1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (const auto &R : DeferredReplacements) { 456 if (llvm::Value *Old = R.first) { 457 Old->replaceAllUsesWith(R.second); 458 cast<llvm::Instruction>(Old)->eraseFromParent(); 459 } 460 } 461 DeferredReplacements.clear(); 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 497 498 // Add vscale attribute if appropriate. 499 if (getLangOpts().ArmSveVectorBits) { 500 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 501 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 502 VScale, VScale)); 503 } 504 505 // If we generated an unreachable return block, delete it now. 506 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 507 Builder.ClearInsertionPoint(); 508 ReturnBlock.getBlock()->eraseFromParent(); 509 } 510 if (ReturnValue.isValid()) { 511 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 512 if (RetAlloca && RetAlloca->use_empty()) { 513 RetAlloca->eraseFromParent(); 514 ReturnValue = Address::invalid(); 515 } 516 } 517 } 518 519 /// ShouldInstrumentFunction - Return true if the current function should be 520 /// instrumented with __cyg_profile_func_* calls 521 bool CodeGenFunction::ShouldInstrumentFunction() { 522 if (!CGM.getCodeGenOpts().InstrumentFunctions && 523 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 524 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 525 return false; 526 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 527 return false; 528 return true; 529 } 530 531 /// ShouldXRayInstrument - Return true if the current function should be 532 /// instrumented with XRay nop sleds. 533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 535 } 536 537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Custom); 544 } 545 546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 547 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 548 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 549 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 550 XRayInstrKind::Typed); 551 } 552 553 llvm::Constant * 554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 555 llvm::Constant *Addr) { 556 // Addresses stored in prologue data can't require run-time fixups and must 557 // be PC-relative. Run-time fixups are undesirable because they necessitate 558 // writable text segments, which are unsafe. And absolute addresses are 559 // undesirable because they break PIE mode. 560 561 // Add a layer of indirection through a private global. Taking its address 562 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 563 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 564 /*isConstant=*/true, 565 llvm::GlobalValue::PrivateLinkage, Addr); 566 567 // Create a PC-relative address. 568 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 569 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 570 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 571 return (IntPtrTy == Int32Ty) 572 ? PCRelAsInt 573 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 574 } 575 576 llvm::Value * 577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 578 llvm::Value *EncodedAddr) { 579 // Reconstruct the address of the global. 580 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 581 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 582 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 583 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 584 585 // Load the original pointer through the global. 586 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 587 "decoded_addr"); 588 } 589 590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 591 llvm::Function *Fn) 592 { 593 if (!FD->hasAttr<OpenCLKernelAttr>()) 594 return; 595 596 llvm::LLVMContext &Context = getLLVMContext(); 597 598 CGM.GenOpenCLArgMetadata(Fn, FD, this); 599 600 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 601 QualType HintQTy = A->getTypeHint(); 602 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 603 bool IsSignedInteger = 604 HintQTy->isSignedIntegerType() || 605 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 606 llvm::Metadata *AttrMDArgs[] = { 607 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 608 CGM.getTypes().ConvertType(A->getTypeHint()))), 609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 610 llvm::IntegerType::get(Context, 32), 611 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 612 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 613 } 614 615 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 620 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 621 } 622 623 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 624 llvm::Metadata *AttrMDArgs[] = { 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 628 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 629 } 630 631 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 632 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 635 Fn->setMetadata("intel_reqd_sub_group_size", 636 llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 } 639 640 /// Determine whether the function F ends with a return stmt. 641 static bool endsWithReturn(const Decl* F) { 642 const Stmt *Body = nullptr; 643 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 644 Body = FD->getBody(); 645 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 646 Body = OMD->getBody(); 647 648 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 649 auto LastStmt = CS->body_rbegin(); 650 if (LastStmt != CS->body_rend()) 651 return isa<ReturnStmt>(*LastStmt); 652 } 653 return false; 654 } 655 656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 657 if (SanOpts.has(SanitizerKind::Thread)) { 658 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 659 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 660 } 661 } 662 663 /// Check if the return value of this function requires sanitization. 664 bool CodeGenFunction::requiresReturnValueCheck() const { 665 return requiresReturnValueNullabilityCheck() || 666 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 667 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 668 } 669 670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 671 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 672 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 673 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 674 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 675 return false; 676 677 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 678 return false; 679 680 if (MD->getNumParams() == 2) { 681 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 682 if (!PT || !PT->isVoidPointerType() || 683 !PT->getPointeeType().isConstQualified()) 684 return false; 685 } 686 687 return true; 688 } 689 690 /// Return the UBSan prologue signature for \p FD if one is available. 691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 692 const FunctionDecl *FD) { 693 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 694 if (!MD->isStatic()) 695 return nullptr; 696 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 697 } 698 699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 700 llvm::Function *Fn, 701 const CGFunctionInfo &FnInfo, 702 const FunctionArgList &Args, 703 SourceLocation Loc, 704 SourceLocation StartLoc) { 705 assert(!CurFn && 706 "Do not use a CodeGenFunction object for more than one function"); 707 708 const Decl *D = GD.getDecl(); 709 710 DidCallStackSave = false; 711 CurCodeDecl = D; 712 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 713 if (FD->usesSEHTry()) 714 CurSEHParent = FD; 715 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 716 FnRetTy = RetTy; 717 CurFn = Fn; 718 CurFnInfo = &FnInfo; 719 assert(CurFn->isDeclaration() && "Function already has body?"); 720 721 // If this function is ignored for any of the enabled sanitizers, 722 // disable the sanitizer for the function. 723 do { 724 #define SANITIZER(NAME, ID) \ 725 if (SanOpts.empty()) \ 726 break; \ 727 if (SanOpts.has(SanitizerKind::ID)) \ 728 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 729 SanOpts.set(SanitizerKind::ID, false); 730 731 #include "clang/Basic/Sanitizers.def" 732 #undef SANITIZER 733 } while (0); 734 735 if (D) { 736 // Apply the no_sanitize* attributes to SanOpts. 737 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 738 SanitizerMask mask = Attr->getMask(); 739 SanOpts.Mask &= ~mask; 740 if (mask & SanitizerKind::Address) 741 SanOpts.set(SanitizerKind::KernelAddress, false); 742 if (mask & SanitizerKind::KernelAddress) 743 SanOpts.set(SanitizerKind::Address, false); 744 if (mask & SanitizerKind::HWAddress) 745 SanOpts.set(SanitizerKind::KernelHWAddress, false); 746 if (mask & SanitizerKind::KernelHWAddress) 747 SanOpts.set(SanitizerKind::HWAddress, false); 748 } 749 } 750 751 // Apply sanitizer attributes to the function. 752 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 754 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 756 if (SanOpts.has(SanitizerKind::MemTag)) 757 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 758 if (SanOpts.has(SanitizerKind::Thread)) 759 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 760 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 761 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 762 if (SanOpts.has(SanitizerKind::SafeStack)) 763 Fn->addFnAttr(llvm::Attribute::SafeStack); 764 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 765 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 766 767 // Apply fuzzing attribute to the function. 768 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 769 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 770 771 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 772 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 773 if (SanOpts.has(SanitizerKind::Thread)) { 774 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 775 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 776 if (OMD->getMethodFamily() == OMF_dealloc || 777 OMD->getMethodFamily() == OMF_initialize || 778 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 779 markAsIgnoreThreadCheckingAtRuntime(Fn); 780 } 781 } 782 } 783 784 // Ignore unrelated casts in STL allocate() since the allocator must cast 785 // from void* to T* before object initialization completes. Don't match on the 786 // namespace because not all allocators are in std:: 787 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 788 if (matchesStlAllocatorFn(D, getContext())) 789 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 790 } 791 792 // Ignore null checks in coroutine functions since the coroutines passes 793 // are not aware of how to move the extra UBSan instructions across the split 794 // coroutine boundaries. 795 if (D && SanOpts.has(SanitizerKind::Null)) 796 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 797 if (FD->getBody() && 798 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 799 SanOpts.Mask &= ~SanitizerKind::Null; 800 801 // Apply xray attributes to the function (as a string, for now) 802 bool AlwaysXRayAttr = false; 803 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 804 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 805 XRayInstrKind::FunctionEntry) || 806 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 807 XRayInstrKind::FunctionExit)) { 808 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 809 Fn->addFnAttr("function-instrument", "xray-always"); 810 AlwaysXRayAttr = true; 811 } 812 if (XRayAttr->neverXRayInstrument()) 813 Fn->addFnAttr("function-instrument", "xray-never"); 814 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 815 if (ShouldXRayInstrumentFunction()) 816 Fn->addFnAttr("xray-log-args", 817 llvm::utostr(LogArgs->getArgumentCount())); 818 } 819 } else { 820 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 821 Fn->addFnAttr( 822 "xray-instruction-threshold", 823 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 824 } 825 826 if (ShouldXRayInstrumentFunction()) { 827 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 828 Fn->addFnAttr("xray-ignore-loops"); 829 830 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 831 XRayInstrKind::FunctionExit)) 832 Fn->addFnAttr("xray-skip-exit"); 833 834 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 835 XRayInstrKind::FunctionEntry)) 836 Fn->addFnAttr("xray-skip-entry"); 837 838 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 839 if (FuncGroups > 1) { 840 auto FuncName = llvm::makeArrayRef<uint8_t>( 841 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 842 auto Group = crc32(FuncName) % FuncGroups; 843 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 844 !AlwaysXRayAttr) 845 Fn->addFnAttr("function-instrument", "xray-never"); 846 } 847 } 848 849 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 850 if (CGM.isProfileInstrExcluded(Fn, Loc)) 851 Fn->addFnAttr(llvm::Attribute::NoProfile); 852 853 unsigned Count, Offset; 854 if (const auto *Attr = 855 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 856 Count = Attr->getCount(); 857 Offset = Attr->getOffset(); 858 } else { 859 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 860 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 861 } 862 if (Count && Offset <= Count) { 863 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 864 if (Offset) 865 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 866 } 867 868 // Add no-jump-tables value. 869 if (CGM.getCodeGenOpts().NoUseJumpTables) 870 Fn->addFnAttr("no-jump-tables", "true"); 871 872 // Add no-inline-line-tables value. 873 if (CGM.getCodeGenOpts().NoInlineLineTables) 874 Fn->addFnAttr("no-inline-line-tables"); 875 876 // Add profile-sample-accurate value. 877 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 878 Fn->addFnAttr("profile-sample-accurate"); 879 880 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 881 Fn->addFnAttr("use-sample-profile"); 882 883 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 884 Fn->addFnAttr("cfi-canonical-jump-table"); 885 886 if (getLangOpts().OpenCL) { 887 // Add metadata for a kernel function. 888 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 889 EmitOpenCLKernelMetadata(FD, Fn); 890 } 891 892 // If we are checking function types, emit a function type signature as 893 // prologue data. 894 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 895 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 896 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 897 // Remove any (C++17) exception specifications, to allow calling e.g. a 898 // noexcept function through a non-noexcept pointer. 899 auto ProtoTy = 900 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 901 EST_None); 902 llvm::Constant *FTRTTIConst = 903 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 904 llvm::Constant *FTRTTIConstEncoded = 905 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 906 llvm::Constant *PrologueStructElems[] = {PrologueSig, 907 FTRTTIConstEncoded}; 908 llvm::Constant *PrologueStructConst = 909 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 910 Fn->setPrologueData(PrologueStructConst); 911 } 912 } 913 } 914 915 // If we're checking nullability, we need to know whether we can check the 916 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 917 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 918 auto Nullability = FnRetTy->getNullability(getContext()); 919 if (Nullability && *Nullability == NullabilityKind::NonNull) { 920 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 921 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 922 RetValNullabilityPrecondition = 923 llvm::ConstantInt::getTrue(getLLVMContext()); 924 } 925 } 926 927 // If we're in C++ mode and the function name is "main", it is guaranteed 928 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 929 // used within a program"). 930 // 931 // OpenCL C 2.0 v2.2-11 s6.9.i: 932 // Recursion is not supported. 933 // 934 // SYCL v1.2.1 s3.10: 935 // kernels cannot include RTTI information, exception classes, 936 // recursive code, virtual functions or make use of C++ libraries that 937 // are not compiled for the device. 938 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 939 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 940 getLangOpts().SYCLIsDevice || 941 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 942 Fn->addFnAttr(llvm::Attribute::NoRecurse); 943 } 944 945 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 946 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 947 if (FD->hasAttr<StrictFPAttr>()) 948 Fn->addFnAttr(llvm::Attribute::StrictFP); 949 } 950 951 // If a custom alignment is used, force realigning to this alignment on 952 // any main function which certainly will need it. 953 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 954 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 955 CGM.getCodeGenOpts().StackAlignment) 956 Fn->addFnAttr("stackrealign"); 957 958 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 959 960 // Create a marker to make it easy to insert allocas into the entryblock 961 // later. Don't create this with the builder, because we don't want it 962 // folded. 963 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 964 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 965 966 ReturnBlock = getJumpDestInCurrentScope("return"); 967 968 Builder.SetInsertPoint(EntryBB); 969 970 // If we're checking the return value, allocate space for a pointer to a 971 // precise source location of the checked return statement. 972 if (requiresReturnValueCheck()) { 973 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 974 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 975 } 976 977 // Emit subprogram debug descriptor. 978 if (CGDebugInfo *DI = getDebugInfo()) { 979 // Reconstruct the type from the argument list so that implicit parameters, 980 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 981 // convention. 982 CallingConv CC = CallingConv::CC_C; 983 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 984 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 985 CC = SrcFnTy->getCallConv(); 986 SmallVector<QualType, 16> ArgTypes; 987 for (const VarDecl *VD : Args) 988 ArgTypes.push_back(VD->getType()); 989 QualType FnType = getContext().getFunctionType( 990 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 991 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 992 } 993 994 if (ShouldInstrumentFunction()) { 995 if (CGM.getCodeGenOpts().InstrumentFunctions) 996 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 997 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 998 CurFn->addFnAttr("instrument-function-entry-inlined", 999 "__cyg_profile_func_enter"); 1000 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1001 CurFn->addFnAttr("instrument-function-entry-inlined", 1002 "__cyg_profile_func_enter_bare"); 1003 } 1004 1005 // Since emitting the mcount call here impacts optimizations such as function 1006 // inlining, we just add an attribute to insert a mcount call in backend. 1007 // The attribute "counting-function" is set to mcount function name which is 1008 // architecture dependent. 1009 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1010 // Calls to fentry/mcount should not be generated if function has 1011 // the no_instrument_function attribute. 1012 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1013 if (CGM.getCodeGenOpts().CallFEntry) 1014 Fn->addFnAttr("fentry-call", "true"); 1015 else { 1016 Fn->addFnAttr("instrument-function-entry-inlined", 1017 getTarget().getMCountName()); 1018 } 1019 if (CGM.getCodeGenOpts().MNopMCount) { 1020 if (!CGM.getCodeGenOpts().CallFEntry) 1021 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1022 << "-mnop-mcount" << "-mfentry"; 1023 Fn->addFnAttr("mnop-mcount"); 1024 } 1025 1026 if (CGM.getCodeGenOpts().RecordMCount) { 1027 if (!CGM.getCodeGenOpts().CallFEntry) 1028 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1029 << "-mrecord-mcount" << "-mfentry"; 1030 Fn->addFnAttr("mrecord-mcount"); 1031 } 1032 } 1033 } 1034 1035 if (CGM.getCodeGenOpts().PackedStack) { 1036 if (getContext().getTargetInfo().getTriple().getArch() != 1037 llvm::Triple::systemz) 1038 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1039 << "-mpacked-stack"; 1040 Fn->addFnAttr("packed-stack"); 1041 } 1042 1043 if (RetTy->isVoidType()) { 1044 // Void type; nothing to return. 1045 ReturnValue = Address::invalid(); 1046 1047 // Count the implicit return. 1048 if (!endsWithReturn(D)) 1049 ++NumReturnExprs; 1050 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1051 // Indirect return; emit returned value directly into sret slot. 1052 // This reduces code size, and affects correctness in C++. 1053 auto AI = CurFn->arg_begin(); 1054 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1055 ++AI; 1056 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1057 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1058 ReturnValuePointer = 1059 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1060 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1061 ReturnValue.getPointer(), Int8PtrTy), 1062 ReturnValuePointer); 1063 } 1064 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1065 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1066 // Load the sret pointer from the argument struct and return into that. 1067 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1068 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1069 --EI; 1070 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1071 llvm::Type *Ty = 1072 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1073 ReturnValuePointer = Address(Addr, getPointerAlign()); 1074 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1075 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1076 } else { 1077 ReturnValue = CreateIRTemp(RetTy, "retval"); 1078 1079 // Tell the epilog emitter to autorelease the result. We do this 1080 // now so that various specialized functions can suppress it 1081 // during their IR-generation. 1082 if (getLangOpts().ObjCAutoRefCount && 1083 !CurFnInfo->isReturnsRetained() && 1084 RetTy->isObjCRetainableType()) 1085 AutoreleaseResult = true; 1086 } 1087 1088 EmitStartEHSpec(CurCodeDecl); 1089 1090 PrologueCleanupDepth = EHStack.stable_begin(); 1091 1092 // Emit OpenMP specific initialization of the device functions. 1093 if (getLangOpts().OpenMP && CurCodeDecl) 1094 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1095 1096 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1097 1098 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1099 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1100 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1101 if (MD->getParent()->isLambda() && 1102 MD->getOverloadedOperator() == OO_Call) { 1103 // We're in a lambda; figure out the captures. 1104 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1105 LambdaThisCaptureField); 1106 if (LambdaThisCaptureField) { 1107 // If the lambda captures the object referred to by '*this' - either by 1108 // value or by reference, make sure CXXThisValue points to the correct 1109 // object. 1110 1111 // Get the lvalue for the field (which is a copy of the enclosing object 1112 // or contains the address of the enclosing object). 1113 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1114 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1115 // If the enclosing object was captured by value, just use its address. 1116 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1117 } else { 1118 // Load the lvalue pointed to by the field, since '*this' was captured 1119 // by reference. 1120 CXXThisValue = 1121 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1122 } 1123 } 1124 for (auto *FD : MD->getParent()->fields()) { 1125 if (FD->hasCapturedVLAType()) { 1126 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1127 SourceLocation()).getScalarVal(); 1128 auto VAT = FD->getCapturedVLAType(); 1129 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1130 } 1131 } 1132 } else { 1133 // Not in a lambda; just use 'this' from the method. 1134 // FIXME: Should we generate a new load for each use of 'this'? The 1135 // fast register allocator would be happier... 1136 CXXThisValue = CXXABIThisValue; 1137 } 1138 1139 // Check the 'this' pointer once per function, if it's available. 1140 if (CXXABIThisValue) { 1141 SanitizerSet SkippedChecks; 1142 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1143 QualType ThisTy = MD->getThisType(); 1144 1145 // If this is the call operator of a lambda with no capture-default, it 1146 // may have a static invoker function, which may call this operator with 1147 // a null 'this' pointer. 1148 if (isLambdaCallOperator(MD) && 1149 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1150 SkippedChecks.set(SanitizerKind::Null, true); 1151 1152 EmitTypeCheck( 1153 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1154 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1155 } 1156 } 1157 1158 // If any of the arguments have a variably modified type, make sure to 1159 // emit the type size. 1160 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1161 i != e; ++i) { 1162 const VarDecl *VD = *i; 1163 1164 // Dig out the type as written from ParmVarDecls; it's unclear whether 1165 // the standard (C99 6.9.1p10) requires this, but we're following the 1166 // precedent set by gcc. 1167 QualType Ty; 1168 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1169 Ty = PVD->getOriginalType(); 1170 else 1171 Ty = VD->getType(); 1172 1173 if (Ty->isVariablyModifiedType()) 1174 EmitVariablyModifiedType(Ty); 1175 } 1176 // Emit a location at the end of the prologue. 1177 if (CGDebugInfo *DI = getDebugInfo()) 1178 DI->EmitLocation(Builder, StartLoc); 1179 1180 // TODO: Do we need to handle this in two places like we do with 1181 // target-features/target-cpu? 1182 if (CurFuncDecl) 1183 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1184 LargestVectorWidth = VecWidth->getVectorWidth(); 1185 } 1186 1187 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1188 incrementProfileCounter(Body); 1189 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1190 EmitCompoundStmtWithoutScope(*S); 1191 else 1192 EmitStmt(Body); 1193 1194 // This is checked after emitting the function body so we know if there 1195 // are any permitted infinite loops. 1196 if (checkIfFunctionMustProgress()) 1197 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1198 } 1199 1200 /// When instrumenting to collect profile data, the counts for some blocks 1201 /// such as switch cases need to not include the fall-through counts, so 1202 /// emit a branch around the instrumentation code. When not instrumenting, 1203 /// this just calls EmitBlock(). 1204 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1205 const Stmt *S) { 1206 llvm::BasicBlock *SkipCountBB = nullptr; 1207 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1208 // When instrumenting for profiling, the fallthrough to certain 1209 // statements needs to skip over the instrumentation code so that we 1210 // get an accurate count. 1211 SkipCountBB = createBasicBlock("skipcount"); 1212 EmitBranch(SkipCountBB); 1213 } 1214 EmitBlock(BB); 1215 uint64_t CurrentCount = getCurrentProfileCount(); 1216 incrementProfileCounter(S); 1217 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1218 if (SkipCountBB) 1219 EmitBlock(SkipCountBB); 1220 } 1221 1222 /// Tries to mark the given function nounwind based on the 1223 /// non-existence of any throwing calls within it. We believe this is 1224 /// lightweight enough to do at -O0. 1225 static void TryMarkNoThrow(llvm::Function *F) { 1226 // LLVM treats 'nounwind' on a function as part of the type, so we 1227 // can't do this on functions that can be overwritten. 1228 if (F->isInterposable()) return; 1229 1230 for (llvm::BasicBlock &BB : *F) 1231 for (llvm::Instruction &I : BB) 1232 if (I.mayThrow()) 1233 return; 1234 1235 F->setDoesNotThrow(); 1236 } 1237 1238 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1239 FunctionArgList &Args) { 1240 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1241 QualType ResTy = FD->getReturnType(); 1242 1243 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1244 if (MD && MD->isInstance()) { 1245 if (CGM.getCXXABI().HasThisReturn(GD)) 1246 ResTy = MD->getThisType(); 1247 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1248 ResTy = CGM.getContext().VoidPtrTy; 1249 CGM.getCXXABI().buildThisParam(*this, Args); 1250 } 1251 1252 // The base version of an inheriting constructor whose constructed base is a 1253 // virtual base is not passed any arguments (because it doesn't actually call 1254 // the inherited constructor). 1255 bool PassedParams = true; 1256 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1257 if (auto Inherited = CD->getInheritedConstructor()) 1258 PassedParams = 1259 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1260 1261 if (PassedParams) { 1262 for (auto *Param : FD->parameters()) { 1263 Args.push_back(Param); 1264 if (!Param->hasAttr<PassObjectSizeAttr>()) 1265 continue; 1266 1267 auto *Implicit = ImplicitParamDecl::Create( 1268 getContext(), Param->getDeclContext(), Param->getLocation(), 1269 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1270 SizeArguments[Param] = Implicit; 1271 Args.push_back(Implicit); 1272 } 1273 } 1274 1275 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1276 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1277 1278 return ResTy; 1279 } 1280 1281 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1282 const CGFunctionInfo &FnInfo) { 1283 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1284 CurGD = GD; 1285 1286 FunctionArgList Args; 1287 QualType ResTy = BuildFunctionArgList(GD, Args); 1288 1289 // Check if we should generate debug info for this function. 1290 if (FD->hasAttr<NoDebugAttr>()) 1291 DebugInfo = nullptr; // disable debug info indefinitely for this function 1292 1293 // The function might not have a body if we're generating thunks for a 1294 // function declaration. 1295 SourceRange BodyRange; 1296 if (Stmt *Body = FD->getBody()) 1297 BodyRange = Body->getSourceRange(); 1298 else 1299 BodyRange = FD->getLocation(); 1300 CurEHLocation = BodyRange.getEnd(); 1301 1302 // Use the location of the start of the function to determine where 1303 // the function definition is located. By default use the location 1304 // of the declaration as the location for the subprogram. A function 1305 // may lack a declaration in the source code if it is created by code 1306 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1307 SourceLocation Loc = FD->getLocation(); 1308 1309 // If this is a function specialization then use the pattern body 1310 // as the location for the function. 1311 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1312 if (SpecDecl->hasBody(SpecDecl)) 1313 Loc = SpecDecl->getLocation(); 1314 1315 Stmt *Body = FD->getBody(); 1316 1317 if (Body) { 1318 // Coroutines always emit lifetime markers. 1319 if (isa<CoroutineBodyStmt>(Body)) 1320 ShouldEmitLifetimeMarkers = true; 1321 1322 // Initialize helper which will detect jumps which can cause invalid 1323 // lifetime markers. 1324 if (ShouldEmitLifetimeMarkers) 1325 Bypasses.Init(Body); 1326 } 1327 1328 // Emit the standard function prologue. 1329 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1330 1331 // Save parameters for coroutine function. 1332 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1333 for (const auto *ParamDecl : FD->parameters()) 1334 FnArgs.push_back(ParamDecl); 1335 1336 // Generate the body of the function. 1337 PGO.assignRegionCounters(GD, CurFn); 1338 if (isa<CXXDestructorDecl>(FD)) 1339 EmitDestructorBody(Args); 1340 else if (isa<CXXConstructorDecl>(FD)) 1341 EmitConstructorBody(Args); 1342 else if (getLangOpts().CUDA && 1343 !getLangOpts().CUDAIsDevice && 1344 FD->hasAttr<CUDAGlobalAttr>()) 1345 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1346 else if (isa<CXXMethodDecl>(FD) && 1347 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1348 // The lambda static invoker function is special, because it forwards or 1349 // clones the body of the function call operator (but is actually static). 1350 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1351 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1352 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1353 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1354 // Implicit copy-assignment gets the same special treatment as implicit 1355 // copy-constructors. 1356 emitImplicitAssignmentOperatorBody(Args); 1357 } else if (Body) { 1358 EmitFunctionBody(Body); 1359 } else 1360 llvm_unreachable("no definition for emitted function"); 1361 1362 // C++11 [stmt.return]p2: 1363 // Flowing off the end of a function [...] results in undefined behavior in 1364 // a value-returning function. 1365 // C11 6.9.1p12: 1366 // If the '}' that terminates a function is reached, and the value of the 1367 // function call is used by the caller, the behavior is undefined. 1368 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1369 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1370 bool ShouldEmitUnreachable = 1371 CGM.getCodeGenOpts().StrictReturn || 1372 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1373 if (SanOpts.has(SanitizerKind::Return)) { 1374 SanitizerScope SanScope(this); 1375 llvm::Value *IsFalse = Builder.getFalse(); 1376 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1377 SanitizerHandler::MissingReturn, 1378 EmitCheckSourceLocation(FD->getLocation()), None); 1379 } else if (ShouldEmitUnreachable) { 1380 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1381 EmitTrapCall(llvm::Intrinsic::trap); 1382 } 1383 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1384 Builder.CreateUnreachable(); 1385 Builder.ClearInsertionPoint(); 1386 } 1387 } 1388 1389 // Emit the standard function epilogue. 1390 FinishFunction(BodyRange.getEnd()); 1391 1392 // If we haven't marked the function nothrow through other means, do 1393 // a quick pass now to see if we can. 1394 if (!CurFn->doesNotThrow()) 1395 TryMarkNoThrow(CurFn); 1396 } 1397 1398 /// ContainsLabel - Return true if the statement contains a label in it. If 1399 /// this statement is not executed normally, it not containing a label means 1400 /// that we can just remove the code. 1401 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1402 // Null statement, not a label! 1403 if (!S) return false; 1404 1405 // If this is a label, we have to emit the code, consider something like: 1406 // if (0) { ... foo: bar(); } goto foo; 1407 // 1408 // TODO: If anyone cared, we could track __label__'s, since we know that you 1409 // can't jump to one from outside their declared region. 1410 if (isa<LabelStmt>(S)) 1411 return true; 1412 1413 // If this is a case/default statement, and we haven't seen a switch, we have 1414 // to emit the code. 1415 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1416 return true; 1417 1418 // If this is a switch statement, we want to ignore cases below it. 1419 if (isa<SwitchStmt>(S)) 1420 IgnoreCaseStmts = true; 1421 1422 // Scan subexpressions for verboten labels. 1423 for (const Stmt *SubStmt : S->children()) 1424 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1425 return true; 1426 1427 return false; 1428 } 1429 1430 /// containsBreak - Return true if the statement contains a break out of it. 1431 /// If the statement (recursively) contains a switch or loop with a break 1432 /// inside of it, this is fine. 1433 bool CodeGenFunction::containsBreak(const Stmt *S) { 1434 // Null statement, not a label! 1435 if (!S) return false; 1436 1437 // If this is a switch or loop that defines its own break scope, then we can 1438 // include it and anything inside of it. 1439 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1440 isa<ForStmt>(S)) 1441 return false; 1442 1443 if (isa<BreakStmt>(S)) 1444 return true; 1445 1446 // Scan subexpressions for verboten breaks. 1447 for (const Stmt *SubStmt : S->children()) 1448 if (containsBreak(SubStmt)) 1449 return true; 1450 1451 return false; 1452 } 1453 1454 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1455 if (!S) return false; 1456 1457 // Some statement kinds add a scope and thus never add a decl to the current 1458 // scope. Note, this list is longer than the list of statements that might 1459 // have an unscoped decl nested within them, but this way is conservatively 1460 // correct even if more statement kinds are added. 1461 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1462 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1463 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1464 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1465 return false; 1466 1467 if (isa<DeclStmt>(S)) 1468 return true; 1469 1470 for (const Stmt *SubStmt : S->children()) 1471 if (mightAddDeclToScope(SubStmt)) 1472 return true; 1473 1474 return false; 1475 } 1476 1477 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1478 /// to a constant, or if it does but contains a label, return false. If it 1479 /// constant folds return true and set the boolean result in Result. 1480 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1481 bool &ResultBool, 1482 bool AllowLabels) { 1483 llvm::APSInt ResultInt; 1484 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1485 return false; 1486 1487 ResultBool = ResultInt.getBoolValue(); 1488 return true; 1489 } 1490 1491 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1492 /// to a constant, or if it does but contains a label, return false. If it 1493 /// constant folds return true and set the folded value. 1494 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1495 llvm::APSInt &ResultInt, 1496 bool AllowLabels) { 1497 // FIXME: Rename and handle conversion of other evaluatable things 1498 // to bool. 1499 Expr::EvalResult Result; 1500 if (!Cond->EvaluateAsInt(Result, getContext())) 1501 return false; // Not foldable, not integer or not fully evaluatable. 1502 1503 llvm::APSInt Int = Result.Val.getInt(); 1504 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1505 return false; // Contains a label. 1506 1507 ResultInt = Int; 1508 return true; 1509 } 1510 1511 /// Determine whether the given condition is an instrumentable condition 1512 /// (i.e. no "&&" or "||"). 1513 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1514 // Bypass simplistic logical-NOT operator before determining whether the 1515 // condition contains any other logical operator. 1516 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1517 if (UnOp->getOpcode() == UO_LNot) 1518 C = UnOp->getSubExpr(); 1519 1520 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1521 return (!BOp || !BOp->isLogicalOp()); 1522 } 1523 1524 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1525 /// increments a profile counter based on the semantics of the given logical 1526 /// operator opcode. This is used to instrument branch condition coverage for 1527 /// logical operators. 1528 void CodeGenFunction::EmitBranchToCounterBlock( 1529 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1530 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1531 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1532 // If not instrumenting, just emit a branch. 1533 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1534 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1535 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1536 1537 llvm::BasicBlock *ThenBlock = NULL; 1538 llvm::BasicBlock *ElseBlock = NULL; 1539 llvm::BasicBlock *NextBlock = NULL; 1540 1541 // Create the block we'll use to increment the appropriate counter. 1542 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1543 1544 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1545 // means we need to evaluate the condition and increment the counter on TRUE: 1546 // 1547 // if (Cond) 1548 // goto CounterIncrBlock; 1549 // else 1550 // goto FalseBlock; 1551 // 1552 // CounterIncrBlock: 1553 // Counter++; 1554 // goto TrueBlock; 1555 1556 if (LOp == BO_LAnd) { 1557 ThenBlock = CounterIncrBlock; 1558 ElseBlock = FalseBlock; 1559 NextBlock = TrueBlock; 1560 } 1561 1562 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1563 // we need to evaluate the condition and increment the counter on FALSE: 1564 // 1565 // if (Cond) 1566 // goto TrueBlock; 1567 // else 1568 // goto CounterIncrBlock; 1569 // 1570 // CounterIncrBlock: 1571 // Counter++; 1572 // goto FalseBlock; 1573 1574 else if (LOp == BO_LOr) { 1575 ThenBlock = TrueBlock; 1576 ElseBlock = CounterIncrBlock; 1577 NextBlock = FalseBlock; 1578 } else { 1579 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1580 } 1581 1582 // Emit Branch based on condition. 1583 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1584 1585 // Emit the block containing the counter increment(s). 1586 EmitBlock(CounterIncrBlock); 1587 1588 // Increment corresponding counter; if index not provided, use Cond as index. 1589 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1590 1591 // Go to the next block. 1592 EmitBranch(NextBlock); 1593 } 1594 1595 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1596 /// statement) to the specified blocks. Based on the condition, this might try 1597 /// to simplify the codegen of the conditional based on the branch. 1598 /// \param LH The value of the likelihood attribute on the True branch. 1599 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1600 llvm::BasicBlock *TrueBlock, 1601 llvm::BasicBlock *FalseBlock, 1602 uint64_t TrueCount, 1603 Stmt::Likelihood LH) { 1604 Cond = Cond->IgnoreParens(); 1605 1606 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1607 1608 // Handle X && Y in a condition. 1609 if (CondBOp->getOpcode() == BO_LAnd) { 1610 // If we have "1 && X", simplify the code. "0 && X" would have constant 1611 // folded if the case was simple enough. 1612 bool ConstantBool = false; 1613 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1614 ConstantBool) { 1615 // br(1 && X) -> br(X). 1616 incrementProfileCounter(CondBOp); 1617 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1618 FalseBlock, TrueCount, LH); 1619 } 1620 1621 // If we have "X && 1", simplify the code to use an uncond branch. 1622 // "X && 0" would have been constant folded to 0. 1623 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1624 ConstantBool) { 1625 // br(X && 1) -> br(X). 1626 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1627 FalseBlock, TrueCount, LH, CondBOp); 1628 } 1629 1630 // Emit the LHS as a conditional. If the LHS conditional is false, we 1631 // want to jump to the FalseBlock. 1632 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1633 // The counter tells us how often we evaluate RHS, and all of TrueCount 1634 // can be propagated to that branch. 1635 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1636 1637 ConditionalEvaluation eval(*this); 1638 { 1639 ApplyDebugLocation DL(*this, Cond); 1640 // Propagate the likelihood attribute like __builtin_expect 1641 // __builtin_expect(X && Y, 1) -> X and Y are likely 1642 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1643 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1644 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1645 EmitBlock(LHSTrue); 1646 } 1647 1648 incrementProfileCounter(CondBOp); 1649 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1650 1651 // Any temporaries created here are conditional. 1652 eval.begin(*this); 1653 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1654 FalseBlock, TrueCount, LH); 1655 eval.end(*this); 1656 1657 return; 1658 } 1659 1660 if (CondBOp->getOpcode() == BO_LOr) { 1661 // If we have "0 || X", simplify the code. "1 || X" would have constant 1662 // folded if the case was simple enough. 1663 bool ConstantBool = false; 1664 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1665 !ConstantBool) { 1666 // br(0 || X) -> br(X). 1667 incrementProfileCounter(CondBOp); 1668 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1669 FalseBlock, TrueCount, LH); 1670 } 1671 1672 // If we have "X || 0", simplify the code to use an uncond branch. 1673 // "X || 1" would have been constant folded to 1. 1674 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1675 !ConstantBool) { 1676 // br(X || 0) -> br(X). 1677 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1678 FalseBlock, TrueCount, LH, CondBOp); 1679 } 1680 1681 // Emit the LHS as a conditional. If the LHS conditional is true, we 1682 // want to jump to the TrueBlock. 1683 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1684 // We have the count for entry to the RHS and for the whole expression 1685 // being true, so we can divy up True count between the short circuit and 1686 // the RHS. 1687 uint64_t LHSCount = 1688 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1689 uint64_t RHSCount = TrueCount - LHSCount; 1690 1691 ConditionalEvaluation eval(*this); 1692 { 1693 // Propagate the likelihood attribute like __builtin_expect 1694 // __builtin_expect(X || Y, 1) -> only Y is likely 1695 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1696 ApplyDebugLocation DL(*this, Cond); 1697 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1698 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1699 EmitBlock(LHSFalse); 1700 } 1701 1702 incrementProfileCounter(CondBOp); 1703 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1704 1705 // Any temporaries created here are conditional. 1706 eval.begin(*this); 1707 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1708 RHSCount, LH); 1709 1710 eval.end(*this); 1711 1712 return; 1713 } 1714 } 1715 1716 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1717 // br(!x, t, f) -> br(x, f, t) 1718 if (CondUOp->getOpcode() == UO_LNot) { 1719 // Negate the count. 1720 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1721 // The values of the enum are chosen to make this negation possible. 1722 LH = static_cast<Stmt::Likelihood>(-LH); 1723 // Negate the condition and swap the destination blocks. 1724 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1725 FalseCount, LH); 1726 } 1727 } 1728 1729 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1730 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1731 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1732 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1733 1734 // The ConditionalOperator itself has no likelihood information for its 1735 // true and false branches. This matches the behavior of __builtin_expect. 1736 ConditionalEvaluation cond(*this); 1737 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1738 getProfileCount(CondOp), Stmt::LH_None); 1739 1740 // When computing PGO branch weights, we only know the overall count for 1741 // the true block. This code is essentially doing tail duplication of the 1742 // naive code-gen, introducing new edges for which counts are not 1743 // available. Divide the counts proportionally between the LHS and RHS of 1744 // the conditional operator. 1745 uint64_t LHSScaledTrueCount = 0; 1746 if (TrueCount) { 1747 double LHSRatio = 1748 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1749 LHSScaledTrueCount = TrueCount * LHSRatio; 1750 } 1751 1752 cond.begin(*this); 1753 EmitBlock(LHSBlock); 1754 incrementProfileCounter(CondOp); 1755 { 1756 ApplyDebugLocation DL(*this, Cond); 1757 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1758 LHSScaledTrueCount, LH); 1759 } 1760 cond.end(*this); 1761 1762 cond.begin(*this); 1763 EmitBlock(RHSBlock); 1764 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1765 TrueCount - LHSScaledTrueCount, LH); 1766 cond.end(*this); 1767 1768 return; 1769 } 1770 1771 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1772 // Conditional operator handling can give us a throw expression as a 1773 // condition for a case like: 1774 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1775 // Fold this to: 1776 // br(c, throw x, br(y, t, f)) 1777 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1778 return; 1779 } 1780 1781 // Emit the code with the fully general case. 1782 llvm::Value *CondV; 1783 { 1784 ApplyDebugLocation DL(*this, Cond); 1785 CondV = EvaluateExprAsBool(Cond); 1786 } 1787 1788 llvm::MDNode *Weights = nullptr; 1789 llvm::MDNode *Unpredictable = nullptr; 1790 1791 // If the branch has a condition wrapped by __builtin_unpredictable, 1792 // create metadata that specifies that the branch is unpredictable. 1793 // Don't bother if not optimizing because that metadata would not be used. 1794 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1795 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1796 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1797 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1798 llvm::MDBuilder MDHelper(getLLVMContext()); 1799 Unpredictable = MDHelper.createUnpredictable(); 1800 } 1801 } 1802 1803 // If there is a Likelihood knowledge for the cond, lower it. 1804 // Note that if not optimizing this won't emit anything. 1805 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1806 if (CondV != NewCondV) 1807 CondV = NewCondV; 1808 else { 1809 // Otherwise, lower profile counts. Note that we do this even at -O0. 1810 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1811 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1812 } 1813 1814 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1815 } 1816 1817 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1818 /// specified stmt yet. 1819 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1820 CGM.ErrorUnsupported(S, Type); 1821 } 1822 1823 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1824 /// variable-length array whose elements have a non-zero bit-pattern. 1825 /// 1826 /// \param baseType the inner-most element type of the array 1827 /// \param src - a char* pointing to the bit-pattern for a single 1828 /// base element of the array 1829 /// \param sizeInChars - the total size of the VLA, in chars 1830 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1831 Address dest, Address src, 1832 llvm::Value *sizeInChars) { 1833 CGBuilderTy &Builder = CGF.Builder; 1834 1835 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1836 llvm::Value *baseSizeInChars 1837 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1838 1839 Address begin = 1840 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1841 llvm::Value *end = Builder.CreateInBoundsGEP( 1842 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1843 1844 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1845 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1846 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1847 1848 // Make a loop over the VLA. C99 guarantees that the VLA element 1849 // count must be nonzero. 1850 CGF.EmitBlock(loopBB); 1851 1852 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1853 cur->addIncoming(begin.getPointer(), originBB); 1854 1855 CharUnits curAlign = 1856 dest.getAlignment().alignmentOfArrayElement(baseSize); 1857 1858 // memcpy the individual element bit-pattern. 1859 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1860 /*volatile*/ false); 1861 1862 // Go to the next element. 1863 llvm::Value *next = 1864 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1865 1866 // Leave if that's the end of the VLA. 1867 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1868 Builder.CreateCondBr(done, contBB, loopBB); 1869 cur->addIncoming(next, loopBB); 1870 1871 CGF.EmitBlock(contBB); 1872 } 1873 1874 void 1875 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1876 // Ignore empty classes in C++. 1877 if (getLangOpts().CPlusPlus) { 1878 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1879 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1880 return; 1881 } 1882 } 1883 1884 // Cast the dest ptr to the appropriate i8 pointer type. 1885 if (DestPtr.getElementType() != Int8Ty) 1886 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1887 1888 // Get size and alignment info for this aggregate. 1889 CharUnits size = getContext().getTypeSizeInChars(Ty); 1890 1891 llvm::Value *SizeVal; 1892 const VariableArrayType *vla; 1893 1894 // Don't bother emitting a zero-byte memset. 1895 if (size.isZero()) { 1896 // But note that getTypeInfo returns 0 for a VLA. 1897 if (const VariableArrayType *vlaType = 1898 dyn_cast_or_null<VariableArrayType>( 1899 getContext().getAsArrayType(Ty))) { 1900 auto VlaSize = getVLASize(vlaType); 1901 SizeVal = VlaSize.NumElts; 1902 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1903 if (!eltSize.isOne()) 1904 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1905 vla = vlaType; 1906 } else { 1907 return; 1908 } 1909 } else { 1910 SizeVal = CGM.getSize(size); 1911 vla = nullptr; 1912 } 1913 1914 // If the type contains a pointer to data member we can't memset it to zero. 1915 // Instead, create a null constant and copy it to the destination. 1916 // TODO: there are other patterns besides zero that we can usefully memset, 1917 // like -1, which happens to be the pattern used by member-pointers. 1918 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1919 // For a VLA, emit a single element, then splat that over the VLA. 1920 if (vla) Ty = getContext().getBaseElementType(vla); 1921 1922 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1923 1924 llvm::GlobalVariable *NullVariable = 1925 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1926 /*isConstant=*/true, 1927 llvm::GlobalVariable::PrivateLinkage, 1928 NullConstant, Twine()); 1929 CharUnits NullAlign = DestPtr.getAlignment(); 1930 NullVariable->setAlignment(NullAlign.getAsAlign()); 1931 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1932 NullAlign); 1933 1934 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1935 1936 // Get and call the appropriate llvm.memcpy overload. 1937 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1938 return; 1939 } 1940 1941 // Otherwise, just memset the whole thing to zero. This is legal 1942 // because in LLVM, all default initializers (other than the ones we just 1943 // handled above) are guaranteed to have a bit pattern of all zeros. 1944 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1945 } 1946 1947 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1948 // Make sure that there is a block for the indirect goto. 1949 if (!IndirectBranch) 1950 GetIndirectGotoBlock(); 1951 1952 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1953 1954 // Make sure the indirect branch includes all of the address-taken blocks. 1955 IndirectBranch->addDestination(BB); 1956 return llvm::BlockAddress::get(CurFn, BB); 1957 } 1958 1959 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1960 // If we already made the indirect branch for indirect goto, return its block. 1961 if (IndirectBranch) return IndirectBranch->getParent(); 1962 1963 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1964 1965 // Create the PHI node that indirect gotos will add entries to. 1966 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1967 "indirect.goto.dest"); 1968 1969 // Create the indirect branch instruction. 1970 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1971 return IndirectBranch->getParent(); 1972 } 1973 1974 /// Computes the length of an array in elements, as well as the base 1975 /// element type and a properly-typed first element pointer. 1976 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1977 QualType &baseType, 1978 Address &addr) { 1979 const ArrayType *arrayType = origArrayType; 1980 1981 // If it's a VLA, we have to load the stored size. Note that 1982 // this is the size of the VLA in bytes, not its size in elements. 1983 llvm::Value *numVLAElements = nullptr; 1984 if (isa<VariableArrayType>(arrayType)) { 1985 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1986 1987 // Walk into all VLAs. This doesn't require changes to addr, 1988 // which has type T* where T is the first non-VLA element type. 1989 do { 1990 QualType elementType = arrayType->getElementType(); 1991 arrayType = getContext().getAsArrayType(elementType); 1992 1993 // If we only have VLA components, 'addr' requires no adjustment. 1994 if (!arrayType) { 1995 baseType = elementType; 1996 return numVLAElements; 1997 } 1998 } while (isa<VariableArrayType>(arrayType)); 1999 2000 // We get out here only if we find a constant array type 2001 // inside the VLA. 2002 } 2003 2004 // We have some number of constant-length arrays, so addr should 2005 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2006 // down to the first element of addr. 2007 SmallVector<llvm::Value*, 8> gepIndices; 2008 2009 // GEP down to the array type. 2010 llvm::ConstantInt *zero = Builder.getInt32(0); 2011 gepIndices.push_back(zero); 2012 2013 uint64_t countFromCLAs = 1; 2014 QualType eltType; 2015 2016 llvm::ArrayType *llvmArrayType = 2017 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2018 while (llvmArrayType) { 2019 assert(isa<ConstantArrayType>(arrayType)); 2020 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2021 == llvmArrayType->getNumElements()); 2022 2023 gepIndices.push_back(zero); 2024 countFromCLAs *= llvmArrayType->getNumElements(); 2025 eltType = arrayType->getElementType(); 2026 2027 llvmArrayType = 2028 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2029 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2030 assert((!llvmArrayType || arrayType) && 2031 "LLVM and Clang types are out-of-synch"); 2032 } 2033 2034 if (arrayType) { 2035 // From this point onwards, the Clang array type has been emitted 2036 // as some other type (probably a packed struct). Compute the array 2037 // size, and just emit the 'begin' expression as a bitcast. 2038 while (arrayType) { 2039 countFromCLAs *= 2040 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2041 eltType = arrayType->getElementType(); 2042 arrayType = getContext().getAsArrayType(eltType); 2043 } 2044 2045 llvm::Type *baseType = ConvertType(eltType); 2046 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2047 } else { 2048 // Create the actual GEP. 2049 addr = Address(Builder.CreateInBoundsGEP( 2050 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2051 addr.getAlignment()); 2052 } 2053 2054 baseType = eltType; 2055 2056 llvm::Value *numElements 2057 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2058 2059 // If we had any VLA dimensions, factor them in. 2060 if (numVLAElements) 2061 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2062 2063 return numElements; 2064 } 2065 2066 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2067 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2068 assert(vla && "type was not a variable array type!"); 2069 return getVLASize(vla); 2070 } 2071 2072 CodeGenFunction::VlaSizePair 2073 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2074 // The number of elements so far; always size_t. 2075 llvm::Value *numElements = nullptr; 2076 2077 QualType elementType; 2078 do { 2079 elementType = type->getElementType(); 2080 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2081 assert(vlaSize && "no size for VLA!"); 2082 assert(vlaSize->getType() == SizeTy); 2083 2084 if (!numElements) { 2085 numElements = vlaSize; 2086 } else { 2087 // It's undefined behavior if this wraps around, so mark it that way. 2088 // FIXME: Teach -fsanitize=undefined to trap this. 2089 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2090 } 2091 } while ((type = getContext().getAsVariableArrayType(elementType))); 2092 2093 return { numElements, elementType }; 2094 } 2095 2096 CodeGenFunction::VlaSizePair 2097 CodeGenFunction::getVLAElements1D(QualType type) { 2098 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2099 assert(vla && "type was not a variable array type!"); 2100 return getVLAElements1D(vla); 2101 } 2102 2103 CodeGenFunction::VlaSizePair 2104 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2105 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2106 assert(VlaSize && "no size for VLA!"); 2107 assert(VlaSize->getType() == SizeTy); 2108 return { VlaSize, Vla->getElementType() }; 2109 } 2110 2111 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2112 assert(type->isVariablyModifiedType() && 2113 "Must pass variably modified type to EmitVLASizes!"); 2114 2115 EnsureInsertPoint(); 2116 2117 // We're going to walk down into the type and look for VLA 2118 // expressions. 2119 do { 2120 assert(type->isVariablyModifiedType()); 2121 2122 const Type *ty = type.getTypePtr(); 2123 switch (ty->getTypeClass()) { 2124 2125 #define TYPE(Class, Base) 2126 #define ABSTRACT_TYPE(Class, Base) 2127 #define NON_CANONICAL_TYPE(Class, Base) 2128 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2129 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2130 #include "clang/AST/TypeNodes.inc" 2131 llvm_unreachable("unexpected dependent type!"); 2132 2133 // These types are never variably-modified. 2134 case Type::Builtin: 2135 case Type::Complex: 2136 case Type::Vector: 2137 case Type::ExtVector: 2138 case Type::ConstantMatrix: 2139 case Type::Record: 2140 case Type::Enum: 2141 case Type::Elaborated: 2142 case Type::TemplateSpecialization: 2143 case Type::ObjCTypeParam: 2144 case Type::ObjCObject: 2145 case Type::ObjCInterface: 2146 case Type::ObjCObjectPointer: 2147 case Type::ExtInt: 2148 llvm_unreachable("type class is never variably-modified!"); 2149 2150 case Type::Adjusted: 2151 type = cast<AdjustedType>(ty)->getAdjustedType(); 2152 break; 2153 2154 case Type::Decayed: 2155 type = cast<DecayedType>(ty)->getPointeeType(); 2156 break; 2157 2158 case Type::Pointer: 2159 type = cast<PointerType>(ty)->getPointeeType(); 2160 break; 2161 2162 case Type::BlockPointer: 2163 type = cast<BlockPointerType>(ty)->getPointeeType(); 2164 break; 2165 2166 case Type::LValueReference: 2167 case Type::RValueReference: 2168 type = cast<ReferenceType>(ty)->getPointeeType(); 2169 break; 2170 2171 case Type::MemberPointer: 2172 type = cast<MemberPointerType>(ty)->getPointeeType(); 2173 break; 2174 2175 case Type::ConstantArray: 2176 case Type::IncompleteArray: 2177 // Losing element qualification here is fine. 2178 type = cast<ArrayType>(ty)->getElementType(); 2179 break; 2180 2181 case Type::VariableArray: { 2182 // Losing element qualification here is fine. 2183 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2184 2185 // Unknown size indication requires no size computation. 2186 // Otherwise, evaluate and record it. 2187 if (const Expr *size = vat->getSizeExpr()) { 2188 // It's possible that we might have emitted this already, 2189 // e.g. with a typedef and a pointer to it. 2190 llvm::Value *&entry = VLASizeMap[size]; 2191 if (!entry) { 2192 llvm::Value *Size = EmitScalarExpr(size); 2193 2194 // C11 6.7.6.2p5: 2195 // If the size is an expression that is not an integer constant 2196 // expression [...] each time it is evaluated it shall have a value 2197 // greater than zero. 2198 if (SanOpts.has(SanitizerKind::VLABound) && 2199 size->getType()->isSignedIntegerType()) { 2200 SanitizerScope SanScope(this); 2201 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2202 llvm::Constant *StaticArgs[] = { 2203 EmitCheckSourceLocation(size->getBeginLoc()), 2204 EmitCheckTypeDescriptor(size->getType())}; 2205 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2206 SanitizerKind::VLABound), 2207 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2208 } 2209 2210 // Always zexting here would be wrong if it weren't 2211 // undefined behavior to have a negative bound. 2212 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2213 } 2214 } 2215 type = vat->getElementType(); 2216 break; 2217 } 2218 2219 case Type::FunctionProto: 2220 case Type::FunctionNoProto: 2221 type = cast<FunctionType>(ty)->getReturnType(); 2222 break; 2223 2224 case Type::Paren: 2225 case Type::TypeOf: 2226 case Type::UnaryTransform: 2227 case Type::Attributed: 2228 case Type::SubstTemplateTypeParm: 2229 case Type::MacroQualified: 2230 // Keep walking after single level desugaring. 2231 type = type.getSingleStepDesugaredType(getContext()); 2232 break; 2233 2234 case Type::Typedef: 2235 case Type::Decltype: 2236 case Type::Auto: 2237 case Type::DeducedTemplateSpecialization: 2238 // Stop walking: nothing to do. 2239 return; 2240 2241 case Type::TypeOfExpr: 2242 // Stop walking: emit typeof expression. 2243 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2244 return; 2245 2246 case Type::Atomic: 2247 type = cast<AtomicType>(ty)->getValueType(); 2248 break; 2249 2250 case Type::Pipe: 2251 type = cast<PipeType>(ty)->getElementType(); 2252 break; 2253 } 2254 } while (type->isVariablyModifiedType()); 2255 } 2256 2257 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2258 if (getContext().getBuiltinVaListType()->isArrayType()) 2259 return EmitPointerWithAlignment(E); 2260 return EmitLValue(E).getAddress(*this); 2261 } 2262 2263 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2264 return EmitLValue(E).getAddress(*this); 2265 } 2266 2267 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2268 const APValue &Init) { 2269 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2270 if (CGDebugInfo *Dbg = getDebugInfo()) 2271 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2272 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2273 } 2274 2275 CodeGenFunction::PeepholeProtection 2276 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2277 // At the moment, the only aggressive peephole we do in IR gen 2278 // is trunc(zext) folding, but if we add more, we can easily 2279 // extend this protection. 2280 2281 if (!rvalue.isScalar()) return PeepholeProtection(); 2282 llvm::Value *value = rvalue.getScalarVal(); 2283 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2284 2285 // Just make an extra bitcast. 2286 assert(HaveInsertPoint()); 2287 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2288 Builder.GetInsertBlock()); 2289 2290 PeepholeProtection protection; 2291 protection.Inst = inst; 2292 return protection; 2293 } 2294 2295 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2296 if (!protection.Inst) return; 2297 2298 // In theory, we could try to duplicate the peepholes now, but whatever. 2299 protection.Inst->eraseFromParent(); 2300 } 2301 2302 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2303 QualType Ty, SourceLocation Loc, 2304 SourceLocation AssumptionLoc, 2305 llvm::Value *Alignment, 2306 llvm::Value *OffsetValue) { 2307 if (Alignment->getType() != IntPtrTy) 2308 Alignment = 2309 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2310 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2311 OffsetValue = 2312 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2313 llvm::Value *TheCheck = nullptr; 2314 if (SanOpts.has(SanitizerKind::Alignment)) { 2315 llvm::Value *PtrIntValue = 2316 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2317 2318 if (OffsetValue) { 2319 bool IsOffsetZero = false; 2320 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2321 IsOffsetZero = CI->isZero(); 2322 2323 if (!IsOffsetZero) 2324 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2325 } 2326 2327 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2328 llvm::Value *Mask = 2329 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2330 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2331 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2332 } 2333 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2334 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2335 2336 if (!SanOpts.has(SanitizerKind::Alignment)) 2337 return; 2338 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2339 OffsetValue, TheCheck, Assumption); 2340 } 2341 2342 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2343 const Expr *E, 2344 SourceLocation AssumptionLoc, 2345 llvm::Value *Alignment, 2346 llvm::Value *OffsetValue) { 2347 if (auto *CE = dyn_cast<CastExpr>(E)) 2348 E = CE->getSubExprAsWritten(); 2349 QualType Ty = E->getType(); 2350 SourceLocation Loc = E->getExprLoc(); 2351 2352 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2353 OffsetValue); 2354 } 2355 2356 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2357 llvm::Value *AnnotatedVal, 2358 StringRef AnnotationStr, 2359 SourceLocation Location, 2360 const AnnotateAttr *Attr) { 2361 SmallVector<llvm::Value *, 5> Args = { 2362 AnnotatedVal, 2363 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2364 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2365 CGM.EmitAnnotationLineNo(Location), 2366 }; 2367 if (Attr) 2368 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2369 return Builder.CreateCall(AnnotationFn, Args); 2370 } 2371 2372 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2373 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2374 // FIXME We create a new bitcast for every annotation because that's what 2375 // llvm-gcc was doing. 2376 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2377 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2378 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2379 I->getAnnotation(), D->getLocation(), I); 2380 } 2381 2382 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2383 Address Addr) { 2384 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2385 llvm::Value *V = Addr.getPointer(); 2386 llvm::Type *VTy = V->getType(); 2387 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2388 CGM.Int8PtrTy); 2389 2390 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2391 // FIXME Always emit the cast inst so we can differentiate between 2392 // annotation on the first field of a struct and annotation on the struct 2393 // itself. 2394 if (VTy != CGM.Int8PtrTy) 2395 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2396 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2397 V = Builder.CreateBitCast(V, VTy); 2398 } 2399 2400 return Address(V, Addr.getAlignment()); 2401 } 2402 2403 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2404 2405 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2406 : CGF(CGF) { 2407 assert(!CGF->IsSanitizerScope); 2408 CGF->IsSanitizerScope = true; 2409 } 2410 2411 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2412 CGF->IsSanitizerScope = false; 2413 } 2414 2415 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2416 const llvm::Twine &Name, 2417 llvm::BasicBlock *BB, 2418 llvm::BasicBlock::iterator InsertPt) const { 2419 LoopStack.InsertHelper(I); 2420 if (IsSanitizerScope) 2421 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2422 } 2423 2424 void CGBuilderInserter::InsertHelper( 2425 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2426 llvm::BasicBlock::iterator InsertPt) const { 2427 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2428 if (CGF) 2429 CGF->InsertHelper(I, Name, BB, InsertPt); 2430 } 2431 2432 // Emits an error if we don't have a valid set of target features for the 2433 // called function. 2434 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2435 const FunctionDecl *TargetDecl) { 2436 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2437 } 2438 2439 // Emits an error if we don't have a valid set of target features for the 2440 // called function. 2441 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2442 const FunctionDecl *TargetDecl) { 2443 // Early exit if this is an indirect call. 2444 if (!TargetDecl) 2445 return; 2446 2447 // Get the current enclosing function if it exists. If it doesn't 2448 // we can't check the target features anyhow. 2449 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2450 if (!FD) 2451 return; 2452 2453 // Grab the required features for the call. For a builtin this is listed in 2454 // the td file with the default cpu, for an always_inline function this is any 2455 // listed cpu and any listed features. 2456 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2457 std::string MissingFeature; 2458 llvm::StringMap<bool> CallerFeatureMap; 2459 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2460 if (BuiltinID) { 2461 StringRef FeatureList( 2462 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2463 // Return if the builtin doesn't have any required features. 2464 if (FeatureList.empty()) 2465 return; 2466 assert(FeatureList.find(' ') == StringRef::npos && 2467 "Space in feature list"); 2468 TargetFeatures TF(CallerFeatureMap); 2469 if (!TF.hasRequiredFeatures(FeatureList)) 2470 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2471 << TargetDecl->getDeclName() << FeatureList; 2472 } else if (!TargetDecl->isMultiVersion() && 2473 TargetDecl->hasAttr<TargetAttr>()) { 2474 // Get the required features for the callee. 2475 2476 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2477 ParsedTargetAttr ParsedAttr = 2478 CGM.getContext().filterFunctionTargetAttrs(TD); 2479 2480 SmallVector<StringRef, 1> ReqFeatures; 2481 llvm::StringMap<bool> CalleeFeatureMap; 2482 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2483 2484 for (const auto &F : ParsedAttr.Features) { 2485 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2486 ReqFeatures.push_back(StringRef(F).substr(1)); 2487 } 2488 2489 for (const auto &F : CalleeFeatureMap) { 2490 // Only positive features are "required". 2491 if (F.getValue()) 2492 ReqFeatures.push_back(F.getKey()); 2493 } 2494 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2495 if (!CallerFeatureMap.lookup(Feature)) { 2496 MissingFeature = Feature.str(); 2497 return false; 2498 } 2499 return true; 2500 })) 2501 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2502 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2503 } 2504 } 2505 2506 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2507 if (!CGM.getCodeGenOpts().SanitizeStats) 2508 return; 2509 2510 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2511 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2512 CGM.getSanStats().create(IRB, SSK); 2513 } 2514 2515 llvm::Value * 2516 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2517 llvm::Value *Condition = nullptr; 2518 2519 if (!RO.Conditions.Architecture.empty()) 2520 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2521 2522 if (!RO.Conditions.Features.empty()) { 2523 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2524 Condition = 2525 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2526 } 2527 return Condition; 2528 } 2529 2530 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2531 llvm::Function *Resolver, 2532 CGBuilderTy &Builder, 2533 llvm::Function *FuncToReturn, 2534 bool SupportsIFunc) { 2535 if (SupportsIFunc) { 2536 Builder.CreateRet(FuncToReturn); 2537 return; 2538 } 2539 2540 llvm::SmallVector<llvm::Value *, 10> Args; 2541 llvm::for_each(Resolver->args(), 2542 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2543 2544 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2545 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2546 2547 if (Resolver->getReturnType()->isVoidTy()) 2548 Builder.CreateRetVoid(); 2549 else 2550 Builder.CreateRet(Result); 2551 } 2552 2553 void CodeGenFunction::EmitMultiVersionResolver( 2554 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2555 assert(getContext().getTargetInfo().getTriple().isX86() && 2556 "Only implemented for x86 targets"); 2557 2558 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2559 2560 // Main function's basic block. 2561 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2562 Builder.SetInsertPoint(CurBlock); 2563 EmitX86CpuInit(); 2564 2565 for (const MultiVersionResolverOption &RO : Options) { 2566 Builder.SetInsertPoint(CurBlock); 2567 llvm::Value *Condition = FormResolverCondition(RO); 2568 2569 // The 'default' or 'generic' case. 2570 if (!Condition) { 2571 assert(&RO == Options.end() - 1 && 2572 "Default or Generic case must be last"); 2573 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2574 SupportsIFunc); 2575 return; 2576 } 2577 2578 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2579 CGBuilderTy RetBuilder(*this, RetBlock); 2580 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2581 SupportsIFunc); 2582 CurBlock = createBasicBlock("resolver_else", Resolver); 2583 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2584 } 2585 2586 // If no generic/default, emit an unreachable. 2587 Builder.SetInsertPoint(CurBlock); 2588 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2589 TrapCall->setDoesNotReturn(); 2590 TrapCall->setDoesNotThrow(); 2591 Builder.CreateUnreachable(); 2592 Builder.ClearInsertionPoint(); 2593 } 2594 2595 // Loc - where the diagnostic will point, where in the source code this 2596 // alignment has failed. 2597 // SecondaryLoc - if present (will be present if sufficiently different from 2598 // Loc), the diagnostic will additionally point a "Note:" to this location. 2599 // It should be the location where the __attribute__((assume_aligned)) 2600 // was written e.g. 2601 void CodeGenFunction::emitAlignmentAssumptionCheck( 2602 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2603 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2604 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2605 llvm::Instruction *Assumption) { 2606 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2607 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2608 llvm::Intrinsic::getDeclaration( 2609 Builder.GetInsertBlock()->getParent()->getParent(), 2610 llvm::Intrinsic::assume) && 2611 "Assumption should be a call to llvm.assume()."); 2612 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2613 "Assumption should be the last instruction of the basic block, " 2614 "since the basic block is still being generated."); 2615 2616 if (!SanOpts.has(SanitizerKind::Alignment)) 2617 return; 2618 2619 // Don't check pointers to volatile data. The behavior here is implementation- 2620 // defined. 2621 if (Ty->getPointeeType().isVolatileQualified()) 2622 return; 2623 2624 // We need to temorairly remove the assumption so we can insert the 2625 // sanitizer check before it, else the check will be dropped by optimizations. 2626 Assumption->removeFromParent(); 2627 2628 { 2629 SanitizerScope SanScope(this); 2630 2631 if (!OffsetValue) 2632 OffsetValue = Builder.getInt1(0); // no offset. 2633 2634 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2635 EmitCheckSourceLocation(SecondaryLoc), 2636 EmitCheckTypeDescriptor(Ty)}; 2637 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2638 EmitCheckValue(Alignment), 2639 EmitCheckValue(OffsetValue)}; 2640 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2641 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2642 } 2643 2644 // We are now in the (new, empty) "cont" basic block. 2645 // Reintroduce the assumption. 2646 Builder.Insert(Assumption); 2647 // FIXME: Assumption still has it's original basic block as it's Parent. 2648 } 2649 2650 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2651 if (CGDebugInfo *DI = getDebugInfo()) 2652 return DI->SourceLocToDebugLoc(Location); 2653 2654 return llvm::DebugLoc(); 2655 } 2656 2657 llvm::Value * 2658 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2659 Stmt::Likelihood LH) { 2660 switch (LH) { 2661 case Stmt::LH_None: 2662 return Cond; 2663 case Stmt::LH_Likely: 2664 case Stmt::LH_Unlikely: 2665 // Don't generate llvm.expect on -O0 as the backend won't use it for 2666 // anything. 2667 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2668 return Cond; 2669 llvm::Type *CondTy = Cond->getType(); 2670 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2671 llvm::Function *FnExpect = 2672 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2673 llvm::Value *ExpectedValueOfCond = 2674 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2675 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2676 Cond->getName() + ".expval"); 2677 } 2678 llvm_unreachable("Unknown Likelihood"); 2679 } 2680