1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 192 TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 204 } 205 206 207 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 208 return CGM.getTypes().ConvertTypeForMem(T); 209 } 210 211 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 212 return CGM.getTypes().ConvertType(T); 213 } 214 215 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 216 type = type.getCanonicalType(); 217 while (true) { 218 switch (type->getTypeClass()) { 219 #define TYPE(name, parent) 220 #define ABSTRACT_TYPE(name, parent) 221 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 222 #define DEPENDENT_TYPE(name, parent) case Type::name: 223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 224 #include "clang/AST/TypeNodes.inc" 225 llvm_unreachable("non-canonical or dependent type in IR-generation"); 226 227 case Type::Auto: 228 case Type::DeducedTemplateSpecialization: 229 llvm_unreachable("undeduced type in IR-generation"); 230 231 // Various scalar types. 232 case Type::Builtin: 233 case Type::Pointer: 234 case Type::BlockPointer: 235 case Type::LValueReference: 236 case Type::RValueReference: 237 case Type::MemberPointer: 238 case Type::Vector: 239 case Type::ExtVector: 240 case Type::ConstantMatrix: 241 case Type::FunctionProto: 242 case Type::FunctionNoProto: 243 case Type::Enum: 244 case Type::ObjCObjectPointer: 245 case Type::Pipe: 246 case Type::ExtInt: 247 return TEK_Scalar; 248 249 // Complexes. 250 case Type::Complex: 251 return TEK_Complex; 252 253 // Arrays, records, and Objective-C objects. 254 case Type::ConstantArray: 255 case Type::IncompleteArray: 256 case Type::VariableArray: 257 case Type::Record: 258 case Type::ObjCObject: 259 case Type::ObjCInterface: 260 return TEK_Aggregate; 261 262 // We operate on atomic values according to their underlying type. 263 case Type::Atomic: 264 type = cast<AtomicType>(type)->getValueType(); 265 continue; 266 } 267 llvm_unreachable("unknown type kind!"); 268 } 269 } 270 271 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 272 // For cleanliness, we try to avoid emitting the return block for 273 // simple cases. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (CurBB) { 277 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 278 279 // We have a valid insert point, reuse it if it is empty or there are no 280 // explicit jumps to the return block. 281 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 282 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 283 delete ReturnBlock.getBlock(); 284 ReturnBlock = JumpDest(); 285 } else 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 // Otherwise, if the return block is the target of a single direct 291 // branch then we can just put the code in that block instead. This 292 // cleans up functions which started with a unified return block. 293 if (ReturnBlock.getBlock()->hasOneUse()) { 294 llvm::BranchInst *BI = 295 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 296 if (BI && BI->isUnconditional() && 297 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 298 // Record/return the DebugLoc of the simple 'return' expression to be used 299 // later by the actual 'ret' instruction. 300 llvm::DebugLoc Loc = BI->getDebugLoc(); 301 Builder.SetInsertPoint(BI->getParent()); 302 BI->eraseFromParent(); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 return Loc; 306 } 307 } 308 309 // FIXME: We are at an unreachable point, there is no reason to emit the block 310 // unless it has uses. However, we still need a place to put the debug 311 // region.end for now. 312 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 318 if (!BB) return; 319 if (!BB->use_empty()) 320 return CGF.CurFn->getBasicBlockList().push_back(BB); 321 delete BB; 322 } 323 324 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 325 assert(BreakContinueStack.empty() && 326 "mismatched push/pop in break/continue stack!"); 327 328 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 329 && NumSimpleReturnExprs == NumReturnExprs 330 && ReturnBlock.getBlock()->use_empty(); 331 // Usually the return expression is evaluated before the cleanup 332 // code. If the function contains only a simple return statement, 333 // such as a constant, the location before the cleanup code becomes 334 // the last useful breakpoint in the function, because the simple 335 // return expression will be evaluated after the cleanup code. To be 336 // safe, set the debug location for cleanup code to the location of 337 // the return statement. Otherwise the cleanup code should be at the 338 // end of the function's lexical scope. 339 // 340 // If there are multiple branches to the return block, the branch 341 // instructions will get the location of the return statements and 342 // all will be fine. 343 if (CGDebugInfo *DI = getDebugInfo()) { 344 if (OnlySimpleReturnStmts) 345 DI->EmitLocation(Builder, LastStopPoint); 346 else 347 DI->EmitLocation(Builder, EndLoc); 348 } 349 350 // Pop any cleanups that might have been associated with the 351 // parameters. Do this in whatever block we're currently in; it's 352 // important to do this before we enter the return block or return 353 // edges will be *really* confused. 354 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 355 bool HasOnlyLifetimeMarkers = 356 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 357 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 358 if (HasCleanups) { 359 // Make sure the line table doesn't jump back into the body for 360 // the ret after it's been at EndLoc. 361 Optional<ApplyDebugLocation> AL; 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, EndLoc); 365 else 366 // We may not have a valid end location. Try to apply it anyway, and 367 // fall back to an artificial location if needed. 368 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 369 } 370 371 PopCleanupBlocks(PrologueCleanupDepth); 372 } 373 374 // Emit function epilog (to return). 375 llvm::DebugLoc Loc = EmitReturnBlock(); 376 377 if (ShouldInstrumentFunction()) { 378 if (CGM.getCodeGenOpts().InstrumentFunctions) 379 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 380 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 381 CurFn->addFnAttr("instrument-function-exit-inlined", 382 "__cyg_profile_func_exit"); 383 } 384 385 if (ShouldSkipSanitizerInstrumentation()) 386 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 387 388 // Emit debug descriptor for function end. 389 if (CGDebugInfo *DI = getDebugInfo()) 390 DI->EmitFunctionEnd(Builder, CurFn); 391 392 // Reset the debug location to that of the simple 'return' expression, if any 393 // rather than that of the end of the function's scope '}'. 394 ApplyDebugLocation AL(*this, Loc); 395 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 396 EmitEndEHSpec(CurCodeDecl); 397 398 assert(EHStack.empty() && 399 "did not remove all scopes from cleanup stack!"); 400 401 // If someone did an indirect goto, emit the indirect goto block at the end of 402 // the function. 403 if (IndirectBranch) { 404 EmitBlock(IndirectBranch->getParent()); 405 Builder.ClearInsertionPoint(); 406 } 407 408 // If some of our locals escaped, insert a call to llvm.localescape in the 409 // entry block. 410 if (!EscapedLocals.empty()) { 411 // Invert the map from local to index into a simple vector. There should be 412 // no holes. 413 SmallVector<llvm::Value *, 4> EscapeArgs; 414 EscapeArgs.resize(EscapedLocals.size()); 415 for (auto &Pair : EscapedLocals) 416 EscapeArgs[Pair.second] = Pair.first; 417 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 418 &CGM.getModule(), llvm::Intrinsic::localescape); 419 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 420 } 421 422 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 423 llvm::Instruction *Ptr = AllocaInsertPt; 424 AllocaInsertPt = nullptr; 425 Ptr->eraseFromParent(); 426 427 // If someone took the address of a label but never did an indirect goto, we 428 // made a zero entry PHI node, which is illegal, zap it now. 429 if (IndirectBranch) { 430 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 431 if (PN->getNumIncomingValues() == 0) { 432 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 433 PN->eraseFromParent(); 434 } 435 } 436 437 EmitIfUsed(*this, EHResumeBlock); 438 EmitIfUsed(*this, TerminateLandingPad); 439 EmitIfUsed(*this, TerminateHandler); 440 EmitIfUsed(*this, UnreachableBlock); 441 442 for (const auto &FuncletAndParent : TerminateFunclets) 443 EmitIfUsed(*this, FuncletAndParent.second); 444 445 if (CGM.getCodeGenOpts().EmitDeclMetadata) 446 EmitDeclMetadata(); 447 448 for (const auto &R : DeferredReplacements) { 449 if (llvm::Value *Old = R.first) { 450 Old->replaceAllUsesWith(R.second); 451 cast<llvm::Instruction>(Old)->eraseFromParent(); 452 } 453 } 454 DeferredReplacements.clear(); 455 456 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 457 // PHIs if the current function is a coroutine. We don't do it for all 458 // functions as it may result in slight increase in numbers of instructions 459 // if compiled with no optimizations. We do it for coroutine as the lifetime 460 // of CleanupDestSlot alloca make correct coroutine frame building very 461 // difficult. 462 if (NormalCleanupDest.isValid() && isCoroutine()) { 463 llvm::DominatorTree DT(*CurFn); 464 llvm::PromoteMemToReg( 465 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 466 NormalCleanupDest = Address::invalid(); 467 } 468 469 // Scan function arguments for vector width. 470 for (llvm::Argument &A : CurFn->args()) 471 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 472 LargestVectorWidth = 473 std::max((uint64_t)LargestVectorWidth, 474 VT->getPrimitiveSizeInBits().getKnownMinSize()); 475 476 // Update vector width based on return type. 477 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 478 LargestVectorWidth = 479 std::max((uint64_t)LargestVectorWidth, 480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 481 482 // Add the required-vector-width attribute. This contains the max width from: 483 // 1. min-vector-width attribute used in the source program. 484 // 2. Any builtins used that have a vector width specified. 485 // 3. Values passed in and out of inline assembly. 486 // 4. Width of vector arguments and return types for this function. 487 // 5. Width of vector aguments and return types for functions called by this 488 // function. 489 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 490 491 // Add vscale_range attribute if appropriate. 492 Optional<std::pair<unsigned, unsigned>> VScaleRange = 493 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 494 if (VScaleRange) { 495 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 496 getLLVMContext(), VScaleRange.getValue().first, 497 VScaleRange.getValue().second)); 498 } 499 500 // If we generated an unreachable return block, delete it now. 501 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 502 Builder.ClearInsertionPoint(); 503 ReturnBlock.getBlock()->eraseFromParent(); 504 } 505 if (ReturnValue.isValid()) { 506 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 507 if (RetAlloca && RetAlloca->use_empty()) { 508 RetAlloca->eraseFromParent(); 509 ReturnValue = Address::invalid(); 510 } 511 } 512 } 513 514 /// ShouldInstrumentFunction - Return true if the current function should be 515 /// instrumented with __cyg_profile_func_* calls 516 bool CodeGenFunction::ShouldInstrumentFunction() { 517 if (!CGM.getCodeGenOpts().InstrumentFunctions && 518 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 519 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 520 return false; 521 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 522 return false; 523 return true; 524 } 525 526 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 527 if (!CurFuncDecl) 528 return false; 529 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 714 if (FD && FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (FD && FD->getBody() && 807 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 808 SanOpts.Mask &= ~SanitizerKind::Null; 809 810 // Apply xray attributes to the function (as a string, for now) 811 bool AlwaysXRayAttr = false; 812 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 813 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 814 XRayInstrKind::FunctionEntry) || 815 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 816 XRayInstrKind::FunctionExit)) { 817 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 AlwaysXRayAttr = true; 820 } 821 if (XRayAttr->neverXRayInstrument()) 822 Fn->addFnAttr("function-instrument", "xray-never"); 823 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 824 if (ShouldXRayInstrumentFunction()) 825 Fn->addFnAttr("xray-log-args", 826 llvm::utostr(LogArgs->getArgumentCount())); 827 } 828 } else { 829 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 830 Fn->addFnAttr( 831 "xray-instruction-threshold", 832 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 833 } 834 835 if (ShouldXRayInstrumentFunction()) { 836 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 837 Fn->addFnAttr("xray-ignore-loops"); 838 839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) 841 Fn->addFnAttr("xray-skip-exit"); 842 843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 844 XRayInstrKind::FunctionEntry)) 845 Fn->addFnAttr("xray-skip-entry"); 846 847 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 848 if (FuncGroups > 1) { 849 auto FuncName = llvm::makeArrayRef<uint8_t>( 850 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 851 auto Group = crc32(FuncName) % FuncGroups; 852 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 853 !AlwaysXRayAttr) 854 Fn->addFnAttr("function-instrument", "xray-never"); 855 } 856 } 857 858 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 859 if (CGM.isProfileInstrExcluded(Fn, Loc)) 860 Fn->addFnAttr(llvm::Attribute::NoProfile); 861 862 unsigned Count, Offset; 863 if (const auto *Attr = 864 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 865 Count = Attr->getCount(); 866 Offset = Attr->getOffset(); 867 } else { 868 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 869 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 870 } 871 if (Count && Offset <= Count) { 872 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 873 if (Offset) 874 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 875 } 876 877 // Add no-jump-tables value. 878 if (CGM.getCodeGenOpts().NoUseJumpTables) 879 Fn->addFnAttr("no-jump-tables", "true"); 880 881 // Add no-inline-line-tables value. 882 if (CGM.getCodeGenOpts().NoInlineLineTables) 883 Fn->addFnAttr("no-inline-line-tables"); 884 885 // Add profile-sample-accurate value. 886 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 887 Fn->addFnAttr("profile-sample-accurate"); 888 889 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 890 Fn->addFnAttr("use-sample-profile"); 891 892 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 893 Fn->addFnAttr("cfi-canonical-jump-table"); 894 895 if (D && D->hasAttr<NoProfileFunctionAttr>()) 896 Fn->addFnAttr(llvm::Attribute::NoProfile); 897 898 if (FD && getLangOpts().OpenCL) { 899 // Add metadata for a kernel function. 900 EmitOpenCLKernelMetadata(FD, Fn); 901 } 902 903 // If we are checking function types, emit a function type signature as 904 // prologue data. 905 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 906 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 907 // Remove any (C++17) exception specifications, to allow calling e.g. a 908 // noexcept function through a non-noexcept pointer. 909 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 910 FD->getType(), EST_None); 911 llvm::Constant *FTRTTIConst = 912 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 913 llvm::Constant *FTRTTIConstEncoded = 914 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 915 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 916 llvm::Constant *PrologueStructConst = 917 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 918 Fn->setPrologueData(PrologueStructConst); 919 } 920 } 921 922 // If we're checking nullability, we need to know whether we can check the 923 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 924 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 925 auto Nullability = FnRetTy->getNullability(getContext()); 926 if (Nullability && *Nullability == NullabilityKind::NonNull) { 927 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 928 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 929 RetValNullabilityPrecondition = 930 llvm::ConstantInt::getTrue(getLLVMContext()); 931 } 932 } 933 934 // If we're in C++ mode and the function name is "main", it is guaranteed 935 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 936 // used within a program"). 937 // 938 // OpenCL C 2.0 v2.2-11 s6.9.i: 939 // Recursion is not supported. 940 // 941 // SYCL v1.2.1 s3.10: 942 // kernels cannot include RTTI information, exception classes, 943 // recursive code, virtual functions or make use of C++ libraries that 944 // are not compiled for the device. 945 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 946 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 947 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 948 Fn->addFnAttr(llvm::Attribute::NoRecurse); 949 950 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 951 llvm::fp::ExceptionBehavior FPExceptionBehavior = 952 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 953 Builder.setDefaultConstrainedRounding(RM); 954 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 955 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 956 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 957 RM != llvm::RoundingMode::NearestTiesToEven))) { 958 Builder.setIsFPConstrained(true); 959 Fn->addFnAttr(llvm::Attribute::StrictFP); 960 } 961 962 // If a custom alignment is used, force realigning to this alignment on 963 // any main function which certainly will need it. 964 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 965 CGM.getCodeGenOpts().StackAlignment)) 966 Fn->addFnAttr("stackrealign"); 967 968 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 969 970 // Create a marker to make it easy to insert allocas into the entryblock 971 // later. Don't create this with the builder, because we don't want it 972 // folded. 973 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 974 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 975 976 ReturnBlock = getJumpDestInCurrentScope("return"); 977 978 Builder.SetInsertPoint(EntryBB); 979 980 // If we're checking the return value, allocate space for a pointer to a 981 // precise source location of the checked return statement. 982 if (requiresReturnValueCheck()) { 983 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 984 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 985 ReturnLocation); 986 } 987 988 // Emit subprogram debug descriptor. 989 if (CGDebugInfo *DI = getDebugInfo()) { 990 // Reconstruct the type from the argument list so that implicit parameters, 991 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 992 // convention. 993 DI->emitFunctionStart(GD, Loc, StartLoc, 994 DI->getFunctionType(FD, RetTy, Args), CurFn, 995 CurFuncIsThunk); 996 } 997 998 if (ShouldInstrumentFunction()) { 999 if (CGM.getCodeGenOpts().InstrumentFunctions) 1000 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1001 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1002 CurFn->addFnAttr("instrument-function-entry-inlined", 1003 "__cyg_profile_func_enter"); 1004 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1005 CurFn->addFnAttr("instrument-function-entry-inlined", 1006 "__cyg_profile_func_enter_bare"); 1007 } 1008 1009 // Since emitting the mcount call here impacts optimizations such as function 1010 // inlining, we just add an attribute to insert a mcount call in backend. 1011 // The attribute "counting-function" is set to mcount function name which is 1012 // architecture dependent. 1013 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1014 // Calls to fentry/mcount should not be generated if function has 1015 // the no_instrument_function attribute. 1016 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1017 if (CGM.getCodeGenOpts().CallFEntry) 1018 Fn->addFnAttr("fentry-call", "true"); 1019 else { 1020 Fn->addFnAttr("instrument-function-entry-inlined", 1021 getTarget().getMCountName()); 1022 } 1023 if (CGM.getCodeGenOpts().MNopMCount) { 1024 if (!CGM.getCodeGenOpts().CallFEntry) 1025 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1026 << "-mnop-mcount" << "-mfentry"; 1027 Fn->addFnAttr("mnop-mcount"); 1028 } 1029 1030 if (CGM.getCodeGenOpts().RecordMCount) { 1031 if (!CGM.getCodeGenOpts().CallFEntry) 1032 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1033 << "-mrecord-mcount" << "-mfentry"; 1034 Fn->addFnAttr("mrecord-mcount"); 1035 } 1036 } 1037 } 1038 1039 if (CGM.getCodeGenOpts().PackedStack) { 1040 if (getContext().getTargetInfo().getTriple().getArch() != 1041 llvm::Triple::systemz) 1042 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1043 << "-mpacked-stack"; 1044 Fn->addFnAttr("packed-stack"); 1045 } 1046 1047 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1048 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1049 Fn->addFnAttr("warn-stack-size", 1050 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1051 1052 if (RetTy->isVoidType()) { 1053 // Void type; nothing to return. 1054 ReturnValue = Address::invalid(); 1055 1056 // Count the implicit return. 1057 if (!endsWithReturn(D)) 1058 ++NumReturnExprs; 1059 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1060 // Indirect return; emit returned value directly into sret slot. 1061 // This reduces code size, and affects correctness in C++. 1062 auto AI = CurFn->arg_begin(); 1063 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1064 ++AI; 1065 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1066 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1067 ReturnValuePointer = 1068 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1069 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1070 ReturnValue.getPointer(), Int8PtrTy), 1071 ReturnValuePointer); 1072 } 1073 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1074 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1075 // Load the sret pointer from the argument struct and return into that. 1076 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1077 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1078 --EI; 1079 llvm::Value *Addr = Builder.CreateStructGEP( 1080 EI->getType()->getPointerElementType(), &*EI, Idx); 1081 llvm::Type *Ty = 1082 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1083 ReturnValuePointer = Address(Addr, getPointerAlign()); 1084 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1085 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1086 } else { 1087 ReturnValue = CreateIRTemp(RetTy, "retval"); 1088 1089 // Tell the epilog emitter to autorelease the result. We do this 1090 // now so that various specialized functions can suppress it 1091 // during their IR-generation. 1092 if (getLangOpts().ObjCAutoRefCount && 1093 !CurFnInfo->isReturnsRetained() && 1094 RetTy->isObjCRetainableType()) 1095 AutoreleaseResult = true; 1096 } 1097 1098 EmitStartEHSpec(CurCodeDecl); 1099 1100 PrologueCleanupDepth = EHStack.stable_begin(); 1101 1102 // Emit OpenMP specific initialization of the device functions. 1103 if (getLangOpts().OpenMP && CurCodeDecl) 1104 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1105 1106 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1107 1108 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1109 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1110 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1111 if (MD->getParent()->isLambda() && 1112 MD->getOverloadedOperator() == OO_Call) { 1113 // We're in a lambda; figure out the captures. 1114 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1115 LambdaThisCaptureField); 1116 if (LambdaThisCaptureField) { 1117 // If the lambda captures the object referred to by '*this' - either by 1118 // value or by reference, make sure CXXThisValue points to the correct 1119 // object. 1120 1121 // Get the lvalue for the field (which is a copy of the enclosing object 1122 // or contains the address of the enclosing object). 1123 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1124 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1125 // If the enclosing object was captured by value, just use its address. 1126 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1127 } else { 1128 // Load the lvalue pointed to by the field, since '*this' was captured 1129 // by reference. 1130 CXXThisValue = 1131 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1132 } 1133 } 1134 for (auto *FD : MD->getParent()->fields()) { 1135 if (FD->hasCapturedVLAType()) { 1136 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1137 SourceLocation()).getScalarVal(); 1138 auto VAT = FD->getCapturedVLAType(); 1139 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1140 } 1141 } 1142 } else { 1143 // Not in a lambda; just use 'this' from the method. 1144 // FIXME: Should we generate a new load for each use of 'this'? The 1145 // fast register allocator would be happier... 1146 CXXThisValue = CXXABIThisValue; 1147 } 1148 1149 // Check the 'this' pointer once per function, if it's available. 1150 if (CXXABIThisValue) { 1151 SanitizerSet SkippedChecks; 1152 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1153 QualType ThisTy = MD->getThisType(); 1154 1155 // If this is the call operator of a lambda with no capture-default, it 1156 // may have a static invoker function, which may call this operator with 1157 // a null 'this' pointer. 1158 if (isLambdaCallOperator(MD) && 1159 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1160 SkippedChecks.set(SanitizerKind::Null, true); 1161 1162 EmitTypeCheck( 1163 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1164 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1165 } 1166 } 1167 1168 // If any of the arguments have a variably modified type, make sure to 1169 // emit the type size. 1170 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1171 i != e; ++i) { 1172 const VarDecl *VD = *i; 1173 1174 // Dig out the type as written from ParmVarDecls; it's unclear whether 1175 // the standard (C99 6.9.1p10) requires this, but we're following the 1176 // precedent set by gcc. 1177 QualType Ty; 1178 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1179 Ty = PVD->getOriginalType(); 1180 else 1181 Ty = VD->getType(); 1182 1183 if (Ty->isVariablyModifiedType()) 1184 EmitVariablyModifiedType(Ty); 1185 } 1186 // Emit a location at the end of the prologue. 1187 if (CGDebugInfo *DI = getDebugInfo()) 1188 DI->EmitLocation(Builder, StartLoc); 1189 1190 // TODO: Do we need to handle this in two places like we do with 1191 // target-features/target-cpu? 1192 if (CurFuncDecl) 1193 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1194 LargestVectorWidth = VecWidth->getVectorWidth(); 1195 } 1196 1197 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1198 incrementProfileCounter(Body); 1199 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1200 EmitCompoundStmtWithoutScope(*S); 1201 else 1202 EmitStmt(Body); 1203 1204 // This is checked after emitting the function body so we know if there 1205 // are any permitted infinite loops. 1206 if (checkIfFunctionMustProgress()) 1207 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1208 } 1209 1210 /// When instrumenting to collect profile data, the counts for some blocks 1211 /// such as switch cases need to not include the fall-through counts, so 1212 /// emit a branch around the instrumentation code. When not instrumenting, 1213 /// this just calls EmitBlock(). 1214 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1215 const Stmt *S) { 1216 llvm::BasicBlock *SkipCountBB = nullptr; 1217 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1218 // When instrumenting for profiling, the fallthrough to certain 1219 // statements needs to skip over the instrumentation code so that we 1220 // get an accurate count. 1221 SkipCountBB = createBasicBlock("skipcount"); 1222 EmitBranch(SkipCountBB); 1223 } 1224 EmitBlock(BB); 1225 uint64_t CurrentCount = getCurrentProfileCount(); 1226 incrementProfileCounter(S); 1227 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1228 if (SkipCountBB) 1229 EmitBlock(SkipCountBB); 1230 } 1231 1232 /// Tries to mark the given function nounwind based on the 1233 /// non-existence of any throwing calls within it. We believe this is 1234 /// lightweight enough to do at -O0. 1235 static void TryMarkNoThrow(llvm::Function *F) { 1236 // LLVM treats 'nounwind' on a function as part of the type, so we 1237 // can't do this on functions that can be overwritten. 1238 if (F->isInterposable()) return; 1239 1240 for (llvm::BasicBlock &BB : *F) 1241 for (llvm::Instruction &I : BB) 1242 if (I.mayThrow()) 1243 return; 1244 1245 F->setDoesNotThrow(); 1246 } 1247 1248 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1249 FunctionArgList &Args) { 1250 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1251 QualType ResTy = FD->getReturnType(); 1252 1253 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1254 if (MD && MD->isInstance()) { 1255 if (CGM.getCXXABI().HasThisReturn(GD)) 1256 ResTy = MD->getThisType(); 1257 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1258 ResTy = CGM.getContext().VoidPtrTy; 1259 CGM.getCXXABI().buildThisParam(*this, Args); 1260 } 1261 1262 // The base version of an inheriting constructor whose constructed base is a 1263 // virtual base is not passed any arguments (because it doesn't actually call 1264 // the inherited constructor). 1265 bool PassedParams = true; 1266 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1267 if (auto Inherited = CD->getInheritedConstructor()) 1268 PassedParams = 1269 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1270 1271 if (PassedParams) { 1272 for (auto *Param : FD->parameters()) { 1273 Args.push_back(Param); 1274 if (!Param->hasAttr<PassObjectSizeAttr>()) 1275 continue; 1276 1277 auto *Implicit = ImplicitParamDecl::Create( 1278 getContext(), Param->getDeclContext(), Param->getLocation(), 1279 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1280 SizeArguments[Param] = Implicit; 1281 Args.push_back(Implicit); 1282 } 1283 } 1284 1285 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1286 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1287 1288 return ResTy; 1289 } 1290 1291 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1292 const CGFunctionInfo &FnInfo) { 1293 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1294 CurGD = GD; 1295 1296 FunctionArgList Args; 1297 QualType ResTy = BuildFunctionArgList(GD, Args); 1298 1299 // When generating code for a builtin with an inline declaration, use a 1300 // mangled name to hold the actual body, while keeping an external definition 1301 // in case the function pointer is referenced somewhere. 1302 if (Fn) { 1303 if (FD->isInlineBuiltinDeclaration()) { 1304 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1305 llvm::Module *M = Fn->getParent(); 1306 llvm::Function *Clone = M->getFunction(FDInlineName); 1307 if (!Clone) { 1308 Clone = llvm::Function::Create(Fn->getFunctionType(), 1309 llvm::GlobalValue::InternalLinkage, 1310 Fn->getAddressSpace(), FDInlineName, M); 1311 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1312 } 1313 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1314 Fn = Clone; 1315 } 1316 1317 // Detect the unusual situation where an inline version is shadowed by a 1318 // non-inline version. In that case we should pick the external one 1319 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1320 // to detect that situation before we reach codegen, so do some late 1321 // replacement. 1322 else { 1323 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1324 PD = PD->getPreviousDecl()) { 1325 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1326 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1327 llvm::Module *M = Fn->getParent(); 1328 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1329 Clone->replaceAllUsesWith(Fn); 1330 Clone->eraseFromParent(); 1331 } 1332 break; 1333 } 1334 } 1335 } 1336 } 1337 1338 // Check if we should generate debug info for this function. 1339 if (FD->hasAttr<NoDebugAttr>()) { 1340 // Clear non-distinct debug info that was possibly attached to the function 1341 // due to an earlier declaration without the nodebug attribute 1342 if (Fn) 1343 Fn->setSubprogram(nullptr); 1344 // Disable debug info indefinitely for this function 1345 DebugInfo = nullptr; 1346 } 1347 1348 // The function might not have a body if we're generating thunks for a 1349 // function declaration. 1350 SourceRange BodyRange; 1351 if (Stmt *Body = FD->getBody()) 1352 BodyRange = Body->getSourceRange(); 1353 else 1354 BodyRange = FD->getLocation(); 1355 CurEHLocation = BodyRange.getEnd(); 1356 1357 // Use the location of the start of the function to determine where 1358 // the function definition is located. By default use the location 1359 // of the declaration as the location for the subprogram. A function 1360 // may lack a declaration in the source code if it is created by code 1361 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1362 SourceLocation Loc = FD->getLocation(); 1363 1364 // If this is a function specialization then use the pattern body 1365 // as the location for the function. 1366 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1367 if (SpecDecl->hasBody(SpecDecl)) 1368 Loc = SpecDecl->getLocation(); 1369 1370 Stmt *Body = FD->getBody(); 1371 1372 if (Body) { 1373 // Coroutines always emit lifetime markers. 1374 if (isa<CoroutineBodyStmt>(Body)) 1375 ShouldEmitLifetimeMarkers = true; 1376 1377 // Initialize helper which will detect jumps which can cause invalid 1378 // lifetime markers. 1379 if (ShouldEmitLifetimeMarkers) 1380 Bypasses.Init(Body); 1381 } 1382 1383 // Emit the standard function prologue. 1384 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1385 1386 // Save parameters for coroutine function. 1387 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1388 for (const auto *ParamDecl : FD->parameters()) 1389 FnArgs.push_back(ParamDecl); 1390 1391 // Generate the body of the function. 1392 PGO.assignRegionCounters(GD, CurFn); 1393 if (isa<CXXDestructorDecl>(FD)) 1394 EmitDestructorBody(Args); 1395 else if (isa<CXXConstructorDecl>(FD)) 1396 EmitConstructorBody(Args); 1397 else if (getLangOpts().CUDA && 1398 !getLangOpts().CUDAIsDevice && 1399 FD->hasAttr<CUDAGlobalAttr>()) 1400 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1401 else if (isa<CXXMethodDecl>(FD) && 1402 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1403 // The lambda static invoker function is special, because it forwards or 1404 // clones the body of the function call operator (but is actually static). 1405 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1406 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1407 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1408 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1409 // Implicit copy-assignment gets the same special treatment as implicit 1410 // copy-constructors. 1411 emitImplicitAssignmentOperatorBody(Args); 1412 } else if (Body) { 1413 EmitFunctionBody(Body); 1414 } else 1415 llvm_unreachable("no definition for emitted function"); 1416 1417 // C++11 [stmt.return]p2: 1418 // Flowing off the end of a function [...] results in undefined behavior in 1419 // a value-returning function. 1420 // C11 6.9.1p12: 1421 // If the '}' that terminates a function is reached, and the value of the 1422 // function call is used by the caller, the behavior is undefined. 1423 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1424 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1425 bool ShouldEmitUnreachable = 1426 CGM.getCodeGenOpts().StrictReturn || 1427 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1428 if (SanOpts.has(SanitizerKind::Return)) { 1429 SanitizerScope SanScope(this); 1430 llvm::Value *IsFalse = Builder.getFalse(); 1431 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1432 SanitizerHandler::MissingReturn, 1433 EmitCheckSourceLocation(FD->getLocation()), None); 1434 } else if (ShouldEmitUnreachable) { 1435 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1436 EmitTrapCall(llvm::Intrinsic::trap); 1437 } 1438 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1439 Builder.CreateUnreachable(); 1440 Builder.ClearInsertionPoint(); 1441 } 1442 } 1443 1444 // Emit the standard function epilogue. 1445 FinishFunction(BodyRange.getEnd()); 1446 1447 // If we haven't marked the function nothrow through other means, do 1448 // a quick pass now to see if we can. 1449 if (!CurFn->doesNotThrow()) 1450 TryMarkNoThrow(CurFn); 1451 } 1452 1453 /// ContainsLabel - Return true if the statement contains a label in it. If 1454 /// this statement is not executed normally, it not containing a label means 1455 /// that we can just remove the code. 1456 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1457 // Null statement, not a label! 1458 if (!S) return false; 1459 1460 // If this is a label, we have to emit the code, consider something like: 1461 // if (0) { ... foo: bar(); } goto foo; 1462 // 1463 // TODO: If anyone cared, we could track __label__'s, since we know that you 1464 // can't jump to one from outside their declared region. 1465 if (isa<LabelStmt>(S)) 1466 return true; 1467 1468 // If this is a case/default statement, and we haven't seen a switch, we have 1469 // to emit the code. 1470 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1471 return true; 1472 1473 // If this is a switch statement, we want to ignore cases below it. 1474 if (isa<SwitchStmt>(S)) 1475 IgnoreCaseStmts = true; 1476 1477 // Scan subexpressions for verboten labels. 1478 for (const Stmt *SubStmt : S->children()) 1479 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1480 return true; 1481 1482 return false; 1483 } 1484 1485 /// containsBreak - Return true if the statement contains a break out of it. 1486 /// If the statement (recursively) contains a switch or loop with a break 1487 /// inside of it, this is fine. 1488 bool CodeGenFunction::containsBreak(const Stmt *S) { 1489 // Null statement, not a label! 1490 if (!S) return false; 1491 1492 // If this is a switch or loop that defines its own break scope, then we can 1493 // include it and anything inside of it. 1494 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1495 isa<ForStmt>(S)) 1496 return false; 1497 1498 if (isa<BreakStmt>(S)) 1499 return true; 1500 1501 // Scan subexpressions for verboten breaks. 1502 for (const Stmt *SubStmt : S->children()) 1503 if (containsBreak(SubStmt)) 1504 return true; 1505 1506 return false; 1507 } 1508 1509 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1510 if (!S) return false; 1511 1512 // Some statement kinds add a scope and thus never add a decl to the current 1513 // scope. Note, this list is longer than the list of statements that might 1514 // have an unscoped decl nested within them, but this way is conservatively 1515 // correct even if more statement kinds are added. 1516 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1517 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1518 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1519 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1520 return false; 1521 1522 if (isa<DeclStmt>(S)) 1523 return true; 1524 1525 for (const Stmt *SubStmt : S->children()) 1526 if (mightAddDeclToScope(SubStmt)) 1527 return true; 1528 1529 return false; 1530 } 1531 1532 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1533 /// to a constant, or if it does but contains a label, return false. If it 1534 /// constant folds return true and set the boolean result in Result. 1535 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1536 bool &ResultBool, 1537 bool AllowLabels) { 1538 llvm::APSInt ResultInt; 1539 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1540 return false; 1541 1542 ResultBool = ResultInt.getBoolValue(); 1543 return true; 1544 } 1545 1546 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1547 /// to a constant, or if it does but contains a label, return false. If it 1548 /// constant folds return true and set the folded value. 1549 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1550 llvm::APSInt &ResultInt, 1551 bool AllowLabels) { 1552 // FIXME: Rename and handle conversion of other evaluatable things 1553 // to bool. 1554 Expr::EvalResult Result; 1555 if (!Cond->EvaluateAsInt(Result, getContext())) 1556 return false; // Not foldable, not integer or not fully evaluatable. 1557 1558 llvm::APSInt Int = Result.Val.getInt(); 1559 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1560 return false; // Contains a label. 1561 1562 ResultInt = Int; 1563 return true; 1564 } 1565 1566 /// Determine whether the given condition is an instrumentable condition 1567 /// (i.e. no "&&" or "||"). 1568 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1569 // Bypass simplistic logical-NOT operator before determining whether the 1570 // condition contains any other logical operator. 1571 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1572 if (UnOp->getOpcode() == UO_LNot) 1573 C = UnOp->getSubExpr(); 1574 1575 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1576 return (!BOp || !BOp->isLogicalOp()); 1577 } 1578 1579 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1580 /// increments a profile counter based on the semantics of the given logical 1581 /// operator opcode. This is used to instrument branch condition coverage for 1582 /// logical operators. 1583 void CodeGenFunction::EmitBranchToCounterBlock( 1584 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1585 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1586 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1587 // If not instrumenting, just emit a branch. 1588 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1589 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1590 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1591 1592 llvm::BasicBlock *ThenBlock = NULL; 1593 llvm::BasicBlock *ElseBlock = NULL; 1594 llvm::BasicBlock *NextBlock = NULL; 1595 1596 // Create the block we'll use to increment the appropriate counter. 1597 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1598 1599 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1600 // means we need to evaluate the condition and increment the counter on TRUE: 1601 // 1602 // if (Cond) 1603 // goto CounterIncrBlock; 1604 // else 1605 // goto FalseBlock; 1606 // 1607 // CounterIncrBlock: 1608 // Counter++; 1609 // goto TrueBlock; 1610 1611 if (LOp == BO_LAnd) { 1612 ThenBlock = CounterIncrBlock; 1613 ElseBlock = FalseBlock; 1614 NextBlock = TrueBlock; 1615 } 1616 1617 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1618 // we need to evaluate the condition and increment the counter on FALSE: 1619 // 1620 // if (Cond) 1621 // goto TrueBlock; 1622 // else 1623 // goto CounterIncrBlock; 1624 // 1625 // CounterIncrBlock: 1626 // Counter++; 1627 // goto FalseBlock; 1628 1629 else if (LOp == BO_LOr) { 1630 ThenBlock = TrueBlock; 1631 ElseBlock = CounterIncrBlock; 1632 NextBlock = FalseBlock; 1633 } else { 1634 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1635 } 1636 1637 // Emit Branch based on condition. 1638 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1639 1640 // Emit the block containing the counter increment(s). 1641 EmitBlock(CounterIncrBlock); 1642 1643 // Increment corresponding counter; if index not provided, use Cond as index. 1644 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1645 1646 // Go to the next block. 1647 EmitBranch(NextBlock); 1648 } 1649 1650 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1651 /// statement) to the specified blocks. Based on the condition, this might try 1652 /// to simplify the codegen of the conditional based on the branch. 1653 /// \param LH The value of the likelihood attribute on the True branch. 1654 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1655 llvm::BasicBlock *TrueBlock, 1656 llvm::BasicBlock *FalseBlock, 1657 uint64_t TrueCount, 1658 Stmt::Likelihood LH) { 1659 Cond = Cond->IgnoreParens(); 1660 1661 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1662 1663 // Handle X && Y in a condition. 1664 if (CondBOp->getOpcode() == BO_LAnd) { 1665 // If we have "1 && X", simplify the code. "0 && X" would have constant 1666 // folded if the case was simple enough. 1667 bool ConstantBool = false; 1668 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1669 ConstantBool) { 1670 // br(1 && X) -> br(X). 1671 incrementProfileCounter(CondBOp); 1672 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1673 FalseBlock, TrueCount, LH); 1674 } 1675 1676 // If we have "X && 1", simplify the code to use an uncond branch. 1677 // "X && 0" would have been constant folded to 0. 1678 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1679 ConstantBool) { 1680 // br(X && 1) -> br(X). 1681 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1682 FalseBlock, TrueCount, LH, CondBOp); 1683 } 1684 1685 // Emit the LHS as a conditional. If the LHS conditional is false, we 1686 // want to jump to the FalseBlock. 1687 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1688 // The counter tells us how often we evaluate RHS, and all of TrueCount 1689 // can be propagated to that branch. 1690 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1691 1692 ConditionalEvaluation eval(*this); 1693 { 1694 ApplyDebugLocation DL(*this, Cond); 1695 // Propagate the likelihood attribute like __builtin_expect 1696 // __builtin_expect(X && Y, 1) -> X and Y are likely 1697 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1698 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1699 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1700 EmitBlock(LHSTrue); 1701 } 1702 1703 incrementProfileCounter(CondBOp); 1704 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1705 1706 // Any temporaries created here are conditional. 1707 eval.begin(*this); 1708 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1709 FalseBlock, TrueCount, LH); 1710 eval.end(*this); 1711 1712 return; 1713 } 1714 1715 if (CondBOp->getOpcode() == BO_LOr) { 1716 // If we have "0 || X", simplify the code. "1 || X" would have constant 1717 // folded if the case was simple enough. 1718 bool ConstantBool = false; 1719 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1720 !ConstantBool) { 1721 // br(0 || X) -> br(X). 1722 incrementProfileCounter(CondBOp); 1723 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1724 FalseBlock, TrueCount, LH); 1725 } 1726 1727 // If we have "X || 0", simplify the code to use an uncond branch. 1728 // "X || 1" would have been constant folded to 1. 1729 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1730 !ConstantBool) { 1731 // br(X || 0) -> br(X). 1732 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1733 FalseBlock, TrueCount, LH, CondBOp); 1734 } 1735 1736 // Emit the LHS as a conditional. If the LHS conditional is true, we 1737 // want to jump to the TrueBlock. 1738 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1739 // We have the count for entry to the RHS and for the whole expression 1740 // being true, so we can divy up True count between the short circuit and 1741 // the RHS. 1742 uint64_t LHSCount = 1743 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1744 uint64_t RHSCount = TrueCount - LHSCount; 1745 1746 ConditionalEvaluation eval(*this); 1747 { 1748 // Propagate the likelihood attribute like __builtin_expect 1749 // __builtin_expect(X || Y, 1) -> only Y is likely 1750 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1751 ApplyDebugLocation DL(*this, Cond); 1752 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1753 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1754 EmitBlock(LHSFalse); 1755 } 1756 1757 incrementProfileCounter(CondBOp); 1758 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1759 1760 // Any temporaries created here are conditional. 1761 eval.begin(*this); 1762 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1763 RHSCount, LH); 1764 1765 eval.end(*this); 1766 1767 return; 1768 } 1769 } 1770 1771 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1772 // br(!x, t, f) -> br(x, f, t) 1773 if (CondUOp->getOpcode() == UO_LNot) { 1774 // Negate the count. 1775 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1776 // The values of the enum are chosen to make this negation possible. 1777 LH = static_cast<Stmt::Likelihood>(-LH); 1778 // Negate the condition and swap the destination blocks. 1779 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1780 FalseCount, LH); 1781 } 1782 } 1783 1784 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1785 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1786 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1787 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1788 1789 // The ConditionalOperator itself has no likelihood information for its 1790 // true and false branches. This matches the behavior of __builtin_expect. 1791 ConditionalEvaluation cond(*this); 1792 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1793 getProfileCount(CondOp), Stmt::LH_None); 1794 1795 // When computing PGO branch weights, we only know the overall count for 1796 // the true block. This code is essentially doing tail duplication of the 1797 // naive code-gen, introducing new edges for which counts are not 1798 // available. Divide the counts proportionally between the LHS and RHS of 1799 // the conditional operator. 1800 uint64_t LHSScaledTrueCount = 0; 1801 if (TrueCount) { 1802 double LHSRatio = 1803 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1804 LHSScaledTrueCount = TrueCount * LHSRatio; 1805 } 1806 1807 cond.begin(*this); 1808 EmitBlock(LHSBlock); 1809 incrementProfileCounter(CondOp); 1810 { 1811 ApplyDebugLocation DL(*this, Cond); 1812 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1813 LHSScaledTrueCount, LH); 1814 } 1815 cond.end(*this); 1816 1817 cond.begin(*this); 1818 EmitBlock(RHSBlock); 1819 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1820 TrueCount - LHSScaledTrueCount, LH); 1821 cond.end(*this); 1822 1823 return; 1824 } 1825 1826 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1827 // Conditional operator handling can give us a throw expression as a 1828 // condition for a case like: 1829 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1830 // Fold this to: 1831 // br(c, throw x, br(y, t, f)) 1832 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1833 return; 1834 } 1835 1836 // Emit the code with the fully general case. 1837 llvm::Value *CondV; 1838 { 1839 ApplyDebugLocation DL(*this, Cond); 1840 CondV = EvaluateExprAsBool(Cond); 1841 } 1842 1843 llvm::MDNode *Weights = nullptr; 1844 llvm::MDNode *Unpredictable = nullptr; 1845 1846 // If the branch has a condition wrapped by __builtin_unpredictable, 1847 // create metadata that specifies that the branch is unpredictable. 1848 // Don't bother if not optimizing because that metadata would not be used. 1849 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1850 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1851 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1852 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1853 llvm::MDBuilder MDHelper(getLLVMContext()); 1854 Unpredictable = MDHelper.createUnpredictable(); 1855 } 1856 } 1857 1858 // If there is a Likelihood knowledge for the cond, lower it. 1859 // Note that if not optimizing this won't emit anything. 1860 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1861 if (CondV != NewCondV) 1862 CondV = NewCondV; 1863 else { 1864 // Otherwise, lower profile counts. Note that we do this even at -O0. 1865 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1866 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1867 } 1868 1869 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1870 } 1871 1872 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1873 /// specified stmt yet. 1874 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1875 CGM.ErrorUnsupported(S, Type); 1876 } 1877 1878 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1879 /// variable-length array whose elements have a non-zero bit-pattern. 1880 /// 1881 /// \param baseType the inner-most element type of the array 1882 /// \param src - a char* pointing to the bit-pattern for a single 1883 /// base element of the array 1884 /// \param sizeInChars - the total size of the VLA, in chars 1885 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1886 Address dest, Address src, 1887 llvm::Value *sizeInChars) { 1888 CGBuilderTy &Builder = CGF.Builder; 1889 1890 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1891 llvm::Value *baseSizeInChars 1892 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1893 1894 Address begin = 1895 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1896 llvm::Value *end = Builder.CreateInBoundsGEP( 1897 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1898 1899 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1900 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1901 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1902 1903 // Make a loop over the VLA. C99 guarantees that the VLA element 1904 // count must be nonzero. 1905 CGF.EmitBlock(loopBB); 1906 1907 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1908 cur->addIncoming(begin.getPointer(), originBB); 1909 1910 CharUnits curAlign = 1911 dest.getAlignment().alignmentOfArrayElement(baseSize); 1912 1913 // memcpy the individual element bit-pattern. 1914 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1915 /*volatile*/ false); 1916 1917 // Go to the next element. 1918 llvm::Value *next = 1919 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1920 1921 // Leave if that's the end of the VLA. 1922 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1923 Builder.CreateCondBr(done, contBB, loopBB); 1924 cur->addIncoming(next, loopBB); 1925 1926 CGF.EmitBlock(contBB); 1927 } 1928 1929 void 1930 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1931 // Ignore empty classes in C++. 1932 if (getLangOpts().CPlusPlus) { 1933 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1934 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1935 return; 1936 } 1937 } 1938 1939 // Cast the dest ptr to the appropriate i8 pointer type. 1940 if (DestPtr.getElementType() != Int8Ty) 1941 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1942 1943 // Get size and alignment info for this aggregate. 1944 CharUnits size = getContext().getTypeSizeInChars(Ty); 1945 1946 llvm::Value *SizeVal; 1947 const VariableArrayType *vla; 1948 1949 // Don't bother emitting a zero-byte memset. 1950 if (size.isZero()) { 1951 // But note that getTypeInfo returns 0 for a VLA. 1952 if (const VariableArrayType *vlaType = 1953 dyn_cast_or_null<VariableArrayType>( 1954 getContext().getAsArrayType(Ty))) { 1955 auto VlaSize = getVLASize(vlaType); 1956 SizeVal = VlaSize.NumElts; 1957 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1958 if (!eltSize.isOne()) 1959 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1960 vla = vlaType; 1961 } else { 1962 return; 1963 } 1964 } else { 1965 SizeVal = CGM.getSize(size); 1966 vla = nullptr; 1967 } 1968 1969 // If the type contains a pointer to data member we can't memset it to zero. 1970 // Instead, create a null constant and copy it to the destination. 1971 // TODO: there are other patterns besides zero that we can usefully memset, 1972 // like -1, which happens to be the pattern used by member-pointers. 1973 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1974 // For a VLA, emit a single element, then splat that over the VLA. 1975 if (vla) Ty = getContext().getBaseElementType(vla); 1976 1977 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1978 1979 llvm::GlobalVariable *NullVariable = 1980 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1981 /*isConstant=*/true, 1982 llvm::GlobalVariable::PrivateLinkage, 1983 NullConstant, Twine()); 1984 CharUnits NullAlign = DestPtr.getAlignment(); 1985 NullVariable->setAlignment(NullAlign.getAsAlign()); 1986 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1987 NullAlign); 1988 1989 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1990 1991 // Get and call the appropriate llvm.memcpy overload. 1992 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1993 return; 1994 } 1995 1996 // Otherwise, just memset the whole thing to zero. This is legal 1997 // because in LLVM, all default initializers (other than the ones we just 1998 // handled above) are guaranteed to have a bit pattern of all zeros. 1999 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2000 } 2001 2002 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2003 // Make sure that there is a block for the indirect goto. 2004 if (!IndirectBranch) 2005 GetIndirectGotoBlock(); 2006 2007 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2008 2009 // Make sure the indirect branch includes all of the address-taken blocks. 2010 IndirectBranch->addDestination(BB); 2011 return llvm::BlockAddress::get(CurFn, BB); 2012 } 2013 2014 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2015 // If we already made the indirect branch for indirect goto, return its block. 2016 if (IndirectBranch) return IndirectBranch->getParent(); 2017 2018 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2019 2020 // Create the PHI node that indirect gotos will add entries to. 2021 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2022 "indirect.goto.dest"); 2023 2024 // Create the indirect branch instruction. 2025 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2026 return IndirectBranch->getParent(); 2027 } 2028 2029 /// Computes the length of an array in elements, as well as the base 2030 /// element type and a properly-typed first element pointer. 2031 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2032 QualType &baseType, 2033 Address &addr) { 2034 const ArrayType *arrayType = origArrayType; 2035 2036 // If it's a VLA, we have to load the stored size. Note that 2037 // this is the size of the VLA in bytes, not its size in elements. 2038 llvm::Value *numVLAElements = nullptr; 2039 if (isa<VariableArrayType>(arrayType)) { 2040 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2041 2042 // Walk into all VLAs. This doesn't require changes to addr, 2043 // which has type T* where T is the first non-VLA element type. 2044 do { 2045 QualType elementType = arrayType->getElementType(); 2046 arrayType = getContext().getAsArrayType(elementType); 2047 2048 // If we only have VLA components, 'addr' requires no adjustment. 2049 if (!arrayType) { 2050 baseType = elementType; 2051 return numVLAElements; 2052 } 2053 } while (isa<VariableArrayType>(arrayType)); 2054 2055 // We get out here only if we find a constant array type 2056 // inside the VLA. 2057 } 2058 2059 // We have some number of constant-length arrays, so addr should 2060 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2061 // down to the first element of addr. 2062 SmallVector<llvm::Value*, 8> gepIndices; 2063 2064 // GEP down to the array type. 2065 llvm::ConstantInt *zero = Builder.getInt32(0); 2066 gepIndices.push_back(zero); 2067 2068 uint64_t countFromCLAs = 1; 2069 QualType eltType; 2070 2071 llvm::ArrayType *llvmArrayType = 2072 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2073 while (llvmArrayType) { 2074 assert(isa<ConstantArrayType>(arrayType)); 2075 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2076 == llvmArrayType->getNumElements()); 2077 2078 gepIndices.push_back(zero); 2079 countFromCLAs *= llvmArrayType->getNumElements(); 2080 eltType = arrayType->getElementType(); 2081 2082 llvmArrayType = 2083 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2084 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2085 assert((!llvmArrayType || arrayType) && 2086 "LLVM and Clang types are out-of-synch"); 2087 } 2088 2089 if (arrayType) { 2090 // From this point onwards, the Clang array type has been emitted 2091 // as some other type (probably a packed struct). Compute the array 2092 // size, and just emit the 'begin' expression as a bitcast. 2093 while (arrayType) { 2094 countFromCLAs *= 2095 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2096 eltType = arrayType->getElementType(); 2097 arrayType = getContext().getAsArrayType(eltType); 2098 } 2099 2100 llvm::Type *baseType = ConvertType(eltType); 2101 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2102 } else { 2103 // Create the actual GEP. 2104 addr = Address(Builder.CreateInBoundsGEP( 2105 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2106 addr.getAlignment()); 2107 } 2108 2109 baseType = eltType; 2110 2111 llvm::Value *numElements 2112 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2113 2114 // If we had any VLA dimensions, factor them in. 2115 if (numVLAElements) 2116 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2117 2118 return numElements; 2119 } 2120 2121 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2122 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2123 assert(vla && "type was not a variable array type!"); 2124 return getVLASize(vla); 2125 } 2126 2127 CodeGenFunction::VlaSizePair 2128 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2129 // The number of elements so far; always size_t. 2130 llvm::Value *numElements = nullptr; 2131 2132 QualType elementType; 2133 do { 2134 elementType = type->getElementType(); 2135 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2136 assert(vlaSize && "no size for VLA!"); 2137 assert(vlaSize->getType() == SizeTy); 2138 2139 if (!numElements) { 2140 numElements = vlaSize; 2141 } else { 2142 // It's undefined behavior if this wraps around, so mark it that way. 2143 // FIXME: Teach -fsanitize=undefined to trap this. 2144 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2145 } 2146 } while ((type = getContext().getAsVariableArrayType(elementType))); 2147 2148 return { numElements, elementType }; 2149 } 2150 2151 CodeGenFunction::VlaSizePair 2152 CodeGenFunction::getVLAElements1D(QualType type) { 2153 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2154 assert(vla && "type was not a variable array type!"); 2155 return getVLAElements1D(vla); 2156 } 2157 2158 CodeGenFunction::VlaSizePair 2159 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2160 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2161 assert(VlaSize && "no size for VLA!"); 2162 assert(VlaSize->getType() == SizeTy); 2163 return { VlaSize, Vla->getElementType() }; 2164 } 2165 2166 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2167 assert(type->isVariablyModifiedType() && 2168 "Must pass variably modified type to EmitVLASizes!"); 2169 2170 EnsureInsertPoint(); 2171 2172 // We're going to walk down into the type and look for VLA 2173 // expressions. 2174 do { 2175 assert(type->isVariablyModifiedType()); 2176 2177 const Type *ty = type.getTypePtr(); 2178 switch (ty->getTypeClass()) { 2179 2180 #define TYPE(Class, Base) 2181 #define ABSTRACT_TYPE(Class, Base) 2182 #define NON_CANONICAL_TYPE(Class, Base) 2183 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2184 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2185 #include "clang/AST/TypeNodes.inc" 2186 llvm_unreachable("unexpected dependent type!"); 2187 2188 // These types are never variably-modified. 2189 case Type::Builtin: 2190 case Type::Complex: 2191 case Type::Vector: 2192 case Type::ExtVector: 2193 case Type::ConstantMatrix: 2194 case Type::Record: 2195 case Type::Enum: 2196 case Type::Elaborated: 2197 case Type::TemplateSpecialization: 2198 case Type::ObjCTypeParam: 2199 case Type::ObjCObject: 2200 case Type::ObjCInterface: 2201 case Type::ObjCObjectPointer: 2202 case Type::ExtInt: 2203 llvm_unreachable("type class is never variably-modified!"); 2204 2205 case Type::Adjusted: 2206 type = cast<AdjustedType>(ty)->getAdjustedType(); 2207 break; 2208 2209 case Type::Decayed: 2210 type = cast<DecayedType>(ty)->getPointeeType(); 2211 break; 2212 2213 case Type::Pointer: 2214 type = cast<PointerType>(ty)->getPointeeType(); 2215 break; 2216 2217 case Type::BlockPointer: 2218 type = cast<BlockPointerType>(ty)->getPointeeType(); 2219 break; 2220 2221 case Type::LValueReference: 2222 case Type::RValueReference: 2223 type = cast<ReferenceType>(ty)->getPointeeType(); 2224 break; 2225 2226 case Type::MemberPointer: 2227 type = cast<MemberPointerType>(ty)->getPointeeType(); 2228 break; 2229 2230 case Type::ConstantArray: 2231 case Type::IncompleteArray: 2232 // Losing element qualification here is fine. 2233 type = cast<ArrayType>(ty)->getElementType(); 2234 break; 2235 2236 case Type::VariableArray: { 2237 // Losing element qualification here is fine. 2238 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2239 2240 // Unknown size indication requires no size computation. 2241 // Otherwise, evaluate and record it. 2242 if (const Expr *size = vat->getSizeExpr()) { 2243 // It's possible that we might have emitted this already, 2244 // e.g. with a typedef and a pointer to it. 2245 llvm::Value *&entry = VLASizeMap[size]; 2246 if (!entry) { 2247 llvm::Value *Size = EmitScalarExpr(size); 2248 2249 // C11 6.7.6.2p5: 2250 // If the size is an expression that is not an integer constant 2251 // expression [...] each time it is evaluated it shall have a value 2252 // greater than zero. 2253 if (SanOpts.has(SanitizerKind::VLABound) && 2254 size->getType()->isSignedIntegerType()) { 2255 SanitizerScope SanScope(this); 2256 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2257 llvm::Constant *StaticArgs[] = { 2258 EmitCheckSourceLocation(size->getBeginLoc()), 2259 EmitCheckTypeDescriptor(size->getType())}; 2260 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2261 SanitizerKind::VLABound), 2262 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2263 } 2264 2265 // Always zexting here would be wrong if it weren't 2266 // undefined behavior to have a negative bound. 2267 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2268 } 2269 } 2270 type = vat->getElementType(); 2271 break; 2272 } 2273 2274 case Type::FunctionProto: 2275 case Type::FunctionNoProto: 2276 type = cast<FunctionType>(ty)->getReturnType(); 2277 break; 2278 2279 case Type::Paren: 2280 case Type::TypeOf: 2281 case Type::UnaryTransform: 2282 case Type::Attributed: 2283 case Type::SubstTemplateTypeParm: 2284 case Type::MacroQualified: 2285 // Keep walking after single level desugaring. 2286 type = type.getSingleStepDesugaredType(getContext()); 2287 break; 2288 2289 case Type::Typedef: 2290 case Type::Decltype: 2291 case Type::Auto: 2292 case Type::DeducedTemplateSpecialization: 2293 // Stop walking: nothing to do. 2294 return; 2295 2296 case Type::TypeOfExpr: 2297 // Stop walking: emit typeof expression. 2298 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2299 return; 2300 2301 case Type::Atomic: 2302 type = cast<AtomicType>(ty)->getValueType(); 2303 break; 2304 2305 case Type::Pipe: 2306 type = cast<PipeType>(ty)->getElementType(); 2307 break; 2308 } 2309 } while (type->isVariablyModifiedType()); 2310 } 2311 2312 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2313 if (getContext().getBuiltinVaListType()->isArrayType()) 2314 return EmitPointerWithAlignment(E); 2315 return EmitLValue(E).getAddress(*this); 2316 } 2317 2318 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2319 return EmitLValue(E).getAddress(*this); 2320 } 2321 2322 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2323 const APValue &Init) { 2324 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2325 if (CGDebugInfo *Dbg = getDebugInfo()) 2326 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2327 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2328 } 2329 2330 CodeGenFunction::PeepholeProtection 2331 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2332 // At the moment, the only aggressive peephole we do in IR gen 2333 // is trunc(zext) folding, but if we add more, we can easily 2334 // extend this protection. 2335 2336 if (!rvalue.isScalar()) return PeepholeProtection(); 2337 llvm::Value *value = rvalue.getScalarVal(); 2338 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2339 2340 // Just make an extra bitcast. 2341 assert(HaveInsertPoint()); 2342 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2343 Builder.GetInsertBlock()); 2344 2345 PeepholeProtection protection; 2346 protection.Inst = inst; 2347 return protection; 2348 } 2349 2350 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2351 if (!protection.Inst) return; 2352 2353 // In theory, we could try to duplicate the peepholes now, but whatever. 2354 protection.Inst->eraseFromParent(); 2355 } 2356 2357 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2358 QualType Ty, SourceLocation Loc, 2359 SourceLocation AssumptionLoc, 2360 llvm::Value *Alignment, 2361 llvm::Value *OffsetValue) { 2362 if (Alignment->getType() != IntPtrTy) 2363 Alignment = 2364 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2365 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2366 OffsetValue = 2367 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2368 llvm::Value *TheCheck = nullptr; 2369 if (SanOpts.has(SanitizerKind::Alignment)) { 2370 llvm::Value *PtrIntValue = 2371 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2372 2373 if (OffsetValue) { 2374 bool IsOffsetZero = false; 2375 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2376 IsOffsetZero = CI->isZero(); 2377 2378 if (!IsOffsetZero) 2379 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2380 } 2381 2382 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2383 llvm::Value *Mask = 2384 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2385 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2386 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2387 } 2388 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2389 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2390 2391 if (!SanOpts.has(SanitizerKind::Alignment)) 2392 return; 2393 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2394 OffsetValue, TheCheck, Assumption); 2395 } 2396 2397 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2398 const Expr *E, 2399 SourceLocation AssumptionLoc, 2400 llvm::Value *Alignment, 2401 llvm::Value *OffsetValue) { 2402 if (auto *CE = dyn_cast<CastExpr>(E)) 2403 E = CE->getSubExprAsWritten(); 2404 QualType Ty = E->getType(); 2405 SourceLocation Loc = E->getExprLoc(); 2406 2407 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2408 OffsetValue); 2409 } 2410 2411 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2412 llvm::Value *AnnotatedVal, 2413 StringRef AnnotationStr, 2414 SourceLocation Location, 2415 const AnnotateAttr *Attr) { 2416 SmallVector<llvm::Value *, 5> Args = { 2417 AnnotatedVal, 2418 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2419 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2420 CGM.EmitAnnotationLineNo(Location), 2421 }; 2422 if (Attr) 2423 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2424 return Builder.CreateCall(AnnotationFn, Args); 2425 } 2426 2427 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2428 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2429 // FIXME We create a new bitcast for every annotation because that's what 2430 // llvm-gcc was doing. 2431 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2432 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2433 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2434 I->getAnnotation(), D->getLocation(), I); 2435 } 2436 2437 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2438 Address Addr) { 2439 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2440 llvm::Value *V = Addr.getPointer(); 2441 llvm::Type *VTy = V->getType(); 2442 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2443 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2444 llvm::PointerType *IntrinTy = 2445 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2446 llvm::Function *F = 2447 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2448 2449 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2450 // FIXME Always emit the cast inst so we can differentiate between 2451 // annotation on the first field of a struct and annotation on the struct 2452 // itself. 2453 if (VTy != IntrinTy) 2454 V = Builder.CreateBitCast(V, IntrinTy); 2455 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2456 V = Builder.CreateBitCast(V, VTy); 2457 } 2458 2459 return Address(V, Addr.getAlignment()); 2460 } 2461 2462 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2463 2464 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2465 : CGF(CGF) { 2466 assert(!CGF->IsSanitizerScope); 2467 CGF->IsSanitizerScope = true; 2468 } 2469 2470 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2471 CGF->IsSanitizerScope = false; 2472 } 2473 2474 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2475 const llvm::Twine &Name, 2476 llvm::BasicBlock *BB, 2477 llvm::BasicBlock::iterator InsertPt) const { 2478 LoopStack.InsertHelper(I); 2479 if (IsSanitizerScope) 2480 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2481 } 2482 2483 void CGBuilderInserter::InsertHelper( 2484 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2485 llvm::BasicBlock::iterator InsertPt) const { 2486 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2487 if (CGF) 2488 CGF->InsertHelper(I, Name, BB, InsertPt); 2489 } 2490 2491 // Emits an error if we don't have a valid set of target features for the 2492 // called function. 2493 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2494 const FunctionDecl *TargetDecl) { 2495 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2496 } 2497 2498 // Emits an error if we don't have a valid set of target features for the 2499 // called function. 2500 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2501 const FunctionDecl *TargetDecl) { 2502 // Early exit if this is an indirect call. 2503 if (!TargetDecl) 2504 return; 2505 2506 // Get the current enclosing function if it exists. If it doesn't 2507 // we can't check the target features anyhow. 2508 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2509 if (!FD) 2510 return; 2511 2512 // Grab the required features for the call. For a builtin this is listed in 2513 // the td file with the default cpu, for an always_inline function this is any 2514 // listed cpu and any listed features. 2515 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2516 std::string MissingFeature; 2517 llvm::StringMap<bool> CallerFeatureMap; 2518 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2519 if (BuiltinID) { 2520 StringRef FeatureList( 2521 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2522 // Return if the builtin doesn't have any required features. 2523 if (FeatureList.empty()) 2524 return; 2525 assert(!FeatureList.contains(' ') && "Space in feature list"); 2526 TargetFeatures TF(CallerFeatureMap); 2527 if (!TF.hasRequiredFeatures(FeatureList)) 2528 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2529 << TargetDecl->getDeclName() << FeatureList; 2530 } else if (!TargetDecl->isMultiVersion() && 2531 TargetDecl->hasAttr<TargetAttr>()) { 2532 // Get the required features for the callee. 2533 2534 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2535 ParsedTargetAttr ParsedAttr = 2536 CGM.getContext().filterFunctionTargetAttrs(TD); 2537 2538 SmallVector<StringRef, 1> ReqFeatures; 2539 llvm::StringMap<bool> CalleeFeatureMap; 2540 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2541 2542 for (const auto &F : ParsedAttr.Features) { 2543 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2544 ReqFeatures.push_back(StringRef(F).substr(1)); 2545 } 2546 2547 for (const auto &F : CalleeFeatureMap) { 2548 // Only positive features are "required". 2549 if (F.getValue()) 2550 ReqFeatures.push_back(F.getKey()); 2551 } 2552 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2553 if (!CallerFeatureMap.lookup(Feature)) { 2554 MissingFeature = Feature.str(); 2555 return false; 2556 } 2557 return true; 2558 })) 2559 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2560 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2561 } 2562 } 2563 2564 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2565 if (!CGM.getCodeGenOpts().SanitizeStats) 2566 return; 2567 2568 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2569 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2570 CGM.getSanStats().create(IRB, SSK); 2571 } 2572 2573 llvm::Value * 2574 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2575 llvm::Value *Condition = nullptr; 2576 2577 if (!RO.Conditions.Architecture.empty()) 2578 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2579 2580 if (!RO.Conditions.Features.empty()) { 2581 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2582 Condition = 2583 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2584 } 2585 return Condition; 2586 } 2587 2588 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2589 llvm::Function *Resolver, 2590 CGBuilderTy &Builder, 2591 llvm::Function *FuncToReturn, 2592 bool SupportsIFunc) { 2593 if (SupportsIFunc) { 2594 Builder.CreateRet(FuncToReturn); 2595 return; 2596 } 2597 2598 llvm::SmallVector<llvm::Value *, 10> Args; 2599 llvm::for_each(Resolver->args(), 2600 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2601 2602 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2603 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2604 2605 if (Resolver->getReturnType()->isVoidTy()) 2606 Builder.CreateRetVoid(); 2607 else 2608 Builder.CreateRet(Result); 2609 } 2610 2611 void CodeGenFunction::EmitMultiVersionResolver( 2612 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2613 assert(getContext().getTargetInfo().getTriple().isX86() && 2614 "Only implemented for x86 targets"); 2615 2616 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2617 2618 // Main function's basic block. 2619 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2620 Builder.SetInsertPoint(CurBlock); 2621 EmitX86CpuInit(); 2622 2623 for (const MultiVersionResolverOption &RO : Options) { 2624 Builder.SetInsertPoint(CurBlock); 2625 llvm::Value *Condition = FormResolverCondition(RO); 2626 2627 // The 'default' or 'generic' case. 2628 if (!Condition) { 2629 assert(&RO == Options.end() - 1 && 2630 "Default or Generic case must be last"); 2631 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2632 SupportsIFunc); 2633 return; 2634 } 2635 2636 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2637 CGBuilderTy RetBuilder(*this, RetBlock); 2638 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2639 SupportsIFunc); 2640 CurBlock = createBasicBlock("resolver_else", Resolver); 2641 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2642 } 2643 2644 // If no generic/default, emit an unreachable. 2645 Builder.SetInsertPoint(CurBlock); 2646 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2647 TrapCall->setDoesNotReturn(); 2648 TrapCall->setDoesNotThrow(); 2649 Builder.CreateUnreachable(); 2650 Builder.ClearInsertionPoint(); 2651 } 2652 2653 // Loc - where the diagnostic will point, where in the source code this 2654 // alignment has failed. 2655 // SecondaryLoc - if present (will be present if sufficiently different from 2656 // Loc), the diagnostic will additionally point a "Note:" to this location. 2657 // It should be the location where the __attribute__((assume_aligned)) 2658 // was written e.g. 2659 void CodeGenFunction::emitAlignmentAssumptionCheck( 2660 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2661 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2662 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2663 llvm::Instruction *Assumption) { 2664 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2665 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2666 llvm::Intrinsic::getDeclaration( 2667 Builder.GetInsertBlock()->getParent()->getParent(), 2668 llvm::Intrinsic::assume) && 2669 "Assumption should be a call to llvm.assume()."); 2670 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2671 "Assumption should be the last instruction of the basic block, " 2672 "since the basic block is still being generated."); 2673 2674 if (!SanOpts.has(SanitizerKind::Alignment)) 2675 return; 2676 2677 // Don't check pointers to volatile data. The behavior here is implementation- 2678 // defined. 2679 if (Ty->getPointeeType().isVolatileQualified()) 2680 return; 2681 2682 // We need to temorairly remove the assumption so we can insert the 2683 // sanitizer check before it, else the check will be dropped by optimizations. 2684 Assumption->removeFromParent(); 2685 2686 { 2687 SanitizerScope SanScope(this); 2688 2689 if (!OffsetValue) 2690 OffsetValue = Builder.getInt1(0); // no offset. 2691 2692 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2693 EmitCheckSourceLocation(SecondaryLoc), 2694 EmitCheckTypeDescriptor(Ty)}; 2695 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2696 EmitCheckValue(Alignment), 2697 EmitCheckValue(OffsetValue)}; 2698 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2699 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2700 } 2701 2702 // We are now in the (new, empty) "cont" basic block. 2703 // Reintroduce the assumption. 2704 Builder.Insert(Assumption); 2705 // FIXME: Assumption still has it's original basic block as it's Parent. 2706 } 2707 2708 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2709 if (CGDebugInfo *DI = getDebugInfo()) 2710 return DI->SourceLocToDebugLoc(Location); 2711 2712 return llvm::DebugLoc(); 2713 } 2714 2715 llvm::Value * 2716 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2717 Stmt::Likelihood LH) { 2718 switch (LH) { 2719 case Stmt::LH_None: 2720 return Cond; 2721 case Stmt::LH_Likely: 2722 case Stmt::LH_Unlikely: 2723 // Don't generate llvm.expect on -O0 as the backend won't use it for 2724 // anything. 2725 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2726 return Cond; 2727 llvm::Type *CondTy = Cond->getType(); 2728 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2729 llvm::Function *FnExpect = 2730 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2731 llvm::Value *ExpectedValueOfCond = 2732 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2733 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2734 Cond->getName() + ".expval"); 2735 } 2736 llvm_unreachable("Unknown Likelihood"); 2737 } 2738