 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1531 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1532 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1533 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1534 // Implicit copy-assignment gets the same special treatment as implicit 1535 // copy-constructors. 1536 emitImplicitAssignmentOperatorBody(Args); 1537 } else if (Body) { 1538 EmitFunctionBody(Body); 1539 } else 1540 llvm_unreachable("no definition for emitted function"); 1541 1542 // C++11 [stmt.return]p2: 1543 // Flowing off the end of a function [...] results in undefined behavior in 1544 // a value-returning function. 1545 // C11 6.9.1p12: 1546 // If the '}' that terminates a function is reached, and the value of the 1547 // function call is used by the caller, the behavior is undefined. 1548 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1549 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1550 bool ShouldEmitUnreachable = 1551 CGM.getCodeGenOpts().StrictReturn || 1552 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1553 if (SanOpts.has(SanitizerKind::Return)) { 1554 SanitizerScope SanScope(this); 1555 llvm::Value *IsFalse = Builder.getFalse(); 1556 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1557 SanitizerHandler::MissingReturn, 1558 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1559 } else if (ShouldEmitUnreachable) { 1560 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1561 EmitTrapCall(llvm::Intrinsic::trap); 1562 } 1563 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1564 Builder.CreateUnreachable(); 1565 Builder.ClearInsertionPoint(); 1566 } 1567 } 1568 1569 // Emit the standard function epilogue. 1570 FinishFunction(BodyRange.getEnd()); 1571 1572 // If we haven't marked the function nothrow through other means, do 1573 // a quick pass now to see if we can. 1574 if (!CurFn->doesNotThrow()) 1575 TryMarkNoThrow(CurFn); 1576 } 1577 1578 /// ContainsLabel - Return true if the statement contains a label in it. If 1579 /// this statement is not executed normally, it not containing a label means 1580 /// that we can just remove the code. 1581 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1582 // Null statement, not a label! 1583 if (!S) return false; 1584 1585 // If this is a label, we have to emit the code, consider something like: 1586 // if (0) { ... foo: bar(); } goto foo; 1587 // 1588 // TODO: If anyone cared, we could track __label__'s, since we know that you 1589 // can't jump to one from outside their declared region. 1590 if (isa<LabelStmt>(S)) 1591 return true; 1592 1593 // If this is a case/default statement, and we haven't seen a switch, we have 1594 // to emit the code. 1595 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1596 return true; 1597 1598 // If this is a switch statement, we want to ignore cases below it. 1599 if (isa<SwitchStmt>(S)) 1600 IgnoreCaseStmts = true; 1601 1602 // Scan subexpressions for verboten labels. 1603 for (const Stmt *SubStmt : S->children()) 1604 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1605 return true; 1606 1607 return false; 1608 } 1609 1610 /// containsBreak - Return true if the statement contains a break out of it. 1611 /// If the statement (recursively) contains a switch or loop with a break 1612 /// inside of it, this is fine. 1613 bool CodeGenFunction::containsBreak(const Stmt *S) { 1614 // Null statement, not a label! 1615 if (!S) return false; 1616 1617 // If this is a switch or loop that defines its own break scope, then we can 1618 // include it and anything inside of it. 1619 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1620 isa<ForStmt>(S)) 1621 return false; 1622 1623 if (isa<BreakStmt>(S)) 1624 return true; 1625 1626 // Scan subexpressions for verboten breaks. 1627 for (const Stmt *SubStmt : S->children()) 1628 if (containsBreak(SubStmt)) 1629 return true; 1630 1631 return false; 1632 } 1633 1634 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1635 if (!S) return false; 1636 1637 // Some statement kinds add a scope and thus never add a decl to the current 1638 // scope. Note, this list is longer than the list of statements that might 1639 // have an unscoped decl nested within them, but this way is conservatively 1640 // correct even if more statement kinds are added. 1641 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1642 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1643 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1644 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1645 return false; 1646 1647 if (isa<DeclStmt>(S)) 1648 return true; 1649 1650 for (const Stmt *SubStmt : S->children()) 1651 if (mightAddDeclToScope(SubStmt)) 1652 return true; 1653 1654 return false; 1655 } 1656 1657 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1658 /// to a constant, or if it does but contains a label, return false. If it 1659 /// constant folds return true and set the boolean result in Result. 1660 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1661 bool &ResultBool, 1662 bool AllowLabels) { 1663 // If MC/DC is enabled, disable folding so that we can instrument all 1664 // conditions to yield complete test vectors. We still keep track of 1665 // folded conditions during region mapping and visualization. 1666 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1667 CGM.getCodeGenOpts().MCDCCoverage) 1668 return false; 1669 1670 llvm::APSInt ResultInt; 1671 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1672 return false; 1673 1674 ResultBool = ResultInt.getBoolValue(); 1675 return true; 1676 } 1677 1678 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1679 /// to a constant, or if it does but contains a label, return false. If it 1680 /// constant folds return true and set the folded value. 1681 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1682 llvm::APSInt &ResultInt, 1683 bool AllowLabels) { 1684 // FIXME: Rename and handle conversion of other evaluatable things 1685 // to bool. 1686 Expr::EvalResult Result; 1687 if (!Cond->EvaluateAsInt(Result, getContext())) 1688 return false; // Not foldable, not integer or not fully evaluatable. 1689 1690 llvm::APSInt Int = Result.Val.getInt(); 1691 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1692 return false; // Contains a label. 1693 1694 ResultInt = Int; 1695 return true; 1696 } 1697 1698 /// Strip parentheses and simplistic logical-NOT operators. 1699 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1700 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1701 if (Op->getOpcode() != UO_LNot) 1702 break; 1703 C = Op->getSubExpr(); 1704 } 1705 return C->IgnoreParens(); 1706 } 1707 1708 /// Determine whether the given condition is an instrumentable condition 1709 /// (i.e. no "&&" or "||"). 1710 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1711 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1712 return (!BOp || !BOp->isLogicalOp()); 1713 } 1714 1715 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1716 /// increments a profile counter based on the semantics of the given logical 1717 /// operator opcode. This is used to instrument branch condition coverage for 1718 /// logical operators. 1719 void CodeGenFunction::EmitBranchToCounterBlock( 1720 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1721 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1722 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1723 // If not instrumenting, just emit a branch. 1724 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1725 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1726 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1727 1728 llvm::BasicBlock *ThenBlock = nullptr; 1729 llvm::BasicBlock *ElseBlock = nullptr; 1730 llvm::BasicBlock *NextBlock = nullptr; 1731 1732 // Create the block we'll use to increment the appropriate counter. 1733 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1734 1735 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1736 // means we need to evaluate the condition and increment the counter on TRUE: 1737 // 1738 // if (Cond) 1739 // goto CounterIncrBlock; 1740 // else 1741 // goto FalseBlock; 1742 // 1743 // CounterIncrBlock: 1744 // Counter++; 1745 // goto TrueBlock; 1746 1747 if (LOp == BO_LAnd) { 1748 ThenBlock = CounterIncrBlock; 1749 ElseBlock = FalseBlock; 1750 NextBlock = TrueBlock; 1751 } 1752 1753 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1754 // we need to evaluate the condition and increment the counter on FALSE: 1755 // 1756 // if (Cond) 1757 // goto TrueBlock; 1758 // else 1759 // goto CounterIncrBlock; 1760 // 1761 // CounterIncrBlock: 1762 // Counter++; 1763 // goto FalseBlock; 1764 1765 else if (LOp == BO_LOr) { 1766 ThenBlock = TrueBlock; 1767 ElseBlock = CounterIncrBlock; 1768 NextBlock = FalseBlock; 1769 } else { 1770 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1771 } 1772 1773 // Emit Branch based on condition. 1774 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1775 1776 // Emit the block containing the counter increment(s). 1777 EmitBlock(CounterIncrBlock); 1778 1779 // Increment corresponding counter; if index not provided, use Cond as index. 1780 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1781 1782 // Go to the next block. 1783 EmitBranch(NextBlock); 1784 } 1785 1786 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1787 /// statement) to the specified blocks. Based on the condition, this might try 1788 /// to simplify the codegen of the conditional based on the branch. 1789 /// \param LH The value of the likelihood attribute on the True branch. 1790 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1791 /// ConditionalOperator (ternary) through a recursive call for the operator's 1792 /// LHS and RHS nodes. 1793 void CodeGenFunction::EmitBranchOnBoolExpr( 1794 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1795 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1796 Cond = Cond->IgnoreParens(); 1797 1798 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1799 // Handle X && Y in a condition. 1800 if (CondBOp->getOpcode() == BO_LAnd) { 1801 MCDCLogOpStack.push_back(CondBOp); 1802 1803 // If we have "1 && X", simplify the code. "0 && X" would have constant 1804 // folded if the case was simple enough. 1805 bool ConstantBool = false; 1806 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1807 ConstantBool) { 1808 // br(1 && X) -> br(X). 1809 incrementProfileCounter(CondBOp); 1810 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1811 FalseBlock, TrueCount, LH); 1812 MCDCLogOpStack.pop_back(); 1813 return; 1814 } 1815 1816 // If we have "X && 1", simplify the code to use an uncond branch. 1817 // "X && 0" would have been constant folded to 0. 1818 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1819 ConstantBool) { 1820 // br(X && 1) -> br(X). 1821 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1822 FalseBlock, TrueCount, LH, CondBOp); 1823 MCDCLogOpStack.pop_back(); 1824 return; 1825 } 1826 1827 // Emit the LHS as a conditional. If the LHS conditional is false, we 1828 // want to jump to the FalseBlock. 1829 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1830 // The counter tells us how often we evaluate RHS, and all of TrueCount 1831 // can be propagated to that branch. 1832 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1833 1834 ConditionalEvaluation eval(*this); 1835 { 1836 ApplyDebugLocation DL(*this, Cond); 1837 // Propagate the likelihood attribute like __builtin_expect 1838 // __builtin_expect(X && Y, 1) -> X and Y are likely 1839 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1840 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1841 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1842 EmitBlock(LHSTrue); 1843 } 1844 1845 incrementProfileCounter(CondBOp); 1846 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1847 1848 // Any temporaries created here are conditional. 1849 eval.begin(*this); 1850 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1851 FalseBlock, TrueCount, LH); 1852 eval.end(*this); 1853 MCDCLogOpStack.pop_back(); 1854 return; 1855 } 1856 1857 if (CondBOp->getOpcode() == BO_LOr) { 1858 MCDCLogOpStack.push_back(CondBOp); 1859 1860 // If we have "0 || X", simplify the code. "1 || X" would have constant 1861 // folded if the case was simple enough. 1862 bool ConstantBool = false; 1863 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1864 !ConstantBool) { 1865 // br(0 || X) -> br(X). 1866 incrementProfileCounter(CondBOp); 1867 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1868 FalseBlock, TrueCount, LH); 1869 MCDCLogOpStack.pop_back(); 1870 return; 1871 } 1872 1873 // If we have "X || 0", simplify the code to use an uncond branch. 1874 // "X || 1" would have been constant folded to 1. 1875 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1876 !ConstantBool) { 1877 // br(X || 0) -> br(X). 1878 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1879 FalseBlock, TrueCount, LH, CondBOp); 1880 MCDCLogOpStack.pop_back(); 1881 return; 1882 } 1883 // Emit the LHS as a conditional. If the LHS conditional is true, we 1884 // want to jump to the TrueBlock. 1885 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1886 // We have the count for entry to the RHS and for the whole expression 1887 // being true, so we can divy up True count between the short circuit and 1888 // the RHS. 1889 uint64_t LHSCount = 1890 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1891 uint64_t RHSCount = TrueCount - LHSCount; 1892 1893 ConditionalEvaluation eval(*this); 1894 { 1895 // Propagate the likelihood attribute like __builtin_expect 1896 // __builtin_expect(X || Y, 1) -> only Y is likely 1897 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1898 ApplyDebugLocation DL(*this, Cond); 1899 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1900 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1901 EmitBlock(LHSFalse); 1902 } 1903 1904 incrementProfileCounter(CondBOp); 1905 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1906 1907 // Any temporaries created here are conditional. 1908 eval.begin(*this); 1909 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1910 RHSCount, LH); 1911 1912 eval.end(*this); 1913 MCDCLogOpStack.pop_back(); 1914 return; 1915 } 1916 } 1917 1918 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1919 // br(!x, t, f) -> br(x, f, t) 1920 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1921 // LNot is taken as part of the condition for simplicity, and changing its 1922 // sense negatively impacts test vector tracking. 1923 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1924 CGM.getCodeGenOpts().MCDCCoverage && 1925 isInstrumentedCondition(Cond); 1926 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1927 // Negate the count. 1928 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1929 // The values of the enum are chosen to make this negation possible. 1930 LH = static_cast<Stmt::Likelihood>(-LH); 1931 // Negate the condition and swap the destination blocks. 1932 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1933 FalseCount, LH); 1934 } 1935 } 1936 1937 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1938 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1939 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1940 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1941 1942 // The ConditionalOperator itself has no likelihood information for its 1943 // true and false branches. This matches the behavior of __builtin_expect. 1944 ConditionalEvaluation cond(*this); 1945 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1946 getProfileCount(CondOp), Stmt::LH_None); 1947 1948 // When computing PGO branch weights, we only know the overall count for 1949 // the true block. This code is essentially doing tail duplication of the 1950 // naive code-gen, introducing new edges for which counts are not 1951 // available. Divide the counts proportionally between the LHS and RHS of 1952 // the conditional operator. 1953 uint64_t LHSScaledTrueCount = 0; 1954 if (TrueCount) { 1955 double LHSRatio = 1956 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1957 LHSScaledTrueCount = TrueCount * LHSRatio; 1958 } 1959 1960 cond.begin(*this); 1961 EmitBlock(LHSBlock); 1962 incrementProfileCounter(CondOp); 1963 { 1964 ApplyDebugLocation DL(*this, Cond); 1965 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1966 LHSScaledTrueCount, LH, CondOp); 1967 } 1968 cond.end(*this); 1969 1970 cond.begin(*this); 1971 EmitBlock(RHSBlock); 1972 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1973 TrueCount - LHSScaledTrueCount, LH, CondOp); 1974 cond.end(*this); 1975 1976 return; 1977 } 1978 1979 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1980 // Conditional operator handling can give us a throw expression as a 1981 // condition for a case like: 1982 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1983 // Fold this to: 1984 // br(c, throw x, br(y, t, f)) 1985 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1986 return; 1987 } 1988 1989 // Emit the code with the fully general case. 1990 llvm::Value *CondV; 1991 { 1992 ApplyDebugLocation DL(*this, Cond); 1993 CondV = EvaluateExprAsBool(Cond); 1994 } 1995 1996 // If not at the top of the logical operator nest, update MCDC temp with the 1997 // boolean result of the evaluated condition. 1998 if (!MCDCLogOpStack.empty()) { 1999 const Expr *MCDCBaseExpr = Cond; 2000 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2001 // expression, MC/DC tracks the result of the ternary, and this is tied to 2002 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2003 // this is the case, the ConditionalOperator expression is passed through 2004 // the ConditionalOp parameter and then used as the MCDC base expression. 2005 if (ConditionalOp) 2006 MCDCBaseExpr = ConditionalOp; 2007 2008 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2009 } 2010 2011 llvm::MDNode *Weights = nullptr; 2012 llvm::MDNode *Unpredictable = nullptr; 2013 2014 // If the branch has a condition wrapped by __builtin_unpredictable, 2015 // create metadata that specifies that the branch is unpredictable. 2016 // Don't bother if not optimizing because that metadata would not be used. 2017 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2018 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2019 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2020 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2021 llvm::MDBuilder MDHelper(getLLVMContext()); 2022 Unpredictable = MDHelper.createUnpredictable(); 2023 } 2024 } 2025 2026 // If there is a Likelihood knowledge for the cond, lower it. 2027 // Note that if not optimizing this won't emit anything. 2028 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2029 if (CondV != NewCondV) 2030 CondV = NewCondV; 2031 else { 2032 // Otherwise, lower profile counts. Note that we do this even at -O0. 2033 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2034 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2035 } 2036 2037 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2038 } 2039 2040 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2041 /// specified stmt yet. 2042 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2043 CGM.ErrorUnsupported(S, Type); 2044 } 2045 2046 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2047 /// variable-length array whose elements have a non-zero bit-pattern. 2048 /// 2049 /// \param baseType the inner-most element type of the array 2050 /// \param src - a char* pointing to the bit-pattern for a single 2051 /// base element of the array 2052 /// \param sizeInChars - the total size of the VLA, in chars 2053 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2054 Address dest, Address src, 2055 llvm::Value *sizeInChars) { 2056 CGBuilderTy &Builder = CGF.Builder; 2057 2058 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2059 llvm::Value *baseSizeInChars 2060 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2061 2062 Address begin = dest.withElementType(CGF.Int8Ty); 2063 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2064 begin.emitRawPointer(CGF), 2065 sizeInChars, "vla.end"); 2066 2067 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2068 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2069 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2070 2071 // Make a loop over the VLA. C99 guarantees that the VLA element 2072 // count must be nonzero. 2073 CGF.EmitBlock(loopBB); 2074 2075 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2076 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2077 2078 CharUnits curAlign = 2079 dest.getAlignment().alignmentOfArrayElement(baseSize); 2080 2081 // memcpy the individual element bit-pattern. 2082 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2083 /*volatile*/ false); 2084 2085 // Go to the next element. 2086 llvm::Value *next = 2087 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2088 2089 // Leave if that's the end of the VLA. 2090 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2091 Builder.CreateCondBr(done, contBB, loopBB); 2092 cur->addIncoming(next, loopBB); 2093 2094 CGF.EmitBlock(contBB); 2095 } 2096 2097 void 2098 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2099 // Ignore empty classes in C++. 2100 if (getLangOpts().CPlusPlus) { 2101 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2102 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2103 return; 2104 } 2105 } 2106 2107 if (DestPtr.getElementType() != Int8Ty) 2108 DestPtr = DestPtr.withElementType(Int8Ty); 2109 2110 // Get size and alignment info for this aggregate. 2111 CharUnits size = getContext().getTypeSizeInChars(Ty); 2112 2113 llvm::Value *SizeVal; 2114 const VariableArrayType *vla; 2115 2116 // Don't bother emitting a zero-byte memset. 2117 if (size.isZero()) { 2118 // But note that getTypeInfo returns 0 for a VLA. 2119 if (const VariableArrayType *vlaType = 2120 dyn_cast_or_null<VariableArrayType>( 2121 getContext().getAsArrayType(Ty))) { 2122 auto VlaSize = getVLASize(vlaType); 2123 SizeVal = VlaSize.NumElts; 2124 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2125 if (!eltSize.isOne()) 2126 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2127 vla = vlaType; 2128 } else { 2129 return; 2130 } 2131 } else { 2132 SizeVal = CGM.getSize(size); 2133 vla = nullptr; 2134 } 2135 2136 // If the type contains a pointer to data member we can't memset it to zero. 2137 // Instead, create a null constant and copy it to the destination. 2138 // TODO: there are other patterns besides zero that we can usefully memset, 2139 // like -1, which happens to be the pattern used by member-pointers. 2140 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2141 // For a VLA, emit a single element, then splat that over the VLA. 2142 if (vla) Ty = getContext().getBaseElementType(vla); 2143 2144 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2145 2146 llvm::GlobalVariable *NullVariable = 2147 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2148 /*isConstant=*/true, 2149 llvm::GlobalVariable::PrivateLinkage, 2150 NullConstant, Twine()); 2151 CharUnits NullAlign = DestPtr.getAlignment(); 2152 NullVariable->setAlignment(NullAlign.getAsAlign()); 2153 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2154 2155 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2156 2157 // Get and call the appropriate llvm.memcpy overload. 2158 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2159 return; 2160 } 2161 2162 // Otherwise, just memset the whole thing to zero. This is legal 2163 // because in LLVM, all default initializers (other than the ones we just 2164 // handled above) are guaranteed to have a bit pattern of all zeros. 2165 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2166 } 2167 2168 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2169 // Make sure that there is a block for the indirect goto. 2170 if (!IndirectBranch) 2171 GetIndirectGotoBlock(); 2172 2173 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2174 2175 // Make sure the indirect branch includes all of the address-taken blocks. 2176 IndirectBranch->addDestination(BB); 2177 return llvm::BlockAddress::get(CurFn, BB); 2178 } 2179 2180 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2181 // If we already made the indirect branch for indirect goto, return its block. 2182 if (IndirectBranch) return IndirectBranch->getParent(); 2183 2184 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2185 2186 // Create the PHI node that indirect gotos will add entries to. 2187 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2188 "indirect.goto.dest"); 2189 2190 // Create the indirect branch instruction. 2191 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2192 return IndirectBranch->getParent(); 2193 } 2194 2195 /// Computes the length of an array in elements, as well as the base 2196 /// element type and a properly-typed first element pointer. 2197 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2198 QualType &baseType, 2199 Address &addr) { 2200 const ArrayType *arrayType = origArrayType; 2201 2202 // If it's a VLA, we have to load the stored size. Note that 2203 // this is the size of the VLA in bytes, not its size in elements. 2204 llvm::Value *numVLAElements = nullptr; 2205 if (isa<VariableArrayType>(arrayType)) { 2206 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2207 2208 // Walk into all VLAs. This doesn't require changes to addr, 2209 // which has type T* where T is the first non-VLA element type. 2210 do { 2211 QualType elementType = arrayType->getElementType(); 2212 arrayType = getContext().getAsArrayType(elementType); 2213 2214 // If we only have VLA components, 'addr' requires no adjustment. 2215 if (!arrayType) { 2216 baseType = elementType; 2217 return numVLAElements; 2218 } 2219 } while (isa<VariableArrayType>(arrayType)); 2220 2221 // We get out here only if we find a constant array type 2222 // inside the VLA. 2223 } 2224 2225 // We have some number of constant-length arrays, so addr should 2226 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2227 // down to the first element of addr. 2228 SmallVector<llvm::Value*, 8> gepIndices; 2229 2230 // GEP down to the array type. 2231 llvm::ConstantInt *zero = Builder.getInt32(0); 2232 gepIndices.push_back(zero); 2233 2234 uint64_t countFromCLAs = 1; 2235 QualType eltType; 2236 2237 llvm::ArrayType *llvmArrayType = 2238 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2239 while (llvmArrayType) { 2240 assert(isa<ConstantArrayType>(arrayType)); 2241 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2242 llvmArrayType->getNumElements()); 2243 2244 gepIndices.push_back(zero); 2245 countFromCLAs *= llvmArrayType->getNumElements(); 2246 eltType = arrayType->getElementType(); 2247 2248 llvmArrayType = 2249 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2250 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2251 assert((!llvmArrayType || arrayType) && 2252 "LLVM and Clang types are out-of-synch"); 2253 } 2254 2255 if (arrayType) { 2256 // From this point onwards, the Clang array type has been emitted 2257 // as some other type (probably a packed struct). Compute the array 2258 // size, and just emit the 'begin' expression as a bitcast. 2259 while (arrayType) { 2260 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2261 eltType = arrayType->getElementType(); 2262 arrayType = getContext().getAsArrayType(eltType); 2263 } 2264 2265 llvm::Type *baseType = ConvertType(eltType); 2266 addr = addr.withElementType(baseType); 2267 } else { 2268 // Create the actual GEP. 2269 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2270 addr.emitRawPointer(*this), 2271 gepIndices, "array.begin"), 2272 ConvertTypeForMem(eltType), addr.getAlignment()); 2273 } 2274 2275 baseType = eltType; 2276 2277 llvm::Value *numElements 2278 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2279 2280 // If we had any VLA dimensions, factor them in. 2281 if (numVLAElements) 2282 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2283 2284 return numElements; 2285 } 2286 2287 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2288 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2289 assert(vla && "type was not a variable array type!"); 2290 return getVLASize(vla); 2291 } 2292 2293 CodeGenFunction::VlaSizePair 2294 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2295 // The number of elements so far; always size_t. 2296 llvm::Value *numElements = nullptr; 2297 2298 QualType elementType; 2299 do { 2300 elementType = type->getElementType(); 2301 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2302 assert(vlaSize && "no size for VLA!"); 2303 assert(vlaSize->getType() == SizeTy); 2304 2305 if (!numElements) { 2306 numElements = vlaSize; 2307 } else { 2308 // It's undefined behavior if this wraps around, so mark it that way. 2309 // FIXME: Teach -fsanitize=undefined to trap this. 2310 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2311 } 2312 } while ((type = getContext().getAsVariableArrayType(elementType))); 2313 2314 return { numElements, elementType }; 2315 } 2316 2317 CodeGenFunction::VlaSizePair 2318 CodeGenFunction::getVLAElements1D(QualType type) { 2319 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2320 assert(vla && "type was not a variable array type!"); 2321 return getVLAElements1D(vla); 2322 } 2323 2324 CodeGenFunction::VlaSizePair 2325 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2326 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2327 assert(VlaSize && "no size for VLA!"); 2328 assert(VlaSize->getType() == SizeTy); 2329 return { VlaSize, Vla->getElementType() }; 2330 } 2331 2332 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2333 assert(type->isVariablyModifiedType() && 2334 "Must pass variably modified type to EmitVLASizes!"); 2335 2336 EnsureInsertPoint(); 2337 2338 // We're going to walk down into the type and look for VLA 2339 // expressions. 2340 do { 2341 assert(type->isVariablyModifiedType()); 2342 2343 const Type *ty = type.getTypePtr(); 2344 switch (ty->getTypeClass()) { 2345 2346 #define TYPE(Class, Base) 2347 #define ABSTRACT_TYPE(Class, Base) 2348 #define NON_CANONICAL_TYPE(Class, Base) 2349 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2350 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2351 #include "clang/AST/TypeNodes.inc" 2352 llvm_unreachable("unexpected dependent type!"); 2353 2354 // These types are never variably-modified. 2355 case Type::Builtin: 2356 case Type::Complex: 2357 case Type::Vector: 2358 case Type::ExtVector: 2359 case Type::ConstantMatrix: 2360 case Type::Record: 2361 case Type::Enum: 2362 case Type::Using: 2363 case Type::TemplateSpecialization: 2364 case Type::ObjCTypeParam: 2365 case Type::ObjCObject: 2366 case Type::ObjCInterface: 2367 case Type::ObjCObjectPointer: 2368 case Type::BitInt: 2369 llvm_unreachable("type class is never variably-modified!"); 2370 2371 case Type::Elaborated: 2372 type = cast<ElaboratedType>(ty)->getNamedType(); 2373 break; 2374 2375 case Type::Adjusted: 2376 type = cast<AdjustedType>(ty)->getAdjustedType(); 2377 break; 2378 2379 case Type::Decayed: 2380 type = cast<DecayedType>(ty)->getPointeeType(); 2381 break; 2382 2383 case Type::Pointer: 2384 type = cast<PointerType>(ty)->getPointeeType(); 2385 break; 2386 2387 case Type::BlockPointer: 2388 type = cast<BlockPointerType>(ty)->getPointeeType(); 2389 break; 2390 2391 case Type::LValueReference: 2392 case Type::RValueReference: 2393 type = cast<ReferenceType>(ty)->getPointeeType(); 2394 break; 2395 2396 case Type::MemberPointer: 2397 type = cast<MemberPointerType>(ty)->getPointeeType(); 2398 break; 2399 2400 case Type::ArrayParameter: 2401 case Type::ConstantArray: 2402 case Type::IncompleteArray: 2403 // Losing element qualification here is fine. 2404 type = cast<ArrayType>(ty)->getElementType(); 2405 break; 2406 2407 case Type::VariableArray: { 2408 // Losing element qualification here is fine. 2409 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2410 2411 // Unknown size indication requires no size computation. 2412 // Otherwise, evaluate and record it. 2413 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2414 // It's possible that we might have emitted this already, 2415 // e.g. with a typedef and a pointer to it. 2416 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2417 if (!entry) { 2418 llvm::Value *size = EmitScalarExpr(sizeExpr); 2419 2420 // C11 6.7.6.2p5: 2421 // If the size is an expression that is not an integer constant 2422 // expression [...] each time it is evaluated it shall have a value 2423 // greater than zero. 2424 if (SanOpts.has(SanitizerKind::VLABound)) { 2425 SanitizerScope SanScope(this); 2426 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2427 clang::QualType SEType = sizeExpr->getType(); 2428 llvm::Value *CheckCondition = 2429 SEType->isSignedIntegerType() 2430 ? Builder.CreateICmpSGT(size, Zero) 2431 : Builder.CreateICmpUGT(size, Zero); 2432 llvm::Constant *StaticArgs[] = { 2433 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2434 EmitCheckTypeDescriptor(SEType)}; 2435 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2436 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2437 } 2438 2439 // Always zexting here would be wrong if it weren't 2440 // undefined behavior to have a negative bound. 2441 // FIXME: What about when size's type is larger than size_t? 2442 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2443 } 2444 } 2445 type = vat->getElementType(); 2446 break; 2447 } 2448 2449 case Type::FunctionProto: 2450 case Type::FunctionNoProto: 2451 type = cast<FunctionType>(ty)->getReturnType(); 2452 break; 2453 2454 case Type::Paren: 2455 case Type::TypeOf: 2456 case Type::UnaryTransform: 2457 case Type::Attributed: 2458 case Type::BTFTagAttributed: 2459 case Type::SubstTemplateTypeParm: 2460 case Type::MacroQualified: 2461 case Type::CountAttributed: 2462 // Keep walking after single level desugaring. 2463 type = type.getSingleStepDesugaredType(getContext()); 2464 break; 2465 2466 case Type::Typedef: 2467 case Type::Decltype: 2468 case Type::Auto: 2469 case Type::DeducedTemplateSpecialization: 2470 case Type::PackIndexing: 2471 // Stop walking: nothing to do. 2472 return; 2473 2474 case Type::TypeOfExpr: 2475 // Stop walking: emit typeof expression. 2476 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2477 return; 2478 2479 case Type::Atomic: 2480 type = cast<AtomicType>(ty)->getValueType(); 2481 break; 2482 2483 case Type::Pipe: 2484 type = cast<PipeType>(ty)->getElementType(); 2485 break; 2486 } 2487 } while (type->isVariablyModifiedType()); 2488 } 2489 2490 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2491 if (getContext().getBuiltinVaListType()->isArrayType()) 2492 return EmitPointerWithAlignment(E); 2493 return EmitLValue(E).getAddress(); 2494 } 2495 2496 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2497 return EmitLValue(E).getAddress(); 2498 } 2499 2500 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2501 const APValue &Init) { 2502 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2503 if (CGDebugInfo *Dbg = getDebugInfo()) 2504 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2505 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2506 } 2507 2508 CodeGenFunction::PeepholeProtection 2509 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2510 // At the moment, the only aggressive peephole we do in IR gen 2511 // is trunc(zext) folding, but if we add more, we can easily 2512 // extend this protection. 2513 2514 if (!rvalue.isScalar()) return PeepholeProtection(); 2515 llvm::Value *value = rvalue.getScalarVal(); 2516 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2517 2518 // Just make an extra bitcast. 2519 assert(HaveInsertPoint()); 2520 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2521 Builder.GetInsertBlock()); 2522 2523 PeepholeProtection protection; 2524 protection.Inst = inst; 2525 return protection; 2526 } 2527 2528 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2529 if (!protection.Inst) return; 2530 2531 // In theory, we could try to duplicate the peepholes now, but whatever. 2532 protection.Inst->eraseFromParent(); 2533 } 2534 2535 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2536 QualType Ty, SourceLocation Loc, 2537 SourceLocation AssumptionLoc, 2538 llvm::Value *Alignment, 2539 llvm::Value *OffsetValue) { 2540 if (Alignment->getType() != IntPtrTy) 2541 Alignment = 2542 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2543 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2544 OffsetValue = 2545 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2546 llvm::Value *TheCheck = nullptr; 2547 if (SanOpts.has(SanitizerKind::Alignment)) { 2548 llvm::Value *PtrIntValue = 2549 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2550 2551 if (OffsetValue) { 2552 bool IsOffsetZero = false; 2553 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2554 IsOffsetZero = CI->isZero(); 2555 2556 if (!IsOffsetZero) 2557 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2558 } 2559 2560 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2561 llvm::Value *Mask = 2562 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2563 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2564 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2565 } 2566 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2567 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2568 2569 if (!SanOpts.has(SanitizerKind::Alignment)) 2570 return; 2571 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2572 OffsetValue, TheCheck, Assumption); 2573 } 2574 2575 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2576 const Expr *E, 2577 SourceLocation AssumptionLoc, 2578 llvm::Value *Alignment, 2579 llvm::Value *OffsetValue) { 2580 QualType Ty = E->getType(); 2581 SourceLocation Loc = E->getExprLoc(); 2582 2583 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2584 OffsetValue); 2585 } 2586 2587 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2588 llvm::Value *AnnotatedVal, 2589 StringRef AnnotationStr, 2590 SourceLocation Location, 2591 const AnnotateAttr *Attr) { 2592 SmallVector<llvm::Value *, 5> Args = { 2593 AnnotatedVal, 2594 CGM.EmitAnnotationString(AnnotationStr), 2595 CGM.EmitAnnotationUnit(Location), 2596 CGM.EmitAnnotationLineNo(Location), 2597 }; 2598 if (Attr) 2599 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2600 return Builder.CreateCall(AnnotationFn, Args); 2601 } 2602 2603 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2604 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2605 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2606 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2607 {V->getType(), CGM.ConstGlobalsPtrTy}), 2608 V, I->getAnnotation(), D->getLocation(), I); 2609 } 2610 2611 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2612 Address Addr) { 2613 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2614 llvm::Value *V = Addr.emitRawPointer(*this); 2615 llvm::Type *VTy = V->getType(); 2616 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2617 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2618 llvm::PointerType *IntrinTy = 2619 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2620 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2621 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2622 2623 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2624 // FIXME Always emit the cast inst so we can differentiate between 2625 // annotation on the first field of a struct and annotation on the struct 2626 // itself. 2627 if (VTy != IntrinTy) 2628 V = Builder.CreateBitCast(V, IntrinTy); 2629 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2630 V = Builder.CreateBitCast(V, VTy); 2631 } 2632 2633 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2634 } 2635 2636 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2637 2638 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2639 : CGF(CGF) { 2640 assert(!CGF->IsSanitizerScope); 2641 CGF->IsSanitizerScope = true; 2642 } 2643 2644 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2645 CGF->IsSanitizerScope = false; 2646 } 2647 2648 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2649 const llvm::Twine &Name, 2650 llvm::BasicBlock::iterator InsertPt) const { 2651 LoopStack.InsertHelper(I); 2652 if (IsSanitizerScope) 2653 I->setNoSanitizeMetadata(); 2654 } 2655 2656 void CGBuilderInserter::InsertHelper( 2657 llvm::Instruction *I, const llvm::Twine &Name, 2658 llvm::BasicBlock::iterator InsertPt) const { 2659 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2660 if (CGF) 2661 CGF->InsertHelper(I, Name, InsertPt); 2662 } 2663 2664 // Emits an error if we don't have a valid set of target features for the 2665 // called function. 2666 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2667 const FunctionDecl *TargetDecl) { 2668 // SemaChecking cannot handle below x86 builtins because they have different 2669 // parameter ranges with different TargetAttribute of caller. 2670 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2671 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2672 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2673 BuiltinID == X86::BI__builtin_ia32_cmpss || 2674 BuiltinID == X86::BI__builtin_ia32_cmppd || 2675 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2676 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2677 llvm::StringMap<bool> TargetFetureMap; 2678 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2679 llvm::APSInt Result = 2680 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2681 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2682 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2683 << TargetDecl->getDeclName() << "avx"; 2684 } 2685 } 2686 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2687 } 2688 2689 // Emits an error if we don't have a valid set of target features for the 2690 // called function. 2691 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2692 const FunctionDecl *TargetDecl) { 2693 // Early exit if this is an indirect call. 2694 if (!TargetDecl) 2695 return; 2696 2697 // Get the current enclosing function if it exists. If it doesn't 2698 // we can't check the target features anyhow. 2699 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2700 if (!FD) 2701 return; 2702 2703 // Grab the required features for the call. For a builtin this is listed in 2704 // the td file with the default cpu, for an always_inline function this is any 2705 // listed cpu and any listed features. 2706 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2707 std::string MissingFeature; 2708 llvm::StringMap<bool> CallerFeatureMap; 2709 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2710 // When compiling in HipStdPar mode we have to be conservative in rejecting 2711 // target specific features in the FE, and defer the possible error to the 2712 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2713 // referenced by an accelerator executable function, we emit an error. 2714 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2715 if (BuiltinID) { 2716 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2717 if (!Builtin::evaluateRequiredTargetFeatures( 2718 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2719 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2720 << TargetDecl->getDeclName() 2721 << FeatureList; 2722 } 2723 } else if (!TargetDecl->isMultiVersion() && 2724 TargetDecl->hasAttr<TargetAttr>()) { 2725 // Get the required features for the callee. 2726 2727 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2728 ParsedTargetAttr ParsedAttr = 2729 CGM.getContext().filterFunctionTargetAttrs(TD); 2730 2731 SmallVector<StringRef, 1> ReqFeatures; 2732 llvm::StringMap<bool> CalleeFeatureMap; 2733 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2734 2735 for (const auto &F : ParsedAttr.Features) { 2736 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2737 ReqFeatures.push_back(StringRef(F).substr(1)); 2738 } 2739 2740 for (const auto &F : CalleeFeatureMap) { 2741 // Only positive features are "required". 2742 if (F.getValue()) 2743 ReqFeatures.push_back(F.getKey()); 2744 } 2745 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2746 if (!CallerFeatureMap.lookup(Feature)) { 2747 MissingFeature = Feature.str(); 2748 return false; 2749 } 2750 return true; 2751 }) && !IsHipStdPar) 2752 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2753 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2754 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2755 llvm::StringMap<bool> CalleeFeatureMap; 2756 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2757 2758 for (const auto &F : CalleeFeatureMap) { 2759 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2760 !CallerFeatureMap.find(F.getKey())->getValue()) && 2761 !IsHipStdPar) 2762 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2763 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2764 } 2765 } 2766 } 2767 2768 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2769 if (!CGM.getCodeGenOpts().SanitizeStats) 2770 return; 2771 2772 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2773 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2774 CGM.getSanStats().create(IRB, SSK); 2775 } 2776 2777 void CodeGenFunction::EmitKCFIOperandBundle( 2778 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2779 const FunctionProtoType *FP = 2780 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2781 if (FP) 2782 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2783 } 2784 2785 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2786 const MultiVersionResolverOption &RO) { 2787 llvm::SmallVector<StringRef, 8> CondFeatures; 2788 for (const StringRef &Feature : RO.Conditions.Features) { 2789 // Optimize the Function Multi Versioning resolver by creating conditions 2790 // only for features that are not enabled in the target. The exception is 2791 // for features whose extension instructions are executed as NOP on targets 2792 // without extension support. 2793 if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" || 2794 Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" || 2795 Feature == "dgh") 2796 CondFeatures.push_back(Feature); 2797 } 2798 if (!CondFeatures.empty()) { 2799 return EmitAArch64CpuSupports(CondFeatures); 2800 } 2801 return nullptr; 2802 } 2803 2804 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2805 const MultiVersionResolverOption &RO) { 2806 llvm::Value *Condition = nullptr; 2807 2808 if (!RO.Conditions.Architecture.empty()) { 2809 StringRef Arch = RO.Conditions.Architecture; 2810 // If arch= specifies an x86-64 micro-architecture level, test the feature 2811 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2812 if (Arch.starts_with("x86-64")) 2813 Condition = EmitX86CpuSupports({Arch}); 2814 else 2815 Condition = EmitX86CpuIs(Arch); 2816 } 2817 2818 if (!RO.Conditions.Features.empty()) { 2819 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2820 Condition = 2821 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2822 } 2823 return Condition; 2824 } 2825 2826 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2827 llvm::Function *Resolver, 2828 CGBuilderTy &Builder, 2829 llvm::Function *FuncToReturn, 2830 bool SupportsIFunc) { 2831 if (SupportsIFunc) { 2832 Builder.CreateRet(FuncToReturn); 2833 return; 2834 } 2835 2836 llvm::SmallVector<llvm::Value *, 10> Args( 2837 llvm::make_pointer_range(Resolver->args())); 2838 2839 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2840 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2841 2842 if (Resolver->getReturnType()->isVoidTy()) 2843 Builder.CreateRetVoid(); 2844 else 2845 Builder.CreateRet(Result); 2846 } 2847 2848 void CodeGenFunction::EmitMultiVersionResolver( 2849 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2850 2851 llvm::Triple::ArchType ArchType = 2852 getContext().getTargetInfo().getTriple().getArch(); 2853 2854 switch (ArchType) { 2855 case llvm::Triple::x86: 2856 case llvm::Triple::x86_64: 2857 EmitX86MultiVersionResolver(Resolver, Options); 2858 return; 2859 case llvm::Triple::aarch64: 2860 EmitAArch64MultiVersionResolver(Resolver, Options); 2861 return; 2862 2863 default: 2864 assert(false && "Only implemented for x86 and AArch64 targets"); 2865 } 2866 } 2867 2868 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2869 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2870 assert(!Options.empty() && "No multiversion resolver options found"); 2871 assert(Options.back().Conditions.Features.size() == 0 && 2872 "Default case must be last"); 2873 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2874 assert(SupportsIFunc && 2875 "Multiversion resolver requires target IFUNC support"); 2876 bool AArch64CpuInitialized = false; 2877 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2878 2879 for (const MultiVersionResolverOption &RO : Options) { 2880 Builder.SetInsertPoint(CurBlock); 2881 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2882 2883 // The 'default' or 'all features enabled' case. 2884 if (!Condition) { 2885 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2886 SupportsIFunc); 2887 return; 2888 } 2889 2890 if (!AArch64CpuInitialized) { 2891 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2892 EmitAArch64CpuInit(); 2893 AArch64CpuInitialized = true; 2894 Builder.SetInsertPoint(CurBlock); 2895 } 2896 2897 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2898 CGBuilderTy RetBuilder(*this, RetBlock); 2899 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2900 SupportsIFunc); 2901 CurBlock = createBasicBlock("resolver_else", Resolver); 2902 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2903 } 2904 2905 // If no default, emit an unreachable. 2906 Builder.SetInsertPoint(CurBlock); 2907 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2908 TrapCall->setDoesNotReturn(); 2909 TrapCall->setDoesNotThrow(); 2910 Builder.CreateUnreachable(); 2911 Builder.ClearInsertionPoint(); 2912 } 2913 2914 void CodeGenFunction::EmitX86MultiVersionResolver( 2915 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2916 2917 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2918 2919 // Main function's basic block. 2920 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2921 Builder.SetInsertPoint(CurBlock); 2922 EmitX86CpuInit(); 2923 2924 for (const MultiVersionResolverOption &RO : Options) { 2925 Builder.SetInsertPoint(CurBlock); 2926 llvm::Value *Condition = FormX86ResolverCondition(RO); 2927 2928 // The 'default' or 'generic' case. 2929 if (!Condition) { 2930 assert(&RO == Options.end() - 1 && 2931 "Default or Generic case must be last"); 2932 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2933 SupportsIFunc); 2934 return; 2935 } 2936 2937 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2938 CGBuilderTy RetBuilder(*this, RetBlock); 2939 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2940 SupportsIFunc); 2941 CurBlock = createBasicBlock("resolver_else", Resolver); 2942 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2943 } 2944 2945 // If no generic/default, emit an unreachable. 2946 Builder.SetInsertPoint(CurBlock); 2947 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2948 TrapCall->setDoesNotReturn(); 2949 TrapCall->setDoesNotThrow(); 2950 Builder.CreateUnreachable(); 2951 Builder.ClearInsertionPoint(); 2952 } 2953 2954 // Loc - where the diagnostic will point, where in the source code this 2955 // alignment has failed. 2956 // SecondaryLoc - if present (will be present if sufficiently different from 2957 // Loc), the diagnostic will additionally point a "Note:" to this location. 2958 // It should be the location where the __attribute__((assume_aligned)) 2959 // was written e.g. 2960 void CodeGenFunction::emitAlignmentAssumptionCheck( 2961 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2962 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2963 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2964 llvm::Instruction *Assumption) { 2965 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 2966 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2967 llvm::Intrinsic::getDeclaration( 2968 Builder.GetInsertBlock()->getParent()->getParent(), 2969 llvm::Intrinsic::assume) && 2970 "Assumption should be a call to llvm.assume()."); 2971 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2972 "Assumption should be the last instruction of the basic block, " 2973 "since the basic block is still being generated."); 2974 2975 if (!SanOpts.has(SanitizerKind::Alignment)) 2976 return; 2977 2978 // Don't check pointers to volatile data. The behavior here is implementation- 2979 // defined. 2980 if (Ty->getPointeeType().isVolatileQualified()) 2981 return; 2982 2983 // We need to temorairly remove the assumption so we can insert the 2984 // sanitizer check before it, else the check will be dropped by optimizations. 2985 Assumption->removeFromParent(); 2986 2987 { 2988 SanitizerScope SanScope(this); 2989 2990 if (!OffsetValue) 2991 OffsetValue = Builder.getInt1(false); // no offset. 2992 2993 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2994 EmitCheckSourceLocation(SecondaryLoc), 2995 EmitCheckTypeDescriptor(Ty)}; 2996 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2997 EmitCheckValue(Alignment), 2998 EmitCheckValue(OffsetValue)}; 2999 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3000 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3001 } 3002 3003 // We are now in the (new, empty) "cont" basic block. 3004 // Reintroduce the assumption. 3005 Builder.Insert(Assumption); 3006 // FIXME: Assumption still has it's original basic block as it's Parent. 3007 } 3008 3009 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3010 if (CGDebugInfo *DI = getDebugInfo()) 3011 return DI->SourceLocToDebugLoc(Location); 3012 3013 return llvm::DebugLoc(); 3014 } 3015 3016 llvm::Value * 3017 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3018 Stmt::Likelihood LH) { 3019 switch (LH) { 3020 case Stmt::LH_None: 3021 return Cond; 3022 case Stmt::LH_Likely: 3023 case Stmt::LH_Unlikely: 3024 // Don't generate llvm.expect on -O0 as the backend won't use it for 3025 // anything. 3026 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3027 return Cond; 3028 llvm::Type *CondTy = Cond->getType(); 3029 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3030 llvm::Function *FnExpect = 3031 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3032 llvm::Value *ExpectedValueOfCond = 3033 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3034 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3035 Cond->getName() + ".expval"); 3036 } 3037 llvm_unreachable("Unknown Likelihood"); 3038 } 3039 3040 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3041 unsigned NumElementsDst, 3042 const llvm::Twine &Name) { 3043 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3044 unsigned NumElementsSrc = SrcTy->getNumElements(); 3045 if (NumElementsSrc == NumElementsDst) 3046 return SrcVec; 3047 3048 std::vector<int> ShuffleMask(NumElementsDst, -1); 3049 for (unsigned MaskIdx = 0; 3050 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3051 ShuffleMask[MaskIdx] = MaskIdx; 3052 3053 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3054 } 3055 3056 void CodeGenFunction::EmitPointerAuthOperandBundle( 3057 const CGPointerAuthInfo &PointerAuth, 3058 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3059 if (!PointerAuth.isSigned()) 3060 return; 3061 3062 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3063 3064 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3065 if (!Discriminator) 3066 Discriminator = Builder.getSize(0); 3067 3068 llvm::Value *Args[] = {Key, Discriminator}; 3069 Bundles.emplace_back("ptrauth", Args); 3070 } 3071 3072 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3073 const CGPointerAuthInfo &PointerAuth, 3074 llvm::Value *Pointer, 3075 unsigned IntrinsicID) { 3076 if (!PointerAuth) 3077 return Pointer; 3078 3079 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3080 3081 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3082 if (!Discriminator) { 3083 Discriminator = CGF.Builder.getSize(0); 3084 } 3085 3086 // Convert the pointer to intptr_t before signing it. 3087 auto OrigType = Pointer->getType(); 3088 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3089 3090 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3091 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3092 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3093 3094 // Convert back to the original type. 3095 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3096 return Pointer; 3097 } 3098 3099 llvm::Value * 3100 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3101 llvm::Value *Pointer) { 3102 if (!PointerAuth.shouldSign()) 3103 return Pointer; 3104 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3105 llvm::Intrinsic::ptrauth_sign); 3106 } 3107 3108 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3109 const CGPointerAuthInfo &PointerAuth, 3110 llvm::Value *Pointer) { 3111 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3112 3113 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3114 // Convert the pointer to intptr_t before signing it. 3115 auto OrigType = Pointer->getType(); 3116 Pointer = CGF.EmitRuntimeCall( 3117 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3118 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3119 } 3120 3121 llvm::Value * 3122 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3123 llvm::Value *Pointer) { 3124 if (PointerAuth.shouldStrip()) { 3125 return EmitStrip(*this, PointerAuth, Pointer); 3126 } 3127 if (!PointerAuth.shouldAuth()) { 3128 return Pointer; 3129 } 3130 3131 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3132 llvm::Intrinsic::ptrauth_auth); 3133 } 3134