xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 6481dc57612671ebe77fe9c34214fba94e1b3b27)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
199                                          bool ForPointeeType,
200                                          CodeGenFunction &CGF) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment);
206   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
207 }
208 
209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
215   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
216 }
217 
218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
219                                                       QualType T) {
220   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
221 }
222 
223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
224                                                              QualType T) {
225   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
226 }
227 
228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
229   return CGM.getTypes().ConvertTypeForMem(T);
230 }
231 
232 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
233   return CGM.getTypes().ConvertType(T);
234 }
235 
236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
237   type = type.getCanonicalType();
238   while (true) {
239     switch (type->getTypeClass()) {
240 #define TYPE(name, parent)
241 #define ABSTRACT_TYPE(name, parent)
242 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
243 #define DEPENDENT_TYPE(name, parent) case Type::name:
244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
245 #include "clang/AST/TypeNodes.inc"
246       llvm_unreachable("non-canonical or dependent type in IR-generation");
247 
248     case Type::Auto:
249     case Type::DeducedTemplateSpecialization:
250       llvm_unreachable("undeduced type in IR-generation");
251 
252     // Various scalar types.
253     case Type::Builtin:
254     case Type::Pointer:
255     case Type::BlockPointer:
256     case Type::LValueReference:
257     case Type::RValueReference:
258     case Type::MemberPointer:
259     case Type::Vector:
260     case Type::ExtVector:
261     case Type::ConstantMatrix:
262     case Type::FunctionProto:
263     case Type::FunctionNoProto:
264     case Type::Enum:
265     case Type::ObjCObjectPointer:
266     case Type::Pipe:
267     case Type::BitInt:
268       return TEK_Scalar;
269 
270     // Complexes.
271     case Type::Complex:
272       return TEK_Complex;
273 
274     // Arrays, records, and Objective-C objects.
275     case Type::ConstantArray:
276     case Type::IncompleteArray:
277     case Type::VariableArray:
278     case Type::Record:
279     case Type::ObjCObject:
280     case Type::ObjCInterface:
281     case Type::ArrayParameter:
282       return TEK_Aggregate;
283 
284     // We operate on atomic values according to their underlying type.
285     case Type::Atomic:
286       type = cast<AtomicType>(type)->getValueType();
287       continue;
288     }
289     llvm_unreachable("unknown type kind!");
290   }
291 }
292 
293 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
294   // For cleanliness, we try to avoid emitting the return block for
295   // simple cases.
296   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
297 
298   if (CurBB) {
299     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
300 
301     // We have a valid insert point, reuse it if it is empty or there are no
302     // explicit jumps to the return block.
303     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
304       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
305       delete ReturnBlock.getBlock();
306       ReturnBlock = JumpDest();
307     } else
308       EmitBlock(ReturnBlock.getBlock());
309     return llvm::DebugLoc();
310   }
311 
312   // Otherwise, if the return block is the target of a single direct
313   // branch then we can just put the code in that block instead. This
314   // cleans up functions which started with a unified return block.
315   if (ReturnBlock.getBlock()->hasOneUse()) {
316     llvm::BranchInst *BI =
317       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
318     if (BI && BI->isUnconditional() &&
319         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
320       // Record/return the DebugLoc of the simple 'return' expression to be used
321       // later by the actual 'ret' instruction.
322       llvm::DebugLoc Loc = BI->getDebugLoc();
323       Builder.SetInsertPoint(BI->getParent());
324       BI->eraseFromParent();
325       delete ReturnBlock.getBlock();
326       ReturnBlock = JumpDest();
327       return Loc;
328     }
329   }
330 
331   // FIXME: We are at an unreachable point, there is no reason to emit the block
332   // unless it has uses. However, we still need a place to put the debug
333   // region.end for now.
334 
335   EmitBlock(ReturnBlock.getBlock());
336   return llvm::DebugLoc();
337 }
338 
339 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
340   if (!BB) return;
341   if (!BB->use_empty()) {
342     CGF.CurFn->insert(CGF.CurFn->end(), BB);
343     return;
344   }
345   delete BB;
346 }
347 
348 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
349   assert(BreakContinueStack.empty() &&
350          "mismatched push/pop in break/continue stack!");
351   assert(LifetimeExtendedCleanupStack.empty() &&
352          "mismatched push/pop of cleanups in EHStack!");
353   assert(DeferredDeactivationCleanupStack.empty() &&
354          "mismatched activate/deactivate of cleanups!");
355 
356   if (CGM.shouldEmitConvergenceTokens()) {
357     ConvergenceTokenStack.pop_back();
358     assert(ConvergenceTokenStack.empty() &&
359            "mismatched push/pop in convergence stack!");
360   }
361 
362   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
363     && NumSimpleReturnExprs == NumReturnExprs
364     && ReturnBlock.getBlock()->use_empty();
365   // Usually the return expression is evaluated before the cleanup
366   // code.  If the function contains only a simple return statement,
367   // such as a constant, the location before the cleanup code becomes
368   // the last useful breakpoint in the function, because the simple
369   // return expression will be evaluated after the cleanup code. To be
370   // safe, set the debug location for cleanup code to the location of
371   // the return statement.  Otherwise the cleanup code should be at the
372   // end of the function's lexical scope.
373   //
374   // If there are multiple branches to the return block, the branch
375   // instructions will get the location of the return statements and
376   // all will be fine.
377   if (CGDebugInfo *DI = getDebugInfo()) {
378     if (OnlySimpleReturnStmts)
379       DI->EmitLocation(Builder, LastStopPoint);
380     else
381       DI->EmitLocation(Builder, EndLoc);
382   }
383 
384   // Pop any cleanups that might have been associated with the
385   // parameters.  Do this in whatever block we're currently in; it's
386   // important to do this before we enter the return block or return
387   // edges will be *really* confused.
388   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
389   bool HasOnlyLifetimeMarkers =
390       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
391   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
392 
393   std::optional<ApplyDebugLocation> OAL;
394   if (HasCleanups) {
395     // Make sure the line table doesn't jump back into the body for
396     // the ret after it's been at EndLoc.
397     if (CGDebugInfo *DI = getDebugInfo()) {
398       if (OnlySimpleReturnStmts)
399         DI->EmitLocation(Builder, EndLoc);
400       else
401         // We may not have a valid end location. Try to apply it anyway, and
402         // fall back to an artificial location if needed.
403         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
404     }
405 
406     PopCleanupBlocks(PrologueCleanupDepth);
407   }
408 
409   // Emit function epilog (to return).
410   llvm::DebugLoc Loc = EmitReturnBlock();
411 
412   if (ShouldInstrumentFunction()) {
413     if (CGM.getCodeGenOpts().InstrumentFunctions)
414       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
415     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
416       CurFn->addFnAttr("instrument-function-exit-inlined",
417                        "__cyg_profile_func_exit");
418   }
419 
420   // Emit debug descriptor for function end.
421   if (CGDebugInfo *DI = getDebugInfo())
422     DI->EmitFunctionEnd(Builder, CurFn);
423 
424   // Reset the debug location to that of the simple 'return' expression, if any
425   // rather than that of the end of the function's scope '}'.
426   ApplyDebugLocation AL(*this, Loc);
427   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
428   EmitEndEHSpec(CurCodeDecl);
429 
430   assert(EHStack.empty() &&
431          "did not remove all scopes from cleanup stack!");
432 
433   // If someone did an indirect goto, emit the indirect goto block at the end of
434   // the function.
435   if (IndirectBranch) {
436     EmitBlock(IndirectBranch->getParent());
437     Builder.ClearInsertionPoint();
438   }
439 
440   // If some of our locals escaped, insert a call to llvm.localescape in the
441   // entry block.
442   if (!EscapedLocals.empty()) {
443     // Invert the map from local to index into a simple vector. There should be
444     // no holes.
445     SmallVector<llvm::Value *, 4> EscapeArgs;
446     EscapeArgs.resize(EscapedLocals.size());
447     for (auto &Pair : EscapedLocals)
448       EscapeArgs[Pair.second] = Pair.first;
449     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
450         &CGM.getModule(), llvm::Intrinsic::localescape);
451     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
452   }
453 
454   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
455   llvm::Instruction *Ptr = AllocaInsertPt;
456   AllocaInsertPt = nullptr;
457   Ptr->eraseFromParent();
458 
459   // PostAllocaInsertPt, if created, was lazily created when it was required,
460   // remove it now since it was just created for our own convenience.
461   if (PostAllocaInsertPt) {
462     llvm::Instruction *PostPtr = PostAllocaInsertPt;
463     PostAllocaInsertPt = nullptr;
464     PostPtr->eraseFromParent();
465   }
466 
467   // If someone took the address of a label but never did an indirect goto, we
468   // made a zero entry PHI node, which is illegal, zap it now.
469   if (IndirectBranch) {
470     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
471     if (PN->getNumIncomingValues() == 0) {
472       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
473       PN->eraseFromParent();
474     }
475   }
476 
477   EmitIfUsed(*this, EHResumeBlock);
478   EmitIfUsed(*this, TerminateLandingPad);
479   EmitIfUsed(*this, TerminateHandler);
480   EmitIfUsed(*this, UnreachableBlock);
481 
482   for (const auto &FuncletAndParent : TerminateFunclets)
483     EmitIfUsed(*this, FuncletAndParent.second);
484 
485   if (CGM.getCodeGenOpts().EmitDeclMetadata)
486     EmitDeclMetadata();
487 
488   for (const auto &R : DeferredReplacements) {
489     if (llvm::Value *Old = R.first) {
490       Old->replaceAllUsesWith(R.second);
491       cast<llvm::Instruction>(Old)->eraseFromParent();
492     }
493   }
494   DeferredReplacements.clear();
495 
496   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
497   // PHIs if the current function is a coroutine. We don't do it for all
498   // functions as it may result in slight increase in numbers of instructions
499   // if compiled with no optimizations. We do it for coroutine as the lifetime
500   // of CleanupDestSlot alloca make correct coroutine frame building very
501   // difficult.
502   if (NormalCleanupDest.isValid() && isCoroutine()) {
503     llvm::DominatorTree DT(*CurFn);
504     llvm::PromoteMemToReg(
505         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
506     NormalCleanupDest = Address::invalid();
507   }
508 
509   // Scan function arguments for vector width.
510   for (llvm::Argument &A : CurFn->args())
511     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
512       LargestVectorWidth =
513           std::max((uint64_t)LargestVectorWidth,
514                    VT->getPrimitiveSizeInBits().getKnownMinValue());
515 
516   // Update vector width based on return type.
517   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
518     LargestVectorWidth =
519         std::max((uint64_t)LargestVectorWidth,
520                  VT->getPrimitiveSizeInBits().getKnownMinValue());
521 
522   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
523     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
524 
525   // Add the min-legal-vector-width attribute. This contains the max width from:
526   // 1. min-vector-width attribute used in the source program.
527   // 2. Any builtins used that have a vector width specified.
528   // 3. Values passed in and out of inline assembly.
529   // 4. Width of vector arguments and return types for this function.
530   // 5. Width of vector arguments and return types for functions called by this
531   //    function.
532   if (getContext().getTargetInfo().getTriple().isX86())
533     CurFn->addFnAttr("min-legal-vector-width",
534                      llvm::utostr(LargestVectorWidth));
535 
536   // Add vscale_range attribute if appropriate.
537   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
538       getContext().getTargetInfo().getVScaleRange(getLangOpts());
539   if (VScaleRange) {
540     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
541         getLLVMContext(), VScaleRange->first, VScaleRange->second));
542   }
543 
544   // If we generated an unreachable return block, delete it now.
545   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
546     Builder.ClearInsertionPoint();
547     ReturnBlock.getBlock()->eraseFromParent();
548   }
549   if (ReturnValue.isValid()) {
550     auto *RetAlloca =
551         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
552     if (RetAlloca && RetAlloca->use_empty()) {
553       RetAlloca->eraseFromParent();
554       ReturnValue = Address::invalid();
555     }
556   }
557 }
558 
559 /// ShouldInstrumentFunction - Return true if the current function should be
560 /// instrumented with __cyg_profile_func_* calls
561 bool CodeGenFunction::ShouldInstrumentFunction() {
562   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
563       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
564       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
565     return false;
566   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
567     return false;
568   return true;
569 }
570 
571 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
572   if (!CurFuncDecl)
573     return false;
574   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
575 }
576 
577 /// ShouldXRayInstrument - Return true if the current function should be
578 /// instrumented with XRay nop sleds.
579 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
580   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
581 }
582 
583 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
584 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
585 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
586   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
587          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
588           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
589               XRayInstrKind::Custom);
590 }
591 
592 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
593   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
594          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
595           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
596               XRayInstrKind::Typed);
597 }
598 
599 llvm::ConstantInt *
600 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
601   // Remove any (C++17) exception specifications, to allow calling e.g. a
602   // noexcept function through a non-noexcept pointer.
603   if (!Ty->isFunctionNoProtoType())
604     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
605   std::string Mangled;
606   llvm::raw_string_ostream Out(Mangled);
607   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
608   return llvm::ConstantInt::get(
609       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
610 }
611 
612 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
613                                          llvm::Function *Fn) {
614   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
615     return;
616 
617   llvm::LLVMContext &Context = getLLVMContext();
618 
619   CGM.GenKernelArgMetadata(Fn, FD, this);
620 
621   if (!getLangOpts().OpenCL)
622     return;
623 
624   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
625     QualType HintQTy = A->getTypeHint();
626     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
627     bool IsSignedInteger =
628         HintQTy->isSignedIntegerType() ||
629         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
630     llvm::Metadata *AttrMDArgs[] = {
631         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
632             CGM.getTypes().ConvertType(A->getTypeHint()))),
633         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
634             llvm::IntegerType::get(Context, 32),
635             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
636     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
637   }
638 
639   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
640     llvm::Metadata *AttrMDArgs[] = {
641         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
642         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
643         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
644     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
645   }
646 
647   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
648     llvm::Metadata *AttrMDArgs[] = {
649         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
650         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
651         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
652     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
653   }
654 
655   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
656           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
659     Fn->setMetadata("intel_reqd_sub_group_size",
660                     llvm::MDNode::get(Context, AttrMDArgs));
661   }
662 }
663 
664 /// Determine whether the function F ends with a return stmt.
665 static bool endsWithReturn(const Decl* F) {
666   const Stmt *Body = nullptr;
667   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
668     Body = FD->getBody();
669   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
670     Body = OMD->getBody();
671 
672   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
673     auto LastStmt = CS->body_rbegin();
674     if (LastStmt != CS->body_rend())
675       return isa<ReturnStmt>(*LastStmt);
676   }
677   return false;
678 }
679 
680 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
681   if (SanOpts.has(SanitizerKind::Thread)) {
682     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
683     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
684   }
685 }
686 
687 /// Check if the return value of this function requires sanitization.
688 bool CodeGenFunction::requiresReturnValueCheck() const {
689   return requiresReturnValueNullabilityCheck() ||
690          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
691           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
692 }
693 
694 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
695   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
696   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
697       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
698       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
699     return false;
700 
701   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
702     return false;
703 
704   if (MD->getNumParams() == 2) {
705     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
706     if (!PT || !PT->isVoidPointerType() ||
707         !PT->getPointeeType().isConstQualified())
708       return false;
709   }
710 
711   return true;
712 }
713 
714 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
715   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
716   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
717 }
718 
719 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
720   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
721          getTarget().getCXXABI().isMicrosoft() &&
722          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
723            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
724          });
725 }
726 
727 /// Return the UBSan prologue signature for \p FD if one is available.
728 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
729                                             const FunctionDecl *FD) {
730   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
731     if (!MD->isStatic())
732       return nullptr;
733   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
734 }
735 
736 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
737                                     llvm::Function *Fn,
738                                     const CGFunctionInfo &FnInfo,
739                                     const FunctionArgList &Args,
740                                     SourceLocation Loc,
741                                     SourceLocation StartLoc) {
742   assert(!CurFn &&
743          "Do not use a CodeGenFunction object for more than one function");
744 
745   const Decl *D = GD.getDecl();
746 
747   DidCallStackSave = false;
748   CurCodeDecl = D;
749   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
750   if (FD && FD->usesSEHTry())
751     CurSEHParent = GD;
752   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
753   FnRetTy = RetTy;
754   CurFn = Fn;
755   CurFnInfo = &FnInfo;
756   assert(CurFn->isDeclaration() && "Function already has body?");
757 
758   // If this function is ignored for any of the enabled sanitizers,
759   // disable the sanitizer for the function.
760   do {
761 #define SANITIZER(NAME, ID)                                                    \
762   if (SanOpts.empty())                                                         \
763     break;                                                                     \
764   if (SanOpts.has(SanitizerKind::ID))                                          \
765     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
766       SanOpts.set(SanitizerKind::ID, false);
767 
768 #include "clang/Basic/Sanitizers.def"
769 #undef SANITIZER
770   } while (false);
771 
772   if (D) {
773     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
774     SanitizerMask no_sanitize_mask;
775     bool NoSanitizeCoverage = false;
776 
777     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
778       no_sanitize_mask |= Attr->getMask();
779       // SanitizeCoverage is not handled by SanOpts.
780       if (Attr->hasCoverage())
781         NoSanitizeCoverage = true;
782     }
783 
784     // Apply the no_sanitize* attributes to SanOpts.
785     SanOpts.Mask &= ~no_sanitize_mask;
786     if (no_sanitize_mask & SanitizerKind::Address)
787       SanOpts.set(SanitizerKind::KernelAddress, false);
788     if (no_sanitize_mask & SanitizerKind::KernelAddress)
789       SanOpts.set(SanitizerKind::Address, false);
790     if (no_sanitize_mask & SanitizerKind::HWAddress)
791       SanOpts.set(SanitizerKind::KernelHWAddress, false);
792     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
793       SanOpts.set(SanitizerKind::HWAddress, false);
794 
795     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
796       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
797 
798     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
799       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
800 
801     // Some passes need the non-negated no_sanitize attribute. Pass them on.
802     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
803       if (no_sanitize_mask & SanitizerKind::Thread)
804         Fn->addFnAttr("no_sanitize_thread");
805     }
806   }
807 
808   if (ShouldSkipSanitizerInstrumentation()) {
809     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
810   } else {
811     // Apply sanitizer attributes to the function.
812     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
813       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
814     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
815                          SanitizerKind::KernelHWAddress))
816       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
817     if (SanOpts.has(SanitizerKind::MemtagStack))
818       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
819     if (SanOpts.has(SanitizerKind::Thread))
820       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
821     if (SanOpts.has(SanitizerKind::NumericalStability))
822       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
823     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
824       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
825   }
826   if (SanOpts.has(SanitizerKind::SafeStack))
827     Fn->addFnAttr(llvm::Attribute::SafeStack);
828   if (SanOpts.has(SanitizerKind::ShadowCallStack))
829     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
830 
831   // Apply fuzzing attribute to the function.
832   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
833     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
834 
835   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
836   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
837   if (SanOpts.has(SanitizerKind::Thread)) {
838     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
839       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
840       if (OMD->getMethodFamily() == OMF_dealloc ||
841           OMD->getMethodFamily() == OMF_initialize ||
842           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
843         markAsIgnoreThreadCheckingAtRuntime(Fn);
844       }
845     }
846   }
847 
848   // Ignore unrelated casts in STL allocate() since the allocator must cast
849   // from void* to T* before object initialization completes. Don't match on the
850   // namespace because not all allocators are in std::
851   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
852     if (matchesStlAllocatorFn(D, getContext()))
853       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
854   }
855 
856   // Ignore null checks in coroutine functions since the coroutines passes
857   // are not aware of how to move the extra UBSan instructions across the split
858   // coroutine boundaries.
859   if (D && SanOpts.has(SanitizerKind::Null))
860     if (FD && FD->getBody() &&
861         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
862       SanOpts.Mask &= ~SanitizerKind::Null;
863 
864   // Add pointer authentication attributes.
865   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
866   if (CodeGenOpts.PointerAuth.FunctionPointers)
867     Fn->addFnAttr("ptrauth-calls");
868 
869   // Apply xray attributes to the function (as a string, for now)
870   bool AlwaysXRayAttr = false;
871   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
872     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
873             XRayInstrKind::FunctionEntry) ||
874         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
875             XRayInstrKind::FunctionExit)) {
876       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
877         Fn->addFnAttr("function-instrument", "xray-always");
878         AlwaysXRayAttr = true;
879       }
880       if (XRayAttr->neverXRayInstrument())
881         Fn->addFnAttr("function-instrument", "xray-never");
882       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
883         if (ShouldXRayInstrumentFunction())
884           Fn->addFnAttr("xray-log-args",
885                         llvm::utostr(LogArgs->getArgumentCount()));
886     }
887   } else {
888     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
889       Fn->addFnAttr(
890           "xray-instruction-threshold",
891           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
892   }
893 
894   if (ShouldXRayInstrumentFunction()) {
895     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
896       Fn->addFnAttr("xray-ignore-loops");
897 
898     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
899             XRayInstrKind::FunctionExit))
900       Fn->addFnAttr("xray-skip-exit");
901 
902     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
903             XRayInstrKind::FunctionEntry))
904       Fn->addFnAttr("xray-skip-entry");
905 
906     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
907     if (FuncGroups > 1) {
908       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
909                                               CurFn->getName().bytes_end());
910       auto Group = crc32(FuncName) % FuncGroups;
911       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
912           !AlwaysXRayAttr)
913         Fn->addFnAttr("function-instrument", "xray-never");
914     }
915   }
916 
917   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
918     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
919     case ProfileList::Skip:
920       Fn->addFnAttr(llvm::Attribute::SkipProfile);
921       break;
922     case ProfileList::Forbid:
923       Fn->addFnAttr(llvm::Attribute::NoProfile);
924       break;
925     case ProfileList::Allow:
926       break;
927     }
928   }
929 
930   unsigned Count, Offset;
931   if (const auto *Attr =
932           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
933     Count = Attr->getCount();
934     Offset = Attr->getOffset();
935   } else {
936     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
937     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
938   }
939   if (Count && Offset <= Count) {
940     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
941     if (Offset)
942       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
943   }
944   // Instruct that functions for COFF/CodeView targets should start with a
945   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
946   // backends as they don't need it -- instructions on these architectures are
947   // always atomically patchable at runtime.
948   if (CGM.getCodeGenOpts().HotPatch &&
949       getContext().getTargetInfo().getTriple().isX86() &&
950       getContext().getTargetInfo().getTriple().getEnvironment() !=
951           llvm::Triple::CODE16)
952     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
953 
954   // Add no-jump-tables value.
955   if (CGM.getCodeGenOpts().NoUseJumpTables)
956     Fn->addFnAttr("no-jump-tables", "true");
957 
958   // Add no-inline-line-tables value.
959   if (CGM.getCodeGenOpts().NoInlineLineTables)
960     Fn->addFnAttr("no-inline-line-tables");
961 
962   // Add profile-sample-accurate value.
963   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
964     Fn->addFnAttr("profile-sample-accurate");
965 
966   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
967     Fn->addFnAttr("use-sample-profile");
968 
969   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
970     Fn->addFnAttr("cfi-canonical-jump-table");
971 
972   if (D && D->hasAttr<NoProfileFunctionAttr>())
973     Fn->addFnAttr(llvm::Attribute::NoProfile);
974 
975   if (D) {
976     // Function attributes take precedence over command line flags.
977     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
978       switch (A->getThunkType()) {
979       case FunctionReturnThunksAttr::Kind::Keep:
980         break;
981       case FunctionReturnThunksAttr::Kind::Extern:
982         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
983         break;
984       }
985     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
986       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
987   }
988 
989   if (FD && (getLangOpts().OpenCL ||
990              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
991     // Add metadata for a kernel function.
992     EmitKernelMetadata(FD, Fn);
993   }
994 
995   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
996     Fn->setMetadata("clspv_libclc_builtin",
997                     llvm::MDNode::get(getLLVMContext(), {}));
998   }
999 
1000   // If we are checking function types, emit a function type signature as
1001   // prologue data.
1002   if (FD && SanOpts.has(SanitizerKind::Function)) {
1003     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1004       llvm::LLVMContext &Ctx = Fn->getContext();
1005       llvm::MDBuilder MDB(Ctx);
1006       Fn->setMetadata(
1007           llvm::LLVMContext::MD_func_sanitize,
1008           MDB.createRTTIPointerPrologue(
1009               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1010     }
1011   }
1012 
1013   // If we're checking nullability, we need to know whether we can check the
1014   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1015   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1016     auto Nullability = FnRetTy->getNullability();
1017     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1018         !FnRetTy->isRecordType()) {
1019       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1020             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1021         RetValNullabilityPrecondition =
1022             llvm::ConstantInt::getTrue(getLLVMContext());
1023     }
1024   }
1025 
1026   // If we're in C++ mode and the function name is "main", it is guaranteed
1027   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1028   // used within a program").
1029   //
1030   // OpenCL C 2.0 v2.2-11 s6.9.i:
1031   //     Recursion is not supported.
1032   //
1033   // SYCL v1.2.1 s3.10:
1034   //     kernels cannot include RTTI information, exception classes,
1035   //     recursive code, virtual functions or make use of C++ libraries that
1036   //     are not compiled for the device.
1037   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1038              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1039              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1040     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1041 
1042   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1043   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1044       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1045   Builder.setDefaultConstrainedRounding(RM);
1046   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1047   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1048       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1049                RM != llvm::RoundingMode::NearestTiesToEven))) {
1050     Builder.setIsFPConstrained(true);
1051     Fn->addFnAttr(llvm::Attribute::StrictFP);
1052   }
1053 
1054   // If a custom alignment is used, force realigning to this alignment on
1055   // any main function which certainly will need it.
1056   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1057              CGM.getCodeGenOpts().StackAlignment))
1058     Fn->addFnAttr("stackrealign");
1059 
1060   // "main" doesn't need to zero out call-used registers.
1061   if (FD && FD->isMain())
1062     Fn->removeFnAttr("zero-call-used-regs");
1063 
1064   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1065 
1066   // Create a marker to make it easy to insert allocas into the entryblock
1067   // later.  Don't create this with the builder, because we don't want it
1068   // folded.
1069   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1070   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1071 
1072   ReturnBlock = getJumpDestInCurrentScope("return");
1073 
1074   Builder.SetInsertPoint(EntryBB);
1075 
1076   // If we're checking the return value, allocate space for a pointer to a
1077   // precise source location of the checked return statement.
1078   if (requiresReturnValueCheck()) {
1079     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1080     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1081                         ReturnLocation);
1082   }
1083 
1084   // Emit subprogram debug descriptor.
1085   if (CGDebugInfo *DI = getDebugInfo()) {
1086     // Reconstruct the type from the argument list so that implicit parameters,
1087     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1088     // convention.
1089     DI->emitFunctionStart(GD, Loc, StartLoc,
1090                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1091                           CurFuncIsThunk);
1092   }
1093 
1094   if (ShouldInstrumentFunction()) {
1095     if (CGM.getCodeGenOpts().InstrumentFunctions)
1096       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1097     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1098       CurFn->addFnAttr("instrument-function-entry-inlined",
1099                        "__cyg_profile_func_enter");
1100     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1101       CurFn->addFnAttr("instrument-function-entry-inlined",
1102                        "__cyg_profile_func_enter_bare");
1103   }
1104 
1105   // Since emitting the mcount call here impacts optimizations such as function
1106   // inlining, we just add an attribute to insert a mcount call in backend.
1107   // The attribute "counting-function" is set to mcount function name which is
1108   // architecture dependent.
1109   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1110     // Calls to fentry/mcount should not be generated if function has
1111     // the no_instrument_function attribute.
1112     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1113       if (CGM.getCodeGenOpts().CallFEntry)
1114         Fn->addFnAttr("fentry-call", "true");
1115       else {
1116         Fn->addFnAttr("instrument-function-entry-inlined",
1117                       getTarget().getMCountName());
1118       }
1119       if (CGM.getCodeGenOpts().MNopMCount) {
1120         if (!CGM.getCodeGenOpts().CallFEntry)
1121           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1122             << "-mnop-mcount" << "-mfentry";
1123         Fn->addFnAttr("mnop-mcount");
1124       }
1125 
1126       if (CGM.getCodeGenOpts().RecordMCount) {
1127         if (!CGM.getCodeGenOpts().CallFEntry)
1128           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1129             << "-mrecord-mcount" << "-mfentry";
1130         Fn->addFnAttr("mrecord-mcount");
1131       }
1132     }
1133   }
1134 
1135   if (CGM.getCodeGenOpts().PackedStack) {
1136     if (getContext().getTargetInfo().getTriple().getArch() !=
1137         llvm::Triple::systemz)
1138       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1139         << "-mpacked-stack";
1140     Fn->addFnAttr("packed-stack");
1141   }
1142 
1143   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1144       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1145     Fn->addFnAttr("warn-stack-size",
1146                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1147 
1148   if (RetTy->isVoidType()) {
1149     // Void type; nothing to return.
1150     ReturnValue = Address::invalid();
1151 
1152     // Count the implicit return.
1153     if (!endsWithReturn(D))
1154       ++NumReturnExprs;
1155   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1156     // Indirect return; emit returned value directly into sret slot.
1157     // This reduces code size, and affects correctness in C++.
1158     auto AI = CurFn->arg_begin();
1159     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1160       ++AI;
1161     ReturnValue = makeNaturalAddressForPointer(
1162         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1163         nullptr, nullptr, KnownNonNull);
1164     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1165       ReturnValuePointer =
1166           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1167       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1168                           ReturnValuePointer);
1169     }
1170   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1171              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1172     // Load the sret pointer from the argument struct and return into that.
1173     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1174     llvm::Function::arg_iterator EI = CurFn->arg_end();
1175     --EI;
1176     llvm::Value *Addr = Builder.CreateStructGEP(
1177         CurFnInfo->getArgStruct(), &*EI, Idx);
1178     llvm::Type *Ty =
1179         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1180     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1181     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1182     ReturnValue = Address(Addr, ConvertType(RetTy),
1183                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1184   } else {
1185     ReturnValue = CreateIRTemp(RetTy, "retval");
1186 
1187     // Tell the epilog emitter to autorelease the result.  We do this
1188     // now so that various specialized functions can suppress it
1189     // during their IR-generation.
1190     if (getLangOpts().ObjCAutoRefCount &&
1191         !CurFnInfo->isReturnsRetained() &&
1192         RetTy->isObjCRetainableType())
1193       AutoreleaseResult = true;
1194   }
1195 
1196   EmitStartEHSpec(CurCodeDecl);
1197 
1198   PrologueCleanupDepth = EHStack.stable_begin();
1199 
1200   // Emit OpenMP specific initialization of the device functions.
1201   if (getLangOpts().OpenMP && CurCodeDecl)
1202     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1203 
1204   // Handle emitting HLSL entry functions.
1205   if (D && D->hasAttr<HLSLShaderAttr>())
1206     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1207 
1208   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1209 
1210   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1211       MD && !MD->isStatic()) {
1212     bool IsInLambda =
1213         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1214     if (MD->isImplicitObjectMemberFunction())
1215       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1216     if (IsInLambda) {
1217       // We're in a lambda; figure out the captures.
1218       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1219                                         LambdaThisCaptureField);
1220       if (LambdaThisCaptureField) {
1221         // If the lambda captures the object referred to by '*this' - either by
1222         // value or by reference, make sure CXXThisValue points to the correct
1223         // object.
1224 
1225         // Get the lvalue for the field (which is a copy of the enclosing object
1226         // or contains the address of the enclosing object).
1227         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1228         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1229           // If the enclosing object was captured by value, just use its
1230           // address. Sign this pointer.
1231           CXXThisValue = ThisFieldLValue.getPointer(*this);
1232         } else {
1233           // Load the lvalue pointed to by the field, since '*this' was captured
1234           // by reference.
1235           CXXThisValue =
1236               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1237         }
1238       }
1239       for (auto *FD : MD->getParent()->fields()) {
1240         if (FD->hasCapturedVLAType()) {
1241           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1242                                            SourceLocation()).getScalarVal();
1243           auto VAT = FD->getCapturedVLAType();
1244           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1245         }
1246       }
1247     } else if (MD->isImplicitObjectMemberFunction()) {
1248       // Not in a lambda; just use 'this' from the method.
1249       // FIXME: Should we generate a new load for each use of 'this'?  The
1250       // fast register allocator would be happier...
1251       CXXThisValue = CXXABIThisValue;
1252     }
1253 
1254     // Check the 'this' pointer once per function, if it's available.
1255     if (CXXABIThisValue) {
1256       SanitizerSet SkippedChecks;
1257       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1258       QualType ThisTy = MD->getThisType();
1259 
1260       // If this is the call operator of a lambda with no captures, it
1261       // may have a static invoker function, which may call this operator with
1262       // a null 'this' pointer.
1263       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1264         SkippedChecks.set(SanitizerKind::Null, true);
1265 
1266       EmitTypeCheck(
1267           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1268           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1269     }
1270   }
1271 
1272   // If any of the arguments have a variably modified type, make sure to
1273   // emit the type size, but only if the function is not naked. Naked functions
1274   // have no prolog to run this evaluation.
1275   if (!FD || !FD->hasAttr<NakedAttr>()) {
1276     for (const VarDecl *VD : Args) {
1277       // Dig out the type as written from ParmVarDecls; it's unclear whether
1278       // the standard (C99 6.9.1p10) requires this, but we're following the
1279       // precedent set by gcc.
1280       QualType Ty;
1281       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1282         Ty = PVD->getOriginalType();
1283       else
1284         Ty = VD->getType();
1285 
1286       if (Ty->isVariablyModifiedType())
1287         EmitVariablyModifiedType(Ty);
1288     }
1289   }
1290   // Emit a location at the end of the prologue.
1291   if (CGDebugInfo *DI = getDebugInfo())
1292     DI->EmitLocation(Builder, StartLoc);
1293   // TODO: Do we need to handle this in two places like we do with
1294   // target-features/target-cpu?
1295   if (CurFuncDecl)
1296     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1297       LargestVectorWidth = VecWidth->getVectorWidth();
1298 
1299   if (CGM.shouldEmitConvergenceTokens())
1300     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1301 }
1302 
1303 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1304   incrementProfileCounter(Body);
1305   maybeCreateMCDCCondBitmap();
1306   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1307     EmitCompoundStmtWithoutScope(*S);
1308   else
1309     EmitStmt(Body);
1310 }
1311 
1312 /// When instrumenting to collect profile data, the counts for some blocks
1313 /// such as switch cases need to not include the fall-through counts, so
1314 /// emit a branch around the instrumentation code. When not instrumenting,
1315 /// this just calls EmitBlock().
1316 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1317                                                const Stmt *S) {
1318   llvm::BasicBlock *SkipCountBB = nullptr;
1319   // Do not skip over the instrumentation when single byte coverage mode is
1320   // enabled.
1321   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1322       !llvm::EnableSingleByteCoverage) {
1323     // When instrumenting for profiling, the fallthrough to certain
1324     // statements needs to skip over the instrumentation code so that we
1325     // get an accurate count.
1326     SkipCountBB = createBasicBlock("skipcount");
1327     EmitBranch(SkipCountBB);
1328   }
1329   EmitBlock(BB);
1330   uint64_t CurrentCount = getCurrentProfileCount();
1331   incrementProfileCounter(S);
1332   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1333   if (SkipCountBB)
1334     EmitBlock(SkipCountBB);
1335 }
1336 
1337 /// Tries to mark the given function nounwind based on the
1338 /// non-existence of any throwing calls within it.  We believe this is
1339 /// lightweight enough to do at -O0.
1340 static void TryMarkNoThrow(llvm::Function *F) {
1341   // LLVM treats 'nounwind' on a function as part of the type, so we
1342   // can't do this on functions that can be overwritten.
1343   if (F->isInterposable()) return;
1344 
1345   for (llvm::BasicBlock &BB : *F)
1346     for (llvm::Instruction &I : BB)
1347       if (I.mayThrow())
1348         return;
1349 
1350   F->setDoesNotThrow();
1351 }
1352 
1353 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1354                                                FunctionArgList &Args) {
1355   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1356   QualType ResTy = FD->getReturnType();
1357 
1358   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1359   if (MD && MD->isImplicitObjectMemberFunction()) {
1360     if (CGM.getCXXABI().HasThisReturn(GD))
1361       ResTy = MD->getThisType();
1362     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1363       ResTy = CGM.getContext().VoidPtrTy;
1364     CGM.getCXXABI().buildThisParam(*this, Args);
1365   }
1366 
1367   // The base version of an inheriting constructor whose constructed base is a
1368   // virtual base is not passed any arguments (because it doesn't actually call
1369   // the inherited constructor).
1370   bool PassedParams = true;
1371   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1372     if (auto Inherited = CD->getInheritedConstructor())
1373       PassedParams =
1374           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1375 
1376   if (PassedParams) {
1377     for (auto *Param : FD->parameters()) {
1378       Args.push_back(Param);
1379       if (!Param->hasAttr<PassObjectSizeAttr>())
1380         continue;
1381 
1382       auto *Implicit = ImplicitParamDecl::Create(
1383           getContext(), Param->getDeclContext(), Param->getLocation(),
1384           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1385       SizeArguments[Param] = Implicit;
1386       Args.push_back(Implicit);
1387     }
1388   }
1389 
1390   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1391     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1392 
1393   return ResTy;
1394 }
1395 
1396 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1397                                    const CGFunctionInfo &FnInfo) {
1398   assert(Fn && "generating code for null Function");
1399   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1400   CurGD = GD;
1401 
1402   FunctionArgList Args;
1403   QualType ResTy = BuildFunctionArgList(GD, Args);
1404 
1405   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1406 
1407   if (FD->isInlineBuiltinDeclaration()) {
1408     // When generating code for a builtin with an inline declaration, use a
1409     // mangled name to hold the actual body, while keeping an external
1410     // definition in case the function pointer is referenced somewhere.
1411     std::string FDInlineName = (Fn->getName() + ".inline").str();
1412     llvm::Module *M = Fn->getParent();
1413     llvm::Function *Clone = M->getFunction(FDInlineName);
1414     if (!Clone) {
1415       Clone = llvm::Function::Create(Fn->getFunctionType(),
1416                                      llvm::GlobalValue::InternalLinkage,
1417                                      Fn->getAddressSpace(), FDInlineName, M);
1418       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1419     }
1420     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1421     Fn = Clone;
1422   } else {
1423     // Detect the unusual situation where an inline version is shadowed by a
1424     // non-inline version. In that case we should pick the external one
1425     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1426     // to detect that situation before we reach codegen, so do some late
1427     // replacement.
1428     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1429          PD = PD->getPreviousDecl()) {
1430       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1431         std::string FDInlineName = (Fn->getName() + ".inline").str();
1432         llvm::Module *M = Fn->getParent();
1433         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1434           Clone->replaceAllUsesWith(Fn);
1435           Clone->eraseFromParent();
1436         }
1437         break;
1438       }
1439     }
1440   }
1441 
1442   // Check if we should generate debug info for this function.
1443   if (FD->hasAttr<NoDebugAttr>()) {
1444     // Clear non-distinct debug info that was possibly attached to the function
1445     // due to an earlier declaration without the nodebug attribute
1446     Fn->setSubprogram(nullptr);
1447     // Disable debug info indefinitely for this function
1448     DebugInfo = nullptr;
1449   }
1450 
1451   // The function might not have a body if we're generating thunks for a
1452   // function declaration.
1453   SourceRange BodyRange;
1454   if (Stmt *Body = FD->getBody())
1455     BodyRange = Body->getSourceRange();
1456   else
1457     BodyRange = FD->getLocation();
1458   CurEHLocation = BodyRange.getEnd();
1459 
1460   // Use the location of the start of the function to determine where
1461   // the function definition is located. By default use the location
1462   // of the declaration as the location for the subprogram. A function
1463   // may lack a declaration in the source code if it is created by code
1464   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1465   SourceLocation Loc = FD->getLocation();
1466 
1467   // If this is a function specialization then use the pattern body
1468   // as the location for the function.
1469   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1470     if (SpecDecl->hasBody(SpecDecl))
1471       Loc = SpecDecl->getLocation();
1472 
1473   Stmt *Body = FD->getBody();
1474 
1475   if (Body) {
1476     // Coroutines always emit lifetime markers.
1477     if (isa<CoroutineBodyStmt>(Body))
1478       ShouldEmitLifetimeMarkers = true;
1479 
1480     // Initialize helper which will detect jumps which can cause invalid
1481     // lifetime markers.
1482     if (ShouldEmitLifetimeMarkers)
1483       Bypasses.Init(Body);
1484   }
1485 
1486   // Emit the standard function prologue.
1487   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1488 
1489   // Save parameters for coroutine function.
1490   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1491     llvm::append_range(FnArgs, FD->parameters());
1492 
1493   // Ensure that the function adheres to the forward progress guarantee, which
1494   // is required by certain optimizations.
1495   // In C++11 and up, the attribute will be removed if the body contains a
1496   // trivial empty loop.
1497   if (checkIfFunctionMustProgress())
1498     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1499 
1500   // Generate the body of the function.
1501   PGO.assignRegionCounters(GD, CurFn);
1502   if (isa<CXXDestructorDecl>(FD))
1503     EmitDestructorBody(Args);
1504   else if (isa<CXXConstructorDecl>(FD))
1505     EmitConstructorBody(Args);
1506   else if (getLangOpts().CUDA &&
1507            !getLangOpts().CUDAIsDevice &&
1508            FD->hasAttr<CUDAGlobalAttr>())
1509     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1510   else if (isa<CXXMethodDecl>(FD) &&
1511            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1512     // The lambda static invoker function is special, because it forwards or
1513     // clones the body of the function call operator (but is actually static).
1514     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1515   } else if (isa<CXXMethodDecl>(FD) &&
1516              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1517              !FnInfo.isDelegateCall() &&
1518              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1519              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1520     // If emitting a lambda with static invoker on X86 Windows, change
1521     // the call operator body.
1522     // Make sure that this is a call operator with an inalloca arg and check
1523     // for delegate call to make sure this is the original call op and not the
1524     // new forwarding function for the static invoker.
1525     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1526   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1527              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1528               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1529     // Implicit copy-assignment gets the same special treatment as implicit
1530     // copy-constructors.
1531     emitImplicitAssignmentOperatorBody(Args);
1532   } else if (Body) {
1533     EmitFunctionBody(Body);
1534   } else
1535     llvm_unreachable("no definition for emitted function");
1536 
1537   // C++11 [stmt.return]p2:
1538   //   Flowing off the end of a function [...] results in undefined behavior in
1539   //   a value-returning function.
1540   // C11 6.9.1p12:
1541   //   If the '}' that terminates a function is reached, and the value of the
1542   //   function call is used by the caller, the behavior is undefined.
1543   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1544       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1545     bool ShouldEmitUnreachable =
1546         CGM.getCodeGenOpts().StrictReturn ||
1547         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1548     if (SanOpts.has(SanitizerKind::Return)) {
1549       SanitizerScope SanScope(this);
1550       llvm::Value *IsFalse = Builder.getFalse();
1551       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1552                 SanitizerHandler::MissingReturn,
1553                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1554     } else if (ShouldEmitUnreachable) {
1555       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1556         EmitTrapCall(llvm::Intrinsic::trap);
1557     }
1558     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1559       Builder.CreateUnreachable();
1560       Builder.ClearInsertionPoint();
1561     }
1562   }
1563 
1564   // Emit the standard function epilogue.
1565   FinishFunction(BodyRange.getEnd());
1566 
1567   // If we haven't marked the function nothrow through other means, do
1568   // a quick pass now to see if we can.
1569   if (!CurFn->doesNotThrow())
1570     TryMarkNoThrow(CurFn);
1571 }
1572 
1573 /// ContainsLabel - Return true if the statement contains a label in it.  If
1574 /// this statement is not executed normally, it not containing a label means
1575 /// that we can just remove the code.
1576 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1577   // Null statement, not a label!
1578   if (!S) return false;
1579 
1580   // If this is a label, we have to emit the code, consider something like:
1581   // if (0) {  ...  foo:  bar(); }  goto foo;
1582   //
1583   // TODO: If anyone cared, we could track __label__'s, since we know that you
1584   // can't jump to one from outside their declared region.
1585   if (isa<LabelStmt>(S))
1586     return true;
1587 
1588   // If this is a case/default statement, and we haven't seen a switch, we have
1589   // to emit the code.
1590   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1591     return true;
1592 
1593   // If this is a switch statement, we want to ignore cases below it.
1594   if (isa<SwitchStmt>(S))
1595     IgnoreCaseStmts = true;
1596 
1597   // Scan subexpressions for verboten labels.
1598   for (const Stmt *SubStmt : S->children())
1599     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1600       return true;
1601 
1602   return false;
1603 }
1604 
1605 /// containsBreak - Return true if the statement contains a break out of it.
1606 /// If the statement (recursively) contains a switch or loop with a break
1607 /// inside of it, this is fine.
1608 bool CodeGenFunction::containsBreak(const Stmt *S) {
1609   // Null statement, not a label!
1610   if (!S) return false;
1611 
1612   // If this is a switch or loop that defines its own break scope, then we can
1613   // include it and anything inside of it.
1614   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1615       isa<ForStmt>(S))
1616     return false;
1617 
1618   if (isa<BreakStmt>(S))
1619     return true;
1620 
1621   // Scan subexpressions for verboten breaks.
1622   for (const Stmt *SubStmt : S->children())
1623     if (containsBreak(SubStmt))
1624       return true;
1625 
1626   return false;
1627 }
1628 
1629 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1630   if (!S) return false;
1631 
1632   // Some statement kinds add a scope and thus never add a decl to the current
1633   // scope. Note, this list is longer than the list of statements that might
1634   // have an unscoped decl nested within them, but this way is conservatively
1635   // correct even if more statement kinds are added.
1636   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1637       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1638       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1639       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1640     return false;
1641 
1642   if (isa<DeclStmt>(S))
1643     return true;
1644 
1645   for (const Stmt *SubStmt : S->children())
1646     if (mightAddDeclToScope(SubStmt))
1647       return true;
1648 
1649   return false;
1650 }
1651 
1652 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1653 /// to a constant, or if it does but contains a label, return false.  If it
1654 /// constant folds return true and set the boolean result in Result.
1655 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1656                                                    bool &ResultBool,
1657                                                    bool AllowLabels) {
1658   // If MC/DC is enabled, disable folding so that we can instrument all
1659   // conditions to yield complete test vectors. We still keep track of
1660   // folded conditions during region mapping and visualization.
1661   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1662       CGM.getCodeGenOpts().MCDCCoverage)
1663     return false;
1664 
1665   llvm::APSInt ResultInt;
1666   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1667     return false;
1668 
1669   ResultBool = ResultInt.getBoolValue();
1670   return true;
1671 }
1672 
1673 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1674 /// to a constant, or if it does but contains a label, return false.  If it
1675 /// constant folds return true and set the folded value.
1676 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1677                                                    llvm::APSInt &ResultInt,
1678                                                    bool AllowLabels) {
1679   // FIXME: Rename and handle conversion of other evaluatable things
1680   // to bool.
1681   Expr::EvalResult Result;
1682   if (!Cond->EvaluateAsInt(Result, getContext()))
1683     return false;  // Not foldable, not integer or not fully evaluatable.
1684 
1685   llvm::APSInt Int = Result.Val.getInt();
1686   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1687     return false;  // Contains a label.
1688 
1689   ResultInt = Int;
1690   return true;
1691 }
1692 
1693 /// Strip parentheses and simplistic logical-NOT operators.
1694 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1695   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1696     if (Op->getOpcode() != UO_LNot)
1697       break;
1698     C = Op->getSubExpr();
1699   }
1700   return C->IgnoreParens();
1701 }
1702 
1703 /// Determine whether the given condition is an instrumentable condition
1704 /// (i.e. no "&&" or "||").
1705 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1706   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1707   return (!BOp || !BOp->isLogicalOp());
1708 }
1709 
1710 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1711 /// increments a profile counter based on the semantics of the given logical
1712 /// operator opcode.  This is used to instrument branch condition coverage for
1713 /// logical operators.
1714 void CodeGenFunction::EmitBranchToCounterBlock(
1715     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1716     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1717     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1718   // If not instrumenting, just emit a branch.
1719   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1720   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1721     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1722 
1723   llvm::BasicBlock *ThenBlock = nullptr;
1724   llvm::BasicBlock *ElseBlock = nullptr;
1725   llvm::BasicBlock *NextBlock = nullptr;
1726 
1727   // Create the block we'll use to increment the appropriate counter.
1728   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1729 
1730   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1731   // means we need to evaluate the condition and increment the counter on TRUE:
1732   //
1733   // if (Cond)
1734   //   goto CounterIncrBlock;
1735   // else
1736   //   goto FalseBlock;
1737   //
1738   // CounterIncrBlock:
1739   //   Counter++;
1740   //   goto TrueBlock;
1741 
1742   if (LOp == BO_LAnd) {
1743     ThenBlock = CounterIncrBlock;
1744     ElseBlock = FalseBlock;
1745     NextBlock = TrueBlock;
1746   }
1747 
1748   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1749   // we need to evaluate the condition and increment the counter on FALSE:
1750   //
1751   // if (Cond)
1752   //   goto TrueBlock;
1753   // else
1754   //   goto CounterIncrBlock;
1755   //
1756   // CounterIncrBlock:
1757   //   Counter++;
1758   //   goto FalseBlock;
1759 
1760   else if (LOp == BO_LOr) {
1761     ThenBlock = TrueBlock;
1762     ElseBlock = CounterIncrBlock;
1763     NextBlock = FalseBlock;
1764   } else {
1765     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1766   }
1767 
1768   // Emit Branch based on condition.
1769   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1770 
1771   // Emit the block containing the counter increment(s).
1772   EmitBlock(CounterIncrBlock);
1773 
1774   // Increment corresponding counter; if index not provided, use Cond as index.
1775   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1776 
1777   // Go to the next block.
1778   EmitBranch(NextBlock);
1779 }
1780 
1781 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1782 /// statement) to the specified blocks.  Based on the condition, this might try
1783 /// to simplify the codegen of the conditional based on the branch.
1784 /// \param LH The value of the likelihood attribute on the True branch.
1785 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1786 /// ConditionalOperator (ternary) through a recursive call for the operator's
1787 /// LHS and RHS nodes.
1788 void CodeGenFunction::EmitBranchOnBoolExpr(
1789     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1790     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1791   Cond = Cond->IgnoreParens();
1792 
1793   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1794     // Handle X && Y in a condition.
1795     if (CondBOp->getOpcode() == BO_LAnd) {
1796       MCDCLogOpStack.push_back(CondBOp);
1797 
1798       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1799       // folded if the case was simple enough.
1800       bool ConstantBool = false;
1801       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1802           ConstantBool) {
1803         // br(1 && X) -> br(X).
1804         incrementProfileCounter(CondBOp);
1805         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1806                                  FalseBlock, TrueCount, LH);
1807         MCDCLogOpStack.pop_back();
1808         return;
1809       }
1810 
1811       // If we have "X && 1", simplify the code to use an uncond branch.
1812       // "X && 0" would have been constant folded to 0.
1813       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1814           ConstantBool) {
1815         // br(X && 1) -> br(X).
1816         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1817                                  FalseBlock, TrueCount, LH, CondBOp);
1818         MCDCLogOpStack.pop_back();
1819         return;
1820       }
1821 
1822       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1823       // want to jump to the FalseBlock.
1824       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1825       // The counter tells us how often we evaluate RHS, and all of TrueCount
1826       // can be propagated to that branch.
1827       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1828 
1829       ConditionalEvaluation eval(*this);
1830       {
1831         ApplyDebugLocation DL(*this, Cond);
1832         // Propagate the likelihood attribute like __builtin_expect
1833         // __builtin_expect(X && Y, 1) -> X and Y are likely
1834         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1835         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1836                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1837         EmitBlock(LHSTrue);
1838       }
1839 
1840       incrementProfileCounter(CondBOp);
1841       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1842 
1843       // Any temporaries created here are conditional.
1844       eval.begin(*this);
1845       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1846                                FalseBlock, TrueCount, LH);
1847       eval.end(*this);
1848       MCDCLogOpStack.pop_back();
1849       return;
1850     }
1851 
1852     if (CondBOp->getOpcode() == BO_LOr) {
1853       MCDCLogOpStack.push_back(CondBOp);
1854 
1855       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1856       // folded if the case was simple enough.
1857       bool ConstantBool = false;
1858       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1859           !ConstantBool) {
1860         // br(0 || X) -> br(X).
1861         incrementProfileCounter(CondBOp);
1862         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1863                                  FalseBlock, TrueCount, LH);
1864         MCDCLogOpStack.pop_back();
1865         return;
1866       }
1867 
1868       // If we have "X || 0", simplify the code to use an uncond branch.
1869       // "X || 1" would have been constant folded to 1.
1870       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1871           !ConstantBool) {
1872         // br(X || 0) -> br(X).
1873         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1874                                  FalseBlock, TrueCount, LH, CondBOp);
1875         MCDCLogOpStack.pop_back();
1876         return;
1877       }
1878       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1879       // want to jump to the TrueBlock.
1880       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1881       // We have the count for entry to the RHS and for the whole expression
1882       // being true, so we can divy up True count between the short circuit and
1883       // the RHS.
1884       uint64_t LHSCount =
1885           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1886       uint64_t RHSCount = TrueCount - LHSCount;
1887 
1888       ConditionalEvaluation eval(*this);
1889       {
1890         // Propagate the likelihood attribute like __builtin_expect
1891         // __builtin_expect(X || Y, 1) -> only Y is likely
1892         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1893         ApplyDebugLocation DL(*this, Cond);
1894         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1895                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1896         EmitBlock(LHSFalse);
1897       }
1898 
1899       incrementProfileCounter(CondBOp);
1900       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1901 
1902       // Any temporaries created here are conditional.
1903       eval.begin(*this);
1904       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1905                                RHSCount, LH);
1906 
1907       eval.end(*this);
1908       MCDCLogOpStack.pop_back();
1909       return;
1910     }
1911   }
1912 
1913   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1914     // br(!x, t, f) -> br(x, f, t)
1915     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1916     // LNot is taken as part of the condition for simplicity, and changing its
1917     // sense negatively impacts test vector tracking.
1918     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1919                          CGM.getCodeGenOpts().MCDCCoverage &&
1920                          isInstrumentedCondition(Cond);
1921     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1922       // Negate the count.
1923       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1924       // The values of the enum are chosen to make this negation possible.
1925       LH = static_cast<Stmt::Likelihood>(-LH);
1926       // Negate the condition and swap the destination blocks.
1927       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1928                                   FalseCount, LH);
1929     }
1930   }
1931 
1932   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1933     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1934     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1935     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1936 
1937     // The ConditionalOperator itself has no likelihood information for its
1938     // true and false branches. This matches the behavior of __builtin_expect.
1939     ConditionalEvaluation cond(*this);
1940     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1941                          getProfileCount(CondOp), Stmt::LH_None);
1942 
1943     // When computing PGO branch weights, we only know the overall count for
1944     // the true block. This code is essentially doing tail duplication of the
1945     // naive code-gen, introducing new edges for which counts are not
1946     // available. Divide the counts proportionally between the LHS and RHS of
1947     // the conditional operator.
1948     uint64_t LHSScaledTrueCount = 0;
1949     if (TrueCount) {
1950       double LHSRatio =
1951           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1952       LHSScaledTrueCount = TrueCount * LHSRatio;
1953     }
1954 
1955     cond.begin(*this);
1956     EmitBlock(LHSBlock);
1957     incrementProfileCounter(CondOp);
1958     {
1959       ApplyDebugLocation DL(*this, Cond);
1960       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1961                            LHSScaledTrueCount, LH, CondOp);
1962     }
1963     cond.end(*this);
1964 
1965     cond.begin(*this);
1966     EmitBlock(RHSBlock);
1967     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1968                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1969     cond.end(*this);
1970 
1971     return;
1972   }
1973 
1974   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1975     // Conditional operator handling can give us a throw expression as a
1976     // condition for a case like:
1977     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1978     // Fold this to:
1979     //   br(c, throw x, br(y, t, f))
1980     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1981     return;
1982   }
1983 
1984   // Emit the code with the fully general case.
1985   llvm::Value *CondV;
1986   {
1987     ApplyDebugLocation DL(*this, Cond);
1988     CondV = EvaluateExprAsBool(Cond);
1989   }
1990 
1991   // If not at the top of the logical operator nest, update MCDC temp with the
1992   // boolean result of the evaluated condition.
1993   if (!MCDCLogOpStack.empty()) {
1994     const Expr *MCDCBaseExpr = Cond;
1995     // When a nested ConditionalOperator (ternary) is encountered in a boolean
1996     // expression, MC/DC tracks the result of the ternary, and this is tied to
1997     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
1998     // this is the case, the ConditionalOperator expression is passed through
1999     // the ConditionalOp parameter and then used as the MCDC base expression.
2000     if (ConditionalOp)
2001       MCDCBaseExpr = ConditionalOp;
2002 
2003     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2004   }
2005 
2006   llvm::MDNode *Weights = nullptr;
2007   llvm::MDNode *Unpredictable = nullptr;
2008 
2009   // If the branch has a condition wrapped by __builtin_unpredictable,
2010   // create metadata that specifies that the branch is unpredictable.
2011   // Don't bother if not optimizing because that metadata would not be used.
2012   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2013   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2014     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2015     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2016       llvm::MDBuilder MDHelper(getLLVMContext());
2017       Unpredictable = MDHelper.createUnpredictable();
2018     }
2019   }
2020 
2021   // If there is a Likelihood knowledge for the cond, lower it.
2022   // Note that if not optimizing this won't emit anything.
2023   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2024   if (CondV != NewCondV)
2025     CondV = NewCondV;
2026   else {
2027     // Otherwise, lower profile counts. Note that we do this even at -O0.
2028     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2029     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2030   }
2031 
2032   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2033 }
2034 
2035 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2036 /// specified stmt yet.
2037 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2038   CGM.ErrorUnsupported(S, Type);
2039 }
2040 
2041 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2042 /// variable-length array whose elements have a non-zero bit-pattern.
2043 ///
2044 /// \param baseType the inner-most element type of the array
2045 /// \param src - a char* pointing to the bit-pattern for a single
2046 /// base element of the array
2047 /// \param sizeInChars - the total size of the VLA, in chars
2048 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2049                                Address dest, Address src,
2050                                llvm::Value *sizeInChars) {
2051   CGBuilderTy &Builder = CGF.Builder;
2052 
2053   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2054   llvm::Value *baseSizeInChars
2055     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2056 
2057   Address begin = dest.withElementType(CGF.Int8Ty);
2058   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2059                                                begin.emitRawPointer(CGF),
2060                                                sizeInChars, "vla.end");
2061 
2062   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2063   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2064   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2065 
2066   // Make a loop over the VLA.  C99 guarantees that the VLA element
2067   // count must be nonzero.
2068   CGF.EmitBlock(loopBB);
2069 
2070   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2071   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2072 
2073   CharUnits curAlign =
2074     dest.getAlignment().alignmentOfArrayElement(baseSize);
2075 
2076   // memcpy the individual element bit-pattern.
2077   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2078                        /*volatile*/ false);
2079 
2080   // Go to the next element.
2081   llvm::Value *next =
2082     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2083 
2084   // Leave if that's the end of the VLA.
2085   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2086   Builder.CreateCondBr(done, contBB, loopBB);
2087   cur->addIncoming(next, loopBB);
2088 
2089   CGF.EmitBlock(contBB);
2090 }
2091 
2092 void
2093 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2094   // Ignore empty classes in C++.
2095   if (getLangOpts().CPlusPlus) {
2096     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2097       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2098         return;
2099     }
2100   }
2101 
2102   if (DestPtr.getElementType() != Int8Ty)
2103     DestPtr = DestPtr.withElementType(Int8Ty);
2104 
2105   // Get size and alignment info for this aggregate.
2106   CharUnits size = getContext().getTypeSizeInChars(Ty);
2107 
2108   llvm::Value *SizeVal;
2109   const VariableArrayType *vla;
2110 
2111   // Don't bother emitting a zero-byte memset.
2112   if (size.isZero()) {
2113     // But note that getTypeInfo returns 0 for a VLA.
2114     if (const VariableArrayType *vlaType =
2115           dyn_cast_or_null<VariableArrayType>(
2116                                           getContext().getAsArrayType(Ty))) {
2117       auto VlaSize = getVLASize(vlaType);
2118       SizeVal = VlaSize.NumElts;
2119       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2120       if (!eltSize.isOne())
2121         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2122       vla = vlaType;
2123     } else {
2124       return;
2125     }
2126   } else {
2127     SizeVal = CGM.getSize(size);
2128     vla = nullptr;
2129   }
2130 
2131   // If the type contains a pointer to data member we can't memset it to zero.
2132   // Instead, create a null constant and copy it to the destination.
2133   // TODO: there are other patterns besides zero that we can usefully memset,
2134   // like -1, which happens to be the pattern used by member-pointers.
2135   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2136     // For a VLA, emit a single element, then splat that over the VLA.
2137     if (vla) Ty = getContext().getBaseElementType(vla);
2138 
2139     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2140 
2141     llvm::GlobalVariable *NullVariable =
2142       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2143                                /*isConstant=*/true,
2144                                llvm::GlobalVariable::PrivateLinkage,
2145                                NullConstant, Twine());
2146     CharUnits NullAlign = DestPtr.getAlignment();
2147     NullVariable->setAlignment(NullAlign.getAsAlign());
2148     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2149 
2150     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2151 
2152     // Get and call the appropriate llvm.memcpy overload.
2153     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2154     return;
2155   }
2156 
2157   // Otherwise, just memset the whole thing to zero.  This is legal
2158   // because in LLVM, all default initializers (other than the ones we just
2159   // handled above) are guaranteed to have a bit pattern of all zeros.
2160   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2161 }
2162 
2163 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2164   // Make sure that there is a block for the indirect goto.
2165   if (!IndirectBranch)
2166     GetIndirectGotoBlock();
2167 
2168   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2169 
2170   // Make sure the indirect branch includes all of the address-taken blocks.
2171   IndirectBranch->addDestination(BB);
2172   return llvm::BlockAddress::get(CurFn, BB);
2173 }
2174 
2175 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2176   // If we already made the indirect branch for indirect goto, return its block.
2177   if (IndirectBranch) return IndirectBranch->getParent();
2178 
2179   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2180 
2181   // Create the PHI node that indirect gotos will add entries to.
2182   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2183                                               "indirect.goto.dest");
2184 
2185   // Create the indirect branch instruction.
2186   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2187   return IndirectBranch->getParent();
2188 }
2189 
2190 /// Computes the length of an array in elements, as well as the base
2191 /// element type and a properly-typed first element pointer.
2192 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2193                                               QualType &baseType,
2194                                               Address &addr) {
2195   const ArrayType *arrayType = origArrayType;
2196 
2197   // If it's a VLA, we have to load the stored size.  Note that
2198   // this is the size of the VLA in bytes, not its size in elements.
2199   llvm::Value *numVLAElements = nullptr;
2200   if (isa<VariableArrayType>(arrayType)) {
2201     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2202 
2203     // Walk into all VLAs.  This doesn't require changes to addr,
2204     // which has type T* where T is the first non-VLA element type.
2205     do {
2206       QualType elementType = arrayType->getElementType();
2207       arrayType = getContext().getAsArrayType(elementType);
2208 
2209       // If we only have VLA components, 'addr' requires no adjustment.
2210       if (!arrayType) {
2211         baseType = elementType;
2212         return numVLAElements;
2213       }
2214     } while (isa<VariableArrayType>(arrayType));
2215 
2216     // We get out here only if we find a constant array type
2217     // inside the VLA.
2218   }
2219 
2220   // We have some number of constant-length arrays, so addr should
2221   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2222   // down to the first element of addr.
2223   SmallVector<llvm::Value*, 8> gepIndices;
2224 
2225   // GEP down to the array type.
2226   llvm::ConstantInt *zero = Builder.getInt32(0);
2227   gepIndices.push_back(zero);
2228 
2229   uint64_t countFromCLAs = 1;
2230   QualType eltType;
2231 
2232   llvm::ArrayType *llvmArrayType =
2233     dyn_cast<llvm::ArrayType>(addr.getElementType());
2234   while (llvmArrayType) {
2235     assert(isa<ConstantArrayType>(arrayType));
2236     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2237            llvmArrayType->getNumElements());
2238 
2239     gepIndices.push_back(zero);
2240     countFromCLAs *= llvmArrayType->getNumElements();
2241     eltType = arrayType->getElementType();
2242 
2243     llvmArrayType =
2244       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2245     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2246     assert((!llvmArrayType || arrayType) &&
2247            "LLVM and Clang types are out-of-synch");
2248   }
2249 
2250   if (arrayType) {
2251     // From this point onwards, the Clang array type has been emitted
2252     // as some other type (probably a packed struct). Compute the array
2253     // size, and just emit the 'begin' expression as a bitcast.
2254     while (arrayType) {
2255       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2256       eltType = arrayType->getElementType();
2257       arrayType = getContext().getAsArrayType(eltType);
2258     }
2259 
2260     llvm::Type *baseType = ConvertType(eltType);
2261     addr = addr.withElementType(baseType);
2262   } else {
2263     // Create the actual GEP.
2264     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2265                                              addr.emitRawPointer(*this),
2266                                              gepIndices, "array.begin"),
2267                    ConvertTypeForMem(eltType), addr.getAlignment());
2268   }
2269 
2270   baseType = eltType;
2271 
2272   llvm::Value *numElements
2273     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2274 
2275   // If we had any VLA dimensions, factor them in.
2276   if (numVLAElements)
2277     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2278 
2279   return numElements;
2280 }
2281 
2282 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2283   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2284   assert(vla && "type was not a variable array type!");
2285   return getVLASize(vla);
2286 }
2287 
2288 CodeGenFunction::VlaSizePair
2289 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2290   // The number of elements so far; always size_t.
2291   llvm::Value *numElements = nullptr;
2292 
2293   QualType elementType;
2294   do {
2295     elementType = type->getElementType();
2296     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2297     assert(vlaSize && "no size for VLA!");
2298     assert(vlaSize->getType() == SizeTy);
2299 
2300     if (!numElements) {
2301       numElements = vlaSize;
2302     } else {
2303       // It's undefined behavior if this wraps around, so mark it that way.
2304       // FIXME: Teach -fsanitize=undefined to trap this.
2305       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2306     }
2307   } while ((type = getContext().getAsVariableArrayType(elementType)));
2308 
2309   return { numElements, elementType };
2310 }
2311 
2312 CodeGenFunction::VlaSizePair
2313 CodeGenFunction::getVLAElements1D(QualType type) {
2314   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2315   assert(vla && "type was not a variable array type!");
2316   return getVLAElements1D(vla);
2317 }
2318 
2319 CodeGenFunction::VlaSizePair
2320 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2321   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2322   assert(VlaSize && "no size for VLA!");
2323   assert(VlaSize->getType() == SizeTy);
2324   return { VlaSize, Vla->getElementType() };
2325 }
2326 
2327 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2328   assert(type->isVariablyModifiedType() &&
2329          "Must pass variably modified type to EmitVLASizes!");
2330 
2331   EnsureInsertPoint();
2332 
2333   // We're going to walk down into the type and look for VLA
2334   // expressions.
2335   do {
2336     assert(type->isVariablyModifiedType());
2337 
2338     const Type *ty = type.getTypePtr();
2339     switch (ty->getTypeClass()) {
2340 
2341 #define TYPE(Class, Base)
2342 #define ABSTRACT_TYPE(Class, Base)
2343 #define NON_CANONICAL_TYPE(Class, Base)
2344 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2345 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2346 #include "clang/AST/TypeNodes.inc"
2347       llvm_unreachable("unexpected dependent type!");
2348 
2349     // These types are never variably-modified.
2350     case Type::Builtin:
2351     case Type::Complex:
2352     case Type::Vector:
2353     case Type::ExtVector:
2354     case Type::ConstantMatrix:
2355     case Type::Record:
2356     case Type::Enum:
2357     case Type::Using:
2358     case Type::TemplateSpecialization:
2359     case Type::ObjCTypeParam:
2360     case Type::ObjCObject:
2361     case Type::ObjCInterface:
2362     case Type::ObjCObjectPointer:
2363     case Type::BitInt:
2364       llvm_unreachable("type class is never variably-modified!");
2365 
2366     case Type::Elaborated:
2367       type = cast<ElaboratedType>(ty)->getNamedType();
2368       break;
2369 
2370     case Type::Adjusted:
2371       type = cast<AdjustedType>(ty)->getAdjustedType();
2372       break;
2373 
2374     case Type::Decayed:
2375       type = cast<DecayedType>(ty)->getPointeeType();
2376       break;
2377 
2378     case Type::Pointer:
2379       type = cast<PointerType>(ty)->getPointeeType();
2380       break;
2381 
2382     case Type::BlockPointer:
2383       type = cast<BlockPointerType>(ty)->getPointeeType();
2384       break;
2385 
2386     case Type::LValueReference:
2387     case Type::RValueReference:
2388       type = cast<ReferenceType>(ty)->getPointeeType();
2389       break;
2390 
2391     case Type::MemberPointer:
2392       type = cast<MemberPointerType>(ty)->getPointeeType();
2393       break;
2394 
2395     case Type::ArrayParameter:
2396     case Type::ConstantArray:
2397     case Type::IncompleteArray:
2398       // Losing element qualification here is fine.
2399       type = cast<ArrayType>(ty)->getElementType();
2400       break;
2401 
2402     case Type::VariableArray: {
2403       // Losing element qualification here is fine.
2404       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2405 
2406       // Unknown size indication requires no size computation.
2407       // Otherwise, evaluate and record it.
2408       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2409         // It's possible that we might have emitted this already,
2410         // e.g. with a typedef and a pointer to it.
2411         llvm::Value *&entry = VLASizeMap[sizeExpr];
2412         if (!entry) {
2413           llvm::Value *size = EmitScalarExpr(sizeExpr);
2414 
2415           // C11 6.7.6.2p5:
2416           //   If the size is an expression that is not an integer constant
2417           //   expression [...] each time it is evaluated it shall have a value
2418           //   greater than zero.
2419           if (SanOpts.has(SanitizerKind::VLABound)) {
2420             SanitizerScope SanScope(this);
2421             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2422             clang::QualType SEType = sizeExpr->getType();
2423             llvm::Value *CheckCondition =
2424                 SEType->isSignedIntegerType()
2425                     ? Builder.CreateICmpSGT(size, Zero)
2426                     : Builder.CreateICmpUGT(size, Zero);
2427             llvm::Constant *StaticArgs[] = {
2428                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2429                 EmitCheckTypeDescriptor(SEType)};
2430             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2431                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2432           }
2433 
2434           // Always zexting here would be wrong if it weren't
2435           // undefined behavior to have a negative bound.
2436           // FIXME: What about when size's type is larger than size_t?
2437           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2438         }
2439       }
2440       type = vat->getElementType();
2441       break;
2442     }
2443 
2444     case Type::FunctionProto:
2445     case Type::FunctionNoProto:
2446       type = cast<FunctionType>(ty)->getReturnType();
2447       break;
2448 
2449     case Type::Paren:
2450     case Type::TypeOf:
2451     case Type::UnaryTransform:
2452     case Type::Attributed:
2453     case Type::BTFTagAttributed:
2454     case Type::SubstTemplateTypeParm:
2455     case Type::MacroQualified:
2456     case Type::CountAttributed:
2457       // Keep walking after single level desugaring.
2458       type = type.getSingleStepDesugaredType(getContext());
2459       break;
2460 
2461     case Type::Typedef:
2462     case Type::Decltype:
2463     case Type::Auto:
2464     case Type::DeducedTemplateSpecialization:
2465     case Type::PackIndexing:
2466       // Stop walking: nothing to do.
2467       return;
2468 
2469     case Type::TypeOfExpr:
2470       // Stop walking: emit typeof expression.
2471       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2472       return;
2473 
2474     case Type::Atomic:
2475       type = cast<AtomicType>(ty)->getValueType();
2476       break;
2477 
2478     case Type::Pipe:
2479       type = cast<PipeType>(ty)->getElementType();
2480       break;
2481     }
2482   } while (type->isVariablyModifiedType());
2483 }
2484 
2485 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2486   if (getContext().getBuiltinVaListType()->isArrayType())
2487     return EmitPointerWithAlignment(E);
2488   return EmitLValue(E).getAddress();
2489 }
2490 
2491 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2492   return EmitLValue(E).getAddress();
2493 }
2494 
2495 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2496                                               const APValue &Init) {
2497   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2498   if (CGDebugInfo *Dbg = getDebugInfo())
2499     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2500       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2501 }
2502 
2503 CodeGenFunction::PeepholeProtection
2504 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2505   // At the moment, the only aggressive peephole we do in IR gen
2506   // is trunc(zext) folding, but if we add more, we can easily
2507   // extend this protection.
2508 
2509   if (!rvalue.isScalar()) return PeepholeProtection();
2510   llvm::Value *value = rvalue.getScalarVal();
2511   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2512 
2513   // Just make an extra bitcast.
2514   assert(HaveInsertPoint());
2515   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2516                                                   Builder.GetInsertBlock());
2517 
2518   PeepholeProtection protection;
2519   protection.Inst = inst;
2520   return protection;
2521 }
2522 
2523 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2524   if (!protection.Inst) return;
2525 
2526   // In theory, we could try to duplicate the peepholes now, but whatever.
2527   protection.Inst->eraseFromParent();
2528 }
2529 
2530 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2531                                               QualType Ty, SourceLocation Loc,
2532                                               SourceLocation AssumptionLoc,
2533                                               llvm::Value *Alignment,
2534                                               llvm::Value *OffsetValue) {
2535   if (Alignment->getType() != IntPtrTy)
2536     Alignment =
2537         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2538   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2539     OffsetValue =
2540         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2541   llvm::Value *TheCheck = nullptr;
2542   if (SanOpts.has(SanitizerKind::Alignment)) {
2543     llvm::Value *PtrIntValue =
2544         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2545 
2546     if (OffsetValue) {
2547       bool IsOffsetZero = false;
2548       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2549         IsOffsetZero = CI->isZero();
2550 
2551       if (!IsOffsetZero)
2552         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2553     }
2554 
2555     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2556     llvm::Value *Mask =
2557         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2558     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2559     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2560   }
2561   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2562       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2563 
2564   if (!SanOpts.has(SanitizerKind::Alignment))
2565     return;
2566   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2567                                OffsetValue, TheCheck, Assumption);
2568 }
2569 
2570 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2571                                               const Expr *E,
2572                                               SourceLocation AssumptionLoc,
2573                                               llvm::Value *Alignment,
2574                                               llvm::Value *OffsetValue) {
2575   QualType Ty = E->getType();
2576   SourceLocation Loc = E->getExprLoc();
2577 
2578   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2579                           OffsetValue);
2580 }
2581 
2582 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2583                                                  llvm::Value *AnnotatedVal,
2584                                                  StringRef AnnotationStr,
2585                                                  SourceLocation Location,
2586                                                  const AnnotateAttr *Attr) {
2587   SmallVector<llvm::Value *, 5> Args = {
2588       AnnotatedVal,
2589       CGM.EmitAnnotationString(AnnotationStr),
2590       CGM.EmitAnnotationUnit(Location),
2591       CGM.EmitAnnotationLineNo(Location),
2592   };
2593   if (Attr)
2594     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2595   return Builder.CreateCall(AnnotationFn, Args);
2596 }
2597 
2598 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2599   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2600   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2601     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2602                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2603                        V, I->getAnnotation(), D->getLocation(), I);
2604 }
2605 
2606 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2607                                               Address Addr) {
2608   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2609   llvm::Value *V = Addr.emitRawPointer(*this);
2610   llvm::Type *VTy = V->getType();
2611   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2612   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2613   llvm::PointerType *IntrinTy =
2614       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2615   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2616                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2617 
2618   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2619     // FIXME Always emit the cast inst so we can differentiate between
2620     // annotation on the first field of a struct and annotation on the struct
2621     // itself.
2622     if (VTy != IntrinTy)
2623       V = Builder.CreateBitCast(V, IntrinTy);
2624     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2625     V = Builder.CreateBitCast(V, VTy);
2626   }
2627 
2628   return Address(V, Addr.getElementType(), Addr.getAlignment());
2629 }
2630 
2631 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2632 
2633 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2634     : CGF(CGF) {
2635   assert(!CGF->IsSanitizerScope);
2636   CGF->IsSanitizerScope = true;
2637 }
2638 
2639 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2640   CGF->IsSanitizerScope = false;
2641 }
2642 
2643 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2644                                    const llvm::Twine &Name,
2645                                    llvm::BasicBlock::iterator InsertPt) const {
2646   LoopStack.InsertHelper(I);
2647   if (IsSanitizerScope)
2648     I->setNoSanitizeMetadata();
2649 }
2650 
2651 void CGBuilderInserter::InsertHelper(
2652     llvm::Instruction *I, const llvm::Twine &Name,
2653     llvm::BasicBlock::iterator InsertPt) const {
2654   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2655   if (CGF)
2656     CGF->InsertHelper(I, Name, InsertPt);
2657 }
2658 
2659 // Emits an error if we don't have a valid set of target features for the
2660 // called function.
2661 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2662                                           const FunctionDecl *TargetDecl) {
2663   // SemaChecking cannot handle below x86 builtins because they have different
2664   // parameter ranges with different TargetAttribute of caller.
2665   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2666     unsigned BuiltinID = TargetDecl->getBuiltinID();
2667     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2668         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2669         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2670         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2671       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2672       llvm::StringMap<bool> TargetFetureMap;
2673       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2674       llvm::APSInt Result =
2675           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2676       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2677         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2678             << TargetDecl->getDeclName() << "avx";
2679     }
2680   }
2681   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2682 }
2683 
2684 // Emits an error if we don't have a valid set of target features for the
2685 // called function.
2686 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2687                                           const FunctionDecl *TargetDecl) {
2688   // Early exit if this is an indirect call.
2689   if (!TargetDecl)
2690     return;
2691 
2692   // Get the current enclosing function if it exists. If it doesn't
2693   // we can't check the target features anyhow.
2694   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2695   if (!FD)
2696     return;
2697 
2698   // Grab the required features for the call. For a builtin this is listed in
2699   // the td file with the default cpu, for an always_inline function this is any
2700   // listed cpu and any listed features.
2701   unsigned BuiltinID = TargetDecl->getBuiltinID();
2702   std::string MissingFeature;
2703   llvm::StringMap<bool> CallerFeatureMap;
2704   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2705   // When compiling in HipStdPar mode we have to be conservative in rejecting
2706   // target specific features in the FE, and defer the possible error to the
2707   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2708   // referenced by an accelerator executable function, we emit an error.
2709   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2710   if (BuiltinID) {
2711     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2712     if (!Builtin::evaluateRequiredTargetFeatures(
2713         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2714       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2715           << TargetDecl->getDeclName()
2716           << FeatureList;
2717     }
2718   } else if (!TargetDecl->isMultiVersion() &&
2719              TargetDecl->hasAttr<TargetAttr>()) {
2720     // Get the required features for the callee.
2721 
2722     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2723     ParsedTargetAttr ParsedAttr =
2724         CGM.getContext().filterFunctionTargetAttrs(TD);
2725 
2726     SmallVector<StringRef, 1> ReqFeatures;
2727     llvm::StringMap<bool> CalleeFeatureMap;
2728     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2729 
2730     for (const auto &F : ParsedAttr.Features) {
2731       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2732         ReqFeatures.push_back(StringRef(F).substr(1));
2733     }
2734 
2735     for (const auto &F : CalleeFeatureMap) {
2736       // Only positive features are "required".
2737       if (F.getValue())
2738         ReqFeatures.push_back(F.getKey());
2739     }
2740     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2741       if (!CallerFeatureMap.lookup(Feature)) {
2742         MissingFeature = Feature.str();
2743         return false;
2744       }
2745       return true;
2746     }) && !IsHipStdPar)
2747       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2748           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2749   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2750     llvm::StringMap<bool> CalleeFeatureMap;
2751     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2752 
2753     for (const auto &F : CalleeFeatureMap) {
2754       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2755                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2756           !IsHipStdPar)
2757         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2758             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2759     }
2760   }
2761 }
2762 
2763 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2764   if (!CGM.getCodeGenOpts().SanitizeStats)
2765     return;
2766 
2767   llvm::IRBuilder<> IRB(Builder.GetInsertPoint());
2768   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2769   CGM.getSanStats().create(IRB, SSK);
2770 }
2771 
2772 void CodeGenFunction::EmitKCFIOperandBundle(
2773     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2774   const FunctionProtoType *FP =
2775       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2776   if (FP)
2777     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2778 }
2779 
2780 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2781     const MultiVersionResolverOption &RO) {
2782   llvm::SmallVector<StringRef, 8> CondFeatures;
2783   for (const StringRef &Feature : RO.Conditions.Features) {
2784     // Optimize the Function Multi Versioning resolver by creating conditions
2785     // only for features that are not enabled in the target. The exception is
2786     // for features whose extension instructions are executed as NOP on targets
2787     // without extension support.
2788     if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" ||
2789         Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" ||
2790         Feature == "dgh")
2791       CondFeatures.push_back(Feature);
2792   }
2793   if (!CondFeatures.empty()) {
2794     return EmitAArch64CpuSupports(CondFeatures);
2795   }
2796   return nullptr;
2797 }
2798 
2799 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2800     const MultiVersionResolverOption &RO) {
2801   llvm::Value *Condition = nullptr;
2802 
2803   if (!RO.Conditions.Architecture.empty()) {
2804     StringRef Arch = RO.Conditions.Architecture;
2805     // If arch= specifies an x86-64 micro-architecture level, test the feature
2806     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2807     if (Arch.starts_with("x86-64"))
2808       Condition = EmitX86CpuSupports({Arch});
2809     else
2810       Condition = EmitX86CpuIs(Arch);
2811   }
2812 
2813   if (!RO.Conditions.Features.empty()) {
2814     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2815     Condition =
2816         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2817   }
2818   return Condition;
2819 }
2820 
2821 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2822                                              llvm::Function *Resolver,
2823                                              CGBuilderTy &Builder,
2824                                              llvm::Function *FuncToReturn,
2825                                              bool SupportsIFunc) {
2826   if (SupportsIFunc) {
2827     Builder.CreateRet(FuncToReturn);
2828     return;
2829   }
2830 
2831   llvm::SmallVector<llvm::Value *, 10> Args(
2832       llvm::make_pointer_range(Resolver->args()));
2833 
2834   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2835   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2836 
2837   if (Resolver->getReturnType()->isVoidTy())
2838     Builder.CreateRetVoid();
2839   else
2840     Builder.CreateRet(Result);
2841 }
2842 
2843 void CodeGenFunction::EmitMultiVersionResolver(
2844     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2845 
2846   llvm::Triple::ArchType ArchType =
2847       getContext().getTargetInfo().getTriple().getArch();
2848 
2849   switch (ArchType) {
2850   case llvm::Triple::x86:
2851   case llvm::Triple::x86_64:
2852     EmitX86MultiVersionResolver(Resolver, Options);
2853     return;
2854   case llvm::Triple::aarch64:
2855     EmitAArch64MultiVersionResolver(Resolver, Options);
2856     return;
2857 
2858   default:
2859     assert(false && "Only implemented for x86 and AArch64 targets");
2860   }
2861 }
2862 
2863 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2864     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2865   assert(!Options.empty() && "No multiversion resolver options found");
2866   assert(Options.back().Conditions.Features.size() == 0 &&
2867          "Default case must be last");
2868   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2869   assert(SupportsIFunc &&
2870          "Multiversion resolver requires target IFUNC support");
2871   bool AArch64CpuInitialized = false;
2872   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2873 
2874   for (const MultiVersionResolverOption &RO : Options) {
2875     Builder.SetInsertPoint(CurBlock);
2876     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2877 
2878     // The 'default' or 'all features enabled' case.
2879     if (!Condition) {
2880       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2881                                        SupportsIFunc);
2882       return;
2883     }
2884 
2885     if (!AArch64CpuInitialized) {
2886       Builder.SetInsertPoint(CurBlock->begin());
2887       EmitAArch64CpuInit();
2888       AArch64CpuInitialized = true;
2889       Builder.SetInsertPoint(CurBlock);
2890     }
2891 
2892     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2893     CGBuilderTy RetBuilder(*this, RetBlock);
2894     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2895                                      SupportsIFunc);
2896     CurBlock = createBasicBlock("resolver_else", Resolver);
2897     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2898   }
2899 
2900   // If no default, emit an unreachable.
2901   Builder.SetInsertPoint(CurBlock);
2902   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2903   TrapCall->setDoesNotReturn();
2904   TrapCall->setDoesNotThrow();
2905   Builder.CreateUnreachable();
2906   Builder.ClearInsertionPoint();
2907 }
2908 
2909 void CodeGenFunction::EmitX86MultiVersionResolver(
2910     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2911 
2912   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2913 
2914   // Main function's basic block.
2915   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2916   Builder.SetInsertPoint(CurBlock);
2917   EmitX86CpuInit();
2918 
2919   for (const MultiVersionResolverOption &RO : Options) {
2920     Builder.SetInsertPoint(CurBlock);
2921     llvm::Value *Condition = FormX86ResolverCondition(RO);
2922 
2923     // The 'default' or 'generic' case.
2924     if (!Condition) {
2925       assert(&RO == Options.end() - 1 &&
2926              "Default or Generic case must be last");
2927       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2928                                        SupportsIFunc);
2929       return;
2930     }
2931 
2932     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2933     CGBuilderTy RetBuilder(*this, RetBlock);
2934     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2935                                      SupportsIFunc);
2936     CurBlock = createBasicBlock("resolver_else", Resolver);
2937     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2938   }
2939 
2940   // If no generic/default, emit an unreachable.
2941   Builder.SetInsertPoint(CurBlock);
2942   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2943   TrapCall->setDoesNotReturn();
2944   TrapCall->setDoesNotThrow();
2945   Builder.CreateUnreachable();
2946   Builder.ClearInsertionPoint();
2947 }
2948 
2949 // Loc - where the diagnostic will point, where in the source code this
2950 //  alignment has failed.
2951 // SecondaryLoc - if present (will be present if sufficiently different from
2952 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2953 //  It should be the location where the __attribute__((assume_aligned))
2954 //  was written e.g.
2955 void CodeGenFunction::emitAlignmentAssumptionCheck(
2956     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2957     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2958     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2959     llvm::Instruction *Assumption) {
2960   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2961          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2962              llvm::Intrinsic::getDeclaration(
2963                  Builder.GetInsertBlock()->getParent()->getParent(),
2964                  llvm::Intrinsic::assume) &&
2965          "Assumption should be a call to llvm.assume().");
2966   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2967          "Assumption should be the last instruction of the basic block, "
2968          "since the basic block is still being generated.");
2969 
2970   if (!SanOpts.has(SanitizerKind::Alignment))
2971     return;
2972 
2973   // Don't check pointers to volatile data. The behavior here is implementation-
2974   // defined.
2975   if (Ty->getPointeeType().isVolatileQualified())
2976     return;
2977 
2978   // We need to temorairly remove the assumption so we can insert the
2979   // sanitizer check before it, else the check will be dropped by optimizations.
2980   Assumption->removeFromParent();
2981 
2982   {
2983     SanitizerScope SanScope(this);
2984 
2985     if (!OffsetValue)
2986       OffsetValue = Builder.getInt1(false); // no offset.
2987 
2988     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2989                                     EmitCheckSourceLocation(SecondaryLoc),
2990                                     EmitCheckTypeDescriptor(Ty)};
2991     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2992                                   EmitCheckValue(Alignment),
2993                                   EmitCheckValue(OffsetValue)};
2994     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2995               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2996   }
2997 
2998   // We are now in the (new, empty) "cont" basic block.
2999   // Reintroduce the assumption.
3000   Builder.Insert(Assumption);
3001   // FIXME: Assumption still has it's original basic block as it's Parent.
3002 }
3003 
3004 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3005   if (CGDebugInfo *DI = getDebugInfo())
3006     return DI->SourceLocToDebugLoc(Location);
3007 
3008   return llvm::DebugLoc();
3009 }
3010 
3011 llvm::Value *
3012 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3013                                                       Stmt::Likelihood LH) {
3014   switch (LH) {
3015   case Stmt::LH_None:
3016     return Cond;
3017   case Stmt::LH_Likely:
3018   case Stmt::LH_Unlikely:
3019     // Don't generate llvm.expect on -O0 as the backend won't use it for
3020     // anything.
3021     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3022       return Cond;
3023     llvm::Type *CondTy = Cond->getType();
3024     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3025     llvm::Function *FnExpect =
3026         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3027     llvm::Value *ExpectedValueOfCond =
3028         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3029     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3030                               Cond->getName() + ".expval");
3031   }
3032   llvm_unreachable("Unknown Likelihood");
3033 }
3034 
3035 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3036                                                     unsigned NumElementsDst,
3037                                                     const llvm::Twine &Name) {
3038   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3039   unsigned NumElementsSrc = SrcTy->getNumElements();
3040   if (NumElementsSrc == NumElementsDst)
3041     return SrcVec;
3042 
3043   std::vector<int> ShuffleMask(NumElementsDst, -1);
3044   for (unsigned MaskIdx = 0;
3045        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3046     ShuffleMask[MaskIdx] = MaskIdx;
3047 
3048   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3049 }
3050 
3051 void CodeGenFunction::EmitPointerAuthOperandBundle(
3052     const CGPointerAuthInfo &PointerAuth,
3053     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3054   if (!PointerAuth.isSigned())
3055     return;
3056 
3057   auto *Key = Builder.getInt32(PointerAuth.getKey());
3058 
3059   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3060   if (!Discriminator)
3061     Discriminator = Builder.getSize(0);
3062 
3063   llvm::Value *Args[] = {Key, Discriminator};
3064   Bundles.emplace_back("ptrauth", Args);
3065 }
3066