xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 80525dfcde5bf8aae6ab6b0810124ba502de6096)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.ReturnAddresses)
884     Fn->addFnAttr("ptrauth-returns");
885   if (CodeGenOpts.PointerAuth.FunctionPointers)
886     Fn->addFnAttr("ptrauth-calls");
887   if (CodeGenOpts.PointerAuth.AuthTraps)
888     Fn->addFnAttr("ptrauth-auth-traps");
889   if (CodeGenOpts.PointerAuth.IndirectGotos)
890     Fn->addFnAttr("ptrauth-indirect-gotos");
891 
892   // Apply xray attributes to the function (as a string, for now)
893   bool AlwaysXRayAttr = false;
894   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
895     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
896             XRayInstrKind::FunctionEntry) ||
897         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
898             XRayInstrKind::FunctionExit)) {
899       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
900         Fn->addFnAttr("function-instrument", "xray-always");
901         AlwaysXRayAttr = true;
902       }
903       if (XRayAttr->neverXRayInstrument())
904         Fn->addFnAttr("function-instrument", "xray-never");
905       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
906         if (ShouldXRayInstrumentFunction())
907           Fn->addFnAttr("xray-log-args",
908                         llvm::utostr(LogArgs->getArgumentCount()));
909     }
910   } else {
911     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
912       Fn->addFnAttr(
913           "xray-instruction-threshold",
914           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
915   }
916 
917   if (ShouldXRayInstrumentFunction()) {
918     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
919       Fn->addFnAttr("xray-ignore-loops");
920 
921     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922             XRayInstrKind::FunctionExit))
923       Fn->addFnAttr("xray-skip-exit");
924 
925     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
926             XRayInstrKind::FunctionEntry))
927       Fn->addFnAttr("xray-skip-entry");
928 
929     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
930     if (FuncGroups > 1) {
931       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
932                                               CurFn->getName().bytes_end());
933       auto Group = crc32(FuncName) % FuncGroups;
934       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
935           !AlwaysXRayAttr)
936         Fn->addFnAttr("function-instrument", "xray-never");
937     }
938   }
939 
940   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
941     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
942     case ProfileList::Skip:
943       Fn->addFnAttr(llvm::Attribute::SkipProfile);
944       break;
945     case ProfileList::Forbid:
946       Fn->addFnAttr(llvm::Attribute::NoProfile);
947       break;
948     case ProfileList::Allow:
949       break;
950     }
951   }
952 
953   unsigned Count, Offset;
954   if (const auto *Attr =
955           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
956     Count = Attr->getCount();
957     Offset = Attr->getOffset();
958   } else {
959     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
960     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
961   }
962   if (Count && Offset <= Count) {
963     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
964     if (Offset)
965       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
966   }
967   // Instruct that functions for COFF/CodeView targets should start with a
968   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
969   // backends as they don't need it -- instructions on these architectures are
970   // always atomically patchable at runtime.
971   if (CGM.getCodeGenOpts().HotPatch &&
972       getContext().getTargetInfo().getTriple().isX86() &&
973       getContext().getTargetInfo().getTriple().getEnvironment() !=
974           llvm::Triple::CODE16)
975     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
976 
977   // Add no-jump-tables value.
978   if (CGM.getCodeGenOpts().NoUseJumpTables)
979     Fn->addFnAttr("no-jump-tables", "true");
980 
981   // Add no-inline-line-tables value.
982   if (CGM.getCodeGenOpts().NoInlineLineTables)
983     Fn->addFnAttr("no-inline-line-tables");
984 
985   // Add profile-sample-accurate value.
986   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
987     Fn->addFnAttr("profile-sample-accurate");
988 
989   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
990     Fn->addFnAttr("use-sample-profile");
991 
992   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
993     Fn->addFnAttr("cfi-canonical-jump-table");
994 
995   if (D && D->hasAttr<NoProfileFunctionAttr>())
996     Fn->addFnAttr(llvm::Attribute::NoProfile);
997 
998   if (D && D->hasAttr<HybridPatchableAttr>())
999     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1000 
1001   if (D) {
1002     // Function attributes take precedence over command line flags.
1003     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1004       switch (A->getThunkType()) {
1005       case FunctionReturnThunksAttr::Kind::Keep:
1006         break;
1007       case FunctionReturnThunksAttr::Kind::Extern:
1008         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1009         break;
1010       }
1011     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1012       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1013   }
1014 
1015   if (FD && (getLangOpts().OpenCL ||
1016              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1017               getLangOpts().CUDAIsDevice))) {
1018     // Add metadata for a kernel function.
1019     EmitKernelMetadata(FD, Fn);
1020   }
1021 
1022   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1023     Fn->setMetadata("clspv_libclc_builtin",
1024                     llvm::MDNode::get(getLLVMContext(), {}));
1025   }
1026 
1027   // If we are checking function types, emit a function type signature as
1028   // prologue data.
1029   if (FD && SanOpts.has(SanitizerKind::Function)) {
1030     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1031       llvm::LLVMContext &Ctx = Fn->getContext();
1032       llvm::MDBuilder MDB(Ctx);
1033       Fn->setMetadata(
1034           llvm::LLVMContext::MD_func_sanitize,
1035           MDB.createRTTIPointerPrologue(
1036               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1037     }
1038   }
1039 
1040   // If we're checking nullability, we need to know whether we can check the
1041   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1042   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1043     auto Nullability = FnRetTy->getNullability();
1044     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1045         !FnRetTy->isRecordType()) {
1046       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1047             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1048         RetValNullabilityPrecondition =
1049             llvm::ConstantInt::getTrue(getLLVMContext());
1050     }
1051   }
1052 
1053   // If we're in C++ mode and the function name is "main", it is guaranteed
1054   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1055   // used within a program").
1056   //
1057   // OpenCL C 2.0 v2.2-11 s6.9.i:
1058   //     Recursion is not supported.
1059   //
1060   // SYCL v1.2.1 s3.10:
1061   //     kernels cannot include RTTI information, exception classes,
1062   //     recursive code, virtual functions or make use of C++ libraries that
1063   //     are not compiled for the device.
1064   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1065              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1066              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1067     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1068 
1069   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1070   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1071       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1072   Builder.setDefaultConstrainedRounding(RM);
1073   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1074   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1075       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1076                RM != llvm::RoundingMode::NearestTiesToEven))) {
1077     Builder.setIsFPConstrained(true);
1078     Fn->addFnAttr(llvm::Attribute::StrictFP);
1079   }
1080 
1081   // If a custom alignment is used, force realigning to this alignment on
1082   // any main function which certainly will need it.
1083   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1084              CGM.getCodeGenOpts().StackAlignment))
1085     Fn->addFnAttr("stackrealign");
1086 
1087   // "main" doesn't need to zero out call-used registers.
1088   if (FD && FD->isMain())
1089     Fn->removeFnAttr("zero-call-used-regs");
1090 
1091   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1092 
1093   // Create a marker to make it easy to insert allocas into the entryblock
1094   // later.  Don't create this with the builder, because we don't want it
1095   // folded.
1096   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1097   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1098 
1099   ReturnBlock = getJumpDestInCurrentScope("return");
1100 
1101   Builder.SetInsertPoint(EntryBB);
1102 
1103   // If we're checking the return value, allocate space for a pointer to a
1104   // precise source location of the checked return statement.
1105   if (requiresReturnValueCheck()) {
1106     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1107     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1108                         ReturnLocation);
1109   }
1110 
1111   // Emit subprogram debug descriptor.
1112   if (CGDebugInfo *DI = getDebugInfo()) {
1113     // Reconstruct the type from the argument list so that implicit parameters,
1114     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1115     // convention.
1116     DI->emitFunctionStart(GD, Loc, StartLoc,
1117                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1118                           CurFuncIsThunk);
1119   }
1120 
1121   if (ShouldInstrumentFunction()) {
1122     if (CGM.getCodeGenOpts().InstrumentFunctions)
1123       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1124     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1125       CurFn->addFnAttr("instrument-function-entry-inlined",
1126                        "__cyg_profile_func_enter");
1127     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1128       CurFn->addFnAttr("instrument-function-entry-inlined",
1129                        "__cyg_profile_func_enter_bare");
1130   }
1131 
1132   // Since emitting the mcount call here impacts optimizations such as function
1133   // inlining, we just add an attribute to insert a mcount call in backend.
1134   // The attribute "counting-function" is set to mcount function name which is
1135   // architecture dependent.
1136   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1137     // Calls to fentry/mcount should not be generated if function has
1138     // the no_instrument_function attribute.
1139     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1140       if (CGM.getCodeGenOpts().CallFEntry)
1141         Fn->addFnAttr("fentry-call", "true");
1142       else {
1143         Fn->addFnAttr("instrument-function-entry-inlined",
1144                       getTarget().getMCountName());
1145       }
1146       if (CGM.getCodeGenOpts().MNopMCount) {
1147         if (!CGM.getCodeGenOpts().CallFEntry)
1148           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1149             << "-mnop-mcount" << "-mfentry";
1150         Fn->addFnAttr("mnop-mcount");
1151       }
1152 
1153       if (CGM.getCodeGenOpts().RecordMCount) {
1154         if (!CGM.getCodeGenOpts().CallFEntry)
1155           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1156             << "-mrecord-mcount" << "-mfentry";
1157         Fn->addFnAttr("mrecord-mcount");
1158       }
1159     }
1160   }
1161 
1162   if (CGM.getCodeGenOpts().PackedStack) {
1163     if (getContext().getTargetInfo().getTriple().getArch() !=
1164         llvm::Triple::systemz)
1165       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1166         << "-mpacked-stack";
1167     Fn->addFnAttr("packed-stack");
1168   }
1169 
1170   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1171       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1172     Fn->addFnAttr("warn-stack-size",
1173                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1174 
1175   if (RetTy->isVoidType()) {
1176     // Void type; nothing to return.
1177     ReturnValue = Address::invalid();
1178 
1179     // Count the implicit return.
1180     if (!endsWithReturn(D))
1181       ++NumReturnExprs;
1182   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1183     // Indirect return; emit returned value directly into sret slot.
1184     // This reduces code size, and affects correctness in C++.
1185     auto AI = CurFn->arg_begin();
1186     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1187       ++AI;
1188     ReturnValue = makeNaturalAddressForPointer(
1189         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1190         nullptr, nullptr, KnownNonNull);
1191     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1192       ReturnValuePointer =
1193           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1194       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1195                           ReturnValuePointer);
1196     }
1197   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1198              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1199     // Load the sret pointer from the argument struct and return into that.
1200     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1201     llvm::Function::arg_iterator EI = CurFn->arg_end();
1202     --EI;
1203     llvm::Value *Addr = Builder.CreateStructGEP(
1204         CurFnInfo->getArgStruct(), &*EI, Idx);
1205     llvm::Type *Ty =
1206         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1207     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1208     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1209     ReturnValue = Address(Addr, ConvertType(RetTy),
1210                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1211   } else {
1212     ReturnValue = CreateIRTemp(RetTy, "retval");
1213 
1214     // Tell the epilog emitter to autorelease the result.  We do this
1215     // now so that various specialized functions can suppress it
1216     // during their IR-generation.
1217     if (getLangOpts().ObjCAutoRefCount &&
1218         !CurFnInfo->isReturnsRetained() &&
1219         RetTy->isObjCRetainableType())
1220       AutoreleaseResult = true;
1221   }
1222 
1223   EmitStartEHSpec(CurCodeDecl);
1224 
1225   PrologueCleanupDepth = EHStack.stable_begin();
1226 
1227   // Emit OpenMP specific initialization of the device functions.
1228   if (getLangOpts().OpenMP && CurCodeDecl)
1229     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1230 
1231   // Handle emitting HLSL entry functions.
1232   if (D && D->hasAttr<HLSLShaderAttr>())
1233     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1234 
1235   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1236 
1237   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1238       MD && !MD->isStatic()) {
1239     bool IsInLambda =
1240         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1241     if (MD->isImplicitObjectMemberFunction())
1242       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1243     if (IsInLambda) {
1244       // We're in a lambda; figure out the captures.
1245       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1246                                         LambdaThisCaptureField);
1247       if (LambdaThisCaptureField) {
1248         // If the lambda captures the object referred to by '*this' - either by
1249         // value or by reference, make sure CXXThisValue points to the correct
1250         // object.
1251 
1252         // Get the lvalue for the field (which is a copy of the enclosing object
1253         // or contains the address of the enclosing object).
1254         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1255         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1256           // If the enclosing object was captured by value, just use its
1257           // address. Sign this pointer.
1258           CXXThisValue = ThisFieldLValue.getPointer(*this);
1259         } else {
1260           // Load the lvalue pointed to by the field, since '*this' was captured
1261           // by reference.
1262           CXXThisValue =
1263               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1264         }
1265       }
1266       for (auto *FD : MD->getParent()->fields()) {
1267         if (FD->hasCapturedVLAType()) {
1268           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1269                                            SourceLocation()).getScalarVal();
1270           auto VAT = FD->getCapturedVLAType();
1271           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1272         }
1273       }
1274     } else if (MD->isImplicitObjectMemberFunction()) {
1275       // Not in a lambda; just use 'this' from the method.
1276       // FIXME: Should we generate a new load for each use of 'this'?  The
1277       // fast register allocator would be happier...
1278       CXXThisValue = CXXABIThisValue;
1279     }
1280 
1281     // Check the 'this' pointer once per function, if it's available.
1282     if (CXXABIThisValue) {
1283       SanitizerSet SkippedChecks;
1284       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1285       QualType ThisTy = MD->getThisType();
1286 
1287       // If this is the call operator of a lambda with no captures, it
1288       // may have a static invoker function, which may call this operator with
1289       // a null 'this' pointer.
1290       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1291         SkippedChecks.set(SanitizerKind::Null, true);
1292 
1293       EmitTypeCheck(
1294           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1295           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1296     }
1297   }
1298 
1299   // If any of the arguments have a variably modified type, make sure to
1300   // emit the type size, but only if the function is not naked. Naked functions
1301   // have no prolog to run this evaluation.
1302   if (!FD || !FD->hasAttr<NakedAttr>()) {
1303     for (const VarDecl *VD : Args) {
1304       // Dig out the type as written from ParmVarDecls; it's unclear whether
1305       // the standard (C99 6.9.1p10) requires this, but we're following the
1306       // precedent set by gcc.
1307       QualType Ty;
1308       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1309         Ty = PVD->getOriginalType();
1310       else
1311         Ty = VD->getType();
1312 
1313       if (Ty->isVariablyModifiedType())
1314         EmitVariablyModifiedType(Ty);
1315     }
1316   }
1317   // Emit a location at the end of the prologue.
1318   if (CGDebugInfo *DI = getDebugInfo())
1319     DI->EmitLocation(Builder, StartLoc);
1320   // TODO: Do we need to handle this in two places like we do with
1321   // target-features/target-cpu?
1322   if (CurFuncDecl)
1323     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1324       LargestVectorWidth = VecWidth->getVectorWidth();
1325 
1326   if (CGM.shouldEmitConvergenceTokens())
1327     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1328 }
1329 
1330 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1331   incrementProfileCounter(Body);
1332   maybeCreateMCDCCondBitmap();
1333   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1334     EmitCompoundStmtWithoutScope(*S);
1335   else
1336     EmitStmt(Body);
1337 }
1338 
1339 /// When instrumenting to collect profile data, the counts for some blocks
1340 /// such as switch cases need to not include the fall-through counts, so
1341 /// emit a branch around the instrumentation code. When not instrumenting,
1342 /// this just calls EmitBlock().
1343 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1344                                                const Stmt *S) {
1345   llvm::BasicBlock *SkipCountBB = nullptr;
1346   // Do not skip over the instrumentation when single byte coverage mode is
1347   // enabled.
1348   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1349       !llvm::EnableSingleByteCoverage) {
1350     // When instrumenting for profiling, the fallthrough to certain
1351     // statements needs to skip over the instrumentation code so that we
1352     // get an accurate count.
1353     SkipCountBB = createBasicBlock("skipcount");
1354     EmitBranch(SkipCountBB);
1355   }
1356   EmitBlock(BB);
1357   uint64_t CurrentCount = getCurrentProfileCount();
1358   incrementProfileCounter(S);
1359   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1360   if (SkipCountBB)
1361     EmitBlock(SkipCountBB);
1362 }
1363 
1364 /// Tries to mark the given function nounwind based on the
1365 /// non-existence of any throwing calls within it.  We believe this is
1366 /// lightweight enough to do at -O0.
1367 static void TryMarkNoThrow(llvm::Function *F) {
1368   // LLVM treats 'nounwind' on a function as part of the type, so we
1369   // can't do this on functions that can be overwritten.
1370   if (F->isInterposable()) return;
1371 
1372   for (llvm::BasicBlock &BB : *F)
1373     for (llvm::Instruction &I : BB)
1374       if (I.mayThrow())
1375         return;
1376 
1377   F->setDoesNotThrow();
1378 }
1379 
1380 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1381                                                FunctionArgList &Args) {
1382   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1383   QualType ResTy = FD->getReturnType();
1384 
1385   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1386   if (MD && MD->isImplicitObjectMemberFunction()) {
1387     if (CGM.getCXXABI().HasThisReturn(GD))
1388       ResTy = MD->getThisType();
1389     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1390       ResTy = CGM.getContext().VoidPtrTy;
1391     CGM.getCXXABI().buildThisParam(*this, Args);
1392   }
1393 
1394   // The base version of an inheriting constructor whose constructed base is a
1395   // virtual base is not passed any arguments (because it doesn't actually call
1396   // the inherited constructor).
1397   bool PassedParams = true;
1398   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1399     if (auto Inherited = CD->getInheritedConstructor())
1400       PassedParams =
1401           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1402 
1403   if (PassedParams) {
1404     for (auto *Param : FD->parameters()) {
1405       Args.push_back(Param);
1406       if (!Param->hasAttr<PassObjectSizeAttr>())
1407         continue;
1408 
1409       auto *Implicit = ImplicitParamDecl::Create(
1410           getContext(), Param->getDeclContext(), Param->getLocation(),
1411           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1412       SizeArguments[Param] = Implicit;
1413       Args.push_back(Implicit);
1414     }
1415   }
1416 
1417   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1418     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1419 
1420   return ResTy;
1421 }
1422 
1423 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1424                                    const CGFunctionInfo &FnInfo) {
1425   assert(Fn && "generating code for null Function");
1426   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1427   CurGD = GD;
1428 
1429   FunctionArgList Args;
1430   QualType ResTy = BuildFunctionArgList(GD, Args);
1431 
1432   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1433 
1434   if (FD->isInlineBuiltinDeclaration()) {
1435     // When generating code for a builtin with an inline declaration, use a
1436     // mangled name to hold the actual body, while keeping an external
1437     // definition in case the function pointer is referenced somewhere.
1438     std::string FDInlineName = (Fn->getName() + ".inline").str();
1439     llvm::Module *M = Fn->getParent();
1440     llvm::Function *Clone = M->getFunction(FDInlineName);
1441     if (!Clone) {
1442       Clone = llvm::Function::Create(Fn->getFunctionType(),
1443                                      llvm::GlobalValue::InternalLinkage,
1444                                      Fn->getAddressSpace(), FDInlineName, M);
1445       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1446     }
1447     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1448     Fn = Clone;
1449   } else {
1450     // Detect the unusual situation where an inline version is shadowed by a
1451     // non-inline version. In that case we should pick the external one
1452     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1453     // to detect that situation before we reach codegen, so do some late
1454     // replacement.
1455     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1456          PD = PD->getPreviousDecl()) {
1457       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1458         std::string FDInlineName = (Fn->getName() + ".inline").str();
1459         llvm::Module *M = Fn->getParent();
1460         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1461           Clone->replaceAllUsesWith(Fn);
1462           Clone->eraseFromParent();
1463         }
1464         break;
1465       }
1466     }
1467   }
1468 
1469   // Check if we should generate debug info for this function.
1470   if (FD->hasAttr<NoDebugAttr>()) {
1471     // Clear non-distinct debug info that was possibly attached to the function
1472     // due to an earlier declaration without the nodebug attribute
1473     Fn->setSubprogram(nullptr);
1474     // Disable debug info indefinitely for this function
1475     DebugInfo = nullptr;
1476   }
1477 
1478   // The function might not have a body if we're generating thunks for a
1479   // function declaration.
1480   SourceRange BodyRange;
1481   if (Stmt *Body = FD->getBody())
1482     BodyRange = Body->getSourceRange();
1483   else
1484     BodyRange = FD->getLocation();
1485   CurEHLocation = BodyRange.getEnd();
1486 
1487   // Use the location of the start of the function to determine where
1488   // the function definition is located. By default use the location
1489   // of the declaration as the location for the subprogram. A function
1490   // may lack a declaration in the source code if it is created by code
1491   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1492   SourceLocation Loc = FD->getLocation();
1493 
1494   // If this is a function specialization then use the pattern body
1495   // as the location for the function.
1496   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1497     if (SpecDecl->hasBody(SpecDecl))
1498       Loc = SpecDecl->getLocation();
1499 
1500   Stmt *Body = FD->getBody();
1501 
1502   if (Body) {
1503     // Coroutines always emit lifetime markers.
1504     if (isa<CoroutineBodyStmt>(Body))
1505       ShouldEmitLifetimeMarkers = true;
1506 
1507     // Initialize helper which will detect jumps which can cause invalid
1508     // lifetime markers.
1509     if (ShouldEmitLifetimeMarkers)
1510       Bypasses.Init(Body);
1511   }
1512 
1513   // Emit the standard function prologue.
1514   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1515 
1516   // Save parameters for coroutine function.
1517   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1518     llvm::append_range(FnArgs, FD->parameters());
1519 
1520   // Ensure that the function adheres to the forward progress guarantee, which
1521   // is required by certain optimizations.
1522   // In C++11 and up, the attribute will be removed if the body contains a
1523   // trivial empty loop.
1524   if (checkIfFunctionMustProgress())
1525     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1526 
1527   // Generate the body of the function.
1528   PGO.assignRegionCounters(GD, CurFn);
1529   if (isa<CXXDestructorDecl>(FD))
1530     EmitDestructorBody(Args);
1531   else if (isa<CXXConstructorDecl>(FD))
1532     EmitConstructorBody(Args);
1533   else if (getLangOpts().CUDA &&
1534            !getLangOpts().CUDAIsDevice &&
1535            FD->hasAttr<CUDAGlobalAttr>())
1536     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1537   else if (isa<CXXMethodDecl>(FD) &&
1538            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1539     // The lambda static invoker function is special, because it forwards or
1540     // clones the body of the function call operator (but is actually static).
1541     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1542   } else if (isa<CXXMethodDecl>(FD) &&
1543              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1544              !FnInfo.isDelegateCall() &&
1545              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1546              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1547     // If emitting a lambda with static invoker on X86 Windows, change
1548     // the call operator body.
1549     // Make sure that this is a call operator with an inalloca arg and check
1550     // for delegate call to make sure this is the original call op and not the
1551     // new forwarding function for the static invoker.
1552     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1553   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1554              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1555               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1556     // Implicit copy-assignment gets the same special treatment as implicit
1557     // copy-constructors.
1558     emitImplicitAssignmentOperatorBody(Args);
1559   } else if (Body) {
1560     EmitFunctionBody(Body);
1561   } else
1562     llvm_unreachable("no definition for emitted function");
1563 
1564   // C++11 [stmt.return]p2:
1565   //   Flowing off the end of a function [...] results in undefined behavior in
1566   //   a value-returning function.
1567   // C11 6.9.1p12:
1568   //   If the '}' that terminates a function is reached, and the value of the
1569   //   function call is used by the caller, the behavior is undefined.
1570   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1571       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1572     bool ShouldEmitUnreachable =
1573         CGM.getCodeGenOpts().StrictReturn ||
1574         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1575     if (SanOpts.has(SanitizerKind::Return)) {
1576       SanitizerScope SanScope(this);
1577       llvm::Value *IsFalse = Builder.getFalse();
1578       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1579                 SanitizerHandler::MissingReturn,
1580                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1581     } else if (ShouldEmitUnreachable) {
1582       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1583         EmitTrapCall(llvm::Intrinsic::trap);
1584     }
1585     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1586       Builder.CreateUnreachable();
1587       Builder.ClearInsertionPoint();
1588     }
1589   }
1590 
1591   // Emit the standard function epilogue.
1592   FinishFunction(BodyRange.getEnd());
1593 
1594   // If we haven't marked the function nothrow through other means, do
1595   // a quick pass now to see if we can.
1596   if (!CurFn->doesNotThrow())
1597     TryMarkNoThrow(CurFn);
1598 }
1599 
1600 /// ContainsLabel - Return true if the statement contains a label in it.  If
1601 /// this statement is not executed normally, it not containing a label means
1602 /// that we can just remove the code.
1603 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1604   // Null statement, not a label!
1605   if (!S) return false;
1606 
1607   // If this is a label, we have to emit the code, consider something like:
1608   // if (0) {  ...  foo:  bar(); }  goto foo;
1609   //
1610   // TODO: If anyone cared, we could track __label__'s, since we know that you
1611   // can't jump to one from outside their declared region.
1612   if (isa<LabelStmt>(S))
1613     return true;
1614 
1615   // If this is a case/default statement, and we haven't seen a switch, we have
1616   // to emit the code.
1617   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1618     return true;
1619 
1620   // If this is a switch statement, we want to ignore cases below it.
1621   if (isa<SwitchStmt>(S))
1622     IgnoreCaseStmts = true;
1623 
1624   // Scan subexpressions for verboten labels.
1625   for (const Stmt *SubStmt : S->children())
1626     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1627       return true;
1628 
1629   return false;
1630 }
1631 
1632 /// containsBreak - Return true if the statement contains a break out of it.
1633 /// If the statement (recursively) contains a switch or loop with a break
1634 /// inside of it, this is fine.
1635 bool CodeGenFunction::containsBreak(const Stmt *S) {
1636   // Null statement, not a label!
1637   if (!S) return false;
1638 
1639   // If this is a switch or loop that defines its own break scope, then we can
1640   // include it and anything inside of it.
1641   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1642       isa<ForStmt>(S))
1643     return false;
1644 
1645   if (isa<BreakStmt>(S))
1646     return true;
1647 
1648   // Scan subexpressions for verboten breaks.
1649   for (const Stmt *SubStmt : S->children())
1650     if (containsBreak(SubStmt))
1651       return true;
1652 
1653   return false;
1654 }
1655 
1656 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1657   if (!S) return false;
1658 
1659   // Some statement kinds add a scope and thus never add a decl to the current
1660   // scope. Note, this list is longer than the list of statements that might
1661   // have an unscoped decl nested within them, but this way is conservatively
1662   // correct even if more statement kinds are added.
1663   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1664       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1665       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1666       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1667     return false;
1668 
1669   if (isa<DeclStmt>(S))
1670     return true;
1671 
1672   for (const Stmt *SubStmt : S->children())
1673     if (mightAddDeclToScope(SubStmt))
1674       return true;
1675 
1676   return false;
1677 }
1678 
1679 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1680 /// to a constant, or if it does but contains a label, return false.  If it
1681 /// constant folds return true and set the boolean result in Result.
1682 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1683                                                    bool &ResultBool,
1684                                                    bool AllowLabels) {
1685   // If MC/DC is enabled, disable folding so that we can instrument all
1686   // conditions to yield complete test vectors. We still keep track of
1687   // folded conditions during region mapping and visualization.
1688   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1689       CGM.getCodeGenOpts().MCDCCoverage)
1690     return false;
1691 
1692   llvm::APSInt ResultInt;
1693   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1694     return false;
1695 
1696   ResultBool = ResultInt.getBoolValue();
1697   return true;
1698 }
1699 
1700 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1701 /// to a constant, or if it does but contains a label, return false.  If it
1702 /// constant folds return true and set the folded value.
1703 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1704                                                    llvm::APSInt &ResultInt,
1705                                                    bool AllowLabels) {
1706   // FIXME: Rename and handle conversion of other evaluatable things
1707   // to bool.
1708   Expr::EvalResult Result;
1709   if (!Cond->EvaluateAsInt(Result, getContext()))
1710     return false;  // Not foldable, not integer or not fully evaluatable.
1711 
1712   llvm::APSInt Int = Result.Val.getInt();
1713   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1714     return false;  // Contains a label.
1715 
1716   ResultInt = Int;
1717   return true;
1718 }
1719 
1720 /// Strip parentheses and simplistic logical-NOT operators.
1721 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1722   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1723     if (Op->getOpcode() != UO_LNot)
1724       break;
1725     C = Op->getSubExpr();
1726   }
1727   return C->IgnoreParens();
1728 }
1729 
1730 /// Determine whether the given condition is an instrumentable condition
1731 /// (i.e. no "&&" or "||").
1732 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1733   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1734   return (!BOp || !BOp->isLogicalOp());
1735 }
1736 
1737 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1738 /// increments a profile counter based on the semantics of the given logical
1739 /// operator opcode.  This is used to instrument branch condition coverage for
1740 /// logical operators.
1741 void CodeGenFunction::EmitBranchToCounterBlock(
1742     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1743     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1744     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1745   // If not instrumenting, just emit a branch.
1746   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1747   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1748     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1749 
1750   llvm::BasicBlock *ThenBlock = nullptr;
1751   llvm::BasicBlock *ElseBlock = nullptr;
1752   llvm::BasicBlock *NextBlock = nullptr;
1753 
1754   // Create the block we'll use to increment the appropriate counter.
1755   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1756 
1757   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1758   // means we need to evaluate the condition and increment the counter on TRUE:
1759   //
1760   // if (Cond)
1761   //   goto CounterIncrBlock;
1762   // else
1763   //   goto FalseBlock;
1764   //
1765   // CounterIncrBlock:
1766   //   Counter++;
1767   //   goto TrueBlock;
1768 
1769   if (LOp == BO_LAnd) {
1770     ThenBlock = CounterIncrBlock;
1771     ElseBlock = FalseBlock;
1772     NextBlock = TrueBlock;
1773   }
1774 
1775   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1776   // we need to evaluate the condition and increment the counter on FALSE:
1777   //
1778   // if (Cond)
1779   //   goto TrueBlock;
1780   // else
1781   //   goto CounterIncrBlock;
1782   //
1783   // CounterIncrBlock:
1784   //   Counter++;
1785   //   goto FalseBlock;
1786 
1787   else if (LOp == BO_LOr) {
1788     ThenBlock = TrueBlock;
1789     ElseBlock = CounterIncrBlock;
1790     NextBlock = FalseBlock;
1791   } else {
1792     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1793   }
1794 
1795   // Emit Branch based on condition.
1796   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1797 
1798   // Emit the block containing the counter increment(s).
1799   EmitBlock(CounterIncrBlock);
1800 
1801   // Increment corresponding counter; if index not provided, use Cond as index.
1802   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1803 
1804   // Go to the next block.
1805   EmitBranch(NextBlock);
1806 }
1807 
1808 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1809 /// statement) to the specified blocks.  Based on the condition, this might try
1810 /// to simplify the codegen of the conditional based on the branch.
1811 /// \param LH The value of the likelihood attribute on the True branch.
1812 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1813 /// ConditionalOperator (ternary) through a recursive call for the operator's
1814 /// LHS and RHS nodes.
1815 void CodeGenFunction::EmitBranchOnBoolExpr(
1816     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1817     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1818   Cond = Cond->IgnoreParens();
1819 
1820   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1821     // Handle X && Y in a condition.
1822     if (CondBOp->getOpcode() == BO_LAnd) {
1823       MCDCLogOpStack.push_back(CondBOp);
1824 
1825       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1826       // folded if the case was simple enough.
1827       bool ConstantBool = false;
1828       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1829           ConstantBool) {
1830         // br(1 && X) -> br(X).
1831         incrementProfileCounter(CondBOp);
1832         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1833                                  FalseBlock, TrueCount, LH);
1834         MCDCLogOpStack.pop_back();
1835         return;
1836       }
1837 
1838       // If we have "X && 1", simplify the code to use an uncond branch.
1839       // "X && 0" would have been constant folded to 0.
1840       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1841           ConstantBool) {
1842         // br(X && 1) -> br(X).
1843         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1844                                  FalseBlock, TrueCount, LH, CondBOp);
1845         MCDCLogOpStack.pop_back();
1846         return;
1847       }
1848 
1849       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1850       // want to jump to the FalseBlock.
1851       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1852       // The counter tells us how often we evaluate RHS, and all of TrueCount
1853       // can be propagated to that branch.
1854       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1855 
1856       ConditionalEvaluation eval(*this);
1857       {
1858         ApplyDebugLocation DL(*this, Cond);
1859         // Propagate the likelihood attribute like __builtin_expect
1860         // __builtin_expect(X && Y, 1) -> X and Y are likely
1861         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1862         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1863                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1864         EmitBlock(LHSTrue);
1865       }
1866 
1867       incrementProfileCounter(CondBOp);
1868       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1869 
1870       // Any temporaries created here are conditional.
1871       eval.begin(*this);
1872       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1873                                FalseBlock, TrueCount, LH);
1874       eval.end(*this);
1875       MCDCLogOpStack.pop_back();
1876       return;
1877     }
1878 
1879     if (CondBOp->getOpcode() == BO_LOr) {
1880       MCDCLogOpStack.push_back(CondBOp);
1881 
1882       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1883       // folded if the case was simple enough.
1884       bool ConstantBool = false;
1885       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1886           !ConstantBool) {
1887         // br(0 || X) -> br(X).
1888         incrementProfileCounter(CondBOp);
1889         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1890                                  FalseBlock, TrueCount, LH);
1891         MCDCLogOpStack.pop_back();
1892         return;
1893       }
1894 
1895       // If we have "X || 0", simplify the code to use an uncond branch.
1896       // "X || 1" would have been constant folded to 1.
1897       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1898           !ConstantBool) {
1899         // br(X || 0) -> br(X).
1900         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1901                                  FalseBlock, TrueCount, LH, CondBOp);
1902         MCDCLogOpStack.pop_back();
1903         return;
1904       }
1905       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1906       // want to jump to the TrueBlock.
1907       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1908       // We have the count for entry to the RHS and for the whole expression
1909       // being true, so we can divy up True count between the short circuit and
1910       // the RHS.
1911       uint64_t LHSCount =
1912           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1913       uint64_t RHSCount = TrueCount - LHSCount;
1914 
1915       ConditionalEvaluation eval(*this);
1916       {
1917         // Propagate the likelihood attribute like __builtin_expect
1918         // __builtin_expect(X || Y, 1) -> only Y is likely
1919         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1920         ApplyDebugLocation DL(*this, Cond);
1921         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1922                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1923         EmitBlock(LHSFalse);
1924       }
1925 
1926       incrementProfileCounter(CondBOp);
1927       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1928 
1929       // Any temporaries created here are conditional.
1930       eval.begin(*this);
1931       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1932                                RHSCount, LH);
1933 
1934       eval.end(*this);
1935       MCDCLogOpStack.pop_back();
1936       return;
1937     }
1938   }
1939 
1940   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1941     // br(!x, t, f) -> br(x, f, t)
1942     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1943     // LNot is taken as part of the condition for simplicity, and changing its
1944     // sense negatively impacts test vector tracking.
1945     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1946                          CGM.getCodeGenOpts().MCDCCoverage &&
1947                          isInstrumentedCondition(Cond);
1948     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1949       // Negate the count.
1950       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1951       // The values of the enum are chosen to make this negation possible.
1952       LH = static_cast<Stmt::Likelihood>(-LH);
1953       // Negate the condition and swap the destination blocks.
1954       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1955                                   FalseCount, LH);
1956     }
1957   }
1958 
1959   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1960     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1961     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1962     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1963 
1964     // The ConditionalOperator itself has no likelihood information for its
1965     // true and false branches. This matches the behavior of __builtin_expect.
1966     ConditionalEvaluation cond(*this);
1967     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1968                          getProfileCount(CondOp), Stmt::LH_None);
1969 
1970     // When computing PGO branch weights, we only know the overall count for
1971     // the true block. This code is essentially doing tail duplication of the
1972     // naive code-gen, introducing new edges for which counts are not
1973     // available. Divide the counts proportionally between the LHS and RHS of
1974     // the conditional operator.
1975     uint64_t LHSScaledTrueCount = 0;
1976     if (TrueCount) {
1977       double LHSRatio =
1978           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1979       LHSScaledTrueCount = TrueCount * LHSRatio;
1980     }
1981 
1982     cond.begin(*this);
1983     EmitBlock(LHSBlock);
1984     incrementProfileCounter(CondOp);
1985     {
1986       ApplyDebugLocation DL(*this, Cond);
1987       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1988                            LHSScaledTrueCount, LH, CondOp);
1989     }
1990     cond.end(*this);
1991 
1992     cond.begin(*this);
1993     EmitBlock(RHSBlock);
1994     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1995                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1996     cond.end(*this);
1997 
1998     return;
1999   }
2000 
2001   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2002     // Conditional operator handling can give us a throw expression as a
2003     // condition for a case like:
2004     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2005     // Fold this to:
2006     //   br(c, throw x, br(y, t, f))
2007     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2008     return;
2009   }
2010 
2011   // Emit the code with the fully general case.
2012   llvm::Value *CondV;
2013   {
2014     ApplyDebugLocation DL(*this, Cond);
2015     CondV = EvaluateExprAsBool(Cond);
2016   }
2017 
2018   // If not at the top of the logical operator nest, update MCDC temp with the
2019   // boolean result of the evaluated condition.
2020   if (!MCDCLogOpStack.empty()) {
2021     const Expr *MCDCBaseExpr = Cond;
2022     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2023     // expression, MC/DC tracks the result of the ternary, and this is tied to
2024     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2025     // this is the case, the ConditionalOperator expression is passed through
2026     // the ConditionalOp parameter and then used as the MCDC base expression.
2027     if (ConditionalOp)
2028       MCDCBaseExpr = ConditionalOp;
2029 
2030     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2031   }
2032 
2033   llvm::MDNode *Weights = nullptr;
2034   llvm::MDNode *Unpredictable = nullptr;
2035 
2036   // If the branch has a condition wrapped by __builtin_unpredictable,
2037   // create metadata that specifies that the branch is unpredictable.
2038   // Don't bother if not optimizing because that metadata would not be used.
2039   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2040   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2041     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2042     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2043       llvm::MDBuilder MDHelper(getLLVMContext());
2044       Unpredictable = MDHelper.createUnpredictable();
2045     }
2046   }
2047 
2048   // If there is a Likelihood knowledge for the cond, lower it.
2049   // Note that if not optimizing this won't emit anything.
2050   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2051   if (CondV != NewCondV)
2052     CondV = NewCondV;
2053   else {
2054     // Otherwise, lower profile counts. Note that we do this even at -O0.
2055     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2056     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2057   }
2058 
2059   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2060 }
2061 
2062 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2063 /// specified stmt yet.
2064 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2065   CGM.ErrorUnsupported(S, Type);
2066 }
2067 
2068 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2069 /// variable-length array whose elements have a non-zero bit-pattern.
2070 ///
2071 /// \param baseType the inner-most element type of the array
2072 /// \param src - a char* pointing to the bit-pattern for a single
2073 /// base element of the array
2074 /// \param sizeInChars - the total size of the VLA, in chars
2075 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2076                                Address dest, Address src,
2077                                llvm::Value *sizeInChars) {
2078   CGBuilderTy &Builder = CGF.Builder;
2079 
2080   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2081   llvm::Value *baseSizeInChars
2082     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2083 
2084   Address begin = dest.withElementType(CGF.Int8Ty);
2085   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2086                                                begin.emitRawPointer(CGF),
2087                                                sizeInChars, "vla.end");
2088 
2089   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2090   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2091   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2092 
2093   // Make a loop over the VLA.  C99 guarantees that the VLA element
2094   // count must be nonzero.
2095   CGF.EmitBlock(loopBB);
2096 
2097   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2098   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2099 
2100   CharUnits curAlign =
2101     dest.getAlignment().alignmentOfArrayElement(baseSize);
2102 
2103   // memcpy the individual element bit-pattern.
2104   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2105                        /*volatile*/ false);
2106 
2107   // Go to the next element.
2108   llvm::Value *next =
2109     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2110 
2111   // Leave if that's the end of the VLA.
2112   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2113   Builder.CreateCondBr(done, contBB, loopBB);
2114   cur->addIncoming(next, loopBB);
2115 
2116   CGF.EmitBlock(contBB);
2117 }
2118 
2119 void
2120 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2121   // Ignore empty classes in C++.
2122   if (getLangOpts().CPlusPlus) {
2123     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2124       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2125         return;
2126     }
2127   }
2128 
2129   if (DestPtr.getElementType() != Int8Ty)
2130     DestPtr = DestPtr.withElementType(Int8Ty);
2131 
2132   // Get size and alignment info for this aggregate.
2133   CharUnits size = getContext().getTypeSizeInChars(Ty);
2134 
2135   llvm::Value *SizeVal;
2136   const VariableArrayType *vla;
2137 
2138   // Don't bother emitting a zero-byte memset.
2139   if (size.isZero()) {
2140     // But note that getTypeInfo returns 0 for a VLA.
2141     if (const VariableArrayType *vlaType =
2142           dyn_cast_or_null<VariableArrayType>(
2143                                           getContext().getAsArrayType(Ty))) {
2144       auto VlaSize = getVLASize(vlaType);
2145       SizeVal = VlaSize.NumElts;
2146       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2147       if (!eltSize.isOne())
2148         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2149       vla = vlaType;
2150     } else {
2151       return;
2152     }
2153   } else {
2154     SizeVal = CGM.getSize(size);
2155     vla = nullptr;
2156   }
2157 
2158   // If the type contains a pointer to data member we can't memset it to zero.
2159   // Instead, create a null constant and copy it to the destination.
2160   // TODO: there are other patterns besides zero that we can usefully memset,
2161   // like -1, which happens to be the pattern used by member-pointers.
2162   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2163     // For a VLA, emit a single element, then splat that over the VLA.
2164     if (vla) Ty = getContext().getBaseElementType(vla);
2165 
2166     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2167 
2168     llvm::GlobalVariable *NullVariable =
2169       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2170                                /*isConstant=*/true,
2171                                llvm::GlobalVariable::PrivateLinkage,
2172                                NullConstant, Twine());
2173     CharUnits NullAlign = DestPtr.getAlignment();
2174     NullVariable->setAlignment(NullAlign.getAsAlign());
2175     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2176 
2177     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2178 
2179     // Get and call the appropriate llvm.memcpy overload.
2180     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2181     return;
2182   }
2183 
2184   // Otherwise, just memset the whole thing to zero.  This is legal
2185   // because in LLVM, all default initializers (other than the ones we just
2186   // handled above) are guaranteed to have a bit pattern of all zeros.
2187   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2188 }
2189 
2190 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2191   // Make sure that there is a block for the indirect goto.
2192   if (!IndirectBranch)
2193     GetIndirectGotoBlock();
2194 
2195   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2196 
2197   // Make sure the indirect branch includes all of the address-taken blocks.
2198   IndirectBranch->addDestination(BB);
2199   return llvm::BlockAddress::get(CurFn, BB);
2200 }
2201 
2202 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2203   // If we already made the indirect branch for indirect goto, return its block.
2204   if (IndirectBranch) return IndirectBranch->getParent();
2205 
2206   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2207 
2208   // Create the PHI node that indirect gotos will add entries to.
2209   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2210                                               "indirect.goto.dest");
2211 
2212   // Create the indirect branch instruction.
2213   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2214   return IndirectBranch->getParent();
2215 }
2216 
2217 /// Computes the length of an array in elements, as well as the base
2218 /// element type and a properly-typed first element pointer.
2219 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2220                                               QualType &baseType,
2221                                               Address &addr) {
2222   const ArrayType *arrayType = origArrayType;
2223 
2224   // If it's a VLA, we have to load the stored size.  Note that
2225   // this is the size of the VLA in bytes, not its size in elements.
2226   llvm::Value *numVLAElements = nullptr;
2227   if (isa<VariableArrayType>(arrayType)) {
2228     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2229 
2230     // Walk into all VLAs.  This doesn't require changes to addr,
2231     // which has type T* where T is the first non-VLA element type.
2232     do {
2233       QualType elementType = arrayType->getElementType();
2234       arrayType = getContext().getAsArrayType(elementType);
2235 
2236       // If we only have VLA components, 'addr' requires no adjustment.
2237       if (!arrayType) {
2238         baseType = elementType;
2239         return numVLAElements;
2240       }
2241     } while (isa<VariableArrayType>(arrayType));
2242 
2243     // We get out here only if we find a constant array type
2244     // inside the VLA.
2245   }
2246 
2247   // We have some number of constant-length arrays, so addr should
2248   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2249   // down to the first element of addr.
2250   SmallVector<llvm::Value*, 8> gepIndices;
2251 
2252   // GEP down to the array type.
2253   llvm::ConstantInt *zero = Builder.getInt32(0);
2254   gepIndices.push_back(zero);
2255 
2256   uint64_t countFromCLAs = 1;
2257   QualType eltType;
2258 
2259   llvm::ArrayType *llvmArrayType =
2260     dyn_cast<llvm::ArrayType>(addr.getElementType());
2261   while (llvmArrayType) {
2262     assert(isa<ConstantArrayType>(arrayType));
2263     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2264            llvmArrayType->getNumElements());
2265 
2266     gepIndices.push_back(zero);
2267     countFromCLAs *= llvmArrayType->getNumElements();
2268     eltType = arrayType->getElementType();
2269 
2270     llvmArrayType =
2271       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2272     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2273     assert((!llvmArrayType || arrayType) &&
2274            "LLVM and Clang types are out-of-synch");
2275   }
2276 
2277   if (arrayType) {
2278     // From this point onwards, the Clang array type has been emitted
2279     // as some other type (probably a packed struct). Compute the array
2280     // size, and just emit the 'begin' expression as a bitcast.
2281     while (arrayType) {
2282       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2283       eltType = arrayType->getElementType();
2284       arrayType = getContext().getAsArrayType(eltType);
2285     }
2286 
2287     llvm::Type *baseType = ConvertType(eltType);
2288     addr = addr.withElementType(baseType);
2289   } else {
2290     // Create the actual GEP.
2291     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2292                                              addr.emitRawPointer(*this),
2293                                              gepIndices, "array.begin"),
2294                    ConvertTypeForMem(eltType), addr.getAlignment());
2295   }
2296 
2297   baseType = eltType;
2298 
2299   llvm::Value *numElements
2300     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2301 
2302   // If we had any VLA dimensions, factor them in.
2303   if (numVLAElements)
2304     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2305 
2306   return numElements;
2307 }
2308 
2309 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2310   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2311   assert(vla && "type was not a variable array type!");
2312   return getVLASize(vla);
2313 }
2314 
2315 CodeGenFunction::VlaSizePair
2316 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2317   // The number of elements so far; always size_t.
2318   llvm::Value *numElements = nullptr;
2319 
2320   QualType elementType;
2321   do {
2322     elementType = type->getElementType();
2323     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2324     assert(vlaSize && "no size for VLA!");
2325     assert(vlaSize->getType() == SizeTy);
2326 
2327     if (!numElements) {
2328       numElements = vlaSize;
2329     } else {
2330       // It's undefined behavior if this wraps around, so mark it that way.
2331       // FIXME: Teach -fsanitize=undefined to trap this.
2332       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2333     }
2334   } while ((type = getContext().getAsVariableArrayType(elementType)));
2335 
2336   return { numElements, elementType };
2337 }
2338 
2339 CodeGenFunction::VlaSizePair
2340 CodeGenFunction::getVLAElements1D(QualType type) {
2341   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2342   assert(vla && "type was not a variable array type!");
2343   return getVLAElements1D(vla);
2344 }
2345 
2346 CodeGenFunction::VlaSizePair
2347 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2348   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2349   assert(VlaSize && "no size for VLA!");
2350   assert(VlaSize->getType() == SizeTy);
2351   return { VlaSize, Vla->getElementType() };
2352 }
2353 
2354 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2355   assert(type->isVariablyModifiedType() &&
2356          "Must pass variably modified type to EmitVLASizes!");
2357 
2358   EnsureInsertPoint();
2359 
2360   // We're going to walk down into the type and look for VLA
2361   // expressions.
2362   do {
2363     assert(type->isVariablyModifiedType());
2364 
2365     const Type *ty = type.getTypePtr();
2366     switch (ty->getTypeClass()) {
2367 
2368 #define TYPE(Class, Base)
2369 #define ABSTRACT_TYPE(Class, Base)
2370 #define NON_CANONICAL_TYPE(Class, Base)
2371 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2372 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2373 #include "clang/AST/TypeNodes.inc"
2374       llvm_unreachable("unexpected dependent type!");
2375 
2376     // These types are never variably-modified.
2377     case Type::Builtin:
2378     case Type::Complex:
2379     case Type::Vector:
2380     case Type::ExtVector:
2381     case Type::ConstantMatrix:
2382     case Type::Record:
2383     case Type::Enum:
2384     case Type::Using:
2385     case Type::TemplateSpecialization:
2386     case Type::ObjCTypeParam:
2387     case Type::ObjCObject:
2388     case Type::ObjCInterface:
2389     case Type::ObjCObjectPointer:
2390     case Type::BitInt:
2391       llvm_unreachable("type class is never variably-modified!");
2392 
2393     case Type::Elaborated:
2394       type = cast<ElaboratedType>(ty)->getNamedType();
2395       break;
2396 
2397     case Type::Adjusted:
2398       type = cast<AdjustedType>(ty)->getAdjustedType();
2399       break;
2400 
2401     case Type::Decayed:
2402       type = cast<DecayedType>(ty)->getPointeeType();
2403       break;
2404 
2405     case Type::Pointer:
2406       type = cast<PointerType>(ty)->getPointeeType();
2407       break;
2408 
2409     case Type::BlockPointer:
2410       type = cast<BlockPointerType>(ty)->getPointeeType();
2411       break;
2412 
2413     case Type::LValueReference:
2414     case Type::RValueReference:
2415       type = cast<ReferenceType>(ty)->getPointeeType();
2416       break;
2417 
2418     case Type::MemberPointer:
2419       type = cast<MemberPointerType>(ty)->getPointeeType();
2420       break;
2421 
2422     case Type::ArrayParameter:
2423     case Type::ConstantArray:
2424     case Type::IncompleteArray:
2425       // Losing element qualification here is fine.
2426       type = cast<ArrayType>(ty)->getElementType();
2427       break;
2428 
2429     case Type::VariableArray: {
2430       // Losing element qualification here is fine.
2431       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2432 
2433       // Unknown size indication requires no size computation.
2434       // Otherwise, evaluate and record it.
2435       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2436         // It's possible that we might have emitted this already,
2437         // e.g. with a typedef and a pointer to it.
2438         llvm::Value *&entry = VLASizeMap[sizeExpr];
2439         if (!entry) {
2440           llvm::Value *size = EmitScalarExpr(sizeExpr);
2441 
2442           // C11 6.7.6.2p5:
2443           //   If the size is an expression that is not an integer constant
2444           //   expression [...] each time it is evaluated it shall have a value
2445           //   greater than zero.
2446           if (SanOpts.has(SanitizerKind::VLABound)) {
2447             SanitizerScope SanScope(this);
2448             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2449             clang::QualType SEType = sizeExpr->getType();
2450             llvm::Value *CheckCondition =
2451                 SEType->isSignedIntegerType()
2452                     ? Builder.CreateICmpSGT(size, Zero)
2453                     : Builder.CreateICmpUGT(size, Zero);
2454             llvm::Constant *StaticArgs[] = {
2455                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2456                 EmitCheckTypeDescriptor(SEType)};
2457             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2458                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2459           }
2460 
2461           // Always zexting here would be wrong if it weren't
2462           // undefined behavior to have a negative bound.
2463           // FIXME: What about when size's type is larger than size_t?
2464           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2465         }
2466       }
2467       type = vat->getElementType();
2468       break;
2469     }
2470 
2471     case Type::FunctionProto:
2472     case Type::FunctionNoProto:
2473       type = cast<FunctionType>(ty)->getReturnType();
2474       break;
2475 
2476     case Type::Paren:
2477     case Type::TypeOf:
2478     case Type::UnaryTransform:
2479     case Type::Attributed:
2480     case Type::BTFTagAttributed:
2481     case Type::SubstTemplateTypeParm:
2482     case Type::MacroQualified:
2483     case Type::CountAttributed:
2484       // Keep walking after single level desugaring.
2485       type = type.getSingleStepDesugaredType(getContext());
2486       break;
2487 
2488     case Type::Typedef:
2489     case Type::Decltype:
2490     case Type::Auto:
2491     case Type::DeducedTemplateSpecialization:
2492     case Type::PackIndexing:
2493       // Stop walking: nothing to do.
2494       return;
2495 
2496     case Type::TypeOfExpr:
2497       // Stop walking: emit typeof expression.
2498       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2499       return;
2500 
2501     case Type::Atomic:
2502       type = cast<AtomicType>(ty)->getValueType();
2503       break;
2504 
2505     case Type::Pipe:
2506       type = cast<PipeType>(ty)->getElementType();
2507       break;
2508     }
2509   } while (type->isVariablyModifiedType());
2510 }
2511 
2512 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2513   if (getContext().getBuiltinVaListType()->isArrayType())
2514     return EmitPointerWithAlignment(E);
2515   return EmitLValue(E).getAddress();
2516 }
2517 
2518 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2519   return EmitLValue(E).getAddress();
2520 }
2521 
2522 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2523                                               const APValue &Init) {
2524   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2525   if (CGDebugInfo *Dbg = getDebugInfo())
2526     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2527       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2528 }
2529 
2530 CodeGenFunction::PeepholeProtection
2531 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2532   // At the moment, the only aggressive peephole we do in IR gen
2533   // is trunc(zext) folding, but if we add more, we can easily
2534   // extend this protection.
2535 
2536   if (!rvalue.isScalar()) return PeepholeProtection();
2537   llvm::Value *value = rvalue.getScalarVal();
2538   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2539 
2540   // Just make an extra bitcast.
2541   assert(HaveInsertPoint());
2542   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2543                                                   Builder.GetInsertBlock());
2544 
2545   PeepholeProtection protection;
2546   protection.Inst = inst;
2547   return protection;
2548 }
2549 
2550 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2551   if (!protection.Inst) return;
2552 
2553   // In theory, we could try to duplicate the peepholes now, but whatever.
2554   protection.Inst->eraseFromParent();
2555 }
2556 
2557 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2558                                               QualType Ty, SourceLocation Loc,
2559                                               SourceLocation AssumptionLoc,
2560                                               llvm::Value *Alignment,
2561                                               llvm::Value *OffsetValue) {
2562   if (Alignment->getType() != IntPtrTy)
2563     Alignment =
2564         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2565   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2566     OffsetValue =
2567         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2568   llvm::Value *TheCheck = nullptr;
2569   if (SanOpts.has(SanitizerKind::Alignment)) {
2570     llvm::Value *PtrIntValue =
2571         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2572 
2573     if (OffsetValue) {
2574       bool IsOffsetZero = false;
2575       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2576         IsOffsetZero = CI->isZero();
2577 
2578       if (!IsOffsetZero)
2579         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2580     }
2581 
2582     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2583     llvm::Value *Mask =
2584         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2585     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2586     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2587   }
2588   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2589       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2590 
2591   if (!SanOpts.has(SanitizerKind::Alignment))
2592     return;
2593   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2594                                OffsetValue, TheCheck, Assumption);
2595 }
2596 
2597 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2598                                               const Expr *E,
2599                                               SourceLocation AssumptionLoc,
2600                                               llvm::Value *Alignment,
2601                                               llvm::Value *OffsetValue) {
2602   QualType Ty = E->getType();
2603   SourceLocation Loc = E->getExprLoc();
2604 
2605   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2606                           OffsetValue);
2607 }
2608 
2609 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2610                                                  llvm::Value *AnnotatedVal,
2611                                                  StringRef AnnotationStr,
2612                                                  SourceLocation Location,
2613                                                  const AnnotateAttr *Attr) {
2614   SmallVector<llvm::Value *, 5> Args = {
2615       AnnotatedVal,
2616       CGM.EmitAnnotationString(AnnotationStr),
2617       CGM.EmitAnnotationUnit(Location),
2618       CGM.EmitAnnotationLineNo(Location),
2619   };
2620   if (Attr)
2621     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2622   return Builder.CreateCall(AnnotationFn, Args);
2623 }
2624 
2625 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2626   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2627   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2628     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2629                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2630                        V, I->getAnnotation(), D->getLocation(), I);
2631 }
2632 
2633 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2634                                               Address Addr) {
2635   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2636   llvm::Value *V = Addr.emitRawPointer(*this);
2637   llvm::Type *VTy = V->getType();
2638   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2639   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2640   llvm::PointerType *IntrinTy =
2641       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2642   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2643                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2644 
2645   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2646     // FIXME Always emit the cast inst so we can differentiate between
2647     // annotation on the first field of a struct and annotation on the struct
2648     // itself.
2649     if (VTy != IntrinTy)
2650       V = Builder.CreateBitCast(V, IntrinTy);
2651     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2652     V = Builder.CreateBitCast(V, VTy);
2653   }
2654 
2655   return Address(V, Addr.getElementType(), Addr.getAlignment());
2656 }
2657 
2658 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2659 
2660 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2661     : CGF(CGF) {
2662   assert(!CGF->IsSanitizerScope);
2663   CGF->IsSanitizerScope = true;
2664 }
2665 
2666 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2667   CGF->IsSanitizerScope = false;
2668 }
2669 
2670 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2671                                    const llvm::Twine &Name,
2672                                    llvm::BasicBlock::iterator InsertPt) const {
2673   LoopStack.InsertHelper(I);
2674   if (IsSanitizerScope)
2675     I->setNoSanitizeMetadata();
2676 }
2677 
2678 void CGBuilderInserter::InsertHelper(
2679     llvm::Instruction *I, const llvm::Twine &Name,
2680     llvm::BasicBlock::iterator InsertPt) const {
2681   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2682   if (CGF)
2683     CGF->InsertHelper(I, Name, InsertPt);
2684 }
2685 
2686 // Emits an error if we don't have a valid set of target features for the
2687 // called function.
2688 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2689                                           const FunctionDecl *TargetDecl) {
2690   // SemaChecking cannot handle below x86 builtins because they have different
2691   // parameter ranges with different TargetAttribute of caller.
2692   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2693     unsigned BuiltinID = TargetDecl->getBuiltinID();
2694     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2695         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2696         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2697         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2698       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2699       llvm::StringMap<bool> TargetFetureMap;
2700       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2701       llvm::APSInt Result =
2702           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2703       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2704         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2705             << TargetDecl->getDeclName() << "avx";
2706     }
2707   }
2708   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2709 }
2710 
2711 // Emits an error if we don't have a valid set of target features for the
2712 // called function.
2713 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2714                                           const FunctionDecl *TargetDecl) {
2715   // Early exit if this is an indirect call.
2716   if (!TargetDecl)
2717     return;
2718 
2719   // Get the current enclosing function if it exists. If it doesn't
2720   // we can't check the target features anyhow.
2721   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2722   if (!FD)
2723     return;
2724 
2725   // Grab the required features for the call. For a builtin this is listed in
2726   // the td file with the default cpu, for an always_inline function this is any
2727   // listed cpu and any listed features.
2728   unsigned BuiltinID = TargetDecl->getBuiltinID();
2729   std::string MissingFeature;
2730   llvm::StringMap<bool> CallerFeatureMap;
2731   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2732   // When compiling in HipStdPar mode we have to be conservative in rejecting
2733   // target specific features in the FE, and defer the possible error to the
2734   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2735   // referenced by an accelerator executable function, we emit an error.
2736   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2737   if (BuiltinID) {
2738     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2739     if (!Builtin::evaluateRequiredTargetFeatures(
2740         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2741       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2742           << TargetDecl->getDeclName()
2743           << FeatureList;
2744     }
2745   } else if (!TargetDecl->isMultiVersion() &&
2746              TargetDecl->hasAttr<TargetAttr>()) {
2747     // Get the required features for the callee.
2748 
2749     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2750     ParsedTargetAttr ParsedAttr =
2751         CGM.getContext().filterFunctionTargetAttrs(TD);
2752 
2753     SmallVector<StringRef, 1> ReqFeatures;
2754     llvm::StringMap<bool> CalleeFeatureMap;
2755     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2756 
2757     for (const auto &F : ParsedAttr.Features) {
2758       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2759         ReqFeatures.push_back(StringRef(F).substr(1));
2760     }
2761 
2762     for (const auto &F : CalleeFeatureMap) {
2763       // Only positive features are "required".
2764       if (F.getValue())
2765         ReqFeatures.push_back(F.getKey());
2766     }
2767     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2768       if (!CallerFeatureMap.lookup(Feature)) {
2769         MissingFeature = Feature.str();
2770         return false;
2771       }
2772       return true;
2773     }) && !IsHipStdPar)
2774       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2775           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2776   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2777     llvm::StringMap<bool> CalleeFeatureMap;
2778     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2779 
2780     for (const auto &F : CalleeFeatureMap) {
2781       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2782                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2783           !IsHipStdPar)
2784         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2785             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2786     }
2787   }
2788 }
2789 
2790 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2791   if (!CGM.getCodeGenOpts().SanitizeStats)
2792     return;
2793 
2794   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2795   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2796   CGM.getSanStats().create(IRB, SSK);
2797 }
2798 
2799 void CodeGenFunction::EmitKCFIOperandBundle(
2800     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2801   const FunctionProtoType *FP =
2802       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2803   if (FP)
2804     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2805 }
2806 
2807 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2808     const MultiVersionResolverOption &RO) {
2809   llvm::SmallVector<StringRef, 8> CondFeatures;
2810   for (const StringRef &Feature : RO.Conditions.Features)
2811     CondFeatures.push_back(Feature);
2812   if (!CondFeatures.empty()) {
2813     return EmitAArch64CpuSupports(CondFeatures);
2814   }
2815   return nullptr;
2816 }
2817 
2818 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2819     const MultiVersionResolverOption &RO) {
2820   llvm::Value *Condition = nullptr;
2821 
2822   if (!RO.Conditions.Architecture.empty()) {
2823     StringRef Arch = RO.Conditions.Architecture;
2824     // If arch= specifies an x86-64 micro-architecture level, test the feature
2825     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2826     if (Arch.starts_with("x86-64"))
2827       Condition = EmitX86CpuSupports({Arch});
2828     else
2829       Condition = EmitX86CpuIs(Arch);
2830   }
2831 
2832   if (!RO.Conditions.Features.empty()) {
2833     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2834     Condition =
2835         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2836   }
2837   return Condition;
2838 }
2839 
2840 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2841                                              llvm::Function *Resolver,
2842                                              CGBuilderTy &Builder,
2843                                              llvm::Function *FuncToReturn,
2844                                              bool SupportsIFunc) {
2845   if (SupportsIFunc) {
2846     Builder.CreateRet(FuncToReturn);
2847     return;
2848   }
2849 
2850   llvm::SmallVector<llvm::Value *, 10> Args(
2851       llvm::make_pointer_range(Resolver->args()));
2852 
2853   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2854   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2855 
2856   if (Resolver->getReturnType()->isVoidTy())
2857     Builder.CreateRetVoid();
2858   else
2859     Builder.CreateRet(Result);
2860 }
2861 
2862 void CodeGenFunction::EmitMultiVersionResolver(
2863     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2864 
2865   llvm::Triple::ArchType ArchType =
2866       getContext().getTargetInfo().getTriple().getArch();
2867 
2868   switch (ArchType) {
2869   case llvm::Triple::x86:
2870   case llvm::Triple::x86_64:
2871     EmitX86MultiVersionResolver(Resolver, Options);
2872     return;
2873   case llvm::Triple::aarch64:
2874     EmitAArch64MultiVersionResolver(Resolver, Options);
2875     return;
2876 
2877   default:
2878     assert(false && "Only implemented for x86 and AArch64 targets");
2879   }
2880 }
2881 
2882 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2883     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2884   assert(!Options.empty() && "No multiversion resolver options found");
2885   assert(Options.back().Conditions.Features.size() == 0 &&
2886          "Default case must be last");
2887   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2888   assert(SupportsIFunc &&
2889          "Multiversion resolver requires target IFUNC support");
2890   bool AArch64CpuInitialized = false;
2891   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2892 
2893   for (const MultiVersionResolverOption &RO : Options) {
2894     Builder.SetInsertPoint(CurBlock);
2895     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2896 
2897     // The 'default' or 'all features enabled' case.
2898     if (!Condition) {
2899       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2900                                        SupportsIFunc);
2901       return;
2902     }
2903 
2904     if (!AArch64CpuInitialized) {
2905       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2906       EmitAArch64CpuInit();
2907       AArch64CpuInitialized = true;
2908       Builder.SetInsertPoint(CurBlock);
2909     }
2910 
2911     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2912     CGBuilderTy RetBuilder(*this, RetBlock);
2913     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2914                                      SupportsIFunc);
2915     CurBlock = createBasicBlock("resolver_else", Resolver);
2916     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2917   }
2918 
2919   // If no default, emit an unreachable.
2920   Builder.SetInsertPoint(CurBlock);
2921   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2922   TrapCall->setDoesNotReturn();
2923   TrapCall->setDoesNotThrow();
2924   Builder.CreateUnreachable();
2925   Builder.ClearInsertionPoint();
2926 }
2927 
2928 void CodeGenFunction::EmitX86MultiVersionResolver(
2929     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2930 
2931   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2932 
2933   // Main function's basic block.
2934   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2935   Builder.SetInsertPoint(CurBlock);
2936   EmitX86CpuInit();
2937 
2938   for (const MultiVersionResolverOption &RO : Options) {
2939     Builder.SetInsertPoint(CurBlock);
2940     llvm::Value *Condition = FormX86ResolverCondition(RO);
2941 
2942     // The 'default' or 'generic' case.
2943     if (!Condition) {
2944       assert(&RO == Options.end() - 1 &&
2945              "Default or Generic case must be last");
2946       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2947                                        SupportsIFunc);
2948       return;
2949     }
2950 
2951     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2952     CGBuilderTy RetBuilder(*this, RetBlock);
2953     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2954                                      SupportsIFunc);
2955     CurBlock = createBasicBlock("resolver_else", Resolver);
2956     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2957   }
2958 
2959   // If no generic/default, emit an unreachable.
2960   Builder.SetInsertPoint(CurBlock);
2961   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2962   TrapCall->setDoesNotReturn();
2963   TrapCall->setDoesNotThrow();
2964   Builder.CreateUnreachable();
2965   Builder.ClearInsertionPoint();
2966 }
2967 
2968 // Loc - where the diagnostic will point, where in the source code this
2969 //  alignment has failed.
2970 // SecondaryLoc - if present (will be present if sufficiently different from
2971 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2972 //  It should be the location where the __attribute__((assume_aligned))
2973 //  was written e.g.
2974 void CodeGenFunction::emitAlignmentAssumptionCheck(
2975     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2976     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2977     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2978     llvm::Instruction *Assumption) {
2979   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2980          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2981              llvm::Intrinsic::getDeclaration(
2982                  Builder.GetInsertBlock()->getParent()->getParent(),
2983                  llvm::Intrinsic::assume) &&
2984          "Assumption should be a call to llvm.assume().");
2985   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2986          "Assumption should be the last instruction of the basic block, "
2987          "since the basic block is still being generated.");
2988 
2989   if (!SanOpts.has(SanitizerKind::Alignment))
2990     return;
2991 
2992   // Don't check pointers to volatile data. The behavior here is implementation-
2993   // defined.
2994   if (Ty->getPointeeType().isVolatileQualified())
2995     return;
2996 
2997   // We need to temorairly remove the assumption so we can insert the
2998   // sanitizer check before it, else the check will be dropped by optimizations.
2999   Assumption->removeFromParent();
3000 
3001   {
3002     SanitizerScope SanScope(this);
3003 
3004     if (!OffsetValue)
3005       OffsetValue = Builder.getInt1(false); // no offset.
3006 
3007     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3008                                     EmitCheckSourceLocation(SecondaryLoc),
3009                                     EmitCheckTypeDescriptor(Ty)};
3010     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3011                                   EmitCheckValue(Alignment),
3012                                   EmitCheckValue(OffsetValue)};
3013     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3014               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3015   }
3016 
3017   // We are now in the (new, empty) "cont" basic block.
3018   // Reintroduce the assumption.
3019   Builder.Insert(Assumption);
3020   // FIXME: Assumption still has it's original basic block as it's Parent.
3021 }
3022 
3023 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3024   if (CGDebugInfo *DI = getDebugInfo())
3025     return DI->SourceLocToDebugLoc(Location);
3026 
3027   return llvm::DebugLoc();
3028 }
3029 
3030 llvm::Value *
3031 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3032                                                       Stmt::Likelihood LH) {
3033   switch (LH) {
3034   case Stmt::LH_None:
3035     return Cond;
3036   case Stmt::LH_Likely:
3037   case Stmt::LH_Unlikely:
3038     // Don't generate llvm.expect on -O0 as the backend won't use it for
3039     // anything.
3040     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3041       return Cond;
3042     llvm::Type *CondTy = Cond->getType();
3043     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3044     llvm::Function *FnExpect =
3045         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3046     llvm::Value *ExpectedValueOfCond =
3047         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3048     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3049                               Cond->getName() + ".expval");
3050   }
3051   llvm_unreachable("Unknown Likelihood");
3052 }
3053 
3054 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3055                                                     unsigned NumElementsDst,
3056                                                     const llvm::Twine &Name) {
3057   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3058   unsigned NumElementsSrc = SrcTy->getNumElements();
3059   if (NumElementsSrc == NumElementsDst)
3060     return SrcVec;
3061 
3062   std::vector<int> ShuffleMask(NumElementsDst, -1);
3063   for (unsigned MaskIdx = 0;
3064        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3065     ShuffleMask[MaskIdx] = MaskIdx;
3066 
3067   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3068 }
3069 
3070 void CodeGenFunction::EmitPointerAuthOperandBundle(
3071     const CGPointerAuthInfo &PointerAuth,
3072     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3073   if (!PointerAuth.isSigned())
3074     return;
3075 
3076   auto *Key = Builder.getInt32(PointerAuth.getKey());
3077 
3078   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3079   if (!Discriminator)
3080     Discriminator = Builder.getSize(0);
3081 
3082   llvm::Value *Args[] = {Key, Discriminator};
3083   Bundles.emplace_back("ptrauth", Args);
3084 }
3085 
3086 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3087                                           const CGPointerAuthInfo &PointerAuth,
3088                                           llvm::Value *Pointer,
3089                                           unsigned IntrinsicID) {
3090   if (!PointerAuth)
3091     return Pointer;
3092 
3093   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3094 
3095   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3096   if (!Discriminator) {
3097     Discriminator = CGF.Builder.getSize(0);
3098   }
3099 
3100   // Convert the pointer to intptr_t before signing it.
3101   auto OrigType = Pointer->getType();
3102   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3103 
3104   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3105   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3106   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3107 
3108   // Convert back to the original type.
3109   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3110   return Pointer;
3111 }
3112 
3113 llvm::Value *
3114 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3115                                      llvm::Value *Pointer) {
3116   if (!PointerAuth.shouldSign())
3117     return Pointer;
3118   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3119                                llvm::Intrinsic::ptrauth_sign);
3120 }
3121 
3122 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3123                               const CGPointerAuthInfo &PointerAuth,
3124                               llvm::Value *Pointer) {
3125   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3126 
3127   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3128   // Convert the pointer to intptr_t before signing it.
3129   auto OrigType = Pointer->getType();
3130   Pointer = CGF.EmitRuntimeCall(
3131       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3132   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3133 }
3134 
3135 llvm::Value *
3136 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3137                                      llvm::Value *Pointer) {
3138   if (PointerAuth.shouldStrip()) {
3139     return EmitStrip(*this, PointerAuth, Pointer);
3140   }
3141   if (!PointerAuth.shouldAuth()) {
3142     return Pointer;
3143   }
3144 
3145   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3146                                llvm::Intrinsic::ptrauth_auth);
3147 }
3148